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Abstract

The goal of this thesis is the design and the implementation of an adap-
tive multi-modal biometric system with serial aquisition mode, intended to
manage the accesses of structure, e.g. a company structure, according to a
predefined set of security levels and requirements, stated in a formal way in
the Service Level Agreement at a negotiation phase.

In a multi-modal process multiple biometric traits are collected from the
same individual, requiring different sensors. The chosen and combined traits
are two physical characteristics: face, the most common biometric feature
used by humans to recognize one another, employed for face identification
and iris, the annular region of the eye bounded by the pupil and the sclera
(white of the eye) on either side, employed for iris verification.

The system has not a fixed and predefined behaviour. There are many
possible working flows, since the actual response of the recognition process
depends on the output of the decision making modules that compose the
system.

The proposed system is tested on the AT&T Face Database and the
UBIRIS database.

The deployment phase is described, together with the results from the
testing.
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Chapter 1

Introduction

1.1 General scenario

Infrastructure security is the security provided to protect infrastructure, such
as airports, hospitals, company structures or corporate headquarters. In the
absence of robust control and supervision schemas, these critical infrastruc-
tures are vulnerable to the wiles or an impostor. Therefore, they normally
utilize information technology to rely on a dependable security system. The
need for reliable user authentication techniques has increased in the wake of
heightened concerns about security and rapid advancements in networking,
communication and mobility.

In the design of a security system there are three fundamental concepts
to take into account: identity, authentication and authorization [1].

Identity is the answer to the question "Who are you?", a public declara-
tion of who someone is (e.g. a user ID). Identity is a person’s claim about
themselves and that claim is made using something that is publicly available.

Authentication is the answer to the question "OK, how can you prove
it?" and is necessary to prove that the presented identity is indeed linked to
the right person and not to someone else.

Authorization, once the authentication phase succeeded, is the answer to
the question "What can I do?" and says which resources a person is allowed
to access, assigning them privileges based on some attribute of their identity.

In literature, the problem of studying and characterizing the best theo-
retical method to obtain an effective and efficient system for individuals au-
thentication has been widely addressed: there is a huge amount of possible
solutions, each employing different required credentials, different algorithms
and different practical deployments [2]. Nevertheless, the goal of all those
systems is to minimize (possibly set to zero) the number of users who are

11



12 CHAPTER 1. INTRODUCTION

impostors but manage to be authenticated, or are enrolled users but are re-
jected. The balance between the False Acceptance Rate (FAR) and the False
Rejection Rate (FRR), possibly leading to an Equal Error Rate (EER) where
the FAR and the FRR values are equal, depends on the security levels and
requirements stated in the Service Level Agreement (SLA), a contract which
formally describes particular aspects of a service (scope, qualities, respon-
sibilities), agreed between the service provider and the service user at the
negotiation phase [3].

1.2 Thesis scope and goal

The main focus of this work is on authentication, the process of confirming
the identity of an entity, which involves verifying the validity of at least one
form of identification (e.g. documents, digital certificate, biometric identi-
fiers, etc.).

The most interesting way in which someone may be authenticated fall
into the category having "something that the user is or does" as the factors
of authentication, known as inherence factors, i.e. physical or behavioural
characteristics of an individual.

Other factors of authentication are knowledge factors ("something that
the user knows") and ownership factors ("something that the user has").

Examples of inherence factors are static or dynamic biometric parameters:
physical parameters like face, fingerprint, iris and retinal pattern; behavioural
parameters like signature, voice and gait.

These biometric identifiers are distinctive and measurable characteristics
which can be used to label and describe individuals in a unique way.

There is no proof of correlation between two different biometric param-
eters of an individual, so the combination of independent information in a
system can lead to an improvement of the accuracy (but it is also more
invasive). Multi-modal biometric system are more reliable than uni-modal
systems due to the presence of multiple and independent piece of evidence.
They address the problem of non-universality, since multiple traits ensure
sufficient population coverage and provide anti-spoofing measures by mak-
ing it difficult for an intruder to simultaneously spoof the multiple biometric
traits of a legitimate user.

The goal of this thesis is the design and the implementation of a multi-
modal biometric system with serial aquisition mode. In a multi-modal pro-
cess multiple biometric traits are collected from the same individual, requir-
ing different sensors. The chosen traits are two physical characteristics: face,
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the most common biometric feature used by humans to recognize one an-
other, and iris, the annular region of the eye bounded by the pupuil and the
sclera (white of the eye) on either side.

The face parameter is employed for face identification; the iris parameter
is employed for iris verification.

A challenge-response type of authentication can be facilitated using multi-
modal biometric systems, ensuring that a “live” user is indeed present at the
point of data acquisition, since these systems ask them to present a particular
and predefined subset of biometric traits [2][4].

The mode in which the multi-modal system operates is the serial mode:
it means that the two biometric characteristics do not have to be acquired
simultaneously and that a decision could be arrived at without acquiring all
the traits. This last aspect is very important, especially when there are time
constraints, because it leads to a reduction of the overall recognition time and
the serial approach helps to save users’ time, that can be a thorny issue in
a working environment, especially if the employees have to be authenticated
more than once a day.

Furthermore, this system is intended to operate both in the verification
and in the identification mode [5]. The first phase is an identification pro-
cess: a person’s face is acquired to establish the identity of the individual;
it is a one-to-many comparison and search process in which the biometric
characteristic set against all the database to find biometric references with a
specific degree of similarity.

The second phase is about verification: a person’s iris is acquired in order
to verify the claimed identity (e.g. user name) of the unknown individual; it is
a one-to-one comparison of the submitted biometric characteristic set against
a specified stored biometric references and returns both the comparison score
and the decision.

Both these two operational modes are preceded by the enrolment process.
In this process, a subject presents their biometric characteristics to the sensor
along with their non-biometric information. These information related to
subjects could be name, social security number, driver license’s number, etc.
Thus, biometric features extracted from the captured sample and the non-
biometric information are stored in the database.

It is clear that determining "true" identity of an individual is beyond the
scope of any biometric technology. Rather, biometric technology can only
link a person to a biometric pattern and any identity data (e.g. name) and
personal attributes (age, gender, profession, etc.) presented at the time of
enrolment in the system [6].

The context in which this multi-modal biometric system is supposed to



14 CHAPTER 1. INTRODUCTION

operate is a real context; its deployment is within an indoor application, e.g.
an infrastructure security system of a company, and it should be responsible
for regulating the access to the (company) structure and inside the various
(company) areas.

Noticeably, biometrics can be used more than once: it means that the use
of biometric parameter is not limited to an entrance point, but they can pro-
vide a re-identification process (one or more) because of security constraints,
which can vary in time or space. Otherwise, they can be useful to monitor the
actual presence of individuals, e.g. employees, inside a building or a room.

So, from a general point of view, the proposed multi-modal biometric
system can be also seen as an application of a pervasive indoor system (e.g.
domotics).

It is clear that, in commercial applications, the addition or replacement of
existing personal recognition methods with biometrics-based solutions should
be based on a cost-benefit analysis, that will not be taken into consideration
throughout this work.



Chapter 2

State of the art

In this chapter several existent solutions of biometric system are taken into
account and two of the biometric traits a system can depend on are discussed:
face and iris.

2.1 Multi-biometric systems

Multi-biometric systems are biometric systems which consolidate multiple
sources of biometric evidences; the integration of evidences is known as fu-
sion and there are various levels of fusion, which can be divided into two broad
categories: pre-classification (fusion before matching) and post-classification
(fusion after matching). Besides, depending on the nature of the sources,
multi-biometric systems can be classified into different categories; for in-
stance, multi-sensor systems, multi-algorithm systems, multi-instance sys-
tems, multi-sample systems, multi-modal systems and hybrid systems [7].

2.1.1 Levels of Fusion

Fusion in multi-biometric systems can be performed utilizing information
available in any of the modules (data capture module to decision module).
Fusion can take place at these levels: sensor level, feature level, score level,
rank level and decision level [7].

In sensor level fusion raw data captured by the sensor(s) are combined. In
feature level fusion features originating from each individual biometric pro-
cess are combined to form a single feature set or vector. In score level fusion,
match scores provided by different matchers indicating degree of similarity
(differences) between the input and enrolled templates, are consolidated to
reach the final decision. In rank level fusion each biometric sub-system as-
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16 CHAPTER 2. STATE OF THE ART

signs a rank to each enrolled identity and the ranks from the subsystems are
combined to obtain a new rank for each identity. Lastly, in decision level
fusion the final boolean result from every biometric subsystem are combined
to obtain final recognition decision.

2.1.2 Sources of Evidences

Various sources of biometric information can be used in a multi-biometric
system. Based on these sources, multi-biometric systems can be classified
into six different categories: multi-sensor, multi-algorithm, multi-instance,
multi sample, multi-modal and hybrid [7].

Multi-sensor systems employ multiple sensors to capture a single biomet-
ric trait in order to extract diverse information. In multi-algorithm systems,
multiple algorithms are applied to the same biometric data. Multi-instance
systems use multiple instances of the same body trait (for example, left
and right irises or left and right index fingers). In multi-sample system,
multiple samples of the same biometric trait are acquired using the same
sensor in order to obtain a more complete representation of the underly-
ing trait. Multi-modal systems combine evidences obtained from different
(two or more) biometric traits. In literature, hybrid is used to refer to those
systems integrating two or more of the scenarios mentioned earlier.

2.2 Biometric identifiers

A number of biometric characteristics exist and are in use in various ap-
plication. Examples of biometric characteristics are: DNA, ear, face, facial
thermogram, hand thermogram, hand vein, fingerprint, gait, hand geometry,
iris, palm-print, retina, signature and voice[Fig.2.1].

Each biometric has its strengths and weaknesses, and the choice depends
on the application. No single biometric is expected to effectively meet the
requirements of all the applications, thus each biometric technique is admis-
sible and there is no "optimal" biometric characteristic [2]. The match be-
tween a specific biometric and an application is determined depending upon
the operational mode of the application and the properties of the biometric
characteristic [Fig.2.2]. They are evaluated especially on their performance,
cost, intrusiveness and accuracy.

As mentioned earlier, there are several advantages in using biometrics:
they cannot be lost or forgotten and they require the person to be recognized
to be present at the point of recognition. Besides, it is difficult to forge them.
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Figure 2.1: Example of physical or behavioural biometric identifiers

Figure 2.2: Comparison of biometric technologies (High, Medium, Low).
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A previous work involving face and iris for identity verification is described
in [8]. These two biometric traits are combined using two different strategies
of fusion: the computation of either an unweighted or weighted sum and the
comparison of the result to a threshold and the treatment of the matching
distances of face and iris classifiers as a two-dimensional feature vector and
the use of a classifier such as Fisher’s discriminant analysis and a neural
network with radial basis function (RBFNN) to classify the vector as being
genuine or an impostor.

2.3 Face recognition
Face recognition, i.e. determining whose face the face detected in the image
is, is a non-intrusive method and also requires minimum cooperation from the
subject. The dimensions, proportions and physical attributes of a person’s
face are unique.

Face recognition is different from face detection since the goal of this last
technique is just determining whether a certain picture contains a face (or
several) or not. As can be assumed, this task is simpler than recognizing a
face, since a general structure of a face can be defined. Template matching,
Statistical Pattern Recognition or Haar cascades can be used.

Face recognition can be in a static controlled environment or a dynamic
uncontrolled environment. One popular approach to face recognition is based
on the location, dimensions and proportions of facial attributes such as eyes,
eyebrows, nose, lips, and chin and their spatial relationships. Another ap-
proach being widely used is based on the overall analysis of the face image
that represents face as a weighted combination of a number of canonical faces.

Face recognition involves two major tasks: face location and face recogni-
tion. Face location is determining the location of face in the input image (if
there is one). Recognizing the located face means that the face is recognized
from a general viewpoint (i.e. from any pose).

Different approaches for face recognition will be now presented.
OpenCV provides three methods of face recognition [9]: Eigenfaces, Fish-

erfaces and Local Binary Patterns Histograms (LBPH). All three methods
perform the recognition by comparing the face to be recognized with some
training set of known faces.

2.3.1 Eigenface

The eigenface approach is one of the very popular methods. The eigenface-
based recognition method consists of two stages: the training stage and the
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operational stage. In the training stage, training set of face images are ac-
quired. The acquired face images are projected into lower dimensional sub-
space using Principle Component Analysis (PCA). A set of images that best
describe the distribution of training images in a lower dimensional face-space
(the eigenspace) is computed. Then the training facial images are projected
into this eigenspace to generate representation of the training images in the
eigenspace. In the operational stage, the input face image is projected into
the same eigenspace that the training samples were projected into. Then,
recognition can be performed by a classifier operating in the eigenspace.

The Principal Component Analysis (PCA) was independently proposed
by Karl Pearson (1901) and Harold Hotelling (1933) to turn a set of possibly
correlated variables into a smaller set of uncorrelated variables. The idea
is, that a high-dimensional dataset is often described by correlated variables
and therefore only a few meaningful dimensions account for most of the
information. The PCA method finds the directions with the greatest variance
in the data, called principal components.

Algorithmic Description of Eigenfaces method

Let X = { x1,x2,...,xn } be a random vector with observations xi ∈ Rd. The
mean µ is computed:

µ =
1

n

n∑

i=1

xi. (2.1)

And the covariance matrix S:

S =
1

n

n∑

i=1

(xi − µ)(xi − µ)T . (2.2)

Then the eigenvalues λi and the eigenvectors vi of S:

Svi = λivi, i = 1, 2, ..., n. (2.3)

Order the eigenvectors descending by their eigenvalue. The k principal com-
ponents are the eigenvectors corresponding to the k largest eigenvalues. The
k principal components of the observed vector x are then given by:

y = W T (x− µ), (2.4)

where W = { v1,v2,...,vn }.
The reconstruction from the PCA basis is given by:

x = Wy + µ. (2.5)
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The Eigenfaces method then performs face recognition by projecting all
training samples into the PCA subspace, projecting the query image into
the PCA subspace and finding the nearest neighbour between the projected
training images and the projected query image.

To be computationally feasible, it is possible to take the eigenvalue de-
composition S = XT X of size NxN instead:

XTXvi = λvi (2.6)

and get the original eigenvectors of S = X XT with a left multiplication of
the data matrix:

XXT (Xvi) = λ(Xvi). (2.7)

The resulting eigenvectors are orthogonal, to get orthonormal eigenvectors
they need to be normalized to unit length.

2.3.2 Fisherface

As Eigenfaces, Fisherfaces finds a mathematical description of the most dom-
inant features of the training set as a whole.

The Fisherfaces method uses the Linear Discriminant Analysis (LDA),
which performs a class-specific dimensionality reduction and in order to find
the combination of features that separates best between classes, it maximizes
the ratio of between-classes to within-classes scatter [9].

Algorithmic Description of Fisherfaces method

Let X be a random vector with samples drawn from c classes: X = {
X1,X2,...,Xc } and Xi = { x1,x2,...,xn }.

The scatter matrices SB and SW are calculated as:

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T (2.8)

SW =
c∑

i=1

∑

xj∈Xi

(xj − µi)(xj − µi)T (2.9)

where µ is the total mean, calculated as the Eigenfaces method. And µi is
the mean of the class i ∈ 1, ..., c.

Fisher’s classic algorithm then looks for a projection W , that maximizes
the class separability criterion:

Wopt = argmaxW
W TSBW

W TSWW
. (2.10)
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As seen before, a solution for this optimization problem is given by solving
the General Eigenvalue Problem:

SBvi = λiSWvi (2.11)

S−1
W SBvi = λivi. (2.12)

To obtain the Fisherfaces, S−1
W needs to be computed; if the total number

of samples N is smaller than the dimension of the input data (in patter recog-
nition problem it almost always happens), the scatter matrix SW becomes
singular. A typical solution is the projection of the sample vectors onto the
PCA space of r dimensions, with r ≤ rank(SW ) and the computation of the
Fisherfaces in the PCA space.

2.3.3 Local Binary Patterns Histogram

LBPH analyses each face in the training set separately and independently.
The underlying idea is to describe only local features of an object in the

image; the image is not seen as a high-dimensional vector any more and the
extracted features have a low-dimensionality implicitly.

The basic concept of Local Binary Patterns is to summarize the local
structure in an image by comparing each pixel with its neighbourhood. Tak-
ing a pixel as center, and its neighbours are compared against it using a
threshold. If the intensity of the center pixel is greater-equal its neighbour,
then denote it with 1 and 0 if not. A binary number for each pixel is obtained
as result. For example, with 8 surrounding pixels there will be 28 possible
combinations, called Local Binary Patterns.

Algorithmic Description of LBPH method

A formal description of the LBP operator is:

LBP (xc, yc) =
P−1∑

p=0

2ps(ip − ic) (2.13)

with (xc, yc) as central pixel with intensity ic, in being the intensity of the
the neighbour pixel and s the sign function defined as:

s(x) =

{
1 if x ≥ 0

0 otherwise
(2.14)

Since a fixed neighbourhood fails to encode details differing in scale, the
operator, which is robust against monotonic gray scale transformations, was
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extended (and called Extended LBP) to use a variable neighbourhood in
order to align an arbitrary number of neighbours on a circle with variable
radius, which enables to capture different neighbourhoods [Fig.2.3].

Figure 2.3: LBPH algorithm: possible patterns as neighbourhoods.

For a given point (xc,yc) the position of the neighbour (xp,yp), p ∈ P can
be calculated by:

xp = xc +Rcos(
2πp

P
) (2.15)

yp = yc −Rsin(
2πp

P
), (2.16)

where R is the radius of the circle and P is the number of sample points. If
a points coordinate on the circle does not correspond to image coordinates,
the point is interpolated. The OpenCV implementation does a bilinear in-
terpolation:

f(x, y) ≈
[
1 −x x

] [f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

] [
1− y y

]
. (2.17)

Thus, this spatial information needs to be incorporated in the face recog-
nition model. It is obtained by dividing the LBP image into m local regions
and extracting a histogram from each. The spatially enhanced feature vector
is then obtained by concatenating the local histograms, called Local Binary
Patterns Histograms.

The LBPH method has been chosen for the face recognition phase of the
biometric system. The reason why this choice was made is that the LBPH
method is robust against scale, translation and rotation in images, thanks
to its local description of them. Moreover, the code was available in the
documentation of OpenCV and ready to be properly modified and adapted
to the scope of the system, as described in the next chapters.

2.3.4 Pyramid Match Kernel

Another interesting approach which can be used for face recognition is The
Pyramid Match Kernel [10], based on a fast kernel function which maps un-
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ordered feature sets to multi-resolution histograms and computes a weighted
histogram intersection in this space.

Each feature set is mapped to a multi-resolution histogram that preserves
the individual features’ distinctness at the finest level. The histogram pyra-
mids are then compared using a weighted histogram intersection computa-
tion, which defines an implicit correspondence based on the finest resolution
histogram cell where a matched pair first appears. The comparison of the
histograms with a weighted histogram intersection measure is used to ap-
proximate the similarity of the best partial matching between the feature
sets [Fig.2.4].

Figure 2.4: Pyramid Match Kernel: intersection of histogram pyramids
formed over local features.

Algorithmic Description of Pyramid Match Kernel

Formally, there is an input space X of sets of d-dimensional feature vectors
that are bounded by a sphere of diameter D and whose minimum inter-vector
distance is

√
d

2
. The feature extraction function Ψ is defined as:

Ψ(x) = [H−1(x), H0(x), ..., HL(x)], (2.18)

where L = dlog2De, x ∈ X, Hi(x) is a histogram vector formed over data x
using d-dimensional bins of side length 2i and Hi(x) has a dimension ri =
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( D
2i
√
d
)d. In other words, Ψ(x) is a vector of concatenated histograms where

each subsequent component histograms has bins that double in size (in all
d dimensions) compared to the previous one. The bins in the finest-level
histogram H1 are small enough that each d-dimensional data point from sets
in X falls into its own bin, and then the bin size increases until all data
points from sets in X fall into a single bin at level L.

The pyramid match kernel K∆ measures similarity between point sets
based on implicit correspondences found within this multi-resolution his-
togram space. The similarity between two input sets is defined as the weighted
sum of the number of feature matchings found at each level of the pyramid
formed by Ψ:

K∆(Ψ(y),Ψ(z)) =
L∑

i=0

wiNi, (2.19)

where Ni signifies the number of newly matched pairs at level i. A new match
is defined as a pair of features that were not in correspondence at any finer
resolution level.

The kernel implicitly finds correspondences between point sets, consider-
ing two points matched once they fall into the same histogram bin (starting
at the finest resolution level where each point is guaranteed to be in its own
bin). The matching is equivalent to a hierarchical process: vectors not found
to correspond at a high resolution have the opportunity to be matched at
lower resolutions. K∆’s output value reflects the overall similarity of the
matching: each newly matched pair at level i contributes a value wi that is
proportional to how similar two points matching at that level must be, as de-
termined by the bin size. Note that the sum in (2.19) starts with index i = 0,
because the definition of Ψ insures that no points match at level i = −1.

To calculate Ni, the kernel makes use of a histogram intersection function
I, which measures the "overlap" between two histograms’ bins:

I(A,B) =
r∑

j=i

min(A(j), B(j)), (2.20)

where A and B are histograms with R bins and A(j) denotes the count of the
jth bin of A.

Histogram intersection effectively counts the number of points in two
sets which match at a given quantization level, i.e., fall into the same bin.
To calculate the number of newly matched pairs Ni induced at level i, it
is sufficient to compute the difference between successive histogram levels’
intersections:

Ni = I(Hi(y), Hi(z))− I(Hi−1(y), Hi−1(z)), (2.21)
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where Hi refers to the ith component histogram generated by Ψ in (2.18).
Note that the kernel is not searching explicitly for similar points - it never
computes distances between the vectors in each set. Instead, it simply uses
the change in intersection values at each histogram level to count the matches
as they occur.

The number of new matches found at each level in the pyramid is weighted
according to the size of that histogram’s bins: matches made within larger
bins are weighted less than those found in smaller bins. Since the largest
diagonal of a d-dimensional hypercube bin with sides of length 2i has length
2i
√
d, the maximal distance between any two points in one bin doubles at

each increasingly coarser histogram in the pyramid. Thus, the number of
new matches induced at level i is weighted by 1

2i
to reflect the (worst-case)

similarity of points matched at that level. Intuitively, this means that sim-
ilarity between vectors (features in y and z) at a finer resolution - where
features are most distinct - is rewarded more heavily than similarity between
vectors at a coarser level.

Then, the value is normalized by the product of each input’s self-similarity
to avoid favouring larger input sets.

An example can be seen in [Fig.2.5].

where mx varies across instances in X .
The feature extraction function Ψ is defined as:

Ψ(x) = [H−1(x), H0(x), . . . , HL(x)], (2)

where L = �log2 D�, x ∈ X , Hi(x) is a histogram vector
formed over data x using d-dimensional bins of side length

2i, and Hi(x) has a dimension ri =
(

D
2i

√
d

)d

. In other

words, Ψ(x) is a vector of concatenated histograms, where
each subsequent component histogram has bins that double
in size (in all d dimensions) compared to the previous one.
The bins in the finest-level histogramH−1 are small enough
that each d-dimensional data point from sets in X falls into
its own bin, and then the bin size increases until all data
points from sets in X fall into a single bin at level L.

The pyramid match kernel K∆ measures similarity be-
tween point sets based on implicit correspondences found
within this multi-resolution histogram space. The similarity
between two input sets is defined as the weighted sum of
the number of feature matchings found at each level of the
pyramid formed by Ψ:

K∆ (Ψ(y),Ψ(z)) =

L∑

i=0

wiNi, (3)

where Ni signifies the number of newly matched pairs at
level i. A new match is defined as a pair of features that
were not in correspondence at any finer resolution level.

The kernel implicitly finds correspondences between
point sets, if we consider two points matched once they fall
into the same histogram bin (starting at the finest resolution
level where each point is guaranteed to be in its own bin).
The matching is equivalent to a hierarchical process: vec-
tors not found to correspond at a high resolution have the
opportunity to be matched at lower resolutions. For exam-
ple, in Figure 2, there are two points matched at the finest
scale, two new matches at the medium scale, and one at the
coarsest scale. K∆’s output value reflects the overall sim-
ilarity of the matching: each newly matched pair at level
i contributes a value wi that is proportional to how similar
two points matching at that level must be, as determined by
the bin size. Note that the sum in Eqn. 3 starts with index
i = 0, because the definition of Ψ insures that no points
match at level i = −1.

To calculate Ni, the kernel makes use of a histogram
intersection function I, which measures the “overlap” be-
tween two histograms’ bins:

I (A,B) =

r∑

j=1

min
(
A(j),B(j)

)
, (4)

where A and B are histograms with r bins, and A(j) de-
notes the count of the jth bin of A.
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Figure 2: A pyramid match determines a partial correspondence
by matching points once they fall into the same histogram bin. In
this example, two 1-D feature sets are used to form two histogram
pyramids. Each row corresponds to a pyramid level. H−1 is not
pictured here because no matches are formed at the finest level. In
(a), the set y is on the left side, and the set z is on the right. (Points
are distributed along the vertical axis, and these same points are
repeated at each level.) Light dotted lines are bin boundaries, bold
dashed lines indicate a pair matched at this level, and bold solid
lines indicate a match already formed at a finer resolution level. In
(b) multi-resolution histograms are shown, with bin counts along
the horizontal axis. In (c) the intersection pyramid between the
histograms in (b) are shown. K∆ uses this to measure how many
new matches occurred at each level. Ii refers to I(Hi(y),Hi(z)).
Here, Ii = 2, 4, 5 across levels, and therefore the number of new
matches found at each level are Ni = 2, 2, 1. The sum over Ni,
weighted by wi = 1, 1

2
, 1
4

, gives the pyramid match similarity.

Histogram intersection effectively counts the number of
points in two sets which match at a given quantization level,
i.e., fall into the same bin. To calculate the number of newly
matched pairs Ni induced at level i, it is sufficient to com-
pute the difference between successive histogram levels’ in-
tersections:

Ni = I (Hi(y), Hi(z)) − I (Hi−1(y), Hi−1(z)) , (5)

where Hi refers to the ith component histogram generated
by Ψ in Eqn. 2. Note that the kernel is not searching explic-
itly for similar points – it never computes distances between
the vectors in each set. Instead, it simply uses the change
in intersection values at each histogram level to count the
matches as they occur.

The number of new matches found at each level in
the pyramid is weighted according to the size of that
histogram’s bins: matches made within larger bins are
weighted less than those found in smaller bins. Since the
largest diagonal of a d-dimensional hypercube bin with
sides of length 2i has length 2i

√
d, the maximal distance

Figure 2.5: Example of Pyramid Match Kernel method.
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Two (1−D) feature sets are used to form two histogram pyramids. Each
row corresponds to a pyramid level. H1 is not pictured because no matches
are formed at the finest level. In (a), the set y is on the left side and the set z
is on the right side. Points are distributed along the vertical axis, and these
same points are repeated at each level. Light dotted lines are bin boundaries,
bold dashed lines indicate a pair matched at this level, and bold solid lines
indicate a match already formed at a finer resolution level. In (b) multi-
resolution histograms are shown, with bin counts along the horizontal axis.
In (c) the intersection pyramid between the histograms in (b) are shown.
K∆ uses this to measure how many new matches occurred at each level. Ii
refers to I(Hi(y), Hi(z)). Here, Ii = 2, 4, 5 across levels, and therefore the
number of new matches found at each level are Ni = 2, 2, 1. The sum over
Ni, weighted by wi = 1, 1

2
, 1

4
, gives the pyramid match similarity.

2.3.5 Other face recognition methods

The Gaussian Mixture Models (GMM)-based human face identification tech-
nique built in the Fourier or frequency domain that is robust to illumination
changes and does not require illumination normalization, i.e. removal of il-
lumination effects, prior to application, unlike many existing methods. The
importance of the Fourier domain phase in human face identification is a well-
established fact in signal processing, providing a suitable semi-parametric
framework for modelling unknown and complex distributional shapes. There-
fore, mixtures can handle situations where a single parametric family fails
to provide a satisfactory model for local variations in the observed data, and
offer the scope of inference at the same time [11].

The Gaussian Face method, described in [12], addresses the problem of
face verification in complex conditions with large variation as pose, illumina-
tion, expression and occlusions, relying on a principled multi-task learning
approach based on Discriminative Gaussian Process Latent Variable Model,
to enrich the diversity of the training data and thus leading to an improve-
ment of the generalization performance of face verification in an unknown
target-domain.

It is worth to note that beyond the cited tradition method for face recog-
nition there are also non traditional techniques. Examples are:

• the three-dimensional face recognition, which uses 3D sensors to cap-
ture information about the shape of a face and using it to identify
distinctive features on the surface of a face, such as the contour of the
eye sockets, nose, and chin [13]; it achieve improved accuracy, it is not
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affected by changes in lighting, it can identify a face from a range of
viewing angles, including a profile view

• the skin texture analysis, which uses the visual details of the skin, as
captured in standard digital or scanned images; this technique, called
skin texture analysis, turns the unique lines, patterns, and spots ap-
parent in a person’s skin into a mathematical space.

• the thermal cameras, where cameras only detect the shape of the head
and it will ignore the subject accessories such as glasses, hats, or make
up [14].

2.4 Iris recognition

Iris recognition is generally considered to be one of the most effective modali-
ties for biometric identification. The iris is both protected and accessible and
can be accessed in a non-contact manner from moderate distances [15]. The
visual texture of the iris is formed during fetal development and stabilizes
during the first two years of life. Besides, it has many degrees of freedom: the
complex iris texture carries very distinctive information useful for personal
recognition of high accuracy.

Moreover, it is extremely difficult to surgically tamper the texture of
the iris and it is rather easy to detect artificial irises (e.g., designer contact
lenses).

Traditional iris acquisition devices are good for capturing high quality
iris image, but extremely inflexible and not user-friendly. It requires high
level of user cooperation to successfully acquire iris image. In the past last
years, progress of innovation in iris acquisition device has made it possible to
lessen the requirement of user-cooperation while maintaining high quality iris
images. They can be can be categorized as middle distance iris acquisition
devices, because they can capture users’ iris images even when users stand
at a distance of 50-100 cm away from the camera and users are not required
to put their heads against a rack. Long distance iris acquisition devices (e.g.
high resolution infrared cameras) are able to capture iris images even when
they are moving [15].

The process of locating iris region in an image is called iris segmentation.
As stated above, iris region is of annular shape. Therefore, it is intuitive
to segment iris with two circles: one circle indicates the boundary between
iris and pupil, the other indicates the boundary between iris and sclera. The
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texture in the region between those two circles is what it is needed for further
process.

There exist different algorithms which serve the same goal of iris segmen-
tation. One of the most popular algorithms is proposed by Wildes, another
by Daugman.

2.4.1 Wildes

Wildes proposed an algorithm consisting of two main steps [16].
The first step is to apply a gradient-based edge detector on the whole

eye image to generate an edge-map, which tells the position where strong
edges exist (strong differences in pixel values). Intuitively, those positions
are possible candidates of the iris boundaries since the two boundaries of
iris, both inner and outer, are the positions where high pixel contrast takes
place.

The second step is to find the exact two boundaries since this edge-map.
The used method is a voting scheme. Every circle on a 2D plane can be
described by three parameters, coordinate in x and y axis and the radius
r. Therefore a three-dimensional (3D) space can be constructed, where each
dimension represent one parameter. Every positive pixel on the edge-map
can vote to the point (x,y,r) in the 3D parameter space as long as this positive
pixel is on the perimeter of the circle which is parametrized (x,y,r). Since
different circles can pass through the same point, it is possible for 1 pixel on
the edge-map to vote to multiple points in the 3D parameter space.

At last, the point which has the highest accumulated votes represents the
most likely circle in the original eye image [Fig.2.6].

2.4.2 Daughman

According to John Daugman, to capture the rich details of iris patterns, an
imaging system should resolve a minimum of 70 pixels in iris radius, but a re-
solved iris radius of 100 to 140 pixels is more typical. In his proposed method
[15][17], images passing a minimum focus criterion are analysed to find the
iris, with precise localization of its boundaries using a coarse-to-fine strategy
terminating in single-pixel precision estimates of the center coordinates and
radius of both the iris and the pupil. Although the results of the iris search
greatly constrain the pupil search, concentricity of these boundaries cannot
be assumed. Very often the pupil center is nasal, and inferior, to the iris
center. Its radius can range from 0.1 to 0.8 of the iris radius. Thus, all three
parameters defining the pupil circle must be estimated separately from those
of the iris. A very effective integrodifferential operator for determining these
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Figure 2.6: Example of iris segmentation.

parameters is:

max(r,x0,y0) = |Gσ(R) ∗ ∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds| (2.22)

where I(x, y) is an image containing an eye. The operator searches over the
image domain (x, y) for the maximum in the blurred partial derivative with
respect to increasing radius r, of the normalized contour integral of I(x, y)
along a circular arc ds of radius r and center coordinates (x0, y0). The symbol
∗ denotes convolution and Gσ(r) is a smoothing function such as a Gaussian
of scale σ. The complete operator behaves in effect as a circular edge detec-
tor, blurred at a scale set by σ, which searches iteratively for a maximum
contour integral derivative with increasing radius at successively finer scales
of analysis through the three parameter space of center coordinates and ra-
dius (x0, y0, r) defining a path of contour integration.

The operator in (2.22) serves to find both the pupil boundary and the
outer (limbus) boundary of the iris, although the initial search for the lim-
bus also incorporates evidence of an interior pupil to improve its robustness
since the limbic boundary itself usually has extremely soft contrast. Once
the coarse-to-fine iterative searches for both these boundaries have reached
single pixel precision, then a similar approach to detecting curvilinear edges
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is used to localize both the upper and lower eyelid boundaries. The path of
contour integration in (2.22) is changed from circular to arcuate, with spline
parameters fitted by standard statistical estimation methods to describe op-
timally the available evidence for each eyelid boundary. The result of all
these localization operations is the isolation of iris tissue from other image
regions [Fig.2.7].

Figure 2.7: Daugman’s method: example of iris pattern.

Therefore, Daugman, in his later work [15], proposed a new segmenta-
tion method, called active contour or snakes, that is to use a more flexible
model to represent both boundaries: the boundary of the pupil and iris is
not bounded circular, but they can be of any shape. Therefore, the discov-
ered boundaries can fit to the real data more closely and bring performance
enhancement in the pattern matching phase.

After iris localization, it useful to perform an image coordinate trans-
formation on the iris image. The goal is to transform the annular-shaped
iris region into rectangular shape, by mapping pixel values from Cartesian
coordinate to polar coordinate. Polar coordinate is parametrized with two
parameters: r and θ [Fig.2.8].

A valuable advantage of coordinate transformation can be appreciated in
practical situations. The size of the pupil are is not always the same, but it
contracts and dilates because of the ambient lighting. Therefore, performing
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Figure 2.8: Daugman’s rubber sheet model.

polar transformation for every iris texture the resulting iris texture map in
polar coordinate remains the same. Other sources of inconsistency include:
varying imaging distance, rotation of the camera, head tilt and rotation of
the eye within the eye socket. The normalisation process will produce iris
regions, which have the same constant dimensions, so that two images of the
same iris under different conditions will have characteristic features at the
same spatial location.

The next step is to perform the iris feature extraction on the iris texture.
The goal of feature extraction is to extract the discriminative characteristics
of the iris texture and store it in a more compact way so that is more effective
to perform patter matching in a later stage.

In the field of image processing and pattern recognition, the feature ex-
traction is accomplished by applying filters on the input image. In literature,
the filter which have been used extensively in iris recognition are Gabor fil-
ters, proposed precisely by Daugman. Gabor filters can be seen as complex
sinusoids modulated by Gaussian envelope. They can be expressed as the
following equation:

Ψ(x, y) = A · e[− 1
2

( x
2

σ2x
+ y2

σ2y
)−jω(cosθ)x−jω(sinθ)y]

(2.23)

where, by convention, the standard deviations of the envelope are inversely
proportional to frequency ω:

σx = kx
2π

ω
(2.24)

σy = ky
2π

ω
. (2.25)
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Gabor filters of different sizes, orientation or frequency can be generated by
substituting different parameters in (2.23); they can capture different texture
details in iris texture.

A two-dimensional (2D) complex-valued plane is obtained after apply-
ing each Gabor filter on iris texture. Daugman proposed a phase-quadrant
scheme to further quantize the 2D complex-valued plane. Phase information
on a complex-valued filter response plane is important to have much more
discriminative information in biometric recognition. Therefore, performing
phase quantization would discard useless information and make feature rep-
resentation more compact and easy to handle.

The phase-quadrant quantization scheme amounts to a patch-wise phase
quantization of the iris pattern, by identifying in which quadrant of the
complex plane each resultant phasor lies. For every location on the complex
plane, the sign of real and imaginary part jointly defines in which quadrant
the phasor lies. Two bitecodes are used to encode the four possible quadrants
[Fig.2.9].

Figure 2.9: Daugman’s method: demodulation by complex-valued wavelets.

The phase-quadrant demodulation process is repeated across all the plane
of the response of the filters, with many different wavelet sizes, frequencies
and orientation to extract totally 2048 bits.
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An important fact to note is that, often, iris texture is occluded by other
objects (e.g. eye lashes, eye lids, specular reflection from eye gasses). Not
every point on the iris texture map is useful for pattern matching. As a
consequence, it is necessary to compute an iris mask, which is exactly the
same size as iris texture, to indicate which part of the map is really iris
texture and which is not. This mask will be used in the stage of pattern
matching.

Pattern Matching

The key to iris recognition is the failure of a test of statistical independence,
which involves so many degrees-of-freedom that this test is virtually guar-
anteed to be passed whenever the phase codes for two different eyes are
compared, but to be uniquely failed when any eye’s phase code is compared
with another version of itself.

The test of statistical independence is implemented by the simple Boolean
Exclusive-OR operator (XOR) applied to the 2048 bit phase vectors that en-
code any two iris patterns, masked (AND’ed) by both of their corresponding
mask bit vectors to prevent non-iris artefacts from influencing iris compar-
isons. The XOR operator ⊗ detects disagreement between any corresponding
pair of bits, while the AND operator ∩ ensures that the compared bits are
both deemed to have been uncorrupted by eyelashes, eyelids, specular reflec-
tions, or other noise.

The norms of the resultant bit vector and of the AND’ed mask vectors
are then measured in order to compute a fractional Hamming Distance (HD)
as the measure of the dissimilarity between any two irises, whose two phase
code bit-vectors are denoted codeA, codeB and whose mask bit vectors are
denoted maskA,maskB:

HD =
‖(codeA⊗ codeB) ∩maskA ∩maskB‖

‖maskA ∩maskB‖ (2.26)

The denominator tallies the total number of phase bits that mattered in iris
comparisons after artefacts such as eyelashes and specular reflections were
discounted, so the resulting HD is a fractional measure of dissimilarity; 0
would represent a perfect match. Because any given bit in the phase code
for an iris is equally likely to be 1 or 0, and different irises are uncorrelated,
the expected proportion of agreeing bits between the codes for two different
irises is HD = 0.500.
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Chapter 3

System Design

In this section there is a complete description of the project, including its
context and its requirements analysis.

The goal is the design of an adaptive multi-modal biometric system for
indoor selective access control.

3.1 System requirements

This system should operate within a scope of a medium/big company, which
needs to keep some areas restricted to particular employees, depending on
their roles or responsibilities. Moreover, there could be different levels of
security required throughout the structure of the company; everything, as
mentioned earlier, as expressed in the Service Level Agreement at a design
phase.

Therefore, proper sensors should be placed in those access points which
need control and in every room or structure in which only authorized users
are allowed.

The system is intended to handle several different situations:

• different types of restricted area have to be accessed by different types
of user, depending on their role

• company employees should be given an easy way to access, since they
have to do it at least twice a day (they are enrolled in a special database)

• partners, suppliers or auditors, provided with their own company device
(thus known by the company), are submitted to an indirect authenti-
cation (e.g. having their template stored on their device and sending
it to the company for the matching)

35
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• since the company is open to the public, clients are supposed to access
only the reception area

• some employee is allowed to bring someone else in with them (the
system is supposed to know who and where)

• the system works autonomously, but proper human intervention is al-
ways possible

In order to satisfy all of these requirements a multi-modal biometric sys-
tem, which operates both in verification and identification mode, has been
chosen as the best solution.

Furthermore, the system is also required to guarantee some requirements
of the SLA concerning specific parameters. In particular, the set FAR and
FRR values can be different depending on the various areas or rooms within
the company. For example a rather high False Acceptance Rate could be
reasonable at the very entrance point (one or more) of the whole structure,
because it would be just the first control point, protecting a general area thus
far and followed by many others; then, a higher level of accuracy in terms
of FAR, which is supposed to be now very slow, could be asked for specific
restricted buildings or rooms.

3.2 Solution description

The multi-modal biometric system relies on two different modules: the mod-
ule for face identification and the module for iris verification. The fusion
methodology adopted at decision level follows the or rule, i.e. it is sufficient
that only a biometric trait is recognized as genuine to lead in a positive final
decision. This serial matching approach gives the possibility of not acquiring
all the traits; for example, only face recognition is computed if the informa-
tion collected at the first module is enough to determine if a user is genuine
or an impostor.

As seen in Section 1.2, in identification the user attempts to positively
identify himself to the system without explicitly claiming an identity. The
system determines the identity of the user from a known set of identities.

Formally, the problem of identification can be stated as follows: given
a query feature set XQ, it is necessary to decide the identity I of the user,
where I ∈ { I1,I2,...,In, IN+1 }. I1,I2,...,In correspond to the identities of the
N users enrolled in the system and IN+1 indicates the case where no suitable
identity can be determined for the given query. If XIn is the stored template
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corresponding to identity In and Sn is the match (similarity) score between
XQ and XIn , for n = 1, 2, ..., N , the decision rule for identification is:

XQ ∈
{
In0 , if n0 = argmaxn Sn and Sn0 ≥ η,

IN+1, otherwise
(3.1)

where η is a pre-defined threshold.
In the proposed solution, as the result of a session of identification, the

system gives in output the score of the confidence specifying the degree of
trust that there is in the identification of the acquired person with an enrolled
person in the database.

In verification, the user claims an identity and the system verifies whether
the claim is genuine. In this scenario, the query is compared only to the
template corresponding to the claimed identity. If the user’s input and the
template of the claimed identity have a high degree of similarity, then the
claim is accepted as genuine. Otherwise, the claim is rejected and the user is
considered an impostor. Formally, verification can be posed as the following
two-category classification problem: given a claimed identity I and a query
feature set XQ, it is necessary to decide if (I, XQ) belongs to genuine or im-
postor. Let XI be the stored template corresponding to identity I. Typically,
XQ is compared with XI and a match score S, which measures the similarity
between XQ and XI , is computed. The decision rule is given by:

(I,XQ) ∈
{
genuine, if S < η,

impostor, if S ≥ η,
(3.2)

where η is a pre-defined threshold. In this formulation, the match score S is
assumed to measure the dissimilarity between XQ and XI , i.e., a large score
indicates a poor match.

The designed system works in the same way, except the fact that there is
one (or two) region of uncertainty, inserted to better handle every possible
situation.

Generally, the presence of large number of identities in the database makes
the identification task significantly more challenging than verification.

In multi-modal biometric system it is worth to couple non invasive easy-
to-use biometrics at lower accuracy together with more robust but expensive
parameters, which can intervene any time a higher degree of confidence is
required.

Face and iris recognitions have been chosen for the proposed system be-
cause of their counterbalancing characteristics.
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3.2.1 Face

This identifier has been chosen because face recognition is a non-intrusive
method of authentication. Moreover, face matching is typically fast, even if
not very accurate.

The application of facial recognition is expected to happen in a dynamic
but controlled environment in which a person who wants to be authenticated
has to walk along a hallway following an ordered queue so that the sensor
can easily detect whether a face is present in the acquired image and locate
it. A second (third, ..., k-th) acquisition is potentially possible, in case the
first is not precise enough, and the user is required to stand still for a few
seconds, while their face is tried to be recognized again.

The chosen methodology is the Local Binary Patterns (LBP). As ex-
plained in the previous section (2.3.3), it is based on the extraction of local
features from images; the basic idea is to summarize the local structure in an
image by comparing each pixel with its neighbourhood. Then the LBP image
is divided into local regions and a histogram is extracted from each. Finally,
the spatially enhanced feature vector is then obtained by concatenating the
local histograms, called Local Binary Patterns Histograms (LBPH) [9].

3.2.2 Iris

The reason why iris has been chosen as the second identifier is that its com-
plex texture carries very distinctive information useful for personal recogni-
tion of high accuracy; however, iris matching is slower than face matching
and it is also more invasive, i.e. it requires the user’s collaboration. The
recognition process needs a proper camera to acquire the iris image, while
the user stands still and close enough (see 2.4).

For iris recognition the Daughman’s method has been chosen. As seen
in the previous section 2.4.2, it consists of several phases: segmentation, i.e.
the location of the iris in the eye image; normalization, with the Daugman’s
Rubber Sheet Model; encoding, with Log-Gabor wavelet; matching, using
the Hamming Distance [17][18].

3.3 System architecture

The system consists of several different modules, each of them providing its
own functionality [2]. There are two sensor modules, for either face and
iris acquisition, which capture the biometric data. In the feature extraction
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modules the acquired data is processed to extract a set of salient and discrimi-
natory features. In the matcher modules the extracted features are compared
against the stored templates, providing a matching score. These last mod-
ules encapsulate the decision making modules, which operate in verification
or identification mode. Moreover, there is the system database module, which
stores the biometric templates of the enrolled users [Fig.3.1].

Sensor Feature Extraction

Template Database

Feature Matching

Sensor Feature Extraction

User

User

Enroll module

Template feature set

Feature set
Matching module

Claimed identity, I

Identity, I

Figure 3.1: General biometric system

The system is intended to be adaptive; it means that it has not a fixed
and predefined behaviour, but its working flow depends on the response of
the actual recognition process.

Each decision module has three possible different outputs depending on
predefined thresholds ti, with i = 1, 2, 3, both for the verification and the
identification mode [Fig.3.2]; the output can be:

• YES, if the user is recognized as one of the enrolled user or their identity
has been verified

• NO, if the user is rejected as if they were impostors

• MAYBE(?), if the decision module is not able to make a decision with
a sufficient degree of confidence
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MODULE

YES
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MAYBE

Figure 3.2: Decision making module

Actually, the third possibility (?) consists of two different outputs if that
indecision comes from the first attempt of face identification; as a matter
of fact, one output leads to a second (or k) attempt of face identification
in a more controlled way, the other output leads directly to iris verification
[Fig.3.3].
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?
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Figure 3.3: Possible System Flows

This choice is based on a special threshold, t3, set in the middle of the
MAYBE region [Fig.3.4]. It means that if a user obtains an output score
that is similar to a genuine user’s score (but not enough), they can try face
identification again, because it is more fast and less invasive. Conversely,
if the obtained score is nearer to the NO region, it is better in terms of
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accuracy if the user is asked to submit to iris verification, thus requiring
more collaboration.

0 1t 1 t 2
t 3

YES NO? ?

Figure 3.4: Face identification thresholds

Therefore, there are several different ways of working. For example, a
user can be immediately identified and authenticated using their face as they
approach the entrance; or they can be asked to repeat the face acquisition in
a more controlled way; they can be asked to get closer and the authentication
mode can be switched to the verification mode using the iris; again, this last
phase can be repeated.

Formally, the system model consists of some rules, on which the decision
making modules are based:

• require a controlled face identification, if MAYBE (between t1 and t3)
is the result of the first face identification

• require a controlled face identification, if MAYBE (between t1 and t3)
is the result of the following attempts of controlled face identification
(max k times)

• require iris verification, if MAYBE (between t3 and t2) is the result of
the first face identification

• require iris verification, if MAYBE (between t3 and t2) is the result of
any of the controlled face identifications

• require iris verification, if (?) is obtained as the result of the previous
iris verifications (max k times)

• ask for human intervention, if NO is the result

• ask for human intervention, if the number of k repetitions has been
reached
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Obviously, the number of repetitions k can be arbitrarily set by the pro-
grammer.

Finally, human intervention is always possible; so, if a genuine user is
rejected or receives a number of k repetitions, they still have the possibility
to ask for help to a human operator.
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System Implementation

4.1 Databases

Two free available databases have been exploited.
The database of faces AT&T Facedatabase from the AT&T Laboratories

of Cambridge [19], containing 10 different images of each of 40 distinct sub-
jects; for some subjects, the images were taken at different times, varying
the lighting, facial expressions (open/closed eyes, smiling/not smiling) and
facial details (glasses/no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal position
(with tolerance for some side movement). The 40 subjects of this database
can be seen in [Fig.4.1].

The files are in PGM format. The size of each image is 92x112 pixels,
with 256 grey levels per pixel. The images are organised in 40 directories (one
for each subject), which have names of the form sX, where X indicates the
subject number (between 1 and 40). In each of these directories, there are
ten different images of that subject, which have names of the form Y.pgm,
where Y is the image number for that subject (between 1 and 10).

In [Fig.4.2] there are some face images taken from the directory of the
subject number 1, s1; it is possible to see the different facial expressions that
the users has, together with the different inclinations of his head.

The AT&T Face Database is labelled as a fairly easy database; in the
next chapter, Testing and Results, the results obtained in the testing phase
with this database will be presented.

The database of irises UBIRIS [20], from which the first 40 subjects (of
241) have been selected, each having 5 different images. Examples of these
images can be find in [Fig.4.3].

It is worth to note that the performance and reliability of all biometric
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Figure 4.1: AT&T Face Database: 40 users

Figure 4.2: AT&T Face Database: example of a user’s face images
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Figure 4.3: Ubiris Database: example of a user’s iris images

recognition systems depend crucially on the quality of the enrolment data
[15].

UBIRIS is a noisy database, it provides images with different types of
noise, simulating image captured without or with minimal collaboration from
the subjects, pretending to become an effective resource for the evaluation
and development of robust iris identification methodologies [20]. A Nikon
E5700 camera has been used, with software version E5700v1.0, 71 mm focal
length, 4.2 F-Number, 1/30 sec. exposure time, RGB color representation
and ISO-200 ISO speed. Images dimensions were 2560x1704 pixels with 300
dpi horizontal and vertical resolution and 24 bit depth. They were saved in
JPEG format with lossless compression.

4.2 Code

For the implementation of the described system two separate source codes
have been adopted. The LPPH algorithm used is the face recognition algo-
rithm from OpenCV written in C++. This code has been chosen because
it was ready to use and easily adjustable. Indeed, it has been modified as
necessary.

The code gets the path to a CSV file where the users’ images are listed
(their path, folder, file name and label) and creates two vectors: a vector of
Mat to store the images (their paths) and a vector of int to store the cor-
responding labels. Then it gets the last image from the database, removing
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it from the images vector and its label from the labels vector. This step is
done so that the training data and the test data do not overlap. After, a
LBPH model for face recognition is created and trained with the images and
labels read from the CSV file (except the last line). The following lines of
code are used to predict the label of that given test image. In order to get as
single output just the confidence value, i.e. the degree of certainty the model
has on his prediction, the lines giving in output the actual and the predicted
label of the image have been commented.

Moreover, a method for the normalization of the values has been added.
It takes as input the values of confidence c (they range from (min = 56.31
to max = 103.96) and it returns a normalized, (c−min)/(max−min), and
rounded up to the next integer confidence value.

The core code used for the iris verification is written in Java and has
been developed by Simionato [21]. This code is the implementation of the
Daughman’s method, except the segmentation phase, inspired by the Wildes’
method [16]. It relies on several different Java classes, each of them conduct-
ing a precise task. For reasons of consistency, the starting point class is called
from a C++ file and they are connected by Java Native Interface (JNI) func-
tions [22]. This class calls other classes and functions that are responsible for
creating, if possible, an iris code (the iris template and the iris mask) out of
a passed iris image and for performing the Hamming Distance between two
specified irises.

Moreover, there is a check function which gives the possibility to verify
if a user has enough good images stored in the database, by using a special
counter. In a real context, this function gives the user the possibility to save
their time, since when the user’s iris is acquired, the image is immediately
checked and if it not good enough to be segmented or encoded, the user is
asked to submit to the iris acquisition again, without waiting for an invalid
comparison.

The JNI connection, which has to be created and destroyed runtime, is
used to exchange useful parameters between the two programs. The C++
program pass the path to the database, the users and the images to match
to the Java program; vice versa, the Java program returns the a single value,
that is the computed matching score.

These two sections have been combined using scripts which manage the
working flow. The scripts consist of a rigid structure of if − then − else
statements.

A script is used to handle the face identification phase. Depending on the
output value, it decides whether the user can go in or if they are rejected, or
they can be given a second (ore more) possibility of authentication. Another
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script is used to take care of iris verification. In this phase, too, there are
three possible outputs. There is possibly another script between these two,
which has been added later and is responsible for a more controlled way of
face identification.

The different conducted tests will be explained in the next chapter.
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Chapter 5

Test and Results

The face identification tests and the iris tests will be here described and their
results commented. In the testing phase they have been conducted separately,
since no proof of correlation exists between the face and the iris parameter
of a person, so the tests ad the outcomes are completely independent in this
sense.

5.1 Face Identification Testing
For the face identification phase, the database has been divided in train set
and test set. Each of the 40 users have their best 3 of 10 face images in the
train set (used to train the LBPH model) and the remaining 7 in the test
set, thus composed of 280 images.

The first test has been conducted using 120 training images and 280
testing images (all together). So this is a two-script model in which the first
script handles face identification and the second script, if necessary, handles
iris verification. The three outcomes, as shown in [Fig.5.1], are:

• 176 of 280 users are correctly allowed to enter directly (confidence under
the threshold t1)

• 9 of 280 users are rejected (confidence over the threshold t2)

• 95 of 280 users are in the middle MAYBE region.

Therefore, there is a percentage of True Positive (TP) of 62.86; a False
Negative (FN) value of 3.21%, thus meeting the False Rejection Rate (FRR)
of about the 3%; and the remaining 33.93% belonging to the MAYBE region.

This last set of users can be required to submit to iris verification or it can
be split in two sets: two third of them (63 users, 22.5%), between t1 and t3

49



50 CHAPTER 5. TEST AND RESULTS

Figure 5.1: Face identification test (before normalization).

(threshold fixed in the exact middle of the other two thresholds [Fig. 3.3]),
can be given the possibility to try face identification again; one third (32
users, 11.43%), between t3 and t2, have to be submitted to iris verification
[Fig.5.2].

This last idea leaded to a new possible branch for the working flow: the
addition of a script managing a controlled face identification and the division
of the test set of 280 images. A test set T1 is intended to be dedicated to
the first face identification attempt. T1 consists of 160 images, the 4 worst
images for every user in terms of confidence result. This test set simulate
a real first attempt of identification, which happens while a user is walking
towards the entrance and they are not paying much attention on this process.
The second test set T2, consisting of the remaining 120 images (the 3 best
images of each user), is used for the controlled face identification (possibly
more than once, up to k times). In this case the user knows that their first
attempt is failed and they are trying to be authenticated again in a more
collaborative way (e.g. standing still and keeping their head straight).

The results for the four possible outcomes of the first attempt on T1:

• 86 of 160 users enter directly, corresponding to the 53.75%
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Figure 5.2: Normalized Face Identification test on the complete test set (280
images).

• 9 of 160 users are wrongly rejected, 5.63%

• 42 of 160 user, 26.25%, are allowed to repeat face identification (con-
trolled way)

• 23 of 160 users, 14.37%, are asked to submit to iris verification

In this test the thresholds have been kept fixed to the previous values.
This provides a FRR of 5.63%, which is too high assuming a FRR of about
3% agreed in the SLA. So the threshold t2 has been moved in order to reach
a lower FRR. As a result, 5 users instead of 9 are rejected and 4 users are
asked to submit to the controlled face identification (they become 46, 28.75%)
[Fig.5.3].

The results regarding the test set T2 can be seen in [Fig.5.4]. Numerically,
they are:

• 98 of 120 users enter, 81.7%

• 2 out of 120 users are rejected, 1.6%

• 20 out of 120 users, 16.7%, are required to submit to iris verification
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Figure 5.3: First face identification on T1.

Figure 5.4: Controlled face identification on T2 .
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It is possible to add a further branch, as shown in Fig. 3.2, which gives the
opportunity to repeat the controlled face identification many times (maxi-
mum k). Nevertheless, it is reasonable to decide that after two attempts (one
not controlled and one controlled) of face identification it is safer to require
more collaboration to the user in a iris verification process.

5.2 Iris Verification Testing

For the iris verification phase, only two thresholds are sufficient, because the
scores obtained by two iris images belonging to the same user and two iris
images belonging to different users are far enough [Fig.5.5].

0 t 1 t 2

YES NO?

1

Figure 5.5: Iris verification thresholds.

The thresholds t1 and t2 (0.35 and 0.4, respectively) are set in order to
distinctly separate the scores resulting from the two types of match: the
matches between the irises of two different users lays all over the threshold
t2, so there is no possibility of error in this kind of comparison and the
False Acceptance Rate is 0; the valid matches between the irises of the same
user lays under the threshold t1. Just about the 5% of the all comparison
between two images of the same user falls into the middle region and thus
the verification needs to be repeated.

The tests have been conducted between the different iris images (enumer-
ated from 1 to 5) of the same user for each of the 40 users. In the first test,
the first image or every user has been compared with the other four images,
thus obtaining 160 comparisons [Fig.5.6], with:

• 118 of 160 positive results, the user is allowed to go in

• 33 of 160 invalid comparisons because at least one of the two images is
not good
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• 9 of 160 has MAYBE as answer and iris verification has to be repeated

Figure 5.6: First iris verification test.

The second test was between the second image of every user and the other
three images, thus there were 120 comparisons. The results are [Fig.5.7]:

• 92 of 120 positive results

• 25 of 120 invalid comparisons due to bad images

• 3 of 120 MAYBE

The third test was between the third image and the last two images,
resulting 80 comparisons [Fig.5.8], of which:

• 52 of 80 positive results

• 21 of 80 invalid comparisons

• 7 of 80 MAYBE

The fourth test was between the last two images of every user, so 40
comparisons, and showed [Fig.5.9]:
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Figure 5.7: Second iris verification test.

Figure 5.8: Third iris verification test.
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• 28 of 40 positive results

• 11 invalid comparisons

• 1 of 40 MAYBE

Figure 5.9: Fourth iris verification test.

A noticeable occurrence is that there are a lot of invalid comparisons,
i.e. 90 of 400 (which is 160+120+80+40), corresponding to a very high
percentage (22.5%) of tests which have to be conducted again, due to the
fact that the images utilized are not good. The code used to perform the
verification is not capable of extracting useful information from those noisy
images, as they cannot be properly segmented or encoded.

The 5% of the comparisons (20 of 400) that lay in the MAYBE region
leads to a repetition of the iris verification. Actually, the invalid comparison
occurrence has the same result, since those matching needs to be repeated
too.

290 of 400 (72.5%) comparisons have a positive result, i.e. the user is
allowed to enter without any further verification [Fig.5.10].

Because of the noisy iris image database, some steps of pre-processing
could be able to identify those users whose iris images are all unsuitable for



5.2. IRIS VERIFICATION TESTING 57

Figure 5.10: Total result of the iris verification test.

the task and thus point them out in order to avoid their usage. Therefore
the code has been modified, adding the checking method described in the
Section 4.2. The counter is intended to keep track of the number of suitable
images of a user and it is checked every time the checking method is called
because a verification session is happening.

The script receive as result:

• 0 if the user has to be changed because there is no good images

• 1 if the passed image for the acquired user (the first specified) is not
good

• 2 if the passed image for the declared user (the second specified) is not
good

This addition is useful in order to save time while testing but also in the
real specified context, since when a user submits to iris verification is outright
advised if his acquired image is not good enough to be segmented or encoded
and so he can repeat the process right away.

In order to achieve an even better degree of security, the system has been
provided the possibility of modifying the iris verification phase, so that a
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user’s acquired image is set against more than one user’s remaining images
(e.g. 2 or 3 images) and the resulting decision is a combination of the single
comparisons. A number of 20 images leads to the MAYBE region, so every
other image (even good) associated to them is forced to the MAYBE result
and thus to request of iris verification repetition, if the fusion rule is an AND
rule and more strictness is required. Conversely, it can be an OR, if there
are temporal constraints, and so the system allows faster but less reliable
verification.
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Conclusions

This thesis shows the design of an adaptive multi-modal biometric system
which consolidates face identification and iris verification, operating in a
serial mode.

This work has given the possibility to understand some practical issues
and to learn how to face them.

First of all, the importance of a good database, both in terms of size
and quality. The size is an important factor, since two quite small databases
have been used, knowing that the bigger the database the lower the accuracy,
so that there is a decrease in terms of performance. The quality of the
stored data, images in this case, significantly affects the performance and the
reliability of a biometric recognition system, as it can be noticed thanks to
the iris verification testing part.

A good aspect is the adaptive approach wanted for this system. The pos-
sible working flows are many, and they represent the fact that the evolution
of the process depends on the actual response of the variables involved; in
this case, the actual response of the decision making modules.

Furthermore, the tests conducted confirm the advantages of using two
different kinds of biometric parameters that differ on invasiveness and accu-
racy. Biometrics can be really useful and reliable for authentication processes
if they are properly chosen, since their usefulness in the employment depends
on the desired application and the requirements stated in the SLA.

As regards the future developments, there are several ideas. First of all,
tests can be conducted with larger databases, in order to test the scalability
of the two recognition processes (especially the identification process).

Then, there is the possibility of the addition of other biometric traits.
For example, a third biometric trait can be an alternative solution to the iris
parameter; after the first face identification and the second controlled face
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identification, a user can be asked if they prefer to try iris verification, as it
is now, or, e.g. fingerprint, palm or voice verification.

Another possible addition is that of other recognition algorithms, both
for face identification and for iris verification. These algorithms can differ
from each other in terms of performances, such as accuracy or computation
velocity.

Lastly, if the goal is the design and the development of a complete security
system, a presence monitoring section can be added to the proposed solution.
The actual presence of users, e.g. employees, can be verified monitoring their
behavioural characteristics in a room or within a building. A behavioural
parameter can be the gait, i.e. the way of walking of an individual.
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