

UNIVERSITY OF PADUA COLLEGE OF AGRICULTURE Department of Land, Environment, Agriculture and Forestry

Logistics of vine-shoots harvesting in Treviso province

Supervisor: Professor Raffaele Cavalli Co-supervisor: Dr. Stefano Grigolato

> MSc student: Matteo Albergucci 607067-AB

ACADEMIC YEAR 2010-2011

Acknowledgments

I would like to warmly thank all the people that made this work possible, and who have accompanied me along this path.

My precious family, and all my special friends and pals here at the university and outside in everyday life, near and far.

Professor Raffaele Cavalli for being my supervisor along these years, and doc. Stefano Grigolato, for his needful support; thanks also to the team of forest operations management, of whom I do not remember the name.

I am very grateful to Nicola Breda, which has been an invaluable companion for this work: thanks mate, enjoy your Erasmus!

I wish to thanks also all the kind people in the farms that allowed us to made our research, and sometimes offered us a drink.

I would like to thanks everyone who were involved, but I know I won't remember all the names: may they know they are in my mind. To everyone I forgot to mention: sorry, you are in my heart.

I think it's all, just a thing more...

"Avete ragione di parlare di "inferno", giacché da quando vi ho lasciato, vivo in una specie di inferno intellettuale, ossia in un paese ove l'intelligenza e la scienza sono reputate cose infernali da chi ha la bontà di governarci".

Camillo Benso, conte di Cavour; da una lettera a De La Rive

Happy Birthday, Italy

Conegliano, March 18th, 2011

INDICE

1 Backg	ground	8
1.1 The	e rule of the wood biomass for energy production	8
1.2 The	e energy utilization of vine-shoot	9
1.3 Obj	jectives	10
2 Mater	rials and methods	12
2.1 Des	scription of the supply chain	12
2.1.1	Elements	12
2.1.2	Case study	12
2.2 The	e harvesting system	13
2.2.1	Work and time study	17
2.2.2	Statistical analysis	19
2.2.3	Control of the moisture content	19
2.3 Tra	ansport system	19
2.3.1	Costs of delivery to the platform	19
2.3.2	Work and time study	20
2.4 Chi	ipping at terminal	21
2.4.1	Work and time study	23
2.4.2	Chipper machine	24
2.5 Chi	ipping evaluation by Discrete Event analysis	24
2.5.1	Discrete event simulation (DES)	24
3 Resul	Its and discussion	28
3.1 Hai	rvesting	28
3.1.1	Cost of the harvesting operations	28
3.1.2	Study of time and productivity	29
3.1.3	Classification of vineyard	31
3.1.4	Potential use of the RTA system	32
3.2 Tra	ansport	35

	3.2.1	Study of time and productivity	35
	3.3 Chi	ipping	37
	3.3.1	Productivity and chipping costs	37
	3.3.2	Simulation of the chipping process	38
	3.4 Mo	isture content	40
	3.5 Wo	odchips quality	42
	3.5.1	Particle size distribution	42
4	Conc	lusions	44
5	Refer	rences	46
6	Anne	xes	48
	6.1 Teo	chnical quantification	48

1 Background

1.1 The rule of the wood biomass for energy production

Dependence on fossil fuel energy supply and use is neither sustainable nor renewable. Of all the renewable energy sources which will ultimately displace the use of fossil fuels over time, the largest contribution, especially in the short to medium term, is expected to come from biomass.

Development of a successful bioenergy sector in both developed and developing countries, will make a useful long-term contribution to diversity, security and self-sufficiency of energy supply. Biomass will play a leading role in mitigating the environmental effects of fossil fuel energy use as it can offer major reductions in harmful emissions particularly greenhouse gases and sulphurous oxides.

The use of biomass to produce energy, in order to provide a wide range of energy services (heat, light, comfort, etc.), and to produce substitutes for petro-chemicals, is an integrating response to a number of global problems. These include equity, development, energy supply security, rural employment, and climate change mitigation. (Sims, 2004)

Biomass provides fuel flexibility to match a wide range of energy demands and is a renewable energy source that can be stored, which is an advantage over several other forms of renewable energy. Currently solid biomass represents 45% of primary renewable energy in OECD countries (IEA, 2002; Sims, 2004).

There has been a long tradition of wood fuel use in the North-eastern Italian Alps, the use of wood for heating was diminished to some extent in the second half of the last century because of the spread of fossil fuels. Now use of wood is rising once more, because of major awareness of the need to reduce fossil fuel use and to limit environmental impacts such as greenhouse gas emissions.

Moreover, this growth is strengthened by political initiatives. For example, European and regional funds provide incentives and support for the development of District Heating (DH) and wood-fuelled boilers as sources of renewable thermal energy. Biofuel (e.g. wood chip) use in this context is mainly connected to grants (Emer et al., 2010). The term "biomass" includes:

- crop residues (e.g. cereal straw, rice husks and bagasse for cogeneration);
- animal wastes (e.g. anaerobic digestion of sewage sludge to produce biogas or interesterification of tallow to give biodiesel);
- woodlot arisings (e.g. from agro-forestry and farm woodland silviculture after log extraction and used mainly for heating);
- forest residues (e.g. arisings remaining after log extraction or wood process residues at the sawmill or pulp plant);
- municipal solid waste (either combusted in waste-to-energy plants or placed in landfills with the methane gas collected); and
- energy crops (e.g. vegetable oil crops to produce biodiesel, or sugarcane, beet, maize and sweet sorghum for bioethanol, or miscanthus and short rotation coppice for heat and electricity generation).

Italian agriculture today lives a phase of change in manufacturing guidelines, with the primary aim of giving substance to multifunctionality. The farms are seeking new directions of production, supported by new EU and national legislation, which are able to produce an adequate income through non-conventional production activities, which reverses the trend away from agriculture.

1.2 The energy utilization of vine-shoot

Among the productive chains that can contribute to activate the multifunctionality of agriculture, linked to the protection and redevelopment of the land, the wood energy supply chain is one of the most mature and practical. In this context, vine-shoots in recent years receive particular attention because of their possible use of energy, especially in large Italian wine-growing basins.

In Italy, the area cultivated with vineyards covers about 838,000 ha (ISTAT, 2005). The remains of pruning represent for most of these areas a cost of production. In many cases the vine-shoots are left among the rows and intended to be shredded, or taken on the field side and burned. Both solutions can give phyto-sanitary issues and environmental impacts.

In fact, while on the one hand the shredding of vine-shoots left in the field may play a role in nutrition and organic matter to the soil, the other - where the vineyard is not healthy and subjected to *Phomopsis viticola* attacks or root rot - the burial of shredded shoots could be problematic for the pest control (Costacurta et al., 2004, Vieri, 2006).

At present, moreover, one must consider that burning the vine-shoots on field side is often banned from many municipalities, both for dust emission issues and for preventing forest fires (even if there is a failure to comply with those regulations).

In accordance with Legislative Decree No. 22 of 1997 (Ronchi decree), when this material has to be disposed of, falls into the category of waste. If, on the contrary, to this material is given an energy production use, in accordance with Legislative Decree no. 152/2006, they are considered as fuel in all respects

Among the various options for collection systems, the system of tractor and mediumsized round baler is the most promising for an organized collection at supra-company.

1.3 Objectives

- Study of a large scale supply system, suited to the organizational needs of wineries and agricultural cooperatives or consortia, and based on the collection and densification of the vine-shoots in round bales.
- Identification of critical issues in the organization of a platform for the collection and processing of woodchips in vine-shoots.

2 Materials and methods

2.1 Description of the supply chain

2.1.1 Elements

The identified system provides for the harvesting of vine-shoots through round baler, temporary storage of round bales near vine-growing unit or in deposit close to wineries, and their transport to a chipping and storage platform (Figure 1).

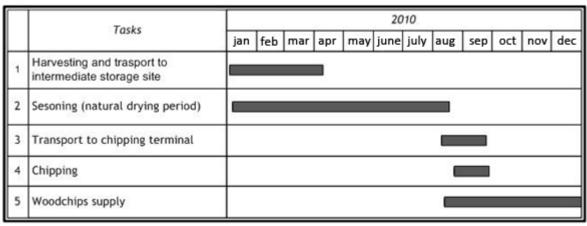


Figure 1 - Gant diagram of the workflow phases.

2.1.2 Case study

The work development has considered the experience of the Cooperativa Agricola Alto-Livenza (COOAL) of Motta di Livenza (TV), because of their three-year practice in this activity and so of their consolidated work system.

The choice was motivated by the interest to study the organization of a collecting activity in a flat area on a large scale, because right in this area of the Treviso province is recorded the largest extension of vineyards (17,737 ha) with 80% of the availability of shoots (56,790 t valued at 50% water content).

The study firstly focused on the evaluation of the vine-shoots collection system, through the use of round balers and the transport of the round bales to temporary storage areas (February-April 2010). Later we studied the transport of round bales to the platform of chipping and stocking (August-September 2010).

2.2 The harvesting system

The harvesting machine consisted of a Gallignani fixed-volume compression chamber round baler, with chains and ties, and with a specific collector (Figure 2). The machine had a width of 2.4 meters and width of the harvesting head of 1.5 m. The round bales produced had a diameter of 1.5 m and a width of 1.2 m (Figure 3).

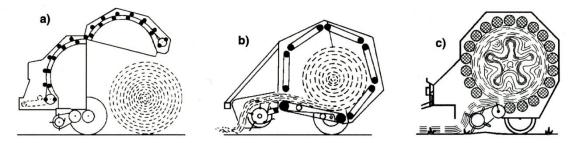


Figure 2 - Rotation and compression systems used in a fixed-volume round baler: transversal bars chain transporter (a); belts (b); metallic cylinders (c).

The round baler was pulled and driven by a 4WD tractor (power 59 kW). The transport of round bales to the point of temporary storage was carried out by a second tractor (power 64 kW) with a front loader equipped with forks.

Figure 3a, b - Details of the vine-shoots harvesting unit used in the surveyed fixed-volume Gallignani round baler.

The vine-growing unit which are covered in the vineyard register of Veneto, for the Treviso province, were then analyzed and classified, in relation to the collection and treatment system designed on the basis of the width among the rows, the form of farming and the average slope of the surface (derived from the model Digital terrain with resolution 25 m).

To complete of the analysis -besides the economic considerations (Table 1) - were also considered other methods of collection and treatment that are currently fairly spread in Veneto. The minimum standards of operation of these systems were evaluated based on recent research (Cavalli e Grigolato, 2007; Cavalaglio e Cotana, 2007; Spinelli et al., 2010) or other research projects (Francescato et al., 2007).

MACHINE	TRACTOR - ROUND BALER	TRACTOR - HANDLING
PRICE (NEW) (€)	55 000	60 000
Power (kW)	59	68
Duration (years)	12	12
Salvage value (€)	5 500	6 000
Reintegration share (€ year ⁻¹)	4 125	4 500
Maintenance share (€ year ⁻¹)	619	675
Fuel cost (€ l ⁻¹)	1.20	1.20
Fuel consumption (I h ⁻¹)	12.35	14.35
Fuel cost (€ h ⁻¹)	14.82	17.23
Insurance costs (€ year ⁻¹)	600	600
Lubricant unit cost (€ kg ⁻¹)	3.00	3.00
Lubricant consumption (kg h ⁻¹)	0.35	0.41
Lubricant cost (€ h ⁻¹)	1.06	1.23
Annual cost	5 360	5 794
Workable hours per year	700	800
Workable days	88	100
COST PER HOUR	23.53	25.70
MACHINE	ROUND BALER	
PRICE (NEW) (€)	28 000	
Duration (years)	10	
Salvage value (€)	1 500	
Reintegration share (€ year ⁻¹)	2 650	
Maintenance share (€ year ⁻¹)	400	
Insurance costs (€ year ⁻¹)	30	
Lubricant unit cost (€ kg ⁻¹)	2.00	
Lubricant consumption (kg h ⁻¹)	0.50	
Lubricant cost (€ h ⁻¹)	1.00	
Annual cost	3051	
Workable hours per year	500	
Workable days	62.5	
COST PER HOUR	7.57	

Table 1 - Evaluation of the costs for harvesting system

The vine-growing unit which are covered in the vineyard register were classified in relation to the collection system and treatment of vine-shoots, through a GIS procedure which has provided the logical query of the vineyard register itself and the interpretation of the slope of the land.

The considered systems are below:

- RTA: tractor with large round baler system, ≥ 2.6 m among the rows , not limited in height, flat terrain
- RTB: tractor with medium size round baler system distance among the rows between 2.0 and 2.6 m me, not limited in height, flat terrain
- RTC: tractor with small round baler system, distance among the rows between
 1.6 and 2.0 m, not limited in height (> 1.8 m), flat terrain
- TS: tractor and shredder system, distance among the rows between 1.6 and 2.0 m, all forms of farming, even in gently sloping terrain
- ND: For installations where it can be applied to mechanized pruning and thus a potential of vine-shoots unavailable for the collection
- NC: planting distance on sloping ground, or ≤ 1.6 m among rows

As for the TS system this can also be applied to areas classified as RTA and RTB, as well as the RTB system can also be applied to areas RTA. The RTA system can be instead applied only to areas assigned to it from GIS processing.

With the aim to verify the productivity of the RTA system on the vine-growing unit classified as suitable for this system, we proceeded to analyze the vineyard register in relation to the regularity of the shape of the plots, the length of the rows, the number of turnings and the density of vine-shoots.

The parameters has been extracted considering that the geometric form of the cadastral unit - area that represent the enveloping surface (A), where is inscribed the sum of the vine-growing units surfaces, coded for that cadastral unit (Ai) - represent the geometric form of the vine-growing surface aimed to the vine-shoots harvesting.

So to find out the length of the rows a GIS procedure has been applied, able to determine the length of the longer and shorter side of the cadastral geometric form.

Then, the algorithms used in the GIS procedure - needed to determine the operative parameters of the vine-growing unit (rows length, number of turnings, density of vine-shoots along the row) - have been set.

The identified geometric parameters (Figure 4) are:

- Lesser dimension (a)
- Major dimension (b)
- Distance among the rows (d)
- Envelope surface area (Ai)
- Vine-growing surface area (A)
- Vine-shoot covered surface area (As)
- Number of turnings needed to harvest the considered field (nv)

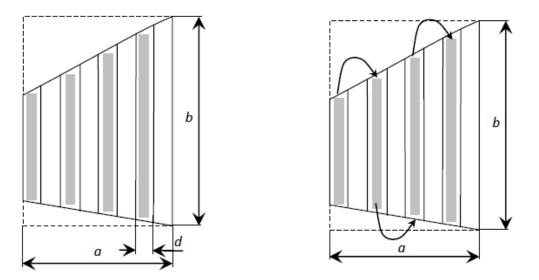


Figure 4a, b - Schematic of a generic vine-growing area in the cadastral surface (envelope surface) where the gray hatching indicates the area of accumulation of vine-shoots.

The number of turnings (nv) can be found in the scheme from the projection of the field's width (a, expressed in m) on the side of the enveloping rectangle, with the turning radius equal to d (distance among the rows, expressed in meters):

$$n_v = \frac{a}{2d}$$

The enveloping surface area (expressed in m^2), which represents the cadastral surface, is equal to:

$$A_i = ab$$

Supposed γ the a-dimensional ratio of the vine-growing surface area over the enveloping surface area, we have:

$$\gamma = \frac{A}{A_i}$$

So the vine-shoot covered surface area of the rows is equal to:

$$A_s = \frac{A}{2} = \frac{\gamma A_i}{2} = \frac{\gamma a b}{2}$$

Supposed m the mass of the vine-shoots (expressed in kg) quantified for every vinegrowing surface, the density of the wine-shoots over vine surface unit (expressed in kg m^{-2}) is:

$$\rho_s = \frac{m}{A_s} = \frac{2m}{\gamma a b}$$

The equivalent length (expressed in m) of the distance among the rows covered by vine-shoots corresponds to:

$$l_{eq} = \frac{A_s}{d} = \frac{A}{2d} = \frac{\gamma A_i}{2d}$$

And so the vine-shoots density over length unit of the rows (expressed in kg \cdot m⁻¹) is defined by:

$$\rho_l = \frac{m}{l_{eq}} = \frac{md}{A_s} = \frac{2md}{A} = \frac{2md}{\gamma A_i} = \rho_s d$$

2.2.1 Work and time study

The time study concentrated on three areas and considered the same harvesting system and the same operator. The first two sites presented broadly the same area, while site C was smaller. On the contrary for all the three sites we encountered almost the same vine-shoot density, probably because only white wine species were planted on these fields (Prosecco, Pinot bianco) (Table 2).

	Unit	А	В	C	Total
Site surface	ha	5.41	5.33	3.05	13.79 (total)
Vine-shoots density	t ha-1	3.04	3.09	3.01	3.04 (mean)
Water content	%	49.3	50.1	49.8	49.73 (mean)

Table 2 - Brief summary of the three sites data

The study of work time for harvesting and baling of vine-shoots has identified the minimum parameters of operation of the working system. The use of large round balers requires a minimum distance among rows of 2.60 m and a form of farming which is not limited in height (it has been excluded tent and arbour form).

Were recorded working times for the phases of advancement, tying, discharge time and turning time. In addition, for each site were recorded the size and shape of the land plot, the density of vine shoots in rows - for each row covered, the routes of collection system and the subsequent paths for the transport of round bales produced to the temporary storage areas.

The study of the times was, in fact, associated with the monitoring of the paths through the placement of GPS receivers in data-logger mode.

The study of times needed to collect the vine-shoots and to bale them in the field, has considered the following phases of work:

- Advance phase: the tractor with the round baler moves along the row, collecting vine-shoots.
- Tying phase: after completing the filling of the compression chamber, and once the compression of the material is over, the tractor and round baler stop for tying.
- Unloading phase: after the tying phase, starts the unloading of the bale. This stage ends with the resumption of the progress of the vehicle and the round baler along the row.
- Turning phase: this stage consider the manoeuvre done between the arrival at the end of the row and the beginning of progress along the next row.

The density of the vine-shoots has been outlined as an important parameter for the determination of the round baler speed and efficiency along the vine rows (Figure 5).

To determine the density of vine-shoots in the rows were used the following tools: an electronic dynamometer with a maximum capacity of 25 kN, a support for collecting and measuring the weight of the vine-shoots (consisting of a stretcher), a thread of known length and two small poles for the determination of the sampling area, a metric string and pruning shears.

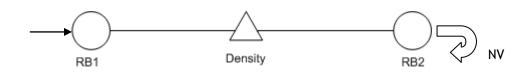


Figure 5 - RB = round bale; Density = sampled density of the vine-shoots by the use of a stretcher, NV = Turning

For the system of handling and transport of round bales to the temporary storage areas the times of transport and return were observed, and the time required for loading and unloading tractor with front loader. In particular, for determining the travelled distance, was used a GPS in data-logger mode.

2.2.2 Statistical analysis

The recorded time study data and the measured data of each operation were combined as a dataset. The statistical data analysis on effective productivity time concerned the following working phases:

The productivity time consumption study of each work phases was formulated by applying regression analysis. Different transformations and curve types were tested to obtain the best possible symmetrical distributions of residual of the regression models and to achieve the best values for the coefficient of determination of final models. The regression analysis was performed by SPSS 17 (IBM, 2010).

2.2.3 Control of the moisture content

In order to check the progress of the water content of the vine-shoots during storage in round bales has been set up a sampling of the variation of the weight of round bales in two types of storage: round bales uncovered, and round bales covered with plastic, nonbreathable fabric.

From temporary storage facilities were then taken 12 round bales that were later transported to the storage facility of Cooperativa Agricola Alto-Livenza (COOAL).

2.3 Transport system

After the maturation period - second half of August - the round bales are transported by a tractor (power 107 kW) and a three-axle trailer (carrying capacity of about 12 t) at the platform for the operation of chipping, and subsequent storage of the woodchips under a shed.

2.3.1 Costs of delivery to the platform

The hourly cost of the tractor and trailer was calculated \in 63.88, including the labour cost equal to \notin 20 (Table 3).

The productivity of the transport system depends on the distance of delivery. Assessments of productivity and cost of transport are based on the consideration that vineshoots during transport to the platform (August) have a water content around 11%.

MACHINE	TRACTOR
PRICE (NEW) (€)	85 000
Power (KW)	145
Duration (years)	12
Salvage value (€)	8 500
Reintegration share (€ year ⁻¹)	6 375
Maintenance share (€ year ⁻¹)	956
Fuel cost (€ I ⁻¹)	1.20
Fuel consumption (I h ⁻¹)	22.38
Fuel cost (€ h ⁻¹)	26.86
Insurance costs (€ year ⁻¹)	600
Lubricant unit cost (€ kg ⁻¹)	3.00
Lubricant consumption (kg h ⁻¹)	0.64
Lubricant cost (€ h ⁻¹)	1.92
Annual cost	7 960.03
Workable hours per year	800
Workable days	100
COST PER HOUR	38.73
EQUIPMENT	TRAILER
PRICE (NEW) (€)	20 000
Duration(years)	12
Salvage value (€)	1 500
Reintegration share (€ year ⁻¹)	1 542
Maintenance share (€ year ⁻¹)	150
Insurance costs (€ year ⁻¹)	30
Lubricant unit cost (€ kg ⁻¹)	2.00
Lubricant consumption (kg h ⁻¹)	0.1
Lubricant cost (€ h ⁻¹)	0.2
Annual cost	1 721
Workable hours per year	800
Workable days	100
COST PER HOUR	4.15

Table 3 - Hourly cost for tractor and trailer

2.3.2 Work and time study

The analysis provided the times observation by means of separate survey of the times, for different stages like work, transport and time of loading and unloading of round bales.

A GPS was mounted on the tractor responsible of the round bales collecting from the dislocated storages. The GPS was set in *data logger* mode, so that it recorded a waypoint every 10 seconds.

2.4 Chipping at terminal

The need for a study on the management and organization of the platform for the chipping of vine-shoots comes mainly from two requirements.

The first need is to maintain the chipper always operative in the chipping phase, and so to avoid stops to wait for the chipping material. The chipping operation, in this context of organized chain, sees the use of high power chippers and in the form of service, usually by subcontracting companies. The hourly cost of service for a chipper with power above 200 kW is about \notin 200 h⁻¹.

The second need is to have indications of the time needed to transport the round bales from the temporary storage facilities, located on farms or in areas planted with vines to the platform (Figure 6), in the days before chipping, in order to provide a minimum quantity necessary to ensure the continuity of chipping, whereas on the other side some of the round bales are transported in a manner "just in time" during the days of chipping.

Figure 6 - Aerial photo of the chipping platform site.

In the specific case study, the interest assumes additional significance because the chipping service is operated by a German company, with a chipper with a power supply system suitable for handling round bales of dimensions 1.50x1.20 m, and available to work only for the minimum time required to perform the work.

For this reason, the study of the chipping site was then arranged in order to include the handling operations (Figure 7).

The study of the site provides the times observation by means of separate survey of the times, for the application of the method of relief separate timelines for work stages (Berti et al., 1989). The recorded time for the phases of transport, were then added to the times recorded for the task of chipping at the platform.

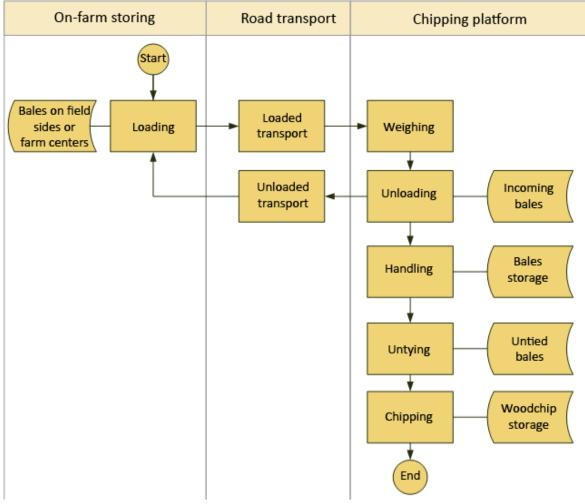


Figure 7 - Flowchart of the chipping process

The logistics of the platform in its complexity, dynamics and randomness was studied with the approach of a simulation model for the study of complex systems. This approach was considered suitable for the study of a system for processing / management consisting of a set of operations that take place in succession and influence each other (Banks et al., 2005; Busato, 2007).

A separate analysis of individual transactions (handling, transport, untying, and chipping) and its components (tractor and trailer operators, tractor handling, and chipper) would instead merely describe a set of operations not connected between each other.

The developed model is stochastic because the input parameters are defined on the basis of statistical distributions and parameter values are taken as random values extracted from set distributions. The model is also discrete as it has a temporal dimension that varies the parameter values at each change of state of the system.

The model inputs for the definition of the scenario are based on extracting a random number of temporary storage facilities, characterized by the number of round bales stacked and distributed within a distance of 40 km (calculated on road network of the province) from the chipping platform.

Is then simulated the transport of round bales to the platform, their handling and preparation and simultaneous management of the chipping operation.

The chipping process considers as a priority the supplying of the chipper with the incoming round bales (transport mode just in time). During the simulation, the model evaluate as an option, in case the continuity of the operation if the chipping is prejudiced by the late arrival of the round bales from the centers of temporary storage, even the supply with the round bales already present and stacked in the platform in the days before filing.

2.4.1 Work and time study

The rational and systematic collection of information about the productive process has the aim of identifying the distribution of the working times of the following work phases:

- Chipping time
- Complementary work time
- Delay time, avoidable
- Delay time, unavoidable

Video equipment (digital video camera mounted on a tripod) was used to record an entire day of work at the chipping terminal.

Activity sampling (frequency study) was the method of finding the percentage of occurrence of activities by the statistical sampling.

The work sampling method was used in the time study; according to this method, the percentage occurrence of each activity was found by statistical sampling and random observations (ILO 1979). This method is easy to use and rather quick: times and activities can be recorded manually (Harstela 1991; Rantala et al. 2003).

The used sampling interval was of two minutes and the total recorded time 8 hours. The time study data consisted of 240 observations that recorded the working times of the considered working phases, according to Berti et al. (1989) and ILO procedure. The frequency and the percentage occurrence of machine interruptions, idle times and rest pauses were also recorded.

2.4.2 Chipper machine

The chipper used was a Heizomat[®] machine, model Heizohack HM 14-800 KL, mounted on a Mercedes truck. The chipper was powered by the truck engine (257.3 kW - 350 HP), and has a value of € 350 000 (new).

2.5 Chipping evaluation by Discrete Event analysis

2.5.1 Discrete event simulation (DES)

Discrete event simulation (DES) is a powerful tool to help understand and manage complex processing system. A system is defined as a collection of entities - usually workers and machine - that act and interact toward the accomplishment of some logical end (Law and Kelton, 1991).

Discrete event modelling leaded to the creation of an assumed system. According to Banks et al. (2005), the model has the following characteristics:

- it is dynamic, therefore it has a temporal dimension (its variables evolve over time);
- it is stochastic, hence with inputs non-deterministic but described by statistical distributions;

 it represents discrete-event systems in which the state of the system can only change instantaneously at a discrete set of points in time (events), not continuously (Law and Kelton, 2000).

The DES model was built using WITNESS 1.02 (Lanner, 2007). Witness is a graphical interactive simulation package with artificial intelligence features, such as automatic program generation and debugging, and graphic interactive programming interface, which enable no-simulation specialist to build models of complex system.

According to the investigated situation the model was divided in blocks. The layout and the material flow of the processing system were therefore reproduced by using several elements (parts, buffers, machines, labours, paths, vehicles) interacting each other through rules, expressions and actions deduced by data collection and statistical analysis.

The model was constructed interactively in three steps through graphics interface:

- Define step: the names and quantities of the elements to be used in building the model were specified.
- Display step: it enables the modeller to specify how many elements must be displayed on the screen.
- Details step: it allows the user to supply the parameters of each element, such as the cycle time, set up time, etc.

The data taken from the time study allowed defining the elements and the conceptual aspects of the model.

The logical proceeding of work sequences was tested by running the model step by step and observing the interaction between all the elements by graphic and value outputs, in a sort of iterative building and verification activity (Bank et al. 2005).

The collected data of about transports, handling, delay times and chipping of the round bales were used to evaluate the optimal distribution for the same data on the probability plots and goodness-of-fit tests for the generating a realistic dataset of loads as input for the DES model.

The goodness-of-fit testes were evaluated with the test of Kolmogorov-Smirnov by SPSS 18 statistical package software at the confidence interval of 0.05.

25

Randomly occurring delays have an important influence on machine and operations. In this study the cause of the delays were also recorded. To describe the delay pattern of delay times (excluded waiting time generated by the interaction between the system elements) the distribution of the registered delay times in terms of time between delays and delay time were defined.

3 Results and discussion

3.1 Harvesting

3.1.1 Cost of the harvesting operations

The total hourly cost for the gathering of vine-shoots is equal to \notin 48.60, including cost of labour set at 17.5 \notin h⁻¹. The hourly cost of handling has been evaluated \notin 43.19 h⁻¹. On the basis of productivity estimates for the harvesting site, the unit cost per ton of mass to 50% water content can vary from \notin 4.90 to 10.80 t⁻¹ by the density of vine-shoots, the regularity and size of the land parcels, and soil conditions.

The cost of round bales handling, including cost of labour set at $17.5 \notin h^{-1}$, can range 3.98 to $2.88 \notin t^{-1}$ according to the distance. The collection costs are strongly influenced by the regularity of the geometry of the land parcels.

In particular, for land parcels of small dimensions, productivity is severely limited by the geometry with a ratio of the sides close to 1 (for a side 100 m long corresponds a side with the same length), while the effect is smaller in surfaces of the same magnitude, but with a ratio of sides greater than 4:1. In large land parcels, the effect of the relationship among the sides on productivity is very limited (Figure 8).

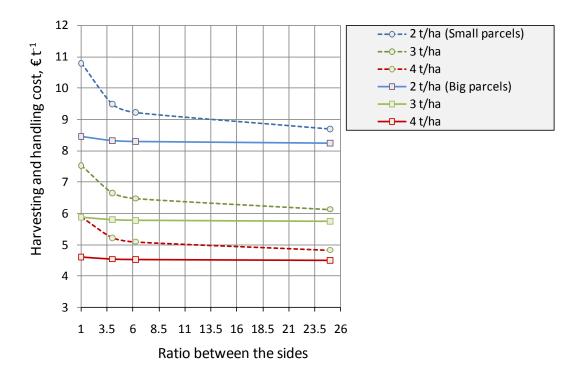


Figure 8 - Harvesting and handling cost over geometrical side ratio

3.1.2 Study of time and productivity

For every survey has been registered the actual work times (advancement - AV, tying - LEG, deploying - SC), accessory times (turning - TAV, refuelling - TAS, in the field maintenance - TAC) and delay times (avoidable - TME, and unavoidable - TMI). The surveys gave a field average production capacity of 6.01 t h^{-1} (with 50% of water content) and of 1.04 ha h^{-1} , corresponding to an average of 12 round bales per hour (Table 4).

	Unit	A	В	C	Total		
Times distribution							
Forwarding, AV	%	50.94	47.81	57.89	51.12		
Tying, LEG	%	15.29	11.52	12.26	12.95		
Discharge, SC	%	4.27	3.24	3.60	3.67		
Turnings, TAV	%	3.51	2.73	4.13	3.31		
Other accessory times, TAC/TAS	%	9.71	5.93	4.17	6.81		
Avoidable delay times, TMe	%	0.83	1.29	0.84	1.03		
Unavoidable delay times, TMi	%	15.45	27.49	17.10	21.11		
TOTAL	h	2.66	2.72	1.38	6.76		
Productivity							
Real capacity (delay times included)	t h ⁻¹	5.97	5.80	6.49	6.01 (mean)		
Real capacity (delug tilles included)	ha h ⁻¹	1.22	0.92	1.03	1.04 (mean)		
Operative capacity (delay times excluded)	t h ⁻¹	7.52	7.82	7.93	7.75 (mean)		
operative capacity (delay times excluded)	ha h ⁻¹	1.46	1.29	1.26	1.34 (mean)		

Table 4 - Time distribution and productivity of harvest operations

Overall a total number of 405.6 minutes was observed (excluding rest time, transfer and preparation of the machine at the farm) in three different collection sites. The results show that 67.74% (AV, LEG, SC) of the total time of utilization is the actual working time (TE), while 10.11% is within the overhead time (TAV, ACT and TAS). Delay times amounted to a total of about 22%. Times preventable deaths are minimal, while the inevitable delay time accounted for 21.11% of the total time of use.

In order to evaluate the overall operating time for the harvest of vine-shoots in the vine-growing units of the province with the minimum requirements for the use of the system studied, a model of productivity was defined, based on time of advancement along the row (AV, s100), the time of tying (LEG, s100), unloading (SC, s100) and turnings(TAV, s100).

For the time of advance was set a regression model (Table 5) that found significant its dependence on the density of vine-shoots (DN, t^{-1}) and the distance travelled (D, m), while the distributions of phases of times, tying and unloading were monitored by the Kolmogorov-Smirnov statistical test (Table 6).

Model		Sum of squares	df	Average of squares		F	Sign.		
Regression		17154.3	2	8577.156		181.704	0.000		
Residual		3681.9	78	47.204					
Total		20836.2	80						
Non-stan		dardized coefficients	+	Sign.	Confidence	Interval 95.0%			
	В	Dev. St.		Jigii.	Lower limit	Upper	limit		
Α	-46.460	35.849	-1.296	0.029	-117.830	24.9	11		
Ln(DN)	60.750	22.936	2.649	0.010	15.088 100		111		
D	0.571	0.071	8.096	0.000	0.431	0.71	2		

Table 6 - Kolmogorov-Smirnov statistical test

Stage		Observations	Distribution	Average	St. Dev.	2-rows Asymp. Sign.
		n.	Туре	S ₁₀₀	s ₁₀₀	p-value
Tying	LEG	83	Normal	74.12	20.96	0.239
Discharge	SC	83	Normal	4.88	2.34	0.181
Turnings	TAV	60	Normal	26.17	4.06	0.153

The results of the times analysis have been Integrated into a model for determining the periods of utilization in the field TU (h) and its relative productivity model P (t h^{-1}) to be applied subsequently to the database of the vine-growing units.

For an area of vines (S, ha), once defined the density per hectare (DN, t^{-1}) of vineshoots, the overall length of the rows in which they are arranged (D, m), the average weight of round bales (M, t), the number of turnings (nTAV) in relation to the geometry and to the planting plot, the average weight of round bales (M, t) and the number of operations of tying and unloading (DN * S * M^{-1}), the function of gross productivity of collection and baling in the field can then be calculated as:

$$P = \frac{DN^*S}{\left(\frac{-46.460 + 60.750^*Ln(DN) + 0.571^*D + \left(nTAV * TAV + (LEG + SC)^*\left(\frac{(DN^*S)}{M}\right)\right)}{6000}\right)^*\mu}$$

where TAV is the average turning time (s100), LEG the average time of binding, SC the average discharge time (s100) and μ the coefficient of real utilization (ratio of net work time over the usage average time, highlighted in the study) that, for the studied sites, corresponds to 0.776.

The usage time (TU) is instead defined as

$$TU = \left(\frac{-46.460 + 60.750 \text{*Ln}(\text{DN}) + 0.571 \text{*D} + \left(n\text{TAV} \text{*TAV} + (\text{LEG} + \text{SC}) \text{*} \left(\frac{(\text{DN} \text{*S})}{M}\right)}{6000}\right) \text{*} \mu$$

The estimated productivity for the transport of round bales (one per travel) from the field to the temporary storage area (Pm, t h^{-1}) was evaluated in relation to the average distance (D, m) of the round bales from the same storage area:

$$P_m = -0.0851 D + 88.103$$

3.1.3 Classification of vineyard

The vine-growing units covered by the vineyard register of the Veneto in the province of Treviso, were classified according to the technical possibility of adopting certain types of harvesting and processing systems.

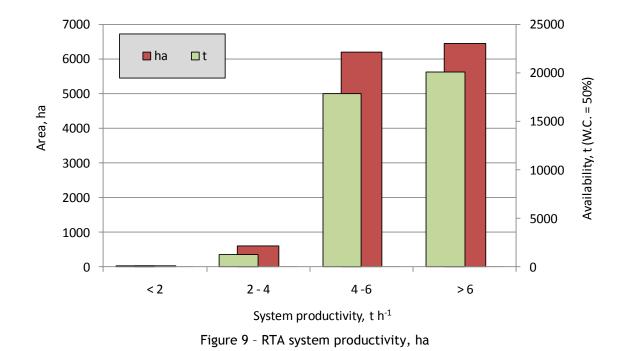
This allowed to evaluate the potential availability of vine-shoots in relation to the machinery system used for the harvesting and at local municipalities (see Annex).

The analysis result shows that the RTA system (large round baler) can be applied for the harvest of about 50 000 tons (50% CI) of vine-shoots, which corresponds to 72% of the available potential in the province (Table 7).

	W.C.	50%	11%	DRY
Machine	System	t	t	t
Round baler, \ge 2.6 m of space among rows	RTA	49683	27912	24842
of which falling in the form of ray or Bellussi farming	RTA*	10344	5811	5172
Round baler, 1.6 m \leq space among rows > 2.6 m	RTB e RTC	3620	2034	1810
Other machines with dimensions suitable for harvest / mulching, 1.6 m \leq space among rows > 2.0 m	TS	6343	3563	3171
Unavailability due to mechanical pruning	ND	4832	2715	2416
Availability in steep terrains or \leq 1.6 m among rows	NC	4511	2534	2255
Surfaces not classified for inconsistencies in the databases	NC*	688	387	344
TOTAL		69677	39144	34839

Table 7 - Evaluation of the potential availability of vine-shoots in relation to the machinery system

Most of the surface in vineyard suitable for systems RTA and RTB is located in the southwest of the province, while the part suitable for TS RTC systems is located in the hills. In the hilly area is also concentrated most of the areas with vines NC due to the presence of several surfaces with planting plots on sloping land or with planting plots under 1.6 m among the rows.


3.1.4 Potential use of the RTA system

The model of use (TU) previously determined on the basis of field surveys for the harvest system RTA has been applied to areas classified as suitable for this system (13 283 ha).

From the suitable areas, were subtracted the 3273 ha with ray or Bellussi farming system (RTA* classified system), as they present planting plots suitable only for tractors without cab (not suitable for winter operations such as the harvesting of vine-shoots). Moreover, given the particular planting plot with spacing among rows greater than 4.00 m, the GIS interpretation of parameters such as number of times and the distance of harvest may not be likely.

For the 33 180 particles processed and referred to the RTA system (for a total of 39 339 tons of vine-shoots with a water content of 50%), the average productivity of the yard was 5.19 t h^{-1} with a standard deviation of 1.73 t h^{-1} . On about 5% of the surfaces, productivity varies between 6.7 t h^{-1} and 7.2 t h^{-1} (Figures 9-12).

This value - which is considered high - was considered likely assessed the limits of the applicability of model, time of use of RTA system in the GIS, and inaccuracy that may be generated from all the processing and queries between vineyard register and the cadastral map. The 3% of the surfaces shows instead a lower productivity to 4.0 t h^{-1} . Most of the availability of vine-shoots (443 t) on these surfaces is located in the hilly area.

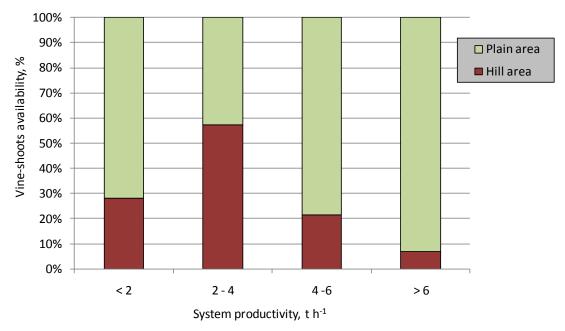


Figure 10 - RTA system productivity, %

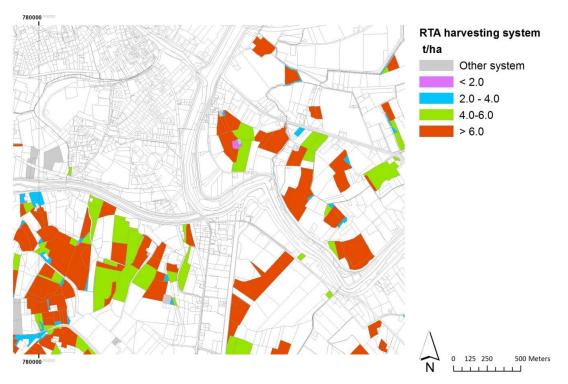


Figure 11 - Availability map for the surveyed area of the RTA system

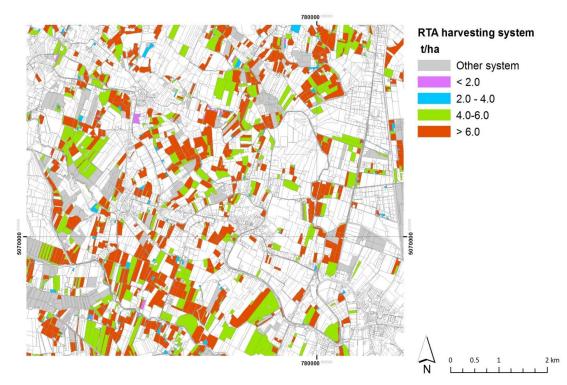


Figure 12 - Availability map for the surveyed area of the RTA system (larger scale)

3.2 Transport

3.2.1 Study of time and productivity

Here is the study of the distribution of the times (Table 8) recorded for the different phases analyzed in the transport of round bales to the platform by means of a tractor (107 kW) and three-axle trailer (carrying capacity of approximately 12 t).

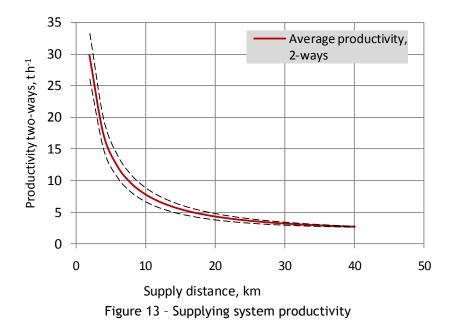

Stage	Observation s	Distribution	Average	St. Dev.	2-rows Asymp. Sign.
Conferral	n.	Туре	km h ⁻¹	km h ⁻¹	p-value
Asphalt, loaded	20	Normal	31.760	4.553	0.110
Asphalt, unloaded	20	Normal	27.635	3.476	0.221
Gravel road, loaded	17	Normal	12.312	3.072	0.514
Gravel road, unloaded	17	Normal	13.124	3.434	0.909
Handling	n°	Туре	s ₁₀₀ /unit	s ₁₀₀ /unit	p-value
Loaded	16	Normal	13.132	3.434	0.859
Unloaded	16	Normal	15.381	4.500	0.835
Bale untying	28	Normal	133.289	7.013	0.238
Chipping	n°	Туре	S ₁₀₀	S ₁₀₀	p-value
Per bale	45	Normal	134.091	28.236	0.805
Delay times	19	Erlag	206.500	213.471	0.166
Delay times intervals	19	Erlag	41.210	16.7252	0.222

Table 8 - Transport times distribution

The measurements were carried out in August 2010, about six months from the operation of collection in the field. The maximum load corresponded to 22 round bales for every travel, equivalent to a load of 7.6 t of vine-shoots with water content of about 11%.

On the basis of observations made we can define the productivity of the supplying system according to the distance and the type of road between the site and the temporary storage platform (Figure 13).

From the study of transportation times, and loading and unloading of round bales times, has been possible to determine at first a model of productivity in relation to the distance of conferral, and then a model for the assessment of unitary costs of transfer (Figure 14).

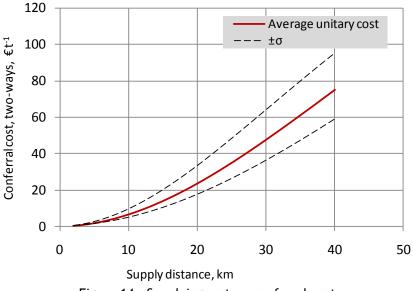


Figure 14 - Supplying system conferral cost

The harvest of about 39 339 t of vine-shoots requires 3413 hours of work. Given that the harvesting period extends for three months, from January to March, a useful period of 90 days with daily shifts of 8 hours can be considered.

The coefficient of workability, as defined in Lazzari and Mazzetto (2005), was estimated at 0.65, given the data of rainfall (> 5 mm day -1) for the eastern province of Treviso in the period from January to February 2010. Consequently, the workability hours for the harvesting period can be estimated at 468. For the collection of vine-shoots in areas classified as suitable for the RTA system, 6-7 round balers could then be used.

3.3 Chipping

3.3.1 Productivity and chipping costs

The chipping operation was conducted at a platform located in a disused farm center and in an agricultural area. The machine used was a chipper mounted on a truck and driven the same truck engine (257 kW). The chipper had a supply system consisting of a belt of >1.2 width and of a roll of 1.2 m with an excursion of 0.8 cm in height. The machine has been chosen by the technicians of the COOAL cooperative because of the characteristics of the supply system, that allows the use of round bales with dimensions 1.50x 1.20 m without any preliminary action of disintegration. From the study of working times (Figure 15), the actual chipping time represented 77% of the total working time. The Inevitable delay times, which included the lubrication of machine, the sharpening and the changing of the knives, refuelling, cooling (about 50% of the inevitable delay times) and movements/manoeuvres, accounted for 15% of the total time. The chipping operation showed a gross productivity of 9.93 t h^{-1} and a corresponding net productivity of 7.65 t h^{-1} (water content 11%).

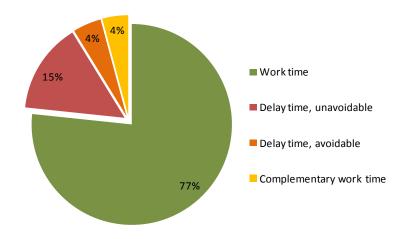


Figure 15 - Chipping time distribution

The cost of chipping at the platform has been set equal to the cost demanded by chipping service (200 \in h⁻¹), while there were an estimated hourly cost of \in 43.19 h⁻¹ (including the operator) for a tractor (68 kW) fitted with a fork front loader for moving the round bales, and the cost of untying of the round bales (performed by two operators) of 35 \in h⁻¹.

The total cost of chipping and handling at the platform can be estimated at between 33.8 and $38.3 \notin t^{-1}$ (average of 11% water content).

3.3.2 Simulation of the chipping process

The study and analysis of the timing of different stages of work for the chipping operation (transport, weighing, unloading, handling, untying and chipping) have defined the functions and algorithms for implementing the simulation model to evaluate the logistics operation. The application of the model has considered a sequence of scenarios for a sensitivity analysis - in relation to the conferral distance - to the continuity of supply to the chipper. The goal of the analysis was to assess the minimum amount of round bales to be piled at the platform in the days before chipping to ensure the continued feeding of the machine, in case during the term of chipping the flow of incoming round bales to the platform should be insufficient to ensure the continuity of the operation of chipping.

For a better representation of reality, the inputs of model considered the extraction of a random number of 846 temporary storage facilities, distributed within a distance of 40 km with a potential of 10 000 tonnes of vine-shoots (water content 11%), corresponding to approximately 33 000 round bales. The sensitivity analysis considered the sequence of 9 settings that provided the increase of the maximum distance from 5 km to 40 km, taking the sites from the list of 846 potential areas.

The elaboration led to the setting of a graph (Figure 16), which represents the minimum number of round bales that have to be pre-conferred (round bales in storage) to the platform in the days before the chipping, to ensure the continuity of the chipper at the moment where the incoming flow of the round bales from the outside (round bales transported) is slowed by the increased travel time for the increase in the collecting distance.

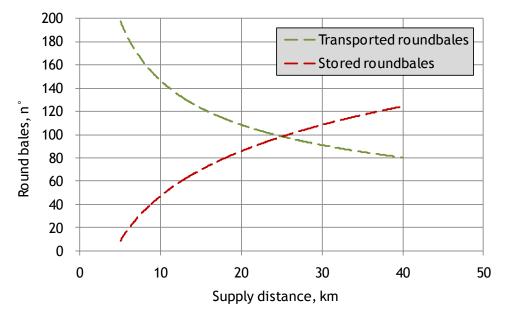


Figure 16 - Minimum number of pre-conferred round bales in relation to supply distance

From the values obtained from the sensitivity analysis has been possible to set a model for determining the minimum area for the storage of round bales at the platform (Figure 17), in relation to the goals of chipping (quantity produced) and in relation to a distance of conferral of 35 km. For the determination of the surface it was considered that a bale occupies an area of about 1 m^2 , and that stacking does not go over three rows in height.

Figure 17 - Minimum platform storage area for the round bales, 35 km supply distance

3.4 Moisture content

From the measurements carried out in collaboration with the Cooperativa Agricola Alto-Livenza on the weight of the round bales and the simultaneous sampling of 3 samples of vine-shoots per bale, it was possible to check the progress of water content for both round bales covered with ground cloth, as for those uncovered (Figure 18, 19).

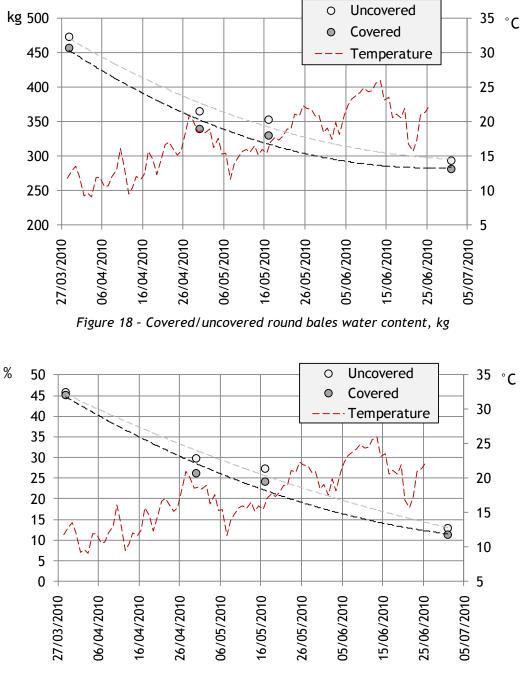


Figure 19 - Covered/uncovered round bales water content, %

3.5 Woodchips quality

3.5.1 Particle size distribution

Woodchip with dimensions within the limits, designed for a small/medium systems with pushing supply system. Over-measures have an average diameter of 6 mm. The woodchip cannot be classified in any class of classification (EN 14961-1:2010) since it has high over-measures and fine fraction values (Table 9).

Sieve ID	Fraction	Fraction ma	ISS		
	mm	g	%		% cumulated
Fraction < 3.15 mm	< 3.5	174.6	9.8		9.8
1° sieve (3.5 mm)	3.15-8	289.7	16.3		16.3
2° sieve (8 mm)	8-16	1019.2	57.3		73.6
3° sieve (16 mm)	16-45	230.43	13.0		86.6
4° sieve (45 mm)	45-63		0.0		86.6
5° sieve (63 mm)	63-100		0.0		86.6
6° sieve (100 mm)	>100	63.94	3.6		3.6
Total mass	All	1777.9	100.0		-
Number of over-measures	(>100 mm)		2)	n°
Length of the longest parti	2	1	cm		
Water content of the sample (M)11.66					
Density over loose m ³ of th	e sample		1	88.5	kg/m ³ loose

Table	9	_	Woodchip analysis
Tuble			moodernp unacysis

4 Conclusions

The analysis carried out within this report would like to support decision for setting the bases on further works, aimed to improve the use vine-shoots and other agricultural secondary products for energy production.

Nowadays, the agricultural world needs to find alternative ways of exploiting the most of its resources, that are scarcer year after year; it is even better if these new opportunities are found looking inside itself and its own already available resources.

After obtaining a reliable quantification of the vine-shoots availability on the Treviso province territory, an analysis was made on the various harvesting systems which can be found in the literature and on the market.

By comparing the technical data with data obtained from the cadastral register of the regional vineyard, a simulation model for plain areas has been developed, where are most of mechanized vineyards.

According to the results delivered by the model, the chosen system (tractor and large round baler), given the operative conditions, for harvesting of 39,300 t, requires 3,400 hours and 6-7 round balers for collect the adequate number of round bales.

This system is not issues-free: because of the many parts involved in it (several operator for the harvest, the collection and the transport of the round bales to the chipping platform, the handling and untying work of the round bales at the chipping site) it requires a careful preparation, and especially a very large space where to place the chipping platform and the subsequent storage of round bales.

However, over the years, after many tests and trials, the dedicated technologies have reached a good maturity. The machines used are reliable and show a strong operational performance with regard to many aspects.

Optimizing the organization of construction sites is causing a gradual reduction in the cost of collection and handling of biomass, but still offers room for further improvement and in any case have to aim to the need to reduce and streamline work processes and the establishment of "short" supply chains.

44

5 References

AA.VV. 2010. L'uso energetico dei sarmenti della vite. Vento Agricoltura.

- ArcGIS 9.3-ArcInfo 2008. Release 9.3.1. Redland, CA: Environmental System Research Institute.
- AVEPA 2010. Lo schedario viticolo del Veneto. Agenzia veneta per i pagamenti in agricoltura. Padova. Aggiornato al 31 dicembre 2009. Dati non pubblicati.
- Banks, J., Carson, J. S., Nelson, B. L., & Nicol D. M. 2005. *Discrete-Event System Simulation*. (4th ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.
- Berti S, Piegai F, Verani S. 1989. Manuale d'istruzioni per il rilievo dei tempi di lavoro e delle produttività nei lavori forestali, Quaderni dell'Istituto forestale di Assestamento e Tecnologia forestale. Firenze: Università degli Studi di Firenze.
- Cavalli R, Grigolato S. 2007. Cobra 1400. La trinciasarmenti per vigneti. M & MA. Macchine e motori agricoli. 65(3):57-60.
- Emer, B. Grigolato, S. Lubello, D., & Cavalli R. 2010. Comparison of biomass feedstock supply and demand in Northeast Italy. Biomass and Bioenergy. doi:10.1016/j.biombioe.2010.09.005.
- Francescato V, Antonini E, Paniz A, Grigolato S. Una nuova macchina per la raccolta dei sarmenti. L'Informatore Agrario. 63(10): 59-65.
- Harstela P. 1991. Work-studies in forestry. Silva Carelica. Vol.18. Joensuu: Joensuu Yliopiston Kirjasto.
- ISTAT, http://agri.istat.it, consultato il 7.2.2010.
- Lanner 2007. Witness simulation. Release 1.02. Witness technology for knowing. Redditch Worc, UK: Lanner group limited. http://www.lanner.com.
- Lazzari M, Mazzetto F. 2005. Prontuario di meccanica agraria e meccanizzazione. Torino: Reda, Edizioni per l'agricoltura.

Law A.M. and Kelton W.D. 1991. Simulation modeling and analysis. New York: McGraw-Hill, Inc. 759pp.

- Rantala, J., Väätäinen, K., Kiljunen, N., & Harstela P. 2003. Economic evaluation of container seedling packing and disinfection machinery. Silva Fennica. 37(1):121-127.
- Recchia L, Daou M, Rimediotti M, Cini E, Vieri M. 2009. New shredding machine for recycling pruning residuals, Biomass and Bioenergy, 33:149-154.
- Sims, E.H.R. 2004. Bioenergy options for a cleaner environment in developed and developing countries. World Renewable Energy Network, Elsevier.
- SPSS 2010. SPSS Statistic software. Release 18. SPSS Inc. Chicago, Illinois: IBM Company.

- UNI EN 14961-1:2010 Solid biofuels Fuel specifications and classes Part 1: General requirements.
- UNI EN 14774-2:2010 Solid Biofuels Determination Of Moisture Content Oven Dry Method - Part 2: Total Moisture - Simplified Method

6 Annexes

6.1 Technical quantification

Using a logical query on the GIS system, the following parameters has been determined for every municipality: average terrain slope (determined on the basis of the Digtal Terrain Model, 25x25 m resolution), average quantity of the vine-shoots per hectare, and the available quantities following the mechanical harvest characteristics.

The considered systems are below:

- RTA: tractor with large round baler system, ≥ 2.6 m among the rows , not limited in height, flat terrain
- RTA*: same as RTA, but with Bellussi or ray planting plot.
- RTB: tractor with medium size round baler system distance among the rows between 2.0 and 2.6 m me, not limited in height, flat terrain
- RTC: tractor with small round baler system, distance among the rows between 1.6 and 2.0 m, not limited in height (> 1.8 m), flat terrain
- TS: tractor and shredder system, distance among the rows between 1.6 and 2.0 m, all forms of farming, even in gently sloping terrain
- ND: For installations where it can be applied to mechanized pruning and thus a potential of vine-shoots unavailable for the collection
- NC: planting distance on sloping ground, or ≤ 1.6 m among rows
- NC*: particles with errors in the data

Municipality	System	Slope	Quantity	Area		Availability	
		%	t ha ⁻¹	ha	%	t	%
ALTIVOLE	RTA	0.09	3.17	21.73	72.98	68.78	73.37
ALTIVOLE	RTA*	-	3.03	3.46	11.61	10.48	11.18
ALTIVOLE	RTB	-	3.25	0.47	1.59	1.54	1.64
ALTIVOLE	RTC	0.67	2.60	0.14	0.48	0.37	0.39
ALTIVOLE	TS	-	3.67	0.22	0.72	0.79	0.84
ALTIVOLE	ND	-	3.12	2.85	9.57	8.89	9.48
ALTIVOLE	NC	0.40	2.84	0.52	1.74	1.47	1.57
ALTIVOLE	NC*	-	3.65	0.39	1.31	1.42	1.51
ARCADE	RTA	-	3.24	48.93	54.13	158.38	54.87
ARCADE	RTA*	-	3.20	12.58	13.92	40.29	13.96
ARCADE	RTB	-	3.17	1.22	1.35	3.88	1.34
ARCADE	RTC	-	-	-	-	-	-

Municipality	System	Slope	Quantity	Ar	ea	Availability	
manopancy	oyoteini	%	t ha ⁻¹	ha	%	t	%
ARCADE	TS	-	3.59	0.20	0.22	0.71	0.25
ARCADE	ND	-	3.06	25.72	28.45	78.67	27.26
ARCADE	NC	-	3.87	1.65	1.82	6.37	2.21
ARCADE	NC*	-	3.46	0.09	0.10	0.32	0.11
ASOLO	RTA	1.40	3.54	22.61	49.16	80.03	48.64
ASOLO	RTA*	-	4.07	0.09	0.19	0.36	0.22
ASOLO	RTB	1.00	3.15	1.68	3.66	5.30	3.22
ASOLO	RTC	4.00	2.93	0.02	0.04	0.06	0.04
ASOLO	TS	13.81	3.67	14.51	31.56	53.22	32.34
ASOLO	ND	10.00	3.78	3.47	7.54	13.11	7.97
ASOLO	NC	23.08	3.45	3.61	7.85	12.46	7.57
ASOLO	NC*	-	-	-	-	-	-
BORSO DEL GRAPPA	RTA	1.92	1.83	2.35	42.58	4.30	42.45
BORSO DEL GRAPPA	RTA*	-	-	-	-	-	-
BORSO DEL GRAPPA	RTB	6.00	1.60	0.25	4.53	0.40	3.95
BORSO DEL GRAPPA	RTC	-	-	-	-	-	-
BORSO DEL GRAPPA	TS	11.50	1.85	2.44	44.22	4.52	44.62
BORSO DEL GRAPPA	ND	-	-	-	-	-	-
BORSO DEL GRAPPA	NC	12.75	2.00	0.33	6.00	0.66	6.52
BORSO DEL GRAPPA	NC*	48.00	1.70	0.15	2.67	0.25	2.47
BREDA DI PIAVE	RTA	-	3.11	140.47	84.41	436.17	84.95
BREDA DI PIAVE	RTA*	0.08	3.01	14.79	8.89	44.51	8.67
BREDA DI PIAVE	RTB	-	2.71	2.64	1.59	7.16	1.39
BREDA DI PIAVE	RTC	-	4.05	0.50	0.30	2.02	0.39
BREDA DI PIAVE	TS	-	-	-	-	-	-
BREDA DI PIAVE	ND	-	3.01	2.90	1.74	8.73	1.70
BREDA DI PIAVE	NC	-	2.93	4.65	2.80	13.65	2.66
BREDA DI PIAVE	NC*	-	2.61	0.45	0.27	1.18	0.23
CAERANO DI SAN MARCO	RTA	1.70	3.64	46.55	86.83	169.55	86.38
CAERANO DI SAN MARCO	RTA*	0.50	4.04	0.15	0.28	0.61	0.31
CAERANO DI SAN MARCO	RTB	1.00	3.75	3.05	5.68	11.42	5.82
CAERANO DI SAN MARCO	RTC	-	-	-	-	-	-
CAERANO DI SAN MARCO	TS	4.00	4.02	2.22	4.14	8.93	4.55
CAERANO DI SAN MARCO	ND	3.00	3.20	0.37	0.69	1.19	0.61
CAERANO DI SAN MARCO	NC	2.38	3.65	0.83	1.55	3.03	1.54
CAERANO DI SAN MARCO	NC*	2.47	3.52	0.44	0.83	1.56	0.79
CAPPELLA MAGGIORE	RTA	2.07	1.97	71.38	56.09	140.78	58.58
CAPPELLA MAGGIORE	RTA*	3.71	1.84	0.97	0.76	1.79	0.74
CAPPELLA MAGGIORE	RTB	3.00	1.68	0.13	0.10	0.21	0.09
CAPPELLA MAGGIORE	RTC	2.00	1.67	0.27	0.21	0.45	0.19

Municipality	System	Slope	Quantity	Aı	ea	Availability	
mancipanty	Jystem	%	t ha ⁻¹	ha	%	t	%
CAPPELLA MAGGIORE	TS	16.24	1.80	35.98	28.27	64.72	26.93
CAPPELLA MAGGIORE	ND	5.67	1.96	2.02	1.59	3.96	1.65
CAPPELLA MAGGIORE	NC	27.14	1.72	16.29	12.80	28.03	11.66
CAPPELLA MAGGIORE	NC*	16.00	1.71	0.23	0.18	0.39	0.16
CARBONERA	RTA	0.02	3.04	66.58	71.37	202.39	71.24
CARBONERA	RTA*	-	3.00	8.74	9.37	26.23	9.23
CARBONERA	RTB	-	3.10	15.76	16.90	48.86	17.20
CARBONERA	RTC	-	-	-	-	-	-
CARBONERA	TS	-	-	-	-	-	-
CARBONERA	ND	-	2.79	0.66	0.71	1.85	0.65
CARBONERA	NC	-	3.09	1.53	1.64	4.73	1.66
CARBONERA	NC*	-	3.85	0.01	0.01	0.05	0.02
CASALE SUL SILE	RTA	0.10	3.00	73.98	75.54	222.00	76.93
CASALE SUL SILE	RTA*	-	2.98	4.90	5.00	14.60	5.06
CASALE SUL SILE	RTB	-	2.96	2.12	2.16	6.26	2.17
CASALE SUL SILE	RTC	-	-	-	-	-	-
CASALE SUL SILE	TS	0.29	2.52	10.53	10.75	26.52	9.19
CASALE SUL SILE	ND	-	2.94	4.22	4.30	12.41	4.30
CASALE SUL SILE	NC	0.17	3.10	2.19	2.24	6.79	2.35
CASALE SUL SILE	NC*	-	-	-	-	-	-
CASIER	RTA	0.09	2.89	10.89	57.75	31.47	55.87
CASIER	RTA*	-	2.78	0.92	4.87	2.55	4.53
CASIER	RTB	-	3.22	5.33	28.25	17.16	30.46
CASIER	RTC	-	3.07	0.71	3.76	2.18	3.87
CASIER	TS	-	-	-	-	-	-
CASIER	ND	-	-	-	-	-	-
CASIER	NC	0.22	2.89	0.85	4.49	2.45	4.35
CASIER	NC*	0.33	3.14	0.17	0.88	0.52	0.92
CASTELCUCCO	RTA	2.03	1.90	10.09	40.94	19.19	42.59
CASTELCUCCO	RTA*	-	-	-	-	-	-
CASTELCUCCO	RTB	3.14	1.70	2.51	10.17	4.25	9.43
CASTELCUCCO	RTC	4.00	1.74	0.02	0.09	0.04	0.09
CASTELCUCCO	TS	13.92	1.76	5.31	21.53	9.36	20.77
CASTELCUCCO	ND	1.00	2.28	0.46	1.88	1.06	2.35
CASTELCUCCO	NC	29.06	1.78	6.26	25.39	11.16	24.77
CASTELCUCCO	NC*	-	-	-	-	-	-
CASTELFRANCO VENETO	RTA	0.03	3.22	21.85	54.24	70.32	53.02
CASTELFRANCO VENETO	RTA*	-	-	-	-	-	-
CASTELFRANCO VENETO	RTB	0.17	3.34	3.57	8.87	11.92	8.99
CASTELFRANCO VENETO	RTC	-	2.60	0.29	0.71	0.74	0.56

Municipality	System	Slope	Quantity	Ar	ea	Availability	
wancipanty	System	%	t ha ⁻¹	ha	%	t	%
CASTELFRANCO VENETO	TS	-	3.71	5.73	14.22	21.26	16.03
CASTELFRANCO VENETO	ND	-	3.21	8.65	21.47	27.80	20.96
CASTELFRANCO VENETO	NC	-	2.99	0.20	0.50	0.60	0.45
CASTELFRANCO VENETO	NC*	-	-	-	-	-	-
CASTELLO DI GODEGO	RTA	0.05	2.81	3.74	49.74	10.53	49.02
CASTELLO DI GODEGO	RTA*	-	-	-	-	-	-
CASTELLO DI GODEGO	RTB	-	2.81	0.69	9.21	1.95	9.08
CASTELLO DI GODEGO	RTC	-	-	-	-	-	-
CASTELLO DI GODEGO	TS	-	2.87	1.90	25.25	5.46	25.42
CASTELLO DI GODEGO	ND	-	2.98	1.18	15.66	3.51	16.34
CASTELLO DI GODEGO	NC	-	2.73	0.01	0.15	0.03	0.14
CASTELLO DI GODEGO	NC*	-	-	-	-	-	-
CAVASO DEL TOMBA	RTA	3.07	1.81	7.05	25.83	12.76	25.59
CAVASO DEL TOMBA	RTA*	-	-	-	-	-	-
CAVASO DEL TOMBA	RTB	6.00	1.66	0.57	2.09	0.95	1.91
CAVASO DEL TOMBA	RTC	2.00	2.03	1.43	5.22	2.90	5.82
CAVASO DEL TOMBA	TS	13.63	1.84	15.73	57.62	29.00	58.16
CAVASO DEL TOMBA	ND	-	-	-	-	-	-
CAVASO DEL TOMBA	NC	25.41	1.69	2.46	9.01	4.15	8.32
CAVASO DEL TOMBA	NC*	9.00	1.63	0.06	0.22	0.10	0.20
CESSALTO	RTA	-	3.03	311.92	65.16	944.03	65.29
CESSALTO	RTA*	-	2.76	6.32	1.32	17.42	1.20
CESSALTO	RTB	-	3.63	17.43	3.64	63.30	4.38
CESSALTO	RTC	-	2.99	6.01	1.26	18.00	1.24
CESSALTO	TS	-	3.25	3.45	0.72	11.21	0.78
CESSALTO	ND	-	2.69	75.63	15.80	203.10	14.05
CESSALTO	NC	-	3.28	56.21	11.74	184.14	12.74
CESSALTO	NC*	-	2.77	1.69	0.35	4.68	0.32
CHIARANO	RTA	-	2.99	335.84	70.45	1 004.61	69.63
CHIARANO	RTA*	-	3.06	56.59	11.87	172.94	11.99
CHIARANO	RTB	-	3.03	31.58	6.63	95.74	6.64
CHIARANO	RTC	-	2.87	3.21	0.67	9.20	0.64
CHIARANO	TS	-	2.78	0.16	0.03	0.45	0.03
CHIARANO	ND	-	3.33	32.99	6.92	109.78	7.61
CHIARANO	NC	-	3.09	10.15	2.13	31.42	2.18
CHIARANO	NC*	-	3.02	6.18	1.30	18.65	1.29
CIMADOLMO	RTA	0.05	3.26	178.20	56.60	580.48	57.03
CIMADOLMO	RTA*	0.05	3.23	99.09	31.47	319.82	31.42
CIMADOLMO	RTB	0.05	3.25	15.43	4.90	50.11	4.92
CIMADOLMO	RTC	-	-	-	-	-	-

Municipality	System	Slope	Quantity	Ar	ea	Availability	
wancipality	System	%	t ha ⁻¹	ha	%	t	%
CIMADOLMO	TS	-	3.28	3.19	1.01	10.46	1.03
CIMADOLMO	ND	0.12	2.99	14.34	4.55	42.80	4.20
CIMADOLMO	NC	0.03	2.89	1.61	0.51	4.65	0.46
CIMADOLMO	NC*	-	3.21	2.99	0.95	9.59	0.94
CISON DI VALMARINO	RTA	2.30	1.93	10.54	7.84	20.35	8.55
CISON DI VALMARINO	RTA*	-	-	-	-	-	-
CISON DI VALMARINO	RTB	1.86	1.67	1.26	0.94	2.10	0.88
CISON DI VALMARINO	RTC	-	2.35	0.13	0.10	0.31	0.13
CISON DI VALMARINO	TS	15.88	1.81	57.13	42.49	103.24	43.37
CISON DI VALMARINO	ND	21.00	1.96	3.24	2.41	6.36	2.67
CISON DI VALMARINO	NC	43.95	1.70	62.00	46.11	105.41	44.28
CISON DI VALMARINO	NC*	50.14	1.70	0.17	0.13	0.29	0.12
CODOGNE	RTA	0.01	3.50	184.62	48.88	646.86	50.81
CODOGNE	RTA*	0.03	3.27	149.57	39.60	489.03	38.41
CODOGNE	RTB	-	3.89	4.43	1.17	17.22	1.35
CODOGNE	RTC	0.25	2.60	3.29	0.87	8.55	0.67
CODOGNE	TS	-	3.16	11.26	2.98	35.57	2.79
CODOGNE	ND	-	3.17	10.65	2.82	33.81	2.66
CODOGNE	NC	-	2.99	13.20	3.49	39.40	3.09
CODOGNE	NC*	-	4.01	0.67	0.18	2.67	0.21
COLLE UMBERTO	RTA	1.32	1.76	154.28	57.44	272.00	56.18
COLLE UMBERTO	RTA*	2.27	1.80	8.54	3.18	15.37	3.17
COLLE UMBERTO	RTB	1.73	1.92	22.85	8.51	43.92	9.07
COLLE UMBERTO	RTC	-	1.67	0.53	0.20	0.88	0.18
COLLE UMBERTO	TS	12.67	1.83	47.44	17.66	86.82	17.93
COLLE UMBERTO	ND	5.92	1.82	24.86	9.26	45.36	9.37
COLLE UMBERTO	NC	7.98	2.19	5.28	1.97	11.55	2.39
COLLE UMBERTO	NC*	1.69	1.73	4.80	1.79	8.29	1.71
CONEGLIANO	RTA	1.67	1.76	285.11	36.35	500.59	36.65
CONEGLIANO	RTA*	1.38	1.79	9.28	1.18	16.56	1.21
CONEGLIANO	RTB	1.48	1.80	48.83	6.23	88.06	6.45
CONEGLIANO	RTC	3.00	1.76	1.46	0.19	2.57	0.19
CONEGLIANO	TS	14.30	1.71	357.72	45.60	612.17	44.82
CONEGLIANO	ND	10.33	1.93	22.06	2.81	42.56	3.12
CONEGLIANO	NC	16.90	1.71	56.23	7.17	96.39	7.06
CONEGLIANO	NC*	9.84	1.86	3.72	0.47	6.91	0.51
CORDIGNANO	RTA	0.63	3.47	211.31	75.47	732.25	75.40
CORDIGNANO	RTA*	0.13	3.38	9.20	3.28	31.10	3.20
CORDIGNANO	RTB	1.30	3.46	7.03	2.51	24.30	2.50
CORDIGNANO	RTC	-	-	-	-	-	-

Municipality	System	Slope	Quantity	Aı	ea	Availability	
wancipanty	System	%	t ha ⁻¹	ha	%	t	%
CORDIGNANO	TS	16.19	3.52	38.09	13.60	134.12	13.81
CORDIGNANO	ND	-	2.93	1.36	0.49	3.98	0.41
CORDIGNANO	NC	14.91	3.47	12.20	4.36	42.29	4.35
CORDIGNANO	NC*	1.29	3.77	0.83	0.30	3.14	0.32
CORNUDA	RTA	1.01	1.72	77.95	70.15	134.35	70.68
CORNUDA	RTA*	-	-	-	-	-	-
CORNUDA	RTB	2.50	1.66	2.02	1.82	3.37	1.77
CORNUDA	RTC	-	1.67	0.26	0.24	0.44	0.23
CORNUDA	TS	14.64	1.68	24.35	21.91	40.97	21.55
CORNUDA	ND	-	1.67	0.89	0.80	1.49	0.78
CORNUDA	NC	16.44	1.68	4.69	4.22	7.87	4.14
CORNUDA	NC*	7.33	1.67	0.96	0.86	1.60	0.84
CRESPANO DEL GRAPPA	RTA	3.38	1.96	3.44	74.67	6.74	74.97
CRESPANO DEL GRAPPA	RTA*	-	-	-	-	-	-
CRESPANO DEL GRAPPA	RTB	3.00	2.19	0.36	7.84	0.79	8.79
CRESPANO DEL GRAPPA	RTC	-	-	-	-	-	-
CRESPANO DEL GRAPPA	TS	8.75	1.81	0.81	17.49	1.46	16.24
CRESPANO DEL GRAPPA	ND	-	-	-	-	-	-
CRESPANO DEL GRAPPA	NC	-	-	-	-	-	-
CRESPANO DEL GRAPPA	NC*	-	-	-	-	-	-
CROCETTA DEL MONTELLO	RTA	1.08	3.67	27.62	46.50	101.50	48.72
CROCETTA DEL MONTELLO	RTA*	1.56	4.05	1.42	2.40	5.77	2.77
CROCETTA DEL MONTELLO	RTB	0.34	3.20	20.11	33.86	64.43	30.93
CROCETTA DEL MONTELLO	RTC	-	4.08	0.12	0.20	0.49	0.24
CROCETTA DEL MONTELLO	TS	13.77	3.57	10.04	16.89	35.82	17.19
CROCETTA DEL MONTELLO	ND	-	-	-	-	-	-
CROCETTA DEL MONTELLO	NC	4.00	3.68	0.07	0.12	0.27	0.13
CROCETTA DEL MONTELLO	NC*	-	3.33	0.01	0.02	0.04	0.02
FARRA DI SOLIGO	RTA	1.52	1.79	238.16	28.10	427.23	29.25
FARRA DI SOLIGO	RTA*	2.86	1.67	4.09	0.48	6.82	0.47
FARRA DI SOLIGO	RTB	1.72	2.06	23.38	2.76	48.06	3.29
FARRA DI SOLIGO	RTC	1.33	1.67	3.74	0.44	6.24	0.43
FARRA DI SOLIGO	TS	10.37	1.68	221.61	26.15	373.01	25.53
FARRA DI SOLIGO	ND	0.67	2.40	3.77	0.44	9.04	0.62
FARRA DI SOLIGO	NC	44.53	1.67	337.17	39.78	563.36	38.56
FARRA DI SOLIGO	NC*	22.62	1.73	15.60	1.84	27.07	1.85
FOLLINA	RTA	2.89	1.74	21.89	16.99	38.05	17.39
FOLLINA	RTA*	-	-	-	-	-	-
FOLLINA	RTB	3.10	1.67	3.34	2.59	5.57	2.55
FOLLINA	RTC	1.67	1.67	0.24	0.19	0.40	0.18

Municipality	System	Slope	Quantity	Ar	ea	Availa	bility
wancipanty	System	%	t ha ⁻¹	ha	%	t	%
FOLLINA	TS	13.33	1.69	46.89	36.38	79.06	36.14
FOLLINA	ND	-	-	-	-	-	-
FOLLINA	NC	46.88	1.69	55.07	42.73	93.27	42.63
FOLLINA	NC*	21.64	1.67	1.45	1.13	2.43	1.11
FONTANELLE	RTA	0.02	3.19	651.47	54.68	2 080.49	55.00
FONTANELLE	RTA*	0.02	3.17	358.57	30.10	1 137.41	30.07
FONTANELLE	RTB	0.01	2.91	55.90	4.69	162.49	4.30
FONTANELLE	RTC	-	2.90	4.27	0.36	12.40	0.33
FONTANELLE	TS	-	3.19	6.19	0.52	19.72	0.52
FONTANELLE	ND	-	3.19	62.31	5.23	198.72	5.25
FONTANELLE	NC	0.02	3.19	14.23	1.19	45.44	1.20
FONTANELLE	NC*	-	3.28	38.48	3.23	126.17	3.34
FONTE	RTA	2.00	3.38	3.85	25.92	13.04	24.80
FONTE	RTA*	-	-	-	-	-	-
FONTE	RTB	2.40	3.90	2.35	15.83	9.19	17.48
FONTE	RTC	5.00	3.43	0.07	0.45	0.23	0.44
FONTE	TS	11.09	3.65	6.96	46.82	25.38	48.27
FONTE	ND	5.00	2.83	1.02	6.86	2.89	5.50
FONTE	NC	9.36	3.05	0.50	3.38	1.53	2.91
FONTE	NC*	1.00	2.94	0.11	0.73	0.32	0.61
FREGONA	RTA	2.49	1.76	7.48	12.03	13.15	11.83
FREGONA	RTA*	-	-	-	-	-	-
FREGONA	RTB	4.00	1.89	0.76	1.22	1.44	1.29
FREGONA	RTC	-	-	-	-	-	-
FREGONA	TS	15.37	1.77	38.51	61.93	68.29	61.41
FREGONA	ND	-	-	-	-	-	-
FREGONA	NC	34.96	1.84	15.43	24.81	28.31	25.46
FREGONA	NC*	28.00	1.67	0.01	0.01	0.01	0.01
GAIARINE	RTA	0.04	3.23	261.15	66.91	843.08	67.91
GAIARINE	RTA*	0.04	2.94	47.59	12.19	140.01	11.28
GAIARINE	RTB	0.04	3.22	51.87	13.29	166.97	13.45
GAIARINE	RTC	0.40	3.95	1.04	0.27	4.09	0.33
GAIARINE	TS	-	3.19	2.04	0.52	6.51	0.52
GAIARINE	ND	-	2.73	4.12	1.06	11.24	0.91
GAIARINE	NC	-	3.05	6.69	1.71	20.38	1.64
GAIARINE	NC*	-	3.12	15.77	4.04	49.17	3.96
GIAVERA DEL MONTELLO	RTA	0.63	3.33	45.12	46.45	150.42	44.94
GIAVERA DEL MONTELLO	RTA*	0.20	3.35	6.09	6.27	20.43	6.10
GIAVERA DEL MONTELLO	RTB	0.75	3.25	2.54	2.61	8.24	2.46
GIAVERA DEL MONTELLO	RTC	3.00	3.03	0.16	0.17	0.49	0.15

Municipality	System	Slope	Quantity	Ar	ea	Availability		
iviancipanty	System	%	t ha ⁻¹	ha	%	t	%	
GIAVERA DEL MONTELLO	TS	14.45	3.61	40.18	41.35	144.86	43.28	
GIAVERA DEL MONTELLO	ND	9.00	3.34	1.90	1.96	6.35	1.90	
GIAVERA DEL MONTELLO	NC	14.15	3.35	0.87	0.89	2.90	0.87	
GIAVERA DEL MONTELLO	NC*	7.20	3.35	0.30	0.30	0.99	0.30	
GODEGA DI SANT'URBANO	RTA	0.14	3.39	288.94	77.40	980.58	77.37	
GODEGA DI SANT'URBANO	RTA*	0.07	3.27	56.50	15.14	184.73	14.58	
GODEGA DI SANT'URBANO	RTB	0.24	3.77	13.84	3.71	52.17	4.12	
GODEGA DI SANT'URBANO	RTC	-	3.73	1.79	0.48	6.66	0.53	
GODEGA DI SANT'URBANO	TS	-	3.28	0.65	0.18	2.14	0.17	
GODEGA DI SANT'URBANO	ND	-	-	-	-	-	-	
GODEGA DI SANT'URBANO	NC	0.05	3.52	8.71	2.33	30.64	2.42	
GODEGA DI SANT'URBANO	NC*	-	3.64	2.87	0.77	10.44	0.82	
GORGO AL MONTICANO	RTA	-	3.13	301.93	56.57	944.06	57.49	
GORGO AL MONTICANO	RTA*	-	3.05	63.23	11.85	192.68	11.73	
GORGO AL MONTICANO	RTB	-	2.98	59.40	11.13	177.02	10.78	
GORGO AL MONTICANO	RTC	-	3.68	2.80	0.52	10.31	0.63	
GORGO AL MONTICANO	TS	-	3.25	1.37	0.26	4.45	0.27	
GORGO AL MONTICANO	ND	-	2.92	85.52	16.02	249.69	15.20	
GORGO AL MONTICANO	NC	-	3.32	18.55	3.47	61.49	3.74	
GORGO AL MONTICANO	NC*	-	2.66	0.97	0.18	2.57	0.16	
ISTRANA	RTA	0.03	2.88	4.97	65.67	14.34	62.21	
ISTRANA	RTA*	-	-	-	-	-	-	
ISTRANA	RTB	-	3.45	1.83	24.17	6.32	27.42	
ISTRANA	RTC	-	-	-	-	-	-	
ISTRANA	TS	-	-	-	-	-	-	
ISTRANA	ND	-	3.14	0.73	9.60	2.28	9.89	
ISTRANA	NC	-	-	-	-	-	-	
ISTRANA	NC*	-	2.59	0.04	0.56	0.11	0.48	
LORIA	RTA	0.14	2.64	1.29	90.21	3.41	90.21	
LORIA	RTA*	-	-	-	-	-	-	
LORIA	RTB	-	-	-	-	-	-	
LORIA	RTC	-	-	-	-	-	-	
LORIA	TS	-	-	-	-	-	-	
LORIA	ND	-	-	-	-	-	-	
LORIA	NC	-	2.64	0.14	9.79	0.37	9.79	
LORIA	NC*	-	-	-	-	-	-	
MANSUE	RTA	0.04	3.15	322.46	69.58	1 017.01	69.78	
MANSUE	RTA*	0.00	2.93	60.08	12.96	175.93	12.07	
MANSUE	RTB	0.06	3.31	51.72	11.16	170.97	11.73	
MANSUE	RTC	-	-	-	-	-	-	

Municipality	System	Slope	Quantity	Ar	ea	Availability	
maneparty	System	%	t ha ⁻¹	ha	%	t	%
MANSUE	TS	-	2.92	0.35	0.07	1.01	0.07
MANSUE	ND	-	3.22	24.18	5.22	77.86	5.34
MANSUE	NC	0.04	3.19	4.49	0.97	14.33	0.98
MANSUE	NC*	-	2.81	0.15	0.03	0.42	0.03
MARENO DI PIAVE	RTA	0.04	3.37	437.11	63.51	1 471.34	64.24
MARENO DI PIAVE	RTA*	0.03	3.25	171.48	24.92	557.76	24.35
MARENO DI PIAVE	RTB	-	3.19	18.36	2.67	58.53	2.56
MARENO DI PIAVE	RTC	-	-	-	-	-	-
MARENO DI PIAVE	TS	-	3.49	3.14	0.46	10.94	0.48
MARENO DI PIAVE	ND	-	3.08	35.67	5.18	109.91	4.80
MARENO DI PIAVE	NC	0.03	3.74	15.50	2.25	57.91	2.53
MARENO DI PIAVE	NC*	0.13	3.42	6.99	1.02	23.92	1.04
MASER	RTA	0.85	3.75	95.66	55.52	358.30	56.52
MASER	RTA*	-	-	-	-	-	-
MASER	RTB	1.11	3.35	1.69	0.98	5.66	0.89
MASER	RTC	1.00	3.28	9.14	5.31	29.95	4.72
MASER	TS	16.67	3.90	27.15	15.76	105.96	16.72
MASER	ND	10.91	3.23	19.87	11.53	64.08	10.11
MASER	NC	23.63	3.72	18.48	10.73	68.75	10.85
MASER	NC*	17.00	3.96	0.31	0.18	1.21	0.19
MASERADA SUL PIAVE	RTA	0.05	3.24	152.86	81.70	494.58	81.95
MASERADA SUL PIAVE	RTA*	0.02	3.19	15.94	8.52	50.87	8.43
MASERADA SUL PIAVE	RTB	-	3.10	5.74	3.07	17.80	2.95
MASERADA SUL PIAVE	RTC	0.07	3.04	6.83	3.65	20.78	3.44
MASERADA SUL PIAVE	TS	-	3.98	0.10	0.06	0.41	0.07
MASERADA SUL PIAVE	ND	-	3.06	1.50	0.80	4.60	0.76
MASERADA SUL PIAVE	NC	0.05	3.59	3.65	1.95	13.09	2.17
MASERADA SUL PIAVE	NC*	0.20	2.85	0.48	0.26	1.37	0.23
MEDUNA DI LIVENZA	RTA	-	3.13	133.15	84.65	416.69	85.39
MEDUNA DI LIVENZA	RTA*	-	2.73	1.61	1.02	4.38	0.90
MEDUNA DI LIVENZA	RTB	-	3.17	5.03	3.20	15.94	3.27
MEDUNA DI LIVENZA	RTC	-	2.64	0.06	0.04	0.17	0.03
MEDUNA DI LIVENZA	TS	-	-	-	-	-	-
MEDUNA DI LIVENZA	ND	-	2.91	16.97	10.79	49.47	10.14
MEDUNA DI LIVENZA	NC	-	3.00	0.35	0.22	1.06	0.22
MEDUNA DI LIVENZA	NC*	-	2.39	0.12	0.07	0.28	0.06
MIANE	RTA	1.43	1.69	22.57	7.69	38.07	7.73
MIANE	RTA*	-	-	-	-	-	-
MIANE	RTB	1.47	1.67	5.36	1.83	8.97	1.82
MIANE	RTC	1.33	1.68	0.40	0.14	0.67	0.14

Municipality	System	Slope	Quantity	Ar	ea	Availability	
Wullicipanty	System	%	t ha ⁻¹	ha	%	t	%
MIANE	TS	14.70	1.68	89.00	30.33	149.87	30.42
MIANE	ND	7.50	2.04	0.05	0.02	0.10	0.02
MIANE	NC	41.45	1.68	170.64	58.16	286.00	58.04
MIANE	NC*	28.16	1.68	5.38	1.83	9.06	1.84
MOGLIANO VENETO	RTA	-	2.98	80.96	64.10	241.06	65.05
MOGLIANO VENETO	RTA*	-	2.66	2.11	1.67	5.62	1.52
MOGLIANO VENETO	RTB	-	2.39	4.37	3.46	10.44	2.82
MOGLIANO VENETO	RTC	-	3.28	6.80	5.38	22.27	6.01
MOGLIANO VENETO	TS	-	-	-	-	-	-
MOGLIANO VENETO	ND	-	2.83	28.64	22.67	81.14	21.90
MOGLIANO VENETO	NC	-	2.92	3.13	2.48	9.14	2.47
MOGLIANO VENETO	NC*	-	3.11	0.29	0.23	0.90	0.24
MONASTIER DI TREVISO	RTA	-	3.35	253.72	79.87	849.63	80.46
MONASTIER DI TREVISO	RTA*	-	3.34	14.99	4.72	50.04	4.74
MONASTIER DI TREVISO	RTB	-	3.26	1.48	0.46	4.81	0.46
MONASTIER DI TREVISO	RTC	-	3.20	0.05	0.02	0.16	0.02
MONASTIER DI TREVISO	TS	-	-	-	-	-	-
MONASTIER DI TREVISO	ND	-	3.20	35.69	11.24	114.32	10.83
MONASTIER DI TREVISO	NC	-	3.17	11.53	3.63	36.50	3.46
MONASTIER DI TREVISO	NC*	-	2.56	0.22	0.07	0.55	0.05
MONFUMO	RTA	1.58	1.71	9.48	22.55	16.20	21.89
MONFUMO	RTA*	-	-	-	-	-	-
MONFUMO	RTB	2.33	1.68	0.88	2.08	1.47	1.99
MONFUMO	RTC	1.20	1.68	0.50	1.19	0.84	1.13
MONFUMO	TS	16.49	1.71	19.67	46.80	33.70	45.53
MONFUMO	ND	3.46	2.21	3.19	7.59	7.06	9.54
MONFUMO	NC	27.26	1.79	7.50	17.84	13.39	18.09
MONFUMO	NC*	11.17	1.67	0.82	1.94	1.36	1.84
MONTEBELLUNA	RTA	1.59	3.58	155.95	64.26	558.27	64.15
MONTEBELLUNA	RTA*	0.24	3.51	7.91	3.26	27.77	3.19
MONTEBELLUNA	RTB	1.83	3.45	2.63	1.08	9.07	1.04
MONTEBELLUNA	RTC	2.57	3.86	1.39	0.57	5.37	0.62
MONTEBELLUNA	TS	11.41	3.82	47.65	19.63	181.83	20.89
MONTEBELLUNA	ND	5.16	2.72	13.03	5.37	35.50	4.08
MONTEBELLUNA	NC	20.57	3.73	13.81	5.69	51.45	5.91
MONTEBELLUNA	NC*	7.90	3.06	0.34	0.14	1.03	0.12
MORGANO	RTA	-	2.85	0.57	97.95	1.63	97.60
MORGANO	RTA*	-	-	-	-	-	-
MORGANO	RTB	-	-	-	-	-	-
MORGANO	RTC	-	-	-	-	-	-

Municipality	System	Slope	Quantity	Area		Availability	
interparty	System	%	t ha ⁻¹	ha	%	t	%
MORGANO	TS	-	-	-	-	-	-
MORGANO	ND	-	-	-	-	-	-
MORGANO	NC	-	3.33	0.01	2.05	0.04	2.40
MORGANO	NC*	-	-	-	-	-	-
MORIAGO DELLA BATTAGLIA	RTA	0.47	3.46	27.14	88.15	93.80	88.76
MORIAGO DELLA BATTAGLIA	RTA*	-	-	-	-	-	-
MORIAGO DELLA BATTAGLIA	RTB	-	3.97	0.06	0.19	0.23	0.22
MORIAGO DELLA BATTAGLIA	RTC	-	-	-	-	-	-
MORIAGO DELLA BATTAGLIA	TS	-	3.34	2.94	9.54	9.80	9.27
MORIAGO DELLA BATTAGLIA	ND	-	2.79	0.62	2.03	1.74	1.65
MORIAGO DELLA BATTAGLIA	NC	1.00	4.00	0.02	0.05	0.06	0.06
MORIAGO DELLA BATTAGLIA	NC*	-	2.99	0.02	0.05	0.05	0.05
MOTTA DI LIVENZA	RTA	-	3.00	574.08	76.67	1 723.63	76.23
MOTTA DI LIVENZA	RTA*	-	2.96	12.09	1.61	35.77	1.58
MOTTA DI LIVENZA	RTB	-	3.10	59.23	7.91	183.89	8.13
MOTTA DI LIVENZA	RTC	-	3.07	6.34	0.85	19.49	0.86
MOTTA DI LIVENZA	TS	-	2.83	10.16	1.36	28.80	1.27
MOTTA DI LIVENZA	ND	-	2.89	43.98	5.87	127.05	5.62
MOTTA DI LIVENZA	NC	-	3.36	39.24	5.24	131.83	5.83
MOTTA DI LIVENZA	NC*	-	2.92	3.60	0.48	10.52	0.47
NERVESA DELLA BATTAGLIA	RTA	0.89	3.47	111.28	49.39	385.84	48.39
NERVESA DELLA BATTAGLIA	RTA*	2.29	3.59	1.60	0.71	5.76	0.72
NERVESA DELLA BATTAGLIA	RTB	3.27	3.58	20.62	9.15	73.73	9.25
NERVESA DELLA BATTAGLIA	RTC	4.00	3.05	1.95	0.87	5.94	0.74
NERVESA DELLA BATTAGLIA	TS	13.23	3.65	72.87	32.34	265.94	33.35
NERVESA DELLA BATTAGLIA	ND	1.79	3.17	6.39	2.83	20.24	2.54
NERVESA DELLA BATTAGLIA	NC	16.19	3.86	9.12	4.05	35.22	4.42
NERVESA DELLA BATTAGLIA	NC*	3.71	3.18	1.48	0.66	4.69	0.59
ODERZO	RTA	0.00	3.18	575.12	54.99	1 827.35	55.54
ODERZO	RTA*	0.01	3.12	271.21	25.93	845.98	25.71
ODERZO	RTB	-	3.25	29.64	2.83	96.36	2.93
ODERZO	RTC	-	3.01	5.25	0.50	15.79	0.48
ODERZO	TS	-	3.42	4.17	0.40	14.27	0.43
ODERZO	ND	0.00	3.07	142.42	13.62	436.55	13.27
ODERZO	NC	0.02	2.94	14.31	1.37	42.07	1.28
ODERZO	NC*	-	3.05	3.83	0.37	11.69	0.36
ORMELLE	RTA	0.01	3.25	478.43	52.56	1 557.29	52.87
ORMELLE	RTA*	0.01	3.19	374.31	41.12	1 195.59	40.59
ORMELLE	RTB	-	3.59	20.75	2.28	74.42	2.53
ORMELLE	RTC	-	3.62	1.36	0.15	4.91	0.17

Municipality	System	Slope	Quantity	Area		Availability		
maneipanty	System	%	t ha ⁻¹	ha	%	t	%	
ORMELLE	TS	-	3.76	8.07	0.89	30.35	1.03	
ORMELLE	ND	-	2.93	17.03	1.87	49.96	1.70	
ORMELLE	NC	0.01	3.38	8.32	0.91	28.14	0.96	
ORMELLE	NC*	-	2.64	1.91	0.21	5.03	0.17	
ORSAGO	RTA	0.22	3.33	109.48	82.64	364.77	82.88	
ORSAGO	RTA*	0.12	3.12	16.04	12.11	50.02	11.36	
ORSAGO	RTB	-	4.01	2.06	1.56	8.28	1.88	
ORSAGO	RTC	-	-	-	-	-	-	
ORSAGO	TS	-	3.13	0.27	0.20	0.83	0.19	
ORSAGO	ND	-	2.62	0.60	0.45	1.57	0.36	
ORSAGO	NC	0.06	3.69	3.68	2.77	13.57	3.08	
ORSAGO	NC*	0.50	3.12	0.35	0.27	1.10	0.25	
PADERNO DEL GRAPPA	RTA	4.05	1.65	5.41	69.80	8.94	70.23	
PADERNO DEL GRAPPA	RTA*	-	-	-	-	-	-	
PADERNO DEL GRAPPA	RTB	2.50	1.61	0.32	4.17	0.52	4.08	
PADERNO DEL GRAPPA	RTC	-	-	-	-	-	-	
PADERNO DEL GRAPPA	TS	10.33	1.62	2.02	26.03	3.27	25.69	
PADERNO DEL GRAPPA	ND	-	-	-	-	-	-	
PADERNO DEL GRAPPA	NC	-	-	-	-	-	-	
PADERNO DEL GRAPPA	NC*	-	-	-	-	-	-	
PAESE	RTA	0.05	3.06	22.67	76.25	69.37	78.06	
PAESE	RTA*	-	-	-	-	-	-	
PAESE	RTB	-	-	-	-	-	-	
PAESE	RTC	-	-	-	-	-	-	
PAESE	TS	-	-	-	-	-	-	
PAESE	ND	0.20	2.76	6.97	23.45	19.26	21.67	
PAESE	NC	-	2.75	0.09	0.29	0.24	0.27	
PAESE	NC*	-	-	-	-	-	-	
PEDEROBBA	RTA	1.18	1.76	61.43	66.74	108.33	66.94	
PEDEROBBA	RTA*	3.00	1.71	0.11	0.11	0.18	0.11	
PEDEROBBA	RTB	2.29	1.66	1.73	1.88	2.88	1.78	
PEDEROBBA	RTC	1.75	1.64	0.63	0.68	1.03	0.64	
PEDEROBBA	TS	13.64	1.69	15.02	16.32	25.46	15.73	
PEDEROBBA	ND	5.80	2.41	2.54	2.76	6.11	3.78	
PEDEROBBA	NC	22.76	1.69	9.85	10.71	16.62	10.27	
PEDEROBBA	NC*	1.00	1.66	0.73	0.79	1.21	0.75	
PIEVE DI SOLIGO	RTA	1.73	1.72	86.04	35.18	147.74	35.37	
PIEVE DI SOLIGO	RTA*	5.00	1.65	0.20	0.08	0.33	0.08	
PIEVE DI SOLIGO	RTB	0.16	1.67	9.16	3.75	15.30	3.66	
PIEVE DI SOLIGO	RTC	1.63	1.78	4.45	1.82	7.94	1.90	

Municipality	System	Slope	Quantity	Ar	ea	Availability	
maneparty	System	%	t ha ⁻¹	ha	%	t	%
PIEVE DI SOLIGO	TS	10.53	1.71	62.69	25.63	107.42	25.72
PIEVE DI SOLIGO	ND	0.67	1.79	6.07	2.48	10.90	2.61
PIEVE DI SOLIGO	NC	38.02	1.69	74.38	30.41	125.38	30.02
PIEVE DI SOLIGO	NC*	25.03	1.68	1.59	0.65	2.67	0.64
PONTE DI PIAVE	RTA	0.01	3.22	530.04	41.52	1 708.14	42.32
PONTE DI PIAVE	RTA*	0.01	3.23	341.10	26.72	1 102.95	27.33
PONTE DI PIAVE	RTB	0.02	3.20	70.95	5.56	227.37	5.63
PONTE DI PIAVE	RTC	-	2.78	11.68	0.91	32.48	0.80
PONTE DI PIAVE	TS	-	3.05	7.95	0.62	24.25	0.60
PONTE DI PIAVE	ND	0.01	3.11	195.66	15.33	608.31	15.07
PONTE DI PIAVE	NC	0.02	2.77	107.73	8.44	298.17	7.39
PONTE DI PIAVE	NC*	-	3.00	11.47	0.90	34.46	0.85
PONZANO VENETO	RTA	0.03	3.05	43.12	79.37	131.60	79.62
PONZANO VENETO	RTA*	-	3.24	1.28	2.36	4.15	2.51
PONZANO VENETO	RTB	-	-	-	-	-	-
PONZANO VENETO	RTC	-	-	-	-	-	-
PONZANO VENETO	TS	-	1.14	0.31	0.56	0.35	0.21
PONZANO VENETO	ND	-	3.05	7.80	14.36	23.76	14.37
PONZANO VENETO	NC	-	3.08	1.51	2.78	4.64	2.81
PONZANO VENETO	NC*	-	2.53	0.31	0.58	0.79	0.48
PORTOBUFFOLE	RTA	0.07	3.10	20.46	49.78	63.36	48.73
PORTOBUFFOLE	RTA*	0.20	2.95	2.58	6.28	7.62	5.86
PORTOBUFFOLE	RTB	-	3.11	9.46	23.02	29.42	22.63
PORTOBUFFOLE	RTC	-	-	-	-	-	-
PORTOBUFFOLE	TS	-	-	-	-	-	-
PORTOBUFFOLE	ND	-	-	-	-	-	-
PORTOBUFFOLE	NC	0.11	3.47	8.41	20.45	29.13	22.40
PORTOBUFFOLE	NC*	-	2.60	0.19	0.47	0.50	0.38
POSSAGNO	RTA	-	-	-	-	-	-
POSSAGNO	RTA*	-	-	-	-	-	-
POSSAGNO	RTB	-	-	-	-	-	-
POSSAGNO	RTC	-	-	-	-	-	-
POSSAGNO	TS	8.00	1.91	0.88	100.00	1.68	100.00
POSSAGNO	ND	-	-	-	-	-	-
POSSAGNO	NC	-	-	-	-	-	-
POSSAGNO	NC*	-	-	-	-	-	-
POVEGLIANO	RTA	0.21	3.17	30.80	60.13	97.73	60.77
POVEGLIANO	RTA*	0.67	2.97	1.22	2.38	3.62	2.25
POVEGLIANO	RTB	0.50	3.33	0.60	1.18	2.01	1.25
POVEGLIANO	RTC	-	2.95	0.62	1.21	1.83	1.14

Municipality	System	Slope	Quantity	Ai	ea	Availability		
municipanty	System	%	t ha ⁻¹	ha	%	t	%	
POVEGLIANO	TS	0.50	3.49	0.32	0.62	1.11	0.69	
POVEGLIANO	ND	-	3.01	15.16	29.60	45.63	28.37	
POVEGLIANO	NC	0.25	3.48	2.01	3.92	6.99	4.35	
POVEGLIANO	NC*	-	3.90	0.49	0.95	1.90	1.18	
PREGANZIOL	RTA	-	2.95	25.10	48.65	74.11	48.21	
PREGANZIOL	RTA*	-	2.73	3.88	7.51	10.59	6.89	
PREGANZIOL	RTB	-	2.63	0.24	0.47	0.63	0.41	
PREGANZIOL	RTC	-	2.98	10.56	20.48	31.53	20.51	
PREGANZIOL	TS	-	3.00	1.04	2.01	3.11	2.02	
PREGANZIOL	ND	-	3.13	10.69	20.71	33.46	21.77	
PREGANZIOL	NC	-	3.12	0.09	0.17	0.28	0.18	
PREGANZIOL	NC*	-	-	-	-	-	-	
QUINTO DI TREVISO	RTA	-	2.81	5.18	98.03	14.58	97.98	
QUINTO DI TREVISO	RTA*	-	-	-	-	-	-	
QUINTO DI TREVISO	RTB	-	-	-	-	-	-	
QUINTO DI TREVISO	RTC	-	-	-	-	-	-	
QUINTO DI TREVISO	TS	-	-	-	-	-	-	
QUINTO DI TREVISO	ND	-	-	-	-	-	-	
QUINTO DI TREVISO	NC	-	2.88	0.10	1.97	0.30	2.02	
QUINTO DI TREVISO	NC*	-	-	-	-	-	-	
REFRONTOLO	RTA	1.79	1.69	73.19	21.75	124.01	21.48	
REFRONTOLO	RTA*	3.00	1.66	0.61	0.18	1.02	0.18	
REFRONTOLO	RTB	1.94	1.87	6.99	2.08	13.10	2.27	
REFRONTOLO	RTC	-	1.60	0.05	0.01	0.08	0.01	
REFRONTOLO	TS	13.72	1.71	187.79	55.80	321.26	55.63	
REFRONTOLO	ND	7.67	2.27	2.06	0.61	4.66	0.81	
REFRONTOLO	NC	28.22	1.72	61.20	18.19	105.20	18.22	
REFRONTOLO	NC*	12.40	1.74	4.66	1.38	8.13	1.41	
RESANA	RTA	-	2.69	1.60	94.12	4.31	94.31	
RESANA	RTA*	-	-	-	-	-	-	
RESANA	RTB	-	-	-	-	-	-	
RESANA	RTC	-	-	-	-	-	-	
RESANA	TS	-	-	-	-	-	-	
RESANA	ND	-	2.60	0.10	5.88	0.26	5.69	
RESANA	NC	-	-	-	-	-	-	
RESANA	NC*	-	-	-	-	-	-	
REVINE LAGO	RTA	-	1.50	0.02	4.18	0.03	3.66	
REVINE LAGO	RTA*	-	-	-	-	-	-	
REVINE LAGO	RTB	-	-	-	-	-	-	
REVINE LAGO	RTC	-	-	-	-	-	-	

Municipality	System	Slope	Quantity	Ar	ea	Availability		
wancipancy	System	%	t ha ⁻¹	ha	%	t	%	
REVINE LAGO	TS	18.40	1.64	0.34	71.47	0.56	68.29	
REVINE LAGO	ND	-	-	-	-	-	-	
REVINE LAGO	NC	28.00	2.00	0.06	11.49	0.11	13.41	
REVINE LAGO	NC*	10.00	1.95	0.06	12.85	0.12	14.63	
RIESE PIO X	RTA	0.03	3.07	7.87	77.83	24.19	74.98	
RIESE PIO X	RTA*	-	-	-	-	-	-	
RIESE PIO X	RTB	-	-	-	-	-	-	
RIESE PIO X	RTC	-	-	-	-	-	-	
RIESE PIO X	TS	-	-	-	-	-	-	
RIESE PIO X	ND	-	4.05	1.01	9.97	4.08	12.65	
RIESE PIO X	NC	-	3.29	0.98	9.72	3.23	10.01	
RIESE PIO X	NC*	-	3.04	0.25	2.47	0.76	2.36	
RONCADE	RTA	-	3.24	273.72	69.06	888.21	70.80	
RONCADE	RTA*	-	2.92	3.73	0.94	10.91	0.87	
RONCADE	RTB	-	3.10	35.04	8.84	108.51	8.65	
RONCADE	RTC	-	3.05	3.01	0.76	9.19	0.73	
RONCADE	TS	-	3.36	0.49	0.12	1.65	0.13	
RONCADE	ND	-	2.89	72.14	18.20	208.39	16.61	
RONCADE	NC	-	3.36	7.64	1.93	25.66	2.05	
RONCADE	NC*	-	3.33	0.60	0.15	2.01	0.16	
SALGAREDA	RTA	-	3.13	614.53	73.24	1 922.64	74.15	
SALGAREDA	RTA*	0.01	2.99	75.74	9.03	226.83	8.75	
SALGAREDA	RTB	-	3.15	39.04	4.65	122.92	4.74	
SALGAREDA	RTC	-	3.85	14.50	1.73	55.78	2.15	
SALGAREDA	TS	-	3.04	0.05	0.01	0.14	0.01	
SALGAREDA	ND	0.03	2.71	79.47	9.47	215.66	8.32	
SALGAREDA	NC	0.04	3.00	10.33	1.23	30.99	1.20	
SALGAREDA	NC*	-	3.36	5.36	0.64	18.00	0.69	
SAN BIAGIO DI CALLALTA	RTA	0.05	3.33	430.44	73.58	1 433.07	75.30	
SAN BIAGIO DI CALLALTA	RTA*	0.09	3.15	60.37	10.32	190.23	10.00	
SAN BIAGIO DI CALLALTA	RTB	-	3.50	4.04	0.69	14.15	0.74	
SAN BIAGIO DI CALLALTA	RTC	-	2.92	11.38	1.95	33.29	1.75	
SAN BIAGIO DI CALLALTA	TS	-	-	-	-	-	-	
SAN BIAGIO DI CALLALTA	ND	0.27	2.66	52.36	8.95	139.09	7.31	
SAN BIAGIO DI CALLALTA	NC	0.07	3.73	19.45	3.33	72.60	3.81	
SAN BIAGIO DI CALLALTA	NC*	-	2.97	6.95	1.19	20.62	1.08	
SAN FIOR	RTA	1.09	3.45	163.71	63.44	564.17	63.52	
SAN FIOR	RTA*	0.31	3.32	30.40	11.78	100.91	11.36	
SAN FIOR	RTB	0.53	3.65	8.01	3.10	29.21	3.29	
SAN FIOR	RTC	4.00	3.41	3.22	1.25	10.99	1.24	

Municipality	System	Slope	Quantity	Area		Availability	
municipality	System	%	t ha ⁻¹	ha	%	t	%
SAN FIOR	TS	10.55	3.66	31.16	12.08	114.16	12.85
SAN FIOR	ND	3.65	3.08	16.11	6.24	49.64	5.59
SAN FIOR	NC	5.50	3.53	4.74	1.84	16.74	1.88
SAN FIOR	NC*	4.33	3.26	0.71	0.28	2.32	0.26
SAN PIETRO DI FELETTO	RTA	2.35	1.72	188.47	31.38	324.36	31.28
SAN PIETRO DI FELETTO	RTA*	3.41	1.68	5.39	0.90	9.05	0.87
SAN PIETRO DI FELETTO	RTB	2.52	1.73	19.55	3.26	33.88	3.27
SAN PIETRO DI FELETTO	RTC	3.40	1.68	1.93	0.32	3.23	0.31
SAN PIETRO DI FELETTO	TS	14.26	1.72	327.76	54.57	564.38	54.43
SAN PIETRO DI FELETTO	ND	8.86	1.92	6.79	1.13	13.06	1.26
SAN PIETRO DI FELETTO	NC	21.94	1.76	41.99	6.99	74.02	7.14
SAN PIETRO DI FELETTO	NC*	10.19	1.69	8.76	1.46	14.82	1.43
SAN POLO DI PIAVE	RTA	0.01	3.21	440.72	44.06	1 414.67	44.05
SAN POLO DI PIAVE	RTA*	0.00	3.21	393.05	39.29	1 259.94	39.24
SAN POLO DI PIAVE	RTB	0.04	3.38	39.05	3.90	131.83	4.11
SAN POLO DI PIAVE	RTC	0.17	2.87	2.28	0.23	6.54	0.20
SAN POLO DI PIAVE	TS	0.50	3.84	0.36	0.04	1.39	0.04
SAN POLO DI PIAVE	ND	0.01	3.20	93.66	9.36	299.71	9.33
SAN POLO DI PIAVE	NC	0.02	3.04	17.99	1.80	54.65	1.70
SAN POLO DI PIAVE	NC*	0.08	3.19	13.28	1.33	42.42	1.32
SAN VENDEMIANO	RTA	0.59	3.49	157.11	69.72	549.04	69.69
SAN VENDEMIANO	RTA*	0.12	3.35	35.98	15.97	120.43	15.29
SAN VENDEMIANO	RTB	0.73	3.28	9.50	4.22	31.18	3.96
SAN VENDEMIANO	RTC	2.14	3.98	2.63	1.17	10.47	1.33
SAN VENDEMIANO	TS	7.50	4.05	13.43	5.96	54.41	6.91
SAN VENDEMIANO	ND	-	-	-	-	-	-
SAN VENDEMIANO	NC	1.32	3.41	5.57	2.47	18.97	2.41
SAN VENDEMIANO	NC*	2.42	2.98	1.12	0.49	3.32	0.42
SAN ZENONE DEGLI EZZELINI	RTA	1.83	3.08	10.62	59.96	32.77	58.12
SAN ZENONE DEGLI EZZELINI	RTA*	-	-	-	-	-	-
SAN ZENONE DEGLI EZZELINI	RTB	2.00	2.86	0.57	3.19	1.62	2.87
SAN ZENONE DEGLI EZZELINI	RTC	1.00	2.59	0.22	1.22	0.56	0.99
SAN ZENONE DEGLI EZZELINI	TS	13.90	3.83	2.39	13.51	9.18	16.28
SAN ZENONE DEGLI EZZELINI	ND	3.17	2.70	1.63	9.21	4.41	7.82
SAN ZENONE DEGLI EZZELINI	NC	8.11	3.45	2.24	12.62	7.71	13.68
SAN ZENONE DEGLI EZZELINI	NC*	24.00	2.60	0.05	0.28	0.13	0.23
SANTA LUCIA DI PIAVE	RTA	0.09	3.32	149.83	59.43	497.95	61.03
SANTA LUCIA DI PIAVE	RTA*	0.11	3.15	35.80	14.20	112.78	13.82
SANTA LUCIA DI PIAVE	RTB	0.20	2.63	2.66	1.06	7.01	0.86
SANTA LUCIA DI PIAVE	RTC	-	-	-	-	-	-

Municipality	System	Slope	Quantity	Ar	ea	bility	
in an a second sec	System	%	t ha ⁻¹	ha	%	t	%
SANTA LUCIA DI PIAVE	TS	-	2.60	0.32	0.13	0.83	0.10
SANTA LUCIA DI PIAVE	ND	-	3.10	52.15	20.68	161.88	19.84
SANTA LUCIA DI PIAVE	NC	0.03	3.21	7.08	2.81	22.74	2.79
SANTA LUCIA DI PIAVE	NC*	-	2.97	4.29	1.70	12.72	1.56
SARMEDE	RTA	1.37	1.83	38.64	41.24	70.87	42.63
SARMEDE	RTA*	0.80	1.71	1.85	1.97	3.16	1.90
SARMEDE	RTB	1.33	1.77	0.65	0.69	1.15	0.69
SARMEDE	RTC	1.17	1.72	1.78	1.90	3.06	1.84
SARMEDE	TS	17.54	1.74	32.98	35.19	57.51	34.59
SARMEDE	ND	-	-	-	-	-	-
SARMEDE	NC	26.44	1.72	16.12	17.20	27.67	16.64
SARMEDE	NC*	5.64	1.68	1.69	1.80	2.83	1.70
SEGUSINO	RTA	1.67	1.70	6.62	31.62	11.25	32.00
SEGUSINO	RTA*	-	-	-	-	-	-
SEGUSINO	RTB	1.43	1.65	0.58	2.79	0.96	2.73
SEGUSINO	RTC	-	1.69	0.07	0.31	0.11	0.31
SEGUSINO	TS	12.76	1.67	4.93	23.53	8.23	23.41
SEGUSINO	ND	-	-	-	-	-	-
SEGUSINO	NC	40.44	1.67	8.57	40.95	14.33	40.76
SEGUSINO	NC*	32.00	1.66	0.17	0.80	0.28	0.80
SERNAGLIA DELLA BATTAGLIA	RTA	0.23	3.52	19.13	71.40	67.31	72.62
SERNAGLIA DELLA BATTAGLIA	RTA*	-	-	-	-	-	-
SERNAGLIA DELLA BATTAGLIA	RTB	-	3.17	3.31	12.36	10.50	11.33
SERNAGLIA DELLA BATTAGLIA	RTC	-	-	-	-	-	-
SERNAGLIA DELLA BATTAGLIA	TS	0.20	4.05	1.92	7.16	7.77	8.38
SERNAGLIA DELLA BATTAGLIA	ND	1.00	2.94	2.01	7.49	5.89	6.35
SERNAGLIA DELLA BATTAGLIA	NC	0.71	3.06	0.31	1.17	0.96	1.04
SERNAGLIA DELLA BATTAGLIA	NC*	-	2.34	0.11	0.42	0.26	0.28
SILEA	RTA	0.09	3.22	63.72	73.62	205.08	74.40
SILEA	RTA*	-	3.68	0.84	0.97	3.08	1.12
SILEA	RTB	-	4.05	1.11	1.28	4.48	1.63
SILEA	RTC	-	3.53	1.25	1.45	4.42	1.60
SILEA	TS	-	3.17	2.55	2.95	8.09	2.93
SILEA	ND	0.08	2.94	15.97	18.45	46.91	17.02
SILEA	NC	0.09	3.10	0.93	1.08	2.89	1.05
SILEA	NC*	-	3.88	0.18	0.21	0.70	0.25
SPRESIANO	RTA	0.02	3.23	106.02	82.54	342.00	83.43
SPRESIANO	RTA*	-	3.05	5.84	4.55	17.82	4.35
SPRESIANO	RTB	-	2.78	0.94	0.73	2.61	0.64
SPRESIANO	RTC	-	2.81	0.58	0.45	1.62	0.40

Municipality	System	Slope	Quantity	Area		Availability	
maneparty	System	%	t ha ⁻¹	ha	%	t	%
SPRESIANO	TS	-	-	-	-	-	-
SPRESIANO	ND	-	2.81	6.89	5.37	19.38	4.73
SPRESIANO	NC	-	3.20	7.54	5.87	24.14	5.89
SPRESIANO	NC*	-	3.69	0.64	0.50	2.35	0.57
SUSEGANA	RTA	2.18	1.83	220.90	29.96	403.36	30.54
SUSEGANA	RTA*	0.48	2.12	15.20	2.06	32.24	2.44
SUSEGANA	RTB	1.87	1.74	23.78	3.23	41.27	3.12
SUSEGANA	RTC	1.50	1.66	2.70	0.37	4.48	0.34
SUSEGANA	TS	13.50	1.72	345.72	46.89	594.07	44.97
SUSEGANA	ND	9.51	2.06	53.28	7.23	109.71	8.31
SUSEGANA	NC	19.33	1.79	71.60	9.71	128.50	9.73
SUSEGANA	NC*	9.78	1.78	4.11	0.56	7.31	0.55
TARZO	RTA	2.49	1.67	21.54	12.36	35.92	12.12
TARZO	RTA*	1.71	1.57	0.98	0.56	1.55	0.52
TARZO	RTB	5.00	1.65	0.18	0.10	0.29	0.10
TARZO	RTC	-	-	-	-	-	-
TARZO	TS	16.76	1.70	75.41	43.25	128.07	43.23
TARZO	ND	15.50	1.64	1.05	0.60	1.73	0.58
TARZO	NC	37.16	1.71	72.42	41.54	123.98	41.85
TARZO	NC*	31.07	1.70	2.77	1.59	4.72	1.59
TREVIGNANO	RTA	0.12	3.23	12.46	66.28	40.29	66.98
TREVIGNANO	RTA*	-	2.66	0.67	3.56	1.78	2.96
TREVIGNANO	RTB	-	-	-	-	-	-
TREVIGNANO	RTC	-	-	-	-	-	-
TREVIGNANO	TS	-	-	-	-	-	-
TREVIGNANO	ND	0.08	3.19	5.60	29.81	17.87	29.71
TREVIGNANO	NC	-	2.82	0.05	0.25	0.13	0.22
TREVIGNANO	NC*	-	4.12	0.02	0.10	0.08	0.13
TREVISO	RTA	0.05	2.96	54.03	95.42	159.80	95.25
TREVISO	RTA*	-	3.10	0.89	1.58	2.77	1.65
TREVISO	RTB	-	2.85	0.06	0.10	0.16	0.10
TREVISO	RTC	-	4.04	0.06	0.10	0.24	0.14
TREVISO	TS	-	-	-	-	-	-
TREVISO	ND	-	3.59	0.29	0.51	1.04	0.62
TREVISO	NC	-	2.82	1.21	2.14	3.42	2.04
TREVISO	NC*	-	4.09	0.08	0.15	0.34	0.20
VALDOBBIADENE	RTA	1.37	1.68	419.35	34.46	703.21	34.54
VALDOBBIADENE	RTA*	0.46	1.67	1.34	0.11	2.24	0.11
VALDOBBIADENE	RTB	1.15	1.67	39.71	3.26	66.31	3.26
VALDOBBIADENE	RTC	1.37	1.67	5.52	0.45	9.22	0.45

Municipality	System	Slope	Quantity	Ar	ea	Availa	Availability	
Wancipanty	System	%	t ha ⁻¹	ha	%	t	%	
VALDOBBIADENE	TS	12.81	1.67	443.68	36.46	741.96	36.44	
VALDOBBIADENE	ND	8.77	1.67	5.93	0.49	9.91	0.49	
VALDOBBIADENE	NC	35.75	1.67	275.15	22.61	459.55	22.57	
VALDOBBIADENE	NC*	17.39	1.67	26.13	2.15	43.64	2.14	
VAZZOLA	RTA	0.04	3.32	491.06	48.80	1 630.14	49.61	
VAZZOLA	RTA*	0.02	3.21	369.40	36.71	1 184.46	36.05	
VAZZOLA	RTB	-	3.28	33.44	3.32	109.79	3.34	
VAZZOLA	RTC	-	3.37	3.02	0.30	10.18	0.31	
VAZZOLA	TS	-	-	-	-	-	-	
VAZZOLA	ND	-	3.16	54.89	5.45	173.21	5.27	
VAZZOLA	NC	0.02	3.31	34.13	3.39	112.99	3.44	
VAZZOLA	NC*	0.02	3.20	20.34	2.02	65.20	1.98	
VEDELAGO	RTA	0.09	3.04	24.94	83.01	75.86	83.33	
VEDELAGO	RTA*	-	-	-	-	-	-	
VEDELAGO	RTB	-	2.67	0.03	0.10	0.08	0.09	
VEDELAGO	RTC	-	-	-	-	-	-	
VEDELAGO	TS	-	-	-	-	-	-	
VEDELAGO	ND	-	3.03	3.42	11.37	10.35	11.37	
VEDELAGO	NC	-	2.86	1.66	5.52	4.75	5.22	
VEDELAGO	NC*	-	-	-	-	-	-	
VIDOR	RTA	0.86	1.76	147.38	37.76	259.02	38.55	
VIDOR	RTA*	-	-	-	-	-	-	
VIDOR	RTB	1.08	1.84	13.41	3.44	24.66	3.67	
VIDOR	RTC	1.22	1.67	2.05	0.53	3.43	0.51	
VIDOR	TS	13.51	1.68	89.23	22.86	149.47	22.24	
VIDOR	ND	7.71	1.87	6.24	1.60	11.66	1.74	
VIDOR	NC	34.49	1.69	120.23	30.80	203.24	30.25	
VIDOR	NC*	15.48	1.74	11.78	3.02	20.45	3.04	
VILLORBA	RTA	0.07	3.22	132.31	66.57	426.51	67.07	
VILLORBA	RTA*	0.09	3.05	9.51	4.79	28.97	4.56	
VILLORBA	RTB	-	3.17	1.43	0.72	4.52	0.71	
VILLORBA	RTC	-	2.54	1.62	0.82	4.12	0.65	
VILLORBA	TS	-	3.39	0.23	0.12	0.78	0.12	
VILLORBA	ND	0.22	3.08	36.69	18.46	112.88	17.75	
VILLORBA	NC	0.02	3.44	16.66	8.38	57.38	9.02	
VILLORBA	NC*	-	2.62	0.30	0.15	0.79	0.12	
VITTORIO VENETO	RTA	1.57	1.70	230.36	40.05	390.79	39.79	
VITTORIO VENETO	RTA*	0.80	1.72	1.13	0.20	1.94	0.20	
VITTORIO VENETO	RTB	1.88	1.70	6.75	1.17	11.45	1.17	
VITTORIO VENETO	RTC	3.00	1.71	1.01	0.17	1.72	0.18	

Municipality	System	Slope	Quantity	Ar	ea	Availability		
in an open of the second se	- oyoteini	%	t ha ⁻¹	ha	%	t	%	
VITTORIO VENETO	TS	15.22	1.72	246.14	42.79	423.89	43.16	
VITTORIO VENETO	ND	7.00	2.14	1.88	0.33	4.04	0.41	
VITTORIO VENETO	NC	26.94	1.69	84.79	14.74	143.01	14.56	
VITTORIO VENETO	NC*	12.06	1.68	3.18	0.55	5.35	0.54	
VOLPAGO DEL MONTELLO	RTA	0.94	3.31	118.44	46.58	392.29	46.20	
VOLPAGO DEL MONTELLO	RTA*	0.33	3.60	0.17	0.07	0.63	0.07	
VOLPAGO DEL MONTELLO	RTB	1.09	3.52	38.54	15.16	135.67	15.98	
VOLPAGO DEL MONTELLO	RTC	1.31	2.83	5.63	2.22	15.94	1.88	
VOLPAGO DEL MONTELLO	TS	13.59	3.64	37.09	14.59	134.88	15.89	
VOLPAGO DEL MONTELLO	ND	4.27	3.11	46.02	18.10	142.91	16.83	
VOLPAGO DEL MONTELLO	NC	5.08	3.01	4.88	1.92	14.69	1.73	
VOLPAGO DEL MONTELLO	NC*	5.86	3.46	3.50	1.38	12.09	1.42	
ZENSON DI PIAVE	RTA	0.08	3.10	130.16	96.41	403.72	96.08	
ZENSON DI PIAVE	RTA*	-	2.76	1.66	1.23	4.57	1.09	
ZENSON DI PIAVE	RTB	-	4.03	0.23	0.17	0.91	0.22	
ZENSON DI PIAVE	RTC	-	3.14	0.08	0.06	0.25	0.06	
ZENSON DI PIAVE	TS	-	2.97	0.09	0.06	0.26	0.06	
ZENSON DI PIAVE	ND	-	4.01	0.96	0.71	3.85	0.92	
ZENSON DI PIAVE	NC	-	3.68	1.62	1.20	5.94	1.41	
ZENSON DI PIAVE	NC*	-	3.05	0.22	0.16	0.67	0.16	
ZERO BRANCO	RTA	-	2.90	8.76	95.68	25.42	96.11	
ZERO BRANCO	RTA*	-	-	-	-	-	-	
ZERO BRANCO	RTB	-	-	-	-	-	-	
ZERO BRANCO	RTC	-	-	-	-	-	-	
ZERO BRANCO	TS	-	-	-	-	-	-	
ZERO BRANCO	ND	-	2.60	0.25	2.73	0.65	2.46	
ZERO BRANCO	NC	-	2.62	0.15	1.58	0.38	1.44	
ZERO BRANCO	NC*	-	-	-	-	-	-	