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Abstract

The Brain-computer interface (BCI) is a neurotechnology capable of acquiring, processing and
decoding brain signals through invasive or non-invasive acquisition techniques and translating
them into commands for the external environment. This command depends on the final objective
of the BCI, which can be used to control a robotic device, a rehabilitation technology, or a game
on the computer screen. The type of BCI used in this study is non-invasive and based on mo-
tor imagery. Data from a single subject who participated in the Cybathlon competition for two
consecutive years were used, and on this dataset comprising various offline, online, and control
sessions, a deep neural network was trained. The advantage of using a deep learning approach
in this context is to minimize preprocessing of the raw data and the manual feature extraction
process. At the same time, a major disadvantage of this system is explainability. Therefore, the
aim of this study is not so much to find the best classifier, but rather to understand how the model
makes predictions and how this process changes over the sessions, in relation to user adaptation.
The goal is to demonstrate that the user has learned to use the BCI over the months through the
visualization of the neural network9s latent space. To enable visualization in two-dimensional
space, a data dimensionality reduction technique based on UMAP (Uniform Manifold Approx-
imation and Projection) was adopted, and it emerged that there was indeed a shift in the data
distribution across the sessions, particularly evident when the subject became skilled in perform-
ing the required motor imagery tasks. To obtain a quantitative correspondence, several metrics
were used, in addition to the classic accuracy, which together with the visualization allowed for
an in-depth study of short-term and long-term user learning.

ii



Abstract

L9interfaccia uomo-macchina (Brain-computer interface, BCI) è una neurotecnologia capace di
leggere i segnali cerebrali attraverso registrazioni invasive o non invasive e tradurli in comandi
per l9ambiente esterno. Questo comando dipende dall9obiettivo finale della BCI, che può essere
utilizzata per controllare un dispositivo robotico, una tecnologia di riabilitazione o un gioco sullo
schermo del computer. La tipologia di BCI discussa in questo studio è non invasiva e basata
sull9immaginazione motoria. Sono state utilizzate le registrazioni di un singolo soggetto che
ha partecipato alla competizione Cybathlon per due anni consecutivi, e su questo set di dati,
comprendente molte sessioni offline, online e di controllo, è stata addestrata una rete neurale
profonda. Il vantaggio di utilizzare un approccio di deep learning in questo contesto è quello di
ridurre al minimo la fase di pre-elaborazione dei dati grezzi e il processo manuale di estrazione
delle caratteristiche. Allo stesso tempo, un grande svantaggio di questo sistema è la spiegabilità.
Pertanto, l9obiettivo di questo studio non è tanto quello di trovare il miglior classificatore, ma
piuttosto comprendere come il modello effettui le predizioni e come questo processo cambi nel
corso delle sessioni, in relazione all9adattamento dell9utente. Si vuole quindi dimostrare che
l9utente ha imparato nei mesi a usare la BCI attraverso la visualizzazione dello spazio latente
della rete neurale. Per permettere la visualizzazione nello spazio bidimensionale è stata adot-
tata una tecnica di riduzione della dimensionalità dei dati basata su UMAP (Uniform Manifold
Approximation and Projection), e ne è emerso che c9è stato effettivamente uno spostamento
nella distribuzione dei dati tra le varie sessioni, particolarmente evidente quando il soggetto è
diventato abile nell9eseguire i compiti di immaginazione motoria richiesti. Per ottenere una cor-
rispondenza quantitativa, sono state utilizzate diverse metriche, oltre alla classica accuratezza,
che insieme alla visualizzazione hanno permesso uno studio approfondito dell9apprendimento
dell9utente a breve e a lungo termine.
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Chapter 1

Introduction

The Brain-computer interface (BCI) constitutes an alternative communication channel between
humans and the external world. This technology interprets brain signals and decodes the user9s
intentions without the need for the user to move. For this reason, it can be utilized in different
scenarios, such as helping impaired individuals recover motor functions or as an assistive device
following permanent injuries and traumas. They can also be used to control neuroprosthetics [1]
or robotic devices [2]. Unlike other types of technologies, the main characteristic of BCI is the
closed loop. The loop is closed when a command is given, and the subject receives feedback of
any kind, such as visual or auditory, on the issued command. For the entire system to function,
reciprocal interaction between the user, the decoder, and the device is necessary, following the
principle of mutual learning where the three entities learn one from each other.

1.1 A quick look at neurophysiology

Neurophysiology is a discipline that studies the functioning of the nervous system, including
the interactions between neurons and how they generate electrical and chemical signals to com-
municate with each other. The neuron is the primary cell of the nervous system responsible for
receiving and transmitting impulses, but there are also glial cells, which have an equally impor-
tant function, providing structural and functional support. The neuron is essentially composed
of three parts:

" Soma: the cell body that contains the nucleus.

" Axon: the extension that transmits the signal from the soma to the axon terminals.

" Dendrites: extensions that surround the soma and receive signals from other neurons.

Neurons communicate with each other through synapses, which can be electrical or chem-
ical. The most common type, chemical synapses, use neurotransmitters, which are substances
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synthesized within the neuron that can exert an excitatory or inhibitory action on another neuron
or an effector organ.

The transmission mechanism of nerve signals (Figure 1.1) is an electrochemical process,
which can be measured and recorded from the scalp using techniques such as electroencephalog-
raphy (EEG). It can be divided into four main phases: resting state, depolarization, repolariza-
tion, and hyperpolarization. In the first phase, the neuron has a resting membrane potential of
about -70 mV, maintained by passive channels and ion pumps, which regulate the concentration
of sodium (Na+) and potassium (K+) ions inside and outside the cell. When a stimulus reaches
the neuron, it causes the voltage-gated sodium channels to open, and the membrane potential re-
verses and becomes positive due to the influx of sodium ions into the cell. When the membrane
potential reaches about +30 mV, the repolarization phase begins, in which the sodium channels
close and the potassium channels open, bringing the membrane potential back to negative val-
ues. During the hyperpolarization phase, the ion pumps restore the normal balance, because
the outflow of potassium ions from the cell can make the membrane potential more negative
than the resting potential. Important characteristics of transmission include the unidirectional
propagation of the signal, which propagates along the axon forward and without attenuation,
thanks to the sequential opening of ion channels [3]. Only when the action potential reaches the
axon terminal, the influx of calcium ions (Ca2+) causes the release of neurotransmitters in the
synapses.

Figure 1.1: Action potential

The nervous system is composed of the Central Nervous System (CNS) and the Peripheral
Nervous System (PNS). The CNS consists of the brain, protected by the skull, and the spinal
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cord, contained within the vertebral canal, and it serves as the main center for processing and
integrating information. The brain is divided into two hemispheres, and in each of them can
be distinguished: the frontal lobe, the temporal lobe, the parietal lobe, and the occipital lobe
(Figure 1.2). The PNS includes the nerves that extend from the CNS, and its function is to
transmit signals from the centers to the periphery of the body.

Figure 1.2: Cerebral lobes

The CNS, particularly the brain, can be studied with various tools depending on the final
objective of the study. The main tools are:

" Electroencephalogram (EEG): measures the electrical activity of the brain in a non-
invasive way.

" Magnetic Resonance Imaging (MRI): provides detailed images of the brain9s structure.

" Emission Tomography (PET): provides an indirect measure of brain activity.

" Electrocorticography (ECoG): measures the electrical activity of the brain in a invasive
way.

" Transcranial Magnetic Stimulation (TMS): used to stimulate specific areas of the brain.

1.2 Brain-Computer Interface (BCI)

Many conditions such as spinal cord injury, cerebral palsy, and stroke can partially or completely
damage an individual9s communication channels with the external world. BCI can intervene in
all these situations to restore a mode of interaction or contact through the intermediary of a

3



machine. In this sense, BCI helps to improve the quality of life for people with disabilities and
reduces the need for a caregiver [4]. There are essentially two types of BCI: assistive BCI, which
aim to create a permanent communication channel with an external device, and rehabilitative
BCI, which seek to restore the normal physiological communication channel by leveraging neu-
ronal plasticity. The latter approach is preferred, especially in post-stroke rehabilitation during
the preliminary phases, when the patient9s recovery potential is highest [5]. The most frequent
clinical applications [6] of BCI presented in the literature are:

" Motion rehabilitation: to recover and improve the movement of patients9 upper and
lower limbs.

" Virtual reality control: the user moves a virtual object on the monitor, and the computer
transmits this movement to an external device.

" Speech rehabilitation: the user selects the desired letters from the monitor and composes
words.

A complete BCI system is very complex because it involves multiple steps that require dif-
ferent skills to manage (Figure 1.3). It is essential to coordinate the hardware and software
components as well as the human element, which is an integral part of the system. First, the
brain signal is acquired through electrodes, and this signal requires preprocessing to remove
noise and artifacts that may obscure the useful signal. Then follows the feature extraction phase,
either manually or automatically, and classification, for which several promising strategies cur-
rently exist. At this point, the classifier output is provided as a command to the external device
through an interface, and the user can see the issued command as feedback. Generally, in real
applications, a command is not produced for every classifier output; instead, the output is in-
tegrated over multiple trials until there is sufficient evidence that the predicted class is correct.
To achieve this, a so-called control framework is applied, allowing for a good level of precision
and accuracy [7].
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Figure 1.3: BCI operating loop

A primary distinction of BCIs can be made between invasive and non-invasive. Invasive
BCI involves the implantation of electrodes directly into the brain tissue, either within the cor-
tex or deeper. The acquired signal comes from a small population of closely situated neurons
or even a single neuron. The positive aspects of invasive BCI include very high spatial and
temporal resolution, allowing precise reading of neural activity, and reliability, as the recorded
signal is less influenced by external noise [8]. Despite several experiments conducted on both
primates and humans over time [9, 10, 11], there are aspects that make the invasive BCI chal-
lenging for real-world applications. These include the risks associated with surgical intervention
(infections, brain damage, scar formation, etc.), the risk of rejection of a foreign body with pos-
sible inflammation, and the cost, as this technology is expensive both in terms of installation
and maintenance. Non-invasive BCI uses electrodes applied to the scalp to record signals. The
advantages are associated with safety, accessibility, and comfort. However, this type of BCI is
characterized by low spatial resolution, making it more difficult to read neural activity, and it is
also more susceptible to external noise and interference. Comparing the two, invasive BCIs are
common in research on patients with severe motor disabilities. They are mostly used to control
prostheses or assistive devices. Non-invasive BCIs, on the other hand, are used in commercial
applications and are intended for therapeutic, rehabilitative, or even as an alternative interface
for entertainment activities.

From the perspective of signal analysis, invasive and non-invasive BCIs also differ. The
former can be studied through spike detection and sorting, using a high-pass filter to locate the
activity of individual neurons, or through Local Field Potential (LFP) [12, 13], applying a low-
pass filter to locate the activity of a small population of nearby neurons that fire synchronously.
The second type of BCI will be discussed extensively in the next section.
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1.2.1 EEG signals for non-invasive BCI

Different methods for acquiring brain signals for non-invasive BCI include EEG, MEG, fNIRS,
fMRI, or PET. Each of these techniques has advantages and disadvantages. Considering a com-
promise between accessibility and good temporal resolution, which is essential since the purpose
of BCI is to be used in real-time, EEG is preferred [14].

The EEG represents the sum of the electrical activity from multiple neurons that activate
simultaneously over a certain period, recorded through surface electrodes. It mainly reflects
the activity of pyramidal neurons located in the outermost layer of the cerebral cortex, and due
to geometric considerations, only the current dipoles oriented vertically to the scalp contribute.
The deeper areas of the brain also contribute to the surface field potentials, but indirectly. It
has been estimated that each EEG electrode covers the summed activity of roughly 6 cm² of the
underlying cortex (thousands of neurons) [3]. For this reason, the spatial resolution of the EEG
signal is not good, and the signal requires extensive preprocessing to be cleaned from external
noise. Human EEG shows activity from 1 to 30 Hz, with amplitudes ranging from 20 to 300
µV.

In some cases, the frequency of the signal is more important than its succession over time;
therefore, by convention, frequency bands associated with different brain rhythms are defined:

" δ rhythms [<4 Hz]: slow waves typical of deep sleep.

" θ rhythms [4-8 Hz]: waves typical of drowsiness.

" α rhythms [8-13 Hz]: waves associated with a state of relaxation.

" β rhythms [13-30 Hz]: waves associated with concentration.

" γ rhythms [>30 Hz]: waves associated with sensory processing.

Each of these rhythms appears in the EEG signal based on the activity the subject is performing.
For example, if the subject is asked to close the eyes and relax, alpha waves will appear on the
occipital channels; but they will disappear as soon as he opens the eyes due to the desynchro-
nization of the neurons involved.

The electrodes used for EEG are small metal disks, typically made of silver, covered with
a layer of conductive material. They are applied with conductive paste or gel directly onto
the scalp. An alternative is a cap with pre-fixed electrodes that make preparation much easier.
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The placement of EEG electrodes follows the 10-20 international system (Figure 1.4), ensuring
consistency across recordings. This system is called this way because the distances between
electrodes are either 10% or 20% of the total distance between specific points on the skull, using
the following important landmarks: nasion in the frontal region, vertex in the central region,
and inion in the occipital region. The electrodes record the difference in potential generated by
neuronal electrical activity relative to a reference electrode. The choice of reference is important
for waveform analysis, while it is completely irrelevant for topographic analysis.

Figure 1.4: 10-20 placement system

Brain signal oscillations can be induced by an external stimulus and are called Evoked-
Related Potentials (ERPs), or by internal stimulation and are called Spontaneous Potentials
(SPs). ERPs are time-locked and phase-locked activities because they are synchronized to the
onset of the stimulus and coherent in phase relative to the stimulus itself. Examples of ERPs
include:

" Visual Evoked Potential (VEP) and Steady-State Visual Evoked Potential (SSVEP)

" P300 Evoked Potential (P300)

" Error Potential (ErrP)

SPs, on the other hand, are generated by voluntary mental activities that the subject decides to
perform. Therefore, they are not time-locked or phase-locked, as they can have different phases
and frequencies. Examples of SPs include:

" Slow Cortical Potentials (SCPs)

" Sensorymotor rhythms (Motor Imagery)

VEPs are electrophysiological responses to visual stimuli, usually presented as flashes or pattern.
These are often used to assess the integrity of the visual system. SSVEPs are specific types of
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VEPs recorded when the visual stimulus is presented continuously and periodically, at fixed
frequencies greater than 6 Hz. The neuronal response manifests as a continuous oscillation at
the same frequency as the stimulus. The P300 is a component of the brain wave that occurs
approximately 300 ms after the presentation of a stimulus, which can be visual, auditory, or
somatosensory. The P300 is extensively studied as it is linked to cognitive processes such as
attention andmemory, and BCIs based on this evoked potential are widespread. The ErrP occurs
approximately 50-100 ms after the perception of an error or unexpected outcome in a task. SCPs
reflect gradual changes in neuronal polarization that occur over longer time scales compared to
rapid and brief action potentials. They are used in BCIs as they anticipate intentions and motor
actions of the subject. Finally, motor and sensorimotor rhythms are patterns of brain activity
associated respectively with movement and imagined movement.

The subsequent signal analysis varies based on the type of potential. For ERPs, the response
to repeated stimuli is typically averaged to enhance the useful signal and reduce noise. Addi-
tionally, components are analyzed in the time domain considering latency and amplitude of the
response. SPs do not have a precise onset, change between successive trials, and do not pro-
vide comprehensive information if analyzed over time. For this reason, they require frequency
domain analysis.

1.2.2 Motor Imagery BCI

Motor Imagery (MI) is a paradigm that, as the name suggests, involves imagining a move-
ment rather than actually performing it. This allows controlling wheelchairs, robotic arms, and
prosthetic devices purely through thought [15]. The type of imagination referred to is called
kinesthetic; that9s the ability to mentally perceive the movement of one9s own body. Therefore,
the user of the BCI is asked to imagine not the movement of any hand or foot, but of their own
hand and foot.

The main areas involved in the mental process of movements are:

" Primary Motor cortex (M1): this area is located in the frontal lobe and plays a fundamen-
tal role in the execution and planning of voluntary movements. During motor imagery,
the M1 is activated in a manner similar to when the movement is actually performed,
although to a lesser extent.

" Primary Somatosensory cortex (S1): this area is located in the parietal lobe, imme-
diately behind the central sulcus. It is responsible for receiving and processing sensory
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information from all over the body.

" Premotor cortex: This area is located anterior to theM1 and plays a role in planning com-
plex and coordinated movements. During motor imagery, the premotor cortex is active in
preparing motor plans without the physical execution of the movement.

The M1, like the S1, is specific: the topographic representation of the distribution of motor
areas in the human brain is called the motor homunculus (Figure 1.5). This is organized in such
a way that different body parts are represented proportionally to their importance and motor
complexity. For example, body parts that require greater precision and control, such as the
hands and face, occupy more space on the map compared to less complex body parts, such as
the arms and legs. A fundamental characteristic of the motor homunculus is contralaterality,
which means that the areas controlling the right side of the body are located on the left side of
the motor cortex, and vice versa.

Figure 1.5: Motor homunculus

The sensorimotor rhythms used for motor imagery BCI (MI BCI) are:

" µ rhythms [8-13 Hz]

" β rhythms [13-30 Hz]

µ rhythms have the same frequency content as α rhythms but are generated in the sensorimotor
cortex. During a MI task, there is desynchronization of some neurons, which can be seen on the
EEG as a decrease in the amplitude of oscillations on the central electrodes. Immediately after
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the task is performed, there is synchronization of the involved neurons, observed as an increase
in the amplitude of oscillations. Analyzing what happens during the task in the frequency do-
main, it is noted that desynchronization occurs in the µ band, while subsequent synchronization
occurs in the β band, referred to as the β rebound. This phenomena are specifically known as
Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). The
electrodes involved are: Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP1, CPz and CP2,
although activation varies based on the subject and the type of task. For example, if a right-hand
movement is imagined, ERD and ERS will be observed on the left electrodes (FC3, C3, CP1)
and vice versa for the left hand (FC4, C4, CP2) (Figure 1.6). If the feet are imagined to move,
the central areas of the sensorimotor cortex (Fz, Cz, CPz) will be activated. The µ band ERD
starts 2.5 s before movement-onset, reaches maximal values shortly after, and recovers to base-
line level within a few seconds. The central β activity, in contrast, displays a short-lasting ERD
during initiation of movement followed by a synchronization with a maximum after movement
execution. It is of interest that the β ERS occurs while the µ rhythm is still attenuated [14].

Figure 1.6: ERD/ERS

MI experiments usually take place over several sessions carried out on different days. Each
session is divided into parts referred to as 8runs9, and a run consists of repeating different tasks.
Typically, the sequence of tasks is randomized while the number of trials per each task is fixed.
Two to four MI tasks are currently considered among imagining the movement of a hand, both
hands, a foot, both feet, the tongue, a wrist, an elbow, a forearm, or fingers [14]. The classic
experimental procedure forMI BCI consists of dividing a single trial into four main parts (Figure
1.7):

1. Fixation cross: this initial relax phase is typically triggered by an auditory or a visual
signal. The user must fixate on a cross at the center of the screen, which helps limit
involuntary eye movements.

2. Cue: during this phase, the user is informed about the MI task to perform immediately
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afterward.

3. Motor Imagery: a time interval (from 3 to 5 s) during which the assigned task must be
performed and continous feedback is generated.

4. Break: final relax phase with random duration.

Figure 1.7: An example of MI-BCI experimental procedure

1.3 The classification algorithm

A fundamental step in the operating loop of a BCI is the choice of the most suitable algorithm
for the classification of the task. The goal is to find the algorithm that performs best; however,
there are issues that often hinder achieving high accuracy and are intrinsic in the acquired signal:
non-stationarity, noise and interference, significant variability inter-subjects and inter-sessions.
Therefore, a model that is robust and stable over time is necessary. The classification problem
is closely linked to the feature extraction of the signal. In fact, the more discriminative the
chosen features are for the performed task, the better the classification improves. The extraction
process is done exclusively during the calibration sessions of the decoder. Once the features
are selected and the model is trained offline, the decoder can be used online. The features
represent those channel-frequency pairs that make it possible to discriminate between two or
more classes, and it often happens that over sessions on different days, the significant pairs
change, for example, due to different modulation of brain rhythms by the subject or due to
changes in some experimental conditions. This makes it difficult to use the same model on
subsequent days without the decoder9s performance dropping drastically. Therefore, frequent
calibration of the decoder is necessary, and this process can be long, as well as tiring for the
subject using the BCI.

Ideally, one would want a model that, with minimal calibration, can work well for every
subject and for every type of task. Unfortunately, this is not possible today, but efforts are
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ongoing to find something that achieves maximum prediction accuracy with minimal prepro-
cessing work. The most commonly used algorithms in the field of BCI are supervised Machine
Learning (ML) algorithms, which use labeled data to learn the characteristics of the brain sig-
nal from the specific subject. These data are used to train a model that then predicts the user9s
intentions on new, unseen data [16]. One type of supervised learning is classification, used for
MI tasks. The simplest classification problem involves two classes, such as both hands or both
feet, right hand or left hand, but more complex multiclass paradigms can also be implemented.
In addition to supervised classification techniques, such as classification and regression, there
are also unsupervised learning and reinforcement learning techniques (Figure 1.8).

Figure 1.8: Machine learning techniques

Among the classification methods for MI BCI most frequently found in the literature, the
most popular are Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM).
K-Nearest Neighbor (K-NN) and Bayesian analysis are also used. A distinction must be made
between linear and nonlinear classification algorithms. For example, LDA is a simple, strong
algorithm that presumes the Gaussian distribution of data. However, due to the characteristics
of the EEG signal, it is often impossible to find a solution with linear methods, necessitating
a switch to nonlinear solutions such as Artificial Neural Networks (ANNs), K-NN, and SVMs
[17]. Moreover, since the goal is always to use the BCI for real-time predictions, it is essential
to find a compromise between accuracy and speed, and often the most robust algorithms are also
those that take so much time and resources that they cannot be used online.

1.3.1 Deep learning for BCI

Recently, the use of Deep Neural Networks (DNNs) for BCI has been extensively explored,
having previously been set aside due to two main issues: lack of data and difficulty in the neu-

12



rophysiological interpretation of the algorithm. Deep Learning (DL) is a subfield of ML that
involves the use of a network with a series of hidden layers between the input and output layers.
These hidden layers process the data by extracting nonlinear relationships and then combine
the features without any external instructions. This makes learning automatic and fast, but the
processing done to reach the output is unknown, which is why these networks are considered
as =black boxes=. Moreover, DNNs, rather than simple NN, historically require much more
data to achieve good results. Unfortunately, in the BCI field, collecting such large amounts of
data is very difficult, if not impossible. However, it has been shown that despite the lack of
data, some particular DNNs structures outperform the traditional algorithms mentioned above,
making them an excellent alternative with great potential.

The most commonly used network architecture in the field of BCI is Convolutional Neural
Network (CNN). Following this are Recurrent Neural Network (RNN), particularly the Long
Short-Term Memory (LSTM), autoencoders (AE) and finally hybrid networks. Even with
DNNs, it is necessary to find an architecture with a low computational load, that can be used in
short time frames; for example, RNN takes more than 25 times as long to train as CNN for a
sequence of 2500 items [17]. The advantages of usingDNNs are numerous, with themost impor-
tant being the limited data preprocessing required. With traditional algorithms, preprocessing
is a crucial step that determines the success of all subsequent phases. Using DL, data manipula-
tion is minimized, though still necessary to achieve high levels of prediction accuracy. Essential
steps that should not be skipped include signal filtering and artifact removal, either manually or
automatically, such as through Independent Component Analysis (ICA). Another significant ad-
vantage is related to feature extraction, which, in the case of DNNs, is done automatically by
the network itself, simplifying the pipeline considerably since discriminative features are often
not known a priori. Through DL, the so-called end-to-end learning is utilized, which consists of
obtaining an output from the network directly from raw or minimally manipulated data.

1.3.2 What is a CNN

Convolutional Neural Networks (CNNs) constitute an architecture specifically designed for im-
age analysis and processing. The first to discuss CNNs was Yann LeCun in the 1990s, and
since then, these networks have revolutionized not only image recognition but are also used in
the fields of computer vision, speech recognition, and natural language processing. CNNs are
composed of layers, some of which are also present in traditional DNNs, such as activation lay-
ers and fully-connected layers, while others are characteristic of this type of network. The latter
are:
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" Convolutional layers: they apply filters through a moving window that slides over the
input image, producing activation maps that highlight different features of the image.
Each filter consists of a set of weights that are updated during the training of the network.

" Pooling layers: they reduce the spatial dimension of the activation maps, decreasing the
number of parameters and the computational complexity of the network. Pooling can
be either max pooling, where the maximum value in a window is selected, or average
pooling, where the average of the values in a window is computed.

A numerical example illustrating how these layers work is shown in the Figure 1.9

Figure 1.9: Procedure of a 2D CNN

One of the largest limitations of a traditional DNN is that it tends to struggle with the compu-
tational complexity required to compute image data [18]. The main advantages of using CNNs
over traditional architectures are [19]:

" Local connections: each neuron is no longer connected to all neurons of the previous
layer, but only to a small number of neurons, which is effective in reducing parameters
and speed up convergence.

" Weight sharing: a group of connections can share the same weights, which reduces pa-
rameters further.

" Downsampling dimension reduction: a pooling layer harnesses the principle of image
local correlation to reduce the amount of data while retaining useful information.

When using CNNs on multichannel EEG signals, the latter is treated as if it were an image,
achieving excellent classification performance with far fewer parameters compared to, for ex-
ample, LSTMs, which are also used for the analysis of biological signals. The input EEG signal
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can either be left in the time domain, allowing the network to learn the temporal characteristics
of the signal, or be in the form of a spectrogram, allowing the learning of the frequency char-
acteristics of the signal. CNNs are used not only for MI classification but also, for instance, for
the prediction and monitoring of epilepsy and for the detection of visual-evoked responses [20,
20, 21, 22].

1.3.3 EEGNet

EEGNet is a particular and very compact CNN that incorporates spatial and temporal separa-
tion techniques. The network is structured to efficiently handle EEG data, which typically have
high temporal dimensions and a relatively low number of spatial channels, limiting the learnable
parameters of the network. The two main limitations in using deep learning for BCI, as men-
tioned earlier, are the large amount of data needed to train the network and the difficulty in the
physiological interpretation of the features extracted by the network for classification. EEGNet
overcomes both limitations, allowing training on a limited amount of data and producing largely
interpretable features [23]. The network can be outlined as: input, 2D convolution, depthwise
convolution, separable convolution, and classification (Figure 1.10). Going into more detail,
three blocks can be identified within which different operations are performed:

" Block 1: two convolution operations are performed in sequence. First, a certain number
of 2D convolutional filters are applied, followed by a Depthwise Convolution. After the
first convolution, Batch Normalization is performed, which is repeated after the second
convolution as well. Then, the following operations are performed: activation function,
Average Pooling, and dropout technique is applied to prevent overfitting.

" Block 2: in this block, a Separable Convolution is used. As in the previous block, after the
convolution, Batch Normalization is applied, followed by an activation layer, an Average
Pooling layer, and dropout is applied.

" Classification Block: a Softmax function is used to predict one among the N output
classes.
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Figure 1.10: EEGNet architecture

If the EEG signal is given as input to the network in the time domain, with C channels
and T time windows, the first operation involves a temporal convolution to learn frequency fil-
ters. Typically, a number of temporal filters F1 is chosen to be half of the signal9s sampling
frequency, allowing the capture of information from subbands of 2 Hz each. The second con-
volution (Depthwise) is used to learn a certain number D of spatial filters for each frequency
subband extracted previously. Finally, the third convolution (Separable) is a combination of a
Depthwise Convolution, which acts individually on each feature map produced by the previous
convolution, and a number F2 of Pointwise Convolutions, which serve to mix the feature maps
together in a optimal way. The main advantage of using a separable convolution is the reduction
in the number of parameters to be fit.

1.4 The importance of the closed loop

The success of BCI relies on its architecture, specifically on the closed-loop control, which
allows the user to see what is happening in real-time through feedback. This way, the user
understands if the produced classification is correct or if there was an error and therefore needs
correction. Depending on the purposes for which the BCI was designed, it is a device that
must be used many times by a patient, both for assistance and recovery. It is thus necessary to
become familiar with the technology. Often, the main problem is the difficulty of use, especially
for certain categories such as the elderly or patients in particularly severe conditions. Although
there are still few studies on the prolonged use of BCI by the same subject, it has recently
been demonstrated that the user improves session after session, and this learning brings multiple
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benefits both from the subject9s and the performance9s point of view [24, 25, 26]. Therefore,
summarizing the multiple advantages offered by this continuous interaction loop between user
and machine:

" real-time feedback allows the brain to adapt and improve control. The user can imme-
diately see the effect of their mental actions, facilitating learning and optimizing control
strategies through the modulation of their brain rhythms.

" Effective feedback can reduce the cognitive effort needed to control the device. Indeed,
when the user sees an improvement in performance, the interaction becomes less tiring
and more intuitive.

" The closed-loop promotes neuroplasticity, that is the brain9s ability to reorganize and cre-
ate new neural connections. This is particularly useful in rehabilitation processes, where
BCI can help patients recover lost functionalities.

" With this continuous feedback system, the device can better adapt to changes in the user9s
intention or mental state, making the interaction smoother and more natural.

1.4.1 Mutual learning

The concepts of closed-loop and feedback are closely linked to that of mutual learning, which
refers to the reciprocal learning that occurs through the sharing of intelligence among the three
entities that make up the system, that is at the machine, subject and the application level [26].
Regarding the user, they generally adapt to the decoder as they begin to use it, and this happens
thanks to feedback, as previously mentioned. The decoder can self-adapt to the user9s mental
changes [27], or more commonly, it is recalibrated after a few sessions by selecting new features
to use in the classification process, namely the features effectively modulated by the user. This
brings up the issue of calibration: if it occurs too often, the subject cannot adapt to the decoder,
but if toomuch time passes, the decoder is no longer focused on the discriminative features. Cur-
rently, there is no universally accepted method for determining how often recalibration should
occur, so it is generally done when the system9s accuracy starts to decline. Finally, to properly
control a robotic device that needs to move, it is necessary to integrate information from the user
with information extrapolated from the surrounding environment through sensors and cameras,
resulting in a shared control framework [2, 28]. This way, the device becomes intelligent and
capable of moving in a real environment where obstacles are normally present. The continuous
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control of robotic devices through BCI is one of the most interesting but also most complex
challenges today.

1.5 Current limitations of BCI

Despite the multiple possibilities offered by the BCI system to disabled subjects, there are still
many aspects that need improvement before it can be widely adopted in clinical practice. Some
systems are already on the market, others are in advanced experimental stages, and still others
are used only in laboratories for clinical research. The main limitations to overcome concern
both the patient and the technology itself, including hardware and software aspects [29].

Firstly, learning to use BCI requires time and effort. The system is often not simple, es-
pecially for certain categories of subjects, and for this reason, more user-friendly technology
should be developed. Using BCI requires a lot of concentration, making it incompatible with
prolonged use. Additionally, there could be discomfort from the cup and electrodes used for
EEG signal recording. During use, the user must remain still and generally seated. This can
lead to fatigue and boredom, preventing the performance of common actions such as walking
or using the smartphone. User9s emotional and mental state can influence the system, creating
significant variability both for the same subject and between different subjects, as can lifestyle,
gender, and age. From a technical standpoint, the non-linearity and non-stationarity of the EEG
make signal analysis difficult and lead to constant shifts over time. Often, the signal-to-noise
ratio is low, making classification extremely difficult. To control an external device that moves
in real-time, such as a prosthesis, much more accurate, fast algorithms that are less sensitive
to external variations would need to be developed. The time required to collect data is long,
providing very few data points to create a valid model. There is a lack of universally recognized
metrics to evaluate performance and make the results of multiple studies comparable. Standard-
ization in the methods used to quantify a particular BCI application is necessary. As mentioned
earlier, the BCI system is often used only in the laboratory, but all the requirements the system
should meet if used in a real environment must be considered. Finally, there are also ethical
challenges that concern physical, physiological, and social factors.
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1.6 Related works

To justify the choice of the model and methods applied in this work, the technique of dimen-
sionality reduction used for the visualization of the latent space, and the selection of the metrics,
several studies, along with their respective results and conclusions, are presented below. These
studies comprehensively explain the current state of the art on the topics discussed.

In [30], three convolutional networks (ConvNets) with a different number of convolutional
layers are proposed. The architectures range from two layers in the shallow ConvNet, to five in
the deep ConvNet, up to 31 layers in the residual network (ResNet). Additionally, a hybrid Con-
vNet was created, combining elements of both the deep and shallow ConvNet. The performance
of these networks was compared with the best-performing method for the BCI competition IV
dataset 2a, namely Filter Bank Common Spatial Patterns (FBCSP). In all cases, the ConvNets
achieved performance comparable to that of FBCSP, with the added advantage of end-to-end
learning, meaning no need for preprocessing or manual feature extraction. When comparing the
architectures, it was found that the shallow ConvNet performed just as well as the deep Con-
vNet, unlike the hybrid and residual architectures. Furthermore, to study the interpretability of
the network, an advanced visualization technique for spatially mapping the learned features was
used, which demonstrated that the ConvNets independently learned to utilize spectral power
modulations in the alpha, beta, and high gamma frequencies.

In [23], the EEGNet architecture is proposed for the first time for the interpretation of EEG
signals in the context of BCI. The study performs both within-subject and cross-subject classi-
fication on various BCI paradigms: P300-evoked potentials, error-related negativity responses
(ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Ad-
ditionally, the performance of this architecture is compared with other convolutional networks
already proposed in the literature, such as deep ConvNet and shallow ConvNet, as well as tra-
ditional models: One-Versus-Rest (OVR) and filter-bank common spatial patterns (FBCSP).
In the case of SMR classification, for within-subject classification, the performance of shallow
ConvNet, FBCSP, and EEGNet is very similar, while that of the deep ConvNet is significantly
lower. In cross-subject classification, no significant performance differences were found among
all CNN-based models, which still slightly outperformed FBCSP. It can be concluded that the
deep ConvNet is more data-intensive compared to EEGNet, which, on the other hand, performs
well on all tested datasets without the need for data augmentation, making the model simpler to
use in practice.

In [31], a comparison was made between the performance of various deep learning models
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recently proposed for MI-EEG classification, including: EEGNet, shallow and deep ConvNet,
Multi-branch 3D CNN (MB3D), and parallel self-attention network (ParaAtt). These models
were tested on two large public datasets. The first dataset, MBT-42, was recorded during MI-
BCI training with a total of 42 subjects, who had to perform a cursor movement task on the
screen to the right and left. In the second dataset, MBT-62, 62 subjects performed the cursor
movement task on the screen to the right, left, up, and down, and finally in all four directions.
Exponential moving standardization was applied to the raw data during preprocessing to also
investigate the impact of preprocessing on the results. In MBT-42, all models achieved high
accuracy. Additionally, they performed relatively similarly, and no model significantly outper-
formed the others. In MBT-62, EEGNet performed significantly better than the other models.
Regarding computational cost, for training on 30 epochs for each subject, all models took a
similar amount of time, except for MB3D, which took much longer. However, all five models
were able to decode a single sample in less than 40 ms, which means they all have the potential
to be used in real-world applications. Finally, the model trained on preprocessed data achieved
better performance in all cases compared to the model trained on raw data, indicating that a
minimum amount of preprocessing, even when using neural networks, is necessary to achieve
higher performance.

In [32], the EEGNet network was tested on data from 10 hemiparetic stroke patients while
performing left and right MI tasks. Compared to the original EEGNet study [23], where the net-
work achieved 67.25% accuracy on healthy subjects with 4 classes, here an accuracy of 70.25%
was achieved in within-subject classification and 67% accuracy in cross-subject classification on
unhealthy subjects with 2 classes. The results demonstrate that EEGNet achieves good accuracy
in this type of analysis and has great potential for feature calibration-free BCI systems.

Regarding UMAP (Uniform Manifold Approximation and Projection), in addition to the
standard technique proposed in [33], there are several variants that have been tested on data from
BCI systems and compared. In [34], an approximate UMAP technique called aUMAP is pro-
posed, aimed at generating fast projections for real-time introspections. Therefore, it is a tech-
nique specifically designed for use in online BCIs. From the results on three different datasets, it
emerges that aUMAP preserves the standard UMAP clustering, suggesting that aUMAP9s accu-
racy is suitable for online projection, although it is more prone to outliers. Regarding projection
time, aUMAP consistently achieves the lowest projection times compared to standard UMAP
and pUMAP (parametric UMAP), which is the slowest when run on a CPU. pUMAP is a para-
metric optimization of UMAP over neural network weights, learning a parametric relationship
between data and embedding [35].
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In [36], three individuals with disabilities were trained to use anMI-BCI by performing tasks
involving both hands and both feet. The aim was to demonstrate the effectiveness of mutual
learning, which is the reciprocal learning between the user and the machine. This is achieved
through infrequent decoder calibration, necessary only when there is a persistent decline in per-
formance, along with intensive training by the subject. In this context, three sessions per week
were conducted over several months, and it was found that Subject 1 learned the most during the
longitudinal training phase and achieved a significant improvement in BCI performance, both
in terms of classifier accuracy and wheelchair control. Additionally, learning was also investi-
gated at a neurophysiological level by visualizing the discriminability of features, which is an
excellent indicator of how well the user can modulate sensorimotor rhythms.

In [26], clear evidence is provided showing how user learning and adaptation to the classi-
fier are possible through the adoption of a specific experimental paradigm, which in the study
involved calibrating the decoder only twice for each subject during the longitudinal training
phase. The research was conducted on two tetraplegic subjects who participated in the Cy-
bathlon competition. Evidence of the effectiveness of mutual learning was first shown in race
performance, including the race competition time and the <pad crossing time=, which assesses
BCI command delivery accuracy and speed in a single metric. Both of these parameters showed
excellent results. Additionally, it was observed that the decoder accuracy increased as the ses-
sions progressed, stabilizing at a very high level. Finally, as a decisive proof of user learning,
the spatial representation of feature discrimination over time was provided, which gradually
becomes larger. This study is particularly interesting, especially for the conclusions that can
be drawn from the presented results. First, learning cannot be evaluated solely based on the
increase in classification accuracy or application performance, which do not necessarily im-
ply modulation of brain signals. In fact, better performance can be due to recalibration of the
decoder, re-parameterization of the BCI, or the adoption of a better mental strategy. Another
aspect is that feature discriminability does not stabilize when classification accuracy saturates
at high levels, but continues to increase. This improvement manifests, for example, in deliv-
ery speed, which had further margins of improvement. Finally, the research concludes that
infrequent model recalibration leads to more unstable results in the short term, but is preferable
because it produces better long-term results, as the subject is able to adapt to the BCI system.

In [24], a study on long-term learning was conducted with a Paralympic athlete who partici-
pated in the Cybathlon competition twice, in 2019 and 2020, winning the gold medal both times.
It involved an MI-BCI with two tasks, both hands and both feet. The experimental paradigm
was characterized by infrequent recalibration of the decoder, which favored mutual learning
between the subject and the machine, proving to be the winning strategy. The data were col-
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lected during a longitudinal training phase of 8 months, followed by a long one-year break after
the first competition. The results showed, first of all, a significant improvement in terms of
classifier accuracy and game execution time. To provide evidence of user learning, the topo-
graphical representation of the discriminability of the two tasks over the months was shown,
which demonstrates a gradual increase up until the first competition, and maintenance during
the training for the second competition. Additionally, two metrics were presented, calculated
both in the channel and in the Riemannian domain. The between-class distance is defined as the
distance between the two classes, while the within-class distance is defined as the distance of
subsequent runs from the first run. The results show that only in the Riemannian domain there
is a stability in both metrics, especially visible after the break, making them more effective in
tracking the acquisition and stabilization of BCI skills, compared to the same metrics calculated
in the channel domain. In conclusion, it is stated that the analysis conducted could be used to
monitor user learning during training and provide a marker guiding decoder re-calibration.

In [25], a study on an invasiveMI-BCI is presented, conducted over 43 ECoG sessions span-
ning more than 200 days on a single tetraplegic patient, allowing for long-term analysis. Com-
putational experiments were performed to investigate various factors that can influence perfor-
mance, such as subject adaptation and the length of the training set. Several models were com-
pared: multilayer perceptron (MLP), a combination of CNN and LSTM (CNN+LSTM+MT),
and a multilinear model. The results showed that DL-based methods provide similar or higher
performance in almost all cases compared to the multilinear model, while using the same amount
of data. Through the computational experiments, it was observed that the patient adapted to the
model and the data quality improved over the sessions, suggesting improvements in patient BCI
skills, not specific to a single model. UMAP was used to visualize the raw data and eliminate
artifacts, as well as to visualize the distribution of model embeddings, revealing interesting data
manifold structures. Finally, a metric was calculated on the raw data, namely intrinsic dimen-
sionality (ID), which was found to be positively correlated with cosine distance, used in the
study to evaluate model performance. This led to the conclusion that, despite some concerns
about the reliability of this index, data with higher ID allows for better predictive performance,
as it reflects the complexity of motor imagery patterns. This is a positive aspect when using
a network with high capacity, capable of learning these patterns, but it can be detrimental for
other less complex models.

Here are two studies that utilized Riemannian geometry, which was not covered in this work
but are very interesting from the perspective of long-term learning and the indices used to evalu-
ate user learning. In [27], a research is presented on a single tetraplegic subject who participated
in the 2019 Cybathlon competition. The dataset consists of the subject9s training sessions, as
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this is a long-term study, comprising 20 recorded sessions over 3 months of training, all of which
included closed-loop training runs with online BCI feedback. The classifier used changed over
the months, transitioning from linear classifiers to an adaptive Riemannian classifier, which
aims to reduce between-session variability. To visualize in 2D the different distribution of data
during sessions close in time, a dimensionality reduction technique, namely t-SNE, was used.
To evaluate the subject9s learning and adaptation to the BCI system, two metrics were proposed:
Class distinctiveness (ClassDist), which measures how distinct and stable the EEG patterns pro-
duced by the user are, independently of any classifier, and Test-Train Adaptation (TTA), which
quantifies how much the user9s online EEG test data distribution becomes similar to the EEG
data used to train the classifier. The results showed a 30% increase in accuracy at the end of
training compared to the first sessions. The metrics demonstrated a significant increase in TTA,
while ClassDist (a metric generally studied to quantify user learning) remained more or less
unchanged, concluding that although class separation remained the same, the user still adapted
their EEG signal to the BCI classifier, opening the door to a new form of learning.

In [37], a new way to study user learning is proposed, not only by looking at classification
accuracy, which can be influenced by various factors, but also by considering different metrics
that are independent of anymodel and directly reflect the self-modulation of EEG patterns by the
user. These metrics are calculated using Riemannian geometry. Class distinctiveness (classDis)
measures how distinct the EEG patterns produced during twoMI tasks are from each other. Rest
distinctiveness (restDist) measures how distinct the EEG patterns produced during an MI task
are from the rest state. Class stability (classStab) measures how stable an EEG pattern remains,
without changing drastically between trials. The study was conducted on two different datasets,
comprising 1 session and 6 sessions, respectively. In a first analysis, performed by averaging
across all subjects, the results show that although accuracy remains more or less stable, the
metrics undergo changes. In a second analysis, conducted on individual subjects, the metrics
change in very different ways for each user. Therefore, the conclusion is that accuracy alone is
not able to reflect all the different aspects of MI-BCI control skills, which are referred to in this
research as =subskills= and may be learned differently by different subjects.

1.7 Thesis9 aims and structure

The general objective of this dissertation is to study the learning mechanisms in MI-BCI in all
its forms, experimenting with various techniques and metrics, some of which have already been
applied to other datasets but are not universally accepted as direct indicators of user learning.
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To date, there is no standard method for evaluating this aspect, both because it is not always
easy to acquire enough data to conduct a consistent study, and because there can be significant
variability in results from subject to subject. Therefore, beyond understanding how the subject
learns, one of the goals is to invalidate or, conversely, validate the tested methods, so that they
can potentially be used in future research and even in online experiments to improve the BCI
system. Focusing solely on the algorithm often overlooks the subject. The user of the BCI
is an integral part of the closed-loop cycle, and deeper investigation is needed into the shift
of neural patterns during training, which is now understood to play a fundamental role in the
successful execution of motor imagery tasks and in optimizing the entire system. Therefore,
more specifically, the aim is to study this rearrangement at the brain level, which is reflected
in changes in the distribution of the motor imagery classes, both in the short term, where short
term refers to what occurs in the early recorded sessions, and in the long term, considering the
period from the first session to the last. This is useful both for understanding which training
paradigm to adopt in order to achieve excellent results in a short time and as a warning to update
the decoder only when necessary.

The structure of the thesis is divided into four chapters, with the first being the introduction.
Chapter 2 presents the adopted methodology. It covers the dataset used and how the recorded
data are preprocessed. Next, the selection of the hyperparameters and the training of the neural
network are discussed. This is followed by an explanation of the first offline experiment, the
Translation Experiment, and of the latent space analysis through data dimensionality reduction
using UMAP. Lastly, a section is dedicated to the statistical analysis performed, which is es-
sential to validate the obtained results. Chapter 3 presents the results and interpretations of the
previously described experiments, with various graphs to facilitate understanding. The chap-
ter concludes with a discussion of these results and the study9s limitations. Finally, Chapter 4
is the conclusion, which includes a brief summary of the entire work carried out and potential
improvements for future research on the same topic.
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Chapter 2

Methodology

The dataset comes from a single male subject, a Paralympic swimmer, who participated in the
Cybathlon competition for two consecutive years, in 2019 and 2020, winning the gold medal
both times [24]. The dataset is particularly interesting because it encompasses the entire prepa-
ration of the participant, during which he underwent a longitudinal learning phase lasting 8
months, followed by a long break of 1 year between the two competitions. Unlike many other
studies in the literature, where experiments were conducted over a few sessions [37, 38, 39], this
research conducted offline experiments on a large number of sessions recorded over an extended
period, allowing for the exploration of the effects of short-term and long-term user learning.

2.1 Cybathlon competition

The Cybathlon BCI race consists of controlling a virtual game called =BrainDriver=, where
the pilot must drive a vehicle on a track by performing MI tasks. The avatar passes through 4
sections evenly distributed along the track: =right=, =headlight=, =left=, and =noninput=. The first
three sections allow the pilot to accelerate by turning or going straight, while in the last section,
if no command is given, the avatar decelerates. The BCI implemented by the WHI Team, as
described in the original research published after the competitions [24], is a non-invasive system
based onMI, where the pilot had to perform twomental tasks: both hands versus both feet. In the
initial recorded sessions, only two classes were used: both feet to send the =right= command,
and both hands to send the =left= command, subsequently referred to as class 0 and class 1,
respectively. In the sessions leading up to the race, a third class was added to send the =headlight=
command. In this case, the pilot had to perform both hands and both feet tasks in sequence, not in
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a predetermined order (Figure 2.1). However, this third class is not considered in this study, so
all trials consisting of this MI task were discarded, resulting in a binary classification approach.

Figure 2.1: BrainDriver game controller

The initial recorded sessions are offline, as they were originally used for open-loop calibra-
tion of the model. These are followed by online sessions and control sessions, which were used
by the pilot to effectively prepare for the race. In the cue-guided offline and online sessions,
the pilot received continuous visual feedback during task execution, while during the game, the
pilot had no feedback other than the movement of the avatar on the screen. The labels assigned
to each trial correspond to the cue in the online and offline sessions, whereas for the control
sessions, the labels were derived from the logs provided by the BrainDriver application, and
thus may not all be accurate. The sessions (also referred to as runs with the same meaning)
considered in this study range from 07/09/2019 to 11/11/2020, totaling 55 sessions recorded in
2019, including 7 offline, 4 online, and 44 control sessions, and 85 sessions recorded in 2020,
including 16 offline, 3 online, and 66 control sessions.

2.2 Raw data and preprocessing

The EEG signal was recorded at a frequency of 512 Hz and hardware filtered between 0.1 and
100 Hz. The signal was acquired using a 16-channel g.USBamp amplifier, with 14 electrodes
placed on the sensorimotor cortex. The channels are as follows: Fz, FC3, FC1, FC2, FC4,
C3, C1, Cz, C2, C4, CP1, CPz, CP2, positioned according to the 10-20 EEG standard, with
the ground location on the AFz electrode and referenced to the right earlobe. The other two
electrodes, CP3 and CP4, were moved to the F1 and F3 locations (i.e., on each eye) near and
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during the competition, for electrooculography (EOG) detection, in order to implement the arti-
fact control scheme and prevent any outgoing commands towards the game while such artifacts
are detected. To avoid discrepancies in the number of channels between runs, CP3 and CP4 are
not considered in this study.

For preprocessing, Matlab software was used. Since a deep learning algorithm was em-
ployed for classification, the preprocessing was minimal, as the deep neural network au-
tonomously extracts the relevant features. Initially, all the files were merged into a single
Samples × Channels matrix containing the signal recorded during the sessions, while another
structure was created to store information about the sessions and events such as: file number,
run number, run type (offline, online, or control), year (2019 or 2020), type of event within the
trial (both hands or both feet), start and end of the event of interest. A Laplacian reference filter
was applied to the signal using the adjacent electrodes. Defective runs were discarded, and the
log band power was then computed over multiple frequency sub-bands, creating temporal win-
dows. Since the frequency bands modulated during MI tasks are generally variable from subject
to subject, narrow bands were selected to obtain more precise information. Sub-bands of 3 Hz
in the range 4-50 Hz were chosen, with a shift of 1 Hz, resulting in 44 sub-bands. Data were
epoched using a sliding window of length 1 second and shifted by 0.5 seconds. A 0.5 s shift is
not suitable for online application, where the value should be much smaller (around 62.5 ms),
but as mentioned earlier, the objective of this study is not to find an algorithm that works per-
fectly in real-time, but rather to study user learning over time through offline experiments. Since
the trials included in the dataset are of variable length, all trials shorter than the window duration
(1 s) were discarded. The log band power was computed following the approach described in a
related study [40]. The portion of the trial corresponding to the actual execution of the mental
task was extracted, with dimensions S × C, where S represents the temporal samples and C

the channels. The signal was filtered using a 5th order digital Butterworth bandpass filter in the
previously described frequency sub-bands, resulting in a signal with dimensions S × C × B,
where B represents the sub-bands. Then, the energy of the signal was computed as:

p = log(var(x))

where var(x) represents the variance over a time window within the trial considered, and log

represents the subsequent logarithmic transformation in base 10. In the end, a signal with di-
mensions W × C × B was obtained, where W represents the time windows. After repeating
the same procedure for each trial in the dataset, EEG energy normalization was performed as
follows:

P r
i,j =

P r
i,j − mi,j

δi,j
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where P is the energy matrix of each sample, r is the sample index, mi,j is the mean calcu-
lated for the i-th channel and the j-th frequency band, and δi,j represents the standard deviation
computed at the same position.

2.3 Network training

Python and the open-source library PyTorch for neural networks (torch.nn) were used for model
training and all subsequent experiments. The log band power of the signal was provided as
input to the EEGNet network, the general architecture of which has already been described.
EEGNet was designed to be trained with raw data in the time domain, and as explained in the
original paper, the first operation should be a temporal convolution to learn frequency filters
[23]. However, in this study, it was chosen to move to the frequency domain, and indeed, the
third dimension of the signal corresponds to the frequency bands. For this reason, all filters that
were supposed to be applied along the temporal axis are actually applied to the filtered signal.
The first 13 sessions were selected for the training set, while the following 3 sessions were used
for the validation set. The parameters to be passed as input to the network are:

" num_classes: number of outputs of the network.

" num_channels: spatial dimension of the input.

" sub-bands: number of frequency bands in which the signal was filtered.

" dropout_rate: probability with which some activations are zeroed during training to pre-
vent overfitting.

" kernel_length: size of the convolutional filter along the frequency band axis.

" F1: number of filters in the first convolution applied to the input data.

" D: multiplier that determines how many spatial filters are applied in the depthwise con-
volution.

" F2: Number of filters in the pointwise convolution (F1 × D).

The model has been trained by minimizing the cross-entropy loss between the predicted and the
true (expected) label. The cross-entropy loss for a binary classification problem is defined as:

Loss = − [y · log(p) + (1 − y) · log(1 − p)]
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where y is the true label (0 or 1) and p is the probability expected by the model for class 1.
The weights are then fixed and used for validation. If the current performance is better than the
previous one (lower validation loss), these weights are saved as the best model. The choice of
hyperparameters listed in Table 2.1 has allowed us to obtain the best model in terms of accuracy
and F1-Score on the validation set, computed as:

Accuracy =

qN
i=1

1(ŷi = yi)

N

F1-score =
2 · Precision · Recall

Precision + Recall

where for accuracy: N denotes the total number of samples, ŷi is the predicted class for sample
i, yi is the true class for sample i, and 1(ŷi = yi) is a function that returns 1 if the prediction
is correct, otherwise 0. For the F1-score: Precision is the proportion of true positives among
all instances classified as positive by the model, and Recall is the proportion of true positives
among all instances that are actually positive. For the latter, the parameter average = 9macro9
was used, meaning that themetric was computed separately for each class and then the arithmetic
mean was taken. This parameter is especially used when the two classes are imbalanced. The
confusion matrix was also employed as an additional tool to see where the model is making the
most errors and on what type of data (i.e., on which class). The best model has been tested for
each session contained in the dataset.

Parameters Values
num_classes 2
num_channels 14
sub-bands 44
dropout_rate 0.5
kernel_length 22

F1 8
D 2
F2 16

epochs 20
optimizer Adam

learning_rate 0.001
loss_function cross entropy loss
train_batch_size 4
eval_batch_size 128

Table 2.1: EEGNet hyperparameters

Below are reported the output size for each layer and the number of internal parameters of the
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model (i.e. weights and biases), further demonstrating that EEGNet is a lightweight and com-
putationally non-intensive network compared to other types of architectures, making it optimal
for potential use in online experiments as well (Figure 2.2).

Figure 2.2: Model trainable parameters and output size

2.4 Translation Experiment

User learning can be demonstrated in terms of improved data quality. The training should indeed
lead to better performance on mental tasks day by day, resulting in greater class separation
and thus more accurate classification. A study on user learning with an invasive BCI [25] has
proposed what we will call a =Translation Experiment=, which consists in translating the training
set across the entire dataset, using 6 sessions for training and the following 6 sessions for testing,
with a translation of 3 sessions (Figure 2.3). The results of the two studies will be compared
subsequently. The total number of iterations, considering the 140 available sessions, is 43 (the
last two sessions of 2020, i.e. 139 and 140, are not considered to always have an available test
set of 6 sessions). Additionally, the difference in session length is ignored. Metrics on the test
set were computed for each iteration to evaluate the classifier. To evaluate the model overall,
but also the classes separately, both global accuracy and F1-score, as well as the F1-score for
individual classes, were calculated. The hyperparameters used for each training and validation
cycle are those listed in Table 2.1 and remain unchanged throughout the experiment.
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Figure 2.3: Example of Translation Experiment

Intrinsic dimensionality (ID), or effective dimensionality, is a parameter that reflects the
complexity of the data being used, specifically indicating the minimum number of variables
required to describe the data without losing important information [41]. A more formal defi-
nition states that a dataset Ω ⊆ RN have an ID equal to M if its elements lie entirely within a
M-dimensional manifold of RN , where M < N [42]. Furthermore, it is important to underline
that the definition of dimension in mathematics is not univocal. As a result of the subject9s
adaptation and improvement in using the BCI, due to visual feedback conditioning, the data
distribution may change. The ID should reflect this change in distribution, and therefore it was
calculated on the dataset to observe how this value evolves over the sessions. The global or
local ID can be computed using various methods [41]; in any case, a slightly broader definition
based on manifold dimension is generally used, where a representation in the ID needs to exist
only locally. Such methods can handle different ID values in different parts of the same dataset,
and this is referred to as local ID. In this case, the Expected Simplex Skewness (ESS) method
was used, employing the scikit-dimension package. [25, 43].

2.5 UMAP

UMAP (Uniform Manifold Approximation and Projection) is an unsupervised, graph-based di-
mensionality reduction algorithm first described in 2018, and improved in 2020 [33]. This tech-
nique is currently used as an alternative to other, less recentmethods such as t-SNE (t-Distributed
Stochastic Neighbor Embedding) and PCA (Principal Component Analysis). For example, PCA
is simple to implement and highly efficient computationally, but it assumes only linear relation-
ships between variables. t-SNE is excellent at preserving local structures and clusters in the
data; however, it is computationally intensive on large datasets and the results are sensitive to
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parameter settings. UMAP is optimized for large datasets, significantly reducing computational
cost compared to t-SNE, though it is still relatively slow compared to PCA. It aims to preserve
both the local and global structure of the original data, producing results that are fairly stable and
reproducible. Nonetheless, careful selection of hyperparameters is crucial as they can greatly
influence the results, potentially creating groupings in the data that do not actually exist in the
original dataset, especially when the initial dimensionality is high [43]. This algorithm operates
in two phases:

1. A particular weighted k-neighbour graph is constructed (fuzzy simplicial complex).

2. Throw stochastic gradient descent, a low dimensional layout of this graph is computed.

2.5.1 Model embeddings analysis

Everything that studies the decomposition of deep neural networks to examine their internal
functioning is commonly referred to as interpretability [44, 45, 46]. Many studies on user learn-
ing in the context of BCI use reverse engineering methods to provide a neurophysiological in-
terpretation of the output [30, 23, 47]. These usually include techniques that relate the input
or hidden layers to the output or techniques for visualizing the latent space. One of the main
focuses of this study is precisely to understand how the network makes decisions and which
features most influence the network9s output.

In the context of BCI, the patterns that emerge when summarizing datasets using visual-
ization methods such as UMAP may reveal underlying structures in the data [48]. For a given
input, we consider the network activations immediately after the flattening stage, i.e. after the
convolutions and before the last fully connected layer. We refer to this latent representation as
the model embedding of the input. To obtain the clearest possible results, the best model was
first selected and saved, as described earlier. Using this model, all embeddings were computed
(i.e., one vector for each trial in input). These high-dimensional embeddings (16 × 1) were
then transformed with UMAP into 2D to allow visualization in the Cartesian space. The main
parameters input to UMAP are:

" n_neighbors: the number of neighbors that UMAP considers when constructing the high-
dimensional graphical representation of the data. A low value preserves the local structure
of the data better, while a higher value captures the global structure more effectively.
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" n_components: the number of dimensions in the reduced space. Typically set to 2 or 3
for visualization.

" metric: the distance measure used to determine the proximity between data points. It
influences how distances between data points are computed and, therefore, how the initial
graph is constructed.

" min_dist: the minimum distance between points in the new low-dimensional space. A
low value allows points to be closer together in the new space, better preserving the local
structure, while a higher value distributes the points more evenly.

The values were left at their defaults, as they provide a good visualization. (Table 2.2).

Parameters Values
n_neighbors 15
n_components 2

metric euclidean
min_dist 0.1

Table 2.2: UMAP hyperparameters

After reducing the model embeddings to 2-dimensional vectors, several significant scatter-
plots were created. First, the embeddings were plotted separately for each session and for the
two classes. These subplots serve the dual purpose of a first visual inspection of how the dis-
tribution of the classes changes and of identifying sessions with few trials, which could make
experiments results inconsistent. So, sessions with few trials of one class, another, or both, will
be discarded in subsequent experiments. Then, the centroids of the embeddings for each ses-
sion and class were computed and plotted. Finally, some plots were created showing the overall
distribution of all the embeddings.

As a final step, to investigate changes in brain activity during the training period, in line with
what was found in [24], two geometrical assessment metrics are computed:

1. Within-class Distance (WcDist): it describes the variation in brain activity for each run
relative to the first one, associated with the MI tasks (i.e., both hands and both feet). It
was calculated separately for each class c as the distance of the mean of the embeddings
distribution in the r-th day of training from the =initial training period=, computed as the
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average of the training runs (0-12):

WcDist =
δ(µc

1
, µc

r)

(σc
1 + σc

r)

2. Between-class Distance (BcDist): it describes the discriminability of brain activity be-
tween the two MI tasks. It was calculated as the distance between the means of the em-
bedding distributions for the two classes:

BcDist =
δ(µbh, µbf )

(σbh + σbf )

For calculating the distance between the arithmetic means of the two distributions, the Euclidean
distance was used. These metrics are considered useful not so much for evaluating the model,
but rather for measuring how the classes shift during training period, thereby quantifying the
user learning.

2.6 Statistical analysis

For each metric reported in the study, the Pearson correlation coefficient (r) and the associated
statistical significance (pvalue) were calculated using functions andmodules fromPython9s SciPy
library for statistical analysis (scipy.stats). For accuracy and F1-score in the Translation Exper-
iment, the linear relationship between these metrics and the iterations was computed, and the
same was done for the ID. For WcDist and BcDist, the linear relationship between these metrics
and the chronological sessions was computed to investigate the trend over time. Additionally,
correlations between some of these metrics were estimated, such as between F1-score and ID in
the Translation Experiment, between the accuracy of the best model and WcDist for both hands
and both feet, and between accuracy and BcDist. For variables showing some linear relation-
ship, with a statistically significant difference at the 5% level (pvalue < 0.05), an Ordinary Least
Squares (OLS) regression was performed to find the coefficients of the linear regression and
report the estimated model. This was done using modules from Python9s statsmodels library,
which provides a range of tools for creating statistical models in a simplified manner.

For WcDist and BcDist, was also investigated the evolution of these metrics from the be-
ginning to the end of 2019 and from the beginning to the end of 2020, considering four groups:
the first 15 runs of 2019 (excluding runs 0 to 12 used for training the network), the last 15 runs
of 2019, the first 15 runs of 2020, and the last 15 runs of 2020. An ANOVA (Analysis of Vari-
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ance) was first performed between these groups to determine if there are significant differences
between the means of at least one pair of groups. However, ANOVA alone does not indicate
which specific groups differ from each other. Where ANOVA was statistically significant, a
Tukey-Kramer post-hoc test was conducted. This test is designed to handle multiple compar-
isons between all possible pairs of groups while controlling the Type I error rate (false positives)
for the entire experiment. The assumption for this test is that the data are normally distributed
and that variances are equal (homoscedasticity) between groups. The result of this test provides
the difference between the means of each pair of groups and a pvalue associated with these differ-
ences, indicating whether they are statistically significant at the 5% level (pvalue < 0.05). This
test was chosen primarily because it reduces the risk of obtaining false positives when making
multiple comparisons and because it can be used with any number of groups.
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Chapter 3

Evidence of User learning

In this chapter, the results of the computational experiments conducted are presented, aiming
to identify changes in the data distribution over the course of the sessions. These changes are
intended to visually and quantitatively confirm that the neural patterns associated with each
mental task have somehow altered or shifted. The chapter begins with the results of the Trans-
lation Experiment and their relationship with the Intrinsic Dimensionality (ID) metric. It then
presents the performance of the best model, chosen accordingly to accuracy metric, on which
the embedding analysis was conducted. Following this, the 2D embeddings plots are shown af-
ter dimensionality reduction using UMAP. Finally, the WcDist and BcDist metrics are reported.
The chapter concludes with a general discussion on the results obtained and the limitations of
this study.

3.1 Translation Experiment results

In this experiment, the F1-Score values are first reported separately for the classes Both Feet
(BF) and Both Hands (BH) across all 43 iterations, where iteration means training on 6 sessions
and validating on the following 6 sessions, shifting the training set across the entire available
dataset. The date when the sessions were recorded is not taken into account, and thus, the
long pause of the pilot between 2019 and 2020 is not shown in the graphs, as the focus is on
analyzing the overall trend from the beginning to the end of the training. For the F1-Score related
to the class BF (Figure 3.1), a qualitative upward trend can already be observed, suggesting an
improvement in the BF task over the course of the user9s training. For the F1-Score related
to the class BH (Figure 3.2), the trend is less clear, showing that it starts from higher values
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compared to the other class (excluding iteration 11, which is an outlier due to the low number of
trials) and decreases in the later iterations. Regarding accuracy and F1-Score computed across
both classes, a generally stable trend can be observed, with occasional iterations showing much
lower or higher values, and a decline is also seen in the final iterations (Figure 3.3, Figure 3.4).

Figure 3.1: F1-Score Both Feet per itera-
tion

Figure 3.2: F1-Score Both Hands per iter-
ation

Figure 3.3: Global accuracy per iteration Figure 3.4: Global F1-Score per iteration

Looking at these results in the form of scatterplots allows for a more quantitative assessment.
It can be confirmed that there is a linearly increasing trend for the F1-Score related to BF (r =

0.63), with high statistical significance (pvalue < 0.001) (Figure 3.5). On the other hand, for the
F1-Score related to BH, there is a less pronounced linear decreasing trend (r = −0.31), with
lower statistical significance (pvalue < 0.05) (Figure 3.6). Regarding the overall trend, there
is no linear relationship between accuracy and iterations (r = 0.05), nor between F1-Score
and iterations (r = 0.06), suggesting that, the performance do not increase or decrease, but the
individual classes undergo variations.
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Figure 3.5: Scatterplot F1-Score Both Feet per iteration

Figure 3.6: Scatterplot F1-Score Both Hands per iteration

These results, which show an improvement in data quality for the BF class during training,
correlate well with the findings in the research [24], where it was stated that the subject initially
exhibited strong activation of EEG features associated with the BH task, and that with longi-
tudinal training, features associated with the BF task also began to emerge. The reason could
be that the pilot already felt comfortable performing the BH mental task from the first sessions,
focusing on improving the BF task, where he were initially weaker. Indeed, looking at the linear
regression model in Figure 3.5 and in Figure 3.6, the performance metric for BF starts at 0.55
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and reaches 0.72, showing a 17% improvement. For BH, the predicted value starts at 0.69 and
drops to 0.56, indicating a 13% decline. Therefore, the improvement in BF and the decline in
BH (especially visible in the last 7 iterations, which all fall below the regression line), result in
a stability of overall performance that accounts for both tasks.

In the research [25], from which the Translation Experiment is derived, the results report
an improvement in only one mental task, in that case, the left hand rather than the right hand,
similar to what was found in this study. The hypothesis formulated suggests that the MI patterns
may be easier to adapt in one case rather than the other thanks to the remaining residual control
resulting in better cortex preservation. A similar explanation can be hypothesized regarding the
improvement of BF rather than BH, also in relation to the neural plasticity which allowed for
greater modulation of brain activity for one task over the other. It has been demonstrated that
intensive use of BCI stimulates neural plasticity [49]; however, further studies and experiments
would be necessary to confirm these hypotheses at the neurophysiological level.

3.1.1 Intrinsic Dimensionality estimation

The ID value was computed for each session, and then, to compare it with the results of the
Translation Experiment, an average was taken over a window of 6 sessions, sliding it across all
sessions in the dataset with a shift of 3 sessions. The ID is a measure independent of the model
being used; it depends solely on the data. It expresses the complexity of the dataset, so theo-
retically, the higher the ID, the more challenging the classification should be, and the worse the
model should perform. This has been widely demonstrated in computer vision research (=curse
of dimensionality= problem) [50, 51, 52, 53]. Conversely, in the study presenting the Trans-
lation Experiment, it was found that the local ID and the metric used to evaluate the classifier
were positively correlated: as the ID increased, the model9s performance improved. Instead, in
this study, it was found that the ID does not follow a linear trend, and no correlation was found
between the ID and the metrics used to evaluate the model at each iteration. From the graph,
it appears that there is an initial increase followed by a sort of plateau, which then decreases in
the final iterations. (Figure 3.7). This difference in results could be related to the different ex-
perimental conditions, including the different data acquisition methods. In one case, ECoG was
used, with very high ID values found (ranging from 250 to 330), while in this study, EEG was
used, with lower ID values found (ranging from 59 to 112, excluding the outlier in iteration 1).
In any case, the ID values are still very high also in this research, indicating a high complexity
of the dataset. Further considerations on the ID will be made in the following sections.
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Figure 3.7: Scatterplot ID per iteration

3.2 Best model performance

After training multiple models with different combinations of hyperparameters, they were eval-
uated based on their accuracy and F1-Score on the validation set. Another criterion for model
selection was the stability of accuracy across runs from 2019 to 2020. The goal was not merely
to find the model with the best performance but to identify one that could predict reasonably
well over the long term without a significant drop in performance. In the original study, the
decoder was calibrated 5 times in 2019 and once in 2020, allowing the performance to remain
high by selecting spatio-spectral relevant features. In this case, however, only the early runs of
2019 were used for training, which posed the risk of very low performance, especially in the
later runs. Therefore, the model chosen for the subsequent analysis was selected not only for
achieving the best validation accuracy but also based on a visual evaluation of the accuracy and
F1-Score plots.

Here are the confusionmatrices for the training set (runs 0-12) and for the validation set (runs
13-15). Additionally, the metrics have been computed on a small test set (runs 16-18) to evaluate
the model on previously unseen data. In Table 3.1 the values for the F1-Score, accuracy, and
loss function are reported for the training, validation, and test phases, respectively.
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F1-Score Accuracy Loss
Train 79.15% 79.45% 0.45

Validation 67.22% 67.63% 0.61
Test 64.67% 65.19% 0.61

Table 3.1: Best model metric values for training, validation and test

In Figure 3.8 the confusion matrix of the model for the training set is shown, where label 0
represents the BF class, and label 1 represents the BH class. Calculating the percentage error
made by the model on each class on the training set, relative to the total number of samples for
each class, reveals that the classification error for BF is approximately 24%, while the error for
BH is 18%. However, it is important to note that the number of examples for BH in the training
set (1166) is higher than for BF (922), meaning the classes are not perfectly balanced, so the
network may have learned to classify one class slightly better than the other. In Figure 3.9 the
confusion matrix for the validation set is shown. In this case, the percentage error for the BF
class is 33%, while for the BH class, it is 32%. Additionally, here too, the number of samples
for BF (393) is slightly lower than for BH (537).

Figure 3.8: Confusion Matrix on the train-
ing set

Figure 3.9: Confusion Matrix on the vali-
dation set

Finally, in Figure 3.10, the confusion matrix for the test set is shown. Here, the error for the
BF class is 40%, while for the BH class, it is 30%. As with the training and validation sets, the
number of samples for the BH class (638) is higher than for the BF class (511) in the test set as
well.
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Figure 3.10: Confusion Matrix on the test set

What can be concluded from these results is that in all cases, the error percentage for BF is higher
than for BH. This may be due to both the smaller number of examples for this class and, more
likely, the fact that the network has more difficulty classifying this class compared to the other.
Referring back to the results of the Translation Experiment, it was observed that in the early
iterations, which correspond to the runs used here for training the model, the performance for
BF was very low, while for BH, it started from higher values. This indicates poor data quality
in the former case and good data quality in the latter. This may explain the higher error for BF
in the training set, which then =propagates= to the validation and test sets as well.

In Figures 3.11 and 3.12, the dates of all sessions and the type of run (i.e., offline, online, and
control) are shown to provide as broad an overview as possible. It can be seen that the accuracy
on the training runs (0-12) is high, with an average value of 0.82 ± 0.07. On the 2019 data,
accuracy decreases but remains stable, almost always above 0.5, with an average value of 0.61
± 0.07. For the initial 2020 data, the model9s accuracy remains fairly stable but then decreases
on the later 2020 data, with increasingly fluctuating values. The average accuracy on the 2020
data is 0.58 ± 0.08 (with a higher standard deviation compared to 2019). A similar pattern can
be observed in the F1-Score graph. The average F1-Score for the training data is 0.80 ± 0.09,
for the 2019 data it is 0.60 ± 0.06, and for the 2020 data it is 0.56 ± 0.09. This metric, which
provides information on the model9s quality, also confirms worse performance on the 2020 data,
with greater variability relative to the mean value.
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Figure 3.11: Accuracy trend over runs 2019-2020

Figure 3.12: F1-Score trend over runs 2019-2020

3.3 Data dimensionality reduction

The embedding vectors were extracted by removing the classification head and taking the
model9s output. The embeddings, as they are, have a dimensionality of 16 × 1, which makes
them difficult to analyze. Therefore, a single UMAP transformation was applied to all the em-
beddings, reducing their dimensionality to 2 × 1. This data transformation allowed for the
creation of various plots for visualization and analysis in a reduced space. From here on, they
will still be referred to as embeddings, but they refer to the UMAP projection of the data into
two dimensions.

43



3.3.1 Embeddings distribution

The distributions for each run (0-139) were plotted separately for BH and BF (Figures 3.13,
3.14). The prevalent shape in most runs, for both tasks, is a sort of asymmetric parabola with its
concavity facing upwards, although some runs deviate significantly, taking on different shapes.
All subplots share the same scale, making it noticeable that the distribution of the BF class is
denser in the lower-right part of the space, forming a kind of peak (more evident in runs 7, 8, 11,
14, etc.), while the BH class embeddings are more concentrated in the upper-left part (runs 8, 12,
13, 18, etc.), forming a peak on the opposite side. Apart from visual inspection, which allows
us to observe how the class distributions shift across sessions, these plots clearly show that in
some runs, there are too few trials of one class, the other, or both. Therefore, these plots were
primarily used to decide which runs to eliminate in the subsequent analysis to ensure consistent
results. Consequently, sessions 0 to 12 were removed, as they were used for training the model,
along with runs 15, 16, 43, 60, 98, 100, 104, 107, 111, 118, 123, 129, 134, 135, and 137.

Figure 3.13: UMAP projection of embeddings distribution for Both Feet per run
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Figure 3.14: UMAP projection of embeddings distribution for Both Hands per run

3.3.2 Embeddings centroids visualization

The centroids of the distributions for each run were computed, maintaining the labels, to pro-
vide a clearer view of the shapes of the two classes. Figure 3.15 and Figure 3.16 display all
the centroids for the 2019 and 2020 runs, respectively, to check for any shifts. Firstly, it can be
observed that in 2019 the classes are much more separated compared to 2020. This statement
aligns with the earlier observations regarding the classifier9s performance, which deteriorates on
the 2020 data. In fact, better classification is achieved with a greater distance between classes
and a smaller distance within the class. Additionally, the BH class maintains a more or less con-
sistent distribution between 2019 and 2020, while the BF class changes, showing smaller values
along the x-axis and larger values along the y-axis in 2020. This can be noted by referencing
the × symbol in the two graphs, which represents the average of the centroids calculated from
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the training runs (0-12) and is used to indicate the =initial session=, that is, the starting point of
the user9s training for BH and BF. In this case, it can be seen how the centroids for BF in 2020
not only shift back from the corresponding training centroid but also change shape, compared
to 2019.

Figure 3.15: UMAP projection of embed-
dings centroids by labels on 2019 data

Figure 3.16: UMAP projection of embed-
dings centroids by labels on 2020 data

This result partially confirms what was observed in the Translation Experiment, namely that
the BF class experienced themost significant variation, which is positive as there was an increase
in the F1-Score. However, since the distribution of the BH class remained relatively unchanged
between 2019 and 2020 and did not shift along with BF, there was no overall improvement in
the classifier9s performance. In fact, there was a deterioration, visually confirmed by the mixing
of the centroids of the two classes especially in the central area.

3.3.3 UMAP projection of all embeddings

Following are a series of plots displaying all the embeddings from all runs, to provide a broader
overview that cannot be seen with the centroids alone, as they represent only a few values.

In the two figures below, the embeddings with reduced dimensions are shown without dis-
tinguishing between the sessions. In the plot in Figure 3.17, the true labels (i.e., correct labels)
for the two classes are used, with black associated with BF and yellow with BH. The distribution
of the two classes takes on a full asymmetric parabolic shape with two ends. On the right end,
there is a higher concentration of samples belonging to BF, while on the left, there is a higher
density of samples belonging to BH, without a clear boundary. In the plot in Figure 3.18, the
labels predicted by the classifier are used instead. Here, a clear decision boundary is visible,
separating the two classes. By comparing the two plots, it is possible to observe the model9s
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errors, that is instances where BH is predicted as BF and vice versa.

Figure 3.17: UMAP projection of embed-
dings by true labels

Figure 3.18: UMAP projection of embed-
dings by predictions

In Figure 3.19, each color corresponds to a time period, and therefore a group of runs. Brown
is associated with early 2019, yellow with late 2019, green with early 2020, and blue with late
2020. In this plot, the labels are not preserved, so it is not possible to knowwhich samples belong
to the BH class or the BF class, thus only an observation on the overall distribution can be made.
Paying attention to the color gradient, it can be seen that yellow is more densely distributed in
the lower part (still in an upward-facing C-shape), while as you move upward and inward, the
colors shift toward green and blue, ending with this last color, which is more densely distributed
on the top and on the left tip. The brown color, associated with the earliest runs, seems to be the
most evenly distributed throughout the figure.
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Figure 3.19: UMAP projection of embeddings by runs

It can be said that at the beginning of the training, the embeddings are much more distributed
across the entire surface, later becoming more localized in one part of the figure. In the last
sessions of 2019, the distribution concentrates more in the lower part; in 2020, it starts again
from the bottom, gradually shifting upward. This consistency in the distribution in the lower
part of the figure, both before and after the year-long break, could be an important indication
of the overall stability of the two classes in the long term. Moreover, looking at the decoder9s
performance over time, particularly at the Figure 3.11, it can be seen that from 2019 to early
2020 (i.e., before and after the break), accuracy remains fairly stable, before fluctuating and
decreasing only in the later sessions of 2020. This could explain what we observe with UMAP.
What can be concluded from the representations of the embeddings in the reduced space is
that there is definitely an internal shift in the distribution, and therefore what was found at the
quantitative level can also be confirmed at the visual level. It is certainly not possible to see
well-defined clusters or clear separation lines between one period and another, but this is due
to the fact that the user9s learning is gradual, and therefore the shift in the features used by the
network for prediction is also gradual.
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3.4 Evaluation metrics

Here are presented the results regarding metrics that should be related to the user9s neural pattern
modifications, namely Within-class distance (WcDist) and Between-class distance (BcDist).
Subsequently, further considerations on ID and accuracy are reported. Finally, interesting and
significant correlations between some of these measures are shown.

3.4.1 Within-class Distance

The WcDist is the measure of the distance of the network embeddings from the reference run,
defined as the average over all the embeddings of the runs in the training set. It is computed for
each class separately. All sessions belonging to the training set and those with an insufficient
number of trials were discarded. Additionally, the data refers to non-reduced embeddings, as
UMAP does not preserve the distances during dimensionality reduction. The WcDist is model-
dependent and should reflect the shift in neural patterns as the subject acquires BCI skills. There-
fore, compared to traditional metrics used to directly evaluate the classifier, such as accuracy or
precision, it represents a measure related to changes in class distribution and learning.

In the two following figures, the WcDist values are represented in the form of boxplots,
highlighting not only the median of the distribution but also the dispersion, symmetry, and the
presence of any outliers. In Figure 3.20, the boxplot for the BH class is shown. Each group con-
tains 15 runs, remembering that =Start 2019= begins from run 13 of 2019. Looking at the trend
of the average value, it can be seen that the distance from the reference session at the beginning
of 2019 is slightly greater than 0.7, then rises to 0.8 at the end of 2019, which is the maximum
distance reached. In other words, this means that at the end of the first year, the average distri-
bution of the embeddings was quite distant from that characteristic of the initial training period.
The WcDist decreases at the beginning of 2020, reaching a value slightly above 0.6, then rises
again at the end of 2020. This latter increase is less pronounced than that of 2019. What im-
mediately stands out is the =jump= between the end of 2019 and the beginning of 2020, which
results in a reduction of the distance from the reference session. Additionally, it can be seen that
there is only one outlier at the beginning of 2019 (marked with the symbol of an empty circle),
and the distributions are fairly close to the average value, except in the =End 2019= group, where
there are very long whiskers, especially towards positive values, indicating a large dispersion of
values compared to the median. ANOVA revealed at least one significant difference between
the groups, so a subsequent Tukey-Kramer test was performed. This test showed a statistically
significant difference between the start of 2019 and the start of 2020 (p_value < 0.05), between
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the start and the end of 2019 (p_value < 0.05), between the end of 2019 and the start of 2020
(p_value < 0.001), and between the end of 2019 and the end of 2020 (p_value < 0.001).

Figure 3.20: Boxplot Within-class Distance for Both Hands

In Figure 3.21, the boxplot for the BF class is shown, which exhibits a very different trend
compared to that of BH. In fact, the WcDist starts at an average value of 0.8 at the beginning of
2019 and remains stable until the end of the year. There is then an increase to a value of around
0.95, the highest reached, before it drops back down to about 0.85. Here, the =jump= between the
end of 2019 and the beginning of 2020 stands out, indicating that, once again, something changes
significantly from one year to the next. For BF, there are no outliers, although the distribution
appears asymmetric and very dispersed in several cases, particularly in the =Start 2019,= =Start
2020,= and =End 2020= groups. ANOVA revealed at least one significant difference between
the groups. The Tukey-Kramer test indicated a difference between the end of 2019 and the start
of 2020 (p_value < 0.01) and between the end of 2019 and the end of 2020 (p_value < 0.05).
Comparing this graph with the previous one, it can be seen that the trend from the end of 2019
onward is opposite: in the first case, the distance from the reference session decreases and then
increases, while in the second case, it increases and then decreases. Additionally, WcDist values
were visualized as scatterplots to observe their evolution over the runs, but no linear pattern
emerged, so the graphs are not shown.
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Figure 3.21: Boxplot Within-class Distance for Both Feet

While changes in distribution within the same year reflect short-term adaptations, those be-
tween different years indicate long-term adaptations, particularly given the long break in training
between the end of 2019 and the beginning of 2020. In the study where these two metrics for
evaluating user learning were presented [24], the WcDist was computed by averaging BH and
BF, without considering the differences between classes. Additionally, metrics were calculated
in both the channel domain and the Riemann domain, separately for the µ and β bands. In their
research, the decoder was recalibrated using only features in the β band, while features in the µ

band were not used. To compare their results with those of the present study, it is more appro-
priate to consider only the µ band, as this model was not retrained on new data, making the two
trends comparable. For class BH, the trends are consistent. In both cases, there is a regression
in the pilot9s mental activity after the break between years, as indicated by the =jump= in the
boxplot. For class BF, however, the trend differs. In this study, compared to the previous one,
there is an increase in distance from the initial period between 2019 and 2020, indicating a sub-
stantial modification in neural patterns from the start of training for this class. These results are
once again consistent with those found in the Translation Experiment and are corroborated by
the centroid visualization, confirming that the dimensionality reduction performed with UMAP
is reliable.
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3.4.2 Between-class Distance

In Figure 3.22, the boxplot related to the BcDist is shown. The trend of the median starts from
higher values at the beginning of 2019, around 0.4, and gradually decreases, reaching about 0.1
at the end of 2020. Intuitively, these results align with the classifier9s accuracy, which starts with
higher values on the runs close to those used for training and gradually decreases over time. In
fact, the smaller the distance between the two classes, the harder it will be to distinguish whether
a sample belongs to one class or the other. There are outliers at the beginning and at the end of
2020, and there is a dispersion of values in all groups except for =End 2019,= where they are
distributed quite close to the median. ANOVA reports the presence of at least one statistically
significant difference between groups, which, according to the Tukey-Kramer test, is between
the start of 2019 and the end of 2020 (p_value < 0.01), between the end of 2019 and the end of
2020 (p_value < 0.001), and finally, between the start and the end of 2020 (p_value < 0.05).
If we compare these results with those from the original study, previously mentioned, the trend
is very similar to that observed for the BcDist in the channel domain within the µ band.

Figure 3.22: Boxplot Between-class Distance

The BcDist results were also represented in scatterplot form to visualize all the runs, not just
those of the groups in the boxplot. As seen in Figure 3.23, there is no clearly defined linear
pattern in 2019, whereas in 2020, a decreasing trend can be observed. In this case, the 2019 and
2020 embeddings were treated separately.
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Figure 3.23: Scatterplot Between-class Distance per run

3.4.3 Other metrics

The accuracy and ID were also represented as scatterplots to provide a clear view of the trend
of all metrics over the course of the runs, with the analysis again conducted separately for the
2019 and 2020 data. In Figure 3.24, it can be seen that ID does not show any particular trend in
2019, but in 2020 it decreases linearly in a statistically significant manner (p_value < 0.01).

Figure 3.24: Scatterplot Intrinsic Dimensionality per run

In Figure 3.25, the scatterplot of accuracy is shown. Here too, no pattern emerges in 2019,
while in 2020 a significant linear decrease can be observed (p_value < 0.001).
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Figure 3.25: Scatterplot Accuracy per run

It stands out that for the BcDist, ID, and accuracy, there is the same type of evolution over
time, which suggests a potential relationship between these three metrics, at least for the year
2020. The results on the correlations are reported later.

3.4.4 Correlation measures

First, the correlation between accuracy and WcDist was calculated for both BH and BF, con-
sidering the data from 2019 and 2020 together. In Figure 3.26, a significant relationship can
be seen between accuracy and WcDist for the BH class: as WcDist increases, accuracy also
increases. The positive correlation between the two is weak, but the p_value suggests that it is
not due to chance. In Figure 3.26, the relationship between accuracy and WcDist for BF can be
seen, which is a weak negative correlation with a significant p_value. In this case, high values
of WcDist are associated with low accuracy, and vice versa. However, the performance degra-
dation may not necessarily be directly due to a greater shift of the BF class from the distribution
of the reference run. In fact, as previously mentioned regarding the visualization of the 2020
centroids, this may be because the BH class did not shift as much, which caused the two classes
to come closer together, resulting in a decrease in accuracy. Therefore, it cannot be said that
a larger shift of a single class always negatively impacts classifier performance; it depends on
how the classes shift relative to each other. If there had been an increase in theWcDist for BH as
well between 2019 and 2020, rather than the proximity observed in the corresponding boxplot
(Figure 3.20), probably a positive correlation between accuracy and WcDist for BF might have
been observed.
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Figure 3.26: Correlation between accuracy and WcDist for BH on 2019-2020 data

Figure 3.27: Correlation between accuracy and WcDist for BF on 2019-2020 data

An interesting relationship is that between accuracy and BcDist. As expected, the distance
between the classes is directly correlated with classifier performance. In the graph below, it
can be seen that as the distance between the two classes increases, accuracy improves, in a
statistically significant manner (Figure 3.28).

55



Figure 3.28: Correlation between accuracy and BcDist on 2019-2020 data

A weak but statistically significant positive linear correlation emerged between accuracy
and ID (Figure 3.29). However, the trend is not as expected. In fact, with higher dimensionality
and, consequently, greater data complexity, it would be more challenging to make accurate
predictions. The correlation found, instead, indicates that higher ID values correspond to higher
accuracy values. A similar and counterintuitive result was also found in the research where the
Translation Experiment is presented, and ID is proposed as a metric. One hypothesis made in
the article is that greater complexity may be helpful to some extent, as it creates a more diverse
dataset that better reflects the real variety of all motor imagery patterns. One might also think
that a higher ID could be due to more noise in the data; however, in that case, lower accuracy
would have been observed. This leads to the conclusion that the higher number of variables
needed to describe the dataset (i.e., higher ID) could provides useful information for prediction.
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Figure 3.29: Correlation between accuracy and ID on 2019-2020 data

Finally, the correlation between ID and WcDist, as well as between ID and BcDist, was
calculated, but neither of them was significant. Therefore, the results will not be reported.

3.5 Discussion

In this study, various approaches were followed, some already proposed in the literature on other
datasets or using different experimental paradigms, all aimed at studying user learning. The
dataset used lends itself well to this type of analysis, partly due to the long break between training
sessions, which allowed for the study of neural patterns during the longitudinal training phase
and the potential maintenance or change of those patterns after the year-long break. The initial
hypothesis was that once BCI skills were acquired during the early stages, thanks to conditioning
feedback, the user would remain stable over time or continue to improve, despite the break from
training. This was expected to occur due to neural plasticity, which develops during intensive
training and should enable the subject to adapt and continuously improve.

In the original research conducted on the same dataset, a change in the modulated features
was observed, shifting from the lateral channels (associated with the BH task) to the central
channels (associated with the BF task). This allowed the conclusion that the pilot had learned to
perform the latter motor imagery task well over time. In this research, a more detailed analysis
was conducted, focusing not only on the overall model performance but also on the performance
of individual tasks, to verify whether the user learning differed between classes and how this

57



change occurred over the sessions. Thanks to the Translation Experiment, it was found that there
was indeed an improvement in the data quality for BF, which, however, was not accompanied
by a similar improvement in data quality for BH. Why this growth happens for only one class
and not the other cannot be determined with certainty, and the explanation likely lies at the
neurophysiological level. Considering both classes, the overall performance trend, in terms of
accuracy and F1-Score, remains stable for a while and then decreases towards the end of 2020.
This indicates that, despite the model being continuously trained on new data, those from the
later sessions are more difficult to interpret.

Regarding ID in relation to the Translation Experiment, it turned out to be a metric that,
in this study, did not prove useful in explaining the classifier9s performance trends over the
iterations and instead seemed to be related to the dimensionality of the trial on which it was
calculated each time. In the subsequent analysis, where the ID value is reported for each run, it
was found to be positively correlated with the accuracy of the best model, which could indicate
that more complex data provides useful information in the classification process. However, ID
could be influenced by noise in the data or other hidden factors. Given the complexity of brain
signals, this remains a potentially useful metric, but one that is difficult to interpret.

UMAP has proven to be a very useful technique for investigating hidden structures in the
data. It is important to always consider that dimensionality reduction methods may not faithfully
represent the original data and are highly dependent on the input parameters [54, 55]. Addition-
ally, the higher the starting dimensionality, the more complex it becomes to achieve a reduction
that preserves the data structure characteristics. The EEG signal is also quite noisy, and this
noise could be misinterpreted by UMAP, creating structures that do not exist in the original
dataset. In the conducted study, no anomalous results were found in the visualization of the
embeddings; there are no clusters separated from the main group, and there do not appear to be
clear separations suggesting artifacts created by the technique used. Moreover, as mentioned
earlier, it seems that the actual distances between the classes are respected, as what is seen in
the model embeddings visualization is consistent with the classifier9s performance and with the
other metrics (calculated on the non-reduced embeddings).

The metrics related to the shifting of neural patterns, namely WcDist and BcDist, seem to be
good indicators for monitoring the user learning. Both correlate with the model9s performance,
especially BcDist, which measures the distance between BH and BF. Compared to the original
study, where WcDist was calculated by averaging across the two classes, here, in line with the
study9s objectives, the metric was analyzed separately for the two motor imagery tasks. This
allowed us to see that for BH, there was a regression between the end of 2019 and the beginning
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of 2020, with the distribution moving closer to that of the early training days, while for BF, there
was a significant increase in distance between the two years. The fact that in both cases the most
significant shifts, whether positive or negative, occurred between one year and the next suggests
long-term cerebral adaptations, which, however, do not show the stability needed to maintain
high decoder performance without requiring recalibration.

It is important to emphasize that the connection found between the results of the Translation
Experiment and those of the subsequent analysis is not straightforward, as a different model
was trained for each iteration in the former, while the latter was conducted on a single model.
Obtaining results that do not conflict, especially regarding the significant improvement of the
user in the BF task, means validating the methods used to evaluate learning and confirming both
qualitatively and quantitatively that an actual shift in neural patterns occurred, which were two
of the main objectives of this study.
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Chapter 4

Conclusion

This work aims to demonstrate the neural changes that occur during the prolonged use of a
MI-BCI, which are still not sufficiently considered when designing this type of technology. It
therefore emphasizes the importance of placing the user at the center in order to fully exploit
the system9s potential and to enable its use in future real-world contexts, not just in laboratory
settings. In recent times, significant progress has been made, but not enough for BCIs to be
used in routine clinical practice. An important factor in the successful implementation of the
system is the user9s adaptation, which often does not depend on the use of a specific model, but
on how frequently the decoder is recalibrated. Long-term studies have shown that it is crucial to
recalibrate the BCI only when performance becomes too low, which happens due to a substan-
tial change in the subject9s neural patterns, reflected in the altered characteristics of the EEG
signal, which the classifier can no longer decode. In this sense, the use of deep learning, rather
than classical algorithms found in the literature for encoding sensorimotor rhythms, has many
advantages, especially with regard to the autonomous selection of the most suitable features.
Specific architectures optimized for BCI, such as EEGNet, open the door to a potential future
where the system is calibration-free.

In this research, methods were tested to monitor the training process through the visualiza-
tion of the neural network9s latent space, that proves useful in observing classes distribution
changes, i.e., MI tasks, over time. Additionally, UMAP, with appropriate modifications to re-
duce computational cost and increase execution speed, is a technique that could potentially be
used in real-time to observe how the network9s embeddings are positioned in space from one
session to the next. In this case, UMAP was used solely for visualizing the neural network9s
latent space, but in future research, it could also be applied to raw data to visualize and remove
potential noise, thus improving subsequent classification. This could be particularly useful be-
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cause, when using deep learning, preprocessing is sometimes skipped, and therefore noise or
artifacts in the data can have a very negative impact on the results. Furthermore, the importance
of using appropriate metrics is once again emphasized, as these metrics can clearly and directly
quantify how much the neural patterns have shifted or remained stable from the beginning to
the end of the training. The aim was to demonstrate that classifier accuracy alone is not a metric
that fully reflects the subject9s developments or improvements. In fact, it has been observed that
there can be an improvement in data quality for one class rather than the other, which, however,
is not reflected in the overall accuracy.

Future developments of this work may involve applying the proposed techniques to a dataset
consisting of multiple subjects, to validate the findings and, if necessary, to identify statistical
significance where only low evidence was found. Additionally, these techniques will need to
be applied online, and possibly a classifier should be developed that adapts when significant
distribution changes occur, based on the computed values. Finally, the learning process could
be further understood through an in-depth study of the neurophysiological changes that occur,
which were not addressed in this case but are important for understanding, for example, how the
discriminability of features or brain connectivity changes during training.
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