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Abstract

The hypothesis that complex interacting living systems can bene昀椀t from operating at the vicin-
ity of critical points has gained momentum in recent years. Criticality may confer an optimal
balance between too ordered and exceedingly noisy states. In this thesis we will study a model,
based on information theory and statistical mechanics, illustrating how and why a community
of agents aimed at understanding and communicating with each other converges to a globally
coherent state in which all individuals are close to an internal critical state, i.e. at the borderline
between order and disorder. We will study both analytically and computationally the circum-
stances under which criticality is the best possible outcome of the dynamical process, and even-
tually con昀椀rming the convergence to critical points under very generic conditions. Further-
more the e昀昀ect of evolutionary strategy will be investigated together with the role of di昀昀erent
time scales in evolution and adaptation.
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Introduction

Several studies ([1], [2], [3], [4]) has pointed out that living systems could operate in proxim-
ity of critical points similar to the well-known ones found in the study of phase transitions in
statistical physics. Indeed, it appears that a whole class of examples, ranging from spontaneous
brain behavior [5] to gene expression patterns [6], cell growth [7], morphogenesis [8], bacte-
rial clustering [9], 昀氀ock dynamics [10] andmanymore, suggests that interacting living systems
have a tendency to behave as if they were close to a ”border line” between an ordered and a dis-
ordered phase, as it happens with correlated spin in a magnet at the point of ordering. Even if
none of these examples is fully conclusive and even if the meaning of ”criticality” varies across
these works, the criticality hypothesis, as a general strategy for the organization of livingmatter,
is a tantalizing idea worthy of further investigation.
Although di昀昀erent mechanisms and scenarios have been described in the recent literature, a
complete theory that explains why and how interacting living systems arrange themselves in
this particular manner is still missing. As a matter of fact, critical points, with all their remark-
able properties ([11], [12]), are only observed upon 昀椀ne tuning of the macroscopic parameters
of the system in a small region around the critical point of interest. This is in sharp contrast to
the ubiquity of critical-like behavior in complex living matter. Nevertheless, in a study from
2014 byHidalgo et al. [13] criticality has been shown to arise in communities of agents which
seek to interpret andmodel as e昀케ciently as possible external information they receive from the
environment; suggesting, also, that the drive to criticality comes from functional advantages of
being poised in the vicinity of a critical point.
In particular, this approach describes the environment as a set of information sources each
consisting of an individual from the population under examination; each individual of the
community tries to mimic, i.e. to infer or “understand”, the state of others within a commu-
nity. Under this dynamics, it is possible to observe that the community experiences a drift
toward the critical point of the dynamics, i.e. at the edge between an ordered and disordered
phase. Remarkably enough, this emerging criticality involves a large variability among individ-
uals; indeed, when the system is in the critical regime, it can be observed that small variations
in parameter values are re昀氀ected in large state changes, suggesting, somehow surprisingly, that
individuals aiming at understanding each other in the best possible way end up exhibiting a
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large variability.
In this thesiswewill study and analyzeboth analytically and computationally the circumstances
under which criticality is the best possible outcome of the dynamical process, and eventually
con昀椀rming the convergence to critical points under very generic conditions. More speci昀椀cally,
we will use ideas from information theory and statistical mechanics to build a general frame-
work which shows why and how criticality is the optimal strategies a community of agents
could take in order to overcome e昀케ciently external stimuli. Furthermore, following the ideas
of the paper from 2016 byHidalgo et al. [14], we will investigate also the role of evolutionary
strategy - i.e. evolutionary behaviour that changes the process of information transfer by alter-
ing the way each individual approach its 昀椀tness into the community - exploring whether or not
there’s an one and what consequences it has on the evolution of the system.

The thesis is organized as follows:
In Chapter 1 we will expound on the subject of criticality in statistical mechanics and we will
present the reader with several examples of critical phenomena in biological systems.
In the following Chapter 2 we will introduce the reader a framework to study criticality in liv-
ing systems. In particular, we will describe the model presented by Hidalgo et. al [13] and
extend upon it.
We will then present, in Chapter 3, the results we obtained exploiting this model, focusing in
particular on those obtained computationally from the generalisation of the original model.
In Chapter 4 we study and develop an analytical framework to study both criticality and strat-
egy stability.
Finally, the last chapter will consist of a brief summary of the project, a discussion of our con-
clusions and future developments that this work may open up.
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1
Statistical Physics of Living Systems

One of the biggest questions of our time concerns the understanding of the phenomenon we
call ”life” with all the astonishing diversity and complexity it exhibits. From cells to multicel-
lular organisms based on the perfect coordination of up to trillions of interacting molecules,
to communities of individuals which interact in countless ways, forming entangled and com-
plex ecosystems and giving rise to a hierarchy of complexity, questions such as “how are those
myriads of elements and interactions coordinated together in complex living creatures?” or
“howdoes coherent behavior emerge out of such a soup of highly heterogeneous components?”
(Schrödinger, 1967[15]) rise naturally.
The standard point of view of biology is that eachmolecular component (protein, nucleic acid,
metabolite, etc.) is speci昀椀c and requires individualized analysis. This approach has successfully
identi昀椀ed and quanti昀椀ed most of the components and many of the basic interactions of life as
we know it. Still, unfortunately, it o昀昀ers no convincing explanation of how systemic properties
emerge.
An alternative strategy consists of looking at complex biological problems from a global per-
spective, shifting the focus from speci昀椀c details of the molecular machinery to more collective
behaviours. Systematic approaches to biology rely on the evidence that some of the most fas-
cinating phenomena of living systems, such as memory and the ability to solve problems, are
collective ones, rising from the interactions of many basic units and which might not be re-
ducible to the understanding of elementary components on an individual basis. Theoreticians
have long struggled to explain whether simple and general principles, such as those in physics,
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could be of any help in tackling the complexity in living systems. More speci昀椀cally, they have
long been seduced by the idea of adapting concepts and methods from statistical mechanics to
shed light onto the large-scale organization of interacting living systems.

1.1 Criticality in Equilibrium Systems

The concept of criticality and critical phenomena were born in the 昀椀eld of statistical physics of
equilibrium. When talking about critical phenomena, we refer to certain particular properties
a system exhibits in the proximity of its critical points. These points are generally associated
with scale invariance and the divergence in the derivatives of some thermodynamic potential,
e.g. susceptibility, speci昀椀c heat, etc. Scale invariance and criticality translates into collective
behaviour in many-body systems, which depend only on few aspects, such as dimensionality
and system’s symmetries.
A paradigmatic example is ferromagnets. These exhibit a continuous or second-order phase
transition at a critical temperature Tc belowwhich the orientational symmetry of spins is spon-
taneously broken, i.e., a preferred direction emerges, and progressively more ordered and mag-
netized states emerge as the temperature is lowered. On the other hand, above Tc thermal 昀氀uc-
tuations dominate and the system remains disordered. This change in the collective state is
usually encoded in an order parameter (e.g., the overall magnetization) which measures the de-
gree of order as the phase transition proceeds.
The described symmetry breaking is a collective phenomenon that requires a system-wide coor-
dination for the collective behaviour to emerge. This implies that the correlation length among
individual components needs to span the whole system at criticality. Similarly, when the sys-
tem is becoming incipiently ordered, it is highly 昀氀uctuating in the orientation to be chosen.
Indeed, in the critical regime the system is highly susceptible to external perturbation, for exam-
ple a magnetic 昀椀elds will have little in昀氀uence on the system at both low and high temperatures,
whereas it is at criticality that it shows the greatest response; themagnetic susceptibility reaches
a maximum at the critical point for 昀椀nite-size systems and diverges for in昀椀nite ones.
Given the universality of critical behaviours and their dependencies on only few characteris-
tics,it is possible to use Ising model to describe even more complex systems, without taking
into account small and speci昀椀c details since they do not play an important role in the reaching
of a phase transition. Furthermore, the concepts andmethods developed in the context of equi-
librium systemswere soon extended to time-dependent and non-equilibriumproblems, which
seem to be amore suited approachwhen analyzing living systems, which are dynamical entities
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kept away from thermal equilibrium by permanently exchanging energy andmatter with their
surroundings.

1.2 Non-Equilibrium Phase Transitions

Non-equilibrium phase transitions has a much richer phenomenology than equilibrium phase
transitions, because states lack a universal description in terms of thermodynamic potentials.
From a methodological point of view, this situation results in a large variety of universality
classes without general tools for their characterisation, hence it is not even obvious how to de-
昀椀ne a non-equilibrium phase transition.
For this reason, we limit our overview to directed percolation (DP), which is the prototypical
example (universality class) of a phase transition in the presence of one single absorbing state.
A simple model of such process is represented by a lattice where each site si can be either occu-
pied/active (si = 1) or empty/quiescent (si = 0). An active site can ”infect” a neighboring site
if they are connected by an active bond. This model, called bond percolation, is well studied in
equilibrium statistical physics, where it is known to be equivalent to a Potts model. In practice,
each bond is made active with probability p, and for p larger than some critical value pc there
is an in昀椀nite cluster of active sites spanning the entire system (Fig. 1.1).

Figure 1.1: Typical DP clusters grown from a single seed in 1+1 dimensions below, at and above cri琀椀cality. Below a certain
well‐de昀椀ned threshold p < pc all generated clusters remain 昀椀nite while for p > pc some of the clusters spread in昀椀nitely
over the en琀椀re system. These two phases are separated by a sharp transi琀椀on point at a speci昀椀c cri琀椀cal threshold p = pc

which in the case of bond DP in one space dimension is close to 0.6447

For value of p smaller than the critical threshold pc, the system approaches a con昀椀guration
without any active sites. Such a con昀椀guration, from where the system cannot escape, is called
absorbing. More speci昀椀cally, an absorbing state is a con昀椀guration that can be reached by the
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dynamics but not be left by them. Therefore, DP is said to display a non-equilibrium phase
transition from a 昀氀uctuating phase into an absorbing state or, more concisely, an absorbing
phase transition.
It is instructive to study the average number of active sites ⟨N(t)⟩ (Fig. 1.2). It can be observed
that at the critical value pc, the average number of active sites follows a power law, which is
indicative of the universal behaviour valid in the limit of large times t and for large system sizes.
As in equilibrium statistical mechanics, it turns out that continuous phase transitions in sys-

Figure 1.2: Average number of ac琀椀ve sites ⟨N(t)⟩ as a func琀椀on of 琀椀me t (measured in units of Monte Carlo steps) for
various percola琀椀on probabili琀椀es p. Below the cri琀椀cal threshold the average number of sites ⟨N(t)⟩ 昀椀rst increases un琀椀l it
crosses over to an exponen琀椀al decay. Above the cri琀椀cal point the increase accelerates un琀椀l it crosses over to a linear

increase. Precisely at the cri琀椀cal point p = pc the corresponding curve in the log‐log plot appears to be straight, indica琀椀ng
power‐law behaviour

tems out of equilibrium can be grouped into universality classes which are associated with cer-
tain critical exponents (Table 1.1). As a result of universality, all models exhibiting a phase
transition to an absorbing or quiescent phase share the same set of critical exponents and scal-
ing functions, i.e., the same type of scale-invariant organization, with the DP process.
This turns out to be crucial for analyzing critical phenomena in living systems. Indeed - even
though perfect power laws and divergences can appear only in the in昀椀nite-size limit, not reach-
able in biological problems - thanks to the aftermath of universality, these systems still may
exhibit a progressive transition between order and disorder, which can be characterized by the
existence of a peak in some quantity such as the susceptibility or the correlation length that
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Exponent d = 1 d = 2 d = 3 Mean Field

β 0.276 0.583 0.813 1

ν⊥ 1.097 0.733 0.584 1/2

ν∥ 1.734 1.295 1.110 1

θ 0.314 0.229 0.114
not valid in

theMF regime

Table 1.1: Numerical and mean‐昀椀eld cri琀椀cal exponents for the DP universality class [16]. The exponent β describes the
behaviour of the the density of ac琀椀ve sites asympto琀椀cally, e.g. ρ(∞) ∼ (p− pc)

β . The exponents ν⊥ and ν∥ describe
the divergence of the spa琀椀al (⊥) and temporal (∥) correla琀椀on length close to cri琀椀cality, e.g. ξ⊥ ∼ (p− pc)

−ν⊥ ,
ξ∥ ∼ (p− pc)

−ν∥ . Lastly, θ describe the asympto琀椀c behaviour of the average number of ac琀椀ve sites, e.g.
⟨N(t)⟩ |p=pc

∼ tθ

usually diverges at criticality.

1.3 Self-Organized Criticality

The critical phenomena showed up to now both of equilibrium and of non-equilibrium had
the common feature that the 昀椀ne tuning of a suitable order parameter was necessary in order
to get a critical behavior, characterized by scale invariance. Then, how is it possible that living
systems exhibit signatures of criticality, without the need, apparently, of any parameters’ tun-
ing to settle themselves at the edge of a phase transition?
Interestingly enough, it was discovered in some seminal papers by Per Bak and coworkers at
the end of the 1980s ([17], [18], [19]) that there are driven-dissipative systems that sponta-
neously evolve toward a critical dynamics, characterized by a power-law distribution of relax-
ation events, and this phenomenon does not require the tuning of any parameter, hence it is
named self-organized criticality (SOC) (Fig. 1.3). Since then, several models have been pro-
posed to provide a mathematical theory for a class of phenomena that seems to be everywhere
in nature.
Other studies [4] has shown that a lot of phenomena we observe in living systems could be
traced back to the fact that they seem to calibrate their internal parameters in order to position
themselves in the vicinity of critical points; even more interesting is that this tendency to crit-
icality is found at every scale, from proteins to neural networks rather than 昀氀ocks’ collective
motion or insects behaviour.
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Figure 1.3: The self‐organiza琀椀on‐to‐cri琀椀cality (SOC) mechanism works by establishing a feedback loop between the
dynamics of the ac琀椀vity and that of the control parameter (total accumulated energy, stress, or sand grains) at separated
琀椀me scales. In par琀椀cular, the control parameter itself becomes a dynamical variable that operates in opposite ways

depending on the system’s state: fast dissipa琀椀on (nega琀椀ve force) dominates while the control parameter lies within the
ac琀椀ve phase and by slow driving dynamics (posi琀椀ve force) dominates in the absorbing or quiescent phase. This feedback
self‐organizes the system to the cri琀椀cal point of its second order phase transi琀椀on if the separa琀椀on between slow and fast

琀椀me scales is in昀椀nitely large and the dynamics is conserva琀椀ve. Otherwise, the system is just self‐organized to the
neighborhood of the cri琀椀cal point with excursions around it, i.e., self‐organized quasi‐cri琀椀cality [20].

This apparent ubiquity of critical phenomena in living systems could hide the existence of a
much more general principle on which the behavior of such systems is based.

1.4 Advantages of Criticality

Wediscussed several aspects concerning the emergence of criticality in living systems. However,
why a living system would want to position itself at criticality? We want, now, to explore what
are the possible advantages of criticality that living systems could exploit to enhance their per-
formance.
One important feature that systems at criticality displays is the emergence of large correlation
length. Interacting living systems exploit this characteristic of criticality in order to create co-
ordinated and collective behaviour of individual agents across space and time. This has been
shown to be relevant in systems where coordination and coherence across extended areas is
essential, for example in neural systems [21], 昀氀ocks of birds [2] and micro-organism colonies
[22]. Furthermore, the emergence of very large correlation times and a critical slowing down
provide a useful mechanism for the generation of long-lasting and/or slow-decaying memories
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at multiple time scales [23].
Moreover, living systems need to perceive and respond to a whole plethora of signal coming
both from the environment and from internal interactions between individual; they sponta-
neously generate complex patterns in order to store highly diverse and detailed pieces of infor-
mation. The successful constructionof these patterns, which extract, summarize, and integrate
relevant information [24], provides a crucial competitive advantage,which can eventuallymake
the di昀昀erence between survival and extinction. The variability of possible spatio-temporal pat-
terns is maximal at criticality, this may allow living systems to exhibit a large repertoire of dy-
namical responses, optimal transmission and storage of information and high sensitivity to en-
vironmental changes ([23], [25], [26]).
Another remarkable feature of living systems is their extraordinary ”computational power”. It
was conjectured long ago that this property could actually be the 昀椀ngerprint of collective be-
haviour, emerging out of large number of simple components coming together. First suggested
by Turing [27] and Ashby [28] and then further developed in the context of machine learning,
networked systems operating at criticality could manifest high computational power. Being
at the border between an ordered an a disordered phase constitutes an excellent compromise
between between information storage and information transmission, two key ingredients for
universal computing machines. Other studies have corroborated that the overall transmission
of information between units in a network, as measured by diverse indicators, is maximal if the
underlying dynamical process is critical ([29] [30] [31] [32]).
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2
Framework for Criticality in Living Systems

Wewant now to present a framework [13] for understanding how self-tuning to criticality can
arise in living systems. Unlike models of self-organized criticality (Section 1.3) in which some
inanimate systems are found to become critical in a mechanistic way, we will focus on a more
general adaptive or evolutionary mechanisms, speci昀椀c to biological systems. It is interesting to
think that the drive to criticality could actually arise from functional advantages of being in the
vicinity of a critical point.
Exploiting general ideas from statistical mechanics and information theory, we want to intro-
duce a quantitative framework showing that self-tuning to criticality is a convenient strategy
adopted by living system in order to e昀昀ectively deal with the complex external world or the
internal interactions within individuals. Accordingly, if an individual best model the signals it
receives, it will have a better chance of surviving.
To provide some further intuition, let us consider these individuals as having a gene (or neural)
regulatory network that represents the internal con昀椀guration with which they can respond to
external signals by modifying the expression of their genes (neurons). The environment can
thus be described as one or more sources of signals that will be perceived and processed by an
individual, or one can consider the environment as a community of mutually interacting indi-
viduals. Without loss of generality, we assume the state of these gene network to be controlled
by some parameters which completely determines the probability distribution of the individ-
ual’s internal con昀椀gurations. Each individual will then attempt to modify its con昀椀guration in
order to best model the signals coming from environmental sources or from other individuals.
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As we shall see, by associating a dynamic that gives a more suitable individual a greater chance
of survival, the population will evolve by bringing the parameters that de昀椀ne the internal con-
昀椀gurations of individuals close to a critical point.

2.1 EvolutionaryModels

Let us consider a community ofM individuals which are receiving and elaborating with exter-
nal signals. Each one of them is characterized by a set ofN internal variables that, for simplicity,
we assume to take binary values. Therefore, the state of each single individual is completely
portrayed by the string s = (s1, . . . , sN) ∈ {0, 1}N . A speci昀椀c external source could be
modeled by a probability distribution Pext, which we assume depending on a set of parame-
ters x = (x1, x2, . . . xd). In order to best understand and interpret the source, an individual
will therefore have to modify its internal con昀椀guration in order to approximate the Pext dis-
tribution. This is achieved by changing its internal state, contained in a second probability
distribution function,Pint, speci昀椀ed by a di昀昀erent set of parametery = (y1, y2, . . . yd) aimed
at capturing the essential features ofPext in the most e昀케cient way. We will denote the external
source and its internal representation by Pext(s|x) and Pint(s|y) respectively.

Figure 2.1: Living systems interac琀椀ng with the environment. In panel A the biological systems cope with the external
source by approxima琀椀ng its internal representa琀椀on Pint(s|y) to the environmental source. In this case, Psrc(s|x) is the
best con昀椀gura琀椀on of the variables s in order to e昀케ciently deal with the environment. In panel B, the environment consists

of mul琀椀ple sources and the individual’s internal con昀椀gura琀椀on must adapt to all of them. In panel C, the environment
consists of the other individuals in the popula琀椀on, each of them is as source Psrc,i for the others [13].

For the purposes of this dissertation, we will discuss only the case in which the environment
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consists of the other individuals in the population, hence individuals try to imitate as much
as possible the state of each other. Moreover, let us emphasize that the framework introduced
consists in a rather sketched idealization of speci昀椀c biological systems, which aims at generality
rather than speci昀椀city. However, to get a better grasp on the usefulness of this framework, one
could think of processes that require (or bene昀椀t from) a collective response at the community
level, e.g. community of bacteria inwhich individuals are sensitive and responsive to each other
and recon昀椀gure their internal state in order to behave similarly to others.

2.1.1 Mathematical Tools

Before proceeding we brie昀氀y recall two basic concepts of information theory: the Kullback-
Leibler divergence and the Fisher information.
The Kullaback-Leibler (KL) divergence allows for quantifying the di昀昀erence between two
probability distributions. For instance, given the parameter sets x and y characterizing two
probability distribution, the KL divergence from the second distribution to the 昀椀rst is de昀椀ned
as

DKL(x,y) := D(P (·|x), P (·|y)) =
〈

log
P (·|x)
P (·|y)

〉

x

(2.1)

where the average ⟨·⟩
x
is taken over P (·|x). Eq. 2.1 measures the de昀椀cit of information when

P (s|y) is used to approximate P (s|x). It is essential to notice that the KL divergence consti-
tutes a pseudo-distance, as it does not obey the triangle inequality, and is not symmetric as in
generalDKL(x,y) ̸= DKL(y,x), except in the case in which both distribution are identical
(in which case the divergence vanishes).
The Fisher Information (FI) is a measure of how distinguishable is a (昀椀nite) dataset extracted
from a probability distribution from another one obtained with slightly di昀昀erent parameter
values. For example, there could be a region inx space in whichP (s|x) aremostly invariant as
we change x, while in another regions the distribution could be highly sensitive to parameter
changes. The FI is de昀椀ned as

χαβ(x) :=

〈
∂ logP (·|x)

∂xα

∂ logP (·|x)
∂xβ

〉

x

(2.2)

for α, β = 1, . . . , d. Following the Cramér-Rao inequality, which states that the error made
whenwe estimatex fromone state s is, on average, greater than (or at least equal to) the inverse
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of the Fisher information, if χ happens to diverge at some point, it is possible to specify the
associated parameters with maximal precision. It is not surprising that the FI exhibits a peak at
critical points.
Indeed, without loss of generality, we can parametrize the internal probability distribution of
individuals as:

P (s|x) = exp{−x · φ(s)}
∑

s′
exp{−x · φ(s′)} (2.3)

whereφ = (φ1, φ2, . . . ) are the functions of the internal con昀椀guration andx·φ =
∑

α xαφα.
In particular, if φ1(s) =

∑N
i<j sisj/N the internal state of each individual corresponds to a

mean-昀椀eld Ising model at some temperature. With this parametrization, the Fisher informa-
tion is the generalized susceptibility in the statistical mechanics terminology

χαβ(x) = −∂ ⟨φα⟩x
∂xβ

= ⟨φαφβ⟩x − ⟨φα⟩x ⟨φβ⟩x (2.4)

which measures the response of the system to parameter variations and is well known to peak
at critical points.

2.1.2 Co-evolutionaryModel

The Coevolutionary model consists of a community of M individuals aiming at having an in-
ternal distribution as similar as possible to the other, as to say that the environment is made
up of the otherM − 1 individuals of the community. The Kullback-Leibler divergence of an
individual with respect to the others quanti昀椀es the individual’s understanding of the environ-
ment, i.e each individual aim at optimizing the information de昀椀cit they have from the rest of
the community. Each individual agent is characterized by an internal state (probability distri-
bution function) parametrized as in Eq. 2.3. All individuals are identical in principle, but they
may di昀昀er in their parameter values.
The dynamics proceeded by randomly selecting at each time step a pair of agents i and j; since
the KL in not symmetric, one of the two agents will have a larger 昀椀tness, which translates in a
higher probability of generating a progeny, due to its informational advantage. On the other
hand, the less 昀椀t agent is more likely to die and be removed from the community, while the
昀椀ttest one generates an o昀昀spring that inherits its parameter values, with some small mutation.
This process is then iterated in time, de昀椀ning a genetic algorithm. After a su昀케cient amount
time the output of this dynamics turns out to be that the community of agents evolve to have
intrinsic parameters located around the corresponding critical point.
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It is made the assumption that the 昀椀tness just mentioned is proportional to a decreasing func-
tion of the KL divergence between the internal distribution of agent i,Pi(s|x), and the one of
agent j,Pj(s|y); namely it is made the assumption that an individual is the 昀椀ttest if it is able to
understand the surrounding environment better than others, i.e. if it makes a minimal error in
approximating the distribution of other individuals with its own internal distribution. Given
this assumption, the relative 昀椀tness of individual i, whose internal distribution depends on x,
with respect to individual j, whose internal distribution depends on y, is de昀椀ned as

f
(j)
i := 1− DKL(y|x)

DKL(x|y) +DKL(y|x)
(2.5)

and similarly for the opposite case, f (i)
j . Indeed, reviewing Eq. 2.5, it is easy to see that for

DKL(y|x) < DKL(x|y) - which, by de昀椀nition, means that i imitates j better than vice versa
- one 昀椀nds f (j)

i > f
(i)
j , hence that i is the 昀椀ttest.

As a remark, it is worth pointing out that even though community in which each individual
is characterized by the same parameter x seems to be maximally adapted - since the KL diver-
gence goes to zero for x = y and each individual would then be able to represent the group
without any loss of information - it is not a stable solution. Indeed, if the two parameters are
not identical but close, the di昀昀erence between their respective KL divergences from each to the
other is (see Appendix A)

DKL(x+ δx|x)−DKL(x|x+ δx) ≃ 1

6
∇χ(x)δx3 (2.6)

This implies that the individual whose parameters correspond to the state with larger χ has a
smaller KL divergence and, hence, is 昀椀tter. However, as said in Sec. 2.1.1,χ peaks at the critical
point, and thus for a family of individuals with similar parameters, the 昀椀ttest possible agent sits
exactly at criticality.

2.1.3 GeneralizedModel

We nowwant to generalise the dynamics described in the previous section by introducing into
the model a new parameter ν that will be called ”strategy”. With the introduction of this new
parameter we want to study the dynamics of individuals who give some weight to both their
own loss of information and that of others, to a greater or lesser extent. In order to achieve this,
we use the parameter ν to de昀椀ne a new (pseudo-) distance as a function of the KL divergence,
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namely the distance of i from j is

Dνi(y|x) := (1− νi)DKL(y|x) + νiDKL(x|y) (2.7)

where x and y are the parameters on which the internal distribution of i and j, respectively,
depend and νi ∈ [−1/2, 1/2] is the strategy of individual i. Conversely, this leads to a slightly
modi昀椀ed version of the 昀椀tness, which takes into account also the strategies of the two individ-
uals, that is

f
(j)
i := 1− Dνi(y|x)

Dνj(x|y) +Dνi(y|x) (2.8)

In order to better understand themeaning ofDν it may be useful to exploit some key values of
ν.
For instance, the most trivial value is ν = 0, since it gives back the usual KL divergence

Dν=0(y|x) = DKL(y|x) := Dcomp(y|x). (2.9)

Individuals which adopt this strategy will be called Competitors since they behave as if they
are trying to compete with each others by trying to minimize their loss of information.
Another interesting case is for ν = 1/2 which leads to a symmetrized anologous of the KL
divergence, i.e. the Jensen-Shannon (JS) divergence [33]

Dν=1/2(y|x) = DKL(y|x) +DKL(x|y)
2

:= Dneutr(y|x). (2.10)

Individuals which adopt this strategy will be calledNeutrals since they try to minimize both
their and others’ loss of information. Moreover, following from Eq. 2.8, two neutral agents
will always have relative 昀椀tnesses of 1/2, meaning neither of them prevails over the other.
Lastly, for ν = −1/2 the new generalized distance takes the following form:

Dν=−1/2(y|x) = 3DKL(y|x)−DKL(x|y)
2

:= Daggr(y|x). (2.11)

Individuals which adopt this strategy will be calledAggressive Competitors since they try to
strongly minimize their loss of information, while maximizing others’.
With this generalized model we will try to provide answers to some questions that arise from a
game-theory perspective: what is the best strategy for individuals: to be aggressive, to compete,
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or just to be neutral? What occurs if we take the optimal strategy for any speci昀椀c case and intro-
duce a small amount of individuals with di昀昀erent strategies? Is the previous optimal strategy
still stable? What happens if we introduce mutations in the strategy?

2.2 Evolutionary Stability

In evolutionarymodels selection happens because the 昀椀tness of an individual is simultaneously
in昀氀uenced by its own strategy, the strategies of others, and other features of the environment.
Maynard Smith & Price (1973) [34] considered the fate of a rare mutant or invader playing
against some resident population. For evolutionary stability, they suggest “a strategy such that,
ifmost of themembers of a population adopt it, there is no ‘mutant’ strategy thatwould give higher
reproductive 昀椀tness”.
Resistance to invasion, however, is a static concept. It guarantees that a population monomor-
phic for an invasion resistant strategy canmaintain its position against a rare invader, but it says
nothing about what would happen if the population starts at a nearby point. An additional
concept, known as convergence stability, is needed to fully characterize the evolutionary stabil-
ity of strategies. When talking about convergent stable strategies, we refer to strategies towhich
the system returns after any perturbation that is small enough.
In game theory, the key aspect is examining the 昀椀tness of a rare mutant, ν ′, playing against the
strategy 昀椀eld created by a monomorphic population for ν. An Evolutionarily Stable Strategy
(ESS) is one that is its own best response. At an ESS an individual maximizes its 昀椀tness by
playing the same strategy as the population, which makes an ESS resistant to invasion by rare
alternative strategies. Adaptive dynamics extends the static nature of game theory by exploring
the dynamic processes that lead a population to evolve toward an ESS. Surprisingly, evolution
can lead to 昀椀tness minima as well as maxima being evolutionary repellors. Adaptive dynamics
highlights the importance of convergence stability (being an evolutionary attractor).
These two types of stability are completely independent from each other, conversely a station-
ary strategy ν∗ may exhibit one of four possible outocomes (McGill & Brown 2007 [35]): (1)
resistant to invasion and convergent stable, (2) resistant to invasion and not convergent stable,
(3) invadable and convergent stable, and (4) invadable and not convergent stable.

• ESS: Outcome (1) is de昀椀ned as Evolutionary Stable Startegy (ESS). This means the ESS
is an uninvadable 昀椀tness maximum and convergent stable.

• Branching point: The term branching point describes outcome (3) where a strategy is
both a 昀椀tness minimum and convergent stable. Populations may evolve to these branch-

17



ing points and then under the right conditions diverge into two separate populations or
species with distinct strategies.

• Repelling points: Outcomes (2) and (4) are not convergent stable. Evolution will not
move strategies to these repelling points.

If we want to mathematically formalise these concepts we need to start from the invasion
昀椀tness function f(ν ′, ν) describing the long-term per capita growth rate of a rare mutant type
ν ′ in a resident population that is monomorphic for trait value ν. The adaptive dynamics of
the trait ν is then given as a gradient dynamics of the invasion 昀椀tness function and described
by the canonical equation [36]

ν̇ =
∂f(ν ′, ν)

∂ν ′

∣
∣
∣
∣
ν′=ν

(2.12)

The partial derivative with respect to the mutant trait is evaluated at the resident trait. Equilib-
rium points of the adaptive dynamics are then given as points ν∗ in phenotype space at which
the selection gradient vanishes, i.e., points satisfying

∂f(ν ′, ν∗)

∂ν ′

∣
∣
∣
∣
ν′=ν∗

= 0 (2.13)

The condition for convergence stability of the singular point, i.e., for local stability of an equi-
librium of the dynamical system, is given by

d

dν

[
∂f(ν ′, ν)

∂ν ′

∣
∣
∣
∣
ν′=ν

]∣
∣
∣
∣
ν=ν∗

=
∂2f(ν ′, ν)

∂ν∂ν ′

∣
∣
∣
∣
ν′=ν=ν∗

+
∂2f(ν ′, ν)

∂ν ′2

∣
∣
∣
∣
ν′=ν=ν∗

< 0 (2.14)

Similarly, the condition for resistance to invasions of a singular point translates into the fact
that the invasion 昀椀tness function f(ν ′, ν∗) has, as a function of ν ′, a maximum at ν∗, hence

∂2f(ν ′, ν)

∂ν ′2

∣
∣
∣
∣
ν′=ν=ν∗

< 0, (2.15)

for in that case no mutant trait in the vicinity of the singular point has a higher growth rate
than the singular trait value itself.
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3
Individual BasedModel and Results

3.1 Computational Approach

We start by describing the core of the computational approach - based on the Coevolutionary
model (Sec. 2.1.2) and its generalised version (Sec. 2.1.3) - used to perform numerical simula-
tions of a community of individuals.
The kth agent of the community is described by a probability distribution

P (s|xk) ∝ exp
{
−Hint(s|xk)

}
, (3.1)

with Hint(s|xk) =
∑

α x
k
αφα(s), depending on parameters xk. Starting with an ensemble

ofM agents whose internal parameters are extracted from an arbitrary distribution, p(x), two
individuals, i and j, are randomly selected at each time step. Their relative 昀椀tnesses are com-
puted following Eq. 2.5 when dealing with the standard Coevolutionary model or Eq. 2.8 for
the generalized version of it. One of the two individuals - selected with probability equal to its
relative 昀椀tness - creates an o昀昀spring, while the other one is removed from the community.
The o昀昀spring inherits its parameters from its ancestor (with probability 1−δ) ormutates with
a probability δ, modifying its parameters from x to x → x + ξ, where ξ is a multivariate
Gaussian random vector, with uncorrelated components, zeromean, and deviationσ. Indeed,
in general, a genetic algorithm is characterised by two elements: a mechanism ofmutation that
generates varieties in the population and a selection mechanism which favours some varieties
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over others.
Regarding the strategy adopted by individuals in the generalised model, we will be exploring
two scenarios: one in which the strategy is 昀椀xed, meaning that the o昀昀spring will inherit the
same strategy of its ancestor and one in which we allow strategy to mutate during the dynam-
ics from ν to ν → ν + ξ, where ξ is a Gaussian random variable with zero mean and deviation
σν .
Time is, then, updated to t → t+ dt, another couple of individuals i′ and j′ is picked, and the
process is iterated.
De昀椀ned a systematical algorithm, we can now move on to the choice of a parametrization for
the individuals’ internal distribution. In particular, we look for a parametrization that would
allow us to quickly identify whether or not the system is in a critical regime. A very simple, yet
with a very interesting phenomenology, corresponds to the (zero-昀椀eld) Ising mean-昀椀eld model
parametrization

P (s|x) ∝ exp

{

x
N∑

i<j

sisj
N

}

. (3.2)

which has the advantage of having just only one free parameter x = x (usually interpreted as
the inverse temperature). We could further simplify the parametrization by assuming that indi-
viduals could only take two states, Up andDown, therefore having, respectively, the following
probability distributions

Pup(x) =
1 + tanh ax

2
, Pdown(x) =

1− tanh ax

2
(3.3)

where a is an arbitrary parameter purposely added to control the sharpness of the Fisher Infor-
mation (see Fig. 3.1) which, in this parametrization, is

χ(x) =
a2

cosh2 ax
(3.4)

and has a peak at x∗ = 0.
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Figure 3.1: Plot of the two internal distribu琀椀ons, Pup(x) (le昀琀) and Pdown(x) (middle), and the F.I., χ(x) (right),
associated to the parametriza琀椀on used for di昀昀erent values of the sharpening parameter a. Higher values of the parameter

a translates in a sharper peak at x∗ = 0 of the Fisher Informa琀椀on.

3.2 Simulations Results

As a 昀椀rst step, we want to reproduce the results obtained by [13] for the parametrization intro-
duced. We considered a population ofM = 1000 individuals (all competitors) characterised by
an internal distribution controlled by the parameterx at the beginning selected from a random
uniform distribution over [0.5, 1.5), far from the critical point. At each time step two individ-
uals were selected at random and made to clash. One of the two individuals is then removed
with a probability proportional to the loss of information that one has in approximating the
distribution of the other. The removed individual is then replaced with another individual
with the parameters of the winner. In order for variety to be generated, the parameters of the
”new” individual undergo a mutation process characterized by a mutation rate δ and a Gaus-
sian noise with zero mean and standard deviation σ. In this setting, the population converges
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rapidly (see Fig. 3.2) to an equilibrium parameter xc = 0which corresponds to the peak of the
generalised susceptibility of this system (i.e, to a critical point).

Figure 3.2: Dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on ofM = 1000
individuals (all compe琀椀tors) for a period of 琀椀me tf = 100 and 琀椀me‐step dt = 5e− 4. The o昀昀spring generated at each
琀椀me‐step mutates with a rate δ = 0.7 and Gaussian noise with zero mean and standard devia琀椀on σ = 0.05. Each line

represent a di昀昀erent run of the dynamics with the same ini琀椀al condi琀椀ons.

3.2.1 Fixed Strategy

The new generalised de昀椀nition of 昀椀tness (Eq. 2.8) let us explore the role of the strategy adopted
by individuals. We 昀椀rst simulate a system that has the same characteristics as the one described
above, but in which all individuals are neutral (i.e. ν = 1/2).
It is evident from the computational simulation (Fig. 3.3) that, while the competition attracts
the population towards the critical point, the evolution over time of neutral agents is purely
random (random walk). Indeed, the relative 昀椀tnesses of two neutral individuals is completely
independent of their parameters and, speci昀椀cally, is always identically equal to 1/2. Conse-
quently, being ”equally 昀椀t” in the process of mutual/collective understanding, one of the two
individuals is selected at random and the dynamic does not lead to any critical point.

The other extremal case, i.e. ν = −1/2 or as we’ve named it ”aggressive competition”, shows
similar features to the competitive (ν = 0) case; a population of individuals in which all of
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Figure 3.3: Dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on ofM = 1000
individuals (all neutrals) for a period of 琀椀me tf = 100 and 琀椀me‐step dt = 5e− 4. The o昀昀spring generated at each

琀椀me‐step mutates with a rate δ = 0.7 and Gaussian noise with zero mean and standard devia琀椀on σ = 0.05. Each line
represent a di昀昀erent run of the dynamics with the same ini琀椀al condi琀椀ons.

them adopt an aggressive competition strategy is attracted towards a critical point correspond-
ing to the peak of the generalised susceptibility of the system. The only di昀昀erence that emerges
between this two strategy (competition and aggressive competition), at this level of analysis, is
the velocity with which they converge to criticality. A population of aggressively competitive
individuals seems to converge faster to criticality than a population of competitive individuals.

In order to better understand the signi昀椀cance of competition (or aggressive competition) as
an evolutionary argument, we start by studying a population of neutral agents ”infected” by a
small fraction of competitive individuals. Since we are interested in understanding the e昀昀ect
of competition on the criticality of the system and not, for the moment, on whether or not
of having di昀昀erent types of strategy in the population coexisting at once, we’ve decide that
the o昀昀spring inherit the exact strategy of its ”parent”, hence favouring the optimal strategy to
proliferate. Indeed, even though neutral agents outnumber competitive individuals in the pop-
ulation we are considering, we shall assume that competition eventually takes over the whole
population in this case, since as showed above competition actually leads the system to critical-
ity.
As a matter of fact, this is exactly what we see in Fig. 3.4. The left panel tells us that the pop-
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Figure 3.4: Dynamics of the parameter’s average µ and varianceK (le昀琀 panel) and of the number of compe琀椀琀椀ve agents
NC (right panel) in a popula琀椀on ofM = 1000 individuals, 10% of which are compe琀椀琀椀ve and the rest are neutral ones at

the start of the dynamics. The system is simulated for a period of 琀椀me tf = 100 and 琀椀me‐step dt = 5e− 4. The
o昀昀spring generated at each 琀椀me‐step mutates with a rate δ = 0.7, Gaussian noise with zero mean and standard devia琀椀on
σ = 0.05 and inherit the strategy parameter ν from its ”parent” without any muta琀椀on. Each line represent a di昀昀erent run

of the dynamics with the same ini琀椀al condi琀椀ons.

ulation eventually converges to a critical point even though, as we’ve seen above, the neutral
strategy doesn’t lead to convergence. The right panel tells us why this happens: as the system
evolves in time competition as a strategy takes over until all individuals adopt it as their strategy.
Still, agents inherit the strategy parameter ”rigidly” and it was limited to only 3 values up until
now. In the next Sectionwe let ν span thewhole interval it is de昀椀ned in and let itmutates during
the dynamics in order to possibly 昀椀nd an optimal strategy.

3.2.2 StrategyMutation

Until now, we have considered discrete dynamics for the strategy ν. In order to understand
better whether it exist a preferable strategy we let ν change in a continuous way by introducing
mutations on the strategy parameter during the evolution of the system. We infer that muta-
tions in the strategy of an individual are less likely then mutations of the internal parameter,
hence we assume that the events mutation in the strategy follow a Poisson process, namely

Pn(t) =
(λt)n

n!
e−λt (3.5)
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where n is the number of such events (mutation in ν) that occur during a 昀椀xed time interval t,
and λ ∈ [0, 1] is the rate at which these events occur.
Even though the number of occurrence of events is modeled using a discrete Poisson distribu-
tion, the interval of time between consecutive events can be modeled using the Exponential
distribution, which is a continuous distribution.
Wedo this byusing the Inverse-CDF technique, inwhichwe literally construct the inverse func-
tion of the CDF, and feed it di昀昀erent probability values from a Uniform(0, 1) distribution

F−1
n (u) = − ln(1− u)

λ
(3.6)

After 昀椀nding the time steps at which we have an event mutation in ν, we run the simulation
and at those time steps the o昀昀spring inherits a ν form its parent that is ν → ν + δν, where
δν ∼ N (0, σ2

ν). Moreover, in order to ensure the value of ν remains in the domain in which
we have de昀椀ned the generalized distance (Eq. 2.7), we impose re昀氀ecting boundary condition
on ν.

Figure 3.5: Dynamics of the parameter’s average µ (le昀琀 panel) and varianceK (right panel) in a popula琀椀on ofM = 5000
individuals, 10% of which are aggressively compe琀椀琀椀ve and the rest are neutral ones at the start of the dynamics. The

system is simulated for a period of 琀椀me tf = 300 and 琀椀me‐step dt = 0.001. The o昀昀spring generated at each 琀椀me‐step
mutates with a rate δ = 0.7, Gaussian noise with zero mean and standard devia琀椀on σ = 0.05 and inherit the strategy
parameter ν from its ”parent” with a Poisson muta琀椀on process with λ = 0.1 and σν = 0.02. Each line in the le昀琀 panel

represent a di昀昀erent run of the dynamics with the same ini琀椀al condi琀椀ons.

We start by simulating a similar system to the one discussed in the previous section with a pop-
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ulation composed mainly by neutral individual with a small percentage of aggressive ones. It
is important to notice that for these simulations we’ve increased the number of individuals in
the population in order to rule out possible 昀椀nite size e昀昀ects in the dynamic of the strategy.
A very small fraction of competitors is su昀케cient for the population dynamics, with time de-
creasing as the number of competitors/aggressive competitors increases, to make the system
tend towards its critical point again (see Figure 3.5); in fact, if an individual with a more neu-
tral strategy is in a state characterised by a parameter x closer to criticality than an individual
with amore competitive strategy with parameter x0 , i.e. with xc < x < x0, it will be favoured
by the dynamics and this type of clash will in any case attract the population towards a critical
point, albeit more slowly than a competitor-competitor clash. Furthermore, in Figure 3.6 it is
clear that the population is drawn towards more aggressive strategies. In particular, the 昀椀nal
distribution of strategies peaks at ν = −1/2which is what we’ve called aggressive competition.

Figure 3.6: Dynamics of the strategy’s average µ (le昀琀 panel) and the 昀椀nal distribu琀椀on of strategies across the popula琀椀on
(right panel) in a system withM = 5000 individuals, 10% of which are aggressively compe琀椀琀椀ve and the rest are neutral
ones at the start of the dynamics. The system is simulated for a period of 琀椀me tf = 100 and 琀椀me‐step dt = 5e− 4.
The o昀昀spring generated at each 琀椀me‐step mutates with a rate δ = 0.7, Gaussian noise with zero mean and standard

devia琀椀on σ = 0.05 and inherit the strategy parameter ν from its ”parent” with a Poisson muta琀椀on process with λ = 0.1
and σν = 0.02. Each line in the le昀琀 panel represent a di昀昀erent run of the dynamics with the same ini琀椀al condi琀椀ons. The

昀椀nal distribu琀椀on of strategies is taken form the last 10 琀椀me‐steps of the dynamics

Evenmore remarkable are the results for a population startedwith auniformdistributionof the
strategies Fig. 3.7. The dispersion in the distribution of the strategies is a little bit higher than
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in the previous case, however we can con昀椀dently say that the population is attracted toward a
con昀椀guration in which individuals play aggressively between each other.

Figure 3.7: Dynamics of the strategy’s average µ (le昀琀 panel) and the 昀椀nal distribu琀椀on of strategies across the popula琀椀on
(right panel) in a system withM = 5000 individuals with uniform strategies distribu琀椀on at the start of the dynamics. The
system is simulated for a period of 琀椀me tf = 100 and 琀椀me‐step dt = 5e− 4. The o昀昀spring generated at each 琀椀me‐step
mutates with a rate δ = 0.7, Gaussian noise with zero mean and standard devia琀椀on σ = 0.05 and inherit the strategy
parameter ν from its ”parent” with a Poisson muta琀椀on process with λ = 0.1 and σν = 0.02. Each line in the le昀琀 panel
represent a di昀昀erent run of the dynamics with the same ini琀椀al condi琀椀ons. The 昀椀nal distribu琀椀on of strategies is taken form

the last 10 琀椀me‐steps of the dynamics
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4
Analytical Model and Results

We’ve now presented mostly computational results, even if some heuristic understanding was
also provided. Our 昀椀rst goal now is to construct a version of the individual based model that,
while leaving intact the main phenomenology allows for analytical treatment.
Here we discuss both an already known model from the literature as well as an original one,
stressing their similitudes and di昀昀erences. Both models consist of a community of M indi-
viduals aiming at having an internal state/distribution as similar as possible to the others, as
quanti昀椀ed by their KL divergences to other individuals, i.e. aiming at optimizing the infor-
mation they have from the rest of the community, i.e. at minimizing its information de昀椀cit.
In both cases, individual agents are characterized by an internal state (probability distribution
function) parametrized as described in the previous Chapter. All individuals are identical in
principle, but they may di昀昀er in their parameter values.

4.1 Heuristic AdaptiveModel

This model, introduced by Hidalgo et. al [14], is not an evolutionary one, in the sense that
agents do not die nor reproduce. Instead it is an adaptive one in which agents slightly change
their parameters trying to enhance their 昀椀tness.
Each agent i is modelled by its position in parameter space xi. It experiences an adaptive force
which is a function of its information-de昀椀cit respect to the other agents, plus some stochastic
noise and that can be written as the derivative of some (pseudo-) potential, V . In particular,
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the adaptive model is de昀椀ned by means of the set of Langevin equations

ẋi =
1

M

M∑

j=1

F (xj,xi) +
√
2Tηi(t), (4.1)

for i = 1, . . . ,M , where

F (xj,xi) = −∇xiV (D(xj,xi)) (4.2)

is the force that an individual agent j produces on an agent i.
The 昀椀rst term on the r.h.s. of Eq. 4.1 is the averaged force acting upon agent i, which points in
the direction of the potential gradient. It is important to note that, in general, V is a pseudo-
potential and not a true potential, because, due to the asymmetry of the KL divergence,D, the
forces in Eq. 4.1 do not obey the potentiality (Schwarz) condition. Still, even in such cases, the
force can be de昀椀ned as the derivative of such a pseudo-potential. The second term in Eq. 4.1
represents a thermal noise where

√
2T modulates the noise amplitude and ηi is a white noise

with
〈
ηiα(t)η

j
β(t

′)
〉
= δijδαβδ(t− t′) (i, j = 1, . . .M and α, β = 1, . . . , d).

Lastly, to complete the model de昀椀nition we need to specify functional form of the pseudo-
potential V (D(xj,xi)). The main constraint we need to impose is that V has to increase
monotonically with D (i.e. V ′(D) ≥ 0 ∀D ≥ 0) in order to guarantee that the dynamical
process, which converges to minima of V , leads also to minimal values of the KL divergence.
In this way, at each time step, each agent i changes its parameters, xi , in the direction of the
gradient of V , with some added stochasticity. Here we restrict our analysis to the case of a con-
vex potential V ′′(D) > 0 (seeHidalgo et. al [14] Appendix A for more insights).
Moreover, to account for all the di昀昀erent strategies presented in Section 2.1.3, we can rede昀椀ne
the potential (and conversely the forces) between individuals i and j as a linear combination of
their respective information-de昀椀cits. We will consider two types of strategy dependent poten-
tials: the oneused in [14] andonewith a de昀椀nition similar to the onewe gave for the generalized
distance 2.7, which are respectively

V ν
(1)(x

j,xi) = V (D(xj,xi)) + (2ν − 1)V (D(xi,xj)) (4.3)

V ν
(2)(x

j,xi) = (1− ν)V (D(xj,xi)) + νV (D(xi,xj)) (4.4)

where, for the 昀椀rst, the parameter ν ∈ [0, 1] tunes the interaction from aggressive competition
(ν = 0) to neutralism (ν = 1), including the intermediate competitive case (ν = 1/2). The
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strategy parameter ν could be seen as a ”symmetry coe昀케cient” as, V ν=0
(1) and V ν=1

(1) are anti-
symmetric and symmetric functions, respectively, under the exchange i ↔ j. For the second
de昀椀nition the parameter ν ∈ [−1/2, 1/2] tunes the interaction from aggressive competition
(ν = −1/2) to neutralism (ν = 1/2), including the intermediate competitive case (ν = 0).
In this case the strategy parameter ν weight the respective information-de昀椀cits of i and j.
Having speci昀椀ed the shape of V and thus the model, the question is: where does the commu-
nity evolve to as a consequence of this information-based dynamics and does it have similar
stationary behaviour as the evolutionary model described the previous Chapter? In the next
section we present a mathematical approach to compute the attractors of the dynamics in the
space of parameters x.

4.1.1 Community Dynamics

Retracing the steps followed byHidalgo et al. [14], we begin by analyzing the evolution of the
distribution of agents in parameter space, de昀椀ned as

ρ(x, t) =
1

M

M∑

i=1

δ(xi(t)− x) (4.5)

Following the method proposed by Dean in [37] which allows us to derive an equation for
∂tρ(x, t) from Eq. 4.1, we are lead to the following equation for the probability distribution

∂tρ(x, t) = −∇x ·
(

ρ(x, t)

∫

dy ρ(y, t)F ν(y,x)

)

+ T∇2
x
ρ(x, t)+

+

√

2T

N
∇x ·

(√

ρ(x, t)ξ(x, t)
)

(4.6)

where ξ(x, t) is a new Gaussian noise with zero mean and correlation ⟨ξα(x, t)ηβ(x′, t′)⟩ =
δαβδ(x − x′)δ(t − t′) (i, j = 1, . . .M and α, β = 1, . . . , d), interpreted in the Ito’s sense.
In the limit N → ∞, Eq. 4.6 becomes deterministic, and we 昀椀nd an equation for ρ(x, t),
which, roughly speaking, is a sort of non-linear Fokker-Planck equation inwhich the drift term
depends on the distribution ρ itself.
Employing Eq. 4.6 it is possible to derive a set of deterministic equations for the evolution of
its moments forN → ∞. The meanµ(t) =

∫
dx ρ(x, t)x can be obtained multiplying Eq.
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4.6 by x and integrating by parts:

µ̇α =

∫

dx ρ(x, t)

∫

dy ρ(y, t)F ν
α (y,x) (4.7)

whereα = 1, . . . , d. Similarly, for the covariancematrix, de昀椀ned asKαβ(t) =
∫
dx ρ(x, t)(xα−

µα(t))(xβ − µβ(t)), we 昀椀nd

K̇αβ = 2Tδαβ +
d∑

γ,ε=1

(δαγδβε + δαεδβγ)

∫

dx ρ(x, t)(xγ − µγ)

∫

dy ρ(y, t)F ν
ε (y,x)

(4.8)
(for more insights on the derivation of these results see Appendix B).
These equations cannot be integrated as the evolution of the mean and covariance matrix still
depends on thewhole distribution ρ, i.e. they are not a closed set of equations. However, in the
next Section we present the approximation derived in [14], which allow us to circumvent this
di昀케culty and characterize the evolution of the community by the mean and covariance matrix
of the distribution in parameter space.

4.1.2 ExplicitMoments Equations

To derive an approximate scheme that give rise to a closed set of explicit equations for the evo-
lution of the mean and covariance matrix of parameters in the community, we 昀椀rst expand
F ν(y,x) around (y,x) = (µ(t),µ(t)) in Eqs. 4.7 and 4.8, and integrate over x and y; the
result is then implicitly given as a function of moments of ρ.
For the purpose of this study, we will consider the potential to be harmonic (i.e. V (D) =

D2/2). Keeping only the 昀椀rst contributing terms, we 昀椀nd that for V ν
(1) given by Eq. 4.3 the

explicit moments equations are:

µ̇ε(t) = (1− ν)
V ′′(0)

4

d∑

α,β,γ,δ=1

(χαε(µ)χβγδ(µ) + sym[α, β, γ, δ])

(

KαβKγδ +
Kαβγδ

3

)

+ (1− 2ν)
V ′′(0)

4

d∑

α,β,γ,δ=1

(χαβ(µ)χγδε(µ) + sym[α, β, γ, δ])

(

KαβKγδ +
Kαβγδ

3

)

(4.9)
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K̇ετ (t) = 2Tδετ − νV ′′(0)
d∑

α,β,γ=1

(χαβ(µ)χγε(µ) + sym[α, β, γ, ε])

(

KαβKγτ +
Kαβγτ

3

)

− νV ′′(0)
d∑

α,β,γ=1

(χαβ(µ)χγτ (µ) + sym[α, β, γ, ε])

(

KαβKγε +
Kαβγε

3

)

(4.10)

where sym[α1, . . . , αp] represents the minimal set of terms, obtained via index permutations
of its precedent elements, that we have to include to symmetrize the expression under the ex-
change of indexes {α1, . . . , αp} and where χαβγ(µ) = ∂xα

χβγ(x)|x=µ
. Equations 4.9 and

4.10 cannot be integrated, as we still need additional equations for the 4-th moment Kαβγδ.
However, we can circumvent this problem by approximating the 4-th moment in terms of the
second ones (moment closure). Thus we assume that ρ is approximately Gaussian. Therefore,
we simply takeKαβγδ ≃ KαβKγδ +KαγKβδ +KαδKβγ , obtaining closed equations for the
昀椀rst and second moments. In particular, for the case of just one parameter (d = 1) we 昀椀nd:

µ̇(t) = 2(2− 3ν)V ′′(0)χ(µ)∂µχ(µ)K
2 (4.11)

K̇(t) = 2T − 12νV ′′(0)χ2(µ)K2 (4.12)

Equations 4.11 and 4.12 can now be integrated. Indeed Figures 4.1, 4.2 and 4.3 show themean
and the variance of the parameter x calculated both by means of the Langevin equation 4.1
(colored lines) and by numerical integration of Eqs. 4.11 - 4.12 (black lines) in the case d = 1

with generalized susceptibilty given by Eq. 3.4.
Observe that only for V ν=1/2

(1) - i.e. competitors Fig. 4.1- we get satisfactory results that match
the behaviour seen in the co-evolutionary model results (Chapter 3). The other two cases, on
the other hand, present some problems. For ν = 0 - i.e. aggressive competitors Fig. 4.2 - Eq.
4.12 is nomore valid and going to higher order in the expansion of the forceF ν(y, x) does not
resolve the problem. However, at least the results of the simulated Langevin dynamics seem
to well match the behaviour we are seeking for. It is not true though for ν = 1 - i.e. neutrals
Fig. 4.3 - which gives results in complete contrast with the one obtained in the co-evolutionary
model for neutral only agents.
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Figure 4.1: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = 1/2 i.e. compe琀椀tors) for a period of 琀椀me tf = 100. The colored lines represent the

simulated Langevin dynamics obtained from Eq. 4.1, whereas the black solid lines are the numerical integra琀椀on of the
explict moments equa琀椀ons 4.11 and 4.12.

Figure 4.2: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = 0 i.e. aggressive compe琀椀tors) for a period of 琀椀me tf = 100. The colored lines represent the

simulated Langevin dynamics obtained from Eq. 4.1.
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Figure 4.3: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = 1 i.e. neutrals) for a period of 琀椀me tf = 100. The colored lines represent the simulated
Langevin dynamics obtained from Eq. 4.1, whereas the black solid lines are the numerical integra琀椀on of the explict

moments equa琀椀ons 4.11 and 4.12.

Analogously, for V ν
(2) give by Eq. 4.4, we arrive at the following dynamical equations for the

mean and the covariance matrix

µ̇ε =
V ′′(0)

8

d∑

α,β,γ,δ=1

(χαβγ(µ)χδε(µ) + sym[α, β, γ, δ])

(

KαβKγδ +
Kαβγδ

3

)

− νV ′′(0)

4

d∑

α,β,γ,δ=1

(χαβγ(µ)χδε(µ) + sym[α, β, γ, δ, ε])

(

KαβKγδ +
Kαβγδ

3

)

(4.13)

K̇ετ = 2Tδετ − V ′′(0)
d∑

α,β,γ=1

(χαβ(µ)χγε(µ) + sym[α, β, γ, ε])

(

KαβKγτ +
Kαβγτ

3

)

− V ′′(0)
d∑

α,β,γ=1

(χαβ(µ)χγτ (µ) + sym[α, β, γ, τ ])

(

KαβKγε +
Kαβγε

3

)

(4.14)

which, for the case of just one parameter (d = 1) and using themoment closure approximation
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to write 4-th moment in terms of the second ones, become

µ̇(t) = (1− 5ν)V ′′(0)χ(µ)∂µχ(µ)K
2 (4.15)

K̇(t) = 2T − 6V ′′(0)χ2(µ)K2 (4.16)

Figures 4.4, 4.5 and 4.6 show the mean and the variance of the parameter x calculated both by
means of the Langevin equation 4.1 (colored lines) and by numerical integration of Eqs. 4.15
- 4.16 (black lines) in the simpli昀椀ed case ofM = 1 with generalized susceptibilty given by Eq.
3.4.

Figure 4.4: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = 0 i.e. compe琀椀tors) for a period of 琀椀me tf = 100. The colored lines represent the simulated

Langevin dynamics obtained from Eq. 4.1, whereas the black solid lines are the numerical integra琀椀on of the explict
moments equa琀椀ons 4.15 and 4.16.

With this potential we get slightly more satisfactory results than the previous one since the
explicit analytical equations work also for the aggressive strategy. However, the problem in the
behaviour of the neutral strategy is present also in this case. This may suggest that we cannot
consider the forces as the gradient of some arbitrary potential, but a more detailed and well
thought de昀椀nition of the forces is needed.
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Figure 4.5: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = −1/2 i.e. aggressive compe琀椀tors) for a period of 琀椀me tf = 100. The colored lines
represent the simulated Langevin dynamics obtained from Eq. 4.1, whereas the black solid lines are the numerical

integra琀椀on of the explict moments equa琀椀ons 4.15 and 4.16..

Figure 4.6: Adap琀椀ve dynamics of the parameter’s average µ (le昀琀) and parameter’s varianceK (right) in a popula琀椀on of
M = 100 individuals (ν = 1/2 i.e. neutrals) for a period of 琀椀me tf = 100. The colored lines represent the simulated

Langevin dynamics obtained from Eq. 4.1, whereas the black solid lines are the numerical integra琀椀on of the explict
moments equa琀椀ons 4.15 and 4.16.
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4.2 Formal AdaptiveModel

The adaptive model presented in the previous Section is based on the heuristic argument that
the forces, acting between individuals of the population, can be represented as the gradient
of some arbitrary potential. This argument seems to work fairly 昀椀ne for competitive strategies,
but it fails to predict the behaviour of a population formedbyneutral individuals, whichmakes
it incomplete.
We want to give a more comprehensive description of the adaptive dynamics, one that follows
a rigorous route. Our starting point for building the analytic description we seek is the general
master equation, namely

∂tρ(x, t) =

∫

[W (x|y)ρ(y, t)−W (y|x)ρ(x, t)] dy (4.17)

where the transition rates are calculated by following the de昀椀nition of individual relative 昀椀tness
(Eq. 2.8), hence

W (y|x) = Dνx
KL(y|x)

Dνx
KL(y|x) +D

νy
KL(x|y)

, (4.18)

Focusing, for now, only on the cases in which the population is formed by individuals with all
the same strategy, as to say νx = νy = ν, we can obtain a slightly simpli昀椀ed expression for the
transition rates, namely

W (y|x) = Dν
KL(y|x)

DKL(y|x) +DKL(x|y)

=
(1− ν) tanh ay − ν tanh ax

tanh ay − tanh ax
+

(2ν − 1)(log (cosh ay)− log (cosh ax))

a(y − x)(tanh ay − tanh ax)

(4.19)

Notice how, with this method, we’ve already solved the problem that we had previously. In-
deed, a system formed by only neutral individuals (ν = 1/2) would have transition rates identi-
cally equal to 1/2, hence it would produces simply a randomwalk dynamics, as we would have
expected.
The other cases, however, are not trivial and need some other investigation in order to produce
meaningful and useful results. One way of approaching the problem is through the Kramers-
Moyal expansion ([38]-[39]) with which we can derive from themaster equation (Eq. 4.17) its
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associated Fokker-Plank equation, namely

∂tρ(x, t) = −∂x

[

A1(x)ρ(x, t)−
1

2
∂x (A2(x)ρ(x, t))

]

(4.20)

whereA1(x) andA2(x) are the coe昀케cient of the 昀椀rst two orders of the Kramers-Moyal expan-
sion of the master equation, calculated as

Ak(x) =

∫

dy (y − x)kW (y|x). (4.21)

The expression of the transition rates Eq. 4.19, however, contains an intricate combination of
hyperbolic functions; therefore, if we want to analytically compute the Kramers-Moyal coe昀케-
cients, we need to introduce an approximation that simpli昀椀es the expression of the transition
rates.
For instance, assuming that small jumps in the value of internal parameter are favoured, which
it mathematically translates into assuming that ∆x = y − x ≪ 1, it is possible to re-write
the transition rate as a function of x + ∆x and x and expand around∆x ≈ 0 obtaining an
approximation for the transition rate that is much more simple to deal with, namely

W (x+∆x|x) ≃ 1

2
+

(2ν − 1)a

6
tanh(ax)∆x+

(2ν − 1)

12
χ(x)∆x2 (4.22)

where χ(x) = a2/ cosh2(ax) is the generalized susceptibility. It is now straightforward to
compute the coe昀케cient of the Kramers-Moyal expansions that happen to be:

A1(x) =
(2ν − 1)a

9
dx3 tanh(ax) (4.23)

A2(x) =
1

3
dx3 +

2ν − 1

30
dx5χ(x) (4.24)

where dx is an arbitrary cut-o昀昀 in the size of the jumps,∆x ∈ [−dx,+dx].
Having an expression for the drift coe昀케cient,A1(x), and for the di昀昀usion coe昀케cient,A2(x),
let us also write the Langevin equation associated to the Fokker-Plank equation 4.20, which
reads

dx (t) = A1(x) dt+
√

A2(x) dη (t) (4.25)

where η(t) is the stochastic variable characterised by ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t− t′).
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Figure 4.7 and 4.8 show the results of the simulated Langevin dynamics obtained with the co-
e昀케cients of the Kramers-Moyal expansion for the cases ν = 0 and ν = −1/2, respectively,
compared with the results of the individual based model.

Figure 4.7: Comparison of the parameter’s average µ (le昀琀 panel) and varianceK (right panel) between the individual based
model (blue lines) and the simulated Langevin dynamics using the coe昀케cients obtained from the Kramers‐Moyal expansion

of the master equa琀椀on 4.17 (orange lines). These results are representa琀椀ve of a system composed byM = 1000
compe琀椀琀椀ve individuals (ν = 0) simulated for a period of 琀椀me tf = 100.

Aswe can see, the evolution of the average pretty much resemble the one we’ve found in the in-
dividual based model. However, the most noticeable di昀昀erence between the two descriptions
is in the evolution of the variance. Indeed, we can see that it present a peak, which was not the
case in the individual based simulations. Nevertheless, even if di昀昀erent in the dynamics, the
variance of the two models set to stationary value which is compatible between one and the
other.
It is important to notice that the results just shown are based on the assumption that small
”jumps” are favored by the dynamics. However, if studying the equation of the full transition
rates (Eq.4.19) it is possible to notice that, actually, the favoured jumps are the one that bring
theparameter as close as possible to the critical value, nomatter howwide they are. InAppendix
Cwe explore also this other approximation. We choose to report this other approximation only
in theAppendix because, even though it ismuchmore justi昀椀ed analytically, it produces slightly
worse results.
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Figure 4.8: Comparison of the parameter’s average µ (le昀琀 panel) and varianceK (right panel) between the individual based
model (blue lines) and the simulated Langevin dynamics using the coe昀케cients obtained from the Kramers‐Moyal expansion

of the master equa琀椀on 4.17 (orange lines). These results are representa琀椀ve of a system composed byM = 1000
aggressive compe琀椀琀椀ve individuals (ν = −1/2) simulated for a period of 琀椀me tf = 100.

4.3 Strategies Dynamics and Stability

We’ve only considered populations in which individuals adopt all the same strategy in our ana-
lytic description until now. Like for the individual based model, we want to answer questions
like: What happens if we take the optimal strategy for any speci昀椀c case and introduce a small
amount of individuals with di昀昀erent strategies? Is the previous optimal strategy still stable?
In otherwords, the goal is obtain a set of coupled equations that describes the dynamics of both
the internal parameter x and the strategy ν of an individual. In the previous Section, we have
found an equation (Eq. 4.25) for the evolution of the internal parameter and in order to found
an equation for ν̇ we could reference what reported in Section 2.2. Indeed, the transition rate

W (y|x) = Dνx
KL(y|x)

Dνx
KL(y|x) +D

νy
KL(x|y)

. (4.26)

depends both on νx and νy and could be seen as an invasion 昀椀tness function f(νy, νx) of an
individual with strategy νy invading a population monomorphic for νx.
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Therefore, adaptive dynamics of the trait ν is then given as a gradient dynamics of the invasion
昀椀tness function and described by the equation

νẋ =
1

a2x2
[ax− 2 coth(ax) log(cosh(ax))] ·

· [aνxx− (2νx − 1) coth(ax) log(cosh(ax))] (4.27)

where the term on the right is the gradient of the invasion 昀椀tness function of a rare mutant
evaluated as if it was already at criticality in the parameter internal parameter.
The latter equation together with Eq. 4.25 constitute the set of coupled equations we were
looking for that completely describes our system. Furthermore, having found an equation for
ν̇ allow us to analyze the stability of the strategies and determine their nature. First we need
to check the presence of stationary strategy, i.e. strategies ν∗ for which the invasion 昀椀tness
function vanishes

∂f(νy, ν
∗)

∂νy

∣
∣
∣
∣
νy=ν∗

= 0 (4.28)

Without loss of generality, we could evaluate our invasion 昀椀tness function at criticality for the
parameter x, i.e. at x∗ = 0 and 昀椀nd which for which values of ν it vanishes. Doing so we 昀椀nd
that the only stationary value is for ν = 0. Recalling the boundary condition on ν, which are
ν ∈ [−1/2, 1/2], we could also consider the boundaries as ”stationary” point and analyze their
stability too.
Following the rules explained in Section 2.2, we study both convergence stability and resistance
to invasion of the stationary strategies. The results of this analysis are reported in Tab. 4.1.

Strategies Stability

Neutral ν = 1/2 Repelling Point

Competitive ν = 0 Neutrally Stable

Aggressive ν = −1/2 Resistant to Invasion

Table 4.1: Evolu琀椀onary stability analysis at the sta琀椀onary points of the strategy dynamics studied at cri琀椀cality in the
internal parameter x.

Interestingly enough, we’ve found that competition, i.e. ν = 0, is a neutrally stable strategy.
This is due to the fact that it is resistant to invasions only from the right, whichmeans that only
individuals which adopt a strategy ν ′ < 0 can invade a population monomophic for ν = 0
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since they have a higher growth rate, and it is dynamically neutral, i.e. if all individual in the
systems adopt a competitive strategy and there’s no perturbation of any kind the systems will
stay in that con昀椀guration, however it will not converge to it spontaneously.
Regarding the boundary points, it is not possible to obtain useful information from the condi-
tion of convergence stability, since they are not stationary points in the proper sense (the 昀椀rst
derivative does not vanishes in these points). Still, we can check if they are maxima or minima
of the invasion 昀椀tness function in its domain, hence determine if they are or not resistant to
invasion. Indeed, as we would have expected aggressive strategy (ν = −1/2) results to be the
only one which satis昀椀es the condition of resistance to invasion, whereas neutralism (ν = 1/2)
happens to be a repelling point of the strategy dynamics.
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5
Conclusion

With this work, we 昀椀rst presented some of themost recent developments in the study of critical
phenomena in biology; we then identi昀椀ed the main characteristics of di昀昀erent living systems
in the criticality regime and determined for which regimes these systems exhibit qualitatively
di昀昀erent behaviour. In particular, it was observed that long-range correlations and high sus-
ceptibility to external perturbations often unite these systems. Operating in this regime could
in fact bring several advantages, such as beingmore responsive to external stimuli and speeding
up defence mechanisms against possible predators.
Faced with the fact that the literature often only shows the critical state of living systems, but
without constructing a framework that formally explains how the tendency towards criticality
occurs, we proposed a theoretical framework based on information theory and game theory
to study these systems. Following the study of Hidalgo et al. [13], we then developed an evo-
lutionary model in which a network of individuals interacting with each other and with the
environment evolves dynamically by modifying the parameters that control each individual’s
representation of the external world close to a critical point.
We thenhave generalized themodel by raising some importantquestionsof game theory, analysing
in particular what role di昀昀erent strategies play in the achievement of criticality by the commu-
nity of individuals previously modelled. We then represented competition and aggressiveness
as the tendency of an individual to exclusively maximise his own 昀椀tness while ignoring that of
the group, and neutralism as the tendency of an individual to weigh equally his own 昀椀tness
with respect to the one of the others.
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At last, we’ve also proposed an analytical description based on the Langevin dynamics which
have allowed us to even better characterize the tendency towards criticality that it is shown to
happen in living system and study the evolutionary stability of the strategies. The result have
shown thatwhile competition and aggressiveness both pulls the population quickly to a critical
point, neutralism pulls it back, however, generatingmuchmoremore variability in population
parameters. Still aggressive strategies in which one individual seeks to prevail over others result
to be the most suitable ones and favourable.
This approach also paves the way for several future developments. For example, one possible
route could be to one customarily introduce a speci昀椀c trade-o昀昀 between the internal parame-
ter and the strategy in the form of a function ν = h(x) which re昀氀ects the biological fact that
improvement in one “strategy” comes at the price of a loss of e昀케ciency in the other, so that
both metabolic strategies cannot be changed in an independent way. It would be interesting
to investigate the evolutionary dynamics of the population constrained by a trade-o昀昀 and if the
system either does not diversify or diversi昀椀es into a number of coexisting species characterized
by di昀昀erent strategies. There have already been studies ([40]-[41]-[42]) that explore a geomet-
ricalmethodwhere the evolutionary outcomes of the evolution of amonomorphic population
in a 2-D phenotypic space can be characterizedwithout specifying a particular trade-o昀昀 before-
hand. Referring this studies we would expect to obtain, from a study of this kind, that there
exists, for some particular types of trade-o昀昀s, strategies which are branching points, i.e. strate-
gies which are the starting point of an evolutionary diversi昀椀cation and speciation.
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A
Non-stable Solution

Consider two individual agents i and j — the source for i is j and vice versa — each of them
with its own probabilistic gene network. The relative 昀椀tnesses of i and j are determined by
howwell the set of cues (described by the probability distributionP (s|x) ) of one organism is
captured by the other with minimum information loss, and vice versa (for simplicity, we could
assume that the distributions associated with i and j correspond to equilibrium distributions
of an Ising model at similar inverse temperatures xi and xj). If xi = xj , the two distributions
would be identical and the KL divergence would vanish. However, this is not a stable solution.
Indeed, if the two parameters are not identical but close, the di昀昀erence between their respective
KL divergences from each to the other is

DKL(x+ δx|x)−DKL(x|x+ δx) ≃ 1

6
∇χ(x)δx3 (A.1)

To prove this let us start by writing explicitly the KL divergences using the de昀椀nition:

DKL(x+ δx|x) =
∑

s

P (s|x+ δx) log

(
P (s|x+ δx)

P (s|x)

)

(A.2)

DKL(x|x+ δx) = −
∑

s

P (s|x) log
(
P (s|x+ δx)

P (s|x)

)

(A.3)
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Since δx is small, we can expand P (s|x+ δx) around x, namely

P (s|x+ δx) = P (s|x) + δx∂xP (s|x) + 1

2
δx∂2

xP (s|x) + 1

6
δx3∂3

xP (s|x) (A.4)

= P (s|x)
[

1 + ∆φδx+
δx2

2

(
∆φ2 − χ(x)

)
+

δx3

6

(
∆φ3 − 3∆φχ(x)−∇χ(x)

)
]

(A.5)

where∆φ = ⟨φ⟩x − φ and χ(x) = ⟨φ2⟩ − ⟨φ⟩2. Inserting this expansion in the de昀椀nition
given above we arrive at

DKL(x+ δx|x) =
∑

s

P (s|x)[1 + . . . ] log [1 + . . . ] (A.6)

DKL(x|x+ δx) = −
∑

s

P (s|x) log [1 + . . . ] (A.7)

where the term under parenthesis [1+ . . . ] is the one of Eq. A.5. Proceeding furthermore with
the expansion of the logarithm

log

[

1 + ∆φδx+
δx2

2

(
∆φ2 − χ(x)

)
+

δx3

6

(
∆φ3 − 3∆φχ(x)−∇χ(x)

)
]

≃ (A.8)

≃ ∆φδx− 1

2
χ(x)δx2 − 1

6
∇χ(x)δx3 (A.9)

and exploiting everything up to 3rd order in δx in Eq. A.2 and Eq. A.3, we arrive at

DKL(x+ δx|x) ≃ δx2

2
χ(x) +

δx3

3
∇χ(x) (A.10)

DKL(x|x+ δx) ≃ δx2

2
χ(x) +

δx3

6
∇χ(x) (A.11)

By subtracting them we obtain the initial statement

DKL(x+ δx|x)−DKL(x|x+ δx) ≃ 1

6
∇χ(x)δx3, (A.12)

therefore proving it.
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B
Derivation of the equation for the evolution

of the density using Dean’s method

In this appendix we brie昀氀y review the calculation done by Dean [37] to obtain a dynamical
equation for the density of a system of interacting “particles” each one obeying a Langevin
dynamics.
Any function of the form f(xi) can be written as

f(xi) =

∫

dx ρi(x, t)f(x) (B.1)

whereρi(x, t) = δ(x−xi(t)) is the contributionof each individual i to the global distribution
of parameters, and its time derivative is

df(xi)

dt
=

∫

dx
∂ρi(x, t)

∂t
f(x) (B.2)

However, we can 昀椀nd another expression for the time derivative of f(xi) using the Ito’s calcu-
lus.
Consider the Ito process

dXt = a(Xt, t) dt+ b(Xt, t) dWt (B.3)
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and a continuos di昀昀erentianble (at least twice) function f(Xt), then the Ito’s Lemma states

df =
∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

(dXt)
2 (B.4)

Inserting eq. (B.3) in the latter one

df =
∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt

(at dt+ bt dWt) +
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt

at +
1

2

∂2f

∂X2
t

b2t

)

dt+
∂f

∂Xt

bt dWt (B.5)

In the case under study at = − 1
N

∑N
j=1 ∇xV (D(xj(t),x)), bt =

√
2T and dWt = ηi(t) dt.

Hence, we arrive at a new expression for the time derivative of f(xi), namely

df(xi)

dt
=

∫

dx ρi(x, t)

(

∇xf(x) ·
(
√
2Tηi(t)− 1

N

N∑

j=1

∇xV (D(xj(t),x))

)

+ T∇2
x
f(x)

)

(B.6)
Integrating by part and comparing with eq. (B.2), we arrive at

∂ρi(x, t)

∂t
= −

√
2T∇x ·

(
ρi(x, t)ηi(t)

)
+∇x ·

(

ρi(x, t)

(

1

N

N∑

j=1

∇xV (D(xj(t),x))

))

+

+ T∇2
x
ρi(x, t) (B.7)

This equation is almost a closed equation for ρ, the problem is that the noise term appears to
contain toomuch information about the individual ρi and hence, in the current form, is not a
Markovian equation for the evolution of the global density.
We can de昀椀ne a new delta-correlated Gaussian noise as

η′(x, t) = N−1/2∇x · (ξ(x, t)ρ1/2(x, t)) (B.8)

whereξ(x, t) is a global uncorrelatedwhitenoise 昀椀eld such that ⟨ξµ(x, t)ξν(y, t′⟩ = δµνδ(x−
y)δ(t − t′). This new noise has the same correlation function as the previous one, hence we
can replace the term−1/N

∑N
i=1 ∇x · (ρi(x, t)ηi(t)) with it and averaging over individuals
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we obtain

∂ρ(x, t)

∂t
=

√

2T

N
∇x ·

(√

ρ(x, t)ξ(x, t)
)

+ T∇2
x
ρ(x, t)+

+∇x ·
(

ρ(x, t)

(

1

N

N∑

j=1

∇xV (D(xj(t),x))

))

(B.9)

Employing what found, it is possible derive a set of deterministic equations for the evolution
of its moments forN → ∞. The mean µ(t) =

∫
dx ρ(x, t) x can be obtained multiplying

by x and integrating by parts

µ̇α(t) =

∫

dx ∂tρ(x, t) xα

= −
∫

dx∇x ·
(

ρ(x, t)

∫

dy ρ(y, t)F (y,x)

)

xα + T

∫

dx∇2
x
ρ(x, t) xα

=

∫

dx ρ(x, t)

∫

dy ρ(y, t)Fα(y,x)− T

∫

dx∇xρ(x, t)

︸ ︷︷ ︸
→0

=

∫

dx ρ(x, t)

∫

dy ρ(y, t)Fα(y,x) (B.10)

Similarly, for the covariance matrixKαβ =
∫
dx ρ(x, t)(xα − µα(t))(xβ − µβ(t))

K̇αβ =

∫

dx ∂tρ(x, t)(xα − µα(t))(xβ − µβ(t))

= −
∫

dx∇x ·
(

ρ(x, t)

∫

dy ρ(y, t)F (y,x)

)

(xα − µα)(xβ − µβ)

+ T

∫

dx∇2
x
ρ(x, t)(xα − µα)(xβ − µβ)

= 2T

∫

dx ρ(x, t)δαβ +

[∫

dx

(∫

dy ρ(y, t)Fβ(y,x)

)

(xα − µα)

+

∫

dx

(∫

dy ρ(y, t)Fα(y,x)

)

(xβ − µβ)

]

= 2Tδαβ +
d∑

γ,ε=1

(δαγδβε + δαεδβγ)

∫

dx ρ(x, t)(xγ − µγ)

∫

dy ρ(y, t)Fε(y,x)

(B.11)
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C
Gaussian Approximation of the Fitness

We observe in Fig. C.1 that the transition ratesW (y|x) as a function of y have Gaussian-like
shapes. Moreover, we notice that the maximum, even though it slightly depends on the value
of x, stays in the vicinity of the critical value y = 0, meaning that changes in the internal
parameter are much more likely to happen towards the critical value than towards the value
of other individuals’ parameter. Hence, we can expand log[W (y|x)] around y = 0 昀椀nding,
therefore, a quadratic form for the transition rates, namely

W (y|x) ≃ W (0|x) exp
{
−α2y

2 + α1y
}

(C.1)

where the coe昀케cients α1 and α2, actually, depend on x and ν.
For completeness, we report the expressions and of the coe昀케cients obtained through the ex-
pansion

W (0|x) = ν − (2ν − 1) coth(ax) log(cosh(ax))

ax
(C.2)

α1 = −(2ν − 1) coth(ax) (−a2x2 + log(cosh(ax)) + ax coth(ax) log(cosh(ax)))

x(aνx− (2ν − 1) coth(ax) log(cosh(ax)))
(C.3)
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Figure C.1: Plots of the transi琀椀on rates (for ν = 0)W (y|x) (solid blue lines) and their approxima琀椀on as quadra琀椀c form in
y = 0 (sca琀琀ered orange lines) for di昀昀erent values of x (columns) and di昀昀erent values of the sharpening parameter a (rows).

The ver琀椀cal sca琀琀ered red lines represent y = 0.

α2 = coth(ax)

( −2a3ν(2ν − 1)x3 coth2(ax) log(cosh(ax))

2x2(aνx− (2ν − 1) coth(ax) log(cosh(ax)))2
+

+
a(2ν − 1)νx (a2x2 − 2 log(cosh(ax)))

2x2(aνx− (2ν − 1) coth(ax) log(cosh(ax)))2

+
a2(1− 2ν)2x2 coth3(ax) log2(cosh(ax))

2x2(aνx− (2ν − 1) coth(ax) log(cosh(ax)))2

+
(2ν − 1) coth(ax) (a4x4 − a2x2 log(cosh(ax)))

2x2(aνx− (2ν − 1) coth(ax) log(cosh(ax)))2

+
(2ν − 1) log2(cosh(ax))

2x2(aνx− (2ν − 1) coth(ax) log(cosh(ax)))2

)

(C.4)

Since the the expression of the transition rate and, conversely, the expression of its quadratic
form diverge for values of x in the vicinity of x∗ = 0, it is worth pointing out the quadratic
form in the limit x → 0, which is 昀椀nite and have the following expression

logW (y|0) ≃ − log 2 +
1

6
a2(2ν − 1)y2. (C.5)
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With this approximation we can perform the integral in Eq. 4.21 exactly since it reduces to a
Gaussian integral, hence we obtain that the drift coe昀케cient expression become

A1(x) =

∫

dy (y − x)W (0|x)e−α2y2+α1y

= W (0|x)
√

π

α2

e
α2
1

4α2

[
α1

2α2

− x

]

(C.6)

and the one for the di昀昀usion coe昀케cient become

A2(x) =

∫

dy (y − x)2W (0|x)e−α2y2+α1y

= W (0|x)
√

π

α2

e
α2
1

4α2

[

1

2α2

+

(
α1

2α2

− x

)2
]

(C.7)

Having an expression for the drift coe昀케cient,A1(x), and for the di昀昀usion coe昀케cient,A2(x),
let us now write the Langevin equation associated to the Fokker-Plank equation 4.20, which
reads

dx (t) = A1(x) dt+
√

A2(x) dη (t) (C.8)

where η(t) is the stochastic variable characterised by ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t− t′).

FigureC.2 andC.3 show the results obtainedwith the latter Langevin equation. TheGaussian
approximation actually give us pretty good results. Indeed, the form of the approximated tran-
sition rate using the Gaussian approximation is muchmore close to the complete one than the
approximation used in the main text. However, as we can see, given the complexity of the coef-
昀椀cients in this expansions we run into some issue. The most noticeable are in the parameter’s
variance which is not compatible to what we’ve found in the individual based model (Chapter
3). Moreover, as the system reach criticality, the parameter’s variance exhibits more and more
spikes which are probably due to some numerical nuances, since we do not see this much vari-
ability in the dispersion of the means.
For these reasons we’ve decided to report this approximation only as an appendix even though
the assumptions made are muchmore reasonable and rigorous than the assumptions made for
the approximation in the main text.
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Figure C.2: Comparison of the parameter’s average µ (le昀琀 panel) and varianceK (right panel) between the individual based
model (blue lines) and the simulated Langevin dynamics using the coe昀케cients obtained from the Kramers‐Moyal expansion
of the master equa琀椀on 4.17 (orange lines) in the Gaussian approxima琀椀on. These results are representa琀椀ve of a system

composed byM = 1000 compe琀椀琀椀ve individuals (ν = 0) simulated for a period of 琀椀me tf = 100.

Figure C.3: Comparison of the parameter’s average µ (le昀琀 panel) and varianceK (right panel) between the individual based
model (blue lines) and the simulated Langevin dynamics using the coe昀케cients obtained from the Kramers‐Moyal expansion
of the master equa琀椀on 4.17 (orange lines) in the Gaussian approxima琀椀on. These results are representa琀椀ve of a system
composed byM = 1000 aggressive compe琀椀琀椀ve individuals (ν = −1/2) simulated for a period of 琀椀me tf = 100.
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