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Abstract

The aim of this work is to study the dynamics of cold atoms trapped in a
one-dimensional periodic lattice generated by an optical potential. Such a
system is described by a standard model in condensed matter, namely the
so-called Bose-Hubbard model [7]. Arrays of cold neutral atoms or ions are
the basic elements of some proposals of quantum computers, which motivates
the interest of understanding their dynamics from a mathematical point of
view [10].

The main targets of this Master Thesis are the following. First, start-
ing from a classical Hamiltonian of the Frenkel-Kontorova type and thanks
to Perturbation Theory, to derive the discrete Bougolyubov-Gross-Pitaevskii
(dBGP) equation. Second, starting from �rst principle formulation, to pro-
vide a systematic, quantum mechanical, perturbative derivation of the Bose-
Hubbard (BH) model to orders higher than the �rst one in the small param-
eter.
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Introduction

The starting point, is describing the setting and the model from a physical
point of view. The �rst chapter of this thesis is dedicated to such physical
description. The main idea is to trap an atom in one dimension, using a
laser beam i.e. to send against the atom some photons, of a well de�ned
frequency, in order to decelerate it. Then, as a further step, one can extend
the machinery to the three dimensional case sending photons in all directions.
From a mathematical point of view, such optical cooling is like applying
an (optical) potential to the array of atoms. The interference between two
counter propagating laser beams can be represented by an optical standing
wave with space period λ/2, in which the atoms can be trapped and where
λ is the wavelength of the laser beam [5].

Such a trapping potential is generated by overlapping two counter propa-
gating laser beams in each direction. The resulting classical Hamiltonian, of
the Frenkel-Kontorova type, which is the starting point of our investigation
in second chapter, reads

H(x, p) =
N∑
j=1

[
pj

2

2m
+ U(xj+1 − xj) + V (xj)

]
, (1)

de�ning a system of N equal particles of massm pairwise interacting through
an inter-particle potential U and subject to a periodic con�ning potential V
of period d = λ/2. In (1) xj and pj denote position and conjugate momentum
of the j-th particle of the array. Periodic boundary conditions are chosen in
such a way that

xj+N = xj + L ; pj+N = pj , j = 1, . . . , N , (2)

the space-period of the system being L = Nd.

In the speci�c case considered here the trapping potential V (x) is of the
form:

V (x) = V0 sin2(kx) , (3)
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where k = π/d and V0 > 0 is the maximum amplitude of the trapping
potential. Such a potential is generated by counter propagating laser beams
(and suitable magnetic traps not included in the model treated here). The
inter-particle potential U for neutral atoms, the only case considered here, is
of the attractive Van der Waals form:

U(x) = −C
x6

, (4)

where C is a suitable positive, dimensional constant. See e.g. [7].

The Hamiltonian system (1) can be treated both form the classical and
from the quantum point of view. In both cases, the perturbative setting
consists in studying the small nonlinear motions of the system close to ideal
crystal equilibrium: x̄j = jd (j ∈ Z). By setting xj = x̄j + qj and expanding
the potentials V about 0, and U about d, the Hamiltonian (1) takes on the
form:

H(q, p) = h(q, p) + P1(q) + P2(q) + . . . , (5)

where

h(q, p) :=
N∑
j=1

(
pj

2

2m
+
mω2

2
q2
j

)
; (6)

P1(q) :=
N∑
j=1

(
−Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
; (7)

P2(q) :=
N∑
j=1

(
Γ

6
q6
j +

α

3
(qj+1 − qj)3

)
, (8)

the dots in (5) denoting higher order terms O(|q|8 + |∆q|4). The parameters
ω,Λ, K,Γ, α appearing in (6)-(8) are linked to the derivatives of V and U in
an obvious way.

The Hamiltonian (5) is now regarded as a perturbation of the Hamilto-
nian h of N non interacting, identical harmonic oscillators whose �ow Φt

h is
2π/ω-periodic in time for all initial conditions. In so doing, we are supposing
an ordering of the kind |Xh| � |XP1| � |XP2| � · · · , where XG is the Hamil-
tonian vector �eld of G(q, p). The central idea of Hamiltonian perturbation
theory consists in looking for a change of variables that removes, completely
or partially, the perturbations Pi from H, up to some pre-�xed order n. To
this purpose, the relevant concept is that of normal form.
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De�nition (Normal form) A Hamiltonian of the form H = h+ P̄1 + P̄2 + . . .
is said to be in normal form to order n with respect to h if {P̄i, h} = 0 for
any i = 1, ..., n.

We thus look for a smooth, close to the identity, canonical change of variables
Cn such that the transformed Hamiltonian H(n) := H ◦ C−1

n , where H is of
the form (5), turns out to be in normal form to order n with respect to h,
namely

H(n) = h+ P̄1 + P̄2 + · · ·+ P̄n +R , (9)

where {P̄i, h} = 0 for any i = 1, . . . , n and R is a small remainder (in the sense
speci�ed above). The canonical transformation Cn is obtained by composing
the time-one Hamiltonian �ows ΦG1 , . . . ,ΦGn of suitable, unknown generating
functions G1, . . . , Gn, namely Cn = Φ−1

Gn
◦ · · · ◦Φ−1

G1
. The natural variables for

the computation of the normal form (9) in our case are the complex Birkho�
variables

zj =
mωqj + ıpj√

2mω
; zj

∗ =
mωqj − ıpj√

2mω
, (ı2 = −1) (10)

with respect to which the unperturbed Hamiltonian (6) reads h =
∑

j ω|zj|2
and the perturbations Pi have a simple computable structure to all orders.
The main result, on the classical side, is the following.

Theorem For any �xed n, there exists a close to the identity, canonical
transformation Cn : (z, z∗) 7→ (a, a∗) such that H(n)(a, a∗) = H(C−1

n (a, a∗))
is in normal form to order n with respect to h. In particular,

P̄1(a, a∗) =
ω

2π

∫ 2π/ω

0

P1(Φτ
h(a, a

∗))dτ =

= W

N∑
j=1

|aj|2 + J

N∑
j=1

a∗j(aj+1 + aj−1) + U

N∑
j=1

|aj|4 , (11)

with suitable real parameters W , J and U .

The Hamiltonian h+P̄1 is that of the discrete Nonlinear Schrödinger (dNLS),
or discrete Bogolyubov-Gross-Pitaevskii (dBGP) equation, a complex equa-
tion which is guessed to describe the dynamics of the atomic array at ex-
tremely low temperatures. The �rst few normalized perturbations P̄2, P̄3

and so on, are explicitly computable, though their link with the original
perturbations P1, P2 . . . is not as easy as (11). The Theorem above implies
that the classical dynamics of the atomic array is well described, to any
�xed perturbative order, i.e. on arbitrarily large time-scales, by a suitable
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deformation of the dBGP, if the amplitude of the initial conditions is small
enough.

The third chapter is focused on the term of remainder, in particular on
the estimate of its e�ects.

Of course, an atomic array of cold atoms is a quantum-mechanical system,
so that its dynamics must be studied in the framework of quantum mechan-
ics analyzed in chapter four. This is done transforming the Hamiltonian (1)
into a di�erential operator H by the procedure of canonical quantization,
which amounts to set H := H(x,−ı~∂x), where ∂x := (∂x1 , . . . , ∂xN ) and ~
is the Planck constant (actually ~ = h/2π is the so called normalized Planck
constant). The state of the system is then described by the Schrödinger
equation ı~ψt = Hψ, where ψ(t, x) is the complex valued wave function of
the system de�ned on the con�guration space. The formal solution of the
equation is given by ψ(t) = UH(t)ψ(0), where UH(t) := exp(−ıHt/~) is the
unitary time evolution operator associated to the quantum Hamiltonian H .
As is well known, one can regard everything in the equivalent representation
of the dynamics, due to Heisenberg, where any quantized operator F evolves
along the �ow of H by unitary conjugation, namely F (t) := UH(t)†FUH(t)
(a dagger here denotes the adjoint). In such a way, the algebra of operators
F ,G, . . . de�ned on the con�guration space of a given system becomes a
Poisson algebra with Poisson bracket given by {F ,G} := −ı[F ,G]/~, where
[ , ] denotes the standard commutator. Since the formal properties of Hamil-
tonian perturbation theory depends only on the algebraic properties of the
Poisson structure, one can extend the classical results listed above to the
quantum case.

One thus canonically quantizes the Hamiltonian (1) and gets the quantum
Hamiltonian H , or its equivalent expansion (5)-(8), that can be rewritten in
terms of the Dirac, Boson or ladder operators

bj :=
mωqj + ~∂qj√

2mω~
; b†j :=

mωqj − ~∂qj√
2mω~

, (12)

the quantum version of the Birkho� variables (10) up to a scale factor 1/
√
~.

The quantum Hamiltonian H = h + P 1 + P 2 + . . . thus obtained can now
be brought into normal form to any order n through a suitable canonical
transformation (i.e. unitary conjugation).

De�nition A quantum Hamiltonian of the form H = h + P̄ 1 + P̄ 2 + . . . is
said to be in normal form to order n with respect to h if [P̄ i,h] = 0 for any
i = 1, . . . , n.
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Theorem For any �xed n, there exists a close to the identity, canonical
(unitary) transformation Cn : (b, b†) 7→ (a,a†) such that H(n) = C†nHCn

is in normal form to order n with respect to h. In particular,

P̄ 1(a, a∗) =
ω

2π

∫ 2π/ω

0

U †h(τ)P 1Uh(τ)dτ =

= W
N∑
j=1

aja
†
j + J

N∑
j=1

a†j(aj+1 + aj−1) + U
N∑
j=1

a†2j a
2
j (13)

with suitable real parameters W, J and U .
The quantum Hamiltonian h + P̄ 1 is that of the standard BH model. Suc-
cessive corrections P̄ 2, P̄ 3 and so on, are computable as well. Notice that
the BH Hamiltonian is just the quantum version of the dBGP Hamiltonian.

As a matter of fact, the classical mechanics describes well both the dynam-
ics and the statistical properties of condensed matter at high temperatures.
On the other hand, the surprising feature of trapped cold atoms is that the
lower their temperature is, the closer their dynamics is to that of the "clas-
sical" dBGP equation. The reasons of such a behavior are explained in [8],
where it is proved that the quantum evolution of any operator F (a,a†) along
the �ow of the BH model is close (in a suitable sharp sense) to the evolution
of its classical analogue along the �ow of the dBGP model, over times that
grow exponentially like eω/T , where T is the temperature of the system. The
results listed above may allow to improve such a conclusion extending it, in
principle, to any higher order approximation (i.e. BH deformation) of the
true Hamiltonian (1).
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Chapter 1

Optical Cooling and Trapping of

Atoms

A laser beam is a monochromatic wave with a speci�c frequency ωL. The
idea of scientists in 80's was that of exploiting the quantum jump and the
emission of photons due to the atom-laser interaction, in order to cool down
and trap atoms in laboratory.
The idea of this chapter is to illustrate how to construct a trap for an array of
atoms with a laser beam. For precision measurements it is desirable to keep
atoms inside the observation region as long as possible, free from interactions
with other particles or with the wall of the vacuum chamber. In order to
reach this goal, one has to reduce the atom velocity and trap the atoms
for a su�ciently long time in a small and well-de�ned volume away from
any wall of the vacuum vessel. This is possible due to new techniques of
optical cooling and trapping, which allows one to reduce the temperature
of an atomic gas down to below 1µK [5]. The �rst section of this chapter
analyzes such technique in dimension one, instead in the second section we
extend the method of trapping atoms in the three dimensional space.

1.1 One-dimensional Cooling

In order to illustrate the above technique, let's consider the following:

I) An atom, of mass m, which is moving with the velocity v along the
x̂ direction, in the ground state, where ∆E is the energy di�erence between
the �rst excited state level and the ground one.

II) A photon with the speci�c frequency ωL = ω = ∆E/~ and momentum
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Figure 1.1: The image illustrates the �rst step of collision. The photon is
represented by the blue arrow and it has momentum pL = ~k = hν/c, instead
the ball represents the atom, whose momentum varies by ∆p = pL.

Figure 1.2: On the left side the second step of collision: emission of a �uo-
rescence photon and recoil. On the right side: a complete collision.

pL = ~k, traveling in the opposite direction of the atom −x̂.
During the collision between these particles, the photon is absorbed by the
atom and the total momentum p = mv+~k must be conserved (Figure 1.1).
After photon absorption, the atom becomes excited and has a lower velocity
v′ = v − (~k)/m even if the speed variation is very small:

|∆v| = |v′ − v| = |~ k
m
| = h

ν

mc
.

If instead of a photon one takes a laser beam, for conservation of energy and
momentum, the atom slows down till it stops.
After absorption, the excited atom emits photon with frequency ωL in a
random direction and comes back to its ground state. Due to momentum
conservation, the atom recoils in the opposite direction (Figure 1.2).
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Figure 1.3: The image represents two photons sent against the atom, when
the motion takes place along the x̂ axis.

Figure 1.4: For many absorption-emission cycles, the average recoil of the
�uorescence photons is zero and the net momentum transfer for N absorbed
photons is ∆p = N~k.

Now let us assume the motion taking place along the x̂ axis.
Suppose to send two photons against the atom, which is in its ground state,
in opposite directions. The photons have frequency ωL smaller than ω in
order to trap the atom: ωL < ω = ∆E/~ where ∆E is the energy di�erence
between the �rst excited state and the ground one. If the atom is stationary
then it remains stationary because ωL is not large enough for atom to jump
to its �rst excited level (Figure 1.3).
Instead, if the atom is moving with a velocity v then, by Doppler shift, it
stops. Indeed due to its velocity, the atom perceives the photon (in the
opposite direction of its motion) with a su�cient frequency ω′L = ω allowing
the quantum jump. Then if it emits in any of the two possible directions,
thus recoiling in the opposite one, the process starts again until the atom
reaches a minimal velocity (kinetic energy), i.e. a minimal temperature.

1.2 Three-dimensional Cooling

In the previous section, it was discussed how to decelerate only one velocity
component of atoms. The experimental goal is the deceleration of all the
three velocity components resulting in a real three-dimensional cooling and

3



Figure 1.5: Optical molasses with six pair-wise counter propagating laser
beams.

a corresponding reduction of the gas temperature. So one should decelerate
and almost stop a single atom by extending this optical trap in the three
dimensional space. When an atom in a gas cell is irradiated from six laser
beams pointing into the x̂, ŷ, ẑ directions, the atom su�ers a recoil if it
absorbs photons from the six beams. The total recoil vanishes on (statistical)
average and so the atom is trapped (Figure 1.5). When the laser frequency
ωL is slightly smaller than the resonance frequency ω atoms moving towards
a laser beam have a larger probability to absorb a photon than those atoms
that move in the direction of the beam. Therefore in this case the atoms are
pushed towards the overlap region of the six laser beams. This method of
trapping atoms is called "Laser cooling".

Often a magnetic �eld is used in order to box the array of atoms and
isolate them from the outside. For this reason the trap is also call "Magneto-
optical trap" (MOT) (Figure 1.6). Atoms can be trapped in a magneto-
optical trap which consists of an anti-Helmholtz pair of coils, producing a
cylindrically symmetric, homogeneous magnetic �eld which causes a Zeeman
splitting of the absorption line that increases with increasing distance from
the trap center. The trapping is caused by atomic recoil, due to photon
absorption which depends on the distance from the trap center [5].

1.3 Optical Lattice

Trapping of atoms can be expressed by a con�ning periodic potential V . The
interference between two counter propagating laser beams can be represented

4



Figure 1.6: Principal arrangement of the magneto-optical trap MOT.

Figure 1.7: Optical lattice: in this case each atom occupies a well of the
potential.

by an optical standing wave with period λ/2, in which atoms can be trapped
and where λ = c/ν is the wavelength and ν is the frequency of the laser.
Such potential is generated by overlapping two counter propagating laser
beams for each axis direction. Atoms thus trapped are often called Cold

Atoms because their low kinetic energy. The potential minima form an
optical lattice with a lattice constant d = λ/2. Neutral atoms can be trapped
in such potential minima of the lattice. Depending on the atomic density in
the condensate the di�erent minima can be populated with N atoms (N =
0; 1; 2; . . . ). This allows to study interactions between atoms in the same
minimum or in neighboring minima.
It's experimentally possible to construct an atomic array with up to about
hundred cold atoms each staying in the bottom of the well of e�ective periodic
potential V (x) (Figure 1.7). From now on we assume a periodic potential of
the following form:

V (x) = V0 sin2(kx) = V0
1− cos(2kx)

2
, (1.1)

where k = 2π/λ is the wave vector of the laser light and V0 is the maximum
depth of lattice potential. The period d of the potential is obtained by setting

5



2kd = 2π so that d = π/k. In atomic array d = π/k = λ/2 represents the
space between two consecutive atoms where each of them occupies a well of
the potential. Recall that holds λν = c where ν = ω/2π and d = πc/ω;
moreover ω = ∆E/~ so that:

d =
πc~
∆E

. (1.2)

Such relation tells that the distance d is related to ∆E which changes ac-
cording to the given atom. Often scientists use Rubidium 87 with a suitable
laser light. The choice of the atom and laser depends by the ability to re-
produce the experiment in laboratory. Sometimes instead of atoms are used
ions whose interaction is di�erent with respect to neutral atoms. The di�er-
ent interaction in�uences the choice of the potential U which appears in the
Hamiltonian.

Coulomb's force expresses the interaction between two ions (of charge q1

and q2):

F (d) = k
q1q2

d2
; U(d) =

q1q2

d
. (1.3)

The interaction between two neutral atoms is expressed by the Lennard-
Jones's potential (Figure 1.8):

U(d) =
B

dn
− C

d6
, (1.4)

where:

� B and C are positive constants for the repulsive and attractive compo-
nent, respectively.

� n ≥ 12 is a phenomenology parameter, useful for describing Pauli ex-
clusion principle.

In experiments Rubidium atoms have λ ≈ 780 nm so: dca = λ/2 ≈ 4 · 10−5

cm. Instead in condensed matter the dimension of atoms is Ȧ = 10−8cm and
the distance between them is almost the same dcm ≈ 10−8 cm. This implies
that the distance between cold trapped atoms is much larger than that in
ordinary condensed matter: dca = 103dcm. From now on, due to the distance
between particles, the repulsive part of potential will be omitted and we will
considered only the Van der Waals component −C/d6. The possibility of
tunneling e�ect (that would bring two atoms into the same well) is inhibited
by the low temperature of the atoms.

6



Figure 1.8: U is the intermolecular potential between two neutral atoms or
molecules, ε is the well depth and a measure of how strongly the two particles
attract each other, σ is the distance at which the intermolecular potential
between the two particles is zero, r is the distance of separation between
centers of both particles.

The Van der Waals form potential energy U1 of a single neutral atom due
to its interaction with the other ones, that are equally spaced, is:

U1 = 2
(
− C

d6
− C

(2d)6 −
C

(3d)6 + . . .
)

=

= −2C

d6

(
1 +

1

26
+

1

36
+ . . .

)
. (1.5)

Note that the Van der Waals interaction quickly vanishes at large distances
between interacting atoms. It's a generalized harmonic series, which always
converges. One can neglect terms of order higher than �rst one (which means
retaining only the nearest neighbor interaction), because they give only a
small correction to the value of the series. On the other hand, consider an
array of equally spaced ions of charge q. The Coulomb potential energy of
one of them is:

U1 = 2
(q2

d
+
q2

2d
+
q2

3d
+ . . .

)
=

=
2q2

d

(
1 +

1

2
+

1

3
+ . . .

)
. (1.6)

If the number of ions is in�nite the previous expression is a harmonic series,
that is logarithmically divergent. Condensed matter ions have alternating
charges so for the Leibniz's criterion the sum converges.
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The energy is in�nite. In such cases we speak about long range forces because
the contribution of interactions between distant ions cannot be neglected.
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Chapter 2

Classical-Mechanical System

The central idea of this chapter is to analyze the problem from the point of
view of classical mechanics. In the �rst part we will write the classical Hamil-
tonian and study the boundary conditions due to the periodicity of the model.
The next section consists in studying the small nonlinear motions of the sys-
tem close to ideal crystal equilibrium expanding the potentials V about 0,
and U about d, and then to apply perturbation theory. The Hamiltonian is
now regarded as a perturbation of the Hamiltonian h of N non interacting,
identical harmonic oscillators. The central idea of Hamiltonian perturbation
theory consists in looking for a change of variables that removes, partially,
the perturbations up to some pre-�xed order n. We will compute the normal
form to second order. The Hamiltonian h + P̄1 is that of the discrete Non-
linear Schrödinger (dNLS), or discrete Bogolyubov-Gross-Pitaevskii (dBGP)
equation, a complex equation which is guessed to describe the dynamics of
the atomic array at extremely low temperatures.

2.1 Model and Classical Hamiltonian

The most general classical Hamiltonian for a N array of neutral atoms inter-
acting through a two-body potential U while moving in an external potential

Figure 2.1: The image represents a sketch of the array of atoms con�ned by
the periodic potential V. Each atom occupies a well of the potential.
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Figure 2.2: Extended the model by periodicity.

V is described by the Frenkel-Kontorova model:

H(x, p) =
N∑
j=1

[pj2

2m
+ U(xj+1 − xj) + V (xj)

]
, (2.1)

where m is the atom mass and

� pj
2/2m is the kinetic energy for single particle;

� U(xj+1 − xj) = −C/(xj+1 − xj)6 is the interaction potential between
two consecutive particles;

� V (xj) = V0 sin2(kxj) is the periodic potential due to the laser.

2.1.1 Boundary Conditions

A priori such model could be constructed with an in�nite number of atoms.
The period of the optical potential V is d and we suppose to have the sys-
tem to be periodic of period L where L >> d. Now we consider, in such
in�nite L-periodic model, only one period (Figure 2.2). The topology (but
not geometry), where such periodic model lives in, is the same of the circle
in which, roughly speaking, the �rst particle is identi�ed with the last one.

Of course the fundamental period d of the optical potential is related
with the number of particles N by L = dN which will be justi�ed in the next
section. Boundary conditions for positions and momenta result by imposing
L-periodicity:

xj+N = xj + L; j = 1 . . . N, (2.2)

pj+N = pj; j = 1 . . . N. (2.3)

10



Remark 1 The interaction potential between the consecutive particles which
occupy x0 and x1 positions is the same as the ones between xN and xN+1,
indeed:

U(xN+1 − xN) = U(x1 + L− xN) = U(x1 + L− (x0 + L)) = U(x1 − x0).

The periodic boundary conditions are equivalent to study the problem in
Z mod N , denoted by ZN . For this reason the sum which appears in the
Hamiltonian is denoted, from now on, by

∑
j∈ZN .

2.1.2 Classical Hamiltonian Equations

The classical Hamiltonian equations of the system (2.1) are:

ẋj =
∂H

∂pj
=
pj
m

;

ṗj = −∂H
∂xj

=

= −
[∂U(xj+1 − xj)

∂xj
+
∂U(xj − xj−1)

∂xj
+
∂V (xj)

∂xj

]
=

= −
[ −6C

(xj+1 − xj)7
+

6C

(xj − xj−1)7
+ V0

1

2

(
2k sin(2kxj)

)]
=

=
6C

(xj+1 − xj)7
− 6C

(xj − xj−1)7
− kV0 sin(2kxj).

2.1.3 Crystal Equilibrium

Let us now consider the equilibrium solutions obtained by solving the system:

0 =
∂H

∂pj
=
pj
m

=⇒ pj = 0 ;

0 = −∂H
∂xj

=
[∂U(xj − xj−1)

∂xj
− ∂U(xj+1 − xj)

∂xj
− ∂V (xj)

∂xj

]
.

The �rst equation expresses a stationary condition for the j-th particle. Now
we focus our attention on equally spaced equilibria, which means:

xj+1 − xj = d ∀j ∈ Z. (2.4)

In this particular case one gets:

∂U(xj+1 − xj)
∂xj

=
∂U(d)

∂xj
= 0, (2.5)
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Figure 2.3: Two examples of equally spaced particles.

so solving the second equation one obtains:

0 = −∂V (xj)

∂xj
= kV0 sin(2kxj), (2.6)

2kx̄j = πs =⇒ x̄j =
π

2k
s =

λ

4
s ∀s ∈ Z, (2.7)

where k = λ/2.
Assuming s = 2j means that the particles are in the bottom of each well
(Figure 2.3).

x̄j =
λ

2
j = dj ∀j ∈ Z. (2.8)

Such type of equilibria are referred to Crystal Equilibria. If one now im-
poses periodic boundary conditions then, the number of particles N , consid-
ering only a period L, is related to the fundamental period d by the following
formula that holds for all j ∈ Z:

x̄j+N = x̄j + L (2.9)

which, due to (2.8), becomes (j +N)d = jd+ L and implies Nd = L.

2.1.4 Analysis of Potentials

The perturbative setting consists in studying the small non linear motions of
the systems close to the crystal equilibrium. In order to reach this goal one
has to �rst perform a simple translation of the position variables:

xj = x̄j + qj = jd+ qj; pj = pj. (2.10)

The periodic boundary conditions satis�ed by the canonical variables qj and
pj are:

qj+N = qj ; j = 1 . . . N, (2.11)

pj+N = pj ; j = 1 . . . N. (2.12)

12



Figure 2.4: The image represents small motions of neutral atoms around
their crystal equilibrium.

Consider such translation and re-write the expression of potentials with this
change of variables:

U(xj+1 − xj) = U(x̄j+1 + qj+1 − x̄j − qj) = U(d+ qj+1 − qj); (2.13)

V (xj) = V (x̄j + qj) = V (jd+ qj) = V (qj). (2.14)

Now, assuming that the atoms perform small oscillations around their ideal
equilibrium position, one can make a Taylor expansion of V (Figure 2.4).
The periodicity of the potential implies that:

V (jd) = V (d) = V (0) = 0 and V ′(jd) = V ′(0) = 0,

V (qj) = V (0) + V ′(0)qj +
1

2
V ′′(0)qj

2 +
1

6
V ′′′(0)qj

3 + . . . . (2.15)

In the speci�c case of the periodic potential V (qj) = V0 sin2(kqj), the Taylor
expansion has the form:

V (qj) =
V0

2
[1− cos(2kqj)] =

=
V0

2

[
1−

(
1− 1

2!
(2kqj)

2 +
1

4!
(2kqj)

4 − 1

6!
(2kqj)

6 + . . .
)]

=

=
V0

2

[1

2
4(kqj)

2 − 1

24
16(kqj)

4 +
1

720
64(kqj)

6 + . . .
]

=

= V0

[
(kqj)

2 − 1

3
(kqj)

4 +
2

45
(kqj)

6 + . . .
]

=

= V0

[(π
d
qj

)2

− 1

3

(π
d
qj

)4

+
2

45

(π
d
qj

)6

+ . . .
]
,

where k = π/d and qj/d << 1, which means that the Taylor expansion holds
only for small displacements from the equilibrium position thus

Vtot(q) =
∑
j∈ZN

V (qj) =
∑
j∈ZN

V0

[(π
d
qj

)2

−1

3

(π
d
qj

)4

+
2

45

(π
d
qj

)6

+. . .
]
. (2.16)
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Notice that the optical potential is periodic of period d with an even axial
symmetry so that: V (x) = V (−x) and V (0) = 0.
In addition if the interaction force between particles is weak, then one can
Taylor expanded the potential U around d:

U(d+ qj+1 − qj) = U(d) + U ′(d)(qj+1 − qj) +
1

2!
U ′′(d)(qj+1 − qj)2 +

+
1

3!
U ′′′(d)(qj+1 − qj)3 + . . . . (2.17)

The potential energy due to the sum of all interactions has the following
expression:

Utot(q) =
∑
j∈ZN

U(d+ qj+1 − qj) =

= NU(d) + U ′(d)
∑
j∈ZN

(qj+1 − qj) +
U ′′(d)

2

∑
j∈ZN

(qj+1 − qj)2 +

+
U ′′′(d)

6

∑
j∈ZN

(qj+1 − qj)3 + · · · =

= NU(d) +
U ′′(d)

2

∑
j∈ZN

(qj+1 − qj)2 +
U ′′′(d)

6

∑
j∈ZN

(qj+1 − qj)3 + . . . ,

where the last equality holds because the �rst sum
∑N

j=1(qj+1−qj) = qN+1−
q1 = 0.
In the speci�c case of the Van der Walls interaction, derivatives of di�erent
orders are:

U(d) = −C
d6
, U ′′(d) = −42C

d8
, U ′′′(d) =

336C

d9
,

and the Taylor expansion is given by:

Utot(q) = −NC
d6
− 21C

d8

∑
j∈ZN

(qj+1 − qj)2 +
56C

d9

∑
j∈ZN

(qj+1 − qj)3 + · · · =

= −C
d6

[
N +

21

d2

∑
j∈ZN

(qj+1 − qj)2 − 56

d3

∑
j∈ZN

(qj+1 − qj)3 + . . .
]
.

(2.18)
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Now, the Hamiltonian, takes on the following form:

H(q, p) =
∑
j∈ZN

[pj2

2m
+ V (qj) + U(qj+1 − qj)

]
=

=
∑
j∈ZN

[pj2

2m
+ V0

(
(kqj)

2 − 1

3
(kqj)

4 +
2

45
(kqj)

6
)

+

+
(U ′′(d)

2
(qj+1 − qj)2 +

U ′′′(d)

6
(qj+1 − qj)3

)
+ . . .

]
. (2.19)

In order to have an easier writing of the Hamiltonian rename some constants,
linked to the derivatives of V and U , and replace them into H.

� ω :=
√

2V0k2

m
→ V0k

2 = mω2

2
;

� Λ := 4V0k4

3
→ V0k4

3
= Λ

4
;

� Γ := 4V0k6

15
→ Γ

6
= 2V0k6

45
;

� K := U ′′(d);

� α := U ′′′(d)
2

.

The Hamiltonian now reads:

H(q, p) =
∑
j∈ZN

[(pj2

2m
+
mω2

2
q2
j

)
+
(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
+
(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)
+ . . .

]
. (2.20)

2.2 Perturbation Theory

The idea of this section is to write H in the form:

H(q, p) = h(q, p) + P1(q) + P2(q) + . . . (2.21)

where h is an integrable unperturbed Hamiltonian and P := H − h is called
the Perturbation split into ordered perturbation terms P1 (�rst order per-
turbation), P2 (second order perturbation), and so on, with the following
property

||Xh|| >> ||XP1|| >> ||XP2|| >> . . .
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in the sense of vector �elds.

In our particular case the unperturbed Hamiltonian h is given by the
Hamiltonian of N independent identical harmonic oscillators, so that:

h(q, p) :=
∑
j∈ZN

(pj2

2m
+
mω2

2
q2
j

)
; (2.22)

P1(q) :=
∑
j∈ZN

(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
; (2.23)

P2(q) :=
∑
j∈ZN

(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)
. (2.24)

2.2.1 Hamiltonian Normal Form

The central idea of Hamiltonian perturbation theory, which goes back to
Lagrange and Poincaré and has then be developed by Birkho�, Bogoliubov
and Kolmogorov, consists in looking for a change of variables that removes,
completely or partially, the perturbation Pi from H, up to some pre-�xed
order. Complete removal of the perturbation, already at �rst order (i.e. the
complete removal of P1) is not possible, in general.

De�nition 2 (Normal form). A Hamiltonian H(n) of the form

H(n) = h+
n∑
j=1

P̄j +Rn+1, (2.25)

where {P̄j, h} = 0 for any j = 1, . . . , n is said to be in Normal Form to
order n with respect to h.

The perturbations terms P̄j are �rst integrals of h, which includes also the
case of absence of perturbation of order j that is P̄j = 0.

The aim of Hamiltonian perturbation theory is �nding a suitable change
of variables that maps the quasi-integrable Hamiltonian (2.21) into its normal
form to some �xed order. Then one looks for a smooth, close to the identity,
canonical change of variables of the type

C : (p, q) 7−→ (Q,P )

such that H ◦ C−1 is in normal form:

H(C−1(Q,P )) = h(Q,P ) + P̄1(Q,P ) + P̄2(Q,P ) + . . . . (2.26)

in which P̄1, P̄2, . . . are �rst integrals of h.
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Remark 3 A precise formulation of Lagrange's theory of perturbation shows
that P̄1 is the time average of P1 on the unperturbed �ow of h, instead P̄2 is
the time average on the unperturbed Hamiltonian �ow of h of P2 plus another
term depending on P1.

The canonical transformation C is very conveniently made by composing the
Hamiltonian �ows of suitable generating Hamiltonians at unit times. Each
generating Hamiltonian de�nes a �ow whose composition gives the canonical
transformation:

C = Φ−1
Gn
◦ Φ−1

Gn−1
◦ · · · · ◦Φ−1

G1
.

Where Φ−1
Gj

is the �ow of the Hamiltonian Gj at time −1.
The G1, . . . , Gn are called the Generating Hamiltonians of the canoni-
cal transformation, to be determined order by order. An Averaging theorem
ensures that given a Hamiltonian H there is always a (local) canonical trans-
formation C for a suitable choice of G1, . . . , Gn.

2.2.2 Birkho� Variables

Let us introduce the complex coordinates (z, z∗) known asComplex Birkho�
Variables:

zj :=
mωqj + ıpj√

2mω
; zj

∗ :=
mωqj − ıpj√

2mω
, (2.27)

where ı is the imaginary unit (ı2 = −1).
In terms of such coordinates the previous variables pj and qj become:

qj =
zj + zj

∗
√

2mω
; pj =

√
2mω

zj − zj∗

2ı
. (2.28)

One also gets:

|zj|2 = zj · z∗j =
(mωqj)

2 + pj
2

2mω
=

1

ω
h. (2.29)

The next steps are: to express H in terms of the complex Birkho� variables,
to compute its normal form, to some pre�xed order with respect to the
unperturbed Hamiltonian (2.22). We obtain such Hamiltonian replacing the
expressions (2.28)-(2.29) in the (2.20):

H(z, z∗) = h(z, z∗) + P1(z, z∗) + P2(z, z∗) + . . . (2.30)
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The unperturbed Hamiltonian h and the �rst two order perturbations P1 and
P2 in terms of Birkho� variables become:

h(z, z∗) :=
∑
j∈ZN

ω|zj|2; (2.31)

P1(z, z∗) :=
∑
j∈ZN

{ −Λ

16m2ω2
(zj + zj

∗)4 +
K

4mω

[
(zj+1 + zj+1

∗)− (zj + zj
∗)
]2}

;

(2.32)

P2(z, z∗) :=
∑
j∈ZN

{ Γ

48m3ω3
(zj + z∗j )

6 +
α

3
√

2mω
3

[
(zj+1 + z∗j+1)− (zj + z∗j )

]3}
.

(2.33)

The Poisson bracket of two functions F and G on the phase space reads:

{F,G}pq =
∑
j

(∂F
∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
, (2.34)

which, in terms of the Birkho� variables becomes:

{F,G}zz∗ = −ı
∑
j

(∂F
∂zj

∂G

∂z∗j
− ∂F

∂z∗j

∂G

∂zj

)
. (2.35)

The fundamental Poisson brackets are:

{zj, z∗k} = −ıδj,k and {zj, zk} = {z∗j , z∗k} = 0. (2.36)

Let's focus on the Hamiltonian given by the sum of N harmonic independent
oscillator Hamiltonians, i.e. h =

∑
j ω|zj|2 to which there correspond the

Hamiltonian equations:

żj = {zj, h} = −ı
∑
k

∂zj
∂zk

∂h

∂z∗k
= −ı ∂h

∂z∗j
= −ıωzj, (2.37)

and similarly

ż∗j = {z∗j , h} = ı
∑
k

∂z∗j
∂z∗k

∂h

∂zk
= ı

∂h

∂zj
= ıωz∗j . (2.38)

Thus, with respect to the Birkho� vector (z, z∗)T , the equations of motion
of the harmonic Hamiltonian are:(

ż
ż∗

)
=

(
−ıω 0

0 ıω

)(
z
z∗

)
. (2.39)

The �ow Φs
h of the Hamiltonian h is the solution of the Hamiltonian equations

at time s, corresponding to any given initial condition (z0, z
∗
0)T at s = 0. The

explicit expression of the �ow is:

Φs
h(z0, z

∗
0)T = exp(sA)(z0, z

∗
0)T = (z0e

−ıωs, z∗0e
ıωs)T . (2.40)
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2.2.3 Averaging Theory [4]

A canonical change of variables leaves the Hamiltonian equations invariant
in form. A very convenient way of performing the canonical transformations
is to do it through Hamiltonian �ows. To such a purpose, let us consider a
Hamiltonian h(x) and its associated Hamiltonian equations ẋ = Xh(x). Let
Φh denote the �ow of h, so that Φs

h(y) is the solution of the Hamiltonian
equations at time s, corresponding to the initial condition y at s = 0. We
also denote by

Lh := {, h} = (J∇h) ◦ ∇ = Xh ◦ ∇, (2.41)

the Lie derivative along the Hamiltonian vector �eld Xh; notice that LhF =
{F, h}.

Lemma 4 For any function F one has

F ◦ Φs
h = esLhF.

Proof. Set F̃ (s) := F ◦ Φs
h and notice that F̃ (0) = F . Then

d

ds
F̃ (0) = {F, h} = LhF.

Then

d

ds
F̃ (s) = lim

ε→0

F̃ (s+ ε)− F̃ (s)

ε
= lim

ε→0

F̃ (s) ◦ Φε
h − F̃ (s)

ε
=

=
d

ds
F̃ (s) ◦ Φε

h

∣∣∣
ε=0

= {F̃ (s), h} = LhF̃ (s)

whose solution is
F̃ (s) = esLhF̃ (0) = esLhF.

De�nition 5 Given the Hamiltonian h, for any real function F on the phase
space, its time-average 〈F 〉h along the �ow of h and its deviation from the
average δhF are de�ned by:

〈F 〉h := lim
t→+∞

1

t

∫ t

0

(F ◦ Φs
h)ds; (2.42)

δhF := F − 〈F 〉h . (2.43)

In the particular case in which the Hamiltonian h is periodic, of period τ ,
one has

〈F 〉h :=
1

τ

∫ τ

0

(F ◦ Φs
h)ds. (2.44)
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Lemma 6 The time-average 〈·〉h is invariant with respect to the �ow of h,
i.e. for any function F one has

〈F 〉h ◦ Φs
h = 〈F 〉h ∀s ⇔ Lh 〈F 〉h = 0.

Proof. Two equivalent proofs of the statement are given. The �rst one starts
by writing down explicitly 〈F 〉h ◦ Φs

h and making use of the group property
of the �ow, namely Φr

h ◦ Φs
h = Φr+s

h , which yields:

〈F 〉h ◦ Φs
h = lim

τ→∞

1

τ

∫ τ

0

(F ◦ Φs+r
h )dr = lim

τ→∞

1

τ

∫ τ+s

s

(F ◦ Φu
h)du.

Now, by splitting
∫ τ+s

s
du =

∫ 0

s
du +

∫ τ
0

du +
∫ τ+s

τ
du, observing that the

�rst and the third integral are on bounded intervals, and making use of the
boundedness hypothesis on Φt

h, the thesis of the Lemma follows. The second
proof starts from the chain of identities

d

ds
F ◦ Φs

h = LhF ◦ Φs
h = {F, h} ◦ Φs

h = {F ◦ Φs
h, h}.

Now, integrating the above identity (left and rightmost members) from 0 to
t and dividing by t, one gets

F ◦ Φt
h − F
t

=
1

t

∫ t

0

{F ◦ Φs
h, h}ds =

{1

t

∫ t

0

F ◦ Φs
hds, h

}
where the second equality follows by the bi-linearity of the Poisson bracket
(think of computing the integral as the limit of Riemann sums). The thesis of
the lemma, right form, follows in the limit as t→ +∞, by observing that the
left hand side of above identity vanishes in the limit (recall the boundedness
of the �ow).

Lemma 7 For any function F, the solution of the equation

LhG = δhF ⇔ {G, h} = F − 〈F 〉h ,

is given by

G = K + L−1
h δh(F ) := K + lim

t→+∞

1

t

∫ t

0

(s− t)(δhF ◦ Φs
h)ds (2.45)

where K is an arbitrary element of kerLh.
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Proof. Taking into account the Homological equation LhG = δh(F )

LhG = δh(F )

lim
t→+∞

1

t

∫ t

0

(s− t)esLhLhGds = lim
t→+∞

1

t

∫ t

0

(s− t)esLhδh(F )ds

lim
t→+∞

1

t

∫ t

0

(s− t) d
ds

(esLhG)ds = lim
t→+∞

1

t

∫ t

0

(s− t)esLhδh(F )ds

lim
t→+∞

1

t

{[
(s− t)(esLhG)

]t
0
−
∫ t

0

esLhGds
}

= lim
t→+∞

1

t

∫ t

0

(s− t)esLhδh(F )ds

G− lim
t→+∞

1

t

∫ t

0

esLhGds = lim
t→+∞

1

t

∫ t

0

(s− t)esLhδh(F )ds

G = K + lim
t→+∞

1

t

∫ t

0

(s− t)
(
δhF ◦ Φs

h

)
ds.

The choice of K = limt→+∞
1
t

∫ t
0
esLhGds is not unique thanks to K ∈ kerLh.

Notice that in the particular case in which the Hamiltonian h is periodic,
of period τ one has

G−K =
1

τ

∫ τ

0

s
(
δhF ◦ Φs

h

)
ds. (2.46)

Theorem 1 (Averaging principle). Consider a quasi integrable Hamiltonian
Hλ = h+ λP1 + λ2P2 + . . . where H0 = h is integrable and its �ow bounded
in some norm. Here λ denotes the small parameter. Then
I) For any choice of the generating Hamiltonians G1, ..., Gn de�ning the

canonical transformation Cλ = Φλ−n
Gn
◦ Φλ−(n−1)

Gn−1
◦ · · · ◦ Φλ−1

G1
, one has

H
(n)
λ = Hλ ◦ C−1

λ = h+
n∑
j=1

λjP̄j +Rn+1,

where, for j = 1, . . . , n and starting with F1 = 0,

P̄j = −LhGj + Pj + Fj[h, P1, . . . , Pj−1, G1, . . . , Gj−1];

Rn+1 =
∑
j≥n+1

λj(Pj + Fj[h, P1, . . . , Pj−1, G1, . . . , Gn]).

II) The perturbation at order j = 1, . . . , n of the normal form is given by

P̄j = 〈Pj + Fj〉h .

III) The n normalizing, generating Hamiltonians G1, . . . , Gn are given by

Gj = Kj + L−1
h δh(Pj + Fj), Kj ∈ kerLh.
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In particular, the normal form Hamiltonian to second order reads explicitly

H
(2)
λ = h+ λP̄1 + λ2P̄2 +R3

where:

P̄1 = 〈P1〉h ; (2.47)

P̄2 = 〈P2〉h +
1

2
〈{δhP1, δhG1}〉h + {P̄1, K1}. (2.48)

2.2.4 Application to the Hamiltonian (2.30)

In order to apply the perturbative theory to our speci�c Hamiltonian and
compute the normal form, recall the �ow of h, which is Φs

h = (ze−iωs, z∗eiωs)
and which has period τ = 2π/ω. By de�nition (2.42) and thanks to the
formula,

ω

2π

∫ 2π/ω

0

eımωsds = δm,0 =

{
1 if m = 0,

0 if m ∈ Z \ {0},
(2.49)

one can compute the Hamiltonian normal form as follows.

Remark 8 The average theory has been conveniently exposed making use
of the small parameters λ. In our application to the cold atoms problem,
the actual small parameter is the amplitude of the displacement qj and as a
matter of fact λ = 1.

Theorem 2 The Hamiltonian of cold atoms problem, in normal form to the
�rst order is:

H(1)(a, a∗) = H(C−1
1 (a, a∗)) = h(a, a∗) + P̄1(a, a∗) +R2,

where

P̄1(a, a∗) =
ω

2π

∫ 2π/ω

0

P1(Φτ
h(a, a

∗))dτ =

= W

N∑
j=1

|aj|2 + J

N∑
j=1

a∗j(aj+1 + aj−1) + U

N∑
j=1

|aj|4, (2.50)

with suitable real parameters W , J and U .
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Proof. The speci�c computation for P̄1 = 〈P1〉h is

〈P1〉h (a, a∗) =
ω

2π

∫ 2π/ω

0

P1(Φs
h(a, a

∗))ds =

=
ω

2π

∫ 2π/ω

0

∑
j∈ZN

{
− Λ

16m2ω2
(aje

−iωs + aj
∗eiωs)4+

+
K

4mω

[
(aj+1e

−iωs + aj+1
∗eiωs)− (aje

−iωs + aj
∗eiωs)

]2}
ds =

=
∑
j∈ZN

{ K

2mω

[
(aj+1 − aj)(aj+1

∗ − zj∗)
]
− 3Λ

8m2ω2
(ajaj

∗)2
}

=

=
∑
j∈ZN

{ K

2mω

[
|aj+1|2 + |aj|2 − aj+1a

∗
j − aja∗j+1

]
− 3Λ

8m2ω2
|aj|4

}
=

=
∑
j∈ZN

{ K

2mω

[
2|aj|2 − aj+1a

∗
j − aj−1a

∗
j

]
− 3Λ

8m2ω2
|aj|4

}
=

=
∑
j∈ZN

K

mω
|aj|2 −

∑
j∈ZN

K

2mω

[
aj+1a

∗
j + aj−1a

∗
j

]
−
∑
j∈ZN

3Λ

8m2ω2
|aj|4 =

=
∑
j∈ZN

K

mω
|aj|2 −

∑
j∈ZN

K

2mω
a∗j

[
aj+1 + aj−1

]
−
∑
j∈ZN

3Λ

8m2ω2
|aj|4 =

= W
∑
j∈ZN

|aj|2 + J
∑
j∈ZN

a∗j

[
aj+1 + aj−1

]
+ U

∑
j∈ZN

|aj|4.

So the Hamiltonian in normal form to the �rst order is:

H(1)(a, a∗) = h(a, a∗) + P̄1(a, a∗) +R2, (2.51)

where

P̄1(a, a∗) = W
∑
j∈ZN

|aj|2 + J
∑
j∈ZN

a∗j

[
aj+1 + aj−1

]
+ U

∑
j∈ZN

|aj|4, (2.52)

with

W :=
K

mω
; (2.53)

J := − K

2mω
; (2.54)

U := − 3Λ

8m2ω2
. (2.55)
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The truncated normal form

H(1) −R2 = h+ P̄1 =

= (W + ω)
∑
j∈ZN

|aj|2 + J
∑
j∈ZN

a∗j

[
aj+1 + aj−1

]
+ U

∑
j∈ZN

|aj|4

is the Hamiltonian of the discrete Bogolyubov-Gross-Pitaevskii (dBGP) or
the discrete Nonlinear Schrödinger (dNLS) equation namely:

ıȧj = (W + ω)aj + J(aj+1 + aj−1) + 2U |aj|2aj. (2.56)

An equation of this form describes the dynamics of the trapped atoms at low
temperature [8].

The �rst few normalized perturbations P̄2, P̄3 and so on are explicitly
computable, though their link with the original perturbations P1, P2 . . . is
not as easy as (2.50). Theorem 2 implies that the classical dynamics of
the atomic array is well described, to any �xed perturbative order, i.e. on
arbitrarily large time-scales, by a suitable deformation of the dBGP, if the
amplitude of the initial conditions is small enough.

In order to compute P̄2, according to formula (2.48) one has to compute
the generating Hamiltonian G1. To such a purpose we �rst need:

δhP1 = P1 − 〈P1〉h =
∑
j∈ZN

[ K

4mω

(
(zj+1 − zj)2 + (zj+1

∗ − z∗j )2
)

+

− Λ

16m2ω2

(
z4
j + z∗j

4 + 4zjz
∗
j

3 + 4z3
j z
∗
j

)]
. (2.57)

Morevore we will make use of the formula:

ω

2π

∫ 2π/ω

0

seımωsds =
1

ımω
∀m ∈ Z \ {0}. (2.58)
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The computation of G1 follows:

G1(z, z∗) =
ω

2π

∫ 2π/ω

0

sδhP1(Φs
h(z, z

∗))ds =

=
∑
j∈ZN

ω

2π

∫ 2π/ω

0

s
{ K

4mω

[
e−2iωs(zj+1 − zj)2 + e2iωs(zj+1

∗ − z∗j )2
]

+

− Λ

16m2ω2

(
e−4iωsz4

j + e4iωsz∗j
4 + 4e2iωszjz

∗
j

3 + 4e−2iωsz3
j z
∗
j

)}
ds =

=
∑
j∈ZN

[ K

4mω

((zj+1
∗ − z∗j )2

2iω
− (zj+1 − zj)2

2iω

)
+

− Λ

16m2ω2

(
−

z4
j

4iω
+
z∗j

4

4iω
+

4zjz
∗
j

3

2iω
−

4z3
j z
∗
j

2iω

)]
.

Choosing K1 = 0 as a kernel element in (2.46), compute the second order
perturbation term in normal form:

P̄2 = 〈P2〉h +
1

2
〈{δhP1, G1}〉h (2.59)

where we observe that δhG1 = G1 when K1 = 0.
By an easy computation one gets:

〈P2〉h (a, a∗) =
ω

2π

∫ 2π/ω

0

P2(Φs
h(a, a

∗))ds =
∑
j∈ZN

5Γ

12m3ω3
|aj|6. (2.60)

In order to compute the Poisson bracket between δhP1 and G1 using the
formula

{δhP1, G1} = −ı
∑
j∈ZN

(∂δhP1

∂zj

∂G1

∂z∗j
− ∂δhP1

∂z∗j

∂G1

∂zj

)
,

one has to compute �rst the derivatives with respect to zj and z
∗
j and then

the products between them.

∂δhP1

∂zj
=

K

2mω

[
(zj − zj−1)− (zj+1 − zj)

]
− Λ

4m2ω2

(
z3
j + z∗j

3 + 3z2
j z
∗
j

)
;

∂δhP1

∂z∗j
=

K

2mω

[
(z∗j − z∗j−1)− (z∗j+1 − z∗j )

]
− Λ

4m2ω2

(
z∗3j + zj

3 + 3z∗2j zj

)
;

∂G1

∂zj
= − K

4mıω2

[
(zj − zj−1)− (zj+1 − zj)

]
− Λ

16m2ıω3

(
− z3

j + 2z∗j
3 − 6z2

j z
∗
j

)
;

∂G1

∂z∗j
= − K

4mıω2

[
(zj+1

∗ − z∗j )− (zj
∗ − z∗j−1)

]
− Λ

16m2ıω3

(
z∗j

3 + 6zjz
∗
j

2 − 2z3
j

)
.
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∂δhP1

∂zj

∂G1

∂z∗j
= − K2

8m2ıω3

[
(zj − zj−1)− (zj+1 − zj)

][
(zj+1

∗ − z∗j )− (zj
∗ − z∗j−1)

]
+

+
KΛ

16m3ıω4

(
z3
j + z∗j

3 + 3z2
j z
∗
j

)[
(zj+1

∗ − z∗j )− (zj
∗ − z∗j−1)

]
+

− ΛK

32m3ıω4

[
(zj − zj−1)− (zj+1 − zj)

](
z∗j

3 + 6zjz
∗
j

2 − 2z3
j

)
+

+
Λ2

64m4ıω5

(
z3
j + z∗j

3 + 3z2
j z
∗
j

)(
z∗j

3 + 6zjz
∗
j

2 − 2z3
j

)
.

∂δhP1

∂z∗j

∂G1

∂zj
= − K2

8m2ıω3

[
(z∗j − z∗j−1)− (z∗j+1 − z∗j )

][
(zj − zj−1)− (zj+1 − zj)

]
+

+
ΛK

16m3ıω4

(
z∗3j + zj

3 + 3z∗2j zj

)[
(zj − zj−1)− (zj+1 − zj)

]
+

− ΛK

32m3ıω4

[
(z∗j − z∗j−1)− (z∗j+1 − z∗j )

](
− z3

j + 2z∗j
3 − 6z2

j z
∗
j

)
+

+
Λ2

64m4ıω5

(
z∗3j + zj

3 + 3z∗2j zj

)(
− z3

j + 2z∗j
3 − 6z2

j z
∗
j

)
.

The explicit expression of the bracket is:

{δhP1, G1} =
∑
j∈ZN

{
− K2

4m2ω3

[
(z∗j − z∗j−1)− (z∗j+1 − z∗j )

][
(zj − zj−1)− (zj+1 − zj)

]
+

− ΛK

32m3ω4

[(
(zj − zj−1)− (zj+1 − zj)

)(
− 3z∗j

3 − 12z∗2j zj

)
+

−
(

(z∗j − z∗j−1)− (z∗j+1 − z∗j )
)(

3z3
j + 12z∗j z

2
j

)]
+

− Λ2

64m4ω5

[
34z3

j z
∗3
j − z∗6j − z6

j + 15z4
j z
∗2
j + 3z∗4j z

2
j

]}
.

So now one can compute the average of the previous Poisson bracket along
the unperturbed �ow of h:

〈{δhP1, G1}〉h (a, a∗) =
ω

2π

∫ 2π/ω

0

{δhP1, G1}(Φs
h(a, a

∗))ds =

=
∑
j∈ZN

{
− 17Λ2

32m4ω5
|aj|6 +

3ΛK

2m3ω4
|aj|4+

− 3ΛK

8m3ω4

[
a∗2j aj

(
aj−1 + aj+1

)
+ a2

ja
∗
j

(
a∗j−1 + a∗j+1

)]
+

+
K2

4m2ω3
|aj+1 + aj−1 − 2aj|2

}
. (2.61)
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Finally the perturbation term of second order P̄2 has the form:

P̄2(a, a∗) = Ũ
∑
j∈ZN

|aj|6 + M̃
∑
j∈ZN

|aj|4 + J̃
∑
j∈ZN

|aj+1 + aj−1 − 2aj|2+

+Ñ
∑
j∈ZN

[
a∗2j aj(aj−1 + aj+1) + a2

ja
∗
j(a
∗
j−1 + a∗j+1)

]
(2.62)

where

Ũ := − 17Λ2

64m4ω5
+

5Γ

12m3ω3
; (2.63)

J̃ := − K2

8m2ω3
; (2.64)

M̃ :=
3ΛK

4m3ω4
; (2.65)

Ñ := − 3ΛK

16m3ω4
. (2.66)

We have thus proved the following:

Theorem 3 The Hamiltonian of the cold atoms problem in normal form to
the second order is

H(2)(a, a∗) = h(a, a∗) + P̄1(a, a∗) + P̄2(a, a∗) +R3, (2.67)

where P̄1 and P̄2 are given in (2.50) and (2.62) respectively.
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2.3 Summary of the Classical Part

We summarize the model obtained in the classical case in order to have a
general and complete point of view.
The starting Hamiltonian before the canonical transformation is the follow-
ing:

H(q, p) =
∑
j∈ZN

[(pj2

2m
+
mω2

2
q2
j

)
+
(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
+
(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)]
. (2.68)

The Hamiltonian in normal form, to second order is:

H(2) = h+ P̄1 + P̄2 +R3 (2.69)

where h is the unperturbed Hamiltonian and P̄1 and P̄2 are the �rst and
second term of perturbation.

h =
∑
j∈ZN

ω|aj|2; (2.70)

P̄1 = W
∑
j∈ZN

|aj|2 + J
∑
j∈ZN

a∗j(aj+1 + aj−1) + U
∑
j∈ZN

|aj|4; (2.71)

P̄2 = Ũ
∑
j∈ZN

|aj|6 + M̃
∑
j∈ZN

|aj|4 + J̃
∑
j∈ZN

|aj+1 + aj−1 − 2aj|2+

+Ñ
∑
j∈ZN

[
a∗2j aj(aj−1 + aj+1) + a2

ja
∗
j(a
∗
j−1 + a∗j+1)

]
, (2.72)

where the coe�cients are W := K
mω

, J := − K
2mω

, U := − 3Λ
8m2ω2 instead

Ũ = − 17Λ2

64m4ω5 + 5Γ
12m3ω3 , J̃ = − K2

8m2ω3 , M̃ = 3ΛK
4m3ω4 , Ñ = − 3ΛK

16m3ω4 .

The explicit expression of the truncated normal form is

H(2) −R3 = h+ P̄1 + P̄2 =

=
∑
j∈ZN

{
(W + ω)|aj|2 + Ja∗j

[
aj+1 + aj−1

]
+

+ (U + M̃)|aj|4 + Ũ |aj|6 + J̃ |aj+1 + aj−1 − 2aj|2 +

+ Ñ
[
a∗2j aj(aj−1 + aj+1) + a2

ja
∗
j(a
∗
j−1 + a∗j+1)

]}
.
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The corresponding discrete Bogolyubov-Gross-Pitaevskii (dBGP) or discrete
Nonlinear Schrödinger (dNLS) equation, corrected to second order is:

ıȧj = (W + ω)aj + J(aj+1 + aj−1) + 2(U + M̃)|aj|2aj + 3Ũ |aj|4aj +

+ J̃
[
(aj + aj−2 − 2aj−1)− 2(aj+1 + aj−1 − 2aj) + (aj+2 + aj − 2aj+1)

]
+

+ Ñ
[
2a∗jaj(aj−1 + aj+1) + a2

j(a
∗
j−1 + a∗j+1) + a2

j+1a
∗
j+1 + a2

j−1a
∗
j−1

]
. (2.73)
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Chapter 3

The Remainder Term

In the previous chapter one, thanks to the canonical transformation, we wrote
the original Hamiltonian in normal form, which looks like a perturbation
of the dBGP equation. Now focus our attention on the remainder Rn+1

appearing in the Hamiltonian normal form of order n.

3.1 Estimate of the Remainder

The idea of this section is to �nd an explicit estimate of the e�ects of re-
mainder term in

H(n) = h+ λP̄1 + λ2P̄2 + · · ·+ λnP̄n +Rn+1 . (3.1)

In general consider a vector �eld X and its integral curve φs which solves the
following problem, for any given starting point x0

d

ds
φs = X ◦ φs

that is
ẋ = X(x) =⇒ x(s) = φs(x0).

Now consider any function f(x(s))

d

ds
f(x(s)) =

∑
j

∂

∂xj
f(x(s))

d

ds
xj(s) =

=
∑
j

∂

∂xj
f(x(s))Xj(x(s)) =

= (LXf)(x(s)).
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where LXf = X · ∇f = f ′X is the Lie derivative of f along X.

d

ds
(f ◦ φs) = f ′(φs)

d

ds
φs =

= f ′ ◦ φsX ◦ φs =

= (f ′X) ◦ φs =

= (LXf) ◦ φs.

Integrating from 0 to λ > 0 the previous equality:

∫ λ

0

d

ds
(f ◦ φs)ds =

∫ λ

0

(LXf) ◦ φsds =⇒ f ◦ φλ − f =

∫ λ

0

(LXf) ◦ φsds.

Solving the integral on the left side and iterating the procedure:

f ◦ φλ = f +

∫ λ

0

(LXf) ◦ φs0ds0 =

= f +

∫ λ

0

[
(LXf) +

∫ s0

0

(L2
Xf) ◦ φs1ds1

]
ds0 =

= f + λ(LXf) +

∫ λ

0

ds0

∫ s0

0

ds1(L2
Xf) ◦ φs1 =

= f + λ(LXf) +
λ2

2
(L2

Xf) +

∫ λ

0

ds0

∫ s0

0

ds1

∫ s1

0

ds2(L3
Xf) ◦ φs2 =

= · · · =

= f + λ(LXf) +
λ2

2
(L2

Xf) + · · ·+ λn

n!
(LnXf) + R̄n+1 =

= eλLXf. (3.2)

The previous computation is the Taylor expansion where the term of remain-
der at order n+ 1 has an integral form:

R̄n+1 =

∫ λ

0

ds0

∫ s0

0

ds1· · ·
∫ sn−1

0

dsn(Ln+1
X f) ◦ φsn . (3.3)
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In the speci�c case in which f = H = h+ λP1 + λ2P2 + . . . , φs = Φλ
G1

where
G1 is a Hamiltonian and LX = L1, one has:

H ◦ Φλ
G1

= h ◦ Φλ
G1

+ λP1 ◦ Φλ
G1

+ λ2P2 ◦ Φλ
G1

=

= h+ λ(L1h) +
λ2

2
(L2

1h) + R̄
(h)
3 +

+ λP1 + λ2(L1P1) + λR̄
(P1)
2 +

+ λ2P2 + λ2R̄
(P2)
1 =

= h+ λ(L1h+ P1) + λ2(
1

2
L2

1h+ L1P1 + P2) + R̃3 (3.4)

where
R̃3 = R̄

(h)
3 + λR̄

(P1)
2 + λ2R̄

(P2)
1 . (3.5)

In order to be in normal to the �rst order

H ◦ Φλ
G1

= h+ P̄1 +R2

which means
L1h+ P1 ∈ kerLh.

In particular the reminder of the normal form

R2 = λ2(
1

2
L2

1h+ L1P1 + P2) + R̃3

is determined by a speci�c G1. Clearly it's possible to use this machinery
to compute the Hamiltonian normal form to any order n with its remainder
Rn+1.

3.2 E�ects of the Remainder

The advantage to get a normal form to high order in the small parameters
is easily seen to be in the longer time of preservation of approximate �rst
integrals, or "adiabatic invariants" of the system.

Consider a function J which commutes with all terms in the Hamiltonian
(3.1):

{h, J} = 0 = {P̄j, J}. (3.6)

The evolution of J along the �ow of H(n) is given by

J̇ = {J,H(n)} = {J,Rn+1} (3.7)
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that is {J,H(n) −Rn+1} = 0.

If Rn+1 = λn+1rn, with rn = O(1) then

dJ

dt
= {J, λn+1rn} = λn+1{J, rn}. (3.8)

If moreover |{J, rn}| ≤ Cn, one obtains the following estimate:

|J(t)− J0| = |λn+1

∫ t

0

{J, rn}dt| ≤ λn+1Cn|t|. (3.9)

Thus for times as long as |t| < 1/λn one has

|J(t)− J0| ≤ Cnλ. (3.10)

In general, due to the growth of Cn with n, there's an optimal value of n in
this scheme, as shown �rst by Nekhoroshev.

In this conclusive section we use perturbation theory, and in particular the
Hamiltonian normal form, to construct approximate solutions of the original
problem and we will show in which sense they are actually close to exact
solutions [9]. The original problem is given by the equations of motion with
Hamiltonian

H = h+ λP1 + λ2R{
żj = −ı ∂H

∂z∗j

ż∗j = ı∂H
∂zj

By de�ning the vector u := (z, z∗)T , one can rewrite such equations as

u̇ = Au+ λX1(u) + λ2XR(u) (3.11)

where A is the linear operator linked to h: Au = J∇h(u) and X1 = J∇P1.
The Hamiltonian normal form to �rst order is obtained by a coordinate
transformation u := Tλ(v) = Φλ

G1
(v).

H(1) = h+ λP̄1 + λ2R̄

with corresponding equations:

v̇ = Av + λN(v) + λ2R(v) (3.12)
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where N = XP̄1
instead R is a remainder. The truncated, or simpli�ed

system, instead is:
ẇ = Aw + λN(w). (3.13)

The solutions w of the simpli�ed system are expected to approximate well the
solutions of the complete problem v. However, depending on the remainder
R then it could happen that the solutions of the equation (3.13) and solutions
of the equation (3.12) are very di�erent. In order to ensure that they are
close to each other one should be able to prove some a priori estimate of R
and get an estimate of the time scale on which this happens. To reach this
goal consider a solution w(t) of (3.13) and construct an approximate solution
ū of the original system:

ū(t) := Tλ(w(t)). (3.14)

The error r(t) is de�ned as the di�erence between the true solution u and
the approximate one ū:

r(t) := u(t)− ū(t). (3.15)

Such error ful�lls the equation:

ṙ(t) = u̇(t)− ˙̄u(t) =

= Au+ λX1(u) + λ2XR(u)− T ′λẇ =

= Au+ λX1(u) + λ2XR(u)− T ′λ
(
Aw + λN(w)

)
=

= Ar + Aū+ λX1(r + ū) + λ2XR(r + ū)− T ′λ
(
Aw + λN(w)

)
=

= Ar + Aū+ λX1(r + ū) + λ2XR(r + ū)− Aū− λX1(ū)− λ2XR(ū)+

+ λ2T ′λ(w)R(w) =

= Ar + λ[X1(r + ū)−X1(ū)] + λ2[XR(r + ū)−XR(ū)] + λ2T ′λ(w)R(w)

where the following equivalence which holds for every v has been used:

ATλ(v) + λX1(Tλ(v)) + λ2XR(Tλ(v)) = u̇ = T ′λ(v)[Av + λN(v) + λ2R(v)].
(3.16)

The equation satis�ed by the error is:

ṙ = Ar+λ[X1(r+ū)−X1(ū)]+λ2[XR(r+ū)−XR(ū)]+λ2T ′λ(w)R(w). (3.17)

The main point is that the reminder is evaluated on the approximate solution
w, so this gives a small contribution if some control on the approximate
solutions is available. Assume that R(w) is bounded, then in order to control
the norm of r one has just to apply Gronwall's lemma (that follows) to
estimate solutions of (3.17).
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Lemma 9 Gronwall's Inequality Let I denote an interval of the real line
of the form [0, T ). Let α, β and u be real-valued functions de�ned on I.
Assume that β and u are continuous and that the negative part of α is inte-
grable on every closed and bounded sub interval of I. If β is non-negative, α
is non-decreasing and if u satis�es the integral inequality

u(t) ≤ α(t) +

∫ t

0

β(s)u(s) ds, ∀t ∈ I (3.18)

then

u(t) ≤ α(t) exp

(∫ t

0

β(s) ds

)
, ∀t ∈ I. (3.19)

Let us now de�ne ρ(t) := e−Atr(t). Notice that the evolution of h is unitary
which means |e−At| = 1 so |r(t)| = |ρ(t)|. Thus, ρ(t) satis�es the equation

ρ̇(t) = e−At[λ∆X + λ2T ′R(w)], (3.20)

where ∆X = ∆X1 + λ∆XR. Supposing that X = X1 + λXR is a Lipschitz
vector �eld of constant L and T ′R is bounded then:

r(t) =

∫ t

0

dr

ds
(s)ds;

|r(t)| = |ρ(t)| ≤
∫ t

0

|ρ̇(s)|ds

≤
∫ t

0

(λ|∆X|+ λ2|T ′R|)ds

≤
∫ t

0

(λL|r(s)|+ λ2|T ′R(w(s))|)ds

= λL

∫ t

0

|r(s)|ds+ λ2Ct.

Now apply the Gronwall's lemma with u = |ρ|, α(t) = λ2Ct and β(t) = λL
one gets the estimate:

|ρ(t)| ≤ λ2CteλLt. (3.21)

Such estimate shows that the distance |ρ(t)| between the true and the ap-
proximate solutions of the problem, is small of order λ on a time scale of
order 1/λ that cannot be increased.
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Chapter 4

Quantum-Mechanical System

The central idea of this chapter is to describe the model of an atomic ar-
ray of cold atoms from the point of view of quantum mechanics. In the
�rst part we will transform the Hamiltonian H into a di�erential operator
H by the procedure of canonical quantization. Then we will represent the
dynamics of the system de�ned by H using Heisenberg picture, where any
quantized operator F evolves along the �ow of H by unitary conjugation,
namely F (t) := UH(t)†FUH(t). In such a way, the algebra of operators
F ,G, . . . de�ned on the con�guration space of a given system becomes a
Poisson algebra with Poisson bracket given by {F ,G} := −ı[F ,G]/~, where
[ , ] denotes the standard commutator, namely [F ,G] := FG −GF . Since
the formal properties of Hamiltonian perturbation theory depend only on
the algebraic properties of the Poisson structure, we will extend the classical
results listed above to the quantum case.

4.1 Model and Quantum Hamiltonian

Recall the classical Hamiltonian obtained in the previous chapter:

H(q, p) =
N∑
j=1

[(pj2

2m
+
mω2

2
q2
j

)
+
(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
+
(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)]
.

In order to work in a quantum setting one has to apply canonical quantization
to each variable involved in the model. Such procedure is described in the
next section.
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4.1.1 Canonical Quantization

In physics, quantization is the procedure to transform a classical Hamiltonian
system into a quantum mechanical model. This procedure is basic to theories
of particle physics, nuclear physics, condensed matter physics, and quantum
optics.

Quantization converts classical functions de�ned on the phase space into
operators acting on some Hilbert space.

De�nition 10 In quantum mechanics one de�nes q as the Position Oper-

ator and p as the Momentum Operator. By de�nition they act on some
function φ and work as follows:

q := q =⇒ qφ = qφ ; (4.1)

p := −ı~ ∂
∂q

=⇒ pφ = −ı~∂φ
∂q
. (4.2)

The fundamental commutation relation:

[q,p] = ı~. (4.3)

Roughly speaking the position operator multiplies the function φ for the q
variable, instead the momentum operator takes the derivative of the function
φ with respect to the q variable and multiplies the result by the constant
(−ı~). The explicit computation of the commutator between q and p is:

[q,p]φ(q) = (qp− pq)φ(q) =

= q
(
− ı~∂φ(q)

∂q

)
−
(
− ı~ ∂

∂q

)
qφ(q) =

= −ı~q∂φ(q)

∂q
−
(
− ı~φ(q)− ı~q∂φ(q)

∂q

)
=

= ı~φ(q).

The quantum Hamiltonian operator has the same structure of the classical
one where the p and q variables are substituted by the operators p and q:

H(q,p) = H(q,−ı~ ∂
∂q

) =

=
∑
j∈ZN

[(mω2

2
q2
j −

~2

2m

∂2

∂q2

)
+
(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
+

+
(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)]
. (4.4)

Notice that it is equivalent to do quantization before or after the translation
of the original variables (2.10).
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4.2 Heisenberg Picture [6]

We now examine the e�ect of applying time translation to operators, as
well as to wave functions. The transformed operators are called Heisenberg-
picture operators:

QH(t) = U †(t)QU(t). (4.5)

In the Schrödinger picture, the wave function ψ evolves in time according to
the Schrödinger equation:

HΨ(q, t) = ı~
∂

∂t
Ψ(q, t). (4.6)

The solution of the latter equation, if the Hamiltonian is independent of time,
is

Ψ(q, t) = U(t)Ψ(q, 0) ; U(t) := e−
ı
~Ht. (4.7)

The operators q and p have no time dependence of their own, and the time
dependence of expectation values (or, more generally, matrix elements) comes
from the time dependence of the wave function:

〈Q〉 = 〈Ψ(t)|Q|Ψ(t)〉 . (4.8)

In the Heisenberg picture, the wave function ΨH(q) = Ψ(q, 0) is constant
in time, and the operators evolve in time according to Equation (4.5). The
time dependence of expectation values (or matrix elements) is carried by the
operators.

〈Q〉 = 〈ΨH |QH(t)|ΨH〉 . (4.9)

Of course, the two pictures are entirely equivalent since:

〈Ψ(t)|Q|Ψ(t)〉 =
〈
Ψ(0)|U †(t)QU (t)|Ψ(0)

〉
= 〈ΨH |QH(t)|ΨH〉 . (4.10)

If the Hamiltonian is time-dependent one can still write the formal solution
to the Schrödinger equation in terms of the time-translation operator, U :

Ψ(q, t) = U(t, t0)Ψ(q, t0) (4.11)

but U(t, t0) no longer takes on the simple form e−
ı
~Ht0 ; however, for an

in�nitesimal time interval δ

U(t0 + δ, t0) ≈ 1− ı

~
H(t0)δ. (4.12)

Due to (4.5), the time evolution of QH(t) is given by

d

dt
QH = − ı

~
[QH ,H ] +

∂

∂t
QH . (4.13)
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As a consequence, if QH(t) = H(t) and

∂H

∂t
= 0

then:
d

dt
H = − ı

~
[H ,H ] = 0. (4.14)

From now on, we work in the Heisenberg picture omitting everywhere the
subscript H for the operators.

4.3 Perturbation Theory in Quantum Mechan-

ics

The formalism of Hamiltonian perturbation theory developed in the classical
context can be applied to quantum mechanics once one identi�es the relevant
quantum objects such as Hamiltonian �ows and canonical transformations.
To such a purpose, we start by observing that unitary transformations of
the wave function, the unknown of the Schrödinger equation, are canonical
transformations of the latter equation. Indeed, given any unitary operator
U independent of time, and de�ning Ψ′ := U †Ψ and H ′ = U †HU , one has

ı~Ψt = HΨ⇐⇒ ı~Ψ′t = H ′Ψ′, (4.15)

where U †U = 1, the equation on the right hand side being identical in form
to that on the left one. The idea of this section is to write the quantum
Hamiltonian of (4.4) in the form:

H(q,p) = h(q,p) + P 1(q) + P 2(q) + . . . , (4.16)

where h is the unperturbed Hamiltonian and P := H−h is the perturbation
split into ordered terms P 1, P 2, and so on.
In our particular case holds:

h(q,p) :=
∑
j∈ZN

(mω2

2
q2
j −

~2

2m

∂2

∂q2

)
; (4.17)

P 1(q) :=
∑
j∈ZN

(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
; (4.18)

P 2(q) :=
∑
j∈ZN

(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)
. (4.19)

in complete analogy with the classical case.
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4.3.1 Hamiltonian Normal Form in Quantum Mechan-
ics

In the perturbative context one can try to remove the leading order pertur-
bation P 1 (and then the higher order contributions as well) by looking for
a particular unitary operator U that conjugates H to its normal form, to
leading order.

De�nition 1 A quantum Hamiltonian H(n) of the form

H(n) = h +
n∑
j=1

P̄ j + Rn+1, (4.20)

where [P̄ j,h] = 0 for any j = 1, . . . , n is said to be in Normal Form to
order n with respect to h.

4.3.2 Ladder Operators

Creation and annihilation operators b†j and bj, also called Dirac, Boson
or ladder operators, are de�ned by the following formulas:

bj :=
mωqj + ıpj√

2m~ω
; b†j :=

mωqj − ıpj√
2m~ω

. (4.21)

They are the quantum version of the Birkho� variables (2.27) up to the scale
factor 1/

√
~ with the property

[bi, b
†
j] = δi,j. (4.22)

A dagger above and in the sequel denotes the adjoint.
One thus canonically quantizes the Hamiltonian (2.20) and gets the quan-

tum Hamiltonian H , or its equivalent expansion (4.17)-(4.19), that can be
rewritten in terms of the ladder operators. Due to the de�nition (4.21) and
to the commutation relation (4.22) one gets

b†jbj =
m2ω2q2

j + p2
j + ımω(qjpj − pjqj)

2m~ω
=

=
m2ω2q2

j + p2
j + ımωı~

2m~ω
=

=
1

~ω

(mω2

2
q2
j +

p2
j

2m
− ω~

2

)
=

=
1

~ω

(mω2

2
q2
j +

p2
j

2m

)
− 1

2
=

=
1

~ω

(
hj

)
− 1

2
.
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Thus, the unperturbed Hamiltonian h which is the sum of N Hamiltonians
of single harmonic oscillators reads:

h(b, b†) :=
∑
j∈ZN

~ω(b†jbj +
1

2
) =

∑
j∈ZN

~ω(bjb
†
j −

1

2
). (4.23)

Clearly one can also express the operators of position and momentum in
terms of creation and annihilation operators and then replace them into the
Hamiltonian like we've done in the classical case:

qj =

√
~

2mω
(bj + b†j); pj = −ı

√
mω~

2
(bj − b†j). (4.24)

The next steps are: to expressH in terms of the ladder operators and to com-
pute its normal form to some pre�xed order with respect to the unperturbed
Hamiltonian (4.23). We obtain such Hamiltonian replacing the expressions
(4.24) in (4.4):

H(b, b†) = h(b, b†) + P 1(b, b†) + P 2(b, b†) + . . . . (4.25)

The two order perturbations P 1 and P 2 in terms of ladder operators become:

P 1(b, b†) :=
∑
j∈ZN

{ −Λ~2

16m2ω2
(bj + b†j)

4 +
K~

4mω

[
(bj+1 + b†j+1)− (bj + b†j)

]2}
;

P 2(b, b†) :=
∑
j∈ZN

{ Γ~3

48m3ω3
(bj + b†j)

6 +
α

3

√
~

2mω

3[
(bj+1 + b†j+1)− (bj + b†j)

]3}
.

De�nition 11 Given the creation and annihilation operators b†j and bj the
Number Operator nj is de�ned by

nj = b†jbj, (4.26)

with the property [nj,nk] = 0 ∀j, k.

The number operator is the observable that counts the number of "quasi-
particles". The Hamiltonian h in terms of the number operators becomes:

h =
∑
j∈ZN

~ω(nj +
1

2
). (4.27)

Notice that, instead of h, one can study h =
∑

j∈ZN ~ωnj because constants
don't in�uence the dynamics.
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The evolution of any operatorQ with respect to the �ow of a Hamiltonian
h is given by:

Q̇ =
1

ı~
[Q,h] := LhQ =⇒ Q(t) = etLhQ(0). (4.28)

It follows that the evolution of bj and b†j trough h is given by:

ı~ḃj = [bj,h] = [bj,
∑
k∈ZN

~ωb†kbk] =
∑
k∈ZN

~ω[bj, b
†
kbk] = ~ω[bj, b

†
j]bj

= ~ωbj,

hence it holds
ḃj = −ıωbj =⇒ bj(t) = e−ıωtbj(0), (4.29)

and similarly for creation operators, one has:

b†j(t) = eıωtb†j(0). (4.30)

One should obtain the same result using Taylor expansion for eLht in the
following way:

bj(t) = eLhtbj(0) =

= (1 + tLh +
t2

2
L2
h + . . . )bj(0) =

= bj(0) + tLhbj(0) +
t2

2
L2
hbj(0) + · · · =

= bj(0) + t
1

ı~
[bj(0),h] +

t2

2
(

1

ı~
)2[[bj(0),h],h] + · · · =

= bj(0) + t
1

ı~
~ωbj(0) +

t2

2

( 1

ı~

)2

(~ω)2bj(0) + · · · =

= bj(0) + t
ω

ı
bj(0) +

t2

2

(ω
ı

)2

bj(0) + · · · =

= bj(0)− tωıbj(0)− t2

2
ω2bj(0) + · · · =

= e−ıωtbj(0).

4.3.3 Averaging Theory in Quantum Mechanics

By analogy with the classical case one looks for a unitary operator Uλ that
is the Schrödinger �ow at time λ of some unknown Hamiltonian (Hermitian)
operator G, namely

Uλ = e−
ıλG
~ . (4.31)
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To any Hermitian operator G one can associate the operator

LG := − ı
~

[,G] (4.32)

i.e. the quantum Lie derivative along the �ow of G. One easily proves the
following

Lemma 12 For any pair of Hermitian operators F and G independent of
λ, one has

e+ ıλG
~ F e−

ıλG
~ = eλLGF . (4.33)

In particular, it follows that F is invariant with respect to the �ow of G if
and only if [F ,G] = 0.

Proof. De�ne F (λ) the left hand side of the previous equation and take its
derivative with respect to λ, getting

d

dλ
F (λ) =

ı

~
(GF (λ)− F (λ)G) = LGF (λ). (4.34)

The latter di�erential equation can be formally integrated with the initial
condition F (0) = F , to yield the equation.

We are interested on normal form up to a �xed order of a Hamiltonian.
Let us very quickly see how the classical procedure for �nding the normal
form is kept conceptually the same up to �rst order concerning higher orders,
it will be evident that there is really nothing di�erent to do with respect to
the classical case. Now, supposing that the quantum Hamiltonian has the
form

H = h + λP 1 + ... (4.35)

and transforming it by Uλ = e−
ıλG1

~ , one obtains

H ′
λ = U †λHUλ = (4.36)

= e
ıλG1

~ (h + λP 1 + . . . )e−
ıλG1

~ = (4.37)

= h + λ(P 1 + LG1h) +O(λ2) = (4.38)

= h + λP̄ 1 +O(λ2), (4.39)

and one requires that P̄ 1 := P 1 +LG1h is invariant with respect to the �ow
of h, that is LhP̄ 1 = 0. Similarly to the classical case, one �nds:

P̄ 1 = 〈P 1〉h .

Taking into account that LG1h = −LhG1 one writes down the Quantum
Homological Equation (to �rst order):

P̄ 1 = P 1 − LhG1 (4.40)
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and solves it for P̄ 1 and G1 exactly as done in the classical case. The result
is the following

P̄ 1 = 〈P 1〉h := lim
t→+∞

1

t

∫ t

0

e+ ısh
~ P 1e

− ısh~ ds; (4.41)

δhP 1 := P 1 − P̄ 1; (4.42)

G1 = K1 + lim
t→+∞

1

t

∫ t

0

(s− t)e+ ısh
~ (δhP 1)e−

ısh
~ ds, (4.43)

where K1 is any Hermitian operator such that [K1;h] = 0. The formulas for
the next orders can be obtained by using the quantum Averaging Principle.
Below is reported the second order perturbation term:

P̄ 2 = 〈P 2〉h +
1

2

〈
− ı
~

[δhP 1, δhG1]
〉
h
− ı

~
[P̄ 1,K1], (4.44)

where δhG1 = G1 −K1. It follows that the averaging principle, holds in
quantum mechanics to all orders, with a formulation that, up to the replace-
ment of the Poisson bracket {, } with the commutator [, ] divided by ı~, is
completely analogous to the classical one. In particular, to �rst order, the
perturbation in normal form is the time average of the perturbation along
the �ow of the unperturbed system. We have seen, then, that the Hamil-
tonian perturbation theory represents a powerful tool that can help study
quasi-integrable systems, in the sense described before. As observed in the
classical case, we will work with λ = 1 in the sequel.

4.3.4 Application to the Quantum Hamiltonian (4.25)

Theorem 4 The Hamiltonian of the quantum cold atoms problem, in normal
form to the �rst order is

H(1)(a,a†) = U †1HU 1 = h(a,a†) + P̄ 1(a,a†) + R2 (4.45)

where,

P̄ 1(a,a†) =
ω

2π

∫ 2π/ω

0

e+ ıτh
~ (τ)P 1e

+−ıτh~ (τ)dτ =

= W
N∑
j=1

a†jaj + J
N∑
j=1

a†j(aj+1 + aj−1) + U
N∑
j=1

a†2j a
2
j ,

(4.46)

with suitable real parameters W, J and U .
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Proof. The speci�c computation for P̄ 1 = 〈P 1〉h is

〈P 1〉h (a,a†) =
ω

2π

∫ 2π/ω

0

e+ ıτh
~ (τ)P 1e

+−ıτh~ (τ)dτ =

=
ω

2π

∫ 2π/ω

0

∑
j∈ZN

[
− Λ~2

16m2ω2
(aje

−ıωτ + a†je
ıωτ )4 +

+
K~

4mω

(
(aj+1e

−ıωτ + a†j+1e
ıωτ )− (aje

−ıωτ + a†je
ıωτ )
)2]

dτ =

=
∑
j∈ZN

[
− Λ~2

16m2ω2
(6a2

ja
†2
j ) +

+
K~

2mω

(
(aj+1a

†
j+1 + aja

†
j)− (aj+1a

†
j + a†j+1aj)

)]
=

=
∑
j∈ZN

[ K~
2mω

(aj+1a
†
j+1 + aja

†
j)−

K~
2mω

(a†jaj+1 + a†j+1aj) +

− 3Λ~2

8m2ω2
(a2

ja
†2
j )
]

=

=
∑
j∈ZN

K~
mω

aja
†
j −

∑
j∈ZN

K~
2mω

(a†jaj+1 + a†jaj−1) +

−
∑
j∈ZN

3Λ~2

8m2ω2
(a2

ja
†2
j ) =

=
K~
mω

∑
j∈ZN

a†jaj −
K~

2mω

∑
j∈ZN

a†j(aj+1 + aj−1) +

− 3Λ~2

8m2ω2

∑
j∈ZN

(a†2j a
2
j)−

3Λ~2

2m2ω2

∑
j∈ZN

a†jaj.

So the quantum Hamiltonian in normal form to �rst order is:

H(1)(a,a†) = U †1HU 1 = h(a,a†) + P̄ 1(a,a†) + R2 (4.47)

where

P̄ 1(a,a†) =W
∑
j∈ZN

a†jaj + J
∑
j∈ZN

a†j(aj+1 + aj−1) + U
∑
j∈ZN

a†2j a
2
j , (4.48)
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with

W :=
K~
mω
− 3Λ~2

2m2ω2
; (4.49)

J := − K~
2mω

; (4.50)

U := − 3Λ~2

8m2ω2
. (4.51)

The truncated quantum normal form

H(1) −R2 = h + P̄ 1 =

= (W + ω)
∑
j∈ZN

a†jaj + J
∑
j∈ZN

a†j(aj+1 + aj−1) + U
∑
j∈ZN

a†2j a
2
j

de�nes the so-called Bose-Hubbard (BH) model, the reference standard model
in optically trapped cold atom systems. The corresponding BH equation is

ıȧj = (W + ω)aj + J (aj+1 + aj−1) + 2Ua†ja2
j . (4.52)

Successive corrections P̄ 2, P̄ 3 and so on are computable as well. Notice that
the BH Hamiltonian is just the quantum version of the dBGP Hamiltonian.
As a matter of fact, the classical mechanics describes well both the dynamics
and the statistical properties of condensed matter at high temperatures.

The results listed above allow to improve such a conclusion extending it,
in principle, to any higher order approximation (i.e. BH deformation) of the
true Hamiltonian.

In order to compute P̄ 2, like in the classical case, one has to compute G1

but we �rst need

δhP 1 = P 1 − 〈P 1〉h =
∑
j∈ZN

[
− Λ~2

16m2ω2
(b4
j + 4b3

jb
†
j + b†4j + 4b†3j bj)+

+
K~

4mω

(
(bj+1 − bj)

2 + (b†j+1 − b†j)
2
)]
. (4.53)
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The computations of G1 follows:

G1(b, b†) =
ω

2π

∫ 2π/ω

0

se+ ısh
~ δhP 1e

− ısh~ ds =

=
ω

2π

∫ 2π/ω

0

s
[ ∑
j∈ZN

− Λ~2

16m2ω2
(b4
je
−4ıωs + 4b3

je
−2ıωsb†j + b†4j e

4ıωs+

+ 4b†3j e
2ıωsbj) +

K~
4mω

(
(b2
j+1e

−2ıωs + b2
je
−2ıωs − 2bj+1bje

−2ıωs)+

+ (b†2j+1e
2ıωs + b†2j e

2ıωs − 2b†j+1b
†
je

2ıωs)
)]

ds =

=
∑
j∈ZN

[
− Λ~2

16ım2ω3
(−

b4
j

4
−

4b3
jb
†
j

2
+

b†4j
4

+
4b†3j bj

2
)+

+
K~

8ımω2

(
(−b2

j+1 − b2
j + 2bj+1bj) + (b†2j+1 + b†2j − 2b†j+1b

†
j)
)]
.

Choosing, K1 = 0, as a kernel element in (4.43), compute the second order
perturbation term in normal form:

P̄ 2 = 〈P 2〉h +
1

2

〈
− ı
~

[δhP 1,G1]
〉
h
, (4.54)

where we observe that δhG1 = G1 when K1 = 0. By an easy computation
one gets:

〈P 2〉h (a,a†) =
ω

2π

∫ 2π/ω

0

e+ ıτh
~ P 2e

+−ıτh~ dτ =

=
ω

2π

∫ 2π/ω

0

∑
j∈ZN

[Γ

6

( ~
2mω

)3

(aje
−ıωτ + a†je

ıωτ )6+

+
α

3

√
~

2mω

3

[(aj+1e
−ıωτ + a†j+1e

ıωτ )− (aje
−ıωτ + a†je

ıωτ )]3
]
dτ =

=
∑
j∈ZN

10Γ

6

( ~
2mω

)3(
a3
ja
†3
j + a†3j a

3
j

)
. (4.55)

In order to compute the Lie bracket between δhP 1 andG1 one has to compute
the commutator [δhP 1,G1] = δhP 1G1 − G1δhP 1. Notice that holds the
following relations:

[bj, b
†n
k ] = nb†n−1

k δj,k =
∂

∂b†j
(b†nk ),

[b†j, b
n
k ] = nbn−1

k δj,k =
∂

∂bj
(bnk).
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Such relations, allows us to write the commutator between F and G as
follows:

[F (b, b†),G(b, b†)] =
∑
j∈ZN

(∂F
∂bj

∂G

∂b†j
− ∂F

∂b†j

∂G

∂bj

)
.

So in order to compute [δhP 1,G1] one has to calculate �rst the derivatives
of δhP 1 and G1 with respect to bj and b†j and then the products between
them.

∂δhP 1

∂bj
= − Λ~2

16m2ω2
(4b3

j + 12b2
jb
†
j + 4b†3j ) +

K~
2mω

(
(bj − bj−1)− (bj+1 − bj)

)
;

∂δhP 1

∂b†j
= − Λ~2

16m2ω2
(4b3

j + 4b†3j + 12b†2j bj) +
K~

2mω

(
(b†j − b†j−1)− (b†j+1 − b†j)

)
;

∂G1

∂bj
= − Λ~2

16ım2ω3
(−b3

j − 6b2
jb
†
j + 2b†3j ) +

K~
4ımω2

(
(bj+1 − bj)− (bj − bj−1)

)
;

∂G1

∂b†j
= − Λ~2

16ım2ω3
(−2b3

j + b†3j + 6b†2j bj) +
K~

4ımω2

(
(b†j − b†j−1)− (b†j+1 − b†j)

)
.

∂δhP 1

∂bj

∂G1

∂b†j
=

Λ2~4

256ım4ω5
(4b3

j + 12b2
jb
†
j + 4b†3j )(−2b3

j + b†3j + 6b†2j bj)+

− ΛK~3

64ım3ω4
(4b3

j + 12b2
jb
†
j + 4b†3j )

(
(b†j − b†j−1)− (b†j+1 − b†j)

)
+

− ΛK~3

32ım3ω4

(
(bj − bj−1)− (bj+1 − bj)

)
(−2b3

j + b†3j + 6b†2j bj)+

+
K2~2

8ım2ω3

(
(bj − bj−1)− (bj+1 − bj)

)(
(b†j − b†j−1)− (b†j+1 − b†j)

)
.

∂δhP 1

∂b†j

∂G1

∂bj
=

Λ2~4

256ım4ω5
(4b3

j + 4b†3j + 12b†2j bj)(−b
3
j − 6b2

jb
†
j + 2b†3j )+

− ΛK~3

64ım3ω4
(4b3

j + 4b†3j + 12b†2j bj)
(

(bj+1 − bj)− (bj − bj−1)
)

+

− ΛK~3

32ım3ω4

(
(b†j − b†j−1)− (b†j+1 − b†j)

)
(−b3

j − 6b2
jb
†
j + 2b†3j )+

+
K2~2

8ım2ω3

(
(b†j − b†j−1)− (b†j+1 − b†j)

)(
(bj+1 − bj)− (bj − bj−1)

)
.
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The explicit expression of the bracket is:

[δhP 1,G1] =
∑
j∈ZN

{ Λ2~4

256ım4ω5

[
(4b3

j + 12b2
jb
†
j + 4b†3j )(−2b3

j + b†3j + 6b†2j bj)+

− (4b3
j + 4b†3j + 12b†2j bj)(−b

3
j − 6b2

jb
†
j + 2b†3j )

]
+

− ΛK~3

64ım3ω4

[
(4b3

j + 12b2
jb
†
j + 4b†3j )

(
(b†j − b†j−1)− (b†j+1 − b†j)

)
+

− (4b3
j + 4b†3j + 12b†2j bj)

(
(bj+1 − bj)− (bj − bj−1)

)]
+

− ΛK~3

32ım3ω4

[(
(bj − bj−1)− (bj+1 − bj)

)
(−2b3

j + b†3j + 6b†2j bj)+

−
(

(b†j − b†j−1)− (b†j+1 − b†j)
)

(−b3
j − 6b2

jb
†
j + 2b†3j )

]
+

+
K2~2

8ım2ω3

[(
(bj − bj−1)− (bj+1 − bj)

)(
(b†j − b†j−1)− (b†j+1 − b†j)

)
+

−
(

(b†j − b†j−1)− (b†j+1 − b†j)
)(

(bj+1 − bj)− (bj − bj−1)
)]}

.

So now one can compute the average of the previous Lie bracket along the
unperturbed �ow of h:

〈
− ı
~

[δhP 1,G1]
〉
h

(a,a†) =
ω

2π

∫ 2π/ω

0

e+ ısh
~ − ı

~
[δhP 1,G1]e−

ısh
~ (a,a†)ds =

=
∑
j∈ZN

{
− 17Λ2~3

64m4ω5

[
a3
ja
†3
j + a†3j a

3
j

]
+

− 27Λ2~3

32m4ω5

[
a2
ja
†2
j + a†2j a

2
j

]
+

+
3ΛK~2

4m3ω4

[
a2
ja
†2
j + a†2j a

2
j

]
+

3ΛK~2

4m3ω4

[
aja

†
j + a†jaj

]
− 3ΛK~2

16m3ω4

[
a2
ja
†
j(a
†
j−1 + a†j+1) + (a†j−1 + a†j+1)a2

ja
†
j+

+ a†2j aj(aj−1 + aj+1) + (aj−1 + aj+1)a†2j aj

]
− K2~

8m2ω3

[(
2aj − aj−1 − aj+1

)(
2a†j − a†j−1 − a†j+1

)
+

+
(

2a†j − a†j−1 − a†j+1

)(
2aj − aj−1 − aj+1

)]}
.
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Finally the perturbation term of second order P̄ 2 has the form:

P̄ 2(a,a†) = Ũ
∑
j∈ZN

[
a3
ja
†3
j + a†3j a

3
j

]
+ M̃

∑
j∈ZN

[
a2
ja
†2
j + a†2j a

2
j

]
+ W̃

∑
j∈ZN

a†jaj+

+ Ñ
∑
j∈ZN

[
a2
ja
†
j(a
†
j−1 + a†j+1) + (a†j−1 + a†j+1)a2

ja
†
j+

+ a†2j aj(aj−1 + aj+1) + (aj−1 + aj+1)a†2j aj

]
+

+ J̃
∑
j∈ZN

[
(2aj − aj−1 − aj+1)(2a†j − a†j−1 − a†j+1)+

+ (2a†j − a†j−1 − a†j+1)(2aj − aj−1 − aj+1)
]

(4.56)

where

Ũ := − 17Λ2~3

128m4ω5
+

5Γ~3

24m3ω3
; (4.57)

J̃ := − K2~
16m2ω3

; (4.58)

M̃ :=
3ΛK~2

8m3ω4
− 27Λ2~3

64m4ω5
; (4.59)

Ñ := − 3ΛK~2

32m3ω4
; (4.60)

W̃ :=
3ΛK~2

4m3ω4
. (4.61)

We have thus proved the following:

Theorem 5 The quantum Hamiltonian of the cold atoms problem in normal
form to the second order is

H(2)(a,a†) = h(a,a†) + P̄ 1(a,a†) + P̄ 2(a,a†) + R3, (4.62)

where P̄ 1 and P̄ 2 are given in (4.46) and (4.56) respectively.
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4.4 Summary of the Quantum Part

In this section we summarize the model obtained in the quantum case in
order to have a general and complete point of view and also to compare with
the results obtained in the classical case.
The starting quantum Hamiltonian before the unitary transformation is:

H(q,p) = H(q,−ı~ ∂
∂q

) =

=
∑
j∈ZN

[(
− ~2

2m

∂2

∂q2
+
mω2

2
q2
j

)
+
(
− Λ

4
q4
j +

K

2
(qj+1 − qj)2

)
+
(Γ

6
q6
j +

α

3
(qj+1 − qj)3

)]
. (4.63)

The quantum Hamiltonian in normal form to second order is:

H(2) = h + P̄ 1 + P̄ 2 + R3 (4.64)

where h is the unperturbed Hamiltonian and P̄ 1, P̄ 2 are the �rst and the
second term of perturbation.

h =
∑
j∈ZN

~ωa†jaj; (4.65)

P̄ 1 =W
∑
j∈ZN

a†jaj + J
∑
j∈ZN

a†j(aj+1 + aj−1) + U
∑
j∈ZN

a†2j a
2
j ; (4.66)

P̄ 2 = Ũ
∑
j∈ZN

[
a3
ja
†3
j + a†3j a

3
j

]
+ M̃

∑
j∈ZN

[
a2
ja
†2
j + a†2j a

2
j

]
+ W̃

∑
j∈ZN

a†jaj+

+ Ñ
∑
j∈ZN

[
a2
ja
†
j(a
†
j−1 + a†j+1) + (a†j−1 + a†j+1)a2

ja
†
j+

+ a†2j aj(aj−1 + aj+1) + (aj−1 + aj+1)a†2j aj

]
+

+ J̃
∑
j∈ZN

[
(2aj − aj−1 − aj+1)(2a†j − a†j−1 − a†j+1)+

+ (2a†j − a†j−1 − a†j+1)(2aj − aj−1 − aj+1)
]
, (4.67)

where the coe�cients are W := K~
mω
− 3Λ~2

2m2ω2 , J := − K~
2mω

, U := − 3Λ~2
8m2ω2

instead, Ũ = − 17Λ2~3
128m4ω5 + 5Γ~3

24m3ω3 , M̃ = 3ΛK~2
8m3ω4 − 27Λ2~3

64m4ω5 , Ñ = 3ΛK~2
32m3ω4 , J̃ =

− K2~
16m2ω3 , W̃ = 3ΛK~2

4m3ω4 .
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The explicit expression of truncated quantum normal form is

H(2) −R3 = h + P̄ 1 + P̄ 2 =

=
∑
j∈ZN

{
(~ω +W + W̃)a†jaj + Ja†j(aj+1 + aj−1) + Ua†2j a2

j+

+ Ũ
[
a3
ja
†3
j + a†3j a

3
j

]
+ M̃

[
a2
ja
†2
j + a†2j a

2
j

]
+

+ Ñ
[
a2
ja
†
j(a
†
j−1 + a†j+1) + (a†j−1 + a†j+1)a2

ja
†
j+

+ a†2j aj(aj−1 + aj+1) + (aj−1 + aj+1)a†2j aj

]
+

+ J̃
[
(2aj − aj−1 − aj+1)(2a†j − a†j−1 − a†j+1)+

+ (2a†j − a†j−1 − a†j+1)(2aj − aj−1 − aj+1)
]}
.

The corresponding Bose-Hubbard (BH) equation, corrected to second order
is:

ıȧj = (~ω +W + W̃)aj + J (aj+1 + aj−1) + 2Ua†ja2
j + 3Ũ

[
a3
ja
†2
j + a†2j a

3
j

]
+

+ 2M̃
[
a2
ja
†
j + a†ja

2
j

]
+ Ñ

[
a2
j(a
†
j−1 + a†j+1) + 2a2

j+1a
†
j+1 + 2a2

j−1a
†
j−1+

+ (a†j−1 + a†j+1)a2
j + 2a†jaj(aj−1 + aj+1) + 2(aj−1 + aj+1)a†jaj

]
+

+ 2J̃
[
2(2aj − aj−1 − aj+1)− (2aj+1 − aj − aj+2)− (2aj−1 − aj−2 − aj)

]
.

(4.68)
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