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Anno Accademico 2022/2023

data 21/04/2023



Contents

Introduction 3

1 Statistical learning theory 4
1.1 Probabilistic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Empirical risk minimization . . . . . . . . . . . . . . . . . . . . . 6
1.3 Bias-variance tradeoff and structural risk minimization . . . . . 8
1.4 Example: least squares polynomial regression . . . . . . . . . . . 10
1.5 Modern research: understanding learning with high-capacity

hypothesis spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Least squares estimation and spectral filtering 16
2.1 Minimum-norm least squares solutions and pseudoinverse . . . 16
2.2 Regularization via Tikhonov spectral filtering . . . . . . . . . . . 20
2.3 Random design and regularization strength . . . . . . . . . . . . 23

3 Reproducing kernel Hilbert spaces 28
3.1 Kernels and feature maps . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The reproducing property . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Empirical risk minimization via representer theorem . . . . . . . 35
3.4 Learning operators and risk . . . . . . . . . . . . . . . . . . . . . 38

4 An all-inclusive study model 42
4.1 Mercer kernels on the torus . . . . . . . . . . . . . . . . . . . . . 42
4.2 Unified risk decomposition . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Double descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References 46

2



Introduction

Modern deep learning practice has put statistical learning theory to new
challenges. Highly overparameterized neural networks perform outstandingly
well in an enormous variety of tasks, while seemingly violating one of the
most fundamental ideas of classical statistical learning: the bias-variance
tradeoff. With this concept in mind, an estimator complex enough perfectly
fit a huge training set should be regularized in order to generalize well to
unseen inputs, as one needs to expect overfitting otherwise. However, it is very
common practice to train neural nets down to vanishingly low sample errors
(i.e. even the noisy or plain-wrong examples!) and still achieve state-of-the-art
performance.

The goal of this thesis is provide an overview over the current state of
research. In particular, kernel ridge (and ridgeless) regression is developed in
much detail as these classical estimators often behave similar to neural nets
due to their high-capacity hypothesis spaces and the ability to fit any dataset.
Emphasis is put on the role of capacity controls and implicit and explicit
regularization techniques. Finally, a simple but powerful study model around
kernels on tori is proposed and shown to exhibit phenomena comparable to
real problems but with very low computational costs and the ability of full
analytic treatment.

All code for experiments and the source of this document itself can be found
on GitHub1.

1https://github.com/lucawellmeier/mscthesis

3

https://github.com/lucawellmeier/mscthesis


1 Statistical learning theory

Following Cucker and Smale 2002, Vapnik 2000 (and partially Steinwart and
Christmann 2008, Chapter 6), we start off by developing a basic statistical
framework, powerful enough to demonstrate the frontiers of modern statistical
learning, yet tractable enough to be treated by common analytical tools. First,
we develop the probabilistic product space model which is standard in the
literature and after that we let the statistics enter by discussing how to learn
from data and discuss how to generalize from those limited observations to
the true problem. We discuss an example of a simple algorithm to illustrate
structural risk minimization. Finally, we dive into the problems with the
classical statistical learning theory and discuss modern frontiers.

1.1 Probabilistic model

Throughout, let X be a topological space equipped with its Borel σ-algebra and
Y = K. "Measurable" will always refer to Borel measurable with respect to the
topological space in question and we denote by M(X;Y ) the vector space of
all Borel measurable functions X → Y . Consider a Borel probability measure
P on Z := X × Y and marginal distribution µ = X∗P of X. For simplicity of
notation, we will also use the symbols X, Y, Z as random variables: X : Z → X
and Y : Z → Y are the projections and Z = (X, Y ) is their cartesian product.
There will never be confusion between space and random variable through
context or language.

The variable X models the covariate input. For now we only assume that
it lives in some topological space but for our analyses we will later need to
add more restrictions. The random input X causes the random response Y .
The complexity of the relationship is captured by the measure P : the aim of
statistical learning is to understand its behavior through finite samples.

While the response Y is random, we generally assume that given information
on X has strong influence on it. In fact, we will assume that we have a "mostly"
functional relationship between the variables of the form

Y = f ∗(X) + ε, (1.1)

where the noise ε is a "controllable" scalar random variable. Instead of modeling
the randomness directly, we are looking for functions f : X → Y that are as
close as possible to f ∗ according to a measure of accuracy.

Let us make this more precise.
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Definition 1.1. For a measurable function f : X → Y we quantify the random
difference f(X)− Y by the risk R(f) = RP (f) w.r.t. the squared loss:

RP (f) := E
[︁
|f(X)− Y |2

]︁
=

∫︂
Z

|f(X)− Y |2 dP. (1.2)

If such a function f is proposed to solve or provide an approximate solution
to the estimation problem inff R(f), we often refer to it as an estimator. If the
variable is sufficiently regular, there is an essentially unique perfect estimator
f ∗ = f ∗

P solving the above problem:

Proposition 1.2 (Regression function). If the variable Y has finite variance, i.e.
Y ∈ L2(Z, P ), then there exists a solution f ∗ = f ∗

P : X → Y to the problem

min
f∈M(X;Y )

RP (f), (1.3)

and any two such solutions are equal µ-a.e. on X. Moreover, we can write

Y = f ∗(X) + ε, (1.4)

where ε is a random variable with E[ε] = 0 and σ2 := Var[ε] = E[ε2] <∞.

Proof. The first statement is a mere translation of the L2-theory of conditional
expectations that are variance minimizers (see for instance Dudley 2002 or
Billingsley 1995). The sought object is exactly the random variable E[Y | X] =
E[Y | σ(X)] ∈ L2(Z, σ(X), P ). Since, it is σ(X)-measurable, we can prove that it
is almost deterministic given the concrete event {X = x}.

Write Y = limn Yn as a point-wise limit of simple functions Yn =
∑︁Mn

i=1 yn,i1Zn,i

with Zn,i ∈ σ(X). We can rewrite the latter sets as Zn,i = X−1(Xn,i) with Borel
sets Xn,i ⊆ X. Then, 1Zn,i

= 1Xn,i
◦X so that Yn = fn(X) if we set fn =

∑︁Mn

i=1 yn,i1Xn,i
.

Consequently,
Y = lim sup

n
Yn = lim sup

n
fn(X) =: f ∗(X) (1.5)

as a point-wise limit and we can write f ∗(X) = E[Y | X] or f ∗(x) = E[Y | X = x]
which holds µ-a.s.

Finally, let ε := Y − f ∗(X). Then, by the standard properties of conditional
expectations we find

E[ε] = E[E[ε | X]] = E[E[Y | X]− E[f ∗(X) | X]] = 0, (1.6)

and it has finite variance as
√︁

Var[ε] =
√︁

E[|ε|2] = ∥Y − f ∗(X)∥L2 is the norm of
a difference of two L2 functions.

From now on we will reference an arbitrary but fixed choice of the regression
function f ∗.

Since f ∗(x) = E[Y | X = x] is the optimal least squares estimator, we can
express the risk of another proposed estimator by comparing it to the regression
function instead of the random variable Y .
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Proposition 1.3 (Risk). Let f : X → Y be measurable and suppose ε is inde-
pendent of X. Then,

R(f) =

∫︂
X

|f − f ∗|2 dµ+ σ2. (1.7)

The independence assumption is standard in the statistical learning litera-
ture as it seems natural (think about imprecisions in measurements) and it
allows for nice decompositions of the risk as we will see later.

Proof. Let z = (x, y) and recall that the variables X and Y are mere projections
with X(z) = x and Y (z) = y. Since ε(z) = y − f ∗(x), we have

|f(x)− y|2 =
⃓⃓
(f(x)− f ∗(x)) + (f ∗(x)− y)

⃓⃓2 (1.8)

=
⃓⃓
(f(x)− f ∗(x))− ε

⃓⃓2 (1.9)
=

(︁
(f(x)− f ∗(x))− ε

)︁
((f(x)− f ∗(x))− ε) (1.10)

= |f(x)− f ∗(x)|2 + |ε|2 + 2ℜ[ε(f(x)− f ∗(x))]. (1.11)

Now, for any x ∈ X we let P (· | x) be the conditional distribution of Y given the
eventX = x. These are random probability measures that admit a version of the
Fubini theorem (we refer to Dudley 2002 for a review) allowing to conceptually
split dP into dP (· | x) and µ:

R(f) =

∫︂
Z

|f(x)− y|2 dP (z) (1.12)

=

∫︂
X

∫︂
Y

|f(x)− y|2 P (dy | x)dµ(x) (1.13)

=

∫︂
X

∫︂
Y

(︂
|f(x)− f ∗(x)|2 + |ε|2 + 2ℜ[ε(f(x)− f ∗(x))]

)︂
P (dy | x)dµ(x) (1.14)

=

∫︂
X

|f(x)− f ∗(x)|2 dµ(x) + σ2 + 2ℜ
[︁
E[ε]⏞⏟⏟⏞
=0

E[f(X)− f ∗(X)]
]︁

(1.15)

=

∫︂
X

|f − f ∗|2 dµ+ σ2 (1.16)

where the last equalities follows from the independence and zero-mean property
of the noise ε.

1.2 Empirical risk minimization

There is a big, practical problem with the model: the underlying distribution P
of Z = (X, Y ) is usually unknown or untractable making even the evaluation of
the risk RP impossible (let alone its minimization). We need a way to circumvent
this. Statistical learning is all about estimation of the complicated relationship
between the variables X and Y by learning it from a finite sample.
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Definition 1.4. Let Z1 = (X1, Y1), Z2 = (X2, Y2), . . . be IID copies of Z. The
sequences Ẑ

n
= (Zi)

n
i=1 are called samples of Z and we denote by P̂

n
=

∑︁n
i=1 δZi

the (random) empirical distribution and by µ̂n the empirical marginal.

Any quantitity that depends on a sample will be carrying a hat. The funda-
mental object is the following: if a suitable sample of the variable Z is obtained,
we can assess the risk of an estimator in an approximate fashion.

Definition 1.5. If f ∈M(X;Y ) and Ẑ
n

is a sample we can define its empirical
risk as the risk with respect to the empirical distribution P̂ as

R̂(f) = R̂
n
(f) := RP̂

n(f) =

∫︂
Z

|f(X)− Y |2 dP̂
n
=

1

n

n∑︂
i=1

|f(Xi)− Yi|2. (1.17)

This quantity R̂(f) is completely computable. It gives rise to a principled
way of finding learning methods: instead of minimizing RP directly, we instead
attempt to minimize R̂, which we can evaluate explicitly. This process is called
empirical risk minimization (ERM).

The question is: is R̂ actually a good minimization target? Is the empirical
risk of an estimator close to the true risk? The ability of a learning method
to learn the true distribution while it only ever sees a finite sample is called
generalization. By the IID assumption E[R̂

n
(f)] = R(f), so that the strong law

of large numbers (SLLN) yields first postive evidence for a fixed estimator f :
almost surely limn R̂

n
(f) = R(f). We can quantify the rate of convergence:

Proposition 1.6 (Defect bound). Let f ∈M(X;Y ) be an estimator and assume
that there is some M > 0 such that a.s. |f(X)− Y | ≤M . Then, for any ε > 0

|R̂
n
(f)−R(f)| ≤ ε (1.18)

with probability (on the draw of Ẑ
n

according to P n) at least

1− 2 exp

(︃
− nε2

2(Var[f(X)− Y ] +M2ε/3)

)︃
. (1.19)

Proof. This is a simple application of Bernstein’s concentration inequality for
bounded variables. See for instance Cucker and Smale 2002, Theorem A, or
Vershynin 2018, Theorem 2.8.4.

The RHS of the bound is the confidence that the defect is small. However,
while it becomes exponentially better in n, the whole bound is applicable only
to a particular choice of f . This is problematic: it would require us to somehow
reiterate the bound for any proposed estimator and any sample size (keeping
in mind that the estimator depends substantially on the sample) rendering
this result useless. Instead, we would like a uniform bound that holds for
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the whole range of possible estimators that a particular ERM-based learning
method can produce.

Such a result is pointless on an overly complicated space like M(X;Y ): no
learning machine would ever have the full class of measurable functions as
range. Thus, we restrict ourselves to wisely chosen subspaces with more
structure. These are usually referred to as hypothesis spaces, and usually
denoted by H.

The following is an illustrative example of a uniform risk bound.

Proposition 1.7 (Uniform defect bound). Let X be a compact set and H a
compact subset of C(X) endowed with the uniform convergence topology. If
there is an M > 0 such that for all f ∈ H |f(X)− Y | ≤M holds P -almost surely,
then for any ε > 0

sup
f∈H

|R̂(f)−R(f)| ≤ ε (1.20)

with probability (on the draw of Ẑ
n

according to P n) at least

1− 2C1 exp

(︃
− nε2

4(C2 +M2ε/3)

)︃
, (1.21)

where C1 = C1(H, ε,M) is the minimum number of balls of radius ε/(8M) needed
to cover H, and C2 = C2(H) := supf∈H Var[f(X)− Y ].

Proof. Skipped. Can be found in Cucker and Smale 2002, Theorem B.

Observe that the confidence in this uniform bound is essentially the same
up to the expected change of taking the supremum of the variances over all
functions and the new appearence of the covering number. The latter will
scale in an exponential fashion with the "volume" of the hypothesis space.

This bound also yields first evidence of a tradeoff that comes with the size
of the chosen hypothesis space. First, if we shrink the hypothesis space,
then covering number and the variance term will shrink as well, making the
confidence stronger. Simultaneously, however, a smaller hypothesis space
will increase the defect between empirical and true risk, thus increasing ε.
Summarizing shrinking the hypothesis space will increase the confidence of a
worse bound. We are faced with an instance of a bias-variance tradeoff. Bias
here refers to the capacity of the hypothesis space (low bias generally means
to have a complicated high-capacity hypothesis space) and variance refers to
the lack of confidence. Let us make this more precise.

1.3 Bias-variance tradeoff and structural risk
minimization

We study components of the risk that illustrate this tradeoff. If an estimator
is obtained only through a finite sample (e.g. through ERM) we denote it by
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f̂n := f(·; Ẑ
n
). They are random variables encoding the underlying learning

method (the n is not mentioned explicitly). Recall the model Y = f ∗(X) + ε.

Proposition 1.8 (Expected risk). Let f̂ be an estimator learned from (or "depen-
dent only on") the random sample of size n. If the noise ε is independent of X,
then we have the decomposition

EẐ
n∼Pn [R(f̂)] = B2 +V + σ2, (1.22)

where

B2 = EX∼µ

[︃⃓⃓⃓
EẐ

n∼Pn [f̂(X)]− f ∗(X)
⃓⃓⃓2]︃

, (1.23)

V = EX∼µ,Ẑ
n∼Pn

[︃⃓⃓⃓
f̂(X)− EẐ

n∼Pn [f̂(X)]
⃓⃓⃓2]︃

. (1.24)

Here, the subscript in the expectation means that we integrate only over the
indicated variables while we condition on the remaining ones.

Proof. Starting from proposition 1.3, we write

|f ∗(X)− f̂(X)|2 = |(f ∗(X)− EẐ
n [f̂(X)]) + (EẐ

n [f̂(X)]− f̂(X))|2. (1.25)

Then we write out the terms of the square and obtain (after taking expectations)
exactly B2 and V plus the following cross-term:

2ℜ
[︁
(f̂(X)− EẐ

n [f̂(X)])(EẐ
n [f̂(X)]− f ∗(X))

]︁
. (1.26)

After multiplying these out we see that taking expection in X makes the
cross-term vanish.

The term B2 is called the bias. It measures pointwise how far the expected
estimator will be from the value of the regression function. Note that it is highly
dependent on the (effective) hypothesis space that the underlying learning
method has used. The larger this space, the lower will be the bias. Underfitting
refers to large bias paired with low variance.

The term V is called the variance. It quantifies how much the estimators
oscillate around their mean when the concrete sample is changing. Note that
it is a true variance. The smaller the effective space, the more deterministic
the output of the learning method, the lower will be the variance. Overfitting
refers to having high variance but low bias.

This classical belief of the two risk components working against each other
with changing capacity of the hypothesis space is known as the mentioned
bias-variance tradeoff and lead to an extension of ERM as design principle for
learning methods: structural risk minimization (SRM). Let Ω ⊂ R be a set that
parameterizes a family of learning methods f̂ω together with their hypothesis
spaces Hω such that if ω1 ≤ ω2, then Hω1 ⊆ Hω2. The tradeoff suggests that
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there should be a "sweet spot" ω∗ that corresponds to the right capacity given
the data, i.e. the one that minimizes the expected risk ω ↦→ E[R(f̂ω)].

Designing an algorithm following the SRM principle practically means to
expose hyper-parameters that control the capacity of the effective hypothesis
space of the method. They can then be used to perform model selection (which
shall not be part of this work). There are many different ways to achieve
this control. Probably, the most natural examples are found in parametric
methods, where a parameter space is used to effectively characterize the
hypothesis space and the learning is performed with an algorithm that acts
on the parameter space instead of the function space. Neural nets with hyper-
parameters per-layer-width, depth, activation and so on with weights trained
via a gradient-based method belong to this class. However, many interesting
methods like k-nearest neighbors or kernel methods (including the protagonist
of this work: kernel ridge(less) regression) are non-parametric. Here, other,
less obvious ways of capacity control are required. Throughout, we will be
interested in the classical norm regularization method which we introduce
now.

Definition 1.9. Let H be a normed hypothesis space and α ≥ 0. The regularized
empirical risk of f ∈ H is defined as

R̂α(f) = R̂(f) +
α

n
∥f∥2H. (1.27)

Note that we recover R̂(f) = R̂0(f) and we will use this alternative notation
for unified presentation of results.

Minimizing R̂α instead of R̂, indeed, implements a capacity control into the
ERM principle. The norm-penalty term drives output estimtors to be "small" in
terms of the notion of distance of their respective hypothesis space. This has
manifold interpretations: in case of parameterized methods, common choices
include the 1-norm or 2-norm in parameter space, resulting in sparsity and
weight decay, respectively. If the penalty is applied to function spaces, one
often sees Lp norms, Sobolev norms or total variation. In any case, α offers
the capacity control. Note that, while the hypothesis space apparently doesn’t
change, the effective reach of the learning method is reduced with large α.

1.4 Example: least squares polynomial regression

Next, we will see simple examples of structural risk minimization in action,
both as direct hypothesis space parameterization and via norm penalty.

Let X = [−1, 1], Y = R and let f ∗ : X → Y be some smooth function. Choose
the model distribution P so that µ is the half Lebesgue measure on X (i.e. a
uniform distribution) and recall that the final model (X, Y ) = Z ∼ P is such
that Y = f ∗(X) + ε, where ε ∼ N(0, σ2) is Gaussian noise indepdent of X.
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For an integer p ≥ 0 let Hp be the space of polynomial functions on X of
degree less or equal p and consider the natural parametrization

Rp+1 → Hp, θ ↦→ fθ = ⟨θ,Φp(·)⟩ = θTΦp(·) (1.28)

with Φp(x) := [x0, . . . , xp]T ∈ Rp. This is a vector space isomorphism allowing us
to use the induced norm ∥fθ∥Hp

:= ∥θ∥Rp+1.
Take a sample Ẑ

n
= {(Xi, Yi)}ni=1 and write out the regularized empirical risk

into matrix form using Φ̂p = [Φp(X1) | · · · | Φp(Xn)]
T ∈ Rn×p and Ŷ = [Y1, . . . Yn]

T ∈
Rn:

nR̂α(fθ) =
n∑︂

i=1

(fθ(Xi)− Yi)
2 + α∥fθ∥2 (1.29)

=
n∑︂

i=1

(︁
(Φ̂pθ − Ŷ )i

)︁2
+ α∥θ∥2 = ∥Φ̂pθ − Ŷ ∥22 + α∥θ∥2 (1.30)

for any α ≥ 0. Therefore, the map θ ↦→ R̂(fθ) is convex (not necessarily strictly)
and the global minima are stationary points. The gradient in θ is given by

n∇θR̂(fθ) = n∇θ

[︁
θT Φ̂

T

p Φ̂pθ − 2Ŷ
T
Φ̂pθ + Ŷ

T
Ŷ + αθT θ

]︁
(1.31)

= 2
(︁
θT (Φ̂

T

p Φ̂p + αI)− Ŷ
T
Φ̂p

)︁
(1.32)

Since the gradient is linear in θ, the map has constant Hessian so that,
reversely, all stationary points are global minima. They are the solutions of
0 = ∇θR̂(fθ) giving rise to the normal equations

(Φ̂
T

p Φ̂p + αI)θ = Φ̂
T

p Ŷ . (1.33)

Now, observe that Φ̂p ∈ Rn×p is nothing but a rectangular Vandermonde
matrix. For the deterministic case it is well known that these matrices have
maximal rank if Xi ̸= Xj whenever i ̸= j. In our setup of a uniform distribution
on X = [0, 1], it is clear that this holds at least µ-almost surely. Thus, we have
three possibilities:

1. If α = 0 and p ≤ n we are in the under-parameterized regime where
Φ̂

T

p Φ̂p ∈ Rp×p has full-rank and is hence invertible. We obtain the least
squares estimator from

θ̂0 = (Φ̂
T

p Φ̂p)
−1Φ̂

T

p Y. (1.34)

2. If α = 0 and p > n we are in the over-parameterized regime where
rank Φ̂

T

p Φ̂p = n < p. Here Φ̂p has full range, so that existence of (whole
subspaces of) solutions to equation (1.33) is guaranteed. In that case we
choose the minimum-norm least squares estimator

θ̂0 = (Φ̂
T

p Φ̂p)
†Φ̂

T

p Y := argmin
θ : Φ̂

T
p Φ̂pθ=Φ̂

T
p Ŷ

∥θ∥2. (1.35)
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Figure 1.1: Least squares estimation of noisy observations of a sine wave
(n = 30 and σ = 1/5) by polynomials of degree 5 and 13 and norm
penalty strength α = 0.

3. If α > 0 for any n and p, the matrix Φ̂
T

p Φ̂p + αI is invertible and we can
define the regularized least squares estimator

θ̂α = (Φ̂
T

p Φ̂p + αI)−1Φ̂
T

p Y. (1.36)

Note. The notation A† and how to compute minimum-norm least squares solutions of
minimal norm will be the topic of chapter 2 where we introduce the pseudoinverse. In
fact, all of the above estimators will be generalized in said chapter, so keep this part in
mind.

Note that both α and p are capacity controls. To demonstrate their effects
we conduct simple numerical experiments. Let us first demonstrate how
produced estimators could look like. In figure 1.1, we can see that while both
the degree-5 and the degree-13 polynomial fail to capture the full complexity
of the sine wave, a higher degree helps seems to help understanding the
nature of the function (keep in mind the Taylor series of the sine function).
However, we also see that higher degrees can become unstable: even though
the degree-13 polynomial fits the two most-right points of the sample, the
behavior in-between is wild. Perhaps more sample points can help, and if
they are not available one can pass to other regularization methods. This is
consistent with our idea of structural risk minimization keeping in mind that
H5 ⊂ H13.

Next, let us see how the norm penalty acts. Figure 1.2 demonstrates that
the regression function (a polynomial of degree 7) is comparatively not well
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Figure 1.2: The regression function is a degree-7 polynomial, which is ob-
served through n = 100 noisy samples with σ = 1/2. The mean-
squared error (MSE) 1

N

∑︁
i(ŷi − yi)

2 of true values yi against pre-
dictions ŷi = f̂α(xi) on a large test set {(xi, yi)}Ni=1 of true values is
plotted against the regularization strength α. These estimators are
polynomials of varying degrees.

understood by a degree-4 polynomial as expected one might expect. A degree-7
estimator does achieve low error, but the estimation gets worse as α increases.
This might be attributed to the fact that the hypothesis space already has
the right capacity and increasing α limits the effective reach of the least
squares estimation. This is confirmed by the last the degree-9 estimation: the
hypothesis space is more capable than necessary. We can see that there is
a sweet-spot α∗ that imposes just enough regularization for the error to be
almost equal to the one of the true hypothesis space.

1.5 Modern research: understanding learning with
high-capacity hypothesis spaces

The experiments in the last examples have confirmed the classical intuition
about the bias-variance tradeoff. Note, however, how simple the setups where:
low data dimensionality, few parameters, controllable noise, "nice" regression
functions. The advent of deep learning has put these foundational ideas on
trial. There, we are talking highly over-parameterized (p ≫ n) models that
are able to fit very high-dimensional and very noisy data (images, videos,
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text, genome expression profiles, ...). This has sparked new statistial learning
research in many directions. We attempt to give a brief overview.

The fundamental question that leads these new fields is why highly over-
parameterized deep neural nets perform as well as they do given that the usual
established model, the bias-variance trade-off, is seemingly not capuring this
regime at all. The idea is that in order to find a good estimator one should
choose the complexity of the hypothesis space to be high enough to avoid
underfitting but simultaneously low enough to avoid overfitting. However,
modern, practically successful, deep neural nets tend to have a parameter
count that exceeds the training sample count by orders of magnitude. This is
not captured by classical theory as most risk bounds, for instance the uniform
defect bound are based on a complexity measure of the used hypothesis space.
If it is too big (as for very complicated neural nets), we obviously don’t expect
any got rates anymore. Sp the question is two-fold: is overparameterization the
reason for their performance and what exactly happens in this interpolating
regime.

Researchers have ever since started to explore the regime with models that
are easier to deal with and, in fact, found that even estmators as simple as
least squares can perform well when they are perfectly fitting the data! This
means that interpolating estimators are (under some condtions) apparently
not prone to variance error (overfitting).

Bartlett et al. 2020 have proved this, pointing out that the main necessary
condition for so-called benign overfitting to happen in high-dimensional and
noisy settings, is low "effective" dimension of the data. This is in line with the
"folklore" manifold hypothesis, stating that even technically is high-dimensional
(think about images or videos), the examples will in reality live on lower-
dimensional submanifold-like structure. Benign overfitting scenarios weer
ever since discovered and studied in other models (e.g. Tsigler and Bartlett
2020; Pagliana et al. 2020). A related phenomenon is double descent (Belkin
et al. 2019; Belkin, Hsu, and Xu 2020), in which under similar assumptions,
one can see a second descent in out-of-sample error when increasing the
parameter count (complexity) of the model after the critical point that classical
theory would predict overfitting for. An interesting classification was also done
by Mallinar et al. 2022

In particular, there are many indications that kernel learning methods
behave analgously to deep learning from many different perspectives. Much
evidence was provided in Belkin, Ma, and Mandal 2018. First, many kernels as
for instance Laplacian and Gaussian are always able to interpolate the training
data perfectly, providing a prime example of interpolating estimators. Unlike
deep neural nets, kernel methods are easy to handle not only on paper but
also practically due to the very small amount of hyper-parameters and there
are many tasks in which their performance is comparable to the latter or even
exceed it. In Liang and Rakhlin 2020, the authors provide experimental and
theoretic evidendence that it is better to interpolate instead of the classically
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suggested norm penalties (à la Tikhonov) under certain circumstances. Now,
these circumstances have not been fully understood but some necessary
conditions seem to have pinned down: high-dimensionality (Rakhlin and Zhai
2019; Bartlett et al. 2020) with low effective dimension (Bartlett et al. 2020)
and properly chosen curvature of the kernel w.r.t. the nature of the data (Liang
and Rakhlin 2020). Moreover, there seem to be strong links (Chen and Xu
2020) between Laplacian kernels and ReLU feed-forward neural nets through
another kernel called the neural tangent kernel that is able to capture the
learning dynamics of gradient descent there.

These considerations have also sparked new interest in the other direction:
due to all the analogies between kernels and neural nets researchers have
started to scale up kernel methods to deal with big data (see for instance Rudi,
Carratino, and Rosasco 2017).
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2 Least squares estimation and
spectral filtering

This chapter is devoted to the formal development and generalization of the
least squares estimators from section 1.4. We develop the minimum-norm esti-
mators for general bounded operators on Hilbert spaces and then specialize to
compact operators where can discuss the Tikhonov spectral filter, which gives
us a solid interpretation of the norm penalty in ERM. Finally, we demonstrate
our findings through experiments. We follow Clason 2021, Chapters 3 to 6,
for the first two sections.

Throughout, we fix Hilbert spaces H1 and H2. Let A : H1 → H2 be a linear
operator. We develop the theory around solving a deterministic linear inverse
problem

Ax = y (2.1)
in x ∈ H1 for a datum y ∈ H2. Such a problem is called well-posed if three
conditions are satisfied: a solution x ∈ H1 exists, it is unique and the depen-
dence of x on y is continuous (if Axn → y then xn → x). For instance, in finite
dimensional Euclidean space, well-posedness is equivalent to detA ̸= 0 where
the matrix inverse is a continuous linear operator.

Most interesting cases we will encounter are ill-posed or "barely well-posed"
in the sense of high condition numbers. In these cases we instead attempt
to solve them approximately by finding x ∈ H1 that minimizes the distance
∥Ax− y∥H2. Such solutions usually exist, but they may still not be unique or
may not depend continuously on y.

2.1 Minimum-norm least squares solutions and
pseudoinverse

We fix a linear bounded operator A ∈ B(H1, H2).

Definition 2.1. An element x∗ ∈ H1 is called a least squares (LS) solution of the
inverse problem Ax = y if

∥Ax∗ − y∥H2 = min
z∈X

∥Az − y∥H2 . (2.2)

If x∗ is a least squares solution and has minimal norm among all others, we call
it a minimum-norm least squares (MNLS) solution and usually write x†.
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In the following we construct an operator, the pseudoinverse, whose core is
defined on the domain of true invertibility and then extended to the maximal
domain in which LS solutions exist. We will see that it maps any y to the
corresponding MNLS solution.

Proposition 2.2 (Construction of pseudoinverse). Set˜︁A := A|ker(A)⊥ : ker(A)⊥ → ran(A). (2.3)

Then, ˜︁A−1 extends uniquely to a linear operator A† such that

dom(A†) = ran(A)⊕ ran(A)⊥, ker(A†) = ran(A)⊥. (2.4)

Proof. ˜︁A is bijective and linear, so that A† exists on ran(A) and is linear there.
Now let y ∈ dom(A†) be uniquely decomposed as y = y1 + y2 with y1 ∈ ran(A) and
y2 ∈ ran(A)⊥ according to the orthogonal sum. We must have A†y2 = 0 since
y2 ∈ ker(A†) = ran(A)⊥. Thus, defining

A†y := A†y1 + A†y2 = A†y1 = ˜︁A−1y1 (2.5)

yields the only possible linear extension.

Lemma 2.3 (Properties of pseudoinverses). Let Pker and Pran be the orthogonal
projections onto ker(A) and ran(A), respectively. Then:

1. ran(A†) = ker(A)⊥ and dom(A†) is dense in H2

2. A†A = I − Pker and AA†A = A,

3. AA† = Pran|dom(A†) and A†AA† = A†.

Proof. 1. For all y ∈ dom(A†) = ran(A) ⊕ ran(A)⊥ we have Prany ∈ ran(A) (and
not only in its closure!) by the direct sum decomposition so that by
construction A†y = A†Prany = ˜︁A−1Prany. Therefore, A†y ∈ ran( ˜︁A−1) = ker(A)⊥

and ran(A†) ⊆ ker(A)⊥. Conversely, if x ∈ ker(A)⊥, then A†Ax = ˜︁A−1 ˜︁Ax = x
so that ker(A)⊥ ⊆ ran(A†).
The density of dom(A†) follows:

dom(A†) = ran(A)⊕ ran(A)⊥ = ran(A)⊕ ran(A)⊥ = ker(A∗)⊥ ⊕ ker(A∗) = H2.
(2.6)

2. If x ∈ H1,

A†Ax = ˜︁A−1Ax = ˜︁A−1A(Pkerx+ (I − Pker)x) (2.7)
= ˜︁A−1APkerx⏞ ⏟⏟ ⏞

=0

+ ˜︁A−1 ˜︁A⏞ ⏟⏟ ⏞
=I

(I − Pker)x = (I − Pker)x. (2.8)

Hence,
AA†A = A(I − Pker) = A− APker = A.
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3. If y ∈ dom(A†), then by the same arguments as in item 1

AA†y = A ˜︁A−1Prany = ˜︁A ˜︁A−1Prany = Prany. (2.9)

Moreover,
A†AA†y = A†Prany = ˜︁A−1y = A†y. (2.10)

Now we make sure that the pseudoinverse is exactly the right object to
compute for finding MNLS solutions as claimed.

Proposition 2.4 (Characterization of ls solutions). If y ∈ dom(A†), then the
problem minx∈H1 ∥y − Ax∥ has solutions which, in turn, are exactly the solutions
of the equation

Ax = Prany. (2.11)
Among these, there is a unique solution x† of minimum norm given by x† = A†y
and the set of solutions to the least squares problem is x† + ker(A).

Proof. If y ∈ dom(A†). Since Prany ∈ ran(A) there is at least one solution z of
equation (2.11). By the optimality of orthogonal projections we have

∥y − Az∥ = ∥y − Prany∥ = min
w∈ran(A)

∥y − w∥ ≤ ∥y − Ax∥ (2.12)

for all x ∈ H1 and z is a LS solutions.
On the other hand, if z is a least squares solution then

∥y − Prany∥ ≤ ∥y − Az∥ = min
x∈H1

∥y − Ax∥ = min
w∈ran(A)

∥w − y∥ ≤ ∥y − Prany∥ (2.13)

so we have an equality. Hence the ls solutions are exactly those to equa-
tion (2.11).

Each ls solution x can be decomposed uniquely as x = x+x0 ∈ ker(A)⊥⊕ker(A).
Let x′ = x′ + x′0 be another ls solution. Then, Ax = Ax = Prany = Ax′ = Ax′ but A
is injective on ker(A)⊥, so x = x′. By orthogonality of the two components

∥x∥2 = ∥x+ x0∥2 = ∥x∥2 + ∥x0∥2 ≥ ∥x∥2, (2.14)

which means that x† := x is the unique mnls solution and the affine subspace
of all ls solutions is x† + ker(A). Finally, by lemma 2.3

x† = x = x− Pkerx = (I − Pker)x = A†Ax = A†Prany = A†AA†y = A†y. (2.15)

The previous characterization states that x ∈ H1 is a Ls solution iff Ax = Prany,
that is, iff Ax ∈ ran(A) (empty condition) and Ax − y ∈ (ran(A))⊥. Taking into
account that (ran(A))⊥ = ker(A∗), the second condition means that ls solutions
to Ax = y are exactly those that solve A∗(Ax− y) = 0: We have recovered the
normal equations from the introduction. Let us reframe the characterization
for later reference.
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Theorem 2.5 (Ordinary least squares). If y ∈ dom(A†), then the linear
inverse problem Ax = y has ls solutions and these are exactly the solutions
of

A∗Ax = A∗y, (2.16)

They are all of the form x† + ker(A), where x† is the unique mnls solution

x† = A†y = (A∗A)†A∗y. (2.17)

Of particular importance is the fact that equation (2.17) reduces the com-
putation of the mnls solution to the pseudoinverse of the selfadjoint operator
(A∗A). This gives us access to spectral methods that will be explored in the
next section.

Before that, though, we are going to tackle the question of the third condition
of well-posed problems: continuous dependence of the solution on the data
y. We will see that this is closely linked to the domain of the pseudoinversed
operator.

Proposition 2.6 (Continuity of pseudoinverse). The pseudoinverseA† : dom(A†) →
H1 is a bounded operator iff ran(A) is closed (i.e. iff dom(A†) = H2 by lemma 2.3).

Proof. • Let us first suppose that T † is bounded, which implies that it maps
Cauchy sequences to Cauchy sequences. Since dom(A†) is dense in H2

we can pick a sequence yn → y contained in the domain for a given y and
define a continuous extension A†y := limA†yn. If we pick y ∈ ran(A) and
(yn) ⊂ ran(A) we have by lemma 2.3

y = Prany = limPranyn = limAA†yn = AA†y ∈ ran(A), (2.18)

and thus, ran(A) = ran(A).

• Let now, conversely ran(A) = ran(A) i.e. dom(A†) = H2. In order to prove
that A† : H2 → H1 is continuous, we invoke the Closed Graph theorem
stating that a linear operator between Banach spaces (note that the
assumption enters here for the completeness) is continuous iff it has a
closed graph. In particular, we suppose that we have a sequence yn → y
in H2 so that A†yn → x ∈ H1 and we have to show that A†y = x. With the
help of lemma 2.3 and the continuity of A we find

Prany = limPranyn = limAA†yn = AA†y = Ax, (2.19)

which means that x is a LS solution of Ax = y, e.g. of the form x = x† + x0
with x0 ∈ ker(A). Finally, since ran(A†) = ker(A)⊥ is closed, we have
A†yn → x ∈ ker(A)⊥, so that x0 must be 0 and thus A†y = x† = x.
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Note. Compact operators with infinite-dimensional range can never have a pseudoin-
verse according to the previous result.

2.2 Regularization via Tikhonov spectral filtering

In this section we restrict outselves to compact operators K ∈ K(H1, H2);
all of the for us relevant operators are. Let (vn, λn)n be the eigensystem of
the positive operator K∗K, We fix a singular system (σn, un, vn)n∈Λ of K where
Λ = {n | λn ̸= 0}. Recall that σn =

√
λn and un = σ−1

n Kvn. Moreover, we can
decompose

Kx =
∑︂
n

σn (vn ⊗ un)(x) =
∑︂
n

σn⟨x, vn⟩H1un, (2.20)

K∗y =
∑︂
n

σn (un ⊗ vn)(y) =
∑︂
n

σn⟨y, un⟩H2vn. (2.21)

The pseudoinverse of a compact operator can be conveniently computed
when its SVD is known in the most natural way thinkable: by inverting non-
zero singular values. Following up on proposition 2.6 and the discussion
above, such an expression is only possible on the "continuous" part of the
maximal domain. The next result characterizes this using the so-called Picard
condition.

Theorem 2.7 (Picard condition). Let y ∈ H2. Then, y ∈ ran(K) iff∑︂
n

σ−2
n |⟨y, un⟩H2|2 <∞ (2.22)

with the convention that ⟨y, vn⟩ = 0 if σn = 0. In that case, the pseudoin-
verse can be written as

K†y =
∑︂
n

σ−1
n (un ⊗ vn)(y). (2.23)

It is understood that the sum is actually taken over all n such that σn > 0.

Proof. • If y ∈ ran(K), there is x ∈ H1 such that Kx = y. By the properties
of singular values

⟨y, un⟩H2 = ⟨x,K∗un⟩H1 = σn⟨x, vn⟩H1 . (2.24)

Hence, by the Bessel inequality:∑︂
n

σ−2
n |⟨y, un⟩H2|2 =

∑︂
n

|⟨x, vn⟩H1|2 <∞. (2.25)
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• Conversely, if y ∈ ran(K) satisfies the Picard condition, the partial sums
of the rhs of equation (2.22) form a Cauchy sequence. Then, also the
sequence defined by

xN =
N∑︂

n=1

σ−1
n ⟨y, un⟩H2vn (2.26)

is a Cauchy sequence since ∥xN − xM∥2 is easily bounded by the former.
It convergences to the series x in the closed space ran(K∗) = ker(K)⊥.
Therefore, using the fact that the un are an onb for ran(K),

Kx =
∑︂
n

σ−1
n ⟨y, un⟩H2Kvn =

∑︂
n

⟨y, un⟩H2un = Prany = y, (2.27)

i.e. y ∈ ran(K).
Equation (2.23) now follows from the fact that Kx = Prany is equivalent to

x = K†y for x ∈ ker(K)⊥.

Let us rearrange equation (2.23) a bit. Write

K†y = (K∗K)†K∗y =
∑︂
n

σ−1
n (un ⊗ vn)(y) (2.28)

=
∑︂
n

σ−2
n σn (un ⊗ vn)(y) (2.29)

=
∑︂
n

ψ0(σ
2
n)σn (un ⊗ vn)(y), (2.30)

= ψ0(K
∗K)K∗y (2.31)

where we used the spectral function ψ0(σ) = 1/σ. We will now argue that the
unboundedness of K† in case of dim ran(K) = ∞ (i.e. the set Λ from above has
cardinality ∞) is reflected by the fact that ψ0(σ) → ∞ when σ → 0. In the same
lines, this will open us an intuitive way of regularizing the pseudoinverse by
paying the price of controllable inaccuracies as an operator that should reflect
the inverse.

Definition 2.8. Let κ = ∥K∗K∥ = maxn λn be the spectral radius of K∗K. The
Tikhonov regularizing filter of (K∗K)† is the family {ψα}α>0 of spectral functions
ψα : (0, κ] → R defined by

ψα(σ) :=
1

σ + α
(2.32)

Moreover, we define the Tikhonov regularization as the linear operator

Tα := ψα(K
∗K)K∗. (2.33)

Note that ψα(σ) is bounded for all σ > 0 if α > 0. Similar to equation (2.30),
we apply the filter as

Tα(y) =
∑︂
n

ψα(σ
2
n)σn (un ⊗ vn)(y) =

∑︂
n

σn
σ2
n + α

(un ⊗ vn)(y). (2.34)
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This, indeed, yields a bounded operator that, when applied, approximates the
MNLS solution to the inverse problem.

Proposition 2.9. For all α > 0, we have that Tα : H2 → H1 is a bounded operator.
Moreover, if y ∈ dom(K†), the regularized solution xα := Tαy approximates the
MNLS solution x0 := T0y := K†y, i.e. limα→0 ∥xα − x0∥ = 0.

Proof. The boundedness follows from the boundedness of the applied spectral
function. We have

∥xα − x0∥2 =
∑︂
n

(︃
1

σn
− σn
σ2
n + α

)︃2

|⟨y, un⟩|2 =
∑︂
n

(︃
α

σ2
n + α

)︃2
1

σ2
n

|⟨y, un⟩|2. (2.35)

Now, since α/(σ2
n + α) ≤ 1, converges to 0 for α → 0, and

∑︁
n σ

−2
n |⟨y, un⟩|2 < ∞,

we can conclude by dominated convergence.

Finally, we finish our discussion of least squares by proving a sibling to the-
orem 2.5 which holds for regularized least squares (rls) solutions.

Theorem 2.10 (Regularized least squares). If α > 0 and y ∈ H2, then
xα = Rαy iff

(K∗K + αI)xα = K∗y. (2.36)

Moreover, xα is the unique solution to the minimization problem

min
x∈H1

∥Kx− y∥2H2
+ α∥x∥2H1

. (2.37)

Proof. We have the following eigendecompositions

αxα =
∑︂
n

α
σn

σ2
n + α

⟨y, un⟩Y vn, (2.38)

K∗Kxα =
∑︂
n

σn
σ2
n + α

⟨y, un⟩K∗Kvn =
∑︂
n

σ2
n

σn
σ2
n + α

⟨y, un⟩vn. (2.39)

Thus,
(K∗K + αI)xα =

∑︂
n

σn⟨y, un)vn = K∗y. (2.40)

and the first implication is shown.
Now let x ∈ H1 be a solution of equation (2.36). We plug

x =
∑︂
n

⟨x, vn⟩vnPkerx (2.41)

in and find∑︂
n

(σ2
n + α)⟨x, vn⟩vn + αPkerx = (K∗K + αI)xα = K∗y =

∑︂
n

σn⟨y, un⟩vn. (2.42)
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We immediately see that Pkerx = 0 since the vn are an ONB for ker(K)⊥, so that
by comparing coefficients we find

⟨x, vn⟩ =
σn
σ2
n

⟨y, un⟩. (2.43)

Thus,
x =

∑︂
n

⟨x, vn⟩vn =
∑︂
n

σn
σ2
n + α

⟨y, un⟩vn = xα. (2.44)

Finally we need to prove that xα is the unique minimizer. Let Jα(X) :=
∥Kx− y∥2 + α∥x∥2. Then, for all x

Jα(x)− Jα(xα) = ⟨Kx− y,Kx− y⟩+ α⟨x, x⟩ − ⟨Kxα − y,Kxα − y⟩ − α⟨xα, xα⟩
(2.45)

= ∥Kx−Kxα∥2 + α∥x− xα∥2 + ⟨K∗(Kxα − y) + αxα, x− xα⟩
(2.46)

= ∥Kx−Kxα∥2 + α∥x− xα∥2 ≥ 0, (2.47)

where we used the normal equations from before. Thus, xα is a minimizer.
If there was another minimizer x̃, then also Jα(x) − Jα(x̃) ≥ 0 for all x. Let
x = x̃+ tz for arbitrary z and t > 0. Then,

0 ≤ Jα(x̃+ tz)− Jα(x̃) = t2∥Kz∥2 + t2α∥z∥2 + t⟨K∗(Kx̃− y) + αx̃, z⟩. (2.48)

Dividing by t and then letting t→ 0 yields

⟨K∗(Kx̃− y) + αx̃, z⟩ ≥ 0. (2.49)

But z was arbitrary, so that this can only hold ifK∗Kx̃+αx̃ = K∗y. By previously
established uniqueness we get x̃ = xα.

Finally for this section, let us see the effect of spectral filtering in the
polynomial least squares experiment from section 1.4. Figure 2.1 shows how
increasing regularization strength "eats up" the eigenvalues: indeed, α acts as a
lower bound for the minimal eigenvalue. The prediction ability of the estimator
depends on having "enough spectrum" available that is not regularized away.
Indeed, if we compare the two right-most graphs, we see that the sweet spot
is attained exactly when we regularize just so that the lower spectral bands
coincide with the one of the right hypothesis space.

2.3 Random design and regularization strength

We now study how MNLS estimators perform aginst RLS ones in a simple
test case within our probabilistic learning setup. The great advantage of the
feature map approach of section 1.4 was that we could apply linear estimation
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Figure 2.1: For the same three error curves of figure 1.2 we plot the spectra
of the empirical covariance matrices n−1Φ̂

T

d Φ̂d. The n-th curve from
the top indicates the development of the n-largest eigenvalue in α.

techniques with non-linear estimators. Let X = Rd, Φ: Rd → RD any map, and
Y = R. We specialize our probabilistic model form section 1.1 to the case of
linear estimators:

Y = ⟨θ∗, X⟩+ ε, (2.50)

where the regression functions is now represented by a fixed optimal parameter
vector θ∗ ∈ RD. Let Ẑ

n
= {(Xi, Yi)}ni=1 be a sample where Yi = ⟨θ∗, Xi⟩+ εi. Write

Ŷ = [Y1, . . . , Yn]
T ∈ Rn and ε̂ = [ε1, . . . , εn]

T ∈ Rn.
Assume that E[X] = 0. Then, recall that the covariance operator of X is

defined by Σ = E[XXT ] ∈ RD×D. Similarly, if we let X̂ ∈ RD×n be the matrix in
which the columns are the input samples Xi ∈ RD, we can write the empirical
covariance as Σ̂ = n−1X̂X̂

T
.

Let us call θ̂α the RLS solution of the linear inverse problem X̂
T
θ = Ŷ Then,

we can obtain a tractable bias-variance risk decomposition for the MNLS/RLS
estimator f̂α := ⟨θ̂α, ·⟩.

Proposition 2.11. Assume that ε is independent of X. In the above notation
and for any α > 0 we have the decomposition

E[R(f̂α) | X̂] = E[B+V | X̂] + σ2, (2.51)
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where bias and variance are given by

B = α2⟨Σ̂(Σ̂ + αI)−1Σ(Σ̂ + αI)−1θ̂
∗
, θ∗⟩, (2.52)

V =
σ2

n
trace(Σ̂(Σ̂ + αI)−1Σ(Σ̂ + αI)−1). (2.53)

Note that the expectation is taken only in the noise ε̂. For a more detailed
account of this composition with elementary bounds we refer to Mourtada
and Rosasco 2022.

Proof. We have by theorems 2.5 and 2.10 and by the decomposition of Ŷ that

θ̂α = (n−1X̂X̂
T
+ αI)−1n−1X̂Ŷ (2.54)

= n−1(Σ̂ + αI)−1X̂(X̂
T
θ∗ + ε̂) (2.55)

= (Σ̂ + αI)−1Σ̂θ∗ + n−1(Σ̂ + αI)−1X̂ε̂. (2.56)

Therefore,

θ̂α − θ∗ = −α(Σ̂ + αI)−1Σ̂θ∗ + n−1(Σ̂ + αI)−1X̂ε̂. (2.57)

Now let is write out the risk with the expression obtained from proposition 1.3
(now as expectation in the variable X):

R(f̂α) = EX [(f̂
α
(X)− f ∗(X))2] (2.58)

= EX [(X
T (θ̂α − θ∗))2] (2.59)

= EX [⟨XXT (θ̂α − θ∗), θ̂α − θ∗⟩] (2.60)
= ⟨Σ(θ̂α − θ∗), θ̂α − θ∗⟩ =: ∥θ̂α − θ∗∥2Σ (2.61)

If we split the inner product at the terms of the defect of the estimator and
write out each term individually inserting the previous results, then we see
immediately that the two cross-terms vanish after taking expectation only in ε
(it has zero mean). We are left with the two square terms. The bias term is

E[α2∥(Σ̂ + αI)−1Σ̂θ∗∥2Σ | X̂] (2.62)

and the variance is given by

E[n−2∥(Σ̂ + αI)−1X̂ε∥2Σ | X̂] (2.63)

= n−2E[ε̂T X̂
T
(Σ̂ + αI)−1Σ(Σ̂ + αI)−1X̂ε̂ | X̂] (2.64)

=
σ2

n2
E[trace(X̂

T
(Σ̂ + αI)−1Σ(Σ̂ + αI)−1X̂) | X̂] (2.65)

=
σ2

n
E[trace(Σ̂(Σ̂ + αI)−1Σ(Σ̂ + αI)−1) | X̂], (2.66)

where the pre-last equation follows form the well-known fact

E[ε̂TSε̂] = trace[SE[ε̂ε̂T ]] + E[ε̂]TAE[ε̂], (2.67)

and the last equation from the cyclic property of the trace.
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Figure 2.2: The n = 200 inputs are sampled with standard normal coefficients
from a hyperplane of dimension d = 50 in the ambient space of
dimension D = 400. The regression function is some linear function
that is observed with increasing noise levels σ = 0, 1/5, 1/2.

We now put the above into action. Let V = span{v1, . . . , vd} ≤ RD be a fixed
d-dimensional hyperplane (d ≤ D) and let the marginal µ be such that the
input points take the form Xi =

∑︁d
j=1 λjvj with standard normal coefficients

λj ∼ N(0, 1).
With this setup we aim at simulating a real setting in which the actual data

dimension is huge but the effective dimension is comparatively low. Here, we
expect the covariance spectrum to have two clusters: one for the hyperplane
signal and one for the "useless" dimensions. In this setting, Bartlett et al. 2020
predict benign overfitting, so that we expect to see that very low to vanishing
regularization strengths perform best.

Indeed, figure 2.2 shows that even if the sample is noisy, no regularization
performs at least as good as regularization. In the noise-free case we see a
"snapping" behavior in the transition from RLS to MNLS estimator leading
to a perfect fit as soon as regularization is low enough to catch the low band
of the covariance spectrum. This confirms the mentioned paper’s findings:
high-dimensionality but low effective rank can be learned well if we give the
method access to the dimensions that have low to no significance.

On the other hand, if the observations are noisy, we do not get better than
the regularized, but not regularizing has the big advantage that there is no
model selection necessary. Observe as well that in both cases we have error
bumps during the "eating phase".

Let us compare our findings to the risk decomposition. Both terms capture
some sort of effective dimension. The variance in terms of the trace, which is
a straightforward way to measure it and the bias more implicitly by computing
the residuals of covariance and empirical covariance each multiplied by the
regularized empirical inverse covariance. While we assumed α > 0, the snap-
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ping behavior in the noiseless case with α = 0 is somewhat resembled. In the
next chapters we provide a risk decomposition explicitly designed to capture
both cases.
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3 Reproducing kernel Hilbert spaces

In this chapter we give a complete mathematical account of the random-
design kernel ridge(less) regression algorithm and we determine the funda-
mental quantities and operators that govern its behavior. Finally, we provide
a blueprint risk decomposition that will provide intuition of how to assess the
generalization performance in concrete problems and models.

To motivate the upcoming theory, let X = [x1 | · · · | xn]T ∈ Rn×d be the matrix
of inputs xi ∈ Rd and Y = [y1, . . . , yn]

T ∈ Rn the vector of real outcomes yi
according to some unknown law f ∗ : Rd → R. Assume for now that X and Y
are deterministic and that we expect f ∗ to be well-approximatable by a linear
function: any estimator in our model will be of the form fθ(x) = ⟨θ, x⟩ = θTx for
a parameter vector θ.

So far, we have explained the term "ridge/ridgeless regression", which gen-
erally refers to linear estimators found through least squares from the last
chapter. The next step is to explore non-linear estimators obtained via "ker-
nels".

The idea is similar to what we’ve done with polynomial regression in sec-
tion 1.4. In a nutshell, the idea is to consider feature maps Φ: X → H mapping
the input data xi ∈ X (now coming from an arbitrary space) in a non-linear
fashion to more useful features Φ(xi) ∈ H into some convenient Hilbert space.
Then, one can conceptually run all of the above derivations in H instead of
Rd, but a quick check to the matrix dimensions reveals that the problem
scales in d = dimH, severely limiting the actual usefulness of this method.
However, there is a dual version that will turn out to change the roles of sample
size n and feature space dimension d, enabling the practical use of infinite
dimensional feature spaces.

Kernel methods work by replacing the euclidean inner products ⟨xi, xj⟩2
between inputs by the inner product k(xi, xj) = ⟨Φ(xi),Φ(xj)⟩H in feature space.
The function k is called the kernel, to which there can be associated a unique
Hilbert space of functions on X, in which all members are reproducible through
the kernel function. Section 3.2 dives into these underlying spaces, the class
of reproducing kernel Hilbert spaces (rkhs, pl. rkhss). We will see that they
simultaneously act as feature space and as hypothesis space.

This special reproducing structure lets us prove the so-called representer
theorem in section 3.3 which establishes the mentioned duality: when mini-
mizing the empirical risk R̂α(f) in H it suffices to search in the subspace of
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functions of the form

f(x) =
n∑︂

i=1

cik(x, xi). (3.1)

Similarly as before, one can write down the empirical risk, and find the
coefficients ci via ls:

f̂α(x) =
n∑︂

i=1

(︂
(K̂ + αIn)

†Y
)︂
i
k(x, xi) (3.2)

Thus, instead of finding a (dimH)-dimensional we can instead look for an
n-dimensional "parameter" vetcor. The quotation marks are necessary because
not only does the number of parameters depend on the sample but also
what these parameters actually parameterize: such kernel methods are non-
parametric. Despite this, they allow for an efficient search of predictors living
in infinite-dimensional spaces which would otherwise be intractable.

Finally, we introduce certain operators that will allow us to study kernel
ridge(less) estimators in the probabilistic setup of Chapter 1. These will turn
out to be favorably compact and admit spectral decompositions. The risk
can be decomposed in terms of these operators and can, consequently, be
analyzed via their spectra. We explain intuitively what the components of the
decomposition are.

In this section we will mostly follow the standard reference Steinwart and
Christmann 2008, Chapter 4. Throughout, let X ̸= ∅ be a non-empty set. In
view of Chapter 1, think about the space that the data originates from.

3.1 Kernels and feature maps

Recalling what was said in the introduction, we now formalize the concept of
sending inputs to more expressive features in a non-linear fashion. Often, the
relevant properties of such mappings can be encoded in so-called kernels. Let,
K ∈ {R,C}.

Definition 3.1. A function k : X×X → K is called a kernel if there is a K-Hilbert
space F and a map Φ: X → F such that

k(x, x′) = ⟨Φ(x′),Φ(x)⟩F (3.3)

for all x, x′ ∈ X. In that case, Φ is called the feature map and F the feature space.

Given a concrete problem, feature maps should be constructued, so that
the associated kernel acts as a measure of similarity. We can, for instance,
consider data from the sphere Sn−1: choose the feature maps to be the inclusion
Sn−1 → Rn. Then, the kernel is given by k(x, x′) = ⟨x′, x⟩2 and similarity is
measured as spherical distance. Indeed, the kernel assumes its maximum
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value 1 if the inputs are equal and its minimum value −1 if they are antipodal.
Let us make these thoughts more precise.

A kernel k naturally induces a pseudometric on the underlying space X: if
Φ: X → F is a feature map, then the kernel metric dk is defined by

dk(x, x
′) := ∥Φ(x)− Φ(x′)∥H =

√︁
k(x, x) + k(x′, x′)− 2k(x, x′). (3.4)

Note that this definition is independent of the feature map and that dk is only
a proper metric if Φ is injective but, nevertheless, generates a topology on X.
Our first result characterizes continuity.

Lemma 3.2. If (X, T ) is a topological space and k a kernel on X with feature
map Φ: X → F , then tfae:

1. k is continuous w.r.t. the product space topology,

2. k is continuous separately in both arguments and x ↦→ k(x, x) is continuous,

3. ι : (X, T ) → (X, dk) is continuous, and

4. Φ: (X, T ) → F is continuous.

Proof. (1) immediately implies (2).
If (2) holds, then dk(·, x) : (X, T ) → R is continuous for each x. Therefore, the

"open" ε-ball {x′ ∈ X | dk(x′, x) < ε} around x is truly open w.r.t. T and (3)
follows.

Let (3) hold. It is easy to see that the map Φ′ : (X, dk) → F is continuous by
definition of the kernel metric. Therefore, so is Φ = Φ′ ◦ ι and (4) follows.

Finally, let (4) hold. In order to show (1) and close the equivalence, it
suffices to observe that the product Φ× Φ: X ×X → F × F is continuous and
k = ⟨·, ·⟩F ◦ (Φ× Φ).

We will mostly be interested in kernels with that satisfy the assumptions of
the following easy result.

Lemma 3.3 (Real-valued kernels). Let k : X ×X → C a kernel with feature map
Φ: X → F . If k assumes only real values, then F0 := F equipped with the inner
product ⟨f, f ′⟩F0

:= ℜ⟨f, f ′⟩F makes it a real Hilbert space and Φ: X → F0 is a
feature map for the k0 := X ×X → R.

Real kernels can be nicely characterized via the spectra of their Gram
matrices.

Lemma 3.4 (Matrix characterization). A function k : X × X → R is a real
kernel iff the Gram matrices [k(xi, xj)]ij for all choices of n and x1, . . . , xn ∈ X are
symmetric and psd.
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Proof. If k is a real-valued kernel, then all Gram matrices coming from it are
psd simply by defintion as a real inner product in equation (3.3).

To the other end, let Fpre ⊆ F be the vector subspace of linear combinations
space of functions

∑︁n
i=1 cik(·, xi) with complex coefficients for any n, and any

choices of ci ∈ R and xi. Let f :=
∑︁n

i=1 cik(·, xi) and g :=
∑︁m

j=1 djk(·, x′j). Then,

⟨f, g⟩ :=
∑︂
i

∑︂
j

cidjk(x
′
j, xi) =

∑︂
j

djf(x
′
j) =

∑︂
i

cig(xi).

is independent of the concrete representations of f and g by the last two
equalities. Furthermore, it is clearly bilinear and psd by assumption. We need
to show positive definiteness. Take f as above but assume that ⟨f, f⟩ = 0. For
any x we have

|f(x)|2 = |⟨f, k(·, x)⟩|2 ≤ ⟨k(·, x), k(·, x)⟩⟨f, f⟩ = 0 (3.5)

by Cauchy-Schwarz (which holds in the psd case already) proving that ⟨·, ·⟩
makes Fpre a pre-Hilbert space. Now, simply take the isometric embedding
into the completion ι : Fpre → F and observe that

k(x, x′) = ⟨k(·, x′), k(·, x)⟩Fpre = ⟨ιk(·, x′), ιk(·, x)⟩F ,

i.e. x ↦→ ιk(·, x) is a feature map and, consequently, k a kernel.

Practically speaking, one would construct a feature map either directly
specific to the problem, or implicitly by constructing a kernel according to
intuition. The latter way is to be preferred in most cases, as we will see
that a concrete, easily computable expression for kernels is highly beneficial.
Constructing a feature map usually involves computations in very high- or
infinite-dimensional spaces. Therefore, we briefly summarize methods to
construct new kernels from simple ones (without details).

• any map f : ˜︁X → X gives rise to a new kernel ˜︁k = k(f, f) on ˜︁X with the
feature map ˜︁Φ = Φ ◦ f ,

• in particular, if ˜︁X ⊆ X, then k| ˜︁X× ˜︁X is a kernel,

• finite conic combinations (i.e. linear combinations with non-negative
coefficients) of kernels are kernels,

• the product k1 · k2 of kernels k1, k2 on X1, X2 with feature maps Φ1 : X1 →
F1,Φ2 : X2 → F2 is a kernel on X1×X2 with feature map Φ1⊗Φ2 : X1×X2 →
F1 ⊗ F2, where F1 ⊗ F2 is the Hilbert space tensor product,

• pointwise limits of real kernels are real kernels.
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3.2 The reproducing property

In the proof of lemma 3.4 we constructed our feature space as a Hilbert space
of functions so that the relation in equation (3.5) held: we were able to express
function evaluation of any function of the space in terms of its inner product
with the underlying kernel. We will now proceed to generalize this as the
reproducing property.

Definition 3.5. Let H be a K-Hilbert space of functions X → K where sum
and scalar multiplication are defined as the usual pointwise ones. A function
k : X × X → K is called a reproducing kernel of H if kx := k(·, x) ∈ H for any x
and it satisfies the reproducing property

f(x) = ⟨f, kx⟩ (3.6)

for any x and f ∈ H. In that case kx is called canonical feature map. If a Hilbert
function space H has a reproducing kernel, we call it a reproducing kernel Hilbert
spaces (RKHS, pl. RKHSs).

Proposition 3.6. A reproducing kernel k is a kernel and satisfies the following
version of Cauchy-Schwarz:

|k(x, x′)|2 ≤ k(x, x)k(x′, x′). (3.7)

Proof. A reproducing kernel on a space H is easily seen to be a kernel by the
reproducing property (equation (3.6)) with the canonical feature map x ↦→ kx:

k(x, x′) = kx′(x) = ⟨kx′ , kx⟩H . (3.8)

The estimate follows immediately:

|k(x, x′)|2 = |⟨kx′ , kx⟩|2 ≤ ∥kx′∥2∥kx∥2 = k(x, x)k(x′, x′). (3.9)

RKHSs have the special property that norm convergence already implies
pointwise convergence as functions. This property conveniently avoids many
issues found for instance in Lp spaces, and makes them a precious tool theory
and practice.

Proposition 3.7. Let H be a Hilbert space of functions on X and for each x ∈ X
let Lx : H → K be the evaluation functional defined by Lx(f) = f(x). Then, H is
an rkhs iff Lx is bounded. In that case, norm convergence implies pointwise
convergence.
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Proof. Let first H be an rkhs with reproducing kernel k. Then,

|Lx(f)| = |f(x)| = |⟨f, kx⟩H | ≤ ∥kx∥H∥f∥H , (3.10)

so ∥Lx∥ ≤ ∥kx∥H <∞. In this case, if fn → f converges in H-norm, then

|fn(x)− f(x)| = |Lx(fn − f)| ≤ ∥Lx∥H∥fn − f∥H → 0, (3.11)

and the function fn converges pointwise to f .
Conversely, let H be a Hilbert function space with bounded evaluation

functionals Lx. Consider the function k(x, x′) = ⟨Lx, L
′
x⟩H∗ defined as the inner

product on the Hilbert space dual. Let R : H∗ → H be the isometric, (anti-)linear
Riesz isomorphism. Then

kx′(x) = k(x, x′) = ⟨Lx, Lx′⟩H∗ = ⟨RLx′ , RLx⟩H = Lx(RLx′) = (RLx′)(x) (3.12)

or simply k(·, x′) = RLx′. The reproducing property follows:

f(x′) = Lx′f = ⟨f,RLx′⟩H = ⟨f, kx′⟩H .

Thus, k is a reproducing kernel and H a rkhs.

In the proof, we constructed a kernel using the boundedness of the evaluation
functional and the Riesz (anti-)isomorphism. Surprisingly, this construction
turns out to be unique.

Proposition 3.8. Let H be a rkhs with reproducing kernel k and pick an onb
(ei)i of H. Then,

k(x, x′) =
∑︂
i

ei(x′)ei(x). (3.13)

In particular, if a Hilbert space of functions has a reproducing kernel, it must be
unique.

Proof. A straightforward application of Parseval’s identity and reproducing
property:

kx′ =
∑︂
i

(ei ⊗ ei)(k
′
x) =

∑︂
i

⟨kx′ , ei⟩Hei =
∑︂
i

ei(x′)ei. (3.14)

This expression converges in H-norm, thus, by the previous result also point-
wise the claim follows.

The main reason that rkhss are a useful tool in machine learning and many
other applied fields, is that many computations can be broken down to the
reproducing kernel, which, usually, will be a reasonably simple and tractable
function. The following statement gives a theoretical justification which will
be made extensive use of in section 3.3.
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Proposition 3.9. Let H be a rkhs with reproducing kernel k. Define the vector
subspace

Hpre :=

{︄
f =

∞∑︂
i=1

cikxi
: xi ∈ X, ci ∈ K,#{ci ̸= 0} <∞

}︄
⊆ H, (3.15)

of all finite linear combinations of the canonical feature map. If we equip it with
the inner product

⟨f, g⟩pre =

⟨︄∑︂
i

cikxi
,
∑︂
j

djkyj

⟩︄
pre

:=
∑︂
i,j

cidjk(xi, yj), (3.16)

then H is the completion of the pre-Hilbert space Hpre.

Proof. Observe that ⟨·, ·⟩pre is nothing but the restriction of ⟨·, ·⟩H. Therefore,
it suffices to prove density. If this wasn’t the case, Hpre has a non-trivial
orthogonal complement in H. This would imply that there are f ∈ H⊥

pre and
x ∈ X such that f(x) ̸= 0. But since kx ∈ Hpre

0 = ⟨f, kx⟩ = f(x) ̸= 0. (3.17)

We have already seen that reproducing kernels exist and are unique if the
evaluation functional is bounded. We also know that reproducing kernels are
kernels. The last result of this section establishes the other direction: a kernel
has a unique rkhs.

Theorem 3.10 (Rkhss and kernels are 1-to-1). Each rkhs H has the
unique reproducing kernel k given by

k(x, x′) =
∑︂
i

ei(x′)ei(x), (3.18)

where (ei)i is any onb of H. Conversely, every kernel k with feature map Φ
and feature space F gives rise to a unique (up to isomorphism) rkhs H for
which it is a reproducing kernel. This space is given by

H = {V (g) := (x ↦→ ⟨g,Φ(x)⟩F ) : g ∈ g} (3.19)

equipped with the norm

∥f∥H := inf
g∈V −1(f)

∥g∥F . (3.20)

Proof. The first part of the theorem has already been proven in proposition 3.8.
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We now prove that the space H as defined above is indeed a Hilbert space by
establishing an isometry with a subspace of F via the operator V : F → H. First,
it is easily seen that kerV is closed (take a convergent sequence and notice
that V (·)(x) is continuous) so that we have an orthogonal sum H = kerV ⊕ F ′.
The restriction V |F ′ is, therefore, injective and also surjective: if f = V (g),
decompose g = g0 + g′, thus, f = V |F ′g′. Moreover, we find (with the same
technique) that ∥f∥2H = ∥(V |F ′)−1f∥2F ′, which implies that V |F ′ is an isometric
isomorphism and H is a Hilbert space.

Next, we show that k is a reproducing kernel of H. Since Φ is its feature
map we have

kx = ⟨Φ(x),Φ(·)⟩F = V Φ(x) ∈ H. (3.21)

Moreover, ⟨g,Φ(x)⟩ = 0 for any g ∈ kerV so that Φ(x) ∈ (kerV )⊥ = F ′. The
reproducing property follows by using the isometry of V |F ′

f(x) = ⟨(V |F ′)−1f,Φ(x)⟩F = ⟨f, V |H′Φ(x)⟩H = ⟨f, kx⟩H . (3.22)

Finally, we prove uniqueness. Observe first that the inner product on the
dense subspace Hpre of H (from proposition 3.9) is only dependent on the
kernel k so that it is a dense for all rkhss with this reproducing kernel. Now
let H1 and H2 be two rkhss with reproducing kernel k. It clearly is enough to
show that H1 ⊆ H2 is an isometric inclusion as the other inclusion will work
the same way. Both contain the dense subset Hpre. We fix f ∈ H1 together with
a sequence fn ∈ Hpre such that fn → f in H1. This sequence is also contained
in H2 and is Cauchy also there, so that fn → g in H2 for some g. But norm
convergence already implies point-wise convergence which implies f = g ∈ H2.
Finally, since norms coincide on the dense subset

∥f∥H1 = lim ∥fn∥Hpre = ∥f∥H2 .

Note. Let us repass what happened: for any feature map we can find a surjective
isometry from the associated feature space onto the unique RKHS, which, itself, is a
feature space. Hence, RKHSs are the smallest feature spaces in this sense.

3.3 Empirical risk minimization via representer
theorem

In this section we present the result that establishes the usefulness of RKHSs
as hypothesis spaces in the statistical framework of Chapter 1. Roughly
speaking, if we are given a finite number n of examples the representer theorem
allows us to break down an a priori intractable least squares estimation of a
function in an infinite-dimensional RKHS to simply finding n scalar weights.
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While we keep all results in this section deterministic, the result will be the
key to erm and random design analysis.

Throughout this section, fix a deterministic set {(xi, yi)}ni=1 ⊆ X × Kn of
examples and a rkhs H with reproducing kernel k.

Next, we introduce two operators that will turn out to have very intuitive
meanings and allow us to write much of the theory in a very concise way.

Proposition 3.11 (Sampling and realization). Let Ŝ : H → Kn be the sampling
operator defined component-wise by (Ŝf)i := f(xi). Then, ker(Ŝ) = Ĥ

⊥
where

Ĥ := ran(Ŝ) = span{kxi
: i = 1, . . . , n} ⊆ H. (3.23)

Moreover, its Hilbert space adjoint Ŝ
∗
: Kn → H, the realization operator, satisfies

ran(Ŝ
∗
) = Ĥ as it acts on c = (ci)

n
i=1 ∈ Kn by

Ŝ
∗
c =

n∑︂
i=1

cikxi
(3.24)

Proof. We compute the kernel of Ŝ. If Ŝf = 0, then for all components i = 1, . . . , n

we have 0 = f(xi) = ⟨f, kxi
⟩ by the reproducing property. Thus, f ∈ Ĥ

⊥
and the

other direction is immediate.
The adjoint is found easily via the reproducing property as well:

⟨Ŝf, c⟩2 =
∑︂
i

⟨f, kxi
⟩Hci =

⟨︄
f,
∑︂
i

cikxi

⟩︄
H

= ⟨f, Ŝ
∗
c⟩H . (3.25)

This notation allows us to write the empirical risk R̂α : H → R (α ≥ 0) in a
very compact form:

nR̂α(f) = ∥Ŝf − y∥22 + α∥f∥2H , (3.26)
where y is the column vector with entries yi. The core result of this chapter
can now be proven.

Proposition 3.12 (Representer theorem). Any solution f to the ERM problem
inff R̂α(f) admits the explicit form f = Ŝ

∗
c for some c ∈ Kn.

Proof. Decompose f = f̂ + f̂
⊥
∈ Ĥ ⊕ Ĥ

⊥
. Since ker(Ŝ) = Ĥ

⊥
,

Ŝf = Ŝf̂ + Ŝf̂
⊥⏞⏟⏟⏞

=0

= Ŝf̂ . (3.27)

In particular, R̂0(f) = R̂0(f̂) and the theorem is already proven in case α = 0.
Now, if P̂ : H → H is the orthogonal projection onto Ĥ, we find

∥P̂ f∥2H = ∥f̂∥2H ≤ ∥f̂∥2H + ∥f̂
⊥
∥2H = ∥f∥2H . (3.28)
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Therefore,

inf
g∈H

R̂α(g) ≤ inf
g∈Ĥ

R̂α(g) (3.29)

= inf
g∈H

R̂0(P̂ g) + α∥P̂ g∥2H (3.30)

≤ inf
g∈H

R̂0(g) + α∥g∥2H = inf
f∈H

R̂α(g), (3.31)

so that all of the above are actually equalities and f ∈ Ĥ.

From least squares estimation (Theorems 2.5 and 2.10) we already knew
in theory how to solve the erm problem inff∈H Rα(f): solutions are given by
f̂α = (Ŝ

∗
Ŝ + αI)−1Ŝ

∗
y, where we exchange inverse by pseudoinverse if α = 0

(this convention will hold throughout the work). However, while the operator
Ŝ
∗
Ŝ : H → H is finite-rank, it is still operating in the infinite-dimensional space

and, thus, not usable for implementation. The representer theorem resolves
this issue and we are finally able to give a concrete description of the estimators
computed by the kernel ridge(less) regression algorithm.

Theorem 3.13 (Kernel ridge(less) regression (krr)). For any α ≥ 0, mnls /
rls solutions f̂α ∈ H to

inf
f∈H

R̂α(f) (3.32)

exist, are unique and can be expressed in the following two ways:

f̂α = (Σ̂ + αI)†Ŝ
∗
y (3.33)

= Ŝ
∗
(K̂ + αI)†y. (3.34)

Here, K̂ := ŜŜ
∗
: Kn → Kn and Σ̂ := Ŝ

∗
Ŝ : H → H.

The operators K̂ (the kernel matrix) and Σ̂ (the empirical, non-centered
feature space covariance operator), as already Ŝ and Ŝ

∗
, are empirical spe-

cializations of more meaningful probabilistic operators that will be studied
and explored in-depth in the next section. For now the following fact, will be
enough.

Lemma 3.14. Let P̂ : H → H be the orthogonal projection onto Ĥ. We have
Σ̂Σ̂

†
= P̂ .

Proof. Recall that Σ̂ is self-adjoint. Let f = f1 + f2 where f1 ∈ ker Σ̂ = ran(Σ̂)⊥

and f2 ∈ ker(Σ̂)⊥ = ran Σ̂. Then,

Σ̂Σ̂
†
f = Σ̂Σ̂

†
(f1 + f2) = Σ̂Σ̂

−1
f1 = f2 = P̂ f. (3.35)
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Proof. Equation (3.33) is immediate by our least squares discussion as dis-
cussed above and we only need to prove equation (3.34). By the representer
theorem, we have that f̂α = P̂ f̂α. The rest is a computation:

f̂α = P̂ f̂α = Σ̂Σ̂
†
(Σ̂ + αI)†Ŝ

∗
y (3.36)

= Σ̂
(︂
(Σ̂ + αI)Σ̂

)︂†
Ŝ
∗
y (3.37)

= Σ̂(Σ̂
2
+ αΣ̂))†Ŝ

∗
y (3.38)

= Σ̂
(︂
Ŝ
∗
(K̂ + αI)Ŝ

)︂†
Ŝ
∗
y (3.39)

= Ŝ
∗
(ŜŜ

†
)⏞ ⏟⏟ ⏞

=I

(K̂ + αI)† (Ŝ
∗
)†Ŝ

∗⏞ ⏟⏟ ⏞
=I

y (3.40)

= Ŝ
∗
(K̂ + αI)†y. (3.41)

The last equality follows from the linear independence assumption.

3.4 Learning operators and risk

In order to incorporate rkhss as hypothesis spaces into the statistical learning
setup from chapter 1, we introduce and study operators to facilitate working
with the squared loss. The principal one acts as a restriction of functions
defined on the whole space onto L2-equivalence classes with support defined
by a probability measure; think about the unknown marginal distribution
or the empirical distribution. The notions introduced in this section can be
also be found in Steinwart and Christmann 2008 but vast generalizations are
available (see e.g. Carmeli, De Vito, and Toigo 2006).

Lemma 3.15. If X is a separable space and k a continuous kernel then the
associated rkhs is separable.

Proof. By the previous lemma we know that the feature map Φ associated to k
is continuous. This implies that Φ(X) is separable and, therefore, also Hpre as
the span. The former space is dense and the claim follows.

Lemma 3.16. Let k be a kernel on a measurable space X and let H be the
associated rkhs. Then kx is measurable for all x iff all f ∈ H are.

Proof. Since kx ∈ H, the sufficiency is immediate. If, conversely, all kx are
measurable, then so are all functions in Hpre (as in the proof of theorem 3.10).
Fix now f ∈ H and a sequence (fn)n ⊂ Hpre such that fn → f in H. Since this
implies point-wise convergence, and all fn are measurable, so is f .

From now on we fix a measurable space X equipped with a probability
measure µ (think about the true or the empirical marginal from chapter 1).
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and a separable rkhs H with measurable, real-valued kernel k : X ×X → R.
By L2(µ) we denote L2(X,µ).

Proposition 3.17 (Restriction operator). Assuming that

∥k∥L2(µ) :=

(︃∫︂
X

k(x, x) dµ(x)

)︃1/2

<∞

is finite, all members of H are square-integrable and the canonical inclusion
H → L2(µ) sending functions to their equivalence classes is continuous with
operator norm bounded by ∥k∥L2(µ).

Proof. Fix an f ∈ H. Recall that ∥kx∥H =
√︁
k(x, x). Both claims follow from a

simple application of Hoelder’s inequality:

∥f∥2L2(µ) =

∫︂
X

|f(x)|2 dµ(x) =
∫︂
X

|⟨f, kx⟩H |2 dµ(x)

≤ ∥f∥2H
∫︂
X

k(x, x) dµ(x) = ∥f∥2H ∥k∥L2(µ).

The intuitive meaning of this operator links our rkhss closely to the proba-
bilistic model from chapter 1. Indeed, it allows to consider functions f ∈ H as
random variables y = Sµf modeling the response.

The following definition introduces four operators that will be fundamental
for our analysis.

Definition 3.18. Let Sµ : H → L2(µ) be the inclusion operator from the last
proposition.

• Sµ : H → L2(µ) will be referred to as the restriction operator.

• Its (Hilbert space) adjoint S∗
µ : L

2(µ) → H is called the extension operator.

• The operator Kµ := nSµS
∗
µ : L

2(µ) → L2(µ) is called the kernel operator.

• Finally, Σ := S∗
µSµ : H → H is the (not centered) covariance operator in

feature space.

The remaining part of this section will establish essential properties of these
operators, mainly compactness. Note that the restriction operator Sµ looks like
an innocent inclusion but can be highly non-injective: it sends everywhere
defined functions to equivalence classes defined only almost everywhere even
on the support of µ. Suppose, for example, that µ is an empirical measure of
n observations. In that case L2(µ) ∼= Rn can be naturally identified, so that the
linear operator Sµ : H → Rn sends from a usually inifinite dimensional Hilbert
space onto a finite dimensional one (keep this example in mind for section 3.3).
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Indeed, it is a well-known fact that Sµ is injective iff its adjoint S∗
µ : L

2(µ) → H
has dense range. Conversely, S∗

µ is injective if and only if Sµ has dense image,
i.e. H is dense in L2(µ).

Let us now explicitly compute the extension operator.

Proposition 3.19 (Extension operator). Let H be separable. The extension
operator S∗

µ : L
2(µ) → H is bounded and given pointwise by

S∗
µg(x

′) :=

∫︂
X

k(x′, x) g(x) dµ(x). (3.42)

We use basic properties of Bochner integration in the following proof. See
for instance the relevant appendix in Steinwart and Christmann 2008.

Proof. First, the adjoint S∗
µ is bounded since Sµ is. Hoelder and the kernel

version of Cauchy-Schwarz (see equation (3.7) above) together yield∫︂
X

|k(x′, x)g(x)| dµ(x) ≤
√︁
k(x′, x′)

∫︂
X

√︁
k(x, x)|g(x)| dµ(x)

≤
√︁
k(x′, x′) ∥k∥L2 ∥g∥L2 .

Thus, the rhs of equation (3.42) exists pointwise. Before showing that this is
really the adjoint, we need to establish first that it is an element of H employing
Bochner integration theory. Note that Cauchy-Schwarz shows as well that
x ↦→ ∥Φ(x)g(x)∥H is integrable:∫︂

X

∥Φ(x)g(x)∥H dµ(x) =
∫︂
X

g(x)∥Φ(x)∥H dµ(x) =
∫︂
X

g(x)
√︁
k(x, x) dµ(x)

≤ ∥k∥L2 ∥g∥L2 .

By Bochner’s integration criterion we know that the above function is Bochner
integrable, so

∫︁
X
Φg dµ ∈ H. Since Bochner integration commutes with bounded

linear operators (APPENDIX???), in our case with ⟨·,Φ(x)⟩, we find

S∗
µg(x) =

∫︂
X

kx g dµ =

⟨︃∫︂
X

Φg dµ,Φ(x)

⟩︃
and, consequently, S∗

µg ∈ H since evaluation happens in the lines of the
reproducing property, i.e. the construction equation (3.42) is well-defined.

Finally, we show that this is in fact the adjoint of restriction. Let g ∈ L2(µ)
and f ∈ H. Then,

⟨g, Sµf⟩L2 =

∫︂
X

g Sµf dµ =

∫︂
X

g(x) ⟨f, kx⟩H dµ(x)

=

⟨︄
f,

∫︂
X

kx g(x) dµ(x)⏞ ⏟⏟ ⏞
S∗
µg

⟩︄
H

= ⟨f, S∗
µg⟩H .
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These operators admit useful compactness properties that will be crucial to
our analysis.

Proposition 3.20 (Compactness of extension and restriction). We assume that
both H and L2(X,µ) are separable. and ∥k∥L2(µ) < ∞. Then, both restriction
Sµ and restriction S∗

µ are Hilbert-Schmidt operators with ∥Sµ∥HS = ∥k∥L2(µ) =
∥S∗

µ∥HS. Moreover, both the kernel operator Kµ : L
2(µ) → L2(µ) and the feature

space covariance Σµ : H → H are positive, self-adjoint and trace-class with
trKµ, tr Σµ ≤ ∥k∥2L2(µ).

Proof. We start with the extension operator Sµ. Fix an orthonormal basis (ei)i∈I
(I countable by assumption) of H. Then,

∥Sµ∥2HS =
∑︂
i

∥Sµei∥2L2(µ)

=

∫︂
X

∑︂
i

|Sµei(x)|2 dµ(x) =
∫︂
X

∑︂
i

|ei(x)|2 dµ(x) = ∥k∥2L2(µ),

where the last equation follows from equation (3.13). Thus, Sµ is Hilbert-
Schmidt. Recalling that a compact operator is Hilbert-Schmidt iff its adjoint
is, the same holds for S∗

µ with equal norm.
Since Kµ and Σµ are compositions of Hilbert-Schmidt operators, they are

trace-class themselves and, in particular, compact. Note that they are clearly
positive and self-adjoint as the compositions of a compact operator with its
adjoint. By the previous results both trKµ and tr Σµ are bounded by ∥Sµ∥∥S∗

µ∥ =
∥k∥2L2(µ).
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4 An all-inclusive study model

This final chapter proposes a simple model that allows to study all many
capacity controls in a unified fashion:

• arbitrarily many features via cut-off Fourier coefficients

• function space norm penalty via Tikhonov

• intrinsic kernel smoothness via Sobolev spaces

in problem setups that allow for regression functions from very specific hy-
pothesis space, noise, dimensionality and submanifolds. All of these are
computationally tractable even on weak machines, and there are computable
risk decompositions available. Thus, this model seems to provide a solid foun-
dation to study the phenomena of the modern regime. The idea comes from
De Vito 2022 and our contribution is only to provide implementations and
experiments as proof of concepts. A related theoretical work was published by
Potts and Schmischke 2021.

Content-wise we will briefly discuss one more capacity parameter: the
number of parameters. We will observe that even in 1 dimension with this
simple model we can find the phenomenon of double descent.

4.1 Mercer kernels on the torus

We denote by Td := Rd/Zd the d-dimensional torus parameterized by [0, 1]d and
equipped with the induced Lebesgue measure dx so that the measure of the
torus is 1. We recall from Fourier theory that the family of functions

ek : Td → C, x ↦→ exp(2πik · x) (4.1)

with k ∈ Zd is an ONB of L2(Td) (see for instance Chavel, Randol, and Dodziuk
1984, Chapter II.2). Any function f ∈ L2(Td) can be represented as f =

∑︁
k ωkek

with
ωk =

∫︂
Td

f(x)ek(x) dx. (4.2)

We study a class of kernels on the torus.
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Definition 4.1. A toral Mercer kernel is any kernel k of the form

k(x, x′) =
∑︂
k

λkek(x
′)ek(x). (4.3)

such that the sequence of coefficients satisfies

λk ≥ 0, λk = λ−k,
∑︂
k

λk <∞. (4.4)

The convergence of the sum is absolute and uniform by the conditions on
the coefficients. Note that these "kernels" are indeed kernels (by independence
of the ek and lemma 3.4) and that they are stationary in the sense that
k(x, x′) = k0(x− x′). For this reason we sometimes use k = k0 as a function of a
single variable. By the symmetry, we see immediately that k only assumes real
values. A simple consequence of equation (3.7) is that k(x, x′) ≤ k(0) =

∑︁
k λk.

Their RKHSs can be characterized very precisely using Mercer’s theorem.

Theorem 4.2 (Formulation from Theorem 4.49 in Steinwart and Christ-
mann 2008). Let X be a compact metric space with a Borel measure µ with
full support and k a continuous kernel on X. Let (ei, λi)i∈I be the eigen-
system of the kernel operator Kµ : L

2(X,µ) → L2(X,µ) Then, the functions˜︁ei := λ−1
i S∗

µei give rise to an ONB {
√
λi˜︁ei}i∈I of H.

The proof is skipped but can be found in the reference and references therein.
Note that we have almost surely ei = λ−1Kµei = ˜︁ei, so that we identify the two
with slight abuse of notation.
Proposition 4.3. The RKHS H associated to a toral Mercer kernel k is a space
of continuous functions on Td and the inclusion H → C(Td) is compact. Letting

Λ := {k | λk ̸= 0}, (4.5)

we find that the family {
√
λkek}k∈Λ is an ONB for H. In particular, for f ∈ H

∥f∥2H =
∑︂
k∈Λ

|⟨f, ek⟩L2|2

λk
. (4.6)

Proof. Since the k is continuous, we know by lemma 3.2 that so is the canonical
feature map Φ : x ↦→ kx. Therefore, the image Φ(Td) is compact and, hence, so
is the space (Td, dk) with the kernel pseudometric. If C(X, dk) is the space of
functions that are continuous w.r.t. the pseudometric topology, we have

|f(x)− f(x′)| = |⟨f,Φ(x)− Φ(x′)⟩| ≤ ∥f∥Hdk(x, x′), (4.7)

which means that f is Lipschitz continous on (Td, dk). Therefore, the unit ball
BH of H is equicontinuous and also ∥ · ∥∞-bounded (Td is compact), by which
it follows that BH is compact in C(X, dk) by Arzela-Ascoli. By composing with
the continuous identity, we see that the inclusion H → C(Td) is compact. The
rest of the statement is Mercer’s theorem.
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4.2 Unified risk decomposition

Let us come to the random design risk analysis for kernelized MNLS and RLS
estimators. While the result will mainly feel similar to proposition 2.11, the
main difference is that we know allow for misspecification, i.e. regression
function that are not part of the hypothesis space giving rise to additional
terms. Fix a toral Mercer kernel k and the associated RKHS H. We adopt most
of the notation of the

Proposition 4.4. Let the noise be indepdent of X (as usual) and let PΛ be the
projection from L2 onto the closed subspace span{ek | k ∈ Λ}. Suppose there is
fH ∈ H such that SfH = PHf

∗, and let M̂ be such that Ŷ = ŜfH + M̂ + ε̂. Then,
we obtain a risk decomposition for the MNLS/RLS estimator f̂α, α ≥ 0

E[R(f̂α) | X̂
n
] = B̂+ V̂ + M̂+ σ2 (4.8)

with bias term

B̂ = ∥SQ̂(α)fH∥2L2
, Q̂(α) = I − (Σ̂ + αI)−1Σ̂, (4.9)

(as usual inverse is replaced by pseudoinverse if α = 0), variance term

V̂ =
σ2

n
trace

(︂
Σ(Σ̂ + αI)−2Σ̂

)︂
, (4.10)

and the new misspecification term

M̂ =∥(I − PH)f
∗∥2L2 + n−2∥S(Σ̂ + αI)−1Ŝ

∗
M̂∥2L2 (4.11)

− 2

n
ℜ⟨SQ̂(α)fH , S(Σ̂ + αI)−1⟩Ŝ

∗
M̂⟩L2 (4.12)

The proof is completely analogous to those of proposition 2.11 and we skip it.
With our trick of using the empirical kernel instead of the empirical covariance
we can reformulate the whole risk decomposition into a completely computable
finite dimensional form.

Note that misspecification term is another form of bias: in some sense we
can see the term B̂ as the bias due to explicit regularization (least squares
and norm penalty) while M̂ is the bias due to implicit regularization (choice of
hypothesis space, e.g. kernel parameters).

4.3 Double descent

Finally, we demonstrate experimentally that the model is powerful enough to
display the phenomena of modern statistical learning.

In the following experiments we are using three types of kernels in case d = 1
(i.e. on the circle) that we define here first:
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Figure 4.1: Visualizations of toral Mercer kernels with d = 1 on plotted against
the parameterization [0, 1].

1. Dirichlet kernel: defined by λk = 1 for all k ∈ Λ = [−R,R] ∩ Z. The kernel
parameter R controls the complexity directly as fitting with this kernels
offers N = 2R + 1 features to be trained.

2. Random kernel: Similar to the Dirichlet kernel with Λ = [−R,R] ∩ Z
but with random λk sampled from some uniform distribution (k ≥ 0 only,
since k < 0 must be symmetric)

3. Sobolev kernel: defined via λk = |k|−2s for real s > 1
2

and k ∈ Λ = Z. The
naming is not by coincidence: they do correspond to true Sobolev spaces
with real smoothness index. A detailed derivation can be found in De Vito,
Mücke, and Rosasco 2021.

See figure 4.1 for visualizations.
As discovered in Belkin et al. 2019; Belkin, Hsu, and Xu 2020, the double

descent phenomenon appears with toral kernels. Here, we simply pick the
Dirichlet kernel and we plot in the number of available features N = 2R + 1.
Take a look at figure 4.2. Since there is no noise, the variance term will be
zero, and we are left with implicit and explicit bias. Classical theory predicts
the regime n < p. As soon as we approach the "critical line" n = p the error
explodes: this is the classical understanding of overfitting. However, as we
further increase the parameter count p the error starts decreasing again even
for the misspecifed Dirichlet kernel. A look at the bias terms reveals that this
is due to the decrease of the implicit. Then, however, the explicit bias takes
over and seems to converge. In case of the Sobolev kernels the second descent
strength is even stronger to the point that we get better as the parameter count
increases. This is in strong resemblence to Neural nets that perform best when
they are highly overparameterized, keeping in mind that there are theoretical
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connections between ReLU neural nets and Sobolev spaces as hinted to in the
introduction.

In the future, this model shall be further developed (high dimensions, sub-
tori, faster computations, ...) and should undergo an in-depth theoretical study
which seems to be very feasible due to the simple structure of the involved
components.
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Figure 4.2: Toral Mercer kernel regression with N = 2R + 1 features. The first
row is a Dirichlet kernel and the next two are band-limited Sobolev
kernels of smoothnesses s = 1, 2 cut at frequency N . Tested on
n = 39 training points with no noise and α = 0. The regression
function is Sobolev kernel with s = 1 itself. The two left plots are
showing MSE while the right one shows the spectrum of the kernel
matrix. The black line indicates the critical line where the number
of parameters equals the number of training points.
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