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Introduction

Ring laser “gyros” are nowadays standard sensors in high sensitivity

inertial guidance, angle metrology, and more generally in estimat-

ing rotation rates. They combine unique qualities of stability with

reference to the measure operation, high sensitivity, wide frequency

detection range, absence of moving mechanical part, lack of sensi-

tivity to linear accelerations, reliability and duration.

As discovered by G. Sagnac (1913), using pure classical formalism

[1], interference pattern of two light beams following the same closed

path in opposite directions is proportional to the rotation rate of the

closed path. Sensitivity to rotation is the fundamental feature of the

Ring Laser Gyroscopes (RLG) and, together with the above men-

tioned properties, make this instrument of great interest in military

and civil applications [2]. Many improvements in the RLG design

and implementation have been achieved in the last decades [2].

Recent manufacturing progresses together with new statistical tools

for data treatment allow one to further investigate extremely var-

ious field of application, such as very accurate motion sensing (∼
10−2 deg/h), servo navigation control, Geophysics, Geodesy and

General Relativity.

Aim of this thesis is to provide a statistical tool for the identification

of RLG parameters and the subsequent estimate of the rotation rate,

focusing on the improving of sensitivity and long term stability, for

instance the minimization of the Allan variance of rotational noise

over long timescales [3]).

The plan of the thesis is as follows. In Section 1 the Sagnac effect

is explained and its basic static model is presented. In Section 2 an

overview of the RLG manufacturing techniques is given, with atten-

tion to G-PISA experiment [4], to which this work is devoted. A

full model of the RLG dynamic which accounts for non-reciprocity

in propagating beams, as well as noise presence and control loops,

is afforded in Section 3. Section 4 describes an identification proce-

dure designed for G-PISA. Section 5 is devoted to Extended Kalman
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Filter (EKF [5]) routine that we devised for the estimate of the low

frequency rotation rate of G-PISA. Finally, in Section 6 we presents

our results and conclusions about the use of EKF for the rotation

estimation.
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1 Sagnac Effect

Sagnac effect was not fully understood even by Sagnac itself, who described

it as a proof of the existence of the “ether”, in opposition to the Theory of

Relativity. Einstein and many other physicists have substantially improved the

description of the effect, so that the Sagnac effect is considered now to be a

relativistic effect[1]. As an example of their investigations, we can mention the

question whether it is possible or not to measure an absolute rotation rate by an

experiment conducted entirely within a rotating frame. Actually, the rotation

rate is considered a time-reversal violating parameter, and issues of modern

physics ranging from quantum theory on fundamental symmetries testing to

General Relativity, still arises. The experimentation of high sensitivity RLG is

therefore expected to open new windows on some of these issues [6].

Sagnac effect has been discovered for the first time with the use of passive ring

interferometer. In such devices light enters the setup from outside, and it is di-

vided at a beam splitter. The two beams are made to follow the same trajectory

in opposite directions and recombined. The position of the interference fringes

depend on the angular velocity of the apparatus.

One can instead consider a ring interferometer that is self-contained, exploiting

laser technology: the light is generated and sustained by incorporating laser

excitation in the path of the light, the resulting device is called ’ring laser’, and

what is measured is frequency shift. Active (laser) interferometry is usually pre-

ferred to passive one for several reasons as absolute calibration and robustness.

In fact, light must be split and recombined in the passive device, while laser

autonomously seek the resonance modes of the optical cavity which the laser is

coupled to.

Both interferometers working scheme are sketched in Fig.1.1

In this work we will deal with active interferometers and it is useful to provide

in the following a simple explanation of their working principle [7].

In order to make laser oscillation possible one must require that:

i) Laser Threshold Condition The cavity losses are balanced by oscil-

lator gain at the frequency of oscillation

ii) Laser Resonance Condition There is an integer number of light wave-

lengths in the cavity path of both laser radiation, i.e. nλ = L±
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Figure 1.1: Schematic representations of a Sagnac interferometer (Left Figure),
and of a ring laser setup (Right Figure).

Figure 1.2: Schematic representation of the frequency shift when a ring laser
interferometer is rotating. Both the counter propagating light and the co-
propagating light go through 12 cycles of their frequency.
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where n is an integer, L± is the optical path of the beam in the

cavity referred to the co-rotating and counter-rotating waves, and

λ is the wavelength of the laser in the medium that fills the cavity.

See Fig. 1.2.

We introduce the notation ′±′ for the two waves direction: we will use the label
′+′ for the wave propagating clockwise, and ′−′ for the counter-clockwise one

respectively. Rewriting the above relation in terms of beam frequencies ν±, one

obtain ν± = n c /L±, being c the speed of light. Thus, differentiating

δν

ν
=
δL

L
, (1.1)

where δν and δL are the variations around the nominal value (averaged) of ±
cases. The rotation, i.e. the change in path length for the oscillating beams, can

be monitored by the frequency difference between the two propagating waves.

To better clarify what happens, consider a circular non rotating cavity referred

to an inertial frame: each beam follows a path of almost the same length if the

cavity symmetry condition holds, thus the two paths are covered by light in

same time. If the cavity counter-clockwise rotates with respect to the inertial

frame, as the speed of light is independent of the reference frame, the transit

times t± of the two waves will be different and the beam co-rotating with the

cavity will arrive before than the counter-rotating one, i.e.

t+ =
2πR

(c − RΩ)
t− =

2πR

(c + RΩ)
, (1.2)

where R is the radius of the cavity, and Ω its rotation rate. The time difference

reads

∆t =
4AΩ

c2
, (1.3)

where A is the area enclosed by the two paths. It is worth noticing that Eq. (1.3)

still holds with any other close planar path geometry [17]. So, by multiplying

the relation given by c we get

∆L =
4AΩ

c
. (1.4)
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The factors c2 and c at denominator of Eqs. (1.2) and (1.4) make infeasible any

direct measure of the differential transit time or path length, as they are usually

of the order of 10−20 s and 10−12 m [17]. The measured quantity is rather the

frequency difference, respectively

∆ν =
4AΩ

λL
. (1.5)

For a typical RLG with 4m perimeter and 1m2area, filled with helium-neon [17]

so that λ = 0.663µm, ∆ν = 3.04 · (Ω · 10/2π) [deg/h] Hz, for rotation rates

closes to the earth one (Ω = 360/24 deg/h), the frequency shift is 45.7 Hz,

which turns out to be easily measurable.

Eq. (1.5) states the main feature of high sensitivity RLG: to detect rotation

rates with good accuracy rings must have a large size, modern high sensitivity

RLG exceed one meter of side. Its worth noticing that a larger device will

result in more stringent constraints on components manufacture and in bigger

noise dynamics, thus the frequency estimating routine based on Kalman filter

represent a crucial component of these devices.

To provide an index of the RLG sensitivity, consider the integrated version of

Eqs. (1.5)

N =
4A

λL
·Θ , (1.6)

where N is the number of cycles of the beat frequency, and Θ the rotation angle.

The angle the RLG should be rotated to obtain an unit increase of N is taken

as scale factor

SF =
λL

4A
. (1.7)

Empirically N is measured for a full revolution (i.e. Θ = 2π), and hence the

scale factor described is determined as:

SF =
2π

N
. (1.8)

For typical RLG parameters SF ∼ 0.01 arcsec/count.

However, this model is not sufficiently accurate to describe the dynamics of a

RLG, due to the non-idealities of a practical realization of the experiment, e.g.
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Figure 1.3: The two operational configurations of the experimental setup of
G-PISA.

Figure 1.4: Mechanical design of G-PISA gyroscope in the two possible orien-
tations of the laser plane.

non-linear behavior and parameters variation. To deal with such complex non-

linear devices, a description of the RLG called G-PISA is given, and a more

detailed and useful model of the apparatus is provided, focusing our attention

to G-PISA experiment.

10



2 Instrumental Apparatus

We describe in the following the main characteristics of the experimental ap-

paratus under study: the ring laser G-PISA, presently operating at the site of

the Virgo gravitational wave interferometer, located in Cascina (Pisa, Italy).

It consists in a helium-neon laser working on the red 474THz (632.8nm) line

of neon; it operates in squared cavity having the side-length of 1.35m and the

Earth rotation is enough to bias the Sagnac signal of the gyro well above the

lock-in threshold.

The peculiarity of a middle size ring-lasers, as G-PISA, is to be transportable,

and at the same time to reach an angular rate sensitivity at the level of some

(nrad/s)/Hz in the seismic frequency range and to allow an almost continuous

data taking. The experimental setup of the laser gyroscope is shown in the

pictures of Fig.1.3 , in the two possible operational configurations for the mea-

surement of the vertical and horizontal rotations. A 180 mm thick and 1.50m

in side square granite slab sustains the whole mechanical ring and defines the

laser cavity reference frame. A steel armed reinforced concrete monument has

been designed and realized, which is able to sustain the granite table both hori-

zontally and vertically, in order to measure the rotations around the vertical, or

around the horizontal direction. A steel flange is embedded at the center both

of the upper side and of the lateral side of the concrete monument, in order to

firmly hold the granite table. The weight of the concrete monument is about

2 ton, while the granite table is about 1 ton. The weight of the whole structure

has to guarantee a good contact with the floor. In order to improve this contact

as much as possible, a liquid, fast-setting, concrete has been used to fill cracks

and gaps between the floor and the monument basis. The scale factor of this is

of ' 0.0096 arcsec/count.

The optical cavity which is based on the GEOSENSOR project [9], is enclosed

in a vacuum chamber entirely filled with the active medium gas. The vacuum

chamber has a stainless steel modular structure: 4 boxes, located at the corners

of the square and containing the mirror holders inside, are connected by pipes

through flexible bellows, in order to form a ring vacuum chamber with a total

volume of about 5 · 10=3m3. The mirrors are rigidly fixed inside the boxes,

which are rigidly fixed to the granite table. The mirrors alignment can be

adjusted thanks to a micro-metric lever system that allows to regulate the two

tilt degrees of freedom of each box. The typical measured ring-down time of
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the light in the cavity made of super-mirrors is approximately 0.5 ms, giving

an effective optical cavity quality factor of Q = 2πf0 · τ ∼ 1012, providing a

mirror reflectivity of R = 99.9995 % and a corresponding value for the losses

per round trip µr = 2πf0/Qc of the order of some ppm . A fine movement

of two opposite placed boxes along one diagonal of the square is also possible.

This is provided by two piezoelectric transducers that allow the servo control

of the laser cavity perimeter length. No window delimits the active region and

the vacuum chamber is entirely filled with a mixture of He and a 50% isotopic

mixture of 20Ne and 22Ne. The total pressure of the gas mixture is set to

560 Pa with a partial pressure of Neon of 20 Pa. The active region is contained

in a Pyrex 4 mm diameter tube, where a plasma is generated by a RF capacitive

discharge; the Pyrex capillary is inserted at the middle of one side of the ring.

Getter pumps are used to keep low the hydrogen contamination of the active

gas.

The capacitive coupled discharge is a peculiarity of the G-PISA apparatus. A

capacitor made by two (semi) cylindrical electrodes (length of 2 cm) surrounds

the Pyrex tube of the laser (see picture 2.1). This capillary has an internal

diameter of 4 mm. No electrodes are required inside the tube. A radio-frequency

power source (a voltage controlled oscillator or VCO) is used to power the

capacitor and thus the discharge in the gas in the tube. The amplified VCO

output is separated and send, in counter phase, to the two capacitor plates. This

RF discharge is designed to be symmetrical, ensuring the maximum coupling

between the field and the gas and minimizing any non- reciprocal effects (e.g.,

Langmuir flow) that can bias the Sagnac frequency. (That is why it is preferred

to direct current, DC, excitation). The typical power of a single output beam

is around 10 nW.

The signals of interest are sampled after being retrieved using trans-impedance

photo diodes. The most reliable way to obtain Sagnac signal in G-PISA is

superimposing the two beams in air, using an intensity beam splitter cube.

This is done with the + and − beams exiting from on corner of the cavity.

The cube is carefully aligned to combine the beams approximately with the

same intensity (see the optical scheme in Fig.2.2 ). The interferogram signal is

recorded by a photo-diode (PD) loaded on a trans-impedance amplifier. The

photo-diodes are protected from the environmental light noise by interferential

filter centered around 633 nm and having a bandwidth of few nanometers. The

trans-impedance amplifier dedicated to the Sagnac signal detection provides a
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Figure 2.1: The G-PISA ring laser discharge excitation system.

Figure 2.2: The optical scheme for the Sagnac interference frequency readout.
+, clockwise beam; − counter-clockwise beam; M corner super-mirror; RM,
mirrors used for beam-steering; BS, 50 : 50 beam-splitter; PD, photo-diode.
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Figure 2.3: G-PISA Device

109 V/A gain with a rise time of 0.25 ms. It grants both the amplification and

fast response required to detect the Sagnac signal of the weak output of gyro

laser. Two identical, home made, trans-impedance amplifiers with a gain of

2 ·109 V/A and a rise time of 1 ms are used to detect the single-beam intensities

for the + and the − beams.

2.1 Description of Stabilization loops

2.1.1 Perimeter Digital Control

The cavity perimeter is controlled by comparing the gyro laser optical frequency

with a reference laser which is frequency-stabilized to the Doppler broadened
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profile of the laser transition. The correction is applied to the ring cavity by

acting on the piezoelectric devices moving the mirrors boxes. The frequency

separation between the reference laser and the + laser beam is measured with a

Fabry-Perot spectrum analyzer and the ring laser perimeter length is corrected

in order to keep this difference equal to approximately 60 MHz, which corre-

sponds to the cavity free spectral range and to the effective maximum of the

gain curve as determined by the superposition of the Doppler broadened gain

curves of 20Ne and 22Ne (The long term stability of the reference laser is given

of the order of 1− 2 MHz over one year [10]).

The control scheme is sketched in Fig.2.4[10]. Both the radiations emitted

from the gyro laser and the reference laser are injected into an optical fiber

and superimposed in a two-fibers combiner. The output of the fiber coupler is

mode-matched to a scanning Fabry-Perot analyzer with a free spectral range of

300 MHz, and a finesse of about 100, then the transmitted intensity is detected

by a photomultiplier. The Fabry-Perot cavity length is constantly scanned by

driving the piezoelectric transducer with a triangular waveform twice per sec-

ond. After each scan the Fabry-Perot optical spectrum, containing the resonance

peaks of the reference laser and the + beam one, is processed by a computer

and the positions of the two peak centers are estimated via a parabolic fit of the

data around the two transmission maxima. Once the resonances positions are

estimated, a double digital PID feedback loop, acting on the gyro laser cavity

length and on the offset voltage of the Fabry-Perot PZT, is then implemented

using two independent DAC channels. Both PIDs have a predominant integral

behavior with an integral gain close to the unity. The proportional and deriva-

tive gains have much lower values and are tuned to maximize the loop stability.

To compensate the thermal drift of the analyzer cavity length the offset voltage

of the Fabry-Perot ramp is actively controlled keeping constant the position of

the reference laser resonance peak with respect to the starting value of the ramp.

The perimeter control implemented provides stable operations of G-PISA and it

is necessary for minimum optical alignment requirements against laser frequency

drifts over long time periods: in fact, laser can be affected by multimode tran-

sition phenomena. However, the laser behavior has been found to be quite

stationary with occasional mode jumps reabsorbed after a while; nevertheless,

when one of the two wave perform a mode jump, as long as laser remains in

multimode regime, the inertial rotation information is lost. Unfortunately, this

feedback produces a variation on the position of two opposite mirrors of the cav-
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Figure 2.4: Experimental set-up of the perimeter-controlled gyro laser. The
optical elements for the detection of the rotation signal (Sagnac signal) and
of the clockwise and counterclockwise intensities (I+ and I−) is also shown.
FP: Fabry-Perot analyzer, M: mirror, IBS: intensity beam splitter, TPD: trans
impedance photo diode, PMT: photomultiplier, OI=optical isolator, FC: fiber
coupler, NF: neutral filter, OT: optical telescope, PZT: piezoelectric transducer,
WFG: waveform generator.

ity, resulting in many undesired effects (see Section 3) as changes in the effective

area of the ring, changes in losses of the mirrors, etc. In fact, when the effective

perimeter is locked to a fixed value, the geometry of the ring deviates from ideal

square, leading to changes in the scale factor. However, considering that the

RLG cavity is close to a perfect square (construction mechanical tolerances of

about 1 mm) the relative change in the diagonal does not produce appreciable

effects on the Sagnac frequency. In fact, since the temperature dependence of

the perimeter length has been estimated as 30 µm/K, the error in the rotation

rate due to the geometrical deformation of the RLG’s cavity has been estimated

at the level of 3 prad/s/K [10].
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Figure 2.5: Block diagram of the clockwise intensity I+ stabilization system.

2.1.2 Clockwise Intensity Stabilization Loop

The intensities of the light of the two counter propagating beams are influenced

by several factors. On the one hand, an amplitude modulation at the Sagnac

frequency is present, produced by back-scattering. On the other hand, the long

term stability of the mean intensity is affected by factors like the optical mis-

alignment in the light path, the variation of the RF power discharge, and the

variations in the composition of the gas inside the cavity. As a first consid-

eration, there are upper and lower limits for the beam intensities that should

not be exceeded. The upper limit corresponds to the transition to multimode

regime, while the lower limit is imposed by the laser threshold condition. More-

over, minor variations of the beam intensities not related to the Sagnac effect

should also be avoided, as they induce undesired optical gain modulation and

non-linear optical dispersion effects, as discussed in Section 3. In order to reduce

undesired intensity fluctuations, a closed-loop stabilization system based upon

a PID analog controller is implemented in G-PISA, as sketched in Fig.2.5. The

input of the system is the intensity of the ′+′ beam as revealed by the photo

diode trans-impedance amplifier and integrated by an analog device; then the

resulting signal is compared with an external reference intensity value. The out-

put voltage of the PID controls the power of the RF plasma excitation through

a variable gain RF amplifier, closing the loop. Note that the integrated signal

is, in principle, not sensible to modulations. The laser amplitude stabilization

reduces the long-term fluctuations, and increase the duty cycle of the apparatus,

avoiding multi-mode behavior and switching-off of the laser.
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Figure 2.6: Intensity Detectors Amplification Stages

2.2 Data Acquisition

The data from the gyro laser are acquired and stored continuously by the data

acquisition system provided by the VIRGO experiment [10]. The interferogram

signal {S(n)} , n ∈ Z and the two mono-beam intensities {I±(n)} are acquired

at the rate of 5 kSample/s so that it is possible to reconstruct the Sagnac

phase nominally up to 2.5 kHz. A local PC provides the evaluation of the

instantaneous Sagnac frequency as well as of intensities I± at the rate of 1 Hz

to provide estimations of rotation rate and the relevant parameters for the on-

line monitor of the laser parameters dynamics. Some auxiliary channels are

acquired at 1 Hz sample rate to complete the monitor of the G-PISA status

(e.g. loop signals and mean intensities) and environmental disturbances (e.g.

local tilts). A clock with an excellent long term stability (locked to GPS time)

is used for the data acquisition timing process. The amplifiers involved in the

main data acquisition process are three: one for the Sagnac signal and two for

the beams intensities, the first is the LCA-4K-1G model by Femto [11] and its

principal features are a gain of 109 Ω and a cutoff frequency of 4 kHz. Other two

are homemade amplifiers and are designed for an high gain I-V conversion stage

with low phase distortion, their gain is 109 Ω and their frequency response is a

5thorder Bessel response with cutoff frequency of 1 kHz. The three photo diodes

used for data acquisition are S − 1337− 66BR Si photodiode [12], designed for

high sensitivity and low capacitance.
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3 Modeling the measurement process

In this section we discuss the equations that describes the RLG dynamics. We

consider the so called “Fundamental limit of rotational sensitivity” as a model

of the component of measured error relative to laser light incoherence; then

the dynamic equations regulating the two mono-beam intensities and the phase

difference are derived, illustrating the procedure used and the corresponding ap-

proximations. Finally, the parameters that appear in the equations are analyzed

and the parametric identification procedure presented.

3.1 Noise Quantum Limit

A fundamental limit of rotation sensitivity of a RLG is set by Quantum Optics.

A semi-classical formalism is usually introduced to define this source of noise,

and it has been shown that the noise affecting Sagnac frequency is white and

caused by spontaneous emitted photons. That noise source integrated over

time leads to angular random walk (red noise or 1/f2 noise) [13]. Quantum

RLG noise has been studied more carefully using quantum formalism (see e.g.

[7, 15]). These models widely differ each other for scale factor and ad-hoc

corrections, basing on different instrumental device, despite some agreement has

been obtained [7, 13, ?]. Derivations leads to the following expression for the

random walk coefficient, which rely on the fact that the minimum detectable

rotation rate is proportional to the inverse square root of the mean photon

number with coherent phase

δΩ =
SF · c
Qλ

√
hf0
Pt

rad/s/
√
Hz , (3.1)

where h is the Planck constant, P the total beam power in the cavity and t

observation time. Common values of this index for large RLG are 10−10 ÷
10−11 rad/s/

√
Hz at ∼ 1 Hz. This source of noise in commercial RLG is con-

sidered of secondary importance with respect to other sources of noise, while

the noise level in large RLG approached the fundamental limit in Eq.(3.1) on

10−1 ∼ 10−3 Hz band. However for long times, i.e. very low frequencies

10−3 ÷ 10−5 Hz, this limit has not yet been achieved. We think that the fun-

damental limit in Eq.(3.1) could be achieved using EKF techniques.
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A statistical noise analysis of the quantum noise can be performed basing on

stochastic processes models. Consider a laser beam, theoretically phase coher-

ent: spontaneous photons with random phase are emitted at random. The

presence of these photons determines uncertainties in photo detector as long as

emitted photons lives in the cavity. When the laser pump trough the cavity,

few photons emissions, compared to the ones with coherent phase, makes phase

incoherent. However this phenomena has been experimentally observed to be

stationary at the detection frequency, and being the photon lifetime in the cavity

∼ 1 ms, after the instrument is operating for several hours a constant amount

of the laser photons manifests a frequency error at the detector. Furthermore

the absolute number of emitted photons is high, so central limit theorem holds,

see ref. [16, 18].

3.2 The ring laser dynamics

The dynamic equations describing the RLG behaviors can be found in the frame-

work of the Lamb formalism [17], which requires the following assumptions:

i) the two oppositely directed traveling waves in the cavity have inde-

pendent amplitude and phase;

ii) an electromagnetic field exist in the cavity and the electric compo-

nent of the field leads to macroscopic atom polarization.

By using Maxwell’s equations on the rotating cavity frame with the polarization

as source, the electromagnetic field interaction with atoms is determined and,

for self-consistency, equalized to the starting field. The Maxwell’s equations are

then solved by means of a perturbative method, which consists in a third order

expansion of the density matrix in powers of interaction between the radiation

field and the atomic system. This method is experimentally justified if the laser

is operated near threshold condition[17]. The resulting equations read
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2L

c

Ė+

E+
=α+ − β+

√
E+ − θ±

√
E− − 2r−

E−
E+

cos(Ψ + ε−)

2L

c

Ė−
E−

=α− − β−
√
E− − θ∓

√
E+ − 2r+

E+

E−
cos(Ψ− ε+) (3.2)

ω+ + φ̇+ =Ω+ + σ+ + τ±
√
E− −

c

L
r−
E−
E+

sin(Ψ + ε−)

ω− + φ̇− =Ω− + σ− + τ∓
√
E+ −

c

L
r+
E+

E−
sin(Ψ− ε+) ,

where E± is the electric field intensity, φ± arbitrary phase angles for the corre-

sponding wave, Ψ = φ−−φ+, ω± are the oscillation frequencies, Ω± the natural

frequencies of the cavity involved in Sagnac effect, α± the excess gain minus

losses, β± the pure saturation terms, r± is the scattering coupling coefficients,

ε± the scattering phase angles, σ± the scale factor error parameters of the +

and − beam, respectively. Here θ±,∓ are the cross saturation terms and τ±,∓

the null-shift error parameters.

Those equations are recast by expressing the electric field amplitudes as a func-

tion light intensities (i.e. I± ∝ E2
±), defining ε = (ε+ + ε−)/2, and expressing

the phase difference as Ψ = ψ+ (ξ+− ξ−)/2. Finally the oscillation frequencies

ω± are supposed equal for both waves. We obtain the set of equations:

İ+ =
c

L

(
α+I+ − β+I2+ − θ±I+I− + 2r−

√
I+I− cos(Ψ + ε)

)
İ− =

c

L

(
α−I− − β−I2− − θ∓I+I− + 2r+

√
I+I− cos(Ψ− ε)

)
(3.3)

ψ̇ =ωs + σ− − σ+ + τ∓I+ − τ±I−−

− c

L

(
r+

√
I+
I−

sin(ψ − ε) + r−

√
I−
I+

sin(ψ + ε)

)
.

where ωs = Ω− −Ω+. We point out that only a single laser mode is considered

in this approximation and, in addition, I± and ψ are assumed to slowly vary

in time compared to ω±. When the laser is not in the ideal working conditions

and/or the cavity ideality is not satisfied, Eqs.3.3 no more hold. However, the

perimeter control of G-PISA ensures mono-mode and stable operations.
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3.2.1 Back-scattering Phenomena

The most important contribution to systematic error on RLG frequency esti-

mation in the model is due to the back-scattering effect[10, 7].

Considering the standard literature approach, the frequency detection present

a source of error due to nonlinear coupling therms in Eqs.(3.3):

ωBS = − c
L

(
r+

√
I+
I−

sin(ψ − ε) + r−

√
I−
I+

sin(ψ + ε)

)
(3.4)

This systematic error is not a pure sinusoidal signal. The non-linear dynamics

and the variation in time of the parameters make this error not computable with

a simple average. The EKF, which has been devised for non-linear and time-

varying systems, should be able to remove this effect from the phase dynamic.

To better discuss the back-scattering we deal with the geometrical description of

the phenomena. With reference to Fig.3.1 the phasors, representing the mono-

beam electric field, are rotating with respect to an inertial frame; a portion of

each beam, supposed to be constant and equal for the two beams, is added to

the other beam, as prescribed by Eq.(3.3).Two different dynamical regimes of

the RLG occur [7].

i) Dissipative Coupling: ε = 0; the phasor addition, as a function of

the scattering angle ε, is symmetric, the intensities fluctuations are

in-phase and the error on the frequency is maximum, this happens

because the phasor phase difference become smaller and higher when

the two phasors rotates.

ii) Conservative Coupling: ε = π/2, the phasor addiction is asymmet-

ric, the intensities fluctuation are in antiphase and the frequency

error is minimum because the back-scattering contributions add up

on the two phasor in the same direction, thereby not changing their

phase difference.

The phasor model has been accurately tested for RLG back-scattering [17, 7],

and also validated if scatter phasors amplitudes have different magnitude. The

scattering phenomena introduces a sort of dead zone in RLG dynamic, that

result in a lock-in threshold ωL. For rotation rate higher than the threshold,
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Figure 3.1: Phasor diagrams for describing back-scattering. A proportion
(dashed vector) of one beam phasor (thin solid vector) is added to the other,

indicating the time development of the final phasors Ẽ+,Ẽ− (thick solid vec-
tors). In the absence of scattering, moduli would be constants and phase Φ
would increase in time linearly; Ψ is this phase adjusted for back-scattering. (a)
Dissipative coupling, (b) Conservative coupling .
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the lock-in effect has been discussed in the phasor model, and it results in a

systematic detection error. On the other hand, when the imposed rotation rate

is near ωL the laser dynamic locks to a steady state solution, as the relative

frequency of back-scattered beams is comparable to Sagnac signal contribute,

and the information concerning rotation is lost.

For this reason RLG have been implemented trying to reduce mirror scattering,

and thus lock-in operation region. Another solution to avoid the lock-in problem

was to dihter the RLG itself with a rotating platform, (e.g. ref.[17]).

For G-PISA the coupling is actually mostly dissipative, and lock-in threshold

∼ 10 Hz is well under the Sagnac frequency that corresponds to earth rotation

rate ∼ 100 Hz, so the system is naturally always unlocked.

3.2.2 Lamb Formalism for laser Constants

Laser constants can be calculated using the standard approach in the literature,

namely the Lamb formalism [21].

We start from the proportionality factor between electric fields E± and laser

mono-beam intensities I±

I± =
|µab|2

2~2γaγb
E2
± =

|µab|2

2~2γaγb
· Pout

2cε0AT
, (3.5)

where µab is the element of the electric dipole laser matrix between laser states a

and b (i.e. the upper and the lower of the laser energy levels), γa/b are the decay

rates of those levels in units ofHz, η = γab/ΓD is the ratio between homogeneous

and Doppler broadening in the laser composition, γab = (57p+ 10) MHz is the

homogeneous broadening made of radiation decay rate plus collision induced

rate by the two levels, and ~ is the reduced Plank constant. Here ΓD is the

Doppler broadening frequency (the spontaneous emission atomic frequency of

the cavity), p is the effective gas pressure near the mirror in Torr; Pout is the

output power measured in W , ε0 is the dielectric constant of vacuum, A is the

area of the transverse section of the beam in m2, T is the transmission coefficient

of the mirror expressed in ppm.

The electric dipole element µab can be written in term of fundamental physical

constants,
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a 3s2
b 3p4
λ 0.63281 · 10−6m
γa 8.35 · 106Hz
γb 9.75 · 106Hz
A π · 2.59 · 2.26 · 10−6m2

Aik 3.39·106

T 1 ppm
p 5 Torr
P 3 · 10−9W

ΓD 2π · 109MHz

Table 3.1: Table with G-PISA laser parameters.

µab =

√
πε0

λ3

(2π)3
~Aik , (3.6)

where Aik is transition rate between the laser levels.

The laser parameters for G-PISA are summarized in Tab3.1, and by means of

constants in Tab. 3.1 we get:

γab= 295 MHz

η = 0.047

µab = 3.188 · 10−30Cm

. (3.7)

The coefficients in Eq.(3.3) can be calculated by means of the plasma dispersion

function, i.e. the function associated to the broadening profile of the laser

transition[21]

Z(ξ) = 2i

ˆ ∞
0

e−x
2−2ηx−2iξxdx . (3.8)

The derivation of Z(ξ) follows from an experimental approach, and describes

well lasers designed to be mainly Doppler broadened, as G-PISA. For others

gas mixture the plasma dispersion function can vary according to ref.[9]. Here

ξ± = (ω± − ω0)/ΓD are a quantification of the laser frequency detuning of the

± beams from cavity center frequency (free spectral range in units of pulsation

ω0) normalized to the Doppler width, note that ω+ is the quantity stabilized

by the perimeter control loop in G-PISA. Reference values for ξ± are ∼ 10−7.
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The independent variables ξ± are in correlation with temperature and pressure

inside the cavity.

In case of Doppler limit η � 1, which is common for large size He−Ne RLG,

Z(ξ) is usually approximated as follows

ZI(ξ) '
√
πe−ξ

2

− 2η (3.9)

ZR(ξ) ' −2ξe−ξ
2

,

where the subscripts R and I stands for imaginary and real part, respectively.

With the above approximations the parameters of Eq.(3.3) become

α± =G · ZI(ξ±)

ZI(0)
− µ±

β± =α± + µ±

σ± =
f0
2
·G · ZR(ξ±)

ZI(0)

θ± =β− ·
1

1 + (ξ+/η)2
(3.10)

θ∓ =β+ ·
1

1 + (ξ−/η)2

τ± =
f0
2
· ξ+
η
· θ±

τ∓ =
f0
2
· ξ−
η
· θ∓

where G is the laser gain, and µ± the mirror losses relative to the ± beams. We

stress that ξ± and µ± must be evaluated for each of the two beams, as the non

reciprocity in the parameters values will lead to asymmetric effects on ψ and

I±, and thus to non-linear degradation of the rotation signal. The Sagnac effect

itself forces the two mono-beam frequencies to differ of ωs. To take into account

the perimeter loop control in G-PISA, it is ω+ ' ω0, and so ω− = ωS − ω0.

3.2.3 Gain

The laser gain G is a parameter of paramount importance in RLG design. Its

magnitude determines the laser behavior ranging from near threshold to mul-

timode operation. The dependence of α± and σ± on G is exactly determined,

26



instead the β±∓, θ±∓ formulae as functions of G are most valid in the Doppler

limit and near threshold; for instance for gain higher than threshold, the terms

β± saturates themselves, allowing to the intensities (mean values) to grow lin-

early with the gain (βG→∞ → O(1) in contrast with Eq.(3.10)). Despite most

of parameters are different for the two beams (thereby the use of ± subscripts),

G has the same value in both intensity equations. The direct calculation of

the gain can be performed by the observation of the mean level of the intensi-

ties: < I± >= α±/β±, then G can be obtained inverting Eq.(3.5). It is worth

noticing that gain should be determined considering the broadened profile of the

laser transition, as a function of f0. However, near threshold cavity, G depends

linearly from the RF amplification and its dependence on cavity free spectral

range can be dropped.

The explicit gain calculation for G-PISA, with µ ∼ 10−6, gives G ' 1.013 ·10−6;

its worth noticing that in G-PISA a servo-control acting on G is implemented.

The servo-control signal allow us to measure explicitly the gain variations during

G-PISA operation.

3.2.4 Diffusion and Diffraction Losses

Losses are mainly due to mirrors surface imperfections. In Section 2 we gave a

formula for estimating the sum of the two cavity losses. However, we need to

evaluate separately the two beam losses; further insights into the gain consider-

ations and Eq.(3.10) suggest an easy way to estimate both losses.

The effects of µ± accounted for in Eq.(3.3) are not the only known effects due

to losses, as one can show [17] that the back-scattering phenomena is due to

a sort of a.c. losses source (scattering), in contrast with d.c. losses source

(transmission). To perform a raw calculation of the back-scatter magnitude,

one can use the cavity quality factor to estimate the total losses µ = (1−R4) '
4(1 − R) = 4(T + rs), where µ = µ+ + µ−, R is the mirror reflectance, T the

mirror transmission and rs is the mirror scattering coefficients. Scattering terms

in Eq.(3.3) turn out to be r± = rsλ/4d±; here d± is the beam diameter of the

± beams. However, non reciprocal parameter calculation cannot be performed

using only ring-down time and quality factor.

For sake of completeness it must be also said that in our analysis ε is assumed

to be a casual function of time. It has been shown that in most experimental
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conditions for a RLG with no feedback ε is 0 (dissipative coupling) or π/2 (con-

servative coupling) [7]. From an experimental point of view, one can determine

the magnitude of scattering angle of RLG with feedbacks by means of its effects

on intensities [17, 19].

3.2.5 Logistic behavior

The role of the parameters α± and β± on Eqs.(3.3) can be studied following an

analogy with competition models in ecologic systems.

Without competition with others species, populations are assumed to saturate

their number of individuals due to their intraspecific competition, instead of

diverging exponentially. A simple model that describes this behavior is the Lo-

gistic Model [20]. Consider the atomic He − Ne population, the atoms that

propagates the beams + and − are treated as different populations in competi-

tion. In absence of extra-specific competition, according to Logistic Model, the

growth of the two populations are described by:

İ±(t) = α±I± − β±I2± (3.11)

This model with positive parameters has two steady state solutions for each

dimension, i.e. the unstable solution I± = 0 and the stable solution I± =

β±/α±. Obviously the null steady state refers to extinction and the positive one

to asymptotic subsistence of population individuals. According to the logistic

model α±/β± set the mean value of the laser light intensity of the ± beams.

3.2.6 Competition Coefficients

The competition coefficients θ±∓ introduce a decrease in the laser mean intensity

I± correlated to opposite beam magnitude I∓. This effect can be explained

with the use of the Logistic Model extended to the presence of extra-specific

competition, which reads

İ±(t) = α±I± − β±I2± + θ∓±I+I− . (3.12)

The two equations are now coupled, and some conditions on the equation pa-

rameters determine the existence of multiple steady state solution, as well as
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their stability. Possible equilibrium solutions are 4: extinction of both popula-

tions, subsistence of one and extinction of the other and subsistence of both.

The form of RLG parameters leads to asymptotic stability of the population

coexistence case. Therefore the effect of the θ±,∓ parameters is a decrease in

the mean asymptotic value of the laser intensities [20]. However, in the Doppler

limit η � 1, the presence of competitions coefficients is negligible for model-

ing. Moreover, it has been shown [10] that using two Ne different isotopes,

cross-saturation gas phenomena is completely negligible, leading to θ±,∓ = 0.

3.2.7 Frequency Parameters

In most of the literature the terms proportional to σ± and τ± in the equation

for ψ̇ are treated as systematic error sources. Their effect in the estimation of

the Sagnac frequency is taken into account by a first or second order expansion

in series of the Lamb quantities and I±.

The presence of σ± in Eqs.(3.3) determine a frequency scale error, since they

are proportional to f0 and homogeneous with ωs. They are accounted in the

correction of the scale factor together with local tilts and perimeter changes.

The presence of any physical passive non reciprocity in the cavity (laser shut-

ter or cavity micro-holes, especially near RF discharge and gas dispensation

components) affect the RLG dynamic with the same effect as σ±. However, the

presence of a term linear in ξ in their definition implies that they have a small

magnitude if ξ ' 0; in addition, the mentioned non-reciprocal effects have been

carefully avoided in the G-PISA design, and so their presence can be neglected

at a first approximation.

The τ±,∓ are related to competition coefficients, and introduce competitive in-

tensities dynamics into phase dynamics. This contribute is gathered together

with gas flow and discharge effects, as they determine a null shift error in the

frequency estimation. However, Eqs. (3.10) shows that τ±∓ are negligible if

θ±∓ = 0. Moreover, G-PISA is provided with a gas restorator and its operation

is free from gas flow effects.

3.3 Study of the Dynamical Equations

The typical parameters for G-PISA have been roughly estimated according to

the following considerations. Parameters α±and β± are estimated from the out-
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Parameter + −
α 1.3 · 10−8 1.3 · 10−8

β 1.13 · 10−6 1.13 · 10−6

θ 0 0
σ 0 10−6

τ 0 0
r 2 · 10−7 2 · 10−7

Table 3.2: G-Pisa parameters

put power of both beams, using the logistic behavior steady state solution and

Eq.(3.5), . The magnitudes of scattering coefficients r± are estimated consider-

ing the amplitude intensity modulation and the instantaneous Sagnac frequency

range. θ±∓ and τ±∓ are set to 0 because different isotopes of Ne have been

used [10]. The results we get are summarized in Table 3.2.

Due to the non existence of a general closed form solutions, the analysis of

Eqs.(3.3) is very difficult. Closed form solutions exists if some conditions in-

volving symmetries in Lamb coefficients holds [17, 7]. However, no closed form

solution is found in the non reciprocal case, and so numeric integration is re-

quired.

3.3.1 Closed Form Solutions

The simplest closed form solution of Eq.(3.3) can be found using the Adler

approximation; this solution has been studied in the literature since the first

RLG came into operations [17]. To derive Adler equation one usually assumes

equal back-scattering coefficient r+ = r− = r ; here we derive a slightly different

solution in the case of r+ 6= r−.

Consider the fundamental RLG equations if the parameters are very similar for

the + and − beams, σ+ ' σ−, τ+ ' τ−, I+ ' I− then the equation for the

phase difference can be approximated as:

ψ̇ = ωs −
c

L
(r+ sin(ψ − ε) + r− sin(ψ + ε)) , (3.13)

and the Adler equation can be recovered from Eq.(3.13) in the r+ = r− = r

limit [17]
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ψ̇ = ωs − ωL sin(ψ) , (3.14)

where ωL = 2r cL cos(ε). The solution of the Adler equation reads

ψ(t) = 2 arctan

ΩL +
√
ω2
s − ω2

L tan
[
1
2 (t− t0)

√
ω2
s − ω2

L

]
ωs

 , (3.15)

Eq.(3.14) clearly describes the lock-in phenomena we previously addressed to,

in the case of symmetric scattering.

After some elementary algebra Eq.(3.3) can be recast as:

ψ̇− = ωs −
c

L
(r+ + r−)sin(ψ − ς) , (3.16)

where ς = arctan
(
r+−r−
r−+r+

tan(ε)
)
, and its solution read

ψ(t) =2 arctan

 (ρ+ + ρ−) cos(ε) +
√
ω2
s − ω2

L tan
[
1
2 (t− t0)

√
ω2
s − ω2

L

]
ωs + (ρ− − ρ+) sin(ε)

 ,

(3.17)

where ρ± = r± ·c/L, ω2
L = ρ2++ρ2−+2ρ+ρ−cos(2ε), and t0 is an integration

constant that can be fixed by imposing initial conditions, e.g.

ψ(t0) = 0 =⇒ t0 =

−2 arctan

[
(ρ++ρ−) cos(ε)√

ω2
s−ω2

L

]
√
ω2
s − ω2

L

. (3.18)

3.3.2 RK-4 Routine

The numerical integration of Eqs.(3.3) can be carried out by means of 4th order

Runge-Kutta method [?].

Let an initial value problem be specified as follows
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ẏ = f(t, y), y(t0) = y0 (3.19)

Then, the RK4 method for this problem is given by the following equations:

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (3.20)

tn+1 = tn + ∆t , (3.21)

where yn+1 is the RK4 approximation of y(tn+1), and

k1 = ∆t · f(tn, yn) (3.22)

k2 = ∆t · f(tn +
∆t

2
, yn +

∆t

2
k1) (3.23)

k3 = ∆t · f(tn +
∆t

2
, yn +

∆t

2
k2) (3.24)

k4 = ∆t · f(tn + ∆t, yn + ∆tk3) . (3.25)

Thus, the next value yn+1 is determined by the present value yn plus the

weighted average of ki, where each delta is the product of the size of the interval

∆t and an estimated slope hslope = ∆t(dy/dt) = ∆y.

k1 is based on the slope at the beginning of the interval, using yn ( Euler’s

method ); k2 is based on the slope at the midpoint of the interval, using yn+∆t ·
k1/2; k3 is again based on the slope at the midpoint, but now using yn+∆t·k2/2;

k4 is based on the slope at the end of the interval, using yn + ∆t · k3. In the

average greater weight is given to the ki evaluated at tn + ∆t/2.

The RK4 method is a fourth-order approximation method, meaning that the

error per step is on the order of ∆t5, while the total accumulated error has

order ∆t4 if the equations are not stiff. Note that the above formulas are valid

for both scalar- and vector-valued functions (i.e., y can be a vector and f(t, y)

an operator). The integration error of the RK-4 routine has shown to increase

with time if applied to non-stationary stiff equation systems [22]; RLG equations

are found to be stiff, consequently the integration error on the phase difference

increases with time. This source of error introduce a constraint on the numerical

32



simulation time length. However, in the EKF prediction step RK-4 integration

error will be on the magnitude of 10−15, thus negligible at a first approximation

for the purpose of implementing an EKF.

3.4 Combined control loop dynamics

In this section we study the effects of the two control loops on the fundamental

RLG equations that have been derived without considering feedbacks. The main

feedback implemented in G-PISA i.e. the perimeter stabilization prevent the

laser to switch off and to preform mode jumps. The stabilization of the optical

frequency is one of the conditions that allow us to derive the RLG equations;

moreover, the free spectral range and the laser detuning frequencies determine

the magnitude of the Lamb coefficients. In Eqs.(3.3) the factor c/L can be

assumed to be constant thanks to perimeter digital control, so we have implicitly

accounted for one feedback effect. The other feedback, i.e. the I+stabilization,

is responsible for the gain variations. In general we can conclude that the actions

of these feedbacks introduce time-varying behaviors in some RLG parameters

while rejecting variations in some others.

3.4.1 Perimeter Stabilization

To derive a model for the feedback of the perimeter control, the dynamic of this

loop is now further analyzed. We stated before that optical cavity frequency

is normally affected by thermal and pressure changes. Thermal expansion of

the cavity determines a shift of the beam spot positions on mirrors, leading to

changes in the detuned laser frequencies (from cavity optical one) that depends

on mirror micro-shape in the spot neighborhood and in the cavity shape itself.

We must remark that the detuned frequency difference is kept constant by

Sagnac effect itself, and that temperature and pressure values are thought as

the aggregate expression of temperature and pressure distribution in the cavity.

The expansion can bring the laser to unstable behavior. For this reason it

is stabilized the cavity optical frequency + . In standard loop conditions the

frequency of loop operation is sufficiently high if compared to detuned frequency

drift one, but it is low if compared to the optical frequency ω+ ' 50MHz and

also to the beat frequency ωs ' 100Hz. Therefore the loop on the free laser

spectral range rejects variations inducted by temperature and pressure without

modifying the dynamics.
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However, the feedback scheme presented has some disadvantages and undesired

effects: experimental work on G-PISA, has shown that the beat signal and the

intensities are a.c. modulated by piezo action if the piezo correction is applied

to only one mirror. Actual loop design of improved symmetry has outcome this

problem by using two piezo acting on the mirrors. On the other hand, feedback

action produces a drift in Lamb parameters µ±, r±, and ε over time scale of

seconds. In fact, if the RLG cavity perimeter is changed by piezo, light spots

move on mirrors leading to beam path variations. Those variations determine a

random change of µ±, r±, and ε. In addition, the loop allows small drifts of the

optical detuned frequency on the 1 Hz scale. From Eq.(3.10), if the detuned

optical frequencies randomly changes, then the laser dispersion function changes

and thus the parameters of the laser dynamic change.

Following the model the effects we have to take in account for simulation pur-

pose is the addition of 1 Hz noise in ξ±, and of random walk processes to

µ±, r±, and ε. As at the beams generation frequencies ∼ f0 the feedback does

not work, ξ± noise whiteness holds. This noise process is kept stationary by the

perimeter feedback in the 1 Hz time scale, and process variance is determined

by the temperature and pressure action on the characteristic loop times, leading

to very small values.

In the day selected for experimental considerations we recorded a maximum

detuning + variation of ∆ω+ ∼ 5 MHz, and exploiting relations of Section 3

we estimate a maximum detuning − variation of ∆ω− ∼ −5 MHz. These vari-

ations are consistent in a maximum change on the ratio ξ± of ∼ 10−3. The cor-

responding change in the therms ZI(ξ±)/ZI(0) and ZR(ξ±)/ZI(0) in Eqs.(3.10)

leads to relative variation for logistic parameters α±, β± of 10−7 and of 10−4 for

σ±. Therefore the experimental detuning drift allowed by the perimeter loop is

negligible in the Lamb coefficients determination. Computed β± variation are

small, moreover the only asymmetric contribution in β± expression is due to

ξ±. Therefore we drop the ± notation for β, and we assume from now on that

the change in ξ± at closed loop operation is negligible for G-PISA.

3.4.2 Intensity Stabilization

The mean value of intensities is determined to good approximation by gain

and losses. The control of the perimeter introduces random behavior in losses,

thus (basing on logistic model and Lamb derivation) affecting the long therm
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stability of light intensities. For this reason the + intensity control loop has been

implemented. It acts on the analogical integrated I+ signal, comparing it with

a reference laser (Section 2). The sinusoidal part of the intensity is not changed

by the feedback action thanks to the integration performed by the control loop.

The asymptotic value of I+ is kept constant to the reference laser value acting

on RF amplifier gain G.

This feedback has the effect of rejecting minor variations of the cavity laser

frequency detuning and mayor variation of losses in the mean value of + light

intensity, however we remark that the detuning phenomena is negligible. Inten-

sity loop has also the effect of dropping the dependence of mean I+ value from

the cavity losses of the + traveling wave, and also to modulate the −mono-beam

intensity with the + losses low frequency drift, being itself a function of the gain.

Empiric observation of I−proves that the mean value of the mono-beam follow

gain dynamic. However I− is compensated by the gain to a constant value with

drifts on the scale time of hours, as losses of each beam have the same magni-

tude. Gain is an input signal, it can be sampled and acquired with low noise

addiction for EKF filtering purpose.

3.4.3 Experimental results of the stabilization loops

We discuss now the two feedback of G-PISA from an experimental point of view.

Control signals and error signals of both loops have been acquired for the date of

15/09/2011 (GPS = 10000000000). All acquired signals are displayed in units

of Volts. The calibration constant of the error signal of the perimeter loop is

' 106Hz/V so that the values can be read in MHz. Both correction signals

displayed are proportional to the output voltage of the PID controller, and they

are scaled with an offset. The intensity loop error signal has been calibrated as

discussed in Section 6.

First figure in 3.2 shows the behavior of the two loop corrections on a day of

running operations: those signals are corrections of temperature and pressure

inducted drift, respectively on ω+ and µ+. Third and fourth plots shows the

plot of the two loop errors in the selected day. Note that the two errors have

approximately null mean, so that the assumption of regime operation for both

loops hold. The behavior of the perimeter loop error signal represents ω+, this

signal is self-calibrated thanks to a feedback on the length of the Fabry-Perot

scanner. We recorded a maximum detuning + variation of ∆ω+ ∼ 5 MHz. The
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Figure 3.2: Plot of one day of loops operations. The first and second plots show
the correction signals, the third and the fourth plots show the error signals.
In the correction signal detection procedure some data have been lost due to
hardware failure. Corrupted data are not displayed.
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Figure 3.3: Histograms of the perimeter and intensity loop errors showing the
Gaussian distribution of fluctuations.

behavior of the intensity loop error signal is proportional to I+ ∝ Pout.

Fig.3.3 displays the histograms of both loop errors. We recognize a parabolic

behavior, which correspond to a Gaussian distribution in the logarithmic scale.
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4 Identification Routine

To implement EKF routine for the estimate of back-scattering contribution to

the Sagnac frequency, scattering parameters r±and ε, gain G, and losses µ±

should be consistently identified. To this aim, we search for relations among

the mean intensity values, the oscillating intensity modulation amplitudes and

phases and the RLG parameters. Then we describe the numerical implementa-

tion of the identification procedure. Unfortunately, the non-linearity of Eqs.(3.3)

makes unaffordable any general approach, and the study of this problem must

be carried out carefully by inspecting the particular form of RLG equations

together with the of G-PISA experimental data.

4.1 Perturbative Fundamental Solutions

As illustrated in Fig.4.2, the Fourier analysis of the acquired data intensities

{I±(n)} and interferogram {S(n)} shows that the fundamental Sagnac harmonic

at 107.2 Hz dominates the plots. Moreover, as shown in Fig.4.1, the intensities

have an offset. On this offset a sinusoidal component is superimposed at the

Sagnac frequency. Therefore we search for solutions of Eqs.(3.3) in the form of

a constant plus a sinusoidal signal for the intensities and of a linear growth in

time for the phase.

Following ref.[17] its useful to express the intensities and the scattering coeffi-

cients in terms of their sum and difference

I =
I− + I+

2
, i =

I− − I+
2

,

R =
r− + r+

2
, r =

r− − r+
2

,

(4.1)

and normalize all RLG parameters in units of rotation rate by defining

Ωa± = α± ·
c

L
, Ωb = β · c

L
,

ΩR = R · c
L
, Ωr = r · c

L
.

(4.2)

We assume α+ ' α− ' α, and neglect the terms in i in the equation of I and

we consider constants the terms in I in the equation of i. As reported in ref.[17]

38



Figure 4.1: Trends of G-PISA main channels during 30 min of running opera-
tion, time domain. The first plot refers to the un-normalized intensities {I±(n)}
while the second is the interferogram signal {S(n)} , as they come from the am-
plifiers. Note that {S(n)} has an bias as well as a scale factor error.
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Figure 4.2: Plot of the Discrete Fourier Transform of {I±(n)} and {S(n)} in the
Sagnac effect frequency band (25− 250) Hz. The first and second plot refers to
the intensities while the third is the interferogram signal.
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approximate solutions of the new dynamical equations,

İ = ΩaI − Ωb(I
2 + i2) + 2

√
I2 − i2(A cosψ −B sinψ)

i̇ = Ωai− 2ΩbIi+ 2
√
I2 − i2(a cosψ − b sinψ)

(4.3)

reads

I = I0 + I1 sin Φ+

i = i1 sin Φ−

ψ̃ = ω̃t ,

(4.4)

where I0 = Ωa/Ωb, A = ΩR cos ε, B = Ωr sin ε, a = ΩR sin ε, b = Ωr cos ε .

I1 = 2I0 ·

√
Ω2
R cos2 ε+ Ω2

r sin2 ε

ω2
s + Ω2

a

,

i1 = 2I0 ·

√
Ω2
R sin2 ε+ Ω2

r cos2 ε

ω2
s + Ω2

a

.

(4.5)

Here, Φ± = ω̃t+φ0± are phases of the mono-beam oscillating parts, and ω̃ is the

Sagnac pulsation pulled or pushed by scattering effects. Its worth noticing that

the previous considerations still holds at first approximation if α+ 6= α− and

one considers I and i as a convex combination of laser mono-beam intensities

that provides a null offset to i, i.e.

I = w+I+ + w−I− , i = w+I+ − w−I− , (4.6)

where

w+ =
α−

α+ + α−
w− =

α+

α+ + α−
(4.7)

Then the normalized parameters become

Ωa =
α+ + α−

2
· c
L
, Ωb = β · w+ + w−

4w+w−
· c
L

ΩR =
r−w+ + r+w−

2
√
w+w−

· c
L
, Ωr =

r−w+ − r+w−
2
√
w+w−

· c
L

,

(4.8)
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Within these approximations, the identification procedure can be split into two

parts:

i) Retrieve the losses values from the offset of the intensities and from

the acquired signal of the gain.

ii) Use the oscillating part of the intensities to identify both scattering

coefficients r± and angle ε.

4.2 Losses Identification

To identify losses we write the mean light intensities I± as

< I± >=
α±
β

, (4.9)

here we use the notation < x >=

N∑
n=1

x(n)/N to denote mathematical expecta-

tion as Eqs.(3.3) describe an ergodic system.

We explicit the losses and gain dependence on α±, and β

G− µ+

G
=< I+ > ,

G− µ−
G

=< I− > . (4.10)

Therefore we have

µ± = (1− < I± >)G. (4.11)

Following this approach one can estimate losses by averaging I± during a time

period that corresponds to many Sagnac phase cycles, but with negligible losses

variation.

4.3 Identification of the Scattering Angle

To identify the scattering angle ε we further discuss the back-scatter geometrical

approach described in Section 3: a part of one light beam phasor is added in

opposition to the other, therefore the phase Φ± of both beams oscillating part

is pulled or pushed, on average, by ε.
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Φ+ ' ψ + ε, Φ− ' ψ − ε . (4.12)

From the average estimation of phases of both oscillating intensity contributions

< Φ± >, we can identify the scattering angle as

ε =
< Φ+ > − < Φ− >

2
. (4.13)

4.4 Identification of the Scattering Coefficients

To identify scattering coefficients r±we invert the relations of Eq.(4.5) and make

use of the values of µ±and ε, previously identified.

[
Ω2
R

Ω2
r

]
=

ω2
s + Ω2

a

2I0cos 2ε
·

[
cos2ε −sin2ε
−sin2ε cos2ε

]
·

[
I21

i21

]
(4.14)

However, some ambiguities arise in the solution for r±, since these equations

do not provide a criteria to find the greatest of the two scattering coefficients.

We note that in Eqs.(3.3) the parameters r±directly affect I∓. Therefore we

identify the subscript of max{r±} with the subscript of the minimum root mean

square of the acquired intensity.

As done in the previous sections, we estimate < I1 > and <i1 > for a time period

where both modulations have a constant amplitude. Using Eq.(4.14) and the

suitable sign s the scattering coefficients can be identified as r± = ΩR ± s · Ωr.

4.5 Data Conditioning for Identification Procedure

To complete the identification procedure we give the estimation we devised for

the quantities < I± >, < I1 >, < i1 >, < Φ± > . The identification results

will be discussed later in Section 6.

Firstly we address to the estimation of the mean mono-beam part. The straight

forward approach is to average over time I±, so that both oscillating signal and

noise contributions are asymptotically removed from the mean value. However,

losses induces drifts on I±, so that the average procedure must be stopped

and iterated after some time. The time interval of the average must be chosen
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according to oscillation and noise rejection, and the time scales of drifts, and also

accounting intensity feedback action. Intensities signals are firstly decimated by

a factor of 8 and low pass filtered with a 1st order Butterworth filter, to smooth

oscillating parts. then I± are averaged on different time intervals 10÷ 100 s.

The decimation procedure has been carried out with Zoom and Decimation of

a factor 2n (ZD n), a tail recursive routine which iteration step is:

i) an half band filter stage with transfer function

H(z) =
z3 + 2z2 + 2z + 2

4z3 + 2z

ii) a down sample by a factor of 2.

This procedure ensure a linear phase filter response with n = 3 iterations, thus

avoiding phase distortion of the filtered signals.

The phase estimation of the two mono-beam oscillating parts is carried out

using the Discrete Hilbert Transform. We remark that uncertainty usually arises

while trying to estimate both the amplitude and the phase of a noisy sinusoidal

signal. Assumptions on the quantity corrupted by noise (phase or amplitude)

are necessary in this case. On the one hand Hilbert transform suppose that

all noise in the sinusoidal time series is phase noise, and it is suitable on phase

estimate. On the other hand Lock-in procedure makes the opposite assumption

and it is preferred when one is interested in amplitude estimates.

Intensities signal acquired at 5 kHz are decimated by a factor 2 with ZD 1 and

band passed around the Sagnac band [95÷ 125] Hz by mean of a Butterworth

filter, in order to reject frequency contributions different from the first Sagnac

harmonic. The Hilbert transform of the conditioned time series is computed.

Finally the phase difference of the mono-beam light intensity is estimated with

an average operation on the unwrapped phase angle difference, retrieved using

arctan(·) Matlab function.

A digital lock-in estimates the amplitudes of oscillating mono-beam parts. Firstly

I, i and S are decimated and bandpass filtered as in the previous case. The

Hilbert transform of the phase difference is computed to get the in-phase and

in-quadrature parts of the Lock-in signal, then the sum and the difference of the

light intensities are demodulated via time domain multiplication and low pass
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Figure 4.3: Schematic of the identification procedure.

filtering. Its worth noticing that, using the phase difference as demodulating

carrier, the digital Lock-in is robust to phase out and parameters time-variation.

The identification scheme is sketched in Fig.4.3.

5 EKF implementation

We address now to the implementation of the extended Kalman filter. We follow

the approach discussed in ref.[5] and use the same notation.
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5.1 EKF Model

The EKF model we devise for the estimate of the rotation signals is based

on Eq.(3.3), with the approximations discussed in Section 3 (θ±,∓ = 0, τ±,∓ =

0, σ± = 0). Since the identification procedure has been carried out for the RLG

parameters µ±, r±, ε, their value is assumed known, so that the EKF state

variables are x ∈ R3, x = [x1 x2 x3]T = [I+ I− ψ]T . The EKF prediction

step which corresponds to the integration of Eqs.(3.3) over the sample time

interval is carried out using the RK4 routine. The EKF equation model is

ẋ = F(x, t) + v(t). The error model
{
v(t) ∈ R3, t ∈ R

}
is the sum of several

contributions:

i) RK4 integration Error on the Sample time interval

ii) detuning frequencies effect that has been disregarded

iii) identification error on µ±, r± and ε.

iv) Errors due to the physical approximations used to derive the laser

dynamics described by Eqs.(3.2).

We point out that also the noise on the acquired signal G contribute to the

identification error. However, the main contribution to model error process is

due to identification errors, and we can approximate the sum of these error

processes with it. Since the magnitude of the resulting process is small, we get

an estimation of the magnitude of its 2nd moment matrix Q approximating the

error process as a stochastic Markovian process [5].

The observation model provided is y = [y1 y2 y3]T = [x1 x2 sin(x3)]T + wT (t).

The three detectors introduce additive noise, and the sinusoidal signal of phase

difference is affected by optical misalignment and loss of contrast. The measure

error
{
w(t) ∈ R3, t ∈ Z+

}
is then made of two contributions:

i) additive noise of the photo detector (current fluctuations at the input

of the amplifiers)

ii) bias and scale error of the interferogram signal

Since S(n) is affected by loss of contrast and optical misalignment, which results

in a bias and in a scale factor error, to recover a good sinusoidal signal for the
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phase difference we remove the linear trend in y3 and normalize it for twice

its variance. This procedure deletes the second error source mentioned, but it

introduces another error source in w(t). However, this last source is of small

magnitude if compared to measure error, and can be neglected. Therefore the

2ndmoment matrix of w(t) can be approximated considering only the detector

additive noise.

5.2 EKF Matrices

In this subsection we discuss the choice of the EKF matrices Q and R. By

definition the matrix Q is the variance of the continuous time noise vector

process v(t) that affects EKF state [5]. We model this error process with the

identified parameters error effect on the EKF state. Defining the identified

parameters vector as k̂ = [µ̂± r̂±ε̂]
T we get

ẋ(t) = F(x̂, k̂) + v(t) . (5.1)

Considerations of Section 6 on the identification errors magnitude and Eqs.(3.3)

form emphasize the role of the identification error of r± in the ψ(t) dynamic,

and show that in the I± dynamic error contribution related to r± and µ± are

of the same magnitude. Neglecting thus ε identification error contribution v(t)

can be approximated as


v1 ∼ N(0, σ2

1)

v2 ∼ N(0, σ2
2)

v3 ∼ N(0, σ2
3)

(5.2)

where


σ1 ∼ δr− <

√
I+I− > +δα+ < I+ >

σ2 ∼ δr+ <
√
I+I− > +δα− < I− > ,

σ3 ∼ δr+ <
√
I+/I− > +δr− <

√
I−/I+ >

(5.3)

here δr± =
√
< c/L(r̂± − r±)2 > and δr± =

√
< c/L(α̂± − α±)2 > If we

assume that the errors in + and −terms are equal, since intensities are of the
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same magnitude, and consider equal the error on the ± scattering coefficients

and on losses we get


σ1 ∼ (δr + δα) < I >

σ2 ∼ (δr + δα) < I >

σ3 ∼ 2δr

. (5.4)

The last point is to provide the correlations between the components of v(t).

To this aim we assume no correlation on the components vi, and the matrix Q

will be of the form of

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 . (5.5)

The determination of the R matrix is simple as the measure noise is dominated

by photo detectors additive noise, which is Markovian and Gaussian distributed.

Since the detectors are not plugged to the same generators and they are dis-

placed at different points of the G-PISA structure we assume no correlations

between the components of w(t). Therefore R is a diagonal matrix. The scalar

variance of each component of the diagonal of R can be estimated with detec-

tors data sheets and considerations on the Fourier transform of the experimental

signals.

5.3 Frequency Detection

After the application of the EKF, the Sagnac frequency must be estimated. To

this purpose we estimate ωBS using the filtered channels Î±, ψ̂ and Eq.(3.4), and

we compute the numerical derivative of ψ̂ by using its discrete approximation,

called 5 point method, that ensure a good noise rejection and accuracy.

˙̂
ψ(k) =

ψ̂(k − 2)− 8ψ̂(k − 1) + 8ψ̂(k + 1)− ψ̂(k + 2)

12∆t
, (5.6)

where ∆t is the sampling time. This method generates an approximation error

bounded by
∆t4

30
U , where U is the maximum value of the 5th derivative of ψ

in the sampling interval.
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The estimated Sagnac frequency in the discrete time domain reads

f̂s(k) =
˙̂
ψ(k)− ω̂BS(k)

2π
.

After the cancellation of the back-scattering dynamics, f̂s(k) can be converted

in physical rotation rate by means of the scale factor SF = λL/4A. Its worth

noticing that the band of the rotation signal for an Earth based RLG is ∼ 1 Hz

and then f̂s(k) can be decimated by a huge factor (e.g. 1000).
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6 Results and Discussions

In this Section we discuss some results we obtained from simulated and experi-

mental data concerning the identification and the frequency estimation.

6.1 Simulation Model

The numerical simulation of RLG dynamics is of paramount importance for de-

bugging software, for the identification procedure and the correct implementa-

tion of the Kalman filter. We describe now the simulation we have implemented.

Eqs.(3.3) have been numerical integrated by using RK4 procedure. The RLG

parameters have been chosen according to Tab.(3.2). We then focused attention

our on feedback effects on RLG parameters. In Section 3 we showed that both

control loops introduce very slow parameter variations in Eqs.(3.3). Therefore

no dynamics of parameters are accounted for in the simulation routine. More-

over, we suppose stationary working conditions for both control loops.

To simulate the perimeter loop dynamics we model losses and scattering pa-

rameters as random walk drifts at 1 Hz frequency on their reference values.

These random walk processes are simulated assuming a small perturbation of

their reference value. Typically we use a standard deviation 10−1 ÷ 10−3 times

the parameter value and a time correlations ∼ 10 min. These features are much

worse than the experimental data of G-PISA. However, the results of such simu-

lations should put in evidence any critical point of the implemented procedures.

To simulate the intensity loop dynamics, we change the gain value in each second

of simulation second to keep constant the ratio (G−µ+)/G. Thus the gain will

follow µ+ dynamic rejecting at the same time the fluctuations of the mean level

of I+.

Fig. 6.1 shows the results of 10 min of simulation. The Tab.6.1 shows the

utilized parameters; to simulate the dissipative coupling, the initial value of

ε is set to 0, and the simulation sampling rate is 5 KHz as in the G-PISA

experiment.

The simulation results are shown in Fig.6.1. As expected from analysis in Sec-

tion 3, the mono-beam intensities have a mean value with a small a.c. modula-

tion superimposed. In the second plot we display the time derivative function
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Parameter + −
α 1.35 · 10−8 1.35 · 10−8

β 1.0135 · 10−6

ωs 107.2 · 2π
r 2 · 10−7 2 · 10−7

ε 0

Table 6.1: Reference values of RLG parameters close to the typical values of
G-PISA that have been chosen.

of the phase difference ψ̇ normalized from pulsation to frequency. ψ̇ varies from

104 to 111 Hz, and this is due to back-scattering contributions ωBS in Eqs.(3.3).

6.2 RK4 integration error

To estimate RK-4 integration error, we calculated the closed form solutions of

Eq.3.17, and compared with its numerical integration. To this purpose we get an

RLG parameters set consistent with the assumptions made in case of symmetric

scattering: in particular we set the ′−′ values equal to the corresponding ′+′

values. With these parameters the intensity ratio of the simulated I± is shown

by Matlab to be exactly 1, so the approximations made in Eq.(3.17) holds.

Fig. 6.2 shows the results of computation. Firstly we point out that the two

numeric integrated equation slightly differ from the analytic solution while the

two numerically integrated phases do not sensibly differ, as Matlab returned

the null function after we computed their difference. After half an hour of

simulation the difference between the two curves is small. Fig.6.3 displays the

relative integration errors. The error growth versus time is in agreement with

stiff equations theory. We note that the two error are of the same magnitude

and that their final absolute value is of the order of 10−4. Therefore a simulation

of 30 min seems to describe with good approximation the RLG dynamic, as the

integration error maximum modulus is under the level of the detection noise.

6.3 Identification Tests

Here we present a summary of the tests made on the identification procedure.

The variation of all parameters are 10−2 times their reference value of Tab.6.1.

Fig.6.3 shows the relevant parameters for the simulated RLG dynamics: α+ is
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Figure 6.1: Simulated version of RLG dynamic for 10 minutes of running opera-
tions. The plots show the light mono-beam intensities I±, and the instantaneous
beat frequency, respectively.

Figure 6.2: The simulated trend of interferogram signal {S(n)} : Eq.(3.3) in
blue; Eq.(3.14) in red; and Eq.(3.17) (analytic solution) in black. Simulation
time is 30 min, and step size is 5 ·10−3 s. Only the last 10 samples are displayed.
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Figure 6.3: Simulated RLG parameters during 10 min. The resulting intensities
and instantaneous frequency are displayed in Fig.4.3.

affected by intensity loop, and the changes of β are determined by the drift of

µ+because of the loop action.

6.3.1 Logistic Parameters

In Fig.6.4, the trends of the continuous parts of I± is compared with the excess

gain minus losses over the gain ratios α±/β; we show the moving average on

1 s time interval for all signals. Simulation runs with different RLG parameters

show that α+/β and α−/β are in correlation. We note that in the final part

of the plot the intensities mean value slightly differs from the ratios α±/β.
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Figure 6.4: Comparison between the continuous part of intensities and the α±/β
ratios.

Figure 6.5: Plots of scattering angle ε behavior compared to the observable
given in Section 4.

The simulations show that in presence of different scattering coefficients the

identification of the logistic parameters presents a small bias. Therefore the

continuous intensity parts are not exactly determined by the logistic parameters

and the loss estimates independently form scattering coefficients are biased.

6.3.2 Scattering Angle

To test the identification procedure of the scattering angle we compare the

simulated behavior of ε with the observable (Φ+ − Φ−)/2. We retrieve the

oscillating parts from the simulated I± and use the Hilbert transform to get the

phases. Finally, we compute the moving average on 1 s time interval for both

signals. Fig.6.5 shows the comparison. We note that there is a good correlation

between the scattering angle and (Φ+ − Φ−)/2; nevertheless a small constant

bias is still present. We note that the scattering angle estimation can be carried

out independently of the other parameters.
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6.3.3 Scattering Coefficients

To discuss the identification procedure of the scattering coefficients we compare

the modulations of the convex intensity combinations of Eq.(4.6) with Ω2
R and

Ω2
r exploiting relation (4.5). We combine together the simulated light intensity

signals as prescribed by Eq.(4.5), then we use a digital lock-in to estimate the

modulations of I and i. The digital lock-in requires the calculation of both the

“in phase” (cosψ) and “in quadrature”(sinψ) of the carrier. As the interfer-

ogram signal only provides the sinψ component (stated definition), cosψ has

been estimated by means of the Discrete Hilbert Transform. In Fig.6.6 summa-

rizes the results; in both graphs the simulated and identified intensities I1 and i1

differs, and simulations indicate that this bias is related to asymmetric losses

µ+ − µ−.

6.4 Identification of Simulated Parameters

The identification routine has been implemented exploiting the overlap and save

method. Each identification step involves 30 min of simulated data, the time

series of {I±(n)} and {S(n)} are divided into three data blocks labeled as “past”

(0 ÷ 10 min), “present” (10 ÷ 20 min) and “future” (20 ÷ 30 min). All data

blocks are gathered together and processed to estimate < I± >, < φ± >, <

I > and < i > . Firstly {I±(n)} are decimated by a factor 8 with ZD 3 and

low-pass filtered by means of a Butterworth 1st order low-pass filter with cutoff

frequency of 1 Hz. The output is then averaged for each second of simulation

on 10 s of values for I− and on 100 s for I+, as I−variations are faster than

I+. Then {I±(n)} time series are down-sampled by a factor 2 with the use

of the recursive filter, the output is bandpass filtered by mean of a 2nd order

Butterworth filter with band of [95, 125] Hz. The complex phase of the discrete

Hilbert transforms of the outputs is averaged for each second of simulation on

10 seconds of values. Finally the original signals of I, i, S are decimated of a

factor 2 and band filtered. {I±(n)} and {S(n)} are demodulated with the usual

digital lock-in and smoothed with a moving average of 1 s. Only the “present”

data blocks of all time series are involved in the moving average, thus neglecting

the effect of the boundaries due to Discrete Fourier Transform and / or digital

filters initial conditions. The parameters µ± are identified with the use of G

values and Eq.(4.11) , ε is identified with Eq.(4.13), and r± are identified using

Eq.(4.14) and the other identified parameters, with the convention that r+ > r−
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Figure 6.6: Plots of I, i intensities amplitude modulations compared to the

analytical expressions given. The upper plot refers to I, the lower plot refers to

i.
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Figure 6.7: Results of the Identification routine for 80 min of simulated data.
The plots display the comparison between the identified and true parameters.

if var {I−(n)} > var {I+(n)} . After the accomplishment of the identification

operations the time index of the last data involved is shifted of 10 min on the

left: so a new data block is now labeled as “future”, “future” data block become

“present”, “present” become “past” , and “past” data block is discarded.

The identification routine has been tested on 80 min of simulated data. The

parameters reference values are given in Tab.6.1. Fig.6.7 shows the results. Each

of the three identification estimators is affected by systematic error. Absolute

errors on α± and on ε have a drifting bias and small fluctuations. The relative

error on the losses, on the scattering angle and on the scattering coefficients is

of the magnitude of 10−2, 10−3and 10−4, respectively.
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Figure 6.7: Results of the Identification routine for 80 min of simulated data.
The plots display the absolute error on the identified parameters.
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6.5 Frequency Estimation of Simulated RLG Signals

In this Section we report on the simulation results for the frequency estimation

using EKF filter. The EKF model presented in Section 5 has been tested on

simulated data previously processed by the identification routine. Measure noise

has been added to the simulated data, to mimic the actual experiment. The

EKF matrices Q (model error covariance) and R (measure error covariance)

read:

Q =

 10−11 0 0

0 10−10 0

0 0 10−8

 R =

 10−4 0 0

0 10−4 0

0 0 10−6

 .

On each second of simulation the parameter values are changed in the EKF

model as prescribed by the identification routine. The initial conditions of EKF

have been chosen as:

i) State initial value x0|−1 = [I+(0), I−(0), 0]T .

ii) Error matrix initial value P0|−1 =

 10−1 0 0

0 10−1 0

0 0 10−1


In Fig.6.8 we report the results. We address to the errors on the EKF state

quantities. All three absolute error displayed have a small bias and a dominat-

ing fluctuating part. Both absolute errors on the Lamb intensities are ∼ 10−5,

absolute error on the phase is ∼ 10−4 rad. The small bias affecting each esti-

mation is mainly caused by identification error on r± and µ±. The error on the

estimated frequency is decimated at the frequency of 1 Hz by mean of a moving

average, it shows a dominating bias part with small fluctuations. The relative

error on the Sagnac frequency is one part of 10−5 with a bias of 10−4 due to

the identification errors of the RLG parameters.

In order to determine if EKF is able to track a frequency signal that vary in

time, we simulate the RLG dynamic for 1 h adding a small low frequency drift

to ωs, we also add a small asymmetric scattering. RLG parameters are depicted

in Tab.6.2. Fig.6.9 shows the results.
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Figure 6.8: Results of frequency estimation. Parameters reference values are
displayed in Tab.6.1. Parameter variations are of the order of 10−2 on the Hertz
scale. The Plots display the three estimation errors in 10 min of operation. Last
plot shows the detected frequency error for 1 h of simulated and identified data,
at the rate of 1 Hz. In this simulation the Sagnac frequency fs is set constant.

Parameter + −
α 1.35 · 10−8 1.35 · 10−8

β 1.0135 · 10−6

ωs 107.2 · 2π
r 2.1 · 10−7 1.9 · 10−7

ε 0

Table 6.2: Parameters reference values.
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Figure 6.9: Results of frequency estimation. Parameters reference values are
the ones of Tab.6.1, all variations are ∼ 10−2 in the time scale of 1 s. Variations
of ωs are of the relative magnitude of 10−3 in the time scale of 1 s. First plot
shows a comparison between the detected frequency, the real Sagnac frequency
and the EKF corrected frequency at 5 kHz; in the second plot all signals have
been decimated of a factor 5000 with a moving average of 1 s. Last plot displays
the detected frequency error for 1 h of simulated and identified data at 1 Hz.
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6.6 Identification of G-PISA Parameters

The implemented identification routine has been run on the real data in order

to identify G-PISA parameters. Light intensity signals have been calibrated. I±

have been rescaled according to

I = P/s , (6.1)

where s is the surface of the laser section, given in Eq.(3.5). The output power

is in relation with the voltage acquired following

P = V/Gpd/aeff , (6.2)

where V is the output voltage revealed, Gpd is the amplifiers gain, aeff is the

quantum efficiency of the reveler.

For G-PISA photo diodes and amplifiers these constants are Gpd = 109, aeff =

0.4. The above considerations lead to a calibration constant of 0.0167084V −1.

After calibration the simulation routine has been tested on G-PISA operation

of the day of 15/09/2011, the results are shown in Fig.6.10.

6.7 Frequency Estimation on a typical G-PISA day of Op-

erations

After the identification of G-PISA parameters, the EKF frequency estimation

routine has been tested. Light intensities have been calibrated and normalized

to the Lamb units. The interferogram signal have been normalized and detrend

to a sinusoidal signal with unit amplitude and zero offset.

Results are shown in Fig.6.11. The plot compares three different estimators

of the Sagnac frequency: the numerical derivative of the EKF output x3, the

previous signal corrected by the back-scattering contribution as modeled by

Eqs.(3.3) and the identification PEM method AR2 which is the standard for the

estimation of the Sagnac frequency. It can be clearly seen that EKF estimation

improve the performance of the frequency estimation with respect to variance, it

also correct a small bias which was caused by back-scattering. The fluctuations

of the red line are presumably caused by the Fabry-Peròt cavity length thermal

drift, and they can be reduced by a more stable laser apparatus.
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Figure 6.10: Identification results for the date of 15/09/2011 (GPS =
10000000000).

Figure 6.11: Frequency estimation results for the date of 15/09/2011.
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Conclusions

In this thesis we have discussed RLG as high sensitivity sensors of inertial ro-

tation measurement. The Sagnac effect and the laser physics exploited in RLG

operation have been described. A full model of the RLG dynamic has been

studied, with attention to the active controls implemented for the G-PISA ring

laser. We remark that the approach based on the RLG dynamical model differs

from other approaches reported in the literature (e.g. standard frequency error

model [9]). The study of the RLG dynamic has been completed with numerical

integration methods and a simulation routines. We succeeded in implementing

an identification procedure, and we also studied the effects of the approxima-

tions on the identified parameters. We implemented an EKF routine based on

the RLG dynamic model and on the identified RLG parameters, and the routine

was tested on simulated and experimental data, and the results discussed.

Parametric models derived by the laser physics have been proposed in high

precision laser instrumentation field, since laser discovery. We think that a

parametric identification approach will have best performances in the estimation

of the Sagnac frequency. Our identification procedure shows a relative error on

the RLG parameters δµ± = 1.7 · 10−2, δr± = 1.3 · 10−3 and δε = 3.3 · 10−3,

and our EKF routine is able to estimate the frequency signal with an error of

the order of 10−5 Hz.

The filtering and identification procedures discussed and implemented in this

thesis can be further improved. For instance, the numerical integration method

RK-4 presents an integration error that increase with time. However, further

investigations can be performed on geometrical integrators and on energy conser-

vative modifications of Runge-Kutta routines. Finally, the EKF model provided

can be improved increasing the state dimension and modifying the measure

model.

The work of this thesis has been carried out in collaboration with the researchers

of G-PISA experiment. Some considerations on the identification and frequency

estimation procedure, especially these involving loops will lead to hardware

improvements in the future. For instance, the perimeter loop can be improved by

a different stabilization scheme where all the four mirrors are actively controlled

by mean of piezo actuators. The intensity loop can be also improved considering
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the losses µ− effect on intensities. Both loops can be optimized with optimum

control and minimum variance techniques. In conclusion manufacturing and

data processing fields are shown to increasingly interact as one tries to overcome

the present limitations of RLG sensitivity and stability.
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