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Abstract

Thanks to the recent advance in micromanipulation techniques based for instance on optical and
magnetic tweezers, it is nowadays possible to probe the mechanical response and the configurational
transitions of soft structures made by multiple linear polymers, such as ds-DNA filaments, that wrap
one to another in a braided fashion. In particular, by using magnetic tweezers one can look at the
braided/plectonemic (or buckling) transition of these structures as a function of the extensional force
and torsion injected on the system. Recent theoretical and experimental studies have focused on
structures made by only two filaments. The aim of this thesis is to extend these investigations to the
case of multiple (i.e. more then two) strands where the reciprocal position of the rooted monomers
at the tweezeers’ plates and the detection of plectonemic structures are interesting novel issues to
be explored. Geometric quenches between three-stranded and two-stranded configurations are also
explored by introducing a cut along the additional third strand and simulating the system relaxing to
equilibrium. The analytical approach is based on the elastic rod model of a chain with bend and twist
rigidities, while numerical simulation are performed on a coarse-grained model of three stranded chains
whose stochastic dynamics is integrated using LAMMPS code. The study of such new configurations
highlights the presence of a buckling transition similar to the one found with two strands, in which the
coexistence of plectonemic and non formations is more pronounced than what previously observed.
For such phase transition the geometric properties of the system influence directly the critical points
positioning.
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Chapter 1

Introduction

The recent advancements in simulative and experimental apparatus were able to unveil new possibilities
in biophysics and in particular in DNA physics. Starting from the DNA discovery from Watson and
Crick [1], it was possible to investigate more and more the DNA structure, function [2] and the
mechanism leading its replication [3]. In particular the presence of supercoiling became one of the
central tropic in such studies [4] [5]. Efforts centered mainly on the work done by enzymes such as
Topoisomerases [6], allowing to understand more on their role in topology changes during replication,
and in particular on their knot solving ability [7].

This interest translated in experiments [8] and simulations [9] [10] aimed at the study of braided
configurations of DNA. Part of these efforts focused on a particular phenomenon, the appearance of
so called plectonemes [11] and curls in braiding conditions during DNA replication. In this phase the
strong tension and torsion induce mechanical instability and the formation of such structures [12].
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Experiments on stretched, supercoiled DNA primarily
measure the extension of the molecule as a function of its
twisting or, more precisely, as a function of change in double
helix linking number Lk [1]. Past the threshold for buckling
of themolecule, one enters amixed-phase regimewhere part
of the molecule is extended and part of the molecule is
plectonemically supercoiled; in this regime the extension
depends linearly on the linking number precisely because
one is in a regime of two-phase coexistence [2,3].

Although the origin of the linear dependence is under-
stood [2,4], the slopes of the extension versus linking
number curves are not understood analytically. It is of
broad interest to understand the slopes since, in addition
to being practically useful to predict the amount of length
absorbed into plectonemic supercoiling, they contain in-
formation about the interplay of external force applied to
the molecule with interactions between the tightly juxta-
posed DNA double helices in the plectonemic region
(primarily electrostatic in the regime of interest here) [5].
Below, we analyze the parts of the ‘‘standard model’’ of
DNA supercoiling relevant to the high-force limit. We
obtain asymptotic formulas describing that limit, for the
dependence of the extension versus linking number slopes
and DNA torque on force and salt concentration, and we
show that experimental data obey the scaling behavior
implicit in our results in the high-force limit. Analytical
formulas for the plectonemic supercoil radius and angle are
predicted for future experiments.

We write the free energy of a DNA molecule subject to
applied torque and force in the regime where extended and
plectonemically supercoiled DNA are in mechanical coex-
istence [3,4,6,7]. The total molecule length L is partitioned
between the two ‘‘phases’’: (i) a plectonemic phase of
length ‘, where the filament has bending rigidity A and
torsional rigidity C and adopts a superhelical shape of

radius r and angle !, and (ii) an extended wormlike-chain
phase of length L! ‘; see Fig. 1. The free energy of
the extended phase is described in terms of the free
energy per length of the untwisted molecule gðfÞ ¼
f! kBTðf=AÞ1=2 þ & & & [8], plus a twist energy using a
twist modulus that includes effects of writhing fluctua-
tions: CsðfÞ ¼ C½1! ðC=4AÞkBT=ðAfÞ1=2Š [6]. The free
energy of the plectonemic phase is that of two superhelices
wrapped around each other with electrostatic interactions.
The interaction energy UðrÞ is that of two straight charged
cylinders with a center axis separated by a distance of 2r,
in the Debye-Huckle approximation of the Poisson-
Boltzmann equation. For the double helix where two nega-
tive charges appear for each base pair, this suggests the
use of a linear charge density (in electron charge units) of
" ¼ 1=b, where b ¼ 0:17 nm is half of the 0.34 nm spac-
ing of successive base pairs along DNA. However, an

FIG. 1 (color online). Supercoiled DNA under force and torque.
Molecule length is partitioned between two phases: an extended
phase and a plectonemic phasewhere strong self-interaction occurs.
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Figure 1.1: Plectoneme example, via [13].

To study these kinds of phenomenons many modelling attempts were done [12] [13] [14], converging to
the use of statistical mechanics methods involving free energy minimization. These works focused on
the double helix case, involving two strands with fixed persistence length considered as a mean-field
helix [14]. Results coming from these analytical models allow predicting the average properties of the
braids and the plectoneme formation.

In addition to this, the use of magnetic tweezeers [15] allowed understanding how supercoiling works
in different experimental conditions [8]. In fact, these experimental apparatuses allow pairs of strands
with fixed ends to be held to a rotating bead and a fixed wall [16]. Within these particular settings the
strands, once rotated and braided together, in some conditions of catenation and pulling force undergo
to so-called buckling transitions [17], separating two phases, one in which the braid is completely
straight and one in which more complex structures develop changing the helix structure, as for example
the plectonemes.

Following these experimental efforts, it was also possible to study and reproduce experimental behav-
iors using computational techniques through the introduction of wormlike chain [18] models, allowing
to corse-grain and simulate both single strand and double strand DNA. This was done in previous

1
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FIG. 1. (a) Schematic of a DNA braid under torsional stress, showing coexistence of straight and plectonemically buckled states. The
individual dsDNAs are able to swivel around their contact with the wall, keeping the dsDNAs from twisting. (b) Two duplex DNAs (dark and
gray shaded) helically braided in a right-handed manner on the surface of a cylinder of radius R oriented parallel to the ẑ axis, viewed from two
angles. The orthonormal triad (t̂io,t̂i⊥r ,t̂i⊥θ ), where i ∈ {1,2} is shown for one of the curves. t̂1o is in the direction of the tangent to the helix,
t̂1⊥r is oriented radially inward, and t̂1⊥θ ≡ t̂1o × t̂1⊥r . The projection of the triad on the ẑ axis is a constant dependent on the helix parameters
[Eq. (3)].

residing in an ionic solution. We define β = 1/kBT , and use
T = 290 K for all numerical computations.

Figure 1 shows how we view braided DNA structure. The
ends of two nicked DNA molecules are tethered to a fixed
wall and a rotating bead, respectively, such that the intertether
distance on either end is d. This scenario is similar to the setup
for tweezer experiments [8–11]. The beads used in experiments
are large enough to safely assume no leakage of catenation
number via looping of the DNA over the beads. By applying a
constant force to the rotationally constrained bead it is possible
to study DNA braids in a fixed force and fixed catenation
ensemble.

A. The Hamiltonian

We express the Hamiltonian H associated with two nicked
double-helix DNA molecules of length L, held at a fixed
inter-DNA linking or catenation number and under a constant
applied force f ẑ as an integral over the arclength scaled by A,
where the thermal bending persistence length of DNA A sets
the order of magnitude of thermal deformations:

βH =
L/AZ
0

dξ

·
1

2

µ¯̄̄
¯d t̂1

dξ

¯̄̄
¯
2

+
¯̄̄
¯d t̂2

dξ

¯̄̄
¯
2¶

− βAf

2
ẑ · (t̂1 + t̂2) + U (r1,r2)

¸
, (1)

where ξ is the dimensionless arclength; ri(ξ ) and ti(ξ ) ≡
(1/A)(∂ri/dξ ) are respectively the position vector and the
tangent of the ith braiding strand for i ∈ {1,2}. The first term
in the integrand containing the sum of the squares of the local
curvature of the two strands corresponds to elastic bending
energy of the two double helices. The second term containing
the external force f ẑ corresponds to the entropic elasticity of
the two chains, and the electrostatic part of the Hamiltonian

is represented by U (r1,r2). Since we only consider nicked
double-helix DNAs, there are no DNA-twist-energy terms
in the above Hamiltonian, and we neglect the triangular end
regions (Fig. 1) until Sec. II B.

Two catenated elastic rods, many persistence lengths long,
under a high stretching force form coaxial helices. We take
the average shape of the braiding strands to be that of a
regular helix oriented parallel to the direction of the external
force f ẑ (Fig. 1) and propose a perturbative expansion
of the braid Hamiltonian [Eq. (1)] around a mean-field
solution parametrized by radius R and pitch 2πP of the
helix.

We expand the tangent vectors t̂i (i ∈ {1,2}) in Eq. (1) about
a mean-field direction tio:

t̂i =
·

1 − t2i⊥
2

+ O
¡
t4i⊥

¢¸
t̂io + ti⊥, (2)

where ti⊥ = ti⊥r + ti⊥θ . We introduce two rotating right-
handed orthonormal triads: (t̂io,t̂i⊥r ,t̂i⊥θ ), where i ∈ {1,2}
(Fig. 1), such that the unit vector t̂io points along the tangent to
the mean-field helix corresponding to the ith strand, t̂i⊥r points
along the radially inward direction, and t̂i⊥θ ≡ t̂io × t̂i⊥r . Note
that the ẑ projection of the basis vectors depends only on the
helix parameters:

ẑ · t̂io = cos δ, ẑ · t̂i⊥θ = sin δ, ẑ · t̂i⊥r = 0, (3)

where δ ≡ arctan(R/P ) is the braiding angle.
The derivatives of the orthonormal basis with respect to

normalized arclength ξ are given by the following equations:

d

dξ

⎡
⎣ t̂io

t̂i⊥r

t̂i⊥θ

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 κa

0 −κa 0

⎤
⎦

⎡
⎣ t̂io

t̂i⊥r

t̂i⊥θ

⎤
⎦, (4)
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Figure 1.2: Double helix model, via [14].

works [17] by approximating the strands as sequences of beads with fixed size and using molecular
dynamics tools such as LAMMPS [19] to rotate them and study the behavior both in equilibrium and
in non equilibrium phases.

The aim of this work is to expand the theoretical knowledge of buckling transitions to study more
complex systems involving three or more strands [20] with different anchoring configurations. This can
be done to improve the knowledge of how DNA can braid in multiple-stranded configurations, while
being able to translate such results to more generalized coarse-grained polymers in such conformations.
Results obtained during the simulation of such configurations will be discussed and compared to pre-
vious works, in particular regarding the plectoneme formation, to study how the statistical mechanics
of braiding has changed.



Chapter 2

DNA braiding and magnetic tweezers

The study of DNA under stress and twisting has the main goal to understand the behavior and topology
during replication and after the action of topology related enzymes such as topoisomerases Type-I and
Type-II. It is possible to verify in experimental setups [21] that such proteins are able to disentangle
knotted strands, but also create positive and negative supercoils. These kinds of formations can assume
multiple forms, from the more solenoidals ones, to plectonemic structures [11]. These phenomenons
were studied and replicated with different techniques, from the use of magnetic Tweezers [8], to the
introduction of simulative models with a strong theoretical basis. The more advanced between these
models [12] highlighted the presence of a phase transition between an ”unbuckled” and a ”buckled”
phase. In the latter one, the non-braided structures becomes more and more relevant as a way to
release the stress through the conversion of the twist into the writhe (see appendix B). Within this
phase it is possible to characterize the plectoneme statistics with adequate models, while the use
of advanced apparatuses such as magnetic tweezers makes possible to observe experimentally the
supercoils formation and the strand behavior.

2.1 Analytic approaches

These experimental and qualitative efforts where then followed by more analytic ones, involving the
introduction of free energy and mean field models [13] [14]. One of the most successful approaches for
the two-strands case involves the modelling of a mean field helix, parametrized by ξ, the dimensionless
arclength, ri(ξ) and ti(ξ), that are respectively the position vector and the tangent to the mean field
helix, for the two parts of the helix. These ideal helixes represent the single strands of the braids in
an approximated fashion, allowing to study the energy terms for the interaction between the strands.

With these premises it is possible to introduce a general Hamiltonian for the couple of strands, con-
sidering each possible interaction force.

βH =

∫︂ L
A

0
dξ

[︄
1

2

(︄⃓⃓⃓⃓
dt̂1
dξ

⃓⃓⃓⃓2
+

⃓⃓⃓⃓
dt̂2
dξ

⃓⃓⃓⃓2)︄]︄
− βAf

2
ẑ ·
(︁
t̂1 + t̂2

)︁
+U(r1, r2)

The first term is associated to the energy of local curvature of the two strands, while the second one
is associated to the pulling force applied to the extremities of the DNA molecule, with f the pulling
force and A a scaling factor. The last term is instead related to the electromagnetic potential of
self-electromagnetic interactions and interactions between two different strands [22].

Further approximations along the tangent vector of the strands and the use of fourier transforms allows
to simplify the expression and get an approximation of the total free energy as a sum of components,
each one associated to different parts of the braid. These are the mean field free energies βEs, βEp

and their relative fluctuations β∆Fs, β∆Fp, that once summed correspond to the total free energy of
such system.

3
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FIG. 2. DNA braids at 100 mM monovalent salt under various forces; the shaded arrows show the direction of increasing force. Theoretical
predictions are for ≈11 kb (L = 3.6 μm) long double helices, tethered 1.5 μm (d = 0.42L) apart. Catenation (Ca) and catenation density
(σc = Ca/Lk0) are plotted on the top and the bottom x axes, respectively. (a) Relative end-to-end distance (left y axis) or extension (right y

axis) versus catenation. Lines are theoretical predictions for 1.25 (lowest curve), 2, 3, and 4 pN (highest curve) force, while solid circles are
experimental data at 2 pN [11]. The change in slope of the lines corresponds to plectonemic buckling transition, which is at a higher catenation
for larger external tension due to increased stability of the force-coupled straight state. The kink at the onset of buckling transition is related to
the plectoneme-nucleation cost presented by the braid end loop. (b) Torque in the braid shows a nonlinear increase in the straight phase and
continues to increase in the coexistence phase but with a much weaker slope. The torsional stress is released in the coexistence phase due to
the contribution from plectoneme writhe [Eq. (17)]. (c) Number of plectonemic domains versus catenation, showing that the buckled phase is
characterized by multiple plectoneme domains. Nucleation of new domains causes the increase of torque in the coexistence phase, as opposed
to a constant torque expected in the case of a single plectoneme domain. (d) Plot of the size of the straight-phase helical region hLbi (left y

axis, solid gray curves) and the size of the plectoneme region hLp + m0i (right y axis, dashed black curves) as a function of catenation. Lb

increases in the straight phase with catenation up to the buckling point, after which Lb decreases as DNA length is passed into the plectoneme
phase, also seen in the increase in the total size of the plectoneme.

III. RESULTS

A. Braids at 100 mM salt

Figure 2(a) shows the comparison of theoretically predicted
extension curves for various forces: 1.25 (lowest curve), 2, 3,
and 4 pN (highest curve) with experimental observation for
2 pN (solid circles) at 100 mM univalent salt concentration
[11]. The size of the intertether distance d being comparable to
the length of the braiding molecules results in a sharp decrease
in extension when the first catenation is added. The decrease
is due to the formation of the first helical bend in the braid
along with the end regions from the zero-catenation parallel
configuration. The extension shortening is used to estimate the
intertether distance by simply using the Pythagorean theorem
[9–11]. Notably, the intertether distance d is a parameter that
has not been controlled in experiments to date.

Further addition of catenation decreases the end-to-end
extension of the braid [Fig. 2(a)] due to double-helix length

being passed from the end regions to the helically wrapped
section. The size of the helically wrapped straight braid
increases with catenation and reaches a maximum just before
the onset of buckling [Fig. 2(d)]. Elastic bends in the braiding
double helices generate torsional stress, which increases
nonlinearly with catenation [Fig. 2(b)]; this nonlinearity has
been seen in previous models of the straight braid [11,29,30].
When the torque reaches a critical value, which mainly
depends on thermodynamic parameters such as the external
force, nucleation of the first plectonemically buckled domain
becomes energetically favorable.

The onset of buckling can be identified as a knee in the
extension plots [Fig. 2(a)], past which DNA length is passed
into the force-decoupled buckled phase [Eq. (21)], resulting
in a steeper decrease of the end-to-end extension. The torque
in the braid shows a small nonmonotonic “overshoot” at the
buckling transition and continues to increase with a small slope
in the coexistence phase. In the coexistence region, the writhe

052401-7

Figure 2.1: Analytical properties of the system, via [14].

These energies depend principally on structural parameters, among which Rp, Pp, Rp, Pp, that are
respectively the radius and the pitch of the straight braid and the plectonemic braid, are the most
important. Given this characterization it is possible to study the system free energy as a function of
the catenation number (Ca) taken as the linking number (see appendix B) between the strands, and
the pulling force applied to the upper extremities (f).

F (Lp,m) = minCas(Es(f) + ∆Fs(f) + E(f) + ∆Fp)

The total free energy of the braid for each fixed plectoneme length (Lp) and number of plectoneme
can be obtained through minimization over the catenation of the straight phase Cas. Along with this
operation it is possible to thermally average over the values of Lp and m to obtain a final expression
for the system partition function Z(Ca, f), by constraining the total catenation Ca = Cas +Cap and

the total DNA length L = Ls + Lp + Γ, with Γ =
√︂

2ϵA
βf .

Z(Ca, f) = e−βF (0,0) +
∑︂

m=1,2,...

L−d∑︂
Lp=∆

e−βF (Lp,m)

The two terms in particular corresponds to the straight phase and to the sum over all possible coexis-
tence states. Through the partition function it is possible so to evaluate the average extension of the
system, ⟨ zL⟩, along with the torque ⟨τ⟩, the number of plectonemese ⟨m⟩ and the length of the straight
braid helical region ⟨Lb⟩. Once calculated it is possible to study such properties, as it represented in
figure 2.1 with different values of the tension f . As it can be noticed, these characteristics depend
on many factors, including the salt density of the solvent, while having a main dependence on the
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catenation number (or catenation density) and on the pulling force. Different conditions corresponds
to different results, and directly affect the plectoneme formation.

2.2 Magnetic tweezers

These theoretical results can be compared to experimental tests in order to prove the results’ accuracy.
Single-molecule magnetic tweezers have proven to be an ideal apparatus to study DNA mechanics,
as they can twist and apply a stretching force to individual DNA molecules or to multiple strands.
These apparatuses were pioneered by the invention of optical tweezers, which manipulate dielectric
microscopic objects with the help of a focused light beam [23]. Magnetic tweezers were soon introduced
after these early implementations to allow the manipulation of paramagnetic beads using a gradient
of magnetic field. This method allows also to accommodate multiple DNAs, with the possibility to
stretch and twist the macromolecules.

The apparatus consists mainly in a flow cell where the molecule is tethered between a glass surface
and a paramagnetic bead through non-covalent bonds resisting to forces up to 100 pN, while the
other extremity is fixed to a non-moving bead [24]. The pulling force is exerted by a magnetic
field applied over the bead, which has its own magnetic moment, and can be changed by moving
the permanent magnets either up or down. This force is experimentally determined through the
computation of brownian motion along one of the main axes. Twisting can instead be introduced
through the rotation of the magnets, allowing to introduce supercoiling and plectoneme formation in
the experimental setting.

Such experimental apparatus also needs a computer program able to track the bead in 3D space
and report the position in real time, along with the presence of a second bead used as a reference
to compensate for the instrumental drift. The beads positioning and the macromolecule’s properties
such as the extension can be measured through the analysis of diffraction images using incident light
with wavelength comparable with the bead size.

BB41CH20-Dekker ARI 3 April 2012 15:38
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Figure 1
Schematic of basic implementation of magnetic tweezers. A molecule is tethered between the surface of a
flow cell and a paramagnetic bead. The magnetic field generated by a pair of magnets induces a magnetic
moment m0 in the paramagnetic bead. The bead experiences a force proportional to the gradient of the field.
The molecule can be coiled by rotating the external magnet. Abbreviations: N, magnetic north pole;
S, magnetic south pole.

In the presence of an applied field, the paramagnetic beads commonly employed in magnetic
tweezers rotate and align to the applied magnetic field. This is explained by either a small perma-
nent magnetic component in the beads or an easy axis in the paramagnetic polarizability of the
beads. The resulting torque exerted on the paramagnetic beads is strong, typically on the order
of 104 to 105 pN nm rad−1 (45, 60), which allows rapid rotation of the beads in the presence of
a rotating magnetic field (20, 41). This property is exploited in magnetic tweezers to coil and
torsionally strain the tethered molecule.

The magnetic bead acts simultaneously as force transducer and position probe. Position mea-
surements in magnetic tweezers are performed using video microscopy. The xy position of the
bead is first determined either by direct fitting of the subpixel location of the bead (center-of-mass
techniques or Gaussian fitting of the intensity profile) (12) or by image-reference (a mirror image,
a previous image, or a predefined kernel) cross-correlation (31, 34). A quantitative comparison of
these tracking algorithms showed that two-dimensional image-reference cross-correlation is the
most accurate and robust tracking method (18). To extract the bead height or z position, which is
a measure for the DNA end-to-end distance, a lookup table of images of the diffraction pattern of
the bead is generated before the experiment that links the bead height to the shape and size of the
diffraction pattern (34). During the experiment, the diffraction pattern of the bead is compared
in real time to the lookup table images and the bead height is extracted after fitting (99). The
vertical force applied to the magnetic bead is calibrated by analyzing the spectrum of the thermal
fluctuations of the bead (85). The effects of finite integration time (101) and finite bandwidth of
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Figure 2.2: Magnetic Tweezer apparatus example, via [25].

The joint use of magnetic tweezers and fluorescently label DNA molecules [8] allows improving the
static imagery obtained through the electron and force microscopy, showing that supercoiled DNA is
plectonemic without giving any information on the dynamics. The combined use of these two tech-
niques allowed getting an almost complete visualization of plectoneme behavior in force constrained
systems, along with structural measurements of the DNA strands themselves.
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2.3 Simulations of 2-strands environments

Since experimental results are difficult to be obtained, a more interesting approach is to try simulating
the studied environments through molecular dynamics. In previous works [17] the use of LAMMPS
allowed to study and reproduce the behavior of two braided strands. The interest of such works is to
reproduce the experimental conditions of magnetic tweezers by fixing the extremities of the strands
to elements representing the beads and the lower walls. DNA is simplified by introducing a coarse-
grained [10] model of DNA through the use of a string of discrete beads emulating the behavior of the
global dsDNA macromolecule. The magnetic tweezer’s bead is instead replaced with a rigid ”wall” of
molecules moving together, to which the simulated braid is bonded. The other extremities are instead
fixed to the bottom of the simulation box.

As for magnetic tweezers, it is possible to measure the main features of such braided systems, as
for example the total extension or the single-strand writhe (see appendix B). With more advanced
methods is also possible to correctly detect plectonemes and study their statistics and dynamics.

46 nm (a faithful description of the elastic behavior of DNA;

see Vologodskii and Frank-Kamenetskii, 1992; Vologodskii,

1994). Each molecule was modeled as a L0 ¼ 1.2 mm chain

consisting of N ¼ 120 rigid segments of 10-nm length each.

This discretization of the molecule (five segments per

persistence length) provides a good enough approximation

of its entropic behavior at low forces F , 10 pN. The

conformations of DNA molecules were generated using

a Monte Carlo Metropolis algorithm (Metropolis et al.,

1953), as described in Materials and Methods. The

configurational space was randomly sampled by appropriate

moves of the chain. The energy of the sampled config-

urations consisted of two terms: First, a bending energy

proportional to the square of the angle (ui) between adjacent

segments (i, i 1 1) and calculated by summing over i ¼ 1,

. . . , N; and second, a potential energy term resulting from the

application of the force (F~), which tends to align all the

segments in its direction (defined as the z axis). A new

configuration was accepted with probability P ¼ 1 if it

lowered the energy of the chain and rejected with an ap-

propriate probability P, 1 (see Materials and Methods) if it

increased it. To check our algorithm we verified that the

simulation of the pulling of two unlinked chains reproduced

the expected elastic behavior of twoWLC in parallel. Shaded

symbols in Fig. 4 shows a force-extension curve obtained

using a numerical simulation with one chain or two unlinked

chains. The excellent agreement between these numerical

data and the WLC predictions demonstrates the accuracy of

our algorithm as a model of the elastic behavior of two DNA

molecules.

When the chains are braided, the number of links n
between the two chains must be kept constant during the

simulation. However, as the moves used to generate new

configurations may modify n, we used Alexander poly-

nomials to assess the linking number and reject moves that

altered it (Vologodskii et al., 1975). We applied the same

method to reject knotted chains, although it was not neces-

sary to perform this check at every move.

A reliable sampling of configuration space requires the

generation of a large number of uncorrelated configurations

(the method used to assess the MC correlation length was

described in Materials and Methods). We typically generated

between N ¼ 108 and 4.109 (mostly correlated) config-

urations, which takes a lot of computer time, especially at

large n (see Fig. 2 in Materials and Methods). As a conse-

quence, we decided to focus on a comparison between

simulation and experimental data for a given separation 2e
between the molecules and DNA’s effective diameter DDNA,

set by the ionic conditions of the experiment (Stigter, 1977).

Extension z (n) versus catenation number n

The extension versus n curves for braided chains greatly

depends on the spacing between the chains. To simulate the

experimental data, we set the spacing 2e between the chains

such that the ratio 2e=L0 ’ 0:36 was the same in the simu-

lation as in the particular experiment shown in Fig. 5. The

electrostatic repulsion between the DNA molecules sets its

effective diameter, which in a solution containing 100 mM of

monovalent salts has been calculated and measured to be

DDNA ¼ 6 nm (Stigter, 1977; Rybenkov et al., 1993, 1997).

To take that repulsion into account we have treated the

chain’s segments as hardcore cylinders of a diameter DDNA.

As shown in Fig. 7 a, a comparison between the simulated

and the experimental data displays a good agreement over

the whole range of catenation densities Ca investigated.

Notice that the extension is sensitive to the value of DDNA:

simulations with DDNA ¼ 5 nm (corresponding to 200 mM

monovalent salt) or 4.2 nm (in 100 mM PB 1 5 mM Mg21)

do not provide as good a fit to the data. However, for Ca .

FIGURE 5 Extension versus braiding for

two DNA molecules and sketches of the

expected geometry of the braid. The open

diamonds are experimental points, obtained at

F ¼ 2 pN in 100 mM PB. We distinguish three

regimes of braiding, based on the geometrical

model described in the text: (I) the regime jnj,
0.5, characterized by a sharp variation with n of

the extension, before the crossing of the two

molecules; (II) the regime jnj . 0.5, where the

molecules are intertwined; and (III) the regime

jnj . nc, where the braids buckle and form

plectonemes (supercoils of braids). Error bars

indicate the statistical errors. A fit of the

experimental data to the geometric model (in

regimes I and II) yield the intermolecular

spacing of 2e ¼ 1.28 6 0.02 mm and braids’

diameter of Db ¼ 8.2 6 0.2 nm (shaded line).

The line in regime III is a linear fit to the data in

the plectonemic regime. The schematics repre-

sent the expected geometry of the braid in the

different regimes.

Braiding DNA 4129
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FIG. 2. Detection of plectonemic domains in braids. (a) Snapshot
of a braid in the plectonemic phase and a zoom showing its two
plectonemes. (b) Contact map referring to the blue chain of panel
(a). The color map provides the distance between the ith and jth
beads (1 ! i, j ! 250) in σ units with a cutoff at rcut = 10σ . The two
plectonemes are described by the two darker regions moving away
from the diagonal: The region within the dashed brown (solid green)
ellipse corresponds to the plectoneme highlighted by the dashed
brown (solid green) ellipse in panel (a). (c) Zoom of the plectonemic
region encircled by the solid green ellipse in panel (a). In the left
snapshot one observes the whole braid, while in the right one only
one chain is shown to better highlight the bending of the chains in
the plectoneme. (d) Zoom on the darker region within the solid green
ellipse in panel (b) corresponding to the plectoneme represented
in panel (c). The portions within the orange rectangle and ellipses
correspond to the plectonemic areas of panel (c) enclosed in the
rectangle and ellipse respectively. The rectangles include the apex
of the plectoneme while the ellipse shows the location of its root.

distance map [Fig. 2(b)]. The portion of these regions closer
to and farther from the diagonal represents, respectively,
the apices and the roots of the plectonemes [see Figs. 2(c)
and 2(d)].

More precisely, the algorithm to detect plectonemes
through distance maps works as follows. First, we use a
threshold Rmax to identify the set of “contacting beads” for
which ri, j ! Rmax [these are the darker regions in the maps in
Fig. 2(b)]. Then we measure the positions of the plectoneme
extremities [i.e., the points in the ellipses in Fig. 2(d)] and use
these to determine the plectoneme length. In our algorithm,
plectonemes retained in the subsequent analysis were required
to be larger than an additional threshold 1p (measured in units
of σ ) [17].

Note that every distance map refers to a single chain: This
means that we study plectonemes in each filament separately.
Sometimes a chain wraps around the other locally forming
a solenoidal structure whose beads satisfy the conditions
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FIG. 3. Thermodynamics of the transition between the straight-
braid and plectonemic phase. (a) Overall fraction of plectonemic
length ⟨Lpl⟩/L0 (L0 = Nσ with N = 250) as a function of Ca for
f̃ = 11 (red squares) and f̃ = 8 (blue circles). ⟨Lpl⟩/L0 becomes
nonzero above a critical catenation number Cac = Cac( f̃ ), where
plectonemes form. For each pair of (Ca, f̃ ) values, averages have
been taken over 10 trajectories. (b) Mean normalized end-to-end
distance < Z > /L0 versus Ca curves for f̃ = 11 (external curve)
and f̃ = 8 (internal curve). (c) Numerical estimate of the equilibrium
phase diagram in the (Ca, f̃ ) plane. The transition line (gray circles)
between the straight-braid and the plectonemic phases has been
determined as the set of point at which the order parameter ⟨Lpl⟩/L0

deviates from zero. Note that the range of forces considered was cho-
sen as this leads to better plectoneme detection. For braids made up
by two double-stranded DNA molecules of thickness 2.5 nm, these
values correspond to ∼10–20 pN, larger than in normal experiments
[6]. Note that we cannot directly compare our phase diagram with
that of the previous numerical work in Ref. [11], as the value of d/L0

and the range of values of f are different in the two cases.

determining a plectoneme: In this case our method of counting
plectonemes can provide Nb plectonemes for the blue chain
and Nr ̸= Nb plectonemes for the red one. To avoid an over-
estimate of the number of plectonemes, we assume that this
number is given by min(Nb, Nr ).

III. RESULTS

A. Equilibrium phase diagram

The results obtained for different (Ca, f̃ ) pairs are summa-
rized in Fig. 3. In thermodynamic equilibrium, and over the
range of parameters we analyze, the braided polymers can be
in one of two phases [Fig. 3(c)]. Either the chains wind around
each other without coiling in 3D [straight-braid phase, see

052503-3

Figure 2.3: Plectoneme formation dependence on catenation via [12] (a), phase diagram, via [17] (b).

One of the main interesting points to analyze is the phase transition between the so-called ”buckling”
and ”braided” phases. This kind of transition usually corresponds to the critical set of catenation
number and force needed to allow plectoneme formation, and it usually corresponds to a change in
slope of the braid extension plot vs force, as the formation of non-braided structures contributes to the
reduction of the vertical elongation of the system. In figure 2.3 one can see how the phase transition
is defined by a set of points, possibly joined by a transition line, through which it is possible to move
from the braided structure to a buckled one presenting plectonemes.

It is possible with advanced methods to study also the dynamics of plectonemes, observing non-trivial
phenomenons such as jumping and merging. These can be represented in Kymograph (figure 2.4), to
represent the behavior of plectonemic structure.

PLECTONEME DYNAMICS AND STATISTICS IN BRAIDED … PHYSICAL REVIEW E 99, 052503 (2019)

FIG. 5. Plectoneme dynamics at equilibrium. Kymograph of a pair of braided polymers, each of length L0 = Nσ = 250σ , with a fixed
catenation number Ca = 31 and subject to a stretching force f̃ = 6. On the x axis one finds the time in Lennard-Jones units, while n/N on the
y axis gives the relative position along the braid (n/N = 0 and 1 correspond to the bottom and top of the chains, respectively). Plectonemes
are visible as yellow (light gray) regions bounded by red (dark gray) points and they always form within the two dashed lines representing the
upper and the lower forks of the braid. The snapshots in panels (A)–(F) correspond to specific events occurring in the plectoneme dynamics.
First, we observe the growth of a single plectoneme which can diffuse but also go through fission [between (A) and (B)] and fusion events
[after (B)]. A plectoneme can also hop from a position along the braid to another one far away [(C) to (D)]. There is also evidence of 1D
Ostwald ripening dynamics [(E) to (F)].

FIG. 6. Comparison between dynamics of plectonemes at equilibrium. (a) Kymograph of a simulation taken at the point (Ca, f̃ ) = (32, 8).
In the phase diagram this point is located close to the transition line. On the left y axis the normalized plectonemic position n/N is reported:
Yellow (light gray) points correspond to beads within a plectoneme, while the red (dark gray) ones indicate its extremities. The solid blue curve
describes the time evolution of the normalized end-to-end distance, Z/L0 (see the right y axis). One can notice the formation of a gas of small
plectonemes where each domain is enclosed within the lower and the upper forks of the braid (see black dotted lines). (b) This kymograph
refers to a trajectory simulated at (Ca, f̃ ) = (32, 6), i.e., well inside the plectonemic phase. In this case larger and more stable plectonemes are
present. Notice events such as fission [(A) to (B)] and fusion [(C) to (D)] between plectonemes.

052503-5

Figure 2.4: Kymograph, via [17].

A deeper insight of this topic can also include cases in which there is a kink in one of the chains,
giving a complete different dynamics. In this work such topics will not be discussed, as the main focus
will be on the influence of braid geometry on both the plectoneme dynamics and the phase transition
displacement.



Chapter 3

Simulation settings and configurations

With the premises already done for the standard case (2 strands), it is possible to start discussing more
and more complex environments. Given the increased interest in understanding the conditions and
the behavior of DNA and chromatin [26], and on the form of structures generated by the braiding of
multiple strands [20] it was decided to explore three-strands configurations, to understand if and how
the theoretical and analytical results already found for the simpler cases could explain the behavior
of the new system, and to discuss how different braid geometries influence the properties of the phase
diagram. To characterize such phenomenons the first step was to introduce computational simulations
in which an additional strand joins the standard two. Starting from previous approaches [17] the
same LAMMPS configuration was instantiated with the additional potentials and settings necessary
to simulate a three-strands system.

3.1 Polymer model

The polymer model considered during coarse-graining of the dsDNA structure is the standard worm-
like model, where each bead of the strand is linked to the following one and the previous one through
a harmonic potential, with the aim of representing the covalent bonds as ideal springs [18]. In this
model, such interactions will be coded using potential both for two body interactions (single beads),
and three body interactions (sequence of bonded beads).

For non-consecutive beads with spatial distance r the potential used is a Lennard-Jones one, with a
fixed cutoff rc = 6

√
σ +∆ [17].

E = 4ϵp

[︄(︃
σp

r −∆

)︃12

−
(︃

σp
r −∆

)︃6
]︄

r < rc +∆

For consecutive beads instead, the potential used is FENE [27] + LJ:

E = −0.5KeR
2
0 ln

[︄
1−

(︃
(r −∆)

R0

)︃2
]︄

⏞ ⏟⏟ ⏞
FENE

+4ϵp

[︄(︃
σp

(r −∆)

)︃12

−
(︃

σp
(r −∆)

)︃6
]︄

⏞ ⏟⏟ ⏞
LJ

+ϵp,

where, beside the Lennard-Jones parameters σ, ∆ and ϵ, the dependence is on R0 and Ke, respectively
the maximum extension of the bond and its strength. This summation is necessary for the potential
to be both repulsive (LJ), and attractive (FENE).

The three-body interaction instead emerges when considering groups of three beads each. In particular,
given the angle θ formed by three consecutive beads, the potential is given by the following equation:

E = K[1 + cos(θ)],

7
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Figure 3.1: Comparison of the three potentials.

where K depends on the persistence length of the worm-like chain, and so is set accordingly. In the
discussed case the persistence length is estimated to be 50 nm [17] and K assumes such value once
rescaled according to the conventions (see next section).

3.2 Setting parameters

Each parameter is measured according to the Lennard-Jones units, which rescale the standard units
according to the σ,∆,ϵ parameters of the Lennard Jones potential. Energy is so rescaled as E∗ = E

ϵ ,
while distance becomes x∗ = x

σ and force is F ∗ = F σ
ϵ .

The σ parameter depends on the simulated system, and in this configuration it corresponds to the
diameter of double-helix DNA, estimated to be around 2.5 nm. The ϵ parameter can be calculated
instead as ϵ = KbT , where T is the system temperature, fixed at 300 K, giving so ϵ = 4.14 · 10−21J .
The mass in this system is a unitless ratio with a reference mass, that in the simulations is considered
to be the mass of the beads composing the chain, while the beads of the moving ”wall” have a mass
fixed at 0.001. Finally, the time is scaled to the typical time of the system τ , the one needed for a
bead to cover a diffusion length of σ. This can be calculated using the formula σ2 = 2Dτ , where
D = KbT

fη ,η is the viscosity of the water, η = 1mP
s and f a geometrical factor, that, for the spherical

beads, can be calculated as f = 3π
2

σ3η
KbT

, giving τ = 17.8ns.

Using this particular rescaling it is possible to fix the potential parameters, σp = σ
σ = 1, ϵp = ϵ

ϵ = 1,
∆ = 0 for strings’ beads, while for the wall’s beads ∆ has an higher value to take into account a larger
bead diameter. For the bond potential, parameters are fixed to R0 = 1.5, Ke = 30, while for the angle
it was decided to assign K = 50

σ ≈ 20.6. The timestep is instead fixed at t = 0.0025τ ≈ 0.0445ns.

3.3 Dynamics

The dynamics of the system can be considered fully only by taking into account different phenomenons.
The main interest of the discussed simulations is to reproduce the behavior of the strands through the
coarse-graining and the beads’ movement. The integration of the Langevin equation allows to obtain
a temporal expression for such quantities.

m
d2r⃗i
d2t

= −∇Ui −λ
dr⃗i
∂t⏞ ⏟⏟ ⏞

viscous force

+ η⃗(t)⏞⏟⏟⏞
stochastic force

,

where Ui is the total potential on the bead i. In the equation both the natural viscosity of the fluid
the strands are solved in, and stochastic force accounting for the collisions with the fluid particles are
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taken into account and iterated to reproduce the braid displacement. The interaction between the
strands and the lower wall is instead implemented through a harmonic repulsive potential, reproducing
the effect of a spring with a high elastic constant.

E = ϵ(r − rc)
2 ϵ = 200, rc = 1

The forces used in the tested cases are applied to a single bead, placed in the center of the upper rigid
”wall”, allowing to pull the braid with a chosen strength. Rotations are instead implemented directly
on such wall and influence directly the braid, introducing non-zero linking numbers.

3.4 Simulation environment

The environment considered during the simulations is not very different from the already discussed
two-chain case. The strands were chosen to be composed of 250 beads with diameter fixed to σ, while
the upper wall size was adapted to the different discussed geometries. To improve the knowledge
on such multi-stranded chains it is in fact necessary to test different configuration, by changing the
chains’ displacement on the two anchoring xz planes, while y becomes the axis on which the braid is
vertically distributed.

Figure 3.2: Wall and beads positioning, with distance between red and blue strands anchoring points fixed at
42σ.

It was decided to braid both aligned and ”triangular” fashions of braids, as it can be seen from figure
3.2, while changing the relative distance of the strands’ extremities. This allowed both to explore
the effects of the simple addition of a chain beneath the other two, and to verify the outcomes of
the presence of a ”disturbing” strand misaligned with the original configuration. From now on, when
discussing the results, the configurations with three chains will be referred as 3-strands, while the one
with two chains will be referred as 2-strands.



10 CHAPTER 3. SIMULATION SETTINGS AND CONFIGURATIONS



Chapter 4

Aligned strands

A first approach to new configurations with three strands was to place a third strand in between the
original two. This new chain maintains the properties of the original ones while constituting an obstacle
during the braiding process, being in the middle of the other two strands. The stress related to the
third strand getting stuck in between the other two allows the system to reach different conformations
and influence the phase transition process. Four different configurations were prepared in order to

(a) (b)

Figure 4.1: Aligned configuration with distance between red and blue strands anchoring points fixed at 42σ, in
(a) the third strand (yellow) is placed exactly in the middle, while in (b) it is placed at the 65% of the distance
between the main strands.

appreciate different features of the newly discussed configuration, in particular by considering different
relative distances between the external strands. This value was fixed alternatively to 6σ and 42σ in
order to compare new results to the old ones. For what concerns the geometry the newly generated
strand was placed in the middle of the other two, or at the 65% of the segment joining the external
chains’ extremities, as shown in figure 4.1.

Such configurations are then taken and rotated by applying a large force (40 pN, or eventually more)
to keep the braid configuration as much as extended as possible while the rotation was rigidly applied
to the upper wall. The final configuration is different for each chosen catenation number (in this case
representing both the number of rotations and the linking number between pairs of strands). The
final analysis was then done on the equilibrated configuration obtained while pulling the braid with
different forces.

As seen in chapter 1 the braided phase is analytically modelled as a double helix with an average pitch
and radius. With three strands the system is more and more complex, but the helicoidal structure

11
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(a) (b)

Figure 4.2: Braided aligned configuration (Ca=26, F=28.35 pN) with distance between red and blue strands
anchoring points fixed to 42σ. In (a) the third strand is placed in the middle, in (b) is placed at 65% of the
segment.

seems to be conserved as it can be noticed in figure 4.2. Tests were also done to check if results
obtained for positive catenation number were identical to the ones obtained for negative catenation
number (anticlockwise rotations). This has proven to be true for all the tested cases (even the ones
with shifted third strand), for which all the main features were identical (e.g. extension, plectoneme
number and total length) or opposite (e.g. single strand writhe).

4.1 Distance 6σ between anchoring points

4.1.1 Main features

A first analysis is based on the extension vs force curves, calculated as the ratio between the average
extension during equilibrium simulation of the three chains and their maximum extension possible (
250σ). It is possible to verify that the appearance of non-braided structures is deeply linked with a
change in the trend in the extension plot, since the structure moves from a helix-like configuration to
a ”buckled” one in correspondence to the transition. To get an estimated extension, the final value
for each tested configuration was obtained by averaging over the considered strands and the total
time the simulation was run. In order to get the least biased possible average and standard deviation,
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Figure 4.3: Time and strand-average end-to-end vertical distance for the aligned case with base length 6σ(a),
and the 2-chains case with distance 6σ(b).

the samples taken into account were selected according to the integrated autocorrelation time [28],
by sampling a subset of values in order to get the least possible autocorrelation. In addition to this
the computation was done only when the braid was fully equilibrated, by excluding the first 5000000
steps. It can be noticed how the change in the number of strands affects a lot the average extension,
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mainly in the shape of the line, while, as expected, the buckling transition seems to be present also
for these configurations with a sudden change in slope. In this case the transition positioning is much
different from what can be seen in the 2-strands case, with a shift in catenation number of almost 10
as it can be observed in figure 4.3.
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Figure 4.4: Time-average single-strand writhe for the aligned case with base length 6σ(a), and the 2-chains
case with intertheter distance 6σ.

The single strand writhe in figure 4.4 can also be calculated and compared to the two chains case.
It can be noticed how the transition between buckled and unbuckled phase is clearly marked with
a change of slope and the behavior is pretty much the same, beside the translation due to change
in geometry of the system. This is in general associated to the transformation of local twist in
writhe inside non-braided structures, increasing the total writhe value. These results come from a
single strand, the first one, since for all the analyzed chains the total writhe was almost equal. The
final value was also calculated according the integrated autocorrelation time in order to improve the
computation reliability.

4.1.2 Phase diagram and phase transition

The phase diagram transition points were obtained by fitting with a double curve the extension vs force
plot. In particular a straight line was used to fit the right part of the diagram, while a parabolic curve
was instead used in the left part in order to adapt to the two trends presents in such diagrams. Points
were selected arbitrarily in order to obtain the best accuracy for the double fit and the transition point
identification. Two cuts were made for each fitted diagram, one horizontally, to divide the buckled and
unbuckled zones, and a second one vertically, to avoid fitting on regions where the graph was no more
approximable with a parabolic or linear behavior respectively. The intersection between these two
lines was then calculated and used as a reference for the phase diagram definition. The fit precision
is usually very far from perfection, especially for the two chains case, but can give a very reliable
estimation of the transition points displacement for the different discussed cases along with the error
associated to the intersection accuracy.

From the phase diagram in figure 4.6 it is possible to observe the already discussed effects of the change
in geometry on the phase transition displacement, with a massive shift in the critical catenation at
fixed force. This effect can be partially explained by force rescaling if the three chains are thought to
be simple springs, with the global elastic coefficient expected to be 3

2 of corresponding one measured
for two strands. In parallel the shift in catenation is on the other hand more difficult to rationalize
and may be associated to the deep implications of the helix geometry change in the three chains case.
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Figure 4.5: Time and strand-average end-to-end vertical distance for the aligned case with base length 6σ(a),
and the 2-chains case with intertheter distance 6σ(b). The superposed lines represent the two fits’ result.
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Figure 4.6: Phase transition diagram for the aligned case with base length 6σ(a), and the 2-chains case with
intertheter distance 6σ(b).

4.1.3 Plectoneme statistics

Plectoneme appearance has a whole different set of problems for detection. In fact, it is in general
difficult to detect the presence of a plectoneme without looking by eye at the simulated configuration.
To avoid this necessity numerous techniques were tested, from the use of contact maps [17] to the
exploitation of local writhe [29]. The first approach consists in analyzing the relative distance of each
pairs of beads and verify if any combination that would be very distant in a normal configuration
(with straight strands) is closer than a fixed threshold. Eventual anomalies can be directly associated
with the presence of non-straight braids and plectonemes formation. This method allows to detect
both visually and computationally the alleged plectonemes that were found in the simulated strands,
and it works optimally in the 2-strands case.

The contact map in figure 4.7 shows the presence of plectonemes through eyesight. This approach
can be also coded using algorithms to translate the method in a more functional way, by checking
automatically the distance between beads. A plectoneme is in fact detected if the distance between
the selected beads is smaller than a chosen value and the index difference is higher than another fixed
threshold.

The different used thresholds are associated to the different configurations considered during the
analysis. These thresholds are calculated by approximating the minimum possible loop that can be
generated as a circle with radius dependent on the kind of configuration. In figure 4.8 two examples
of the minimum possible configurations are shown with their relative threshold parameters. For the
2-strands case this radius can be in fact approximated to 2σ, while for three strands is 3σ, giving
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Figure 4.7: Contact map in a three strands case with distance threshold 10σ. The image refers to a step
in the simulation with force fixed at 10 pN and catenation fixed at 31 (a). Non plectonemic(b) and quasi-
plectonemic(c) structure formation in linearly aligned configurations at pulling force fixed to 16.6 pN with
catenation respectively 30 (b) and 31 (c).

the threshold of respectively 13σ and 18σ, obtained through the multiplication by 2π. The distance
threshold is instead fixed at 3σ for both cases. After having detected the alleged plectonemes for each
chain, if their position is superimposed they are merged by taking the average of detected begin and
end indexes. This is done for each chain, with the final position and number of plectonemes obtained
from the chain with the least plectonemes, to avoid overestimation of both total length and number.

(a)
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3σ

3σ(b)

2σ

3σ
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3σ

Figure 4.8: Thresholds used for the two different discussed cases.

This method has proven to be working well in the case of two strands, where almost all the plectonemes
were correctly detected, except for some cases in which non-plectonemic (e.g ”solenoids”) structures
were confused as plectonemic ones. The detection problem become very relevant when discussing
configurations with three chains, in which ”solenoidal” [11] configurations become prevalent in the
braid after the buckling transition has taken place.

As it can be seen from figure 4.7, solenoidal structures are not strictly plectonemes but some sort of
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intermediate configuration between the straight braid and a plectonemic one, representing sometimes
nucleation point of plectonemic structures. Despite this structural difference they contribute to the
change in extension and in writhe with continuity with the standard plectonemic phase and so cannot
be separated in the phase diagram directly from it. During the detection they can be easily confused
with plectonemes and so, to avoid recognition problems associated to these kinds of structure, there
was in fact the necessity to introduce a new method to discriminate the false positives identified as
plectonemes with the original technique. Starting from the alleged list of plectonemes positions, it
is possible to calculate the local writhe of the single strands to find peaks possibly corresponding to
plectonemes [29]. This allows to exclude non-plectonemic structures that instead do not present a
local peak in writhe.
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Figure 4.9: Local writhe for the case with force fixed at 10 pN and catenation 30 for a three chains configuration
(a). Corresponding braid configuration (b).

As it can be noticed from figure 4.9 the presence of plectonemes is clearly visible and distinguishable
from both solenoidal and braid phases with lower local writhes. The computation was then exploited
within a window of 16 position, and the cut on the peaks fixed at 0.5. Only detected plectonemes
satisfying these prerequisites were actually taken into account during the analysis.
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Figure 4.10: Time-average detected number of plectonemes for the aligned case with base length 6σ(a), and
the 2-chains case with intertheter distance 6σ(b).

As it is possible to notice from figure 4.10 plectoneme appearance follows for low catenation numbers
and small forces a trend similar to what seen for the two chain case, shifted according to the new
phase transition rule, while the global behavior is instead very different. It can be seen that for very
large forces plectonemes are not even present, leaving room mainly to solenoidal structures, while for
large catenation numbers the braid forms a very disordered configuration reducing to a very small
globular structure, that will be discussed later in chapter 6.
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Figure 4.11: Time-average cumulative plectoneme length for the aligned case with base length 6σ(a), and the
2-chains case with intertheter distance 6σ(b).

The length trends in figure 4.11 are also similar to what was seen in the two chains case, with the
simulations run at smaller forces giving larger total normalized length. The total length begins to
decrease as before, when the catenation number is too large, with the estimation becoming very noisy
due to the small number of detected plectonemes.

Globally the most reliable analysis can be done only up to a certain catenation number (≈ 40 in this
case), beyond which the conformations are too compressed, and it becomes very hard to drive any
conclusion.

4.2 Distance 6σ between anchoring points, third strand shifted

The second configuration that was taken into account consisted in a three-strands geometry with
the additional chain shifted toward the red chain in representations. This kind of configuration was
produced in order to check if the geometry of such systems has any symmetry dependence on the
position of the chain. Graphically it was possible to notice in simulations that the main difference in
the introduction of this change was related to the positioning of the braid, as it seemed more shifted
towards the initial position of the third chain.
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Figure 4.12: Time and strand-average end-to-end vertical distance for the aligned and shifted case with base
length 6σ(a) and for the aligned case with base length 6σ(b).

As it can be observed from figure 4.12 the main characteristics remained instead unchanged with the
resulting extension behavior almost identical to what was seen in the previous case, with the absence
of any significative change in both the values and the trends. This result is probably associated to
the invariance in braid length between the two discussed cases, with the distance between the three
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strands being not large enough to influence the phase diagram, as it can be also observed in figure
4.13.
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Figure 4.13: Phase transition diagram for the aligned and shifted case with base length 6σ(a), and the aligned
case with base length 6σ(b).

It is possible to conclude so that plectoneme and buckling statistics are not influenced by these change
in geometry, at least for the configuration with distance between the external chains equal to 6σ.

4.3 Distance 42σ between anchoring points

To trigger possible new results it was decided to explore configurations involving larger distances
between the ”external” strands, trying to exploit new behaviors in phase transition and plectoneme
dynamics. In this kind of configurations the displacement of the strands reduces the available length
of the braid, since the initial and final parts of the chains are required to link the extremities to the
braid ends, as it can be seen from figure 4.14.

(a) (b)

Figure 4.14: Braided aligned configuration (Ca=26, F=28.35 pN) with different distances between anchoring
points. In (a) the base length is 6σ, while in (b) is fixed to 42σ.

4.3.1 Main features

As expected from the new geometry the extension plot in figure 4.15 is much different from what seen
in the case with smaller displacement distance(6σ), with a very noticeable shift to the left in the x-axis
and a steeper slope in the first part of the graph. Instead, if it is compared to the old two-chains case
the shift in catenation number is clear, and similar to the one already noticed in the previous sections.

Similar observations can be also done for the single-strand writhe in figure 4.16, with a shape similar
both to the old two-chains case and to the (d = 6σ) case of the previous sections. The shape change
associated to the buckling transition is present in the graph, while the points associated to the different
tested forces seems to be tighter than what was seen in the previous chapters.
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Figure 4.15: Time and strand-average end-to-end vertical distance for the aligned case with base length
42σ(a), and the 2-chains case with intertheter distance 42σ(b).
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Figure 4.16: Time-average single-strand writhe for the aligned case with base length 42σ(a), and the 2-chains
case with intertheter distance 42σ.

4.3.2 Phase diagram and phase transition

As was done for the d = 6σ configuration it is possible to analyze and discuss the plectoneme statistics
if the geometry is widened. From what was already seen in the extension plot vs catenation discussion
it can be concluded that the phase transition thresholds has changed with an additional shift in
catenation number. This reflects in the plectoneme population, that resembles the one already seen
in the previous sections, with a difference in the minimum catenation number required to develop
plectonemes. Besides, the global behavior is mostly similar, with the already highlighted increase in
number before a successive decrease visible in figure 4.17. If compared to the two-chains case the
average number of plectonemes is much smaller, but it is possible to notice similar trends on the
largest tested catenation numbers. The total plectoneme length in figure 4.11 offers a behavior similar
to the average total number of plectonemes, with less accurate measurements probably associated to
the noise. Again, the trends in the two-chains and three-chains cases are very different, with the same
peculiarities already observed for the number of plectonemes, while the presence of some unexpected
peaks in the high catenation zone are probably associated to the low statistics present for the analysis.

Finally, it is possible to discuss the transition plot obtained from the intersection of the two lines
fitting the extension plot. The graph in figure 4.19 seems to highlight the additional shift that was
present in both the extension plot and the plectoneme statics. The change in geometry has a large
influence on the phase diagram, and is probably associated to the decrease in the length of the braid.
Such change adds stress to the configuration and forces to express it through solenoidal or plectonemic
formations. More tests were done using this configuration, including the movement of the middle chain
along the axis linking the two main strands, to check if any dependence on symmetry could influence
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Figure 4.17: Time-average detected number of plectonemes for the aligned case with base length 42σ(a), and
the 2-chains case with intertheter distance 42σ(b).
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Figure 4.18: Time-average cumulative plectoneme length for the aligned case with base length 42σ(a), and
the 2-chains case with intertheter distance 42σ(b).
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Figure 4.19: Phase diagram for the aligned case with base length 42σ(a), and the corresponding two chains
case 42σ(b).

the discussed results. None of them showed any valuable difference from the ones presented in this
section, allowing to conclude once again that stronger effects can be only induced with a stronger
change in geometry.

These results were already presented in a previous work for 2-strands cases [17], where this effect was
linked directly to the change in the distance between the anchoring points of the chains. Similarly
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to what was observed before, a geometric change (previously a distance increase between anchoring
points, now the addition of a third chain) influences a lot the phase diagram, mainly by reducing
the critical catenation number at fixed force. Such geometrical change affects also the way in which
buckled structures are manifested, with the increase of solenoids population and the diminishing of
plectonemic structures. In the next chapter it will be then discussed how the third chain anchoring
point displacement allows too to change the system stress, triggering similar phase diagram variations.
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Chapter 5

Triangular layout

This chapter will deal with more general configurations allowing a free displacement of the braids
extremities in the xz plane, such that they will distribute as triangles with different side lengths. This
approach was tried to study more in general the effect of the third chain once added to the two-chains
configurations, without any constraint associated to the alignment of the strands.

Figure 5.1: Braided triangular configurations with side length equal to 42σ at catenation number equal to 26
and applied force 28.35 pN. Image tilted for visualization necessities.

Cases tested concerned the same distances between external strands, with 6σ and 42σ lengths, which
can be compared to the ”aligned” cases discussed in chapter 4. The angles at the base of the considered
triangles instead varied in the range between 15◦ and 80◦, allowing to study different configurations
of braids. All the tested configurations were isosceles, given that, as it will be seen later, the only
parameter that affects the phase transition seems to be the distance between the newly added strand
and the other two.

5.1 Equilateral configuration with base 6σ

As done in chapter 4 the first tested configuration involved a distance between the starting strands
equal to 6σ. The choice of an equilateral triangle (60◦ base angles) was done to get the most balanced
configuration possible, with the upside of a symmetrical displacement.

Repeating the analysis already done in chapter 4 it was possible to get some insights of the new
behavior, along with a comparison to old results. In figure 5.3 are present side by side the average
extension values in the aligned and triangular configuration. The resulting trends are practically
identical between the different configurations, with both the values and the slope change distributed
in the same exact way. This kind of behavior is repeated in the writhe plot in figure 5.4, showing again

23
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(a) (b)

Figure 5.2: Braided equilateral triangle configuration (Ca=26, F=28.35 pN) with base length 6σ between red
and blue strands anchoring points and aligned configuration. In (a) the strands form an equilateral triangle,
while in (b) are linearly aligned. Image tilted for visualization necessities.
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Figure 5.3: Time and strand-average end-to-end vertical distance for the equilateral triangle configuration
case with base length 6σ(a), for the aligned case with base distance 6σ(b).
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Figure 5.4: Time-average single-strand writhe for equilater triangle with base length 6σ(a), for the aligned
case with base distance 6σ(b).

the slope change expected and associated to a buckling transition distributing almost identically to
the one for the aligned configuration. From these comparisons it seems possible to conclude that the
braid buckles in the same exact way it did in previous configurations. The geometry may be a critical
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factor in this result, since from the simulation representations (figure 5.2) it is possible to notice that
the triple helix seems to have identical structure and feature if compared to the aligned one. The
resulting identical behavior may be a direct consequence of this conformation.

A final comparison can be done using the phase diagram of figure 5.5. Given that the points were
obtained in the same way for the two cases, the results are very similar if not almost identical,
confirming once again the similarities between the two configurations. It is possible to conclude that
the phase transition, even if limited to the buckled and non-buckled phases, is practically identical
between the two geometries.
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Figure 5.5: Phase transition diagram for the equilater triangle configuration with base length 6σ(a), and the
aligned case with base length 6σ(b).
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Figure 5.6: Time-average detected number of plectonemes for the equilateral triangle case with base length
6σ(a), and the linearly aligned case with base distance 6σ(b).

More confirmations about these results can be obtained from the plectoneme statistics, in particular
from the average number of plectonemes (figure 5.6) and the average total length (figure 5.7). Both
the trends seems to be replicated between the two geometries given the statistics over which they
were calculated. From these results it is possible to conclude that the change in configuration between
aligned and triangular with fixed base in this case is not sufficient to induce additional effects in the
statistical behavior of the system. It is possible to generalize this conclusion to triangles with different
base angles, from the smaller ones between the tested cases (15◦,15◦) to the larger ones (70◦, 80◦). As
it will be more clear in the following section, the change in geometry itself may not be sufficient to
trigger new kind of effects. The increase in relative distance could be more effective but in this case,
even for the cases with the highest base angles values (70◦, 80◦), it was not possible to appreciate any
change.
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Figure 5.7: Time-average cumulative plectoneme length for the equilateral triangle case with base length
6σ(a), and the linearly aligned case with base distance 6σ(b).

5.2 Comparing different configurations with base 42σ

The strong similarities between the tested triangular configurations for the 6σ case suggests us to
focus on larger triangles, such as those with base length 42σ. From some early simulations done with
this kind of geometry it was possible to notice at first that with small base angles the behavior was
as similar to the aligned case as it was for the 6σ configurations, with almost identical results in
extension, single strand writhe and plectoneme statistics.

(a) (b) (c)

Figure 5.8: Braided triangular configuration (Ca=26, F=28.35 pN) with base length 42σ between red and
blue strands. Base angles are 30◦ in (a), 60◦ in (b) and 68◦ in (c). Images tilted for visualization necessities.

Such initial confirmation of the equivalence of aligned cases to small base angle configurations brought
the attention to more and more scattered triangles. The most interesting between them involved
angles of 30◦, 60◦, 68◦, depicted in figure 5.8, for which it was possible to notice the first differences.
In the following sections a global comparison of these four cases will be discussed to highlight the
effects of the third chain movement and possible relations between relative distance and plectoneme
generation.

5.2.1 Main features

As for the already discussed cases the analysis restricted on the extension of the braid, the single
strand writhe and the plectoneme statistics. By looking at the extension vs catenation graph in figure
5.9 it is possible to notice a first interesting phenomenon: as the distance between the third strand
and triangle base formed by the other two strands increases the extension vs catenation plots curves
move to the left. This trend finds a direct confirmation in the shifting of the catenation necessary to
go through the phase transition at fixed force, that for the case with force fixed to 13.3 pN moves from
25 in the aligned case, to 20 in the case with base angles equal to 68◦. Beside that the behavior is
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almost equal and highlights once again the presence of a buckling transition despite the strong change
in geometry.
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Figure 5.9: Time and strand-average end-to-end vertical distance for the triangular configurations with base
length 42σ(a). Base angles are 30◦ in (b), 60◦ in (c) and 68◦ in (d), while (a) represents the linearly aligned
configuration.

Coming to the plectoneme formation, that as discussed before has only a minor dependence on the
buckling transition itself, the average number of plectonemes in figure 5.10 seems to confirm the trend.
The plectoneme formation requires each time a lower catenation number, inducing a change in the
critical value from a maximum of 25 to a minimum of 20 for the smallest analyzed force (10 pN). It
is then possible to conclude that in the four configurations considered the change in geometry has a
double effect, both on the location of the buckling transition and on the plectoneme formation.
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Figure 5.10: Average plectoneme number for the triangular configurations with base length 42σ(a). Base
angles are 30◦ in (b), 60◦ in (c) and 68◦ in (d), while (a) represents the linearly aligned configuration.
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5.2.2 Phase transition dependence on third chain positioning
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Figure 5.11: Phase transition diagram variation for triangular and aligned configurations with base length
42σ.

The phase diagrams for different cases shown in figure 5.11 highlight the already observed shift of
the transition line. This kind of phenomenon seems to be directly associated to the distance of the
additional chain from the triangle base, as it is present only for the configurations with the largest
relative distance, while its importance increases with the base angles values.

This behavior could be directly linked to the discussed reduction of the available braiding length. As
it can be seen from simulations in figure 5.8 the positioning of the third chain influences the length of
the straight parts of each chain, reducing the total braid length. Such phenomenon could be critical
for the buckling transition and the plectoneme formation, as the amount of stress added in such
configurations, if compared to the aligned case, could ease the formation of plectonemes or solenoids
by reducing the amount of catenation necessary to get non-braided conformations. To improve the
knowledge of such behaviors it is necessary to investigate more deeply how plectonemes forms in such
setups.
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Chapter 6

Plectoneme dynamics

After having discussed in detail the average properties of the braided strands in different geometri-
cal setups it is possible to have a general idea of how plectonemic and non-plectonemic formations
are influenced by multi-stranded braid configurations. The plectoneme formation in particular has
proven to be more limited if compared to the two-strands case in the same catenation settings. The
reduced number and cumulative length are in fact a sign that the geometry has a large influence in
these behaviors. It is possible now to focus on the structures themselves and to study both their
formation and dynamics at different catenation and force settings. It will be then possible to discuss
the phenomenons happening near the phase transition and deeper in the buckling phase.

The presence of a phase transition in general implies a sudden change in the presence and absence of
plectonemes. Simulations instead suggested the existence of intermediate phases in which the more
favorable states consists in the presence of solenoidal [11] structures instead of plectonemic ones.
These two kind structures usually coexists, and sometimes alternate, with solenoids sometimes being
even nucleation points of plectonemes despite the different structure and characteristics. Solenoids
represent an intermediate configuration which, as it will be seen, allows to squeeze the braid’s helicoidal
structure. Such structures, as observed in previous chapters, are along with plectonemes responsible
for the shape change in the extension vs catenation graph after the buckling transition. From such
point of view these two kind of formations belongs to the same buckling phase, given that it is not
possible to identify a secondary transition point in any of the studied variables.

Figure 6.1: Example of non-plectonemic related coiling for an aligned configuration with base length equal to
42σ, with catenation number 26 and applied force 16.6 pN.

To improve our knowledge about these structures it is interesting to analyze the behavior near the
true solenoidal-plectonemical transition, instead of the old buckling transition, in order to understand

31
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how continuous the passage is. While exploring the middle phase it is possible instead to observe the
old plectonemic structure in a new fashion, and finally, for larger catenation numbers, observe strange
globular complexes obtained as a result of the stressed braid. Kymographs present in this chapter are
showing the plectoneme positioning and displacement and are obtained using the detection method
discussed in chapter 4. Their accuracy varies a lot depending on the studied configuration, showing
that more efforts should be done to improve the detection method, in particular to avoid losing track
of plectonemes in highly packed braids.

6.1 Dynamics close to the buckling phase transition

6.1.1 Base size 6σ

Given the substantial equivalence between all the discussed cases with base length 6σ it is possible to
discuss a single case (the linear aligned one) and share the conclusion with all the others. From now
on all the presented results will use then as a reference the aligned case that, as discussed in chapter
4, has the most general behavior.

The first expected results, present both in simulation visualization and plectoneme detection, is that
the plectonemes manifest themselves only with catenations larger than the ones calculated theoretically
for the buckling transition. For example in the case with forces equal to 16.6 pN the lower theoretical
bound for the buckling transition is estimated to be ≈ 29 while the first plectoneme is detected instead
at Ca = 35. This effect becomes interesting when a group of plectonemes is required to be stable
in time, and this happens approximately around the catenation number of 40 and slightly higher
values. Near the theoretical phase transition instead plectonemes are very uncommon, with the braid
slowly transitioning into a completely solenoidal configuration. The buckling transition studied in
the previous sections seems more to represents a theoretical bound beyond which the plectonemic
structures can appear (and do with very small statistics) than a true bound to overcome in order to
have the plectoneme appearance certainty.
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Figure 6.2: (a) Plectoneme kymograph at force 16.6 pN and catenation 36, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 242µs.

The phenomenon intensity becomes very interesting with larger forces, such as 31.95 pN. By increasing
the catenation number to get through the transition line and deeper inside the buckling phase it is
possible to notice that the plectoneme appearance is more and more uncommon, leaving a zone in
which the main events are associated to the solenoidal formations. In general as observed in figure
4.10 it is possible to conclude that by increasing the force the catenation number required to find
plectonemes gets higher and higher, while for large forces (> 23.3 pN) plectonemes can hardly be
found.
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6.1.2 Base size 42σ

As discussed in previous chapters the dynamics in the four discussed cases with base length fixed to
42σ are very similar in behavior, but not in phase transition displacement. For each discussed case
in fact, the only phenomenon that happens when crossing the theoretical phase transition line is the
creation of already noticed solenoidal structures. To see real plectoneme formation it is necessary to
further increase the catenation number, as already discussed in chapter 4 with reference to 5.8.
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Figure 6.3: Plectoneme kymograph, in blue the average braid extension, in purple plectoneme positioning and
length. In (a) the base length is fixed at 42σ, the force is 16.6 pN, the catenation is 33, and the arrangement of
the 3 anchored ends is linear, while in (b) the configuration is equilateral, the force is 16.6 pN and the catenation
is 30.

The plectoneme dynamics in figure 6.3 shows that between the different setups, the effect of the
structure change has a large influence in the plectoneme appearance (see figure 5.10), but also on
the dynamics. It is possible in fact to get the same dynamics by slightly decreasing the catenation
number if we take into account the linear and equilateral configurations as done in figure 6.3. The
configuration change has made possible to get a similar behavior (with even larger plectonemes) for
the price of moving the third chain away from the other two. For what concerns the appearance of
plectonemes the behavior near the real plectonemic transition seems to be truly random with continuos
jump between positions on the braid and disappearances to the braided/solenoidal state. This kind
of instability may be associated to the continuity between the solenoidal and plectonemic phases, and
the fact that such structure may interchange each other without any real jump between the first and
second form.

6.2 Dynamics in the middle of the plectonemic phase

In chapter 4 and 5 the number of plectonemes has been proven to increase up to a certain catenation
number and then decreasing again, leaving room to a completely different set of behaviors. The
maximum number of plectonemes is obtained at intermediate catenation numbers, and may be studied
to compare the new plectonemic dynamics to the old one and see if it presents the same set of
characteristics.

6.2.1 Base size 6σ

A first example of the dynamics in a 6σ setting can be observed in figure 6.4 where the number of
plectonemes has clearly increased if compared to the same analysis performed in proximity of the
transition. The size of plectonemes increased too from previous cases, while it possible to observe
examples of liquid-gas phenomenons [30] such as merging, fusion, fission or Ostwald ripening. It is
possible in fact to notice fusion processes, especially for the first two detected plectonemes it is possible
to see a merging phenomenon in which two plectonemes becomes more and more close to each other
to form a single one.
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Figure 6.4: (a) Plectoneme kymograph at force 13.3 pN and catenation 37, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 309µs and time ≈ 445µs.
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Figure 6.5: (a) Plectoneme kymograph at force 16.6 pN and catenation 40, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 245µs and time ≈ 434µs.

In a second discussed case (figure 6.5) it is possible to notice instead the hopping of a plectoneme as a
jump in position of one of the two plectonemes appearing in the configuration. This phenomenon has
some experimental evidences [8], and consists in the disappearance from the original position and the
formation in another site and can be correlated with the energy necessary for the nucleation of a new
plectoneme and the rotation of intermediate DNA. For higher forces, as underlined in the discussion of
the previous chapters, the number of plectonemes decreases while the instability arises. The amount
of solenoidal components of the braids in fact increases with the force, reducing to a minimum the
plectonemic activity.

6.2.2 Base size 42σ

Configurations with larger base sizes are expected to undergo the same kind of behavior at intermediate
catenation numbers. The increase in distance of the third strand attachment point is expected to
influence the dynamics by reducing in particular the total amount of plectonemes present during the
simulation, as already observed in previous chapters.

The first test discussed in the section (figure 6.6) concerns an ”aligned” configuration with low force.
The resulting dynamics is very similar to what was found in the previous section, with a fission process
for a plectoneme in the first stages of the simulation and then a fusion at the end. The render in figure
6.6(b) allows understanding better the state of the braided configuration and highlights the amount
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Figure 6.6: (a) Plectoneme kymograph at force 13.3 pN and catenation 35, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 245µs.

of solenoidal structures presents in the system, with the plectonemic structures barely distinguishable
from the rest of the braid.
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Figure 6.7: (a) Plectoneme kymograph at force 16.6 pN and catenation 40, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time≈ 245µs.

With higher forces, as in figure 6.7 the situation is more critical with a reduction in the total number
of plectonemes and an increase in hopping phenomenons, probably eased by the amount of solenoidal
structures. Globally the plectonemes seems to be more disordered and barely distinguishable from the
central braided/solenoidal structure, with the dynamics being directly influenced by this configuration,
in which transitions between nucleation points and plectonemes are eased and really frequent.

Setups with larger base angles such as the one in figure 6.8 seems to be associated instead to a more
chaotic behavior. The number of plectonemes is in fact reduced, and the braid becomes very short if
compared to previous configurations. However, it is possible to detect the plectonemes and even see
them directly by visualizing the simulation, but it can be noticed how the braided phase is slightly
leaving room to a more packed displacement of the strands.
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Figure 6.8: (a) Plectoneme kymograph at force 13.3 pN and catenation 30, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time≈ 245µs.

6.3 Dynamics deep in the plectonemic phase

The progressive increase in the catenation number has a direct effect on the way the braid is coiled.
The stress added by the rotations constrains the braid to reduce its extension and buckle in a globular
conformation in which plectonemes (but also solenoids) are very difficult to be detected. This kind
of globular configuration represents an extreme case of supercoiling that characterizes each tested
configuration if the catenation number is large enough. The study of dynamics is really limited, and
sometimes it is only possible to observe this highly packed configuration without any further analysis.

6.3.1 Base size 6σ
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Figure 6.9: (a) Plectoneme kymograph at force 13.3 pN and catenation 48, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 225µs.

In cases such as the one presented in figure 6.9 the braid compression makes it very difficult to correctly
detect the plectonemes. These are in fact hardly located even by eye, since they can be easily confused
with the rest of the globular structure. The automatic detection in this case may or may not be reliable
or even not classify correctly the plectonemes, being them impossible to define in such configurations.

With higher forces, as in figure 6.10 the situation seems to improve slightly, with a less compressed
braid, but with the same recognition problems. The tested algorithm seems so to detect a very large
range of plectonemes, while the instability is pretty clear, with their sudden creation and disappear-
ance. Again, due to the globular and chaotic structure it is very difficult to confirm such analysis,
even through renders, or even affirm that plectonemes are currently present in such configurations, so
results may be considered with caution.
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Figure 6.10: (a) Plectoneme kymograph at force 16.6 pN and catenation 48, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 225µs.

6.3.2 Base size 42σ

The configuration status with base sizes of 42σ is very similar to what was seen in previous examples.
In figure 6.11 the structure is again really compressed, with a very small braid size and some difficulties
in locating plectonemes both by eye and through the developed algorithm.
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Figure 6.11: (a) Plectoneme kymograph at force 13.3 pN and catenation 41, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 225µs.
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Figure 6.12: (a) Plectoneme kymograph at force 13.3 pN and catenation 39, in blue the average braid extension,
in purple plectoneme positioning and length. (b) Plectoneme structure at time ≈ 225µs.
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For configurations with larger base angles, the concept of plectoneme loses meaning, and what we can
see is a single conglomerate of strings completely coiled around themselves. In figure 6.12 the braid
has become a single globular complex without any meaningful states, both braided or plectonemic. In
conclusion it is safe to assume so that such states are impossible to study and probably irrelevant for
any analysis aimed at the plectonemic characterization.



Chapter 7

Relaxing from three to two chains

After having discussed the characteristics of the three braids systems at equilibrium it is now possible
to make an attempt at analyzing braided strands moving from 3-chains configurations to the 2-chains
ones. The focus will be on situations in which a bond inside the third strand (the newly added one)
eventually breaks, and the resulting sub-chains are free to move in the space independently. A fraction
of the stress is released, allowing the configuration to relax to the 2-chain state expected for that Ca
and F.

In practice the introduction of the bond breaking was done through LAMMPS by removing completely
the bond and the angle interactions around the breaking point, that for all the discussed cases is local-
ized in the middle of the interested chain (see appendix A). For what concerns instead the simulated
cases, only the configurations with distance between anchoring points equal to 42σ were considered,
in particular the linearly aligned one and the case with base angles fixed at 68°. The force was fixed
to 13.3 pN, a value that allows to get the largest population of plectonemes (see figure 5.10).

7.1 Unbuckled to unbuckled relaxation

The first relaxation dynamics considered is due to a quench from the unbuckled phase of the 3-chains
system to the unbuckled phase of the 2-chains case (see inset of figure 7.1(a)). Given that the catenation
number to reach the transition for the three chain configuration is required to be much smaller for
braids than for the 2-strands configuration, it is always possible to reach a 2-chains unbuckled state
from a 3-chains unbuckled state since it is sufficient to pick a small enough catenation number given
the pulling force.

(a)

0 44.5 89 133.5 178 222.5

Time [µs]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

ex
te

n
si

on

Equilibrium value 2-chains

Braid extension

Current configuration

3-chains

2-chains

22 24 26 28 30 32 34

Ca

13

14

15

16

17

18

19

20

F
o
rc

e
[p

N
]

Phase diagram

(b)

Figure 7.1: (a) Extension variation of the configuration after the bond breaking for the linear case. (b) Braid
configuration change from the beginning of the simulation to the equilibrium state. Catenation number fixed
at 24, pulling force 13.3 pN.
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As it is possible to notice from figure 7.1, the bond breaking allows the system to relax in a relatively
small time (less than 255 µs), to the 2-strands configuration even in presence of the two subchains
originated by the cut chain. The disturbance on the remaining braided strands seems to be irrelevant
to the relaxation process.
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Figure 7.2: (a) Extension variation of the configuration after the bond breaking for the triangular case. (b)
Braid configuration change from the beginning of the simulation to the equilibrium state. Catenation number
fixed at 18, pulling force 13.3 pN.

Similar results can be obtained with a triangular geometry, as the one discussed in figure 7.2, with an
even faster relaxation to the equilibrium from a shorter extension. This result may be a consequence
of the third strand positioning, that could ease the movement freedom and ability to untangle the
braid.

7.2 Buckled to unbuckled relaxation

More interesting results are observed when the cut occurs inside the plectonemic phase. The sud-
den breaking of the third chain influences the structure stability and rapidly disentangles the already
formed plectonemic structures. During the relaxation the third chain sweeps away from the plec-
tonemes and begins to fluctuate around the newly formed braid. Sometimes it remains stuck in
between the other two strands and forces the formation of plectonemes (formed alternatively by two
or three strands), but this transient state seems to last only a fraction of the total time.
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Figure 7.3: (a) Extension variation of the configuration after the bond breaking for the linear case. (b) Braid
configuration change from the beginning of the simulation to the equilibrium state. Catenation number fixed
at 30, pulling force 13.3 pN.

In the first analyzed case in figure 7.3, with catenation number 30 and aligned configuration, the
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relaxation to the stable 2-strands state requires more time than what was observed in previous cases,
probably because the third strand remain tangled with the other two for a larger amount of time.
The final state instead doesn’t present any of these criticalities since it is energetically equivalent to
a simple two strands unbuckled state.
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Figure 7.4: (a) Extension variation of the configuration after the bond breaking for the triangular case. (b)
Braid configuration change from the beginning of the simulation to the equilibrium state. Catenation number
fixed at 27, pulling force 13.3 pN.

The triangular configuration in figure 7.4 has instead a smaller catenation number and in fact needs
a smaller time to equilibrate. The disentangling is eased in this case by the lower coiling of the
strands, with the third chain able to sweep and reach a movement freedom faster. Moreover, while
the initial configuration presents a great amount of both solenoidal and plectonemic conformations
the final structure does not show anything similar when returning to the unbuckled original 2-strands
configuration.

7.3 Buckled to buckled relaxation

Finally, the relaxation from the 3-chains buckled to the 2-chains buckled phase can be considered. In
this case the catenation is sufficient to generate plectonemic or solenoidal structures in both the 3-
strands and 2-strands configurations. The dynamics allows to see these conformations rapidly evolving
and turning the packed structure into a longer one, with the generation of plectonemic structures
during all the relaxation time.
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Figure 7.5: (a) Extension variation of the configuration after the bond breaking for the linear case. (b) Braid
configuration change from the beginning of the simulation to the equilibrium state. Catenation number fixed
at 36, pulling force 13.3 pN.
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In the aligned case in figure 7.5 the relaxation time becomes very long. It requires more than 200
µs to get an equilibrium configuration, and this may be associated again to the high coiling of the
system. When relaxed and during the process the braid made up by the remaining two strands
forms as expected lot of plectonemes that are usually observed when dealing with simple 2-chains
configurations. In this case more than others it was possible to observe the mixed plectonemes that
were already appreciated during previous simulations.
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Figure 7.6: Plectoneme kymograph for the linear case at force 13.3 pN and catenation 36, in blue the average
braid extension, in purple plectoneme positioning and length. Snapshot positions refers to figure 7.5.

For what concerns the plectoneme dynamics, it is possible to analyze its behavior using the already
discussed methods. In particular, being a 2-chains configuration for most of the simulation, the
original method exploiting the contact maps can be considered sufficient to get a good detection of
the plectoneme formations, even if the presence of the third chain can contribute with a significative
disturbance. The dynamics in figure 7.6 shows a brief persistence of original plectonemic structures in
the transient phase, which, once reached the equilibrium, participate in the usual 2-strands dynamics
with hopping and merging phenomenons. The original plectonemes seems so to be caught in this
dynamics by being conserved even after the equilibration or by being dismantled and absorbed in the
braided part of the 2-strands configuration.
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Figure 7.7: (a) Extension variation of the configuration after the bond breaking for the triangular case. (b)
Braid configuration change from the beginning of the simulation to the equilibrium state. Catenation number
fixed at 36, pulling force 13.3 pN.

In the triangular configuration (figure 7.7) the structure has already become globular and very small.
Despite this, both the extension profile and the two renders shows how the system is free to get rid
of such limits and return to the original state, as was already discussed for the case in figure 7.5. It
is also noticeable that the two processes require a similar time, even if the starting configurations are
really different.
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Figure 7.8: Plectoneme kymograph for the triangular case at force 13.3 pN and catenation 36, in blue the
average braid extension, in purple plectoneme positioning and length. Snapshot positions refers to figure 7.7.

As for the linear configuration, similar plectoneme dynamics can be observed for the triangular config-
uration in figure 7.8. Despite starting from a globular configuration, the contact map method seems
to detect some plectonemes in the initial structure and in the first simulation steps, when the braid
starts to expand and relax. These plectonemes resist during the transient phase, with a single episode
of merging reducing their total number, while leaving room once again to the usual plectonememe
dynamics for 2-chains cases when the system is finally relaxed.
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Chapter 8

Conclusions

The aim of this work was to expand the knowledge on braided systems subject to torsional and
elongational forces, by including configurations with multiple strands, inspired by their possible out-
comes [20]. The focus in particular was centered on discussing quantitatively and qualitatively the
presence of buckled structures along the braid formed by three strands. Previous works [17] evidenced
that by applying small pulling forces and high catenation numbers on two strands braids it is possible
to observe the formation of plectonemes with different statistics and behavior. In this thesis, by adding
a third strand to the system and testing different anchoring geometries it was possible to observe new
and interesting behaviors, involving both the plectoneme dynamics and statistics.

At first, with the third chain inserted in between the original two, it was possible to notice that the
buckling transition was present as in the 2-strands case, but with a shifted transition curve. In fact
the shape change of the extension vs catenation plot appears for catenation numbers smaller than
the one observed in the 2-strands cases. This result is also true when one looks at the writhe vs
catenation curve, while the plectoneme statistics is subject to a really important change. Plectoneme
formation seems in fact to be restricted to a small set of catenation numbers and forces, while the
number of plectonemes is on average smaller than the one obtained in the 2-strands cases. Finally,
these behaviors do not depend on the anchoring, having different distance geometries.

To expand this analysis the displacements of the strands were changed. From aligned cases the analysis
moved on configurations with a triangular displacement of the docking points, getting for the smallest
distances the usual behavior, while largest distances triggered new and interesting results. It was
in fact possible to observe very similar dynamics by changing the docking point of the newly added
chain, but each time the critical catenation decreased as the distance of the anchoring point moved
further from the base of the triangle made by the extremities of the two original strands. This result
is possibly due to the reduced braid length, influenced by the non-braided part of the newly added
chain, becoming longer and longer.

After having discussed the main statistical properties of the system of interest, we focused on the
dynamics of the buckled structures along the braid. The presence of non-plectonemic structures
such as solenoidal-like ones hampered the detection of plectoneme using the contact map method,
which were integrated with the local computation of the single-strand writhe. This allowed computing
precisely the behavior of plectonemes in many configurations, and rediscover phenomenons such as
merging and hopping of plectonemes that were previously found in other works. Finally, for sufficiently
high catenation numbers it has also been possible to observe a ”globular” phase, with the braid being
squeezed in a very small space.

As a last test it was possible to observe the relaxation of the system from 3-strands cases to 2-strands
ones. This was done by breaking the bond between two beads for the third chain and letting the
system relax back to the 2-strands case. Results obtained from such tests showed the substantial
equivalence of the resulting configurations with the already tested two chain cases, as expected since
the newly added strand should not influence the braid dynamics once broken.
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The characterization of the cases in which three strands braids allowed to enlarge our knowledge of
how braiding could work on systems more complex than the ones already tested, but many details
were still not precisely defined. The crossover between solenoids, plectoneme and globular states is
very difficult to characterize as a phase transition, since they seem to belong to a unique buckled state
in the force/catenation plane. The transition in fact takes place in the extension vs catenation plot
for a single point at fixed force, where the shape of the diagram suddenly changes. It has not been
possible to observe such clear evidences for the other discussed cases, for which it is also possible to
observe coexistence between the different possible structures. Moreover, this simultaneous presence
of plectonemes and solenoids makes it very difficult to detect plectonemes, and more precise methods
should be developed to get the best possible correspondence between the structures present and
detected. This could be done for example, by studying the braid centerline and its properties. Such
techniques may be associated to a more accurate analytical model, able to discriminate successfully
the different structures that could be created in the buckled state. The study of braid pitch and radius
can be, as in previous models [13] the key to express such kind of behavior in an energetic fashion
and explain the observed phenomenons. Finally, a focus on the phase diagram variation associated to
the displacements of the third chain in some cases (see chapter 5), could also be integrated in such
models, explaining how the free energy of the system is influenced by geometrical changes.
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Appendix A

LAMMPS Code

LAMMPS (24Mar22 ) [19] was the main applicative used during the work, through which it was
possible to accurately simulate the required systems. After having generated the three strands and
the wall with python [31] as a set of beads positions, they were loaded and then simulated in order to
study the braid behavior.

After having the initial structure was available, the potentials were directly implemented by dividing
the system in 4 kinds of atoms, a type for each chain and a last one for the wall with the already
discussed characteristics, including a lower mass (0.001).

1 # I n i t i a l i z a t i o n
2 u n i t s l j
3 boundary p p p
4 a t om s t y l e ang l e
5 r e ad da t a . . / . . / 3 c h a i n s / i n p u t s /${ k i n do f b a s e}−${d}d/${d}d . l k$ { templk } . lmp
6 ne i ghbo r 10 .3 b i n
7 ne i gh mod i f y e v e r y 1 d e l a y 1 check ye s
8

9 # Def i n e groups
10 group cha in1 type 1
11 group cha in2 type 2
12 group cha in3 type 3
13 group a l l un ion cha in1 cha in2 cha in3
14 group uppe rwa l l t ype 4
15 group upperatoms i d 1 251 501
16 group downatoms i d 250 500 750
17 group r o t a t i n g b e a d s un ion uppe rwa l l upperatoms
18 group pu l l e db e ad i d 751
19 group o t h e r s s u b t r a c t a l l upperatoms
20

21 # Po t e n t i a l i n f o rma t i o n
22

23 p a i r s t y l e l j / expand 1.1224615296218
24 p a i r mod i f y s h i f t y e s
25 p a i r c o e f f 1 1 1 .0 1 .0 0 .0
26 p a i r c o e f f 1 2 1 .0 1 .0 0 .0
27 p a i r c o e f f 1 3 1 .0 1 .0 0 .0
28 p a i r c o e f f 1 4 1 .0 1 .0 3.3673845888654
29 p a i r c o e f f 2 2 1 .0 1 .0 0 .0
30 p a i r c o e f f 2 3 1 .0 1 .0 0 .0
31 p a i r c o e f f 2 4 1 .0 1 .0 3.3673845888654
32 p a i r c o e f f 3 3 1 .0 1 .0 0 .0
33 p a i r c o e f f 3 4 1 .0 1 .0 3.3673845888654
34 p a i r c o e f f 4 4 1 .0 1 .0 6.7347691777308
35

36

37 b o n d s t y l e f e n e / expand
38 bond co e f f 1 30 .0 1 .5 1 .0 1 .0 0 .0
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39 s p e c i a l b o n d s f en e
40

41 a n g l e s t y l e c o s i n e
42 a n g l e c o e f f 1 20 .6

Listing A.1: Potential implementation

The first step to prepare the system consisted into the rotation of the initial configuration in order to
generate the different catenation initial states.

1 f i x 2 o t h e r s l a n g e v i n 1 . 1 . 2 . 212112
2 f i x 3 downatoms s e t f o r c e 0 .0 0 .0 0 .0
3 f i x 4 o t h e r s wa l l / r e g i o n wa l l harmonic 200 .0 1 .0 1 .0
4 f i x 5 pu l l e db e ad smd c f o r ${ f o r c e } t e t h e r NULL 258 .0 NULL 0 .0
5 f i x 6 r o t a t i n g b e a d s r i g i d group 1 r o t a t i n g b e a d s f o r c e 1 o f f on o f f t o rque 1 o f f o f f

o f f # r i g i d f i x on the upper beads and wa l l
6

7 v a r i a b l e tname loop 0 1000
8

9 l a b e l r o t l o o p
10

11 f i x 7 r o t a t i n g b e a d s move r o t a t e 0 .0 0 .0 0 .0 0 .0 10 0 .0 ${ p e r i o d } #
r o t a t i n g the upper pa r t as a r i g i d body

12 run 20
13 u n f i x 7
14 run 1
15

16 next tname
17 jump SELF r o t l o o p
18

19 # s e t t i n g s f o r a work ing output f i l e
20 v e l o c i t y a l l s e t 0 0 0

Listing A.2: Rotation code for three chains case

The rotation process is performed through the use of ”rotate” command of LAMMPS by considering
the upper beads of the different strands and the wall. The rotation process involves a rigid rotation
along with some time instants in which the system is equilibrated. This allows to avoid getting too
large bonds or geometrically wrong configurations.

After having generated such braided configurations it was possible then to proceed with the equilibrium
simulation at fixed temperature.

1 l a b e l main loop
2 # Gene r a t i ng f i l e f o r t r a j e c t o r y
3 dump 1 a l l atom ${ t imes dump} . . / . . / 3 c h a i n s /dumps/${ k i n do f b a s e}−${d}d/

dump . N250 . Lk${ l k } . f$ { pnForce } . ${ tname } . l ammpst r j
4

5

6 # Dynamics
7 f i x 1 o t h e r s nve
8 f i x 2 o t h e r s l a n g e v i n 1 . 1 . 2 . ${ t s e e d }
9 f i x 3 downatoms s e t f o r c e 0 .0 0 .0 0 .0

10 f i x 4 o t h e r s wa l l / r e g i o n wa l l harmonic 200 .0 1 .0 1 .0
11 f i x 5 pu l l e db e ad smd c f o r ${ f o r c e } t e t h e r NULL 258 .0 NULL 0 .0
12 f i x 6 r o t a t i n g b e a d s r i g i d group 1 r o t a t i n g b e a d s f o r c e 1 o f f on o f f t o rque 1 o f f

o f f o f f
13 run ${ t i m e s f o r c e }
14

15 next t s e e d
16 next tname
17 undump 1
18 jump SELF main loop
19

20 c l e a r

Listing A.3: Simulation at fixed temperature
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The force was imposed through the ”smd” command, while the wall was rigidly fixed and only able to
move upwards and downwards. The lower extremities of the different chains instead were fixed using
the ”setforce” command.

Finally, coming to the bond breaking used in chapter 7, it was implemented using pyLAMMPS, the
python implementation of LAMMPS, in order to automatize the process. This in practice was done
by deleting the interested bond and angles (”delete bonds”) and all the velocities.

1

2 L . group ( f ” brok i d {500+ a tom bond to d e l e t e } {500+ a tom bond to d e l e t e+1}
” )

3 L . group ( f ” b r o k ang l e i d {500+ atom bond to de l e t e −1} {500+
a tom bond to d e l e t e } {500+ a tom bond to d e l e t e+1} {500+ a tom bond to d e l e t e+2}” )

4

5 L . v e l o c i t y ( ” a l l s e t 0 0 0” )
6 L . d e l e t e b o nd s ( ” brok bond 1 remove” )
7 L . d e l e t e b o nd s ( ” b r o k ang l e ang l e 1 remove” )

Listing A.4: Generating bond breaking

In this case the variable ”atom bond to delete” referred to the position of the atom to delete.
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Appendix B

DNA Topology

The knowledge of DNA topology is fundamental when discussing the DNA supercoiling. In order
to describe the possible configurations and the properties of such winded molecules it is useful to
introduce some topological descriptors. The first introduced parameter is called linking number and
directly associated to the number of crossing in a closed curve made up by two strands. In both
magnetic tweezers and simulated conditions it is possible in fact to obtain a closed curve by fixing the
extremities of the dsDNAs (real and simulated) to the upper and bottom walls and rotating them to
the desired configuration. The resulting structure topologically corresponds to a pair of closed strands,
whose linking number can be calculated as:

Lk =
1

2

∑︂
i

wi

Where wi = +1 for a right-hand crossing and wi = −1 for a left-hand crossing as shown in figure B.1,
once chosen an orientation for the strands and projected their structure on a 2D plane.

Introduction 19 

the first type, and a -1 for each crossing of the second type. Sometimes it 
is hard to determine from the picture whether a crossing is of the first type 
or the second type. Note that if a crossing is of the first type, then rotating 
the understrand clockwise lines it up with the overstrand so that their 
arrows match. Similarly, if a crossing is of the second type, then rotating 
the understrand counterclockwise lines the understrand up with the over­
strand so that their arrows match. 

x x 
+1 -1 

Figure 1.34 Computing linking number. 

Now, we will take the sum of the +ls and - ls over all the crossings 
between M and N and divide this sum by 2. This will be the linking num­
ber. We do not count the crossings between a component and itself. For 
the unlink, the linking number of the two components is 0. For the Hopf 
link, the linking number will be 1 or -1, depending on the orientations on 
the two components. The two components in the oriented link pictured in 
Figure 1.35 have linking number 2. Notice that if we reverse the orienta­
tion on one of the two components, but not the other, the linking number 
of these two components is multiplied by -1. If we just look at the abso­
lute value of the linking number, however, it is independent of the orienta­
tions on the two components. 

Figure 1.35 Linking number 2. 

exercise 1.15 Compute the linking number of the link pictured in Figure 
1.36. Now reverse the direction on one of the components and recom­
pute it. 

Figure B.1: Convention for linking number calculation, via [32].

Twist and writhe represent instead two different variables, associated to the contortion in space of the
strands pair. Taking in fact the ribbon with borders represented by the two strands, the writhe can
be associated to the axis contortion in space, being calculated as the sum of crossover numbers of the
axis itself, according to the convention in figure B.1. The twist similarly can be calculated directly
when the axis lies flat in the plane, being one-half of the sum of the crossing numbers (again, according
to figure B.1) occurring at the crossings between the axis and one of the two strands, as it can be
observed in figure B.2. When the axis lying condition is not respected the computation becomes more
difficult, but the final value continues to represent how much of ribbon twist about the axis along the
curve. These two values depend directly on the chosen projection, while their sum remains constant
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and corresponds to the linking number between the two strands, representing a topological invariant
of the system [32].
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Finally, we can treat the two boundaries of the ribbon as components 
of a link and then compute the linking number of the two components, 
denoting the result by Lk(R). Remember the linking number is just one­
half of the sum of the :!:: ls occurring at the crossings between the two 
components. This last invariant does not depend on the particular place­
ment of the link in space. It would remain the same if we treated the rib­
bon as if it were made of rubber, and isotoped it to a different position. 

James White of UCLA, Brock Fuller of Caltech, and G. Qlugareanu, a 
Czech mathematician, all working independently, discovered the follow­
ing remarkable relation between these three invariants: 

Lk(R) = Tw(R) + Wr(R) (8.1) 

In simple cases, we can use this equation to find one of the invariants, 
knowing the other two. For example, we see the values of these three in­
variants in the two cases shown in Figure 7.9. In Figure 7.9a, the axis of the 
ribbon lies flat in the plane, giving Wr(R) = 0. The linking number is easily 
computed to be +l, and the twist is then forced to be +1 by Equation 8.1. 
In Figure 7.9b, the ribbon doesn't twist around its axis at all, giving Tw(R) 
= 0. Since we can compute Lk(R) = + l, it must that Wr(R) = + 1. 

a 

Lk(R) = +1 
Tw(R) = +1 
Wr(R) = 0 

Figure 7.9 Twist, writhe, and linking number. 

b 

Lk(R) = +1 
Tw(R) = 0 
Wr(R) = +1 

Equation 8.1 implies that if we have a ribbon that we isotope to a new 
position in space, any change in twist has to be exactly balanced by the 
change in writhe, since the linking number is unchanged by the isotopy. In 
Figure 7.9, we see this effect. These two ribbons are in fact isotopic, as you 
can easily check with your belt. Buckle your belt together with one full 
twist in it (well, take it off, first). Now, see if you can place it flat in the 
plane like Figure 7.9b. Unless your belt has a lot of elastic in it, you won't 
succeed, but you will see a projection of it that looks right. Your other op­
tion is to go buy a more elastic belt. 

In its relaxed state, DNA twists around its axis at a rate of 10.5 base 
pairs per helical twist. This relaxed rate of twisting is caused by the way 
the sugars, phosphates, and base pairs bond. Thus, a cyclic duplex DNA 

Figure B.2: Examples of twist and writhe calculations for a ribbon, via [32].

The computation of the writhe in particular is fundamental when dealing with supercoiled DNA, being
associated to the self-crossing present in plectonemes. The computational calculation of its value on
the coordinates obtained directly from LAMMPS files can be done computationally by discretizing
the chosen strand and applying a Gauss integral on the sequence of vectors [33].

Wr =
1

4π

∫︂
C1

∫︂
C1

(dr⃗2 × dr⃗1)r⃗12
r312

≈ 1

4π

∑︂
C1

∑︂
C1

(∆r⃗2 ×∆r⃗1)r⃗12
r312

,

where C1 represent the chosen curve, r⃗1 and r⃗2 the tangent vector for each position on the curve, and
r⃗12 the vector joining those points. The same formula can be used to get a computational estimate of
the linking number if calculated on the two different strands.

Lk =
1

4π

∫︂
C1

∫︂
C2

(dr⃗2 × dr⃗1)r⃗12
r312

≈ 1

4π

∑︂
C1

∑︂
C2

(∆r⃗2 ×∆r⃗1)r⃗12
r312

The linking number for the 3-chains cases is calculated between each pair of chains, and corresponds
to the catenation number of the studied simulation. This last value is the number of rotations that
the upper wall underwent in order to get the chosen configuration.



Bibliography

[1] James D. Watson and Francis H. Crick. A structure for deoxyribose nucleic acid. Nature, 171:737–
738, April 1953.

[2] Andrew Travers and Georgi Muskhelishvili. DNA structure and function. FEBS Journal,
282(12):2279–2295, June 2015.

[3] Berenike Maier, David Bensimon, and Vincent Croquette. Replication by a single DNA poly-
merase of a stretched single-stranded DNA. Proceedings of the National Academy of Sciences,
97(22):12002–12007, October 2000.

[4] C. D. Hardy, N. J. Crisona, M. D. Stone, and N. R. Cozzarelli. Disentangling DNA during
replication: a tale of two strands. Philos Trans R Soc Lond B Biol Sci, 359(1441):39–47, Jan
2004.

[5] T.R. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette. Behavior of supercoiled DNA.
Biophysical Journal, 74(4):2016–2028, April 1998.

[6] James C. Wang. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews
Molecular Cell Biology, 3(6):430–440, June 2002.

[7] J. E. Deweese, M. A. Osheroff, and N. Osheroff. DNA Topology and Topoisomerases: Teaching
a ”Knotty” Subject. Biochem Mol Biol Educ, 37(1):2–10, 2008.

[8] M. T. J. van Loenhout, M. V. de Grunt, and C. Dekker. Dynamics of dna supercoils. Science,
338(6103):94–97, 2012.

[9] Wilma K. Olson and Peisen Zhang. [21] computer simulation of DNA supercoiling. In Methods
in Enzymology, pages 403–432. Elsevier, 1991.

[10] Brad A. Krajina and Andrew J. Spakowitz. Large-scale conformational transitions in supercoiled
DNA revealed by coarse-grained simulation. Biophysical Journal, 111(7):1339–1349, October
2016.

[11] A. Ghatak and L. Mahadevan. Solenoids and plectonemes in stretched and twisted elastomeric
filaments. Phys. Rev. Lett., 95:057801, Jul 2005.

[12] G. Charvin, A. Vologodskii, D. Bensimon, and V. Croquette. Braiding dna: Experiments, simu-
lations, and models. Biophysical Journal, 88(6):4124–4136, 2005.

[13] Sumitabha Brahmachari, Kathryn H. Gunn, Rebecca D. Giuntoli, Alfonso Mondragón, and
John F. Marko. Nucleation of multiple buckled structures in intertwined dna double helices.
Phys. Rev. Lett., 119:188103, Oct 2017.

[14] Sumitabha Brahmachari and John F. Marko. Torque and buckling in stretched intertwined
double-helix dnas. Phys. Rev. E, 95:052401, May 2017.

[15] I. D. Vilfan, J. Lipfert, D. A. Koster, S. G. Lemay, and N. H. Dekker. Magnetic Tweezers for
Single-Molecule Experiments, pages 371–395. Springer US, New York, NY, 2009.

55



56 BIBLIOGRAPHY

[16] Richard Janissen, Bojk A. Berghuis, David Dulin, Max Wink, Theo van Laar, and Nynke H.
Dekker. Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force
stability in magnetic tweezers experiments. Nucleic Acids Research, 42(18):e137–e137, August
2014.

[17] Giada Forte, Michele Caraglio, Davide Marenduzzo, and Enzo Orlandini. Plectoneme dynamics
and statistics in braided polymers. Phys. Rev. E, 99:052503, May 2019.

[18] Ikenna D. Ivenso and Todd D. Lillian. Simulation of dna supercoil relaxation. Biophysical Journal,
110(10):2176–2184, 2016.

[19] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier,
P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida,
C. Trott, and S. J. Plimpton. LAMMPS - a flexible simulation tool for particle-based materials
modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm., 271:108171, 2022.

[20] Carl P. Goodrich and Michael P. Brenner. Using active colloids as machines to weave and braid
on the micrometer scale. Proceedings of the National Academy of Sciences, 114(2):257–262, 2017.

[21] G. Charvin, D. Bensimon, and V. Croquette. Single-molecule study of DNA unlinking by eukary-
otic and prokaryotic type-II topoisomerases. Proceedings of the National Academy of Sciences,
100(17):9820–9825, August 2003.

[22] Job Ubbink and Theo Odijk. Electrostatic-undulatory theory of plectonemically supercoiled dna.
Biophysical Journal, 76(5):2502–2519, 1999.

[23] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation of a single-beam
gradient force optical trap for dielectric particles. Opt. Lett., 11(5):288–290, May 1986.

[24] Rupa Sarkar and Valentin V. Rybenkov. A guide to magnetic tweezers and their applications.
Frontiers in Physics, 4, December 2016.

[25] Iwijn De Vlaminck and Cees Dekker. Recent advances in magnetic tweezers. Annual review of
biophysics, 41:453–72, 2012.

[26] Chris A. Brackey, Davide Marenduzzo, and Nick Gilbert. Mechanistic modeling of chromatin
folding to understand function. Nature Methods, 17(8):767–775, June 2020.

[27] Kurt Kremer and Gary S. Grest. Erratum: Dynamics of entangled polymer melts: A molecular-
dynamics simulation [j. chem. phys. 92, 5057 (1990)]. The Journal of Chemical Physics,
94(5):4103–4103, 1991.

[28] Alan D. Sokal. Monte carlo methods in statistical mechanics: Foundations and new algorithms.
1996.

[29] Joseph L Sleiman, Robin H Burton, Michele Caraglio, Yair Augusto Gutierrez Fosado, and Davide
Michieletto. Geometric predictors of knotted and linked arcs, 2022.

[30] H̊akan Wennerström and Ulf Olsson. Microemulsions as model systems. Comptes Rendus Chimie,
12(1):4–17, 2009. Matière molle et chimie : un mélange fructueux.

[31] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009.

[32] C.C. Adams. The Knot Book. W.H. Freeman, 1994.

[33] Konstantin Klenin and Jörg Langowski. Computation of writhe in modeling of supercoiled dna.
Biopolymers, 54(5):307–317, 2000.


	Introduction
	DNA braiding and magnetic tweezers
	Analytic approaches
	Magnetic tweezers
	Simulations of 2-strands environments

	Simulation settings and configurations
	Polymer model
	Setting parameters
	Dynamics
	Simulation environment

	Aligned strands
	Distance 6σ between anchoring points
	Main features
	Phase diagram and phase transition
	Plectoneme statistics

	Distance 6σ between anchoring points, third strand shifted
	Distance 42σ between anchoring points
	Main features
	Phase diagram and phase transition


	Triangular layout
	Equilateral configuration with base 6σ
	Comparing different configurations with base 42σ
	Main features
	Phase transition dependence on third chain positioning


	Plectoneme dynamics
	Dynamics close to the buckling phase transition
	Base size 6σ
	Base size 42σ

	Dynamics in the middle of the plectonemic phase
	Base size 6σ
	Base size 42σ

	Dynamics deep in the plectonemic phase
	Base size 6σ
	Base size 42σ


	Relaxing from three to two chains
	Unbuckled to unbuckled relaxation
	Buckled to unbuckled relaxation
	Buckled to buckled relaxation

	Conclusions
	Appendices
	LAMMPS Code
	DNA Topology

