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INTRODUZIONE

Il presente lavoro di tesi si è sviluppato nel contesto di un'esperienza di stage da

me svolta presso In�neon Technologies Italy (PD), all'interno della Standard Power

Business Line.

In�neon Technologies è un'azienda tedesca che lavora nell'ambito dei semicondut-

tori, occupandosi in particolare di sistemi per automotive, componenti e sistemi per

il controllo delle alte potenze, transistor e sistemi di pilotaggio per applicazioni in-

dustriali, microelettronica per sistemi di pagamento, comunicazione e identi�cazione

personale. L'area di Standard Power si occupa nello speci�co del settore Automo-

tive, spaziando su una vasta gamma di prodotti, come Linear Voltage Regulators,

FlexRay, CAN e LIN Transceivers, Switching Voltage Regulators (DC/DC Convert-

ers) e Industrial Standard.

L'interesse cruciale delle aziende che, come In�neon Technologies, si occupano

di semiconduttori, è quello di sviluppare prodotti e tecnologie che siano in grado di

sostenere l'elevato livello di competitività che caratterizza questo settore del mercato.

Uno degli step cruciali, all'interno dello sviluppo di questi prodotti, è la caratter-

izzazione di laboratorio, fase necessaria alla validazione delle funzionalità elettriche

di ogni dispositivo. Le modalità di esecuzione di tale fase devono essere tali da

garantire la qualità della valutazione e la conformità del prodotto alle relative speci-

�che. Per ogni nuovo componente che deve essere caratterizzato, infatti, è molto

importante essere in grado di assicurare con precisione che tale prodotto funzioni

correttamente all'interno delle speci�che che sono segnalate nel relativo datasheet.
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La Figura 1.1 mostra, a titolo di esempio, il datasheet di un voltage regulator, doc-

umento utile a chiunque sia interessato all'acquisto e all'utilizzo del componente,

dal momento che ne fornisce una descrizione dettagliata e tutte le informazioni nec-

essarie (caratteristiche, comportamento elettrico, ...) ad e�ettuarne una corretta

applicazione.

Durante la fase di caratterizzazione di un nuovo prodotto, prima del suo rilascio,

devono essere testati tutti i parametri richiesti nel datasheet dello speci�co disposi-

tivo, e i relativi risultati vengono poi inseriti all'interno di tale scheda tecnica.

Chiaramente la fase di caratterizzazione di un componente richiede un tempo di

esecuzione maggiore, se il metodo applicato per la realizzazione di tutti i test è quello

manuale, e l'obiettivo generale perseguito in questo ambito è quello di automatizzare

il più possibile le varie attività di test.

L'obiettivo principale del progetto che ho seguito all'interno di In�neon è stato

quello di realizzare una Graphical User Interface da associare ad una preesistente pi-

attaforma hardware, sviluppata dal Team dei Product Engineer della sede di Padova,

pensata allo scopo di supportare il lavoro degli ingegneri nelle valutazioni di labo-

ratorio, in fase di caratterizzazione dei dispositivi. Tale piattaforma hardware è

stata progettata come la combinazione di due diverse schede: una custom-made

test board, chiamata GPB (General Purpose Board) o motherboard, e una board

di dimensioni minori, de�nita PCB (Printed Circuit Board) o doughterboard. Dalla

combinazione di queste due diverse schede è possibile e�ettuare in modo sempli�cato

tutti i test necessari a ricoprire l'intera gamma di parametri richiesti all'interno del

datasheet di un dispositivo. Nello speci�co, tali schede e l'interfaccia software da

me realizzata sono state sviluppate per supportare la fase di test della famiglia dei

dispositivi Voltage Regulator, in tutti i loro packages.

L'idea è stata quindi di realizzare un supporto hardware/software che perme-

ttesse di automatizzare la fase di caratterizzazione dei dispositivi, in modo da ridurre

i tempi necessari alle misure senza però comprometterne la qualità in termini di ac-

curatezza.

L'hardware della GPB è composto da un set di connettori esterni, ai quali sono

connessi gli strumenti di misura, e da una matrice di 48 relè la cui funzione è quella

di interruttori. Al centro della GPB sarà collegata la daughterboard con il DUT.

Uno strumento di misura sarà connesso ad uno speci�co pin del DUT se il relè

necessario al collegamento viene attivato; altrimenti lo strumento rimane �ottante

o n.c. (relè o�). In questo modo, variando lo stato dei relè (on/o�) è possibile

attivare/disattivare il collegamento degli strumenti ai pin del DUT. Ad ogni setup
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di misura (con�gurazione di strumenti utilizzata per e�ettuare una misura sul DUT)

sarà quindi associata una con�gurazione di relè della board. L'attivazione/disattivazione

dei relè è possibile usando i dip-switch della GPB, oppure inviando un array di 48

bit (ad ogni bit è associato la stato di un relè nella board) via SPI.

La GPB è sempre accompagnata/integrata da una PCB (daughterboard) speci-

�ca per ogni prodotto. La daughterboard è una scheda pensata e progettata sul

dispositivo (voltage regulator) da testare e sul set di misure richieste dal datasheet

per la fase di caratterizzazione. Infatti, il set di misure di test richieste, varia (seppur

di poco) da dispositivo a dispositivo, e per ogni tipo di misura il dispositivo necessita

di componenti esterni (resistenze, condensatori) che saranno integrati nella board.

La daughterboard sarà formata da resistenze e condensatori necessari alle misure,

e da una matrice di n relè come per la GPB. Variando lo stato dei relè, è possibile

attivare/disattivare il collegamento dei componenti passivi ai pin del dispositivo.

L'integrazione tra matherboard e daughterboard è quindi in grado di dare pieno

supporto agli ingegneri per la fase di caratterizzazione, rendendo possibile l'automazione

nelle misure. Inviando tramite interfaccia SPI un array di 48 + n bits, è possibile

impostare un setup di misura completo: i primi 48 bit gestiscono il collegamento

degli strumenti ai pin del DUT, i successivi n bit attivano/disattivano la connes-

sione di resistenze e condensatori esterni al DUT. Pre-impostando una matrice di

48*n bits, dove ogni riga corrisponde ad un di�erente setup di misura, è possibile

generare una matrice di setup che copra tutte le misure richieste dal datasheet per

il dispositivo in esame.

Il lavoro da me svolto è stato quello di realizzare una GUI in LabVIEW che consenta

di gestire da remoto tutta la fase di setup delle misure e di comunicare con gli stru-

menti di misura tramite interfacce pop-up dedicate. Il setup delle misure è gestibile

inviando comandi SPI alle boards, mentre, è possibile aprire/chiudere l'interfaccia

pop-up di uno strumento dalla GUI principale tramite un pulsante dedicato.

La Figura 1.2 illustra come tools hardware e software sono messi in comuni-

cazione tra loro. In particolare, il software LabVIEW comunica via USB con il

microcontrollore Arduino Due, il quale a sua volta, invia comandi SPI alle boards.

Diversamente, la comunicazione tra software LabVIEW e strumenti di misura è ot-

tenuta usando l'interfaccia GPIB.

Nel primo capitolo di questa tesi sono introdotti i tools hardware/software e le

interfacce di comunicazione utilizzate nello sviluppo della GUI. Il secondo capitolo
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descrive poi le principali funzionalità messe a disposizione dalla GUI, riportando,

per ogni funzionalità implementata, esempi di sviluppo di codice LabVIEW. Il terzo

capitolo propone quindi una breve descrizione teorica degli strumenti di misura uti-

lizzati, e per ogni strumento, illustra parte del codice LabVIEW sviluppato per la

realizzazione delle interfacce pop-up degli strumenti di misura.
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CHAPTER

1

INTRODUCTION

The present work has been developed within In�neon Technologies Italy (PD) in the

context of an internship carried out in the Automotive (ATV) area, in the Standard

Power Business Line.

In�neon Technologies o�ers semiconductors and systems for automotive, indus-

trial and multimarket sectors, as well as chipcard and security products. The depart-

ment of Standard Power, in particular, o�ers a broad portfolio on the Automotive

market for standard power products, such as Linear Voltage Regulators, FlexRay,

CAN and LIN Transceivers, Switching Voltage Regulators (DC/DC Converters) and

Industrial Standard.

The core of semiconductor companies, such as In�neon Technologies, is product

and technology development to bear the competitiveness. One of the criteria in

product development is electrical lab characterization which is crucial in validating

the device's electrical functionality without jeopardizing the evaluation quality and

ensuring that it is within the product speci�cations.

For a new product characterization, it is signi�cant to ensure that the prod-

uct is functioning well within the datasheet speci�cation. Figure 1.1 illustrates an

example of a voltage regulator product datasheet which is a useful document for

users. They will be able to obtain as much information as possible for instances
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Chapter 1. Introduction

the product information, application setup and device's electrical behavior in the

datasheet. During a new product characterization, all datasheet parameters will be

tested and results are compiled to �nalize the datasheet before its release. Typical

lab characterization takes longer time to complete since it is deploying the manual

measurement method, and the overall objective in this area is to automate as much

as possible the various testing activities.

Figure 1.1: Datasheet example

The target of the main project in which i have worked has been to realize the

Graphical User Interface of a new hardware platform, developed by the Product

engineers Team of In�neon Padua, conceived to support engineers in lab evalua-

tions for the characterization phase. This hardware platform has been designed as

the combination between a custom-made test board, named general purpose board

(GPB) or motherboard, and a smaller dimension of printed circuit board (PCB),

called daughterboard. From this combination derives the capability to ful�ll the

entire coverage of datasheet test parameters for lab characterization. Speci�cally,

these two hardware boards support characterization for voltage regulators which

come in various device packages.

The idea was to realize a hardware/software support that would allow to au-

tomate the devices characterization phase, in order to reduce the time required to

14



perform measures, without compromising their quality, in terms of accuracy.

The hardware of the GPB is composed by a set of external sockets, to which is

possible to connect instruments to perform measures, and by an array of 48 relays

that work as switches. In the central area of the GPB is possible to connect the

daughterboard with the DUT mounted above.

A measuring instrument is considered as connected to a speci�c pin of the DUT,

if the relay on its connection is activated; otherwise the instrument is considered as

�oating or N.C. (relay o�). In this way, by changing the status of the relay (on/o�),

you can enable/disable the connection of instruments to the DUT pins.

Each measurement setup (con�guration of instruments used to perform a mea-

surement on the DUT) is associated with a speci�c con�guration of the relays of the

board. The activation/deactivation of the relays is possible by using the dip-switches

of the GPB, or by sending an array of 48 bits via SPI (to each bit is associated the

status of a relay on the board).

The GPB is always accompanied/integrated by a PCB (daughterboard) that

is di�erent for each speci�c product to be tested. The daughterboard is a board

conceived and designed in order to test a speci�c device (voltage regulator), that is

paying attention to its special features, and the speci�c set of measures required by

its datasheet for the characterization phase. In fact, the requested set of measures,

varies (albeit slightly) from device to device, and for each type of measurement the

device need external components (resistors, capacitors) that have to be integrated

in the board.

The daughterboard is provided with resistors and capacitors, that are necessary

to perform measurements, and with a matrix of n relays. By changing the status of

relays, you can enable/disable the connection of passive components to the pins of

the device.

The integration between matherboard and daughterboard is therefore able to

give full support for the characterization phase, making possible the automation in

measurements. Sending via the SPI interface an array of 48-bit plus n bit, you can set

a complete measurement setup: �rst 48-bits manage the connection of instruments

to the pins of the DUT, next n bits activate/deactivate the connection of external

resistors and capacitors to DUT.

The work I have developed has been to develop, using LabVIEW, a GUI (Graph-

ical User Interface) that allows to remotely manage the setup of the measures and

to communicate with instruments via dedicated pop-ups. The setup of the mea-

sures is manageable by sending SPI commands to the board, while, it is possible to
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Chapter 1. Introduction

open/close interface pop-ups of an instrument from the main GUI via a dedicated

button.

Figure 1.2 illustrates how hardware and software tools are put in communication

with each other. In particular, LabVIEW software communicates via USB with the

Arduino due microcontroller, which sends SPI commands to the boards. The com-

munication between LabVIEW software and the instruments is otherwise obtained

using the GPIB interface.

Figure 1.2: Measurement bench

The second chapter of this work introduces the hardware/software tools and the

communication interfaces used in the project.

The third chapter describes the main features provided by the GUI, highlighting,

for each function implemented, examples of LabVIEW code developed.

The fourth chapter is a brief theoretical description of instruments used in associ-

ation with the GPB, and for each instrument, it shows the LabVIEW code developed

for the realization of instrument pop-ups.
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CHAPTER

2

HARDWARE/SOFTWARE AND

COMMUNICATION PROTOCOLS

This chapter presents hardware/software and communication protocols involved in

this project, listed below:

1. GPB (General Purpose Board);

• SPI (Serial Peripheral Interface);

• MAX482x;

• Relays;

• Daughterboard;

2. Arduino due microcontroller;

3. LabVIEW software;

4. GPIB (General Purpose Interface Bus);

5. SCPI (Standard Commands for Programmable Instruments);

17



Chapter 2. Hardware/Software and Communication Protocols

2.1 GPB (General Purpose Board)

As introduced in the previous chapter, the GPB hardware is a custom-made test

board designed to support the characterization for voltage regulators which come in

various device packages. The GPB, also called motherboard, is always completed

by the integration of another board: the daughterboard. The combination between

motherboard and daughterboard allows to ful�ll the entire coverage of datasheet

test parameters for lab characterization.

The GPB has been thought to connect instruments to device pins, and this is

possible by activating/deactivating the relays of the board. The relays could be

viewed as switches, which enable the physical connection between instrument and

device pins. The Figure 2.1 shows, for example, a portion of the PCB (Printed

Circuit Board) for the GPB.

Figure 2.1: Portion of the Printed Circuit Board (PCB)

The GPB is composed by 48 relays, which are directly controlled using dip-

switches or eventually through SPI interface. Each relay has a LED, which indicates

if a speci�c relay is active. The physical connection between instrument and GPB is

realized using banana connectors positioned into the two sides of the board. Besides,

the daughterboard could be positioned in the center of the GPB, where there are 4

adaptors to join the boards.

Figure 2.2 shows the GPB hardware, where we can see all the components men-

tioned above:

18



2.1 GPB (General Purpose Board)

(a) top of the GPB

(b) bottom of the GPB

Figure 2.2: General Purpose Board (GPB) top and bottom view

19



Chapter 2. Hardware/Software and Communication Protocols

1. Dip-switches;

2. Led indicators;

3. Relays;

4. SPI (Serial Peripheral Interface);

5. MAX4820 relay driver;

6. Banana connectors;

7. Daughterboard socket;

In order to design the GPB, Eagle PCB design software from CadSoft is used

as the printed circuit board (PCB) design tool since it is a freeware which can be

obtained easily from any open source. Figure 2.3 elucidates the PCB designing �ow

in EAGLE PCB design software. It begins with design and prototype, capturing

the schematic once prototype is available then followed by physical layout where

traces checking are done and �nally testing the hardware once it is complete. The

hardware testing stage wraps up the PCB design process.

Figure 2.3: Eagle design �ow

2.1.1 SPI (Serial Peripheral Interface)

Serial peripheral interface (SPI) is a synchronous serial interface where an 8-bit byte

data can be shifted in and out 1 bit at a time. It can be used to communicate with

a serial peripheral device or with a di�erent microcontroller that has an embedded

SPI interface.

SPI is a synchronous data bus, which means that it uses separate lines for data

and a "clock" that keeps both sides in perfect sync. The clock is an oscillating signal

that tells the receiver exactly when to sample the bits on the data line. This could

be the rising (low to high) or falling (high to low) edge of the clock signal. When
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2.1 GPB (General Purpose Board)

the receiver detects that edge, it will immediately look at the data line to read the

next bit.

In SPI, only one side generates the clock signal (usually called CLK or SCK for

Serial ClocK). The side that generates the clock is called the master, and the other

side is called the slave. There is always only one master, but there can be multiple

slaves (more on this in a bit).

When data is sent from the master to a slave, it is sent on a data line called

MOSI, for "Master Out/Slave In". If the slave needs to send a response back to the

master, the master will continue to generate a prearranged number of clock cycles,

and the slave will put the data onto a third data line called MISO, for "Master

In/Slave Out". Notice we said "prearranged" in the above description. Because

the master always generates the clock signal, it must know in advance when a slave

needs to return data and how much data will be returned. This is very di�erent than

asynchronous serial, where random amounts of data can be sent in either direction

at any time. Note that SPI is "full duplex" (has separate send and receive lines),

and, thus, in certain situations, you can transmit and receive data at the same time

(for example, requesting a new sensor reading while retrieving the data from the

previous one).

There is one last line you should be aware of, called SS for Slave Select. This

tells the slave that it should wake up and receive/send data and is also used when

multiple slaves are present to select the one you would like to talk to.

Figure 2.4: SPI (Serial Peripheral Interface)
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There are two ways of connecting multiple slaves to an SPI bus:

• In general, each slave will need a separate SS line (Figure 2.5). To talk to a

particular slave, you will make that slave's SS line low and keep the rest of

them high (you do not want two slaves activated at the same time, or they

may both try to talk on the same MISO line resulting in garbled data). Lots

of slaves will require lots of SS lines; if you are running low on outputs, there

are binary decoder chips that can multiply your SS outputs.

Figure 2.5: SPI separate SS line structure

• On the other hand, some parts prefer to be daisy-chained together, with the

MISO (output) of one going to the MOSI (input) of the next (Figure 2.6). In

this case, a single SS line goes to all the slaves. Once all the data is sent, the SS

line is raised, which causes all the chips to be activated simultaneously. This

is often used for daisy-chained shift registers and addressable LED drivers.

Figure 2.6: SPI daisy chain structure

This type of layout is typically used in output-only situations, such as driving

LEDs where you do not need to receive any data back. In these cases you can leave

the master's MISO line disconnected. However, if data does need to be returned to
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the master, you can do this by closing the daisy-chain loop (blue wire in the above

diagram).

2.1.2 MAX482x

The serial peripheral interface (SPI) is used to activate relay matrix for each test

parameter setup. A special dedicated circuit is required to drive the relays according

to the test setup. MAX482x is a relay driver which is used in the GPB to control

the relays on the motherboard. Figure 2.7 is an example of a MAX482x device.

Figure 2.7: MAX4820 device

MAX482x relay driver can be connected in a daisy chain which provides �exibil-

ity to the users to have more relays as well as relay drivers with only one supply. In

addition to the advantages, MAX482x could also be easily controlled using an SPI

device which is among the advantages of utilizing a MAX relay driver in the setup.

Any DC power supply is su�cient to power up the relay drivers but an SPI device

plays a very important role which is to control relays based on users' input. Arduino

due microcontroller can be used to generate SPI signal, and it is programmable

using a dedicated programming language.

2.1.3 Relays

The relays used in the GPB are DPDT relays. DPDT stands for double pole double

throw relay. Relay is an electromagnetic device used to separate two circuits elec-

trically and connect them magnetically. They are very useful devices and allow one

circuit to switch another one while they are completely separate.
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The DPDT relay (Figure 2.8) has a structure with two sections, input and output.

The input section consists of a coil with two pins which are connected to the ground

and the input signal. The output section consists of contactors which connect or

disconnect mechanically. The output section consists of six contactors with two

sets. Each set has three changeover contacts, namely, normally open (NO), normally

closed (NC) and common (COM). When no supply is given the COM is connected

to NC. When the operating voltage is applied the relay coil gets energized and the

COM changes contact to NO.

Figure 2.8: DPDT relay

The DPDT relays in the GPB lead FORCE and SENSE signals. To reach more

precision in measurement, it is used to make measures with four wires.

Four-Wire Resistance Measurements

Due to the limitations of the two-wire method, a di�erent approach is used for

low resistance measurements that reduce the e�ect of test lead resistance. For

measuring DUTs with resistances equal to or less than 1KΩ, you may use the four-

wire connection shown in Figure 2.10.

Because the voltage is measured at the DUT, voltage drop in the test leads is

eliminated (this voltage could be signi�cant when measuring low-resistance devices).

With this con�guration, the test current (I) is forced through the test resistance

(R) via one set of test leads, while the voltage (VM) across the DUT is measured

through a second set of leads (sense leads). Although some small current (typically

less than 100pA) may �ow through the sense leads, it is usually negligible and can

generally be ignored for all practical purposes.
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Therefore the voltage measured by the meter (VM) is essentially the same as

the voltage (VR) across the resistance (R). As a result, the resistance value can be

determined much more accurately than with the two-wire method. The voltage-

sensing leads should be connected as close to the resistor under test as possible to

avoid including part of the resistance of the test leads in the measurement.

Figure 2.9: Two-wire measure

Figure 2.10: Four-wire measure
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2.1.4 Daughterboard

The GPB functioning is always completed by the integration of another board, that

is speci�c for each product: the daughterboard. This second board adds �exibility

to the GPB, since it is precisely designed for the characterization phase of speci�c

devices. Every type of measure, which is required by the datasheet, needs a series

of external components (resistors or capacitors) to be realized. In the same way of

the GPB, also the daughterboard is realized from a series of relays, whose function

is to activate/deactivate the connection of resistors or capacitors to the device pins.

The Motherboard and Daughterboard relays are managed by an SPI signal of

48 + n bits (n are the number of relays on the daughterboard). MAX4820 relay

drivers are mounted on the boards and connected in a daisy-chain structure.

In order to design the daughterboard, Altium Designer software is used as the

printed circuit board (PCB) design tool. Figure 2.11 shows a 3D image of the PCB

daughterbord realized.

Figure 2.11: Altium 3D view of Daughterboard PCB

2.2 Arduino Due microcontroller

Arduino is an open-source electronics prototyping platform based on �exible, easy

to use hardware and software. Arduino can sense the environment by receiving in-
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put from a variety of sensors and can a�ect its surroundings by controlling lights,

motors, and other actuators. The microcontroller on the board is programmed us-

ing the Arduino programming language and the Arduino development environment.

Arduino projects can be stand-alone or they can communicate with software on

running on a computer.

To our scope, Arduino due has been used to transmit the SPI commands in

order to turn on/turn o� the relays of the GPB. It is a USB compatible device

which is shown in Figure 2.12.

The Arduino due is a microcontroller board based on the Atmel SAM3X8E ARM

Cortex-M3 CPU. It is the �rst Arduino board based on a 32 bit ARM core micro-

controller. It has a micro USB cable for communicating with a computer, and it

also supports SPI communication.

The Programming port is connected to an ATmega16U2 microcontroller, which

provides a virtual COM port to software on a connected. The ATmega16U2 is

also connected to the SAM3X hardware UART (Universal Asynchronous Receiver-

Transmitter) which provides serial to USB communication for programming the

board.

Figure 2.12: Arduino Due microcontroller

To write code and upload it to the I/O board the open-source Arduino develop-

ment environment could be used. It connects to the Arduino hardware to upload

programs and communicate with them. The Arduino environment contains a text

editor for writing code, a message area and a serial monitor which allows simple

textual data to be sent to and from the board. The RX and TX LEDs on the

board will �ash when data is being transmitted via the ATmega16U2 chip and USB
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connection to the computer.

2.3 LabVIEW software

In this project, LabVIEW software has been chosen to develop a GUI (Graphical

User Interface) to manage measure setups, sending them to the GPB, and to manage

instruments for measurements. NI LabVIEW is a graphical programming language

designed to develop tests, control, and measurement applications. LabVIEW gives

the �exibility of a powerful programming language without the complexity of tradi-

tional development environments. LabVIEW delivers extensive acquisition, analysis,

and presentation capabilities in a single environment.

2.4 GPIB (General Purpose Interface Bus)

In this project, to communicate between the instrument interfaces realized in Lab-

VIEW and the real instrument have been used the GPIB General Purpose Interface

Bus.

Hewlett-Packard designed the Hewlett-Packard Interface Bus (HP-IB) to con-

nect their line of programmable instruments to their computers. Today, the name

General Purpose Interface Bus (GPIB) is more widely used than HP-IB, and thou-

sands of di�erent instruments are equipped with this interface. The GPIB bus is

standardized by the IEEE (Institute of Electrical and Electronics Engineers). The

IEEE Standard 488-1975 de�ned the electrical and mechanical speci�cations, then

the ANSI/IEEE 488.2-1987 standard de�ned precisely how controllers and instru-

ments should communicate. Standard Commands for Programmable Instruments

(SCPI) took the command structures de�ned in IEEE 488.2 and created a single,

comprehensive programming command set that is used with any SCPI instrument.

Typically, a measurement setup comprises a system controller (usually a PC or

workstation) and at least one device (instrument). The system controller has to

have a GPIB controller card.

GPIB is an 8-bit, electrically parallel bus. The bus employs sixteen signal lines

eight used for bidirectional data transfer, three for handshake, and �ve for bus

management plus eight ground return lines. Every device on the bus has a unique

5-bit primary address, in the range from 0 to 30 (31 total possible addresses). The

standard allows up to 15 devices to share a single physical bus. The physical topology

can be linear or star (Figure 2.13). The maximum data rate is about one megabyte
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per second. The later HS-488 extension allowing up to 8 Mbyte/s. The slowest

participating device determines the speed of the bus.

Figure 2.13: GPIB con�gurations

2.5 SCPI (Standard Commands For Programmable

Instruments )

SCPI de�nes a common command set for programming instruments. Before SCPI,

each instrument manufacturer developed its own command sets for its programmable

instruments. This lack of standardization forced developers to learn a number of

di�erent command sets and instrument-speci�c parameters for the various instru-

ments used in an application. By de�ning a standard programming command set,

SCPI decreases development time and increases the readability of test programs and

the ability to interchange instruments.

The standard speci�es a common syntax, command structure, and data formats,

to be used with all instruments. It introduced generic commands (such as CONFig-

ure and MEASure) that could be used with any instrument.

SCPI commands are ASCII textual strings, which are sent to the instrument over

the physical layer. The physical communications link is not de�ned by SCPI. While

originally created for IEEE-488 (GPIB), it can also be used with RS-232, Ethernet,

USB, ecc. Commands are a series of one or more keywords, many of which take

parameters. Responses to query commands are typically ASCII strings.

SCPI o�ers numerous advantages. One of these is that SCPI provides a com-

prehensive set of programming functions covering all the major functions of an
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instrument. This standard command set ensures a higher degree of instrument in-

terchangeability and minimizes the e�ort involved in designing new test systems.

The SCPI command set is hierarchical, so adding commands for more speci�c or

newer functionality is easily accommodated.

Command Syntax

SCPI commands to an instrument may either perform a set operation (e.g. switching

a power supply on) or a query operation (e.g. reading a voltage). Queries are

issued to an instrument by appending a question-mark to the end of a command.

Some commands can be used for both setting and querying an instrument. For

example, the data-acquisition mode of an instrument could be set by using the

ACQuire:MODe command or it could be queried by using the ACQuire:MODe?

command. Some commands can both set and query an instrument at once. For

example, the *CAL? command runs a self-calibration routine on some equipment,

and then returns the results of the calibration.

Similar commands are grouped into a hierarchy or "tree" structure. For ex-

ample, any instruction to read a measurement from an instrument will begin with

MEASure. Speci�c sub-commands within the hierarchy are nested with a colon

(:) character. For example, the command to "Measure a DC voltage" would take

the form MEASure:VOLTage:DC?, and the command to "Measure an AC current"

would take the form MEASure:CURRent:AC?.

Some commands require an additional argument. Arguments are given after the

command, and are separated by a space. For example, the command to set the trig-

ger mode of an instrument to "normal" may be given as TRIGger:MODe NORMal.

Here, the word NORMal is used as the argument to the TRIGger:MODe command.

Multiple commands can be issued to an instrument in a single string. Each com-

mand must be separated by a semicolon character (;). Additionally, all commands

except the �rst must be pre�xed by a colon (unless they already begin with an as-

terisk). For example, the command to "Measure a DC voltage then measure an AC

current" would be issued as MEASure:VOLTage:DC?;:MEASure:CURRent:AC?.

The command syntax shows some characters in a mixture of upper & lower case.

Abbreviating the command to only sending the upper case has the same mean-
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ing as sending the upper & lower case command. For example, the command

SYSTem:COMMunicate:SERial:BAUD 2400 could also alternatively be abbreviated

SYST:COMM:SER:BAUD 2400.

Example

The following command programs a digital multimeter (DMM) to con�gure itself to

make an AC voltage measurement on a signal of 20 V with a 0.001 V resolution.

:MEASure:VOLTage:AC? 20, 0.001

• The leading colon indicates a new command is coming;

• The keywords MEASure:VOLTage:AC instruct the DMM to take an AC volt-

age measurement;

• The ? instructs the DMM to return its measurement to the computer/con-

troller;

• The 20, 0.001 speci�es the range (20V ) and resolution (.001V ) of the measure-

ment;
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CHAPTER

3

GRAPHICAL USER INTERFACE FOR

MEASURE SETUP

This chapter presents the GUI (Graphical User interface) realized in the �rst part

of this work. This Interface allows the user to manage the measure setup, giving a

clear vision of how the GPB (General Purpose Board) is connected to instruments.

It also gives the possibility to change setups in real-time and to store settings into

an Excel �le, so that you can load them whenever you want.

The interface has been realized using LabVIEW. The main VI structure is an

event structure, which waits until an event occurs, then executes the appropriate

case to handle that event. The event structure has one or more sub diagrams, or

event cases, that are executed in a mutually exclusive manner in accordance with

the occurence of external events.

The Figure 3.1 shows a representative image of the developed interface, which

is structured by a tab control. Tab controls are employed to overlap front panel

controls and indicators in a smaller area. A tab control consists of pages and tabs.

It is possible to add front panel objects to the pages of the tab control, and to use

the tab as the selector to display each page.

In each page of the tab control there is a portion of the PCB (Printed Circuit

33



Chapter 3. Graphical User Interface for measure setup

Board) of the General Purpose Board. It is populated with relays that control the

connections between instruments and device pins.

The �rst page (I/O connection) is a reproduction of the GPB. In this section

it is possible to edit the name of all the instruments connected to the board, and

of the device pins. On the right side of the page there are a series of buttons that

enhance the functionalities of the GUI.

The main functionalities of the Graphical User Interface are listed below:

1. Check relays status;

2. Load/Save setup measures;

3. Load/Save settings for connectors and pins;

4. Send setups to GPB

5. Quick Instruments→Device setup;

6. Select instruments and open pop-ups

7. Check instruments connections at daughterboard level

Figure 3.1: Graphical User Interface
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3.1 Control of relays status

The GUI, from a graphical point of view, is realized with a tab-control containing

the sections of the printed circuit board, which are called with the name of the DUT

pins. Each relay is a Boolean control: connections between instruments and device

pins can be activated or deactivated by switching the relay state.

For example, as it is shown in the Figure 3.2, the k1&k2 relay is active (green

color) and we can see a direct connection between the instrument (TOE_CH1_F)

and the device pin (INPUT_F).

Figure 3.2: Relay k1&k2 active

The GPB has N instruments connected through banana connectors, and for

each type of measure, a di�erent con�guration of instruments has to be activated.

The connection of di�erent con�gurations of instruments is possible because phys-

ical connections between instruments and the device under test are regulated by

switching-on/switching-o� the relays. For each relays con�guration, we will have a

di�erent setup of measure, that is a di�erent type of con�guration of instruments to

realize a speci�c measure.

Since the board is composed of 48 relays, and their activation/deactivation can

be selected by changing the value of a boolean variable, each measurement setup

will be described by an array of 48 bits. A "1" logic is equivalent to switch-on a

relay and "0" logic to switch-o� it. In this implementation we have chosen DPDT
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relays (Double Pole Double Throw) therefore it has been necessary to realize two

switches, strictly correlated, for each relay. The activation/deactivation of one of

these switches will drive the activation/deactivation of the other one, and vice versa.

Usually, a DPDT relay is used to bring FORCE and SENSE signals. To reach

more measurement accuracy, it is used to make measures with four wires. Figure 3.2

shows two sections of the GUI, where there are two buttons that represent a single

relay, used for the force and sense wires of TOE CH1.

In the interface (Figure 3.1) also dip-switch buttons have been reproduced. The

user could manage relay status in two ways: from relays controls in the various

printed circuit board sections, or directly from dip-switch controls.

In addition to dip-switch controls also a yellow led is provided for each relay: the

led will be ON when the respective relay will be active.

LabVIEW development

To understand how to implement the Control of relays status functionality, it is

necessary to explain how the measurement setup is kept in memory and how it is

updated when a relay changes in value. The idea is to save the setups of measure

in a matrix using a FGV (Functional Global Variable). The matrix is composed by

n*48 bits, where n is the number of setups and 48 are the bits for each setup.

Functional global variables (Figure 3.3) are VIs that use loops with uninitialized

shift registers to hold global data. They are realized by a case structure inside a

while loop where the conditional terminal is always true, and every time you call

the VI, the code in the loop runs exactly once.

Figure 3.3: Functional Global Variable structure

A functional global variable has an action input parameter (called Enum in

Figure 3.3) that speci�es which task the VI performs. In our case we have three
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sections: Init to initialize the matrix to zero, Load Data to update the matrix with

new values and Get Data to extract the matrix saved.

When a relay change the value, it will be necessary to update the FGV. The

Figure 3.4 shows the event generated by the relay kA_A. The relay kA is represented

of two controls strictly related, kA_A and kA_B, which have always the same

Boolean value because they represent the same physical relay.

The LabVIEW code in the Figure 3.4 can be described as follow:

1. Get Data extracts the current matrix saved in the FGV;

2. Enum selects the row of the matrix to identify the measurement setup;

3. Index Array: Returns the element or sub array of n-dimension array at index;

4. Replace Array Subset: updates the bit associated to the relay pressed. It

replaces an element or sub array in an array at the point you specify in index.

5. Load Data: updates the matrix saved in the FGV;

Figure 3.4: LabVIEW code for updating matrix setup

As already seen, the GPB has 48 relays, and the main VI has about 80 events

in the event structure, because there are almost two control buttons for each relay.

These events have the same structure, as shown in the Figure 3.4.
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3.2 Load/Save setup measures

The functionality of Load/Save setup, allows you to load from an Excel �le a matrix

of measurement setup, including a brief description for each setup (e.g. Output

Voltage 5V, Load Reg, Line Reg). The Figure 3.5 shows the section of the GUI that

summarizes the matrix of loaded setup.

Through the interface, it will be possible to change the setup quickly, using relay

or dip-switch controls. Moving from one setup to another, the state of controls,

relays, dip-switches and LED indicators will change.

After loading setups, it will be possible to modify them, and to save them in an

Excel �le with the save setup button. It is also possible to modify and to save new

measurement setup directly from the Excel �le.

Figure 3.5: GUI section that represent the Matrix of setups

LabVIEW development

To implement this functionality, a customized Excel �le with two worksheets has

been created, one for I/O connectors and pins and the other one for matrix setup.

LabVIEW 2013 gives the possibility to use the Excel speci�c VIs to incorporate

Microsoft Excel features into LabVIEW reports.

The Figure 3.6 shows the code structure of the Load/Save Setup function, ac-

companied by a brief description. The corresponding VIs are described below:
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(a) Load setup

(b) Save setup

Figure 3.6: LabVIEW code for Load/Save setup measures
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• File Dialog: This VI displays a dialog box by which you can specify the path

of a �le or directory. You can use this dialog box to select existing �le or

directories or to select a location and a name for a new �le or directory;

• Find the worksheet: this VI is realized to �nd the correct worksheet (Connec-

tors&Pin or Relays Setups);

• Load Matrix Setup: this VI returns the matrix of setups, included a description

for each setup;

• Save Matrix Setup: this VI receives the matrix of setups and save it into the

Excel �le;

To complete this topic, it is necessary to explain in which way the created sub-VI

are realized, and which VI can be used among the available ones, in order to interact

with the Excel �le.

Figure 3.7 shows the code and a description for the sub-VI Find Worksheet.

Excel speci�c VIs are described below:

Figure 3.7: LabVIEW code for Find Worksheet sub-VI

1. Excel Workbook Properties: this VI sets the properties of the current workbook,

such as author, title, and subject. You also can use this VI to return the

number of worksheets and the worksheet name in the current workbook.

2. Excel Get Worksheet: this VI makes a speci�ed worksheet the current work-

sheet. It is possible to use the worksheet index or name parameter to specify

the worksheet you want to set as current.
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(a) Load matrix setup

(b) Save matrix setup

Figure 3.8: LabVIEW codes sub-VI Load/Save matrix setup
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Figure 3.8 shows the Load Matrix Setup and Save Matrix Setup VIs.

Excel speci�c VIs are described below:

1. Excel Get Data: this VI retrieves data from the current worksheet. The data

type you wire to the data type input determines the polymorphic instance to

use. If you want to return a numeric value, you have to use the start cluster or

the name input to specify the cell from which you want to return the value. If

you want to return an array, you have to wire both the start and end clusters

or the name input to specify the range from which you want to return the

array. If the start and end clusters remain unwired, the VI returns the entire

used section of the current worksheet.

2. Excel Easy Text: it is possible to use the font parameter to format the text.

The VI merges a range of cells speci�ed by start and end inputs and inserts

the text into the merged cell.

3. Set Cell Color and Border: Sets the borders and background color of the cells

speci�ed by the start and end cluster or by a named range.

3.3 Load/Save settings for connectors and pins

As shown in the Figure 3.9, the GUI gives a clear representation of which instruments

are connected to the General Purpose Board. The interface allows users to edit the

name of instruments connected to the board and also to label the device pins. Labels

associated to each instrument and to each pin will be automatically updated in each

section of the GUI. In this way, when a relay is activated, it will be immediately

clear which is the connection (es: Toellner Ch1 to Input pin). An example of this

functionality is shown in Figure 3.9, which illustrates the relationship between relay

controls, dip switches and led indicators.

A user is able to load settings from an Excel �le, edit and save new settings or

modify existing setting directly from the Excel �le, as previously illustrated for the

measurement setup function.

LabVIEW development

To implement the Load I/O setup and the Save I/O setup functionalities, the same

approach used for the Load/Save of setup measure has been adopted. In this case

the Load In Out Setup VI and Save In Out Setup VI have been realized.
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Figure 3.9: Connectors&Pins functionality
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Below (Figure 3.10) it is reported the LabVIEW code developed for the imple-

mentation of this functionality. Excel VIs are the same described in the previous

section.

(a) Load IO setup

(b) Save IO setup

Figure 3.10: LabVIEW codes sub-VI Load/Save IO setup

3.4 Send setups to GPB

The Send Setup button sends the setup to the boards (GPB + Daughterboard) as

an array of (48 + n) bits. In this process, LabVIEW program converts the array
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into a string for the USB interface. The USB is directly connected to the Arduino

due microcontroller, which communicates with the GPB by an SPI interface.

The Figure 3.11, shows the VI used to convert the array of bits into a string.

1. The size of Array in is divided by 8 and the result is a counter for the For

Loop;

2. In each iteration of the loop, 8 bits are processed and converted into a number

using the Boolean Array To Number VI. It converts a Boolean array to an

integer or a �xed-point number by interpreting the array as the binary rep-

resentation of the number. If the number is signed, LabVIEW interprets the

array as the two's complement representation of the number. The �rst element

of the array corresponds to the least signi�cant bit in the number.

3. At the end of the For Loop, the Byte Array To String VI converts the array

of unsigned bytes representing ASCII characters into a string.

Figure 3.11: LabVIEW code to convert array bits into string

3.5 Quick Instruments → Device setup

The GUI is provided also with a special button, the Direct Connection button,

dedicated to quickly activate/deactivate connections between instruments and device

pins. When you push this button, next to the device pins, the interface will populate

of coloured buttons, and the labels associated with the instruments will take a

di�erent color for each instrument (Figure 3.12).
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Figure 3.12: Direct Connection functionality
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Colours are associated with the possible connections between instruments and

device pins. Activating (ON) a coloured button, relays that need to be used for

performing the connection will be switched-on. This functionality allows to see

immediately if there is a direct link between instruments and device pins and to

activate/deactivate connections using the coloured buttons mentioned above. The

Connect to Ground button, switches-on the relay necessary to link the ground pin

of the device to the ground plane of the board.

The blue arrow in the Figure 3.12 shows that TOE_CH2 is connected to the

ENABLE pin by relay k3&k4. This connection is reached activating the green on/o�

button, or, as already seen, using relays or dip-switch controls.

LabVIEW development

The Direct Connection functionality is realized in LabVIEW by using the Property

Node function. It gets/reads and/or sets/writes properties of a reference. It is

possible to use the Property Node to get or set properties and methods on local or

remote application instances, VI, and objects.

When the Direct Connection button will be pressed, using the Property Node

functionalities (Value, Visible, TextColor, Value(Sgnl)), it will be possible to make

visible or invisible the coloured buttons and to paint the labels of instruments. These

coloured buttons are strictly correlated with relays and dip-switch controls, in fact,

they allows to activate/deactivate the connections between instruments and device

pins.

If a coloured button is pressed, it will be activated/deactivated the relay used

for the connection. This is done using the Value(Sgnl) property. It sets the value of

the control and generates a value change event. The Figure 3.13 shows a portion of

LabVIEW code developed for this task.

Figure 3.13: Example of LabVIEW code for Direct Connection functionality
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3.6 Select instruments and open pop-ups

Instrument selections and their corresponding setup by pop-up menu is allowed by

the activation of the Instr. Connection button. When it is on, as shown in the

Figure 3.14, the interface will be populated with a series of drop-down menu and

buttons, next to instruments labels. In this way, it will be possible to select from the

drop-down menu the instrument we want to connect to a speci�c banana connectors

of the GPB, and by the + button associated to each drop-down menu, to open the

selected instrument pop-up. This functionality allows the realization of the setup of

instruments to be used for all the measurement needed.

Figure 3.14 shows the drop down menu where it is possible to select instruments,

and an example of the Toellner pop-up, opened using the + button. The TOE

interface allows a complete communication with the instrument. It is also possible

to close the pop-up and to open again it to change settings, if necessary.

Figure 3.14: Select instrument and open pop-up
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3.7 Check instrument connections at daughterboard level

LabVIEW development

The part concerning instruments pop-ups will be more exhaustively described, in

the next chapter. The Figure 3.15 shows a portion of LabVIEW code to select

instruments and open the related pop-ups.

Select_Inst_1 is a drop down menu control which contains the name of in-

struments that can be selected. When Button_Istr_C1 (+ button in the GUI) is

pressed, an event will be generated and the instrument pop-up is opened.

Figure 3.15: Example of LabVIEW code to select and to open instrument pop-ups

As shown in the �gure below, it is necessary to select, from the category pull-

down menu, theWindow Appearance option , and then the Custom option. Clicking

on customize button a new window will appear, that allows to customize the windows

appearance for VIs. It is possible to use the options of this window to change how

the user interacts with the application by restricting access to LabVIEW features

and by changing the way the window looks and behaves. These windows make

possible to open another VI, for example an instrument pop-up, when the main VI

is already working.

As shown in the Figure 3.16, it is necessary to select, from the category menu,

the Window Appearance, and then the Custom option. In this way it is possible to

open another VI, for example an instrument pop-up, when the main VI is already

working.

3.7 Check instrument connections at daughterboard

level

As already seen, the GPB functioning is always completed by the integration of

another board, that is speci�c for each product: the daughterboard. This second
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Figure 3.16: VI properties for Windows Apperance

board adds �exibility to the GPB, since it is precisely designed for the characteri-

zation phase of speci�c device (voltage regulators).

The GUI includes a speci�c section dedicated to the daughterboard. As shown

in the Figure 3.17, this section is provided with an image of the PCB, and, for each

selected measurement setup, it is possible to see clearly the connections between

instruments and device pins. If you change measure setups, or modify the state of

some relays, the visualized con�guration of connected instruments will be changed.

It is also possible to recognize con�icts between instruments wrongly connected to

the same pin, thanks to pop-ups that warn the user.

The interface is also provided with a+ button next to each instrument indicator,

which allows to open instruments pop-ups.

LabVIEW development

To implement this functionality it is required to understand how the code �nds the

instruments connected to the GPB. When the Daughterboard button is pressed, it

generates an event. The program searches for instruments connected to the board,

analyzing the measurement setup. As already discussed, each daughterboard is

designed for a speci�c product/device and, for this reason, it is possible in advance

to know exactly the possible connections instruments → device pins. It has been

necessary to develop an algorithm to �nd the con�guration for each selected setup.

The code is realized with a For Loop, which analyzes the possible instruments

connected to the device pins, speci�cally, analysing one pin for each iteration of the

loop.
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3.7 Check instrument connections at daughterboard level

Figure 3.17: Example of measure setup viewed from Daughterboard section

For example, the Figure 3.18 shows the code developed for the Input Pin. The

algorithm used is the same for each pin.

The Input Pin could be connected to two instruments (Toellner or Keithley

2440 ) or, eventually, to the gnd. When a speci�c set up is selected, in order to �nd

which is the connection between those above mentioned, a For Loop looks for which

relays (between instruments and the input pin) are activated. This Loop creates

a Boolean array which will be converted into a integer, using the Boolean Array

To Number VI. As shown in the table below, one of the instruments, the ground

(GND), or an error message is associated to each integer. When the case structure

receives an integer, it will select the corresponding case that will be visualized on

the daughterboard section of the GUI. If there are no instruments connected to the

Input Pin, no instruments indicators will be represented on the interface.
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GND TOE K2440 Integer Visualization

0 0 0 0 No Istr.

0 0 1 1 K2440

0 1 0 2 TOE

0 1 1 3 Con�ict pop-up

1 0 0 4 GND

1 0 1 5 Con�ict pop-up

1 1 0 6 Con�ict pop-up

1 1 1 7 Con�ict pop-up

3.8 Excel �le settings

As already discussed in section Load/Save of setup measures and Load/Save of

settings for Input/Output connectors and pins, it is possible to save and load setups

into/from an Excel �le.

A customized Excel �le with two worksheets has been created, one for the man-

agement of the I/O connectors and pins, and the other one for the management of

the setup measures matrix.

The user could modify the settings directly from the Excel �le and also could

load them, while the VI is working. Vice versa it is possible to modify the settings

using the GUI (using editable labels for I/O connectors and pins, and relay controls

for the matrix setup), and to save new settings by the Save buttons. Figure 3.19

and Figure 3.20, shows Excel worksheets.
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Figure 3.18: Portion of LabVIEW code used to �nd the mesure setup at daughter-

board level
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Figure 3.19: Excel worksheet to manage Input/Output connectors and pins
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Figure 3.20: Excel worksheet to manage measurement setup matrix
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CHAPTER

4

INSTRUMENTS POP-UPS

This chapter deals with the second part of the project concerning the development

of GUIs for instruments utilized during the characterization of device under test.

The goal of these GUIs is mainly to provide a means for remotely controlling and

setting up instruments connected to the GPB.. This opportunity results to be very

useful, for example, during a debug phase.

As already discussed in the previous chapter, the GPB GUI has the possibility

to open instruments pop-ups, which can control and communicate with real instru-

ments. Instruments pop-ups realized are:

1. Toellner 8952/8852 � DC Power Supplies

2. Keithley 2430/2440 � Source Meter

3. Keithley 2000 - Multimeter

4. Agilent 33250A � Waveform generator

The bus used for connecting pc to instruments was the GPIB (General Purpose

Interface Bus), that is standardized by the IEEE. Commands used for communi-

cating with instruments are provided by ASCII strings, conforming the standard
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SCPI (Standard Commands for Programmable Instruments). The SCPI de�nes a

standard for syntax and commands to use in controlling programmable test and

measurement devices.

To develop instruments pop-ups in LabVIEW, the approach used has been equiv-

alent for each instrument. The code has been structured in a modular way. The

main VI structure is an event structure, which calls the FGV VI (Functional Global

Variable VI) when an event occurs, to send a speci�c command to the interested

instrument (for example set V for a Toellner ). The FGV is used to manage the com-

munication and to keep in memory the values utilized during the phase of connection

of the instrument interface to the real instrument (for example: GPIB address).

The FGV structure is shown in the Figure 4.1. It uses loops with uninitialized

shift registers to hold global data. This is realized by a case structure inside a while

loop, where the conditional terminal is always true, and every time a VI is run, the

block diagram in the loop is executed exactly once. A functional global variable has

an action input parameter (called Operators in the Figure 4.1) that speci�es which

task the VI performs.

Figure 4.1: Example of FGV structure

Inside each case, SCPI commands are sent and received throuh the VISA (Virtual

Instrumentation Software Architecture) interface. Anyway, in some cases, National

Instruments gives the possibility to use high level instrument driver to communicate.

An instrument driver is a set of software routines that control a programmable

instrument. Each routine corresponds to a programmatic operation such as con�g-
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uring, reading from, writing to, and triggering the instrument. Instrument drivers

simplify instrument control and reduce test program development time by elimi-

nating the need to learn the programming protocol for each instrument. National

Instruments provides instrument drivers for a wide variety of instruments and the

architecture use VISA to provide bus and platform independent instrument commu-

nication.

Figure 4.2 shows an example of utilization of the k24xx instrument drivers to

realize a measure of voltage.

Figure 4.2: Example of using instrument driver

In some cases, the case structure inside the FGV is grouped in a sub-VI called

FSM (Final State Machine), which only controls the communication with instru-

ments. In this case, the FGV keeps in memory the values used to communicate,

instead FSM, controls the dialog with the instrument. The Operations control is

wired to the selector terminal of the case structure; each case contains a cascade of

VISA blocks with SCPI commands, or, instrument drivers.

The VISA is a comprehensive package for con�guring, programming, and trou-

bleshooting instrumentation systems comprised of VXI, PXI, GPIB, TCP/IP, USB,

and/or serial interfaces. It provides a common foundation for the development, de-
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livery, and interoperability of high-level multi-vendor system software components,

such as instrument drivers, soft front panels, and application software.

Figure 4.3 shows the modular structure FGV → FSM previously described. In

this case, all input and output values to FSM are arranged in a cluster structure.

Figure 4.3: Example of modular structure FGV → FSM

In the �rst part of this chapter we have exposed the structure implemented to

realize the GUI for instrument pop-ups. Now we show the GPIB entry VI, which

allows to select the GPIB address of an instrument when the instrument pop-up is

called. Figure 4.4 shows the Front Panel and the Block Diagram of this VI.

The GPIB entry VI, which is used to set the GPIB address of the instrument,

will be opened only the �rst time that the main VI of the instrument pop-up is

called. This is possible thanks to the LabVIEW First Call? function. The First

Call? function indicates that a sub-VI or section of a block diagram is running for

the �rst time. This function returns a true boolean value only the �rst time you

call it, after you click the run button. You can place the First Call? function in

multiple locations within a VI.

Figure 4.5 shows the CHECK 8852 or 8952 VI, which allows to identify the
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Figure 4.4: GPIB entry: Front Panel and Block Diagram

model of the Toellner that we want to use. This approach is also used for Keithley

2430/2440 to identify the correct instrument. For example, the LabVIEW code

developed for the Toellner is described below:

1. The Visa write VI sends an SCPI command (*IDN?) which asks the IDN of

the instrument;

2. The Visa read VI returns the string requested;

3. Match Pattern VI searches a string in the IDN received. It returns -1 if the

string is not found, which means that the instrument connected is TOE 8952.

Figure 4.5: LabVIEW code to check Toellner 8852/8952 models
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4.1 Toellner 8952/8852 - DC Power Supplies

Figure 4.6: Toellner 8952 DC Power Supply

The principal features of DC Power Supply Toellner 8952/8852 instruments are:

• Automatic setting to the existing line voltage: 115V or 230V , 47 to 63Hz;

• Autoranging;

• RS 232 and analog interfaces included as standard;

• USB, LAN, and GPIB interfaces optional;

• Outputs at front and rear as standard;

• On/o� switching of the output;

• Sensing;

• Free LabVIEW driver;

• Can be used as constant voltage, constant current and constant power source

(CV/CC/CP);

The power supplies of the TOE 8950 series deliver a total output power of 400W ,

and are available in many di�erent versions. These power supplies operate with a

high e�ciency of > 80% at full load, and feature a low residual ripple with voltage

and current regulation. Depending on the set values for voltage and current, and

also on the load conditions, the power supplies can be used either as a voltage or

current source or with a previously set power limit. A further signi�cant feature

is the sense mode (four-wire connection), that enables direct measurement on the
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4.1 Toellner 8952/8852 - DC Power Supplies

load of the output voltage which is decisive for voltage control. The voltage on the

load is then not in�uenced by the voltage drops caused by the load current on the

load feeders. These voltage drops are compensated in that the voltage at the output

sockets is automatically increased by an appropriate amount.

Power supplies with Autoranging can output their rated power over a wide and

stepless range of voltage and current combinations.

For example, the TOE 8951-40 model, with maximum values of 40V and 20A,

permits a current of 20A in the voltage range from 0 to 20V at its rated power of

400W . In the voltage range from 20 to 40V , the available current is 400W divided

by the actual voltage, e.g.:

• With 30V output voltage: 400W : 30V = 13.33A

• With 40V output voltage: 400W : 40V = 10A

Autoranging power supplies from Toellner have a signi�cantly larger operating

range than standard power supplies with the same output power.

Figure 4.7: Voltage/current diagram with autoranging

Using the standard RS-232 interface, all models can be used as remote-controlled

power supplies in computer-based automatic measuring and test systems. GPIB or

USB interfaces are available as options. The command syntax is designed in line

with the IEEE 488.2 standard. The command set can be switched over between

compatible Toellner commands and the SCPI commands standardized for measur-

ing equipment. In remote control mode, the measured values can be read by the
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controller at a rate of up to 20 measurements per second, meaning that it is usually

unnecessary to use additional measuring instruments.

The Toellner 8850 series is very similar to the Toellner 8950 series presented above

but with a total output power of 160W (dual channel) or 320W (single channel).

LabVIEW developmet

Figure 4.8: Toellner 89528852 LabVIEW interface

Figure 4.8 shows the interface realized for the Toellner 8952/8852. When the VI

is initialized, a check to understand the model that we are using, Toellner 8952 or

8852, will be done.

The interface implemented o�ers the following functionalities:

• The setting of the voltage of ch1 and ch2;

• The setting of the current limits (compliance) of ch1 and ch2;

• The activation/deactivation of the sensing mode for ch1 and ch2;

• The activation/deactivation of the Output;

• The sending of a Reset command to the instrument;
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From a LabVIEW point of view, as already discussed, the TOE GUI is realized

with an events structure, which calls the sub-VI FGV to send a speci�c command to

the instrument. In this case, we do not have the FSM (Final State Machine), but the

case structure is inside the FGV. The communication does not use instrument driver,

but it is totally done with VISA blocks and SCPI commands. The Figure 4.9(b)

shows, by way of example, the internal structure of the FGV.

The Figure 4.9(a) shows a portion of LabVIEW code developed to realize the

TOE VI. The event structure waits until an event occurs, then executes the appro-

priate case to handle that event. The code is described here below:

1. The event case will be generated when CursorCH1 changes in value;

2. The Boolean control makes possible to set the voltage or to set the current

limit (compliance) of the instrument, Set V in this �gure;

3. The internal check in the case structure veri�es if the inserted voltage is not

greater than 60V (limit of the instrument);

4. The new value inserted will be sent to the instrument using the sub-VI FGV,

which receives Set V as Operations input and CursorCH1 as Value input.

The Operations input of the TOE FGV receives an index that selects a section of

the case structure, which contains the functions/commands to be sent to the instru-

ment (Initialize, on/o�, Sense on/o�, Set Channel, Set V, Set I, Reset, and Close).

Each function/command contains blocks and SCPI commands to communicate with

the instrument.

Figure 4.9(b) shows the internal structure of the TOE FGV for the case (Set V)

selected, which allows to send a new setting of voltage to the instrument. In detail:

1. The string SCPI to be sent for setting the voltage to 5V is: VOLT 5

2. The Format Value function converts a number (CursorCH1 value in this case)

into a regular string according to the format speci�ed in format string ;

3. The format string used is %5.2f. This format is �oating point, where "5"

speci�es a width of 5, and "2" speci�es the number of digits to the right of

decimal, or precision;

4. The Visa Write function writes the data from write bu�er to the device or

interface speci�ed by VISA resource name.
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(a) Portion of LabVIEW code of Toellner for Set V function

(b) Toellner FGV with Set V as case selected

Figure 4.9: Portion of LabVIEW code for Toellner VI
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4.2 Keithley 2430/2440 - Source Meter

Figure 4.10: Keithley 2440 SourceMeter

Keithley's SourceMeter family is designed speci�cally for test applications that

demand sourcing and measurement. All SourceMeter models provide precision volt-

age and current sourcing as well as measurement capabilities. Each SourceMeter

instrument is both a highly stable DC power source and a true instrument-grade

multimeter. The power source characteristics include low noise, precision, and read-

back.

The principal features of this instrument are:

• Five instruments in one (IV Source, IVR Measure);

• Source and sink (4-quadrant) operation;

• 2, 4, and 6-wire remote V-source and measure sensing;

• 1700 readings/second at 4− 1/2 digits via GPIB;

• Standard SCPI GPIB, RS-232, and Keithley Trigger Link interfaces;

• Pass/Fail comparator for fast sorting/binning;

Following, the source-measure capabilities of the Keithley 2430 and Keithley

2440 models, which have been used in this project, are listed:

Model 2430

• Source DC or pulse voltage from 5µV to 105V ; measure voltage from 1µV to

105.5V ;
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• Source DC current from 500pA to 3.15A; measure DC current from 100pA to

3.165A;

• Source pulse current from 500pA to 10.5A; measure pulse current from 100pA

to 10.55A;

• Measure resistance from 10uA (< 10uA in manual ohms) to 21.1MΩ;

• Maximum DC source power is 110W ;

• Maximum pulse source power is 1.1KW ;

Model 2440

• Source voltage from 5µV to 42V ; measure voltage from 1µV to 42V

• Source current from 500pA to 5.25A; measure current from 100pA to 5.25A.

• Measure resistance from 10µA (< 10µA in manual ohms) to 21.1MΩ;

• Maximum source power is 55W ;

In operation, these instruments can act as a voltage source, a current source,

a voltage meter, a current meter, and an ohmmeter. They also allow measuring

with 2-wire or 4-wires. In particular, use 4-wire remote sensing for the following

source-measure conditions:

• Test circuit impedance is < 1KΩ

• Optimum ohms, V-source, andor V-measure accuracy is required

All SourceMeter instruments provide four-quadrant operation. In the �rst and

third quadrants, they operate as a source, delivering power to a load. In the second

and fourth quadrants, they operate as a sink, dissipating power internally. Voltage,

current, and resistance can be measured during source or sink operation.

LabVIEW development

Figure 4.11 shows the interfaces realized for the Keithley 2430/2440. When the VI

is initialized, it will be done a check to understand the model that we are using,

Keithley 2430 or 2440.

The interface implemented o�ers these functionalities:
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(a) Keithley 2440 SourceMeter

(b) Keithley 2430 SourceMeter

Figure 4.11: Keithley 2430/2440 LabVIEW interfaces
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• The selection of the type of source, V or I, and of the type of measure: V, I,

R;

• The setting of the voltage and current limit for V source;

• The setting of the current and voltage limit for I source;

• The setting of the source scale and the measure scale;

• The Activation/deactivation of the sensing mode;

• The Activation/deactivation of the Output;

• The setting of NPLC and of Output OFF behavior ;

• the use of the Pulse mode for 2430 model;

• The Acquisition of measure using the STROBE button;

The main VI structure is an events structure, and for each event that occurs, in

order to send a speci�c command to the instrument, it will be called the k24XX FGV

sub-VI. In this case, there is another sub-VI inside the FGV, called FSM (Final State

Machine), that controls the communications with the instrument. The Figure 4.3,

as already shown in the �rst section of this chapter, illustrates the modular structure

FGV → FSM for the k24XX.

It is possible to create more instances of the same instrument (e.g. k24XX(1),

k24XX(2)) using di�erent copies of the FGV sub-VI (e.g. k24XX FGV(1), k24XX

FGV(2)). This is useful because, in some cases, it will be necessary to use more

Keithley 24402430 at the same time, during the execution of a measurement in the

characterization phase.

The Figure 4.12, for example, shows a portion of the LabVIEW code developed

in order to set/change the value of the current source of the instrument. The event

structure waits until an event occurs, then executes the appropriate case to handle

that event. The code is described as follow:

• The event case will be generated when Source Control I source change in value;

• The �rst case structure extracts the range of current selected and compare it

with the new I source value;
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• If the I source value is bigger than the scale selected, it will be automatically

searched a new scale for the I source value inserted. Otherwise, the scale

remains unchanged and the I source value is passed directly to the FGV;

• The FGV, with SetOut as Operations input, is called to send the I source

value to the instrument.

• The FGV is also called to set the type of source, the current limit (compliance)

and the scale selected;

Figure 4.13 shows the internal structure of k24xx FSM, with SetOut as case

selected in the case structure, and below shows the internal structure of the instru-

ment driver Set Output. The Set Output.vi instrument driver con�gures whether

the output is in terms of current or voltage, the amplitude of the output, and the

compliance settings.
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Figure 4.12: Example of LabVIEW code for k24xx interface
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(a) FSM of k24XX with SetOut as case selected

(b) LabVIEW code for SetOutput instrument driver

Figure 4.13: FSM structure of k24XX and SetOutput instrument driver
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4.3 Keithley 2000 - Multimeter

Figure 4.14: Keithley 2000 Multimeter

Model 2000 (Figure 4.14) is a 6− 1/2 digit digital multimeter, which has broad

measurement ranges:

• DC voltage from 0.1µV to 1000V ;

• AC (RMS) voltage from 0.1µV to 750V , 1000V peak;

• DC current from 10nA to 3A;

• AC (RMS) current from 1µA to 3A;

• Two and four-wire resistance from 100µΩ to 120MΩ;

• Frequency from 3Hz to 500kHz;

• Thermocouple temperature from -200 to +1372 Celsius;

Some additional capabilities of the Model 2000 include:

• In addition to those listed above, the Model 2000 functions include period,

dB, dBm, continuity, diode testing, mX+b, and percent;

• It o�ers three programming language choices (SCPI, Keithley Models 196199,

and Fluke 8840A/8842A) and two remote interface ports (IEEE-488/GPIB

and RS-232C);
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Another multimeter functionality whose presentation is useful for our scopes are:

NPLC : The Rate operation sets the integration time of the A/D converter,

the period of time the input signal is measured (also known as aperture). The

integration time is speci�ed in parameters based on a number of power line cycles

(NPLC), where 1 PLC for 60Hz is 16.67ms and 1 PLC for 50Hz and 400Hz is

20ms.

AquisitionT ime = NPLC/NetworkFrequency

LabVIEW development

Figure 4.15: K2000 interface

Figure 4.15 illustrates the interface realized for the Keithley 2000.

The interface implemented o�ers these functionalities:

• Selection of the type of measure: DCV, ACV, DCI, ACI, R-2, R-4;

• Setting of the SCALE of measure;

• Setting of NPLC;

• Acquisition of a measure using STROBE button;
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The main VI structure is an events structure, and for each event that occurs, in

order to send a speci�c command to the instrument, the K2000 FGV sub-VI will

be called. Also in this case, the FGV VI contains a FSM sub-VI to manage the

communication with the instrument.

Figure 4.16(a), for example, shows a portion of the LabVIEW code developed for

performing a measurement reading. The event structure waits until an event occurs,

then executes the appropriate case to handle that event. The code is described as

follow:

1. The event case will be generated when the STROBE button is pressed;

2. The For Loop searches the type of measure selected (DCV, ACV, DCI, ACI,

R-2, R-4);

3. The FGV K2000 with Read as Operations input asks the instrument to read

measure and to return the read value;

4. The value returned is converted in accordance to the scale selected. The

example in the Figure 4.16 converts the value from V to mV ;

5. If the value returned is equal to 9, 9E + 37 it means that there has been an

OVERFLOW;

Following, the Figure 4.16(b) shows the internal structure of K2000 FSM for

the case (Read) selected, which is used to ask the instrument to read a type of

measurement. This section calls two instrument drivers, more speci�cally:

1. Con�gure DC Volts: The VI con�gures the instrument to measure DC Volts;

2. Data Read Single: This VI reads a measurements or calculation from the

instrument. It also returns the channel number and units of the measurements

(if applicable);
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(a) Portion of LabVIEW code of k2000 for Read function

(b) k2000 FSM with Read as case selected

Figure 4.16: Portion of LabVIEW code for k2000 VI
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4.4 Agilent 33250A - Waveform Generator

Figure 4.17: Agilent 33250a Waveform Generator

The Agilent Technologies 33250A Function/Arbitrary Waveform Generator (Fig-

ure 4.17) uses direct digital-synthesis techniques to create a stable, accurate output

on all waveforms, down to 1µHz frequency resolution.

The function generator can output �ve standard waveforms including sine, square,

ramp, pulse, and noise. You can also select one of �ve built-in arbitrary waveforms

or create your own custom waveforms. You can internally modulate any of the

standard waveforms (except pulse and noise) and also arbitrary waveforms using

AM, FM, or FSK. The output frequency range depends on the function currently

selected. The default frequency is 1 kHz for all functions.

Others function generator functionalities whose presentation is useful for our

scopes are:

Burst : You can generate a burst waveform using any of the standard waveforms

and also arbitrary waveforms. The Burst mode is used to output a waveform with

a speci�ed number of cycles, called a burst.

Trigger : Applies to sweep and burst only. You can issue triggers for sweeps or

bursts using internal triggering, external triggering, or manual triggering. Internal

or �automatic� triggering is enabled when you turn on the function generator. In

this mode, the function generator outputs continuously when the sweep or burst

mode is selected.

Remote control : For system applications, both GPIB and RS-232 interfaces are
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standard, and support full programmability using SCPI commands.

In the Front Panel, the knob or numeric keypad can be used to adjust frequency,

amplitude and o�set. You can even enter voltage values directly in Vpp, Vrms, dBm,

or high/low levels. Timing parameters can be entered in hertz (Hz) or seconds.

LabVIEW development

Figure 4.18: Agilent 33250a LabVIEW interface

Figure 4.18 illustrates the interface realized for the Waveform Generator Agilent

33250A.

This interface o�ers these functionalities:

1. The possibility to select one of these types of waveforms: Sine, Square, Ramp

and Pulse;

2. For the Sine waveform the possibility to set: high level, low level, frequency

and period;

3. For the Square waveform the possibility to set: high level, low level, frequency,

period and duty cycle;

4. For the Ramp waveform the possibility to set: high level, low level, frequency

and period;
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5. For the Pulse waveform the possibility to set: high level, low level, frequency,

period, pulse width and edge time;

6. The selection of the Burst mode and set NCycles Burst and Burst Phase;

7. The Activation/deactivation of Trigger pulse;

8. The Activation/deactivation of Output ;

The main VI structure is an events structure, and to send a speci�c command

to the instrument, the corresponding Agilent FGV sub-VI will be called. The FGV

contains also the FSM sub-VI which manages the communication with the instru-

ment.

The Figure 4.19(a), for example, shows a portion of LabVIEW code extracted

by the main VI developed for the Agilent interface. The code allows to set the

parameters of a Sine waveform. In details:

1. An event case will be called when the Sine button is pressed or when one of

the high level sine, low level sine, set frequency sine controls changes in value;

2. The Agilent FGV, which manages the communication with the instrument,

receives the new value as Value input, and the type of the command/function

to be sent or of the parameter to be set, as Operations input;

Figure 4.19(b) shows the FSM sub-VI with Set Frequency as case selected. The

LabVIEW code uses Visa write to send SCPI commands, through GPIB, to set

the frequency, and uses Format Into String function to convert the input value (Set

Frequency Sine in this case) into string.

By way of example, the following command strings sent from your computer will

output a 3 Vpp sine wave at 5 KHz with a -2,5 volt o�set:

1. FUNC SIN Select sine wave function;

2. FREQ 5000 Select Frequency to 5 KHz;

3. VOLT 3.0 Select Amplitude to 3 Vpp;

4. VOLT:OFFS -2.5 Set o�set to -2.5 Vdc;
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(a) Portion of LabVIEW code for Agilent interface

(b) FSM of Agilent with SetFreq as case selected

Figure 4.19: Example of LabVIEW code for Agilent interface
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CHAPTER

5

CONCLUSIONS

The Electrical-lab-characterization is a crucial phase in Semiconductor product de-

velopment. Thus it is fundamental to �nd innovative solutions in the characteri-

zation phase of devices and in this sense, the automation of measurements brings

numerous advantages and represents the main strategy to address this issue.

The Product Engineers team of In�neon Padua, to automate the characteriza-

tion of voltage regulators devices, designed a dedicated hardware with the aim of

achieving the goal of obtaining an automated measurement bench. To integrate

this part of the project, the work I have done has been to develop a graphical

user interface which allows to communicate with the hardware, allowing to manage

the measurement setup and to control the instruments connected to the GPB by

dedicated pop-up interfaces .

• Reduction in characterization cycle time: reduces the time taken for the exe-

cution of the measures, allowing you to test a larger number of samples;

• Increase Evaluation Quality: More samples tested involve statistics much more

accurate;

• Greater Reliability: the likelihood of errors in the measurements caused by

"human errors" is eliminated;
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• Remote control of measures setup: possibility to manage the measurement

setup from the terminal by exploiting the capabilities of the GUI;

• Full support to the measuring bench: the graphical interface accurately re-

produces the physical GPB, allowing you to have a clear visual support that

represent the test bench in an orderly manner (thanks to indications on asso-

ciated instruments, on relays status, on links instruments → DUT etc.)

• Real-time debugging: The possibility to communicate in real-time with instru-

ments, with the opportunity to use dedicated graphical interfaces, allows you

to have full support for debugging;

• Reusability: Hardware and software developed can be used for the whole family

of Voltage Regulators, only changing the hardware of the daughterboard;

The graphical interface I have developed, will be integrated as a complement/-

support for a GUI realized by the Product Engineers team of In�neon Padua. The

automated test bench, described in this work, is already in use in the laboratories of

In�neon Padua for the characterization of the device TLF4277 (Low Drop Out Lin-

ear Voltage Regulator) which is the ideal companion IC to supply active antennas

for car infotainment applications.

Starting from a platform that is usable for our purposes, possible future devel-

opments to obtain a workbench optimized are listed below:

• Optimize the functionality of strobing of the measures. The GUI developed

integrates the ability to communicate with instruments and to capture mea-

surements in real-time. The future goal is to optimize this functionality by

implementing the possibility to acquire/display waveforms in real-time;

• Realize a dedicated hardware in order to perform an hardware check on the

relays of the board;

• Starting from the one already implemented, develop a software and hardware

platform, complete and optimized, to be exploitable with the whole Voltage

Regulator Family. For this purpose, the goal is to search for possible im-

provements in hardware (GPB + daughterboard), and implement a complete

software architecture (Measures setup, Sequencer measures, real-time debug-

ging);
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APPENDIX

A

GRAPHICAL USER INTERFACE

FIGURES

This Appendix contains a series of images of the various sections of the GUI. It is a

useful support for chapter 3 (Graphical User Interface for measure setup). Here the

various interface features are described in detail.
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Figure A.1: I/O Connections section of the GUI
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Figure A.2: PCB section 1
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Figure A.3: PCB section 2
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Figure A.4: Setups Matrix section
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Figure A.5: Direct Connection functionality
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Figure A.6: Daughterboard section
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Figure A.7: Instr. Connection functionality with instr. pop-up opened
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