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1. Introduction 7

1 Introduction

In recent years systems of video surveillance composed by networks of
cameras Pan-Tilt-Zoom (PTZ) have been largely deployed to monitor build-
ings and open environments. They cooperate in finding and tracking sus-
pected objects or persons within cameras field of view. For this reason cam-
eras are used as sensors, connected in a communication network, able to make
decisions (analysing video data through properly designed algorithms).
In many applications a preliminary task the cameras are required to perform
is the patrolling task. A good patrolling strategy minimize the time interval
between two visits of the same point assuring that the whole area is covered.
A widely used approach to control these cameras is a centralized approach
where a central unit manages all informations that come from cameras; usu-
ally in this context human presence is needed. Moreover this approach is
based on global communication and optimization that does not scale well
with the number of agents.
A distributed approach instead is based on the assumption that each camera
(or agent) has an intelligence (i.e. has a microprocessor) so it can decide how
to react based on what it sees and on informations that came from neighbours
cameras. So control is performed just using local informations and without
any human help. This is robust with the respect to agent failures or agent
new appearance and it is usually preferred in large scale systems.
The partitioning problem is a key step that has to be make in patrolling
strategy. It consists on assigning to each agent a portion of the environment
thus dividing the workload among the components of the network. This de-
cision is essential to improve the performance of the whole system and can
be used to make the patrolling task easier.

The work is divided in two main parts. In the fist one we consider a
one-dimensional scenario. Our main contribution consists on the design of
a distributed partitioning policy able to reach an equitable partition (i.e., a
partition where the workload is equally divided per each camera) in presence
of physical constraints that limit the portion of the perimeter reachable to
each camera. The demand for communication is very low. The algorithm re-
quires just a pairwise gossip asymmetric communication, which is the more
promising communication protocol for its potential industrialization. This
problem is also solved using a centralized approach in order to verify through
simulations that the optimal global partition is always reached. The problem
of the fault of a camera is also taken into account.
In the second part we design heuristic distributed algorithms to achieve an
equitable partition for a two dimensional environment. This problem is well
known in literature. However algorithms designed are all suitable for a contin-
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uous scenario and nothing has been proposed yet for a discrete environment.
We propose a solution that exploits the discretization of the area. It not
only reaches a global equitable partition but also provide ’fat’ (i.e., as close
as possible to a circle) subregions. Obtaining an equitable partition among
all agents minimize the workload assigned to each camera. Obtaining subre-
gions with a good shape improves overall performance (in particular reduces
the time to reach every point of the subregion assigned to a camera). Two
different version of this algorithm are designed. One requires at symmetric
communication and the other one is able to achieve the goal just with asym-
metric communication. The problem of the fault of camera is taken into
account in both cases.

The presentation is organized as follows. In Section 2 we present briefly
literature overview on these topics. In section 3 we deal with the problem
of partitioning a perimeter. First we consider the centralized solution. Then
we present the distributed solution. Comparisons are provided through ex-
tensive numerical simulations. In Section 5 we extended this problem to a
two dimensional discrete environment. In Section 6 and 7 deep discussions
based on numerical evidences are proposed. Finally, in the last section, we
gather our conclusions and we propose some future directions for our work.

Literature overview. A broad discussion of partitioning and coverage
control is presented in [3] which builds on the classic work of Lloyd [19] on
algorithms for optimal quantizer design thorough “centering and partition-
ing”. Since the beginning, coverage control algorithms have been applied to
non-convex environments [14], [4], [10], unknown density function [13]. Ap-
plications on equitable partitioning on continuous environment can be found
in [17], [18], [15]. Discrete environments are considered when dealing with
Voronoi tasselations; for example in [5] there are distributed algorithms for
a gossiping mobile agents.
The communication used, called gossip communication model is widely stud-
ied in the wireless communication literature; example references include [2],
[9].
Coverage control and territory partitioning have applications in many fields.
In cyber-physical systems, applications include automated environmental
monitoring [6], fetching and delivery [21] and other vehicles routing scenarios
[16]. Coverage of discrete sets is closely related to the literature on data clus-
tering and k-means [11],[8], as well as the facility location or k-center problem
[20]. Partitioning of graphs is also its own field of research, see [7]. Territory
partitioning is also studied in models of competition between animal groups,
see for example [1], [12].
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2 Partitioning 1D
This section is organized as follows. First we formulate the problem we

aim at solving including a brief summary of results obtained in previous
works. Second we solve the problem in a centralized fashion by standard
linear programming strategies. Third we introduce a novel algorithm which
is fully distributed. Finally we report numerical simulations to compare our
distributed solution with the centralized one.

2.1 Problem formulation

We are given a set of cameras with limited sensing and communication
capabilities and a segment L to be patrolled. Let LTOT = |L| be the length
of the segment, n the number of cameras (or agents) and |Ai| = [li, ri] is
the effective coverage of i − th camera. zi(t) : R+ → Di denotes position
of the f.o.v.(approximated to a point) of camera i as function of time t vi ∈
[−vi,max, +vi,max] is the speed of the i− th camera during pan movement.
In this set up every camera can patrol just a portion of the whole segment
L, this physical constraint can be written as:

Ai ⊆ Di , Di = [Di,inf , Di,sup] (1)

for i = 1, . . . , N . Note that in general Di depends on the configuration of
the i− th camera and on the physical topology of the border.
Moreover we want all the segment L to be patrolled so we add a covering
constraint:

N⋃
i=1

Di = L (2)

A good patrolling strategy is one that minimize the time lag between two
visits to the same location. Here is a formal definition of time lag.

Definition 1 (Time Lag) For a given point x and a given time τ , we de-
fine Time Lag t̄(x, τ) as the elapsed time from the most recent visit of x ∈ L
by a camera (elapsed time from the last time t s.t. ∃i ∈ 1, . . . , N |zi(t) = x)

t̄(x, τ) : L × R→ R+

A uniformly “low“ time lag over the segment L ensures that all locations are
constantly monitored. It’s clear that the less time pass between two visits
the better it is, so we aim to minimize t̄, constrained to the system dynamics

żi(t) = vi(t) , ∀is.t.
{
vi(t) ∈ [−Vi,max,+Vi,max]
zi(t) ∈ Di

(3)
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where the speed set vi appears as a natural control for the system.
It is well known that an optimal solution without physical constraints

(Di = L) is reached following those results:

Lemma 1 If we have one camera monitoring a perimeter Ltot the optimal
solution is reached by commanding a periodic motion with period T̄ at maxi-
mum speed, obtaining T̄ = 2Ltot

Vmax

Theorem 1 Optimal coverage is attained assuming that every camera is
moving at its maximum speed |Vi,max| with a periodical motion of period T̄ in
non-overlapping coverage areas A∗i :

T̄ =
2Ltot∑N

i=1 Vi,max

, |A∗i | = Vi,max
T̄

2
.

So looking for the optimal solution implies looking for the optimal coverage
areas Ai. This task is accomplished with distributed algorithms (without any
central unit) and it is known how to the optimal solution is reached if we
’forget’ physical constraints (or if the unconstrained solution is feasible A∗i ⊆
Di , i ∈ 1, . . . , n, in this case they are the same). Looking at communication
protocols we can find three different scenarios:

• Synchronous: at each time every agent performs the communication
with its neighbors and the update of its status

• Symmetric Gossip: at each iteration only a pair of neighbors camera
communicate with each other and update their status

• Asymmetric Gossip: at each iteration there is only one camera trans-
mitting to one of its neighbors (the only one that will update its status)

We now briefly show how the problem was solved in those three scenarios.
We need to define

Definition 2 (Uniform Persistent Communication) There is Uniform
Persistent Communication if there exists K ∈ N s.t. for all t, any pair of
neighboring cameras communicate with each other within the interval [t, t +
K].

Definition 3 (Covering) Given a segment L we define a covering as a
collection s = si

N
i=1 of N subintervals of L such that:

1.
⋃N

i=1 si = L
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With a synchronous communication, without physical constraints (i.e.
Di = L) the algorithm is stated as follows.

At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory limits of its
segment si(t) of L, i.e. the two border points li(t) and ri(t). The collection
s(0) = s1(0), . . . , sN0 is a covering of L. At each time t ∈ Z≥0 each agent i
perform the following task:

1. agent i transmits to agent i+ 1 and i− 1 its border points li(t), ri(t)
2. l1(t+ 1) = l1(t), rN(t+ 1) = rN(t)

3. ri(t+ 1) = ri+1(t)vi+li(t)vi+1

vi+vi+1
, i = 1, . . . , N − 1

4. li(t+ 1) = ri(t)vi+li−1(t)vi−1

vi+vi−1
, i = 2, . . . , N

In this case Covering Constraints (2) are satisfied and also the optimal par-
tition is reached1. The updating of extremes is done to equalize the time
required by agent i to travel from ri(t + 1) to li(t) at the speed vi and the
time required by the agent i + 1 to travel from ri+1(t) to li+1(t + 1) at the
speed vi+1. This is called Neighbors’Equal-time travelling criterion.

With a symmetric communication, under the assumption of Uniform Per-
sistent Communication, relaxing physical constraint the algorithm is:

At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory limits of its
segment si(t) of L, i.e. the two border points li(t) and ri(t). The collec-
tion s(0) = s1(0), . . . , sN(0) is a covering of L. At each time t ∈ Z≥0 only
agents i and i + 1 communicate with each other, where i ∈ 1, . . . , N − 1 is
selected by a deterministic or stochastic process to be determined. Every
agent k 6∈ i, i+ 1 sets sk(t+ 1) = sk(t), while agents i and i+ 1 perform the
following tasks:

1. agent i transmits to agent i+ 1 its subset pi(t) and vice-versa
2. ri(t+ 1) = li+1(t+ 1) = ri+1(t)vi+1+li(t)vi

vi+vi+1

Also in this case border points are updated according to the Neiqhbors’Equal-
time criterion and the Covering Constraints are satisfied and the asymptotic
convergence to the optimal solution is guaranteed as in the previous case by
Consensus Theorem (but now P is stochastic).

In asymmetric scenario, under the assumption of Uniform Persistent Com-
munication, the algorithm is stated as follows

1Observe that with the change of variable xi(t) := ri(t)−li(t)
vi(t)

we can write system
dynamic as x(t + 1) = Px(t), where P is pseudo-stochastic and asymptotic convergence
xi(t)→ T̄

2 to optimal solution is guaranteed by Consensus Theorem
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At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory limits of its
segment si(t) of L, i.e. the two border points li(t) and ri(t). The collection
s(0) = s1(0), . . . , sN0 is a covering of L. At each time t ∈ Z≥0 agent i receive
information from agent i + 1 or i − 1, where i ∈ 1, . . . , N is selected by a
deterministic or stochastic process to be determined. Every agent k 6= i sets
sk(t+ 1) = sk(t), while agents i perform the following tasks:

1. if i receives from i+ 1 then
2. computes r∗ = ri+1(t)vi+li(t)vi+1

vi+vi+1

3. if r∗ > li+1 then
4. ri(t+ 1) = r∗

5. else
6. ri(t+ 1) = li+1(t)
7. end
8. else % i receives from i− 1
9. computes l∗ = li−1(t)vi−1+ri(t)vi(t)

vi−1+vi

10. if l∗ < ri−1(t) then
11. li(t+ 1) = l∗

12. else
13. li(t+ 1) = ri−1(t)
14. end
15. end

Note that in this scenario the covering constraint might be violated if we keep
always r∗ (or l∗) chosen according to the Neighbors Equal Time Criterion.
In particular it becomes active when r∗ < li+1(t) (or l∗ > ri−1(t)) and so the
choice is forced to be r∗ = li+1(t) (or l∗ = ri−1(t)) to keep all the segment
covered.
In the next section we propose a solution to solve this problem with asyn-
chronous protocol adding also physical constraints. It will be performed using
a centralized and then a distributed approach.

2.2 A centralized solution

We propose in this section the solution of the problem encountered using
a centralized approach. In particular the problem is stated as linear program-
ming problem where the linear constraints are the limits given by physical
constraint.
The segment to be patrolled is L = [−L, +L] and we want to find positions
x := x1, . . . , xN−1 ∈ L of camera’s border that equalize as more as possible
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all of the areas assigned to each camera. We define fi(x) as the portion of L
assigned to the i-th camera. For N cameras we have N − 1 partitions and
we can write:

f1(x) =
x1 + L

v1

(4a)

f2(x) =
x2 − x1

v2

(4b)

... (4c)

fN−2(x) =
xN−2 − xN−3

vN−2

(4d)

fN−1(x) =
L− xN−2

N − 1
(4e)

We can write the unconstrained problem as

z = min
x1,...,xn

max
i=1,...,N−1

fi(x) (5)

thus our aim is to minimize the biggest segment fi(x). We have to now to
constrain points xi to stay inside the overlapping parts of physical constraint
of adjacent cameras. Calling this part D̄i := Di ∩Di+1 = [D̄i,inf , D̄i,sup] we
have D̄i 6= ∅ due to the covering constraint (2) and with xi ∈ D̄i for all i we
clearly satisfy constraints (2) and (1). Calling ε := max fi(x) we can write
(5) as:

min ε

f1(x) ≤ ε

...
fN−1(x) ≤ ε

x1 ∈ D̄1

...
xN−1 ∈ D̄N−1

(6)
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Finally we can write it in the standard form defining x̄ := [ε, x1, . . . , xN ]T

and cT = [1, 0, . . . , 0],

min cT x̄

−ε+ x1 ≤ −L
−ε− x1 + x2 ≤ 0

...
−ε− xN−2 + xN−1 ≤ −L

x1 ≥ D̄1,inf

x1 ≤ D̄1,sup

...
xN−1 ≥ D̄N−1,inf

xN−1 ≤ D̄N−1,sup

ε, x1, . . . , xN−1 ≥ 0

(7)

In this form the problem can be easily solved using the simplex algorithm.

2.3 A distributed solution

We show now the distributed solution that we propose to solve the prob-
lem. As before Ai = [li, ri] is the patrolled segment, Ai ⊆ Di, Di =
[Di,inf , Di,sup] are physical constraints and D̄i = Di∩Di+1 = [Di+1,inf , Di,sup].
The protocol used is asynchronous, so as seen before, at each time t ∈ Z≥0

just one camera send information about its patrolled area and its maximum
reachable area. We work under the assumption of Uniform Persistent Com-
munication. Suppose that every camera is initialized to its physical constraint
Ai(0) = Di for all i, and that i+ 1 send to i points li+1(t), ri+1(t). The case
where i − 1 sends informations to i is conceptually the same. In a general
situation the two cameras could have different speed vi and vi+1.

D1,inf D1,sup

D2,sup D2,sup

D3,inf DN−1,sup

DN,inf DN,sup

D̄1 D̄2 D̄N

Once received those points i update just ri(t) according to the law:

ri(t+ 1)− li(t)
vi

=
ri+1(t)− ri(t+ 1)

vi+1

(8)
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that gives:

ri(t+ 1) =
vi+1li(t) + viri+1(t)

vi + vi+1

= r∗ (9)

so we aim to equalize the time needed by cameras for going from one side to
the other of their own region Ai. If all the cameras have the same speed we
obtain: ri(t+ 1) = ri+1(t)+li(t)

2
.

At this point there could be two problems. The first one is that covering
constraints might be not satisfied, in fact if r∗ < li+1(t) there will be an
uncovered area of length suncov = li+1 − r∗. In this case r∗ must be updated
following the active constraint, we impose

if r∗ < li+1(t) =⇒ ri(t+ 1) := li+1(t) (10)

The second problem is that the physical constraint might be not satisfied,
in fact in (9) r∗ could go outside the boundaries of Di, so if that happen we
modify the law as:

if r∗ > Di,sup =⇒ ri(t+ 1) := Di,sup (11)

With this control law both covering and physical constraints are satisfied and
we can summarize the algorithm as follow.

At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory limits of its
segment Ai(t) of L, i.e. the two border points li(t) and ri(t). The collection
A(0) = A1(0), . . . , AN(0) is a covering of L. At each time t ∈ Z≥0 agent i
receive information from agent i + 1 or i− 1, where i ∈ 1, . . . , N is selected
by a deterministic or stochastic process to be determined. Every agent k 6= i
sets Ak(t+ 1) = Ak(t), while agents i perform the following tasks:

1. if i receives from i+ 1 then
2. computes r∗ = ri+1(t)vi+li(t)vi+1

vi+vi+1

3. if r∗ < li+1(t) then
4. r∗ = li+1(t)
5. elseif r∗ > Di,sup then
6. r∗ = Di,sup

7. end
8. ri(t+ 1) = r∗

9. else % i receives from i− 1
10. computes l∗ = li−1(t)vi−1+ri(t)vi

vi−1+vi

11. if l∗ > ri−1(t) then
12. l∗ = ri−1(t)
13. elseif l∗ < Di,inf then
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14. l∗ = Di,inf

15. end
16. li(t+ 1) = l∗

17. end
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3 Simulation results for 1D case
In this section we report simulative results obtained running the dis-

tributed algorithm developed. Firstly we provide details of some specific
aspects that can occur showing algorithm responses. Then we find meaning-
ful parameters in order to give a global overview of the procedure developed
and its convergence. Comparison with results obtained by simplex algorithm
are reported in some instances. Without loss of generality we will assume
that every camera has the same constant speed vi = V, i ∈ {1, . . . , N}. All
the code is developed using MATLAB software.

Starting from balanced initialization (A∗i ⊆ Di,∈ 1, . . . , N) we show that,
as we expected, the distributed algorithm reaches the optimal solution where
each segment has the same length of the others. We take as instance n = 5
cameras and a perimeter of length L = 50. We can see this starting point
in Figure 1, where each coloured box represents Ai, the part of perimeter
assigned to i-th camera. Under the perimeter we highlighted intervals Ii =
[Dinf,i+1Dsup,i], i ∈ {2, . . . , N − 1} so we can rewrite physical and covering
constraints as

ri ∈ Ii, li+1 ∈ Ii, l1 = 0, rN = |L|, i ∈ {1, . . . , N}. (12)

Figure 1: Initial condition of patrolling cameras

We report the evolution of the algorithm for some instants. Some obser-
vation can be made looking on Figure 2. First of all we see that optimal
partition is reached, for t = 1000 we have |Ai| = |Aj|, i 6= j, i, j ∈ {1, . . . , 5}
as we expected when physical constraints do not became active the algorithm
works as in the previous case reaching the optimal solution. Observe that just
few iterations are needed to reach a good partition, i.e. if we are interested in
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a sub-optimal results, fixing ε > 0 and asking that max||Ai|−|Aj|| < ε, i 6= j
a solution is found with much fewer iterations (of course it will depend also
on the number of agents, and it will increase as N increase...). In Figure 3
is possible to see how the maximum partition decrease toward the optimal
length L

N
= 10.

Figure 2: Evolution of partitions of L

Figure 3: Trend of length of the longest region to be patrolled

In the next example we will see the behaviour of the algorithm when some
constraints became active, when some camera is not able to patrol the whole
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zone optimal for the unconstrained solution. To show this we can take the
previous example and modify a little bit the starting point. Suppose that, for
some reason, the last camera is not able to patrol the whole area A∗5 because
its limits are smaller. For instance we can take D5 = [43 50] that has a length
of 7(< L

N
). The situation appears in Figure 4

Figure 4: An initial condition where camera there is D5 <
L
N

If we look at the evolution when rounds of communication involve the
fourth and fifth cameras we encounter a situation like the one depicted in
Figure 5. When the last camera receives informations from its previous
camera 4 (that’s the meaning of 5→ 4 in figure), if it would update the left
extreme l5 as in (9) obtaining, for the left extreme

l5(t+ 1) =
l4(t) + r5(t)

2
=

28 + 50

2
= 39

but the last camera can not patrol perimeter behind the length 42. In this
case the best the algorithm can do is to put l5(t + 1) = D5,inf thus leaving
the state unchanged according to the camera’s constraints.
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Figure 5: An initial condition where camera there is D5 <
L
N

For t = 4 the state is the same and no update is made. For t = 5 com-
munication involves other cameras and for t = 6 there is camera 4 receiving
from camera 5 (4 ← 5) and an updating is needed for r4(t). If we would
follow the law (9) we will obtain as before

r4(t+ 1) =
28 + 50

2
= 39,

but updating the state in this way means leaving space not patrolled and
this is not allowed by the covering constrain. So the update is modified as
r4(t + 1) = D5,inf and that is the best it is possible to do. In the next iter-
ation, namely for t = 7, the situation is repeated as before and no changes
can be made.
In order to see at what partition the algorithm converges we can see Figure
6, where we compare with initial conditions and simplex solution. The dis-
tributed one is taken at a time t = 1000 that is arbitrary big to assure this is
final result. It’s evident that the two solution are exactly the same, physical
and covering constrains are satisfied (as we seen before). In both cases an
equitable partition is reached ”forgetting” the contribute of the last camera,
constrained to be long just 8 (instead of 10) from point 42 to 50. To cover all
the perimeter L length of remaining cameras increase to the value 10.5, so we
have not only reached the minimum length for the longest segment,according
to constraints, as we can see in Figure 7 but also forced the others to be of
the same size.

The previous example is the evidence that the two approaches are the
same not only for the longest segment but also for the others. This may
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Figure 6: Initial partition and final result obtained with a distributed and
centralized approach

Figure 7: Length of the longest partition during iterations
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l1 r1 = l2 r2 = l3 r3 = l4 r4 = l5 r5 = l6 r6

Centralized 0 17.51 33.53 51 70 81.36 88
Distributed 0 17 34 51 70 79 88

Table 1: Details of extremes of partitions in Figure 8

seem quite strange thinking that in (6) we aim to minimize just the biggest
subinterval Ai. In fact this is what happen and the previous behaviour is
not the rule. The example shown in Figure 8 has different initial conditions
and a different number of cameras. In this case both strategies give the same
solution for the biggest segment A4 = [51 70] but are different for the shorter
ones, for instance with simplex we obtain A5 = [70 81.36], A6 = [81.36 88]
and with the distributed A5 = [70 79], A6 = [79 88].

Figure 8: Length of the longest partition during iterations

These results confirm the intuition that our algorithm between two fixed
points always reach an equitable partition. In this case the fixed points are
0 and the first physical constrain active, 51 and to each camera is assigned
a segment long 17. Other two fixed points are the second physical constrain
active and the end of L, in this case we have two agents and the portion
assigned to each of them is equal to 9. This is useful if we want not only
minimize the longest part assigned to one camera (thus the bottleneck of the
patrolling time) but also distribute uniformly the work assigned to others
cameras.

Another case that has been taken into account is the case of a faulting
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camera. An example of the behaviour of the algorithm is shown in Figure 9
where at iteration t = 50 the third camera stop working. As we can see, the
algorithm cover (as long as it is possible) the subinterval left unpatrolled by
the faulting camera. Moreover it distribute equally the additional workload
among the remaining cameras of the network (see instant t = 149). As the
faulting camera returns to work (t = 150) the partition change again and
the optimal configuration is reached naturally, without any changing of the
algorithm.

Figure 9: Evolution of the algorithm in case of the fault of a camera

A simulative demonstration of the correctness of the distributed solution
can be obtained running a Monte Carlo test, we chose to run the test for n =
1000 times, focusing on the behaviour of the length of the longest portion ε of
L we wanted to see if it is true that almost surely it’s the same as the optimal
solution founded with simplex. So we define λ = |εcentr− εdistr| with obvious
meaning if symbols. As we can see in Figure 10 the answer is definitely
positive, being the difference to zero due just at numerical approximation.
So looking at mean E[λ] and variance σ2(λ) of λ we obtain:

E[λ] = 1.4218× 10−08

σ2(λ) = 6.7792× 10−14

In the following Figure 10 we can see in the first box the position of εcentr
and εdistr for every iteration, than we can see the difference between the two
variables and its mean. Finally is shown the difference among the length of
each segments assigned to cameras. As we observed before there is no reason
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why they should converge to identical values. It follows Figure 11 that is a
zoom of the previous figure.

Figure 10: Statistic of the Monte Carlo test
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Figure 11: Zoom on statistic of the Monte Carlo test
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4 Partitioning 2D
In this section we will deal with a generalization of the problem stated be-

fore considering instead of a perimeter two dimensional surface. We will find
a partitioning policy, i.e. a distributed algorithm that equally (with respect
to a measure) partitions the discretized environment. Each subregion will be
assigned to a camera (or agent) whose task is to patrol it. Supposing that all
cameras have same features, and working with a uniform environment, the
solution of this problem will distribute equally the workload to each agent.

4.1 Problem formulation

Let the finite set Q be the discretized environment (of the bounded
workspace A). We assume that the elements of Q, which can be thought
as location, are connected by weighted edges. In other words, we let G =
(Q,W,w) be an (undirected) weighted graph with edge set E ⊂ Q×Q and
weight map w : E → R>0; we let we > 0 be the weight of edge e. We assume
that G is connected and think of the edge weights as distances between lo-
cations. In the following they will be all equals, in order to have a uniform
discretization where all cells have the same size. An example is shown in
Figure 12.

Figure 12: Example of a graph of a discretized area

In any weighted graph G there is a standard notation of distances be-
tween nodes defined as follows. A path in G is an ordered sequence of nodes
such that any pair of consecutive nodes in the sequence is an edge of G. The
weight of a path is the sum of the weights of all the edges in the path. Given
two vertices h and k in G, the distance between h and k, denoted by dG(h, k),
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is the smallest weight of any path from h to k, or +∞ if there is no path
from h to k. In other words, the distance between two nodes is the weight of
the shortest path between them. By convention, dG(h, k) = 0 if h = k. Note
that dG(h, k) = dG(k, h), for any h, k ∈ Q. If the graph is connected, then
the distance between any two nodes is finite. Moreover if the environment
is convex we will approximate dG(h, k) with the euclidean distance d(h, k)
computationally faster and sufficiently accurate for our purposes. The short-
est path on a graph can be founded using Dijkstra’s algorithm and it will be
used just when strictly necessary.

Analogously, we define local distances on induced subgraphs of G =
(Q,E,w). Given I ⊂ Q, the subgraph induced by restriction of G to I,
denoted by G∩ I, is the graph with the set of nodes equal to I and with the
set of weighted edges containing all weighted edges of G where both vertices
belong to I. In other words, we set (Q,E,w)∩I = (Q∩I, E∩(I×I), w|I×I).
The induced subgraph is a weighted graph that is equipped with a notion
of distance between nodes. Given h, k ∈ I,we write dI(h, k) := dG∩I(h, k).
Note that dI(h, k) ≥ dG(h, k).

We remark that in this scenario a continuous environment is substituted
by an occupancy grid map (in other words a discretization of the environ-
ment), where each grid cell is either a free space or an obstacle (i.e. it’s
occupied). We define two free cells as adjacent if they border each other in
the grid map. The group of agents (robots or cameras) is then tasked with
partitioning the graph of the free cells. Given the graph G = (Q, E, w), we
define connected subset of Q as a subset S ⊂ Q such that S 6= ∅ and G ∩ S
is connected. Moreover let C(Q) denotes the set of such subsets. We can
define partitions of Q into connected sets as follows.

Definition 4 (Connected partitions) Given the graph G = (Q, E, w), we
define a connected N-partition of Q as a collection p = {pi}Ni=1 of N-subsets
of Q such that

1.
⋃N

i=1 pi = Q;
2. pi ∩ pj = ∅ if i 6= j;
3. pi 6= ∅ for all i ∈ {1, . . . , N};
4. pi ∈ C(Q) for all i ∈ {1, . . . , N}.

Let P to be the set of such partitions.

A technical assumption is then needed to define the generalized centroid
of connected subset. In what follows, we assume that a total order relation,
<, is defined on Q: hence, we can also denote Q = {1, . . . , |Q|}.

Definition 5 (Centroid) Let Q be a totally ordered set, and R ∈ C(Q).
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We define the set of generalized centroids

C(R) := argmin
h∈R

{∑
k∈R

dR(h, k)

}
, (13)

and the map Cd : C(G) → Q such that Cd(R) := min{c ∈ C(R)}. We call
Cd(R) the generalized centroid of R.

In subsequent use we will drop the world "generalized" for brevity. Note
that with this definition the centroid is well defined, thanks to the ordering
assumption, the centroid of region belongs to that region. It is a good ap-
proximation of the ’real’ centroid of the region R and the use of Euclidean
distance will not affects this definition.

In this scenario we will deal with partitioning Q into connected subsets
that have the same number of elements. We can define these type partitions
of Q as follows.

Definition 6 (Equitable partitions) Given the graph G = (Q, E, w), we
define an equitable N-partition of Q as a collection p = {pi}Ni=1 of N-subsets
of Q such that

1. p is a connected partition
2. |pi| = |pj| , i 6= j , i, j ∈ {1, . . . , N}

So we want to find a distributed policy to divide Q in N subsets (or
subregions of A) R1, . . . , RN that define an equitable partition {Ri}Ni=1 of
Q. Each camera i is assigned to subregion Ri and we take as index of
performance:

ε(t) = max
i∈{1,...,N}

|Ri(t)| − min
i∈{1,...,N}

|Ri(t)| . (14)

When it becomes equal to zero all subregions have the same size. Observe
that in general more than one equitable partition exists for a given workspace,
for example see Figure 13, we aim to reach a partition with ’fat’ (i.e. with
small diameter) subregions. This because in general fat subregions improve
overall performance (useful for the patrolling task, for example).

4.2 Algorithm proposed with symmetric communica-
tion

In this section we present the algorithm proposed to reach the equitable
partition when agents have a symmetric communication protocol and the
environment is discretized. The goal is to reach a partition where all sub-
regions have the same size and with a regular and ’fat’ shape. The idea of
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Figure 13: Two equitable partitions with different subregions shape

the algorithm is to select points to be exchanged in order to achieve these
two goals at the same time. So at each round of communication cameras
try to reduce the difference between their areas and try to do it keeping a
borderline as smooth as possible. When cameras have the same area they
will exchange points in order just to regularize the shape of their region.

4.2.1 Notations and euristic

Let be Ri(t) and Rj(t) the pair of communicating cameras in a round of
communication at the time t ∈ Z. The protocol of communication allows i
and j to exchange information in a symmetric way, thus i send to j infor-
mations about region Ri(t) and coordinates of centroid Cdi(t) and camera j
does the same to i (we denote i ↔ j). We define Γi,j(t) as the set of points
of Ri(t) that are adjacent to Rj(t) in the occupancy grid map at time t, we
write Γi,j(t) = {h ∈ Ri(t) : h ∈ adj(Rj(t)) where adj(Rj(t) is the set of
points adjacent to, at least, one point of Rj(t). Analogously Γj,i(t) is the set
of point of Rj(t) adjacent to Ri(t).

In order to keep regular subregions we will exchange 2 just few cells at each
step. Doing so under the Uniform Persistent Communication we induce little
changes along all of the frontiers and, as the time pass, we obtain that each
camera exchange points with all its neighbour 3. Moreover we clearly want

2Saying that cameras i and j exchange a point v we mean that

if v ∈ Ri(t), v 6∈ Rj(t)⇒ v ∈ Rj(t+ 1), v 6∈ Ri(t+ 1)

else if v ∈ Rj(t), v 6∈ Ri(t)⇒ v ∈ Ri(t+ 1), v 6∈ Rj(t+ 1)

3The alternative of i and j exchanging all the possible points to reach the same area
|Ri(t + 1)| = |Rj(t + 1)| leads to get an equitable partition faster but without control of
the shape of subregions. The final results (in term of shapes) will be highly sensitive to
initial conditions. If we start with a balanced and regular initial partition we can hope
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to have connected subregions at every step, so points that can be exchanged
are just those points that belong to sets Γi,j(t) and Γj,i(t). In what follows we
suppose that there is no overlapping between cameras. This will not affect
the procedure because if at time t ∈ Z there is overlap, defined as

Ωi,j(t) = {h ∈ Q : h ∈ (Ri(t) ∩Rj(t))} 6= ∅

it will be resolved immediately: each camera takes overlapping points that
are closer to its centroid and release the others. By convection overlapping
points equally distanced from the two centroids are assigned to the camera
with lower number (in what follows we suppose i < j).

Now we need to know how many points to exchange. We said before that
we want to exchange just few points, so we choose to exchange 2 points if the
difference between the two areas is greater than 2 cells (i.e. | |Ri|−|Rj| | > 2)
and just one point if this difference is equal to 2. If the difference is less or
equal than 1 we will focus just in regularizing the border.

We will deal now with the case | |Ri(t)| − |Rj(t)| | ≥ 2 and we suppose
that, for example, |Ri(t)| > |Rj(t)|. This means that camera i has to give
some cells to camera j to reduce the difference between the two subregions
to be patrolled. The choice of two(or one) points to exchange inside Γi,j(t)
isn’t unique and we can use this degree of freedom to assure that borders
keep a regular shape. We need a criterion to detect the bests among them
for this purpose.

The idea is to assign a priority to each point that quantify how much
that cell is ’outside’ its subregion. Thus the higher will be this number the
more important will be that that the camera release this point. We define a
map pr : Γi,j(t)→ R,

pr(h,Ri(t)) = |adj(h)|+ 1

2
|diag(h)|,

where h ∈ Γi,j(t), |adj(h)| gives the number of adjacent nodes to h that don’t
belongs to Ri(t) and |diag(h)| gives the number of nodes that don’t belong to
Ri(t) and that are close to h on the diagonal direction. The last term diag(h)
is necessary to get the function pr(h,Ri(t)) more accurate on weighting nodes.
Observe that it does not depend on the neighbor j chosen (there could be
more than one for example on corners). As defined, priority gives us a notion
on how much the point h is ’detached’ from Ri(t). An exception to this
definition has to be made if h is on the border of the environment Q. In
this case a constant term 1 is added at the sum to compensate the fact that

of getting a good final results, but this is not true in general where cameras could be
initialized roughly with big differences of areas to be patrolled with skinned shape.
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those points have less adjacent nodes than the others. Note that without
this adjustment they will be hardly exchangeable due to their intrinsic low
priority. We can now define the set

Wi→j(t) =

{
h ∈ Γi,j(t) : h = arg max

k∈Γi,j(t)

pr(k,Ri(t))

}

to select points of i with the maximum priority. In general Wi→j(t) contains
more than one point. Among them we choose the ones that minimize the
priority towards camera j if they were of camera j. Thus we define

W ′
i→j(t) =

{
h ∈ Wi→j(t) : h = arg min

k∈Wi→j(t)

pr(k,Rj(t))

}
.

Also W ′
i→j(t) could have more than one point, in this case we choose the

nearest to their future centroid Cd(Rj(t)) to obtain a ’fat’ subregion, thus a
point that belong to

W ′′
i→j(t) =

{
h ∈ W ′

i→j(t) : h = arg min
k∈W ′i→j(t)

d(k, Cd(Rj(t)))

}

In this case all the points of W ′′
i→j(t) are equivalent for our purpose and we

can exchange the first one, h∗, with respect to the total order relation of Q.
This can be done only if it’s inside the physical constraints Dj.
If at time t we have two cells to exchange we can repeat this operation thus
updating priority of the borderline after the exchange of the first point.
In this part of the algorithm (|Ri(t)|−|Rj(t) | ≥ 2) no points can be exchanged
if their priority is less or equal to 2.5. This lower bound, due to how we define
the map pr(h,R), will lead cameras to generate straight borders avoiding the
exchanging of points we priority equal or less than 2.

All of this is done to reach an equitable partition when |Ri(t)|−|Rj(t) | ≥
2. If we have Ri(t)|−|Rj(t)| < 2 we choose to care more on the regularization
task instead of the equitable part that is almost reached. By regularization
we mean that we want to decrease the average priority of both border Γi,j(t)
and Γj,i(t). In this case we choose to distinguish the case |Ri(t)|−|Rj(t)| = 1
and |Ri(t)| − |Rj(t)| = 0. In the first one i could cover just one point of j,
i.e. in this case we admit that an overlap of one point is generated (camera
j doesn’t release that point) and at t + 1 those two cameras will have the
same areas. In the second case two points will be exchanged (one for each
camera). The selection of points to be exchanged (or covered) in both case is
the same and it works like the previous case. The only difference is that we
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force somehow the exchanging selecting at the beginning those points that
have priority greater or equal than their priority if they will be exchanged.
Obviously a camera can not add to its region points that are not inside
the physical constrain. For that reason we avoid from the beginning points
outside the physical constraint of the camera that have to take points.
So we start the selection from this set:

W̄i→j(t) = {h ∈ Γi,j(t) ∩Dj : pr(h,Ri(t)) ≥ pr(h,Rj(t))}

and for the second case also

W̄j→i(t) = {h ∈ Γj,i(t) : pr(h,Rj(t)) ≥ pr(h,Ri(t))} .

If W̄i→j(t) 6= ∅ (and W̄j→y(t) 6= ∅) we continue as before selecting points
that have the greatest priority respect to i, than the smallest priority respect
to j and finally the nearest towards j. Thus points are selected inside the
final set obtained by the series of intersections:

W fin
i→j

(t) =
(((

(Γi,j ∩Dj) ∩ W̄i→j(t)
)
∩Wi→j(t)

)
∩W ′

i→j(t)
)
∩W ′′

i→j(t)

and with the same criterion we obtain W fin
j→i

(t).
In W fin we can have more than one point and as before we choose

the minor, we call it h∗. Now if pr(h∗, Rj(t)) > pr(h∗, Ri(t)) we can ex-
change the point. But if it holds pr(h∗, Rj(t)) = pr(h∗, Ri(t)) we introduce
a new conditions, and we can exchange the point only if d(h∗, Cd(Rj(t))) <
d(h∗, Cd(Ri(t))). This condition will avoid loops where cameras keep ex-
changing points that have the same properties for both of them. As halting
condition we pose that no points can be exchanged if their priority is less or
equal than 2.5.

Before updating the subregions to Ri(t+ 1) and Rj(t+ 1) a check of con-
nection is made. A disconnected result is hard to obtain but not impossible
due to some specific configuration of the intersection Ωi,j(t) ∩ Γi→j(t) that
can not be avoided. This test is accomplished checking that the modified
Ri(t) and Rj(t) (we call them R̃i(t) and R̃j(t)) have all points of perimeter
R̃i(t) and R̃j(t) at a distance on the graph from their centroids not infinite,
thus we assure that also all the other indoor points are connected. We write

dR̃i(t)
(Pi(t), Cd(Ri(t))) < +∞

dR̃j(t)(Pj(t), Cd(Rj(t))) < +∞.

If their not verified no update is done (thus Ri(t + 1) = Ri(t), Rj(t + 1) =
Rj(t)) and cameras have to wait a future round of communication to modify
their frontier.
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The last step is to compute the new centroids Cd(Ri(t+1)) and Cd(Rj(t+
1)). This is the computational most expensive operation because it runs on
O(n2) with n number of vertex of the subregion. For that reason we choose
to use euclidean distance that run O(1). Moreover we distinguished two
operations: computing and updating the centroid. The first one is needed at
the beginning and whenever more than two points are exchanged, for example
when we resolve the overlap, and it compute the centroid considering all the
points of subregions. The second one is used when just one or two points are
exchanged. In this case we search the new centroids just around the old one,
i.e. we test the nine vertex that surround it and we see if (13) is decreased.
If so we have founded the new centroid.

4.2.2 Statement of the algorithm

The algorithm for the discretized equitable partition with a symmetric
communication is stated as follows.

At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory its centroid
Cd(i) and the environment Q with its subregion Ri(t) and its physical con-
strain Di. The collection R(0) = R1(0), . . . , RN0 is a covering of L. At
each time t ∈ Z≥0 agent i communicate with an adjacent agent j, where
i, j ∈ 1, . . . , N, i 6= j are selected by a deterministic or stochastic process to
be determined. Every agent k 6= i, j sets Rk(t + 1) = Rk(t), while agents i
perform the following tasks:

1. % resolve overlap
2. if Ωi,j(t) 6= ∅ then
3. Ri(t) = {h ∈ Ri(t) ∩Rj(t) : d(h,Ri(t)) ≤ d(h,Rj(t))}
4. Rj(t) = {h ∈ Ri(t) ∩Rj(t) : d(h,Rj(t)) < d(h,Ri(t))}
5. compute Cd(Ri(t)), CdRj(t)

6. end
7. % sort cameras by area
8. if |Ri(t)| ≥ |Rj(t)| then
9. RM = Ri(t), Rm = Rj(t), DM = Di, Dm = Dj

10. else
11. Rm = Ri(t), RM = Rj(t), Dm = Di, DM = Dj

12. end
13. % find and exchange cells
14. if RM −Rm ≥ 2 then
15. % number n of points to be exchanged
16. if RM −Rm > 2 then
17. n = 2
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18. else
19. n = 1
20. end
21. for k = 1 : n
22. both agents compute the set ΓM,m(t) and the sets
23. WM→m(t) =

{
h ∈ ΓM,m(t) ∩Dm : h = arg maxk∈ΓM,m

pr(k,RM(t))
}

24. W ′
M→m(t) =

{
h ∈ WM→m(t) : h = arg mink∈WM→m(t) pr(k,Rm(t))

}
25. W ′′

M→m(t) =
{
h ∈ W ′

M→m(t) : d(h,Cd(Rm(t))) = mink∈W ′M→m(t) d(k, Cd(Rm(t)))
}

26. h∗ = minW ′′
M→m(t)

27. if pr(h∗, RM) ≥ 2.5 then
28. RM = RM \ h∗, Rm = Rm ∪ h∗
29. both agents update Cd(Rm), Cd(RM)
30. end
31. end
32. else % RM − Rm < 2
33. % RM gives one cell to Rm

34. both agents compute the set ΓM,m(t) and
35. W̄M→m(t) = {h ∈ ΓM,m(t) ∩Dm : pr(h,RM(t)) ≥ pr(h,Rm(t))}
36. WM→m(t) =

{
h ∈ W̄m→M(t) : h = arg maxk∈W̄M→m(t) pr(k,RM(t))

}
37. W ′

M→m(t) =
{
h ∈ WM→m(t) : h = arg mink∈WM→m(t) pr(k,Rm(t))

}
38. W ′′

M→m(t) =
{
h ∈ W ′

M→m(t) : d(h,Cd(Rm(t))) = mink∈W ′M→m(t) d(k, Cd(Rm(t)))
}

39. h∗ = minW ′′
M→m(t)

40. if pr(h∗, RM) ≥ 2.5 and pr(h,RM(t)) > pr(h,Rm(t)) or ( pr(h,RM(t)) =
pr(h,Rm(t)) and d(h,Cd(Rm(t))) < d(h,Cd(RM(t))) ) then

41. RM = RM \ h∗, Rm = Rm ∪ h∗
42. both agents update Cd(Rm), Cd(RM)
43. end
44. if RM −Rm = 0 then
45. % Rm gives one cell to RM

46. both agents compute Γm,M(t)
47. W̄m→M(t) = {h ∈ Γm,M(t) ∩DM : pr(h,Rm(t)) ≥ pr(h,RM(t))}
48. Wm→M(t) =

{
h ∈ W̄m→M(t) : h = arg maxk∈W̄m→M (t) pr(k,Rm(t))

}
49. W ′

m→M(t) =
{
h ∈ Wm→M(t) : h = arg mink∈Wm→M(t) pr(k,RM(t))

}
50. W ′′

m→M(t) =
{
h ∈ W ′

m→M(t) : d(h,Cd(RM(t))) = mink∈W ′m→M (t) d(k, Cd(RM(t)))
}

51. k∗ = minW ′′
m→M(t)

52. if pr(k∗, Rm) ≥ 2.5 and pr(h,Rm(t)) > pr(h,RM(t)) or ( pr(h,Rm(t)) =
pr(h,RM(t)) and d(h,Cd(RM(t))) < d(h,Cd(Rm(t))) ) then

53. Rm = Rm \ k∗, RM = RM ∪ k∗
54. both agents update Cd(Rm), Cd(RM)
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55. end
56. end
57. end
58. % checking connection of the solution
59. if RM and Rm are connected
60. % matching correct output values
61. if |Ri(t)| ≥ |Rj(t)| then
62. Ri(t+ 1) = RM , Rj(t+ 1) = Rm

63. Cd(Ri(t+ 1)) = Cd(RM), Cd(Rj(t+ 1)) = Cd(Rm)
64. else
65. Ri(t+ 1) = Rm, Rj(t+ 1) = RM

66. Cd(Ri(t+ 1)) = Cd(RM), Cd(Rj(t+ 1)) = Cd(Rm)
67. end
68. both agents update Cd(Ri(t+ 1)), Cd(Rj(t+ 1))
69. end

4.3 Algorithm proposed with asymmetric communica-
tion

In this section we present the algorithm developed to reach an equitable
partition when the protocol of communication among cameras is asymmetric.
As before we are interest not only in obtaining areas all with the same size
but also with a regular shape because this aid a future patrolling strategy.
As the previous case we try reach those goals together and we focus just on
the regularization when two cameras has the same areas. Firstly we present
the notation and the heuristic of the algorithm and after we state it.

4.3.1 Euristic and notations

Suppose that at time t camera i receives information from camera j (i←
j). This means that at each time of communication just one camera can
update its status and in what follows that camera is i.

The first thing to do is look at the difference between areas |Ri(t)| and
|Rj(t)|. Clearly if i has more points than j it has to release some points
otherwise it has to cover some points of j. If their size is the same i tries to
make the border between them more regular. As before we are interested in
modifying the status of just one or two points but in this case this is done
also for the overlap among subregions. In fact resolving it as quickly as before
with this protocol of communication leads to configurations not suitable with
the regularization objective. We distinguish 3 cases.
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• If |Ri(t)−Rj(t)| ≥ 2 agent i has to release some points. To assure the
covering constraint we release just points on the overlapping area (and
so the physical constraint is automatically satisfied). Thus we have to
start the selection inside the intersections

Γover
i,j (t) = Γi,j(t) ∩ Ωi,j(t).

Inside Γover
i,j (t) we now consider those cells that are the most irregular

for i, as we want to regularize the border. So we defined

Ui→j(t) =

{
h ∈ Γover

i,j (t) : h = arg max
k∈Γover

i,j (t)
pr(k,Ri(t))

}
,

in general this set can have more than one point so we add this second
selection that selects those cells that are more regular for j

U ′i→j(t) =

{
h ∈ Ui→j(t) : h = arg min

k∈Ui→j(t)

pr(k,Rij(t))

}
,

also this set can have more than one point and this time we select to
release those points that are more far from their centroid Cd(Ri(t)):

U ′′i→j(t) =

{
h ∈ U ′i→j(t) : h = arg max

k∈Ui→j(t)
d(k, Cd(Ri(t)))

}
and finally camera i release the minor of the points inside U ′′i→j(t) and
update its centroid. If it’s necessary to release two points these pro-
cedure is repeated again from the beginning to work with updated
priorities.

• The second case is when |Rj(t)| − |Ri(t)| ≥ 1 so this time camera i has
to cover two (if |Rj(t)|−|Ri(t)| > 2) or one (if 1 ≤ |Rj(t)|−|Ri(t)| ≤ 2)
points of camera j. We have to find points of Rj(t) adjoining to Ri(t)
that are not inside the overlap and we call this set Γ̄j,i(t). They have
to stay inside the physical constraint Di. From that set we can take
those with higher priority towards j

Vj→i(t) =

{
h ∈ Γ̄j,i(t) ∩Di : h = arg max

k∈Γ̄j,i(t)

pr(k,Rj(t))

}
and among them those that have minor priority towards i

V ′j→i(t) =

{
h ∈ Vj→i(t) : h = arg min

k∈Vj→i(t)

pr(k,Ri(t))

}
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and then those closer to Cd(Ri(t)):

V ′′j→i(t) =

{
h ∈ V ′j→i(t) : h = arg min

k∈V ′j→i(t)

d(h,Cd(Ri(t)))

}
.

Inside V ′′j→i(t) we camera i covers the minor, h∗, and update its centroid.
If two points are to be added to Ri(t) this procedure is repeated with
updated sets (i.e. posing Ri(t) = Ri(t)∪h∗) in order to compute correct
priorities.

There is one additional step if |Rj(t)| − |Ri(t)| = 1: if the two cameras
has just one point of overlap that has the same priority towards both
subregions and it is more near to j, camera i release that point. This
is done to help the regularization in the last steps of the algorithm
(when areas become almost equals and overlap almost disappear). We
tolerate an increasing difference between areas just because, with this
step, it actually increase of just one point (if the difference is of 2 points
the algorithm won’t enter in this condition). Moreover, for the same
reason, i can cover the point of j only if it doesn’t worsen the situation,
in other words only if it has for i a lover priority or, if it’s the same, it
is less distant from i instead from j.

• The last case is when |Ri(t)− Rj(t)| = 0. The algorithm can focus on
making regulars border and for that reason i tries to cover the worst
point of j and releases her worst overlapping point.

When i tries to cover the worst point of j we consider the set Γj,i(t)∩Di

and, if there is no overlap (Ωi,j(t) = ∅) we remove at the beginning those
points that wouldn’t be exchanged because pr(h,Rj(t)) > pr(h,Ri(t)).
This little changing is done to force the regularization at the end, i.e.
when there is no overlapping 4. In what follow, for simplicity , we
call both this set Γi,j(t). As in the same case we find h∗ ∈ V ′′j→i(t)
as the minor in that set. Agent i cover that point if pr(h∗, Rj(t)) >
pr(h∗, Ri(t)) and if the priority is the same it checks distances covering
h∗ if it holds d(h∗, Cd(Ri(t)) < d(h∗, Rj(t)).

When i tries to release its worst overlapping point we find h∗ ∈ U ′′i→j(t)
and i release this point selecting checking priorities (must be pr(h∗, Ri(t)) ≥

4We observed that doing this from the beginning (so when Ωi,j(t) 6= ∅) is not worthy
because increasing overlap between regions may lead the algorithm to spend lots of time
in situation where an equitable partition is reached, but it has a great overlap. In other
words all the cameras have the same areas but their value is bigger than the optimal one
reached eliminating overlap.



38 4.3 Algorithm proposed with asymmetric communication

pr(h∗, Rj(t))) and if their equals checking distances (so d(h∗, Cd(Rj(t)) <
d(h∗, Ri(t))). Observe that this part is useful from the beginning be-
cause it regularize borders reducing overlapping. Centroid is then up-
dated.

As with symmetric communication at the end is necessary to check if Ri(t)
is connected and if not the algorithm doesn’t update this subregion leaving
things unchanged for the next iteration t+ 1.

4.3.2 Statement of the algorithm

The algorithm for the discretized equitable partition with asymmetric is
stated as follows.

At each time t ∈ Z≥0, each agent i ∈ 1, . . . , N keeps in memory its centroid
Cd(i) and the environment Q with its subregion Ri(t) and its physical con-
straint Di. The collection R(0) = R1(0), . . . , RN0 is a covering of L. At
each time t ∈ Z≥0 agent i communicate with an adjacent agent j, where
i, j ∈ 1, . . . , N, i 6= j are selected by a deterministic or stochastic process to
be determined. Every agent k 6= i, j sets Rk(t + 1) = Rk(t), while agents i
perform the following tasks:

1. % save conditions in t
2. R̄i(t) = Ri(t), R̄j(t) = Rj(t)
3. % First case:
4. if |Ri(t)−Rj(t)| ≥ 2 then
5. % number n of points to be exchanged
6. if |Ri(t)−Rj(t)| > 2 then
7. n = 2
8. else % |Ri(t)−Rj(t)| = 2
9. n = 1
10. end
11. for v = 1 : n
12. agent i compute Γi,j(t) and the sets
13. Ωi,j(t) = {h ∈ Q : h ∈ (Ri(t) ∩Rj(t))}
14. Γover

i,j (t) = Γi,j(t) ∩ Ωi,j

15. Ui→j(t) =
{
h ∈ Γover

i,j (t) : h = argmaxk∈Γover
i,j (t) pr(k,Ri(t))

}
16. U ′i→j(t) =

{
h ∈ Ui→j(t) : h = arg mink∈Ui→j(t) pr(k,Rij(t))

}
17. U ′′i→j(t) =

{
h ∈ U ′i→j(t) : h = argmaxk∈Ui→j(t) d(k, Cd(Ri(t)))

}
18. h∗ = minU ′′i→j(t)
19. if pr(h∗, Rm) ≥ 2.5 then
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20. Ri(t) = Ri(t) \ h∗
21. update Cd(Ri(t)), Cd(Rj(t))
22. end
23. end
24. % Second case:
25. elseif |Ri(t)−Rj(t)| ≥ 1 then
26. % number n of points to be exchanged
27. if |Ri(t)−Rj(t)| > 2 then
28. n = 2
29. else % 1 ≤ |Ri(t)−Rj(t)| ≤ 2
30. n = 1
31. end
32. compute Ωi,j(t) = {h ∈ Q : h ∈ (Ri(t) ∩Rj(t))}
33. if |Ri(t)−Rj(t)| = 1 and Ωi,j(t) ≡ h then
34. if pr(h,Ri(t)) = pr(h,Rj(t)) and d(h,Rj(t)) < d(h,Ri(t))

and pr(h,Rm) ≥ 2.5 then
35. Ri(t) = Ri(t) \ h
36. update Cd(Ri(t))
37. end
38. end
39. for v = 1 : n
40. agent i compute Γj,i(t) and the sets
41. Γ̄j,i(t) = {Γj,i(t) ∩Di} \ {h ∈ Γj,i(t) : pr(h,Rj(t)) > pr(h,Ri(t))}
42. Vj→i(t) =

{
h ∈ Γ̄j,i(t) : h = arg maxk∈Γ̄j,i(t)

pr(k,Rj(t))
}

43. V ′j→i(t) =
{
h ∈ Vj→i(t) : h = arg mink∈Vj→i(t)

pr(k,Ri(t))
}

44. V ′′j→i(t) =
{
h ∈ V ′j→i(t) : h = arg mink∈V ′j→i(t)

d(h,Cd(Ri(t)))
}

45. h∗ = minV ′′j→i(t)
46. if |Ri(t)−Rj(t)| 6= 1 then
47. Ri(t) = Ri(t) ∪ h∗
48. update Cd(Ri(t))
49. elseif ( pr(h∗, Rj(t)) < pr(h∗, Rj(t)) or ( pr(h∗, Rj(t)) = pr(h∗, Rj(t))

and d(h∗, Ri(t)) < d(h∗, Rj(t)) ) ) and pr(h∗, Rm) ≥ 2.5 then
50. Ri(t) = Ri(t) ∪ h∗
51. update Cd(Ri(t))
52. end
53. end
54. % Third case:
55. else % |Ri(t)− Rj (t)| = 0
56. % agent i cover
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57. if Ωi,j(t) = ∅ then
58. compute Γj,i(t) = {Γj,i(t) ∩Di}\{h ∈ Γj,i(t) : pr(h,Rj(t)) > pr(h,Ri(t))}
59. end
60. Vj→i(t) =

{
h ∈ Γj,i(t) : h = arg maxk∈Γ̄j,i(t)

pr(k,Rj(t))
}

61. V ′j→i(t) =
{
h ∈ Vj→i(t) : h = arg mink∈Vj→i(t)

pr(k,Ri(t))
}

62. V ′′j→i(t) =
{
h ∈ V ′j→i(t) : h = arg mink∈V ′j→i(t)

d(h,Cd(Ri(t)))
}

63. h∗ = minV ′′j→i(t)
64. if ( pr(h∗, Rj(t)) > pr(h∗, Ri(t)) or ( pr(h∗, Rj(t)) = pr(h∗, Ri(t))

and d(h∗, Cd(Ri(t)) < d(h∗, Rj(t)) ) ) and pr(h∗, Rm) ≥ 2.5 then
65. Ri(t) = Ri(t) ∪ h∗
66. update Cd(Ri(t))
67. end
68. % agent i cover
69. compute the sets Γover

i,j (t) = Γi,j(t) ∩ Ωi,j(t)

70. Ui→j(t) =
{
h ∈ Γover

i,j (t) : h = argmaxk∈Γover
i,j (t) pr(k,Ri(t))

}
71. U ′i→j(t) =

{
h ∈ Ui→j(t) : h = arg mink∈Ui→j(t) pr(k,Rij(t))

}
72. U ′′i→j(t) =

{
h ∈ U ′i→j(t) : h = argmaxk∈Ui→j(t) d(k, Cd(Ri(t)))

}
73. h∗ = minU ′′i→j(t)
74. if ( pr(h∗, Ri(t)) > pr(h∗, Rj(t)) or (pr(h∗, Ri(t)) = pr(h∗, Rj(t))

and d(h∗, Cd(Rj(t)) < d(h∗, Ri(t)) ) ) and pr(h∗, Rm) ≥ 2.5 then
75. Ri(t) = Ri(t) ∪ h∗
76. update Cd(Ri(t))
77. end
78. end
79. % checking connection of the solution and updating
80. if Ri(t) and Rj are connected then
81. Ri(t+ 1) = Ri(t), Rj(t+ 1) = Rj(t)
82. else
83. Ri(t+ 1) = R̄i(t)), Rj(t+ 1) = R̄j(t)
84. end

4.4 Computational complexity

In this section, we describe the computational requirements of algorithms
developed for a symmetric and asymmetric communication. Due to their
similar approach to the problem computational issues are the same for both
of them and are in what follows discussed. The assumption is that the
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environment is discretized using an occupancy grid map, the fact that all edge
weights are the same for these graphs results in a significant computational
savings.

4.4.1 One-to-all distances

Computing distances from one vertex to all other vertices in a subgraph
of G (i.e. one-to-all distances) is the core computation of the algorithm. For
graphs used in occupancy grids each cell can have a maximum of 4 edges,
so all computational bounds can be stated in terms of |Q|. In addition, the
uniform weight of edges means that computing distances in the graphs is
equivalent to counting hops. We can therefore use a Breadth First Search
(BFS) approach to compute one-to-all distances on the fly in O(|Q|) in both
time and memory. However if is necessary to work with different edge weights
then Dijkstra’s algorithm must be used (it requires O(|Q| log(|Q|)) in time
and O(|Q|) in memory). In literature there is also a solution for small graphs
that can be The Johnson’s algorithm pre-compute all pairwise distances be-
tween vertices in (O(|Q|2 log(|Q|))) and then use a constant-time lookup
online. However, the memory requirements is O(|Q2|) and for that reason
it’s useless for large environments.

4.4.2 Exchanging territory

There are three stages to the computation of which territory cells to
exchange. In what follows we illustrate those steps for a symmetric protocol
where both agents have to perform those computation and transmission.
With an asymmetric protocol the transmission is just on one camera and the
computation just to the other.

So with a symmetric protocol agents i and j must exchange their current
subsets pi and pj, requiring a transmission of O(|pi|+|pj|) bits of information.
Secondly, for update their subset they must find the border between them
and find the best cells to exchange. These computation require O(|pi|+ |pj|)
in both time and memory. Finally, each agent must check that the result are
connected sub-graphs and compute centroid Cdi(t) and Cdj(t) and this will
be discussed below.

With an asymmetric protocol agents i must exchange its current subset
pi and it requires a transmission of O(|pi|) bits of information. After that j
have to find the cells to cover (or to release) and it requires O(|pi|+ |pj|) in
both time and memory. Then a check of connection and the compute of new
centroid Cdj(t) have to be made.
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4.4.3 Check of connection and centroid computation

These two steps are the most computationally demanding. Check connec-
tion means checking that exists a path from every node to the centroid. In
order to reduce the computational requirements of this step the connection
is checked just for vertexes on the border Pi and Pj. This is sufficient to
guarantee the connection of the areas. Using Dijkstra’s algorithm we obtain
a complexity of O(|Pi + Pj|) log(|Pi + Pj|) in time and O(|Pi + Pj|) in mem-
ory with symmetric communication. Clearly for the asymmetric version this
check requires O(|Pj| log(|Pj|)) in time and O(|Pj| in memory .

The problem of computing centroid is the presence of local minima in
minimizing the sum of distances to all other vertices. A first approach is
making an exhaustive search. Find a vertex in pi with the minimum cost
requires computing the one-to-all distances for each vertex. This approach
finds the true centroid but requires O(|pi|2) time. A second approach used is
the gradient descent. If the cells exchanged are one or two the new centroid
must be in one of the eight cells that surround the previous centroid, so the
one-to-all distances can be computed just around the previous centroid. In
both algorithms when agents perform an exchange of just one or two points
this second approach is used. In all the other cases an exhaustive search
is performed to assure the choice of the right centroid. Observe that with
the asymmetric version the second approach is almost always enough to find
centroids. In fact just initialization and the management of a faulting camera
require to use an exhaustive search. Whereas with symmetric communication
it depends on the size of overlap (if present). So the choice of exchanging just
few vertexes leads to the final solution in more iterations but with a great
computational saving on the core of computation of the algorithm.
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5 Simulation results for 2D case with symmet-
ric communication

In this section we report the results obtained running the discretized eq-
uitable partitioning in a two dimensional environment with symmetric com-
munication explained in Section 4.2.

In order to test the algorithm we choose a square area discretized with
15×15 cells that has to be patrolled by 9 cameras. We choose this numbers in
order to make possible an optimal partition where every camera has to patrol
exactly 25 cells. Note that talking about cameras a rough discretization (i.e.
with a small number of cell respect to the size of the surface) can be chosen
and it will speed up the ending of the transitory of algorithm. In a real
application the size of the cell is a parameter of the design and it can vary
according to specifics purposes.

As initial conditions every subregion assigned to a camera overlap its
neighobors, thus assuring that the covering constraints is satisfied. It make
sense in a real application where, for example, we have to install a network
of cameras and we don’t want to spend too much time in assigning the initial
subregions to all of the cameras. With this algorithm we can quite roughly
assign a region to every camera (the only constrain is that there haven’t to be
unpatrolled spaces) because the algorithm, as we will see, it’s robust enough
to initial conditions.

5.1 A balanced and not constricted configuration

In the next figures we can see an example of how the algorithm works.
In what follows the area to patrol is the biggest square and to each camera
is assigned a subregion represented by cells (the smallest square) of different
colours. The overlap is simply represented by cells nested one in the other
and black triangles are the centroids of subregions. A black arrow is used
to explicit the pair of communicating cameras in a round of communication.
In Figure 14a we can see that the starting point is represented by the en-
tire area partitioned and big parts of it have to be patrolled by more than
one camera. We consider this a quite balanced initialization, almost all of
the overlaps are not so big and centroids are posed more or less where they
will be in the optimal result. This make sense because in practice, working
with cameras, we have physical constraints that limits the competence of the
cameras to a limited subregion.
In Figure 14b-14f we observe the behaviour of the algorithm. We can say that
in a first phase the more relevant action is the one of resolving overlapping
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between adjacent subregions. In this step the size of areas could have vari-
ations quite significant (it depends on how the system has been initialized)
and we have the greatest variation of the performance index ε(t).
Until the ending of this phase, i.e. when all initial overlaps are disappeared,
its possible that the index ε(t) increase significantly (see Figure 14a) and it
happens because overlap is splitted checking the distances and this means
that also the biggest area can increment its value if needed 5.
In the second part cameras make the index to converge almost to zero. We
say almost because neighbors cameras with areas of the same size can think
on regularize their borderline maybe incrementing a little bit the index as
we’ve seen before.
The last part is when the index is really close to zero. This can last quite
a lot because it depends on the communication that is random, there are
just few cameras that need to communicate in order to fix the last changing
on border but we have to wait that the random process that rules the com-
munication selects them. If it selects other cameras the round stay unused
because no changing are needed between them.

Figure 15a shows how change the index

ψi(t) =
1

|Λ(Ri(t))|
∑

h∈Λ(Ri(t))

dRi(t)(h,Cd(Ri)) , i ∈ {1, . . . , N} (15)

where Λ(Ri(t)) is the set of all the points that lay on the perimeter. It’s clear
that the less is the mean of the distance from each point of the perimeter
to its centroid the fatter is the shape. We can see that they all decrease for
every camera until they all reach the same value.

5.2 Unbalanced initial configuration

In the previous example we saw the behaviour starting with a quite good
initialization that can be justified by the presence of physical constraints that
limits the areas of the cameras. In a case like this a natural initialization is
to assign to all cameras their physical constraints. Different is the case where
agents are not fixed cameras but mobile agents, for example mobile robots

5We chose to solve overlap present in this context looking just on distances form cen-
troids. This is equivalent to say that this choice is made favouring the part of regularization
instead of the one of equitable. This is supposed to avoid some cases where a smaller area
win all the overlap but makes the bigger area to assume a shape difficult to regularize and
sometimes easily to be disconnected in the future. Gaining point on the distance from
centroid is more suitable to give ’fat’ areas easier to work with. In other words we chose
to work with a more regular but less balanced ’initial’ condition instead of starting with
bad shapes and more balanced areas.
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(a) Initial conditions, t = 1 (b) Iteration for t = 15

(c) Iteration for t = 30 (d) Iteration for t = 45

(e) Iteration for t = 60 (f) Final result, t = 157

Figure 14: Some passages of the algorithm to obtain an equitable partition
of a discretized environment with a symmetric communication among 9 cam-
eras.
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(a) Plot of the maximum difference ε(t)
among areas size

(b) Plot of the mean of distance ψi(t) be-
tween perimeter and centroids for all cam-
eras

Figure 15

that can go everywhere on the surface. In this case the centroid represent the
position of the robot and obtaining a ’fat’ subregion is fundamental to min-
imize the time needed by robot to reach the farthest point in its subregion.
In this case make more sense to consider an initial condition very unbalanced
that must be regularized also by significant movements of agents. We choose
as instance an environment (see Figure 16a) with an edge of 20 cells and 4
agents inside. The final result is shown in Figure 16b, the optimal result as
we saw it before it’s not perfectly reached but we get a still good approx-
imation of it. From this point the algorithm cannot move on further and
it remain stucked in this sub-optimal configuration. Comparing Figure 17a
and 17b we can see that an equitable partition is reached a little bit after
t = 160 but at this time indexes ψi(t) are quite far from being the same. For
that reason perimeters continue to be modified by agents until they obtain
all ψi(t) ' 5.2. There is a cell that is cyclic exchanged among agents that try
to reach the optimal solution ψi(t) = ψj(t), i 6= j, t ≥ τ and ε(t) = 0, t ≥ τ
for a given τ . This is no more possible because we tolerate that a camera
can exchange no more than one point ’against’ the equitable and that’s not
enough to change the global situation. The amplitude of oscillations are lim-
ited and kept very small as we see in Figure 17c and 17d.

5.3 Possible disconnected configurations

In the next example we see how it is possible that an area became dis-
connected and so the importance of making a check on disconnection before
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(a) Initial conditions, t = 1 (b) Final result at t = 500

Figure 16: Result of the algorithm starting with a strongly unbalanced initial
condition.

updating subregions. The starting point is shown in the Figure 18a. The
green camera communicating first with the yellow and after with the brown
one gains two points. This is the time reported, now if the yellow releases
the overlap point to the green a disconnection is generated and because of
the disconnected part, it will keep on communicating with the red camera
also if their centroids are not ’neighbour’. In Figure 18b the situation goes
on the yellow can catch point from the red camera but can not release the
point that has in common with the green one. In order to unlock that point
we have to wait that or the green one goes back or the yellow goes back and
leave all that points to the red one. To reach a more regular situation the
second option is exactly what happens. In Figure 18c the red starts advance
towards the yellow catching a point previously of the brown one. The situa-
tion evolves in Figure 18d and 18e where red and brown fix themselves and
then the green fix itself avoiding its own disconnection. Finally in Figure 18f
the optimal result is obtained.

5.4 Small physical constraints

We see now what happen when there are physical constraints that became
actives and in particular some camera cannot fully provide its contribute to
reach an equitable partition. We take the square area with edges discretized
to 15 cells. We’ve already seen that each of the nine camera should take
its sub-area to 25 points, but we suppose now that two cameras have a
maximum reachable surface of 16 points. In Figure 19a we initialize every
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(a) Plot of the maximum difference ε(t)
among areas size

(b) Plot of the mean of distance ψi(t)
between perimeter and centroids for all
cameras

(c) Zoom of final oscillations of ε(t) (d) Zoom of final oscillations of ψi(t)

Figure 17: Maximum error ε(t) and index ψi(t) (and their zooms) for an
environment patrolled by 4 agents with an unbalanced initialization.
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(a) Beginning of a potential disconnec-
tion, t = 55

(b) The advancing of yellow camera,
overlap stay locked, t = 56

(c) Red and brown fixing their border,
t = 92

(d) Yellow moving backwards, t = 105

(e) Green solving its border, t = 114 (f) Final result, t = 159

Figure 18: Some passages of the algorithm when a possible disconnection
situation appears.
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(a) Initialization of cameras with their
physical constraints

(b) Final result

Figure 19: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).

camera with its physical constraint and the more constrained cameras are
the first and the last one (respectively in brown and dark blue). In a case
like this its clear that the two constrained cameras will be stay fixed to
their maximum spread and the other ones have to take more cells to cover
the whole environment (accordingly to their possibilities). Moreover they
reach a partition that divide equally (if possible) the part of the environment
outside fixed cameras. Note that final result can have some points of overlap
left or some irregularities. This is mainly because the regularization action is
performed in a place where it’s not possible to have a perfect equal partition.
In fact the number of cells that lays outside ’fixed’ cameras it’s not a multiple
of the number of cameras that can adjust their areas. We remark that, that
difference consist only in a few cells (usually less than two) as shown in Figure
20b. We report also the index ε(t) in Figure 20a that of course cannot go to
zero but reaches, oscillating a little bit during regularization, the best (i.e.
12 cells) that is possible to do 6.

5.5 Fault of a camera

In the next example we will deal with the problem of the fault of one
camera. This could be due or to a malfunctioning of the agent but also

6The whole area has 255 cells. Two cameras are fixed with 16 points each due to
constraints. So we have 225− 162̇ = 193 and divided by the 7 ’free’ agents leads to 27.57
per agent. So the minimum difference that we can obtain is 27.57− 16 = 11.57!
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(a) Evolving of the index ε(t), it settles to the final
value of 12

(b) Size of the area assigned to each camera in
the final configuration

(c) Index ψi(t) for i = 1, . . . , N the two more con-
strained cameras stay fixed, the others try to settle
themselves to the same shape;

Figure 20: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).
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to a situation where the agent is busy in following an object (or in general
providing a service) and cannot continue the task of patrolling its area. In
a case like this it’s clear that all neighbours agents have to make up for the
one occupied. The idea is of expanding borders up to their constraints for
all cameras in order to recompute an optimal partition that can compensate
for the lack of one camera. Note that in this part we don’t deal with the
problem of how actually the faulting camera inform all the others of its
absence. It’s possible to implement this function asking that the camera
that is going to miss have to advise at least on neighbour and it will provide
this information in a distributed way throughout all the network7 or in some
other ways. In Figure 21 we reported an example where the eighth camera
stop working (or becomes busy) in t = 101. At that time cameras were
trying to reach an optimal configuration (see Figure 21b to see configuration
at t = 100), but because of the fault in t = 101 they re-initialize themselves
up to their physical constraints to affrontare the new situation. We know
that each camera should patrol 25 cells in order to obtain ε(t) = 0 but now
there are 9 cells that cannot reached so the new best configuration requires
that cameras have 27 cells in their subregions. Being a camera to 0 we hope
that ε(t) = 27 during the interval where a camera is missing. In this case a
sub-optimal configuration is reached with ε(t) = 28, so there is almost one
camera that has a point more than necessary. The explanation can easily
gained looking at Figure 22b, in fact the difference of one point is because
they haven’t reached a minimum ψi(t) and they keep working on it (spending
no more than one point). In 22b we can also see the effects of re-initialization
at t = 101 and the re-appearing of the faulting camera at t = 401. That
partition is shown in Figure 21d and in the last two Figure 21e and 21f we
can see the optimum result reached at the end.

5.6 Statistical results

Finally we present results obtained testing the control law in an envi-
ronment similar to the one used before (a discretized square with an edge
of 15 cells) but with a random initialization of agents that can vary from a
smooth to a very unbalanced initialization. In order to have an idea of the
general behaviour of the algorithm we run a hundred of simulations reaching
the optimal configuration 67 times (in, on average, 538 iterations). For the
33 cases where the optimum is not reached we analysed the index ψ to see

7This can be fulfilled, for example, if every camera keeps in memory a vector of N
elements where it stores information about their status and if there are updates they must
be sent. Areas are modified when all cameras have that vector updated - so also this
information must be send -.
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(a) Initial condition, t = 1 (b) Configuration just before a camera
fault, t = 100

(c) Reinitialization cause of the fault of
the middle-blue camera, t = 101

(d) Final result with a camera missing,
t = 400

(e) The middle-blue camera reappears
spreading its physical constrain , t = 401

(f) Final result with all cameras, t = 496

Figure 21: Main passages of the algorithm when a fault of a camera appears.
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(a) Index ε(t), evident are points where a
camera fault t = 100 and when it begins to
work again t = 400

(b) Progress of indexes ψi(t)

Figure 22: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).

the performance. As seen before it measures the mean of the distance of
every point of the perimeter from the centroid. In the optimal configura-
tion we have ψopt = 2.325 for each camera. To see how many solutions that
don’t reach the optimum are far from that result we measure the quantity
η(T ) = maxi ψi(T ) − ψopt, where T is the final instant. Considering all the
33 cases we have:

E[η] = 0.183

σ2(η) = 0.019

so we can affirm that on average if the optimum is not reached a sub-optimal
it is (at less than 7%). There are still some exceptions where the algorithm
converge to an equitable partition but assigning to some cameras sub-regions
with a bad shape. Note that in this test all cameras are considered without
physical constraints to see the evolution of their area’s shapes. In a scenario
with physical constraints areas are limited by that boundaries and those
limits can help the reaching of the optimal solution keeping areas not too far
from it. In Figure 23 where are reported η for all cases.
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Figure 23: Difference η between the worst ψ among all cameras and ψopt
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6 Simulation results for 2D case with asymmet-
ric communication

In this section we present results obtained running the algorithm devel-
oped for equitable in a discretized environment using an asymmetric protocol
of communication among agents that perform the partitioning.

The environment used its the same of the previous case with symmetric
communication, i.e. a square area discretized in 225 cells that have to be
partitioned (and then of course patrolled) by 9 cameras.

6.1 Balanced and not constricted initialization

We start showing a general behaviour when cameras have a quite balanced
initialization and there aren’t physical constraints. In Figure 24 there are
reported some moments of the simulation. We see that differently from the
case with symmetric communication the management of overlapping areas is
here slower (in particular at the beginning) and in order to keep every part
patrolled it’s necessary that each camera modifies its subregion catching and
releasing overlapping cells with its neighbours. Note that now the arrow used
as to show the communication has just one head pointing to the camera that
is receiving information. In Figure 25a is shown the progress of the difference
between the biggest and smallest subregion and in Figure 25b the progress of
the index ψ that provides us information about subregions shapes. Observe
that ε(t) reaches the value zero at the end but also in a previous instant
(when all subregions have the same size but there is overlap among them)
and that all ψi converge to the same value.

6.2 Unbalanced unconstrained initialization

In the previous example we supposed a quite balanced initialization, the
algorithm works well also with an unbalanced initializations. Clearly ob-
servations reported in Section 5 for the symmetric case are still valid. The
initialization and the final result is reported in Figure 26a and 26b and the
progress of indexes are in Figure 27a and 27b. In this simulation the parti-
tion is sub-optimal in terms of shapes with ψi(T ) that are almost the same
(ψ3(T ) = ψ4(T ) = 5.203 and ψ1(T ) = ψ2(T ) = 5.207).

6.3 Possible disconnected configurations

In what follows we see with an example the importance of checking the
connection of the result in each iteration of the algorithm. In this case



6.3 Possible disconnected configurations 57

(a) Initial conditions, t = 1 (b) Iteration for t = 200

(c) Iteration for t = 400 (d) Iteration for t = 600

(e) Iteration for t = 800 (f) Final result, t = 1060

Figure 24: Some passages of the algorithm to obtain an equitable partition
of a discretized environment with a symmetric communication among 9 cam-
eras.
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(a) Plot of the maximum difference ε(t)
among areas size

(b) Plot of the mean of distance ψi(t) be-
tween perimeter and centroids for all cam-
eras

Figure 25: Progress of indexes for a balanced and not constricted initial
condition.

(a) Initial conditions, t = 1 (b) Final result at t = 950

Figure 26: Result of the algorithm starting with a strongly unbalanced initial
condition.
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(a) Plot of the maximum difference ε(t)
among areas size

(b) Plot of the mean of distance ψi(t)
between perimeter and centroids for all
cameras

Figure 27: Maximum error ε(t) and index ψi(t) for an environment patrolled
by 4 agents with an unbalanced initialization.

we simulated the algorithm deleting in the code the part where the check
of connection is performed. In Figure 28a we see the initial condition. It
is unbalanced and without physical constraints, a favourable situation for
disconnections (that are quite uncommon with a balanced and constrained
initialization). In the iterations that follows the red camera spread up to
the darkest blue one. In Figure 28b there is the situation right before the
disconnection. The red camera receives informations from the green one and
has to release some cells to reach an equitable partition. Cells that can be
released are in the overlap and disconnect the red area as in Figure 28c.
From that point the red area start to communicate with the darkest-blue
one although their centroids are not ’neighbours’. Having a disconnection
has poor meaning in real application and has to be avoided in every step of
the algorithm -it might mean that they are not reachable-. In Figure 28d we
see that disconnection keeps to present in futures instants.

6.4 Fault of a camera

Also with this kind of communication if a camera is busy or has a fault
other cameras are able to spread their subregions to compensate the lack
of one agent. The result is similar to the previous case with symmetric
communication and its reported in Figure 29 and after, in Figure 30, there
are the progress of the indexes.
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(a) Initial conditions, t = 1 (b) Iteration for t = 640

(c) Iteration for t = 641 (d) Iteration for t = 900

Figure 28: Some passages of the algorithm that doesn’t perform a check on
connection.
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(a) Initial condition, t = 1 (b) Configuration just before a camera
fault, t = 300

(c) Reinitialization cause of the fault of
the middle-blue camera, t = 301

(d) Final result with a camera missing,
t = 1400

(e) The middle-blue camera reappears
spreading its physical constrain , t =
1401

(f) Final result with all cameras, t =
1919

Figure 29: Main passages of the algorithm when a fault of a camera appears.
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(a) Index ε(t), evident are points where a
camera fault t = 350 and when it begins to
work again t = 1600

(b) Progress of indexes ψi(t)

Figure 30: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).

6.5 Small physical constraints

In the previous examples an optimal final configurations is always achiev-
able but there could be situation where this is not true due to physical
constraints of some agents. In this case the algorithm has a behaviour simi-
lar to the solution developed for a symmetric communication. Agents more
constrained spread their area as much as they can and don’t change from
that position. What left is covered and partitioned among the others. The
only difference in this case is that oscillations near the equitable (among of
course cameras that are not fixed) could be persistent, i.e. if it’s not possible
to partition the area left all with the same area size and the best border
shape they try to modify this situation. Fortunately this is a matter of one
point (eventually) for each camera and the global result is that the difference
among the biggest and smallest area oscillate near the optimal result. The
shape of subregions is kept as regular as possible. All this result can be seen
in Figure 32a where ε(t) keeps mainly the value of 13, and sometimes the op-
timal 12 and rarely increases to 14. Whereas in Figure 32c is shown indexes
φi(t) that keep oscillate around the value of 2.5 and finally the view of areas
sizes at the last instant in Figure 32b. In Figure 31 there is the initialization
and the final configuration.
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(a) Initialization of cameras with their
physical constraints

(b) Final result

Figure 31: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).

6.6 Statistical results

A statistical result of the behaviour of the partitioning strategies is gener-
ated running 500 times the algorithm on the square environment (discretized,
as before, with 15 cells per edge) and a random initialization for each agents.
In this test we don’t consider physical constraints as we are more interested
in seen the ability of reaching the optimal solution. As before physical con-
straints (if they contain the optimal configuration) could help the dynamics
bounding the maximum spread of each camera (that, in a few cases, may be-
came too irregular). Running this test we obtained that the optimal config-
uration is reached in 282 runs (so the 56.4%) with on average 2370 iterations
(and a standard deviation of 858). For the other results the index η(T ) have
mean and standard deviation:

E[η] = 0.163

σ2(η) = 0.0954

and looking at Figure 33 we see that just in few cases we don’t obtain an
equitable partition with a good shape for some cameras (remember that this
result is made catching the worst sub-region of the final partition).
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(a) Evolving of the index ε(t), it settles to the final
value of 12

(b) Size of the area assigned to each camera in
the final configuration

(c) Index ψi(t) for i = 1, . . . , N the two more con-
strained cameras stay fixed, the others try to settle
themselves to the same shape;

Figure 32: An example where physical constraints don’t contain the optimal
solution (see brown and dark-blue areas).
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Figure 33: Difference η between the worst ψ among all cameras and ψopt
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7 Conclusion
In the problem of patrolling a perimeter we encountered a distributed so-

lution that equally distribute the segment to patrol to each agents. Respects
to precedent results physical constraints of cameras are kept into account.
The protocol of communication used is the pairwise gossip asymmetric, lit-
tle demanding and suitable for large scaled cameras network, where even
a synchronous communication may be too onerous. We encountered also a
centralized solution modelling the problem as a linear programming problem
and we solved it using the simplex algorithm. We simulated the algorithm
proposed -in MATLAB code- and, comparing the two results -the centralized
optimal solution and the distributed one-, we can affirm that the algorithm
proposed converge to the optimal solution, i.e. minimize the length of the
longest segment assigned to a camera. Moreover it equalize, as long as it
is possible, all other segment sharing as best as it’s possible the workload
assigned to each agent. We tested the algorithm also in case of faulting cam-
eras -an event that can happen in networks with a large amount of agents-.
In a case like that we obtain an equal re-distribution of the workload among
all the others agents.

In the second part we considered a generalization for the two dimensional,
discrete case. The objective in here is double. Not only achieving an equitable
partition with pairwise gossip communication but also achieving good shaped
sub-regions. We developed two heuristic, one that works with a symmetric
communication and the other for asymmetric communication. Simulative
results shown that in both cases an equitable partition is always reached.
The shapes optimality is not always achieved -although most of the times it
is- but in general final results are composed with good shaped sub-regions.
This improve and make easier the part of the patrolling, that can be made
with well-knows techniques. In case of the fault of a camera all the others
agents compensate, as long as it’s possible, for the part of surface that is
released by the faulting cameras and tries naturally to equalize their areas
and to regularize their borders. In future works a good improvement could
be done assuring the convexity of shapes in the transitory, and testing the
algorithm in a non-convex scenario computing distances on a graph.
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