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Abstract

Hyper-Hemispheric lenses belong to the ultra-wide field-of-view optical objectives. The lens considered is named
PANCAM and it was firstly introduced in 2016. This camera is particularly interesting for planetary exploration
purposes, since its capability to acquire large Field-of-View images. Its Field of View is 360◦ on the azimuth and
135◦ for the off-boresight angle.
The calibration of the lens consists in computing the extrinsic and intrinsic parameters of a model whose aim is
to define the relationship between a pixel of the image and the real-world points reprojected on it. Davide Scara-
muzza introduced in 2006 a useful model for the calibration of lenses with wide FoV, which assumes the single
effective viewpoint property for the camera. Togetherwith thismodel, also aMATLAB toolbox got implemented,
which follows the latter model. This toolbox performs the calibration procedure starting from images containing
black-and-white chessboards, which are portrayed at different positions and orientations with respect of the cam-
era. Their internal vertices are used as benchmarks to create the geometric vinculums.
Since we are not dealing with a central camera, new models come up to better describe the PANCAM lens. All
of these models feature a function, z0, which associates a pixel of the image to a point on the Z axis of the coor-
dinate system of the camera, such that light rays which are directed towards this point will be mapped into the
corresponding pixel.
Each model owns a different version of the z0 function: linear, quadratic and piecewise.
TheMATLAB toolbox is then modified, integrating the changes carried by newmodels.
In order to test the models, images were acquired using the PANCAM lens. Performances are evaluated by com-
puting the residuals of the errors in the reprojection of the corners onto the image and by analyzing the distribu-
tions of such errors with respect of the zenith and azimuth angles related to the vertices.
Piecewise-AM models, which feature a piecewise z0 function, manage to obtain lower reprojection errors than
Scaramuzza’s model, especially when dealing with high zenith angles, where the former model had its main diffi-
culties.
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1
Introduction

Verywide-angle lenses, characterized by a field of view exceeding 100 degrees, have the capability to project objects
embedding a space as vast as a hemisphere onto their focal plane [1]. These lenses operate as inverted telephoto
lenses, leading to considerable image distortion in the focal plane. The distortion arises from the fact that chief
ray angles on the object side undergo alteration as they pass through the optics preceding the aperture stop.
Consequently, the extent of distortion can be so substantial that it is often not explicitly acknowledged by optical
designers, rendering the focal length less meaningful. Certain researchers assert that lenses with extreme field of
view, such as fisheye lenses, no longer fit within the conventional very-wide-angle-lens category but instead form
an independent class [2].
Nevertheless, despite their drawbacks, very wide angle lenses are gaining popularity, largely attributed to the avail-
ability of cost-effective large-area digital sensors.
These sensors enable the manipulation of the inherently distorted ”native” wide field image to produce a com-
prehensible output for the lens user, even in real-time, making them highly appealing for numerous applications.
The most well-known very wide angle lens, the fisheye lens, possesses the ability to capture a hemispheric space
(360° in azimuth angle and approximately 180° in zenith angle). Authors have also conceived fisheye lenses with
extreme field of view in both the visible and thermal infrared ranges [3]. In addition to the fisheye, another con-
temporary lens type is the omnidirectional lens, capable of recording images at 360° in azimuth and tens of degrees
above and below the horizon. Nevertheless, conventional omnidirectional lenses have a blind spot in the middle
of field of view, around the boresight (which correspond to low zenith angles), yielding a ”donut-shaped” image.
To address this limitations INAF Padova observatory designed the PANCAM lens based on hyper hemispheric
model [1]. Its design merges the capabilities of fish-eye and omnidirectional lenses to create a lens system able to
capture a space of 360° in azimuth and 130° in zenith angle. The geometrical calibration of this specific lens is the
core of the thesis.
Lenses with similar capabilities where historically calibrated thanks to a model proposed by Davide Scaramuzza,
which represents the starting point of this work. This model designed for generic hyper-hemisheric lenses [4]
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turned out to be not applicable to PANCAM lens, as assessed byMonica Beghini [5]. She tested this model over
a set of images each containing a chessboard, of known size, position and orientation with respect of the camera.
Through her work, she found that this model struggles when handling points with high zenith angles, which are
subject to significant reprojection errors.
The models introduced throughout this discussion assume that not all light rays converge towards a single point,
defined by Scaramuzza as the centre of the coordinate system of the camera, given that the camera under consid-
eration is a non-central one.
The relevance of the models is evaluated by computing the residuals of the errors committed by the reprojection
of the corners onto the images.
The results obtainedby the piecewise-AMmodels significantly decrease the reprojection errors, showing that these
models manage to properly handle corners associated to high zenith angles, too.
The discussion follows this subdivision:

• chapter 2) Hyper-hemispheric cameras are introduced, with a particular focus on PANCAM lens.

• chapter 3) Pinhole projection cameramodel and Scaramuzza’smodel are described, as they are the basis on
which future cameramodels are defined. A clear explanation of all the passages involved in the calibration
procedure for Scaramuzza’s model is provided.

• chapter 4) The toolbox created by Scaramuzza for the calibration of hyper-hemispheric cameras is ex-
plained in detail, together with the most important MATLAB functions involved.

• chapter 5)Newmodels represent the core of thework. They are discussed togetherwith themodifications
needed in the MATLAB codes to implement theses changes.
Thesemodels are then evaluated by computing the residuals of the errors in the reprojection of the points
onto the images.

.
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2
PANCAM camera

The content of this chapter regards the PANCAM camera, that is the lens used to acquire images and whose
calibration is the core of the discussion. The chapter starts introducing the idea beyond hyper-hemispheric lenses,
then follows the explanation of how the lens works, with figures to help the understanding.
The final part of the chapter focuses on applications of the lens, regarding the DAEDALUS project.

2.1 Hyper-hemispheric lenses
Panoramic omnidirectional lenses work as depicted in 2.1. Let’s define the ”horizon” as a flat plane that intersects
the lens and is perpendicular to the zenith axis. The Zenith angle, denoted as Z, is measured from the zenith
downward to the maximum field of view, Zmax. The lens is designed to capture a panoramic view extending
360◦ around the azimuth axis, along with a range of degrees both above and below the horizon (as shown in panel
a). Typically, an omnidirectional lens operates effectively within the Zmin range of 30◦ to Zmax range of 135◦.

Moving to the focal plane image (as displayed in panel b), it takes on the distinctive donut shape, with its inner
rim corresponding to Zmin and the outer rim aligning with Zmax. The physical dimensions of this ”donut” are
determined by the lens’s focal length in the paraxial region and the lensmapping function, whichwewill discuss in
more detail later in this paper. Notably, the area surrounding the zenith, referred to as the frontal field, is projected
onto the focal plane as a blind spot, occupying the central part of the donut.

It’s important to recognize that the central hole in the ”donut” shown in figure 2.1 has a disadvantage because
it means that a portion of the sensor remains unused. As a point of reference, it’s worthmentioning that a fish-eye
lens covers the range from Z = 0◦ up to approximately Z = 90◦, encompassing the entire horizon.

For generic narrow or wide cameras the pupil (which can me considered the projection center ) can be consid-
ered unique for all the field of view. Different is the case of the Hyper hemispheric lenses where pupil position
and projection orientation chance with the zenith angle. As the field angle Z widens, the entrance pupil starts to
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Figure 2.1: Omnidirectional lens and how images are made.

appear tilted, and at the extreme angle of 90◦, it becomes entirely obscured. To enable the observation of objects
in wide Z fields, the optical designer must adjust the orientation of the entrance pupil. This adjustment can be
achieved by shifting and compressing the pupil, although it comes at an associated cost.
The HH lens described in [1] is able to portray on the image both the panoramic and the frontal field, as shown
in figure 2.2. The lens comprises three distinct logical segments: a fore-optics section (located before the aperture
stop, AS), a lens responsible for capturing the frontal field (FO), and an objective lens positioned after the aperture
stop (OBJ), which is responsible for forming the field image on the focal plane.

The fore-optics section consists of a catadiopter (C) featuring a reflective concave surface and a lens designed
to reduce the speed of incoming light beams (SD) to ensure they enter the OBJ through the AS at an appropriate
speed. Within the panoramic field, which is definedby the chief rays 2 and3, these rays enter the catadiopter. They
refract at its first surface, then reflect from the concave surface, and subsequently pass through the SD optics. One
surface of the SD lens is partially reflective, causing half of the light to redirect back into the catadiopter before
crossing the AS and entering the OBJ for imaging on the focal plane.

On the other hand, the frontal field takes the form of a cone with its axis pointing toward the zenith and
extending downward to encompass chief ray 1. This frontal field enters the FO, then passes through the SD
(similarly, only half of the light passes through SD, with the rest being lost), C, AS, and OBJ, ultimately forming
an image on the focal plane, precisely within the central hole of the donut. In the right panel, the primed numbers
indicate the chief rays (1, 2, 3), along with reference points for objects 4 and 5.
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Figure 2.2: HH lens and how images are made

2.2 An application forHH lens
In August 2019, the European Space Agency (ESA) initiated the Sysnova Lunar Caves Challenge, with the aim
of soliciting innovative proposals for addressing the exploration, mapping, and documentation of lunar caves or
tubes. Among the selected proposals, one developed through collaboration between the University ofWurzburg,
Jacobs University Bremen, the University of Padua, INAF Padova, and VIGEA stood out. This proposal intro-
duced the DAEDALUS Sphere, which stands for ”Descent And Exploration in Deep Autonomy of Lava Under-
ground Structures.” Lave tubes are large underground voids which represent a source of interest for the science
community since Kaguya, LRO and GRAIL missions have unequivocally underlined the presence of deep voids
below the Lunar surface [6]. These subsurface voids could be the base for long-term presence in human explo-
ration framework because:

• represent a natural shield from possible impacts of micrometeorites and cosmic rays (here the equivalent
radiation is the 0.3% of the surface one);

• are characterized by stable temperature environments;

• might provide access to resources such as possible sources of water.

DAEDALUSmission have as aim to enter and explore the skylight namedMarius Hills Hole in Oceanus Pro-
cellarum (303.3E, 14.2N), which is believed to be an access point to one of the lunar lava tubes [7].

The DAEDALUS Sphere is a spherical probe comprised of two primary components. The outer structure is
constructed from polyimide and serves to shield the instruments and electronics from dust contamination while
allowing relevant wavelengths for the instruments to pass through. The inner structure houses various instru-
ments, including four LIDARs and the DAEDALUS-CAM, which incorporates four bifocal panoramic lenses
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(BLPs). These BLPs are a specialized application of the hyper-hemispheric lens (HH lens) and were already ap-
plied in the design of a stereo system for another lunar rove, the PANROVER. In that case the system was based
on a vertical baseline hosting two BPLs. In theDAEDAULS case the BPLs are four and the stereo acquisition can
be performed during the descending phase emoving the rover sphere. As described in [8], the two ultra-wide field
of view optical objectives are both composed of an objective with two optical components:

• a catadioptric element (with a reflective concave surface) for the panoramic fields (PF);

• a secondary lens (fore optics) for the frontal field (FF).
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3
Pinhole projection and Scaramuzza’s model

The calibrationof a camera is an important passage to derive useful pieces of information, starting from2D images.
In this chapter the topic presented is the theory concerning central cameras and lenses with a very high FoV (field
of view). This concepts are the building blocks of the model presented by Davide Scaramuzza in 2006, which
deals with the geometric calibration of lenses with 360° angle on the azimuth and 90° or more on the zenith.
To sum up the contents of this chapter, we will start the discussion introducing central omnidirectional cameras.
After that, the focus will shift to the Pinhole Camera ProjectionModel, the basic theoretical model for the calibra-
tion of cameras, in which all light rays converge towards a single point.
Sections continue with a description of the model introduced by Davide Scaramuzza in [4], which consists in
an evolution of the classic pinhole camera model which comprehends a radially symmetric mirror. This addi-
tion makes the model more suitable for hyper-hemispheric lens calibration. All the calibration steps proposed by
Scaramuzza are then analyzed and commented.

3.1 Central Omnidirectional Cameras
A vision system is characterized as having a central configuration when the optical rays originating from observed
objects intersect at a singular 3D point referred to as the projection center or single effective viewpoint.

This property is termed the single effective viewpoint property. The perspective camera serves as an exemplar of
a central projection system, wherein all optical rays converge at a solitary point, specifically the camera’s projection
center.

In the domain of contemporary fish-eye cameras, the attribute of being central holds true, thereby satisfying
the single effective viewpoint property. In contrast, the realization of central catadioptric cameras hinges on the
deliberate selection of mirror shape and and the extrinsic mounting of the camera respect with the mirror. The
subset of mirrors conforming to the single viewpoint property encompasses the category of rotated (swept) conic
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sections: hyperbolic, parabolic, and elliptical mirrors. In instances involving hyperbolic and elliptical mirrors, the
attainment of the single viewpoint property is contingent upon aligning the camera center (i.e., the pinhole or
lens center) with one of the foci of the hyperbola or ellipse. In the context of parabolic mirrors, the insertion of
an orthographic lens between the camera and mirror is requisite. This arrangement facilitates the convergence of
parallel rays, reflected by the parabolic mirror, toward the camera center.

Theparamountdesirability of a single effective viewpoint emanates from its capacity to facilitate the generation
of geometrically accurate perspective images from omnidirectional camera captures. This feasibility arises due
to the imposition of the single view point constraint, wherein each pixel within the sensed image assesses the
luminous flux traversing the viewpoint in a distinct direction. In cases of calibrated omnidirectional cameras,
wherein the camera’s geometry is well-defined, the direction of the versor representing the chief ray associated to
each pixel can be precomputed.

Consequently, the luminance valuemeasured by each pixel can be projected onto a plane positioned at any dis-
tance from the viewpoint, yielding a local plane perspective image or , more adequately, the image can be mapped
onto a sphere centered around the singular viewpoint, thus resulting in a spherical projection.
Two different planes are considered in the models:

• image plane: an imaginary plane that represents the actual display screen through which a user views a
virtual 3D scene;

• sensor plane: the plane associated to the digital sensor, which is made by pixels.

In addition to these entities, it is also useful the concept of homogeneous coordinates. Let a ∈ Rn such that
a = [a1, . . . , an]T. The expression of a in homogeneous coordinates is given by the (n+1)-tuple of elements
[a′1, . . . , a′n, a′n+1]

T which satisfies the following relation:

ai =
a′i

a′n+1
, ∀i ∈ [1 . . . n].

3.2 Pinhole Camera ProjectionModel

A pinhole camera is a basic camera that lacks a lens and features a singular small aperture. Light rays traverse
this aperture and form an inverted image on the opposite end of the camera. To obtain an upright image, we
posit the placement of the image plane before the optical center C, which functions as the origin of the camera’s
coordinate system. To be precise, the image plane is positioned at a distance f from the optical center, oriented
perpendicularly to the optical axis, where f is the focal length.
Figure 3.1 shows the simple behaviour of the projection of a world point (X) onto the image plane, according to
the pinhole model.
Let’s define a world coordinate system. Now a transformation is needed, in order to determine the position of a
3D point in the camera coordinate system.
Let M a world point, in homogeneous coordinates, such that M = [Mx,My,Mz, 1]T. Then, the relationship
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Figure 3.1: Example of how projection onto the image plane works

between the world and the camera coordinate systems is found by this equation:
M′

x

M′
y

M′
z

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Mx

My

Mz

1

 (3.1)

withM′ = [M′
x,M′

y,M′
z, 1]T the expression of M in the camera coordinate system.

The matrix in the equation 3.1 defines a roto-translation and its elements are called extrinsic parameters. In this
way, we can define the orientation and the location of the camera, with respect to a known reference system.
At this point, we need another transformation, the one which describes the projection ofM onto the image plane.
This coordinate system associated to the image plane has its center in the intersection between the plane and the
Z axis (Ic) and two axis (u,v) to whom two coordinates are related. Let u′ = [u′, v′]T the projection ofM onto the
image plane.
From the figure on the right side of 3.1, it is easy to get that v′ =f·M

′
y

M′
z
, since triangles C-Ic-v’ and C-M′

z-M′
y are

similar. Reasoning in the same way, we get that u′ =f·M
′
x

M′
z
. By expressing u’ in homogeneous coordinates, the

projection can be seen as a linear function:

u′ =

u′v′
1

 =

f ·M′
x

f ·M′
y

M′
z

 =

f 0 0 0
0 f 0 0
0 0 1 0



M′

x

M′
y

M′
z

1

 = Pf ·


M′

x

M′
y

M′
z

1

 (3.2)

It is possible to merge equations 3.1 and 3.2, in order to get the relationship between a point and its projection:

u′ =

f 0 0 0
0 f 0 0
0 0 1 0



M′

x

M′
y

M′
z

1

 =

f 0 0 0
0 f 0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Mx

My

Mz

1.

 (3.3)
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By imposing f = 1, 3.3 can be rewritten as:

u′ =

1 0 0 0
0 1 0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Mx

My

Mz

1

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



Mx

My

Mz

1

 = [R|t] ·M. (3.4)

After having defined the passage from a 3D point to its projection on the image plane, the following step is to
define the the transformation which maps a point of the image plane onto a pixel, belonging to the sensor plane.
As exposed in [9], let u” the pixel associated to u’. Then consider:

• The sensor scales α and β, which may be distinct in the x- and y-directions, respectively.

• The locationof the center of the imageOc = (u′′c , v′′c )with respect to the image coordinate system (i.e., the
optical axis). Oc is the so called ”principal point” (intersection between the image plane and the principal
axis ,Ic in figure 3.1)

• The presence of diagonal distortion, denoted as γ, within the image plane. This aspect is typicallyminimal
or negligible [10].

Given these premises, we can write:

u′′ =

[
u′′

v′′

]
=

[
α γ u′′c
0 β v′′c

]u′v′
1

 = A

[
u′

v′

]
+

[
u′′c
v′′c

]
(3.5)

The elements α, β, γ, u′′c and v′′c are called intrinsic parameters [11]. Generally speaking, intrinsic parameters en-
compass the optical, geometric, and digital attributes of the camera (including focal length and pitch dimension),
elucidating the manner in which a spatial point gets projected into a pixel on the image plane, that is, the imaging
process.

3.3 Imaging function in Scaramuzza’s camera model
In this section, the model proposed is the one introduced by Davide Scaramuzza, which starts from the pinhole
projectionmodel, previously discussed. Thismodel introduces anew function (g), called imaging function,which
represents a mirror.

Figure 3.2 shows how the projection works under Scaramuzza’s model: the point M is projected onto the
center of the camera coordinate system, through vector p. This vector intersects the mirror (the curve in the
figure) in a point. Starting from this point, in a natural way we get the projection of M onto the image plane and
the projection on to the sensor plane, too. As we will discuss in the next lines, the shape of the curve is defined by
the function g itself.
As it was previously discussed, the relationship between a point on the image plane and its projection on the sensor
plane is described by an affine transformation, i.e.:

u′′ = Au’+ b , (3.6)
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Figure 3.2: Camera coordinate system

where A ∈ R2x2 and b ∈ R2. This process aims to fix some mis-alignments due to errors in the manufac-
turing of the camera, such as the non perfect orthogonality between the sensor plane and the z-axis, which could
introduce an homography here approximated as an affine trasformation, and also incorporates the creation of the
digital 2D image.
Now letM a point in the external world. M can be expressed using a real-world homogeneous coordinate system,
such thatM = [xM, yM, zM, 1]T. Let u’ the projection of M onto the camera image plane and u” its projection
onto the sensor plane. The process of associating a point of the sensor plane to a vector going from the pinhole
to the 3D point can be summed up with a function g, and it holds:

λ · p = λ · g(u′′) = λ · g(Au’+ b) = P ·M = [R|t] ·M, (3.7)

with P ∈ R3x4 and λ > 0. The coefficient λ lets all the point belonging to the straight line of direction (M− O)
to be mapped onto the same pixel. This relation is fundamental since we are representing 3D entities on a 2D
limited space. Last equality states that the Pmatrix represents a roto-translation.
The process known as calibration consists in defining the matrix A, the vector b and the nature of imaging func-
tion (g), such that for each point the equation 3.7 holds.
In order to better understand the meaning and the usage of the g function, figure 3.3 resumes the behaviour of
the projection from what was explained regarding figure 3.2. Here we have two different systems, which differ in
the shape of the mirror, the blue curve.
The two curves are different parabolas, and it is easy to observe that the reprojections onto the image plane of the
pointsM1 andM2 change is different in the two pictures.
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Figure 3.3: Pinhole projection of a point M onto the image plane

How can we relate the imaging function with the shape of the mirror? The function g is defined such that:

g : R2 −→ R3,

(u′′, v′′) 7→ (u′′, v′′, f(u′′, v′′)) (3.8)

where f is radially symmetric with respect to the optical axis z. Thismeans that f = f(ρ), with ρ =
√
u′′2 + v′′2 =

‖u′′‖. Moreover, the function f(ρ) should be monotonic increasing. The function f wants to describe the blue
shape of 3.3.
According to [4], f is defined as a polynomial of grade N, whose coefficients are additional intrinsic parameters
for the calibration. This polynomial can be seen as a truncated form of the Taylor series which would define the
ideal f, the one which perfectly describes the mirror.
Given these premises, we can rewrite equation 3.7 as:

λ · p = λ · g(Au′′ + b) = λ ·

[
Au’+ b
f(u′′)

]
= P ·M. (3.9)

3.4 Calibration procedure
In this section, we are going to describe:

• Thefirst initialization (through linear estimation) ofboth intrinsic and extrinsic parameters (section3.4.1);

• refinement of extrinsic parameter followed by the improvements of the intrinsic one including the center
of the image not consider previously (section 3.4.2);

• algorithm LM applied for the final definition of all the parameters to minimize the residual lined to the
reprojections of the tie points detected (section 3.4.3).
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3.4.1 Initialization of the parameters
As we have previously stated, with the term calibration we mean the extraction of the parameters appearing in
equation 3.7.
In order to simplify the parameter estimation process, we undertake the computation ofmatrix A and b, adjusted
by a scale factor α. This is achieved by transforming the ellipse defining the view field into a centered circle. The
process of transformation is automated and facilitated by an ellipse detector when the circular outer boundary
of the sensor is discernible within the image. Subsequent to the execution of the affine transformation, an image
point u’ finds its connection to the corresponding point on the sensor plane u” via the relation u′′ = α · u’. Now
equation 3.7 can be rewritten as

λ · p = λ · g(α · u′′) = λ ·

 αu′

αv′

f(α · ρ′)

 = λ · α ·

 u′

v′∑N
k=0 ak · ρk

 = P ·M. (3.10)

Moreover, the factor α can be incorporated to λ, so that only the coefficients {ak}Nk=0 of the polynomial are
considered as intrinsic parameters.
It is also possible to reduce the extrinsic parameters, i.e. the elements of the matrix P = [R|t]. If generally extrinsic
parameters represent the position of the camera in the global system the chessboard pattern calibration procedures
are based on the acquisition of chessboard target covering all the field of view, as shown in pictures 3.4. Each
calibration chessboard defines a precise orientation and position respect with the camera.
Hereafter we always will refer to “extrinsic parameters” the rotation matrices [R|t] which define the chessboard
reference system respect with the camera . In fact, data involved in the calibration procedure are images which
contain 2-dimensional patterns, in the specific case of this project they have been considered black-and-white
chessboards, whose internal vertices made up the pattern of interest. Consider the set of n images considered for

Figure 3.4: Examples of images acquired for the calibration procedure, here with chessboards 28 squares long and 10
squares wide.

the calibration {Ii : i = 1...n}. Let each image containm points whichmake up the pattern. Then the j-th corner
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of the i-th image can be written asMij = [Xij,Yij,Zij] in the pattern coordinate system. One of the reason of the
use of chessboard targets in the great part [12] of the calibrationmethods of projective system is the simplification
introduced by the fact that the pattern is planar and so we have Zij = 0. Then equation 3.10 turns into

λij · pij = λij ·

 u
v∑N

i=0 ai · ρiij

 = Pi ·M = [ri1 ri2 ri3 ti] ·


Xij

Yij

0
1

 = [ri1 ri2 ti] ·

Xij

Yij

1

 . (3.11)

Each image owns a set of extrinsic parameters, given that all of them have a different pattern coordinate system.
The first step necessary to solve the equation is to get rid of the λ parameter, the depth scale. So both sides of the
equation 3.11 are multiplied vectorially by pij:

λij · pij ∧ pij = pij ∧ [ri1 ri2 ti] ·

Xij

Yij

1

 . (3.12)

In this last equation, the first term is 0, which brings the equation to the form

0 =

 uij
vij∑N

k=0 ak · ρk

 ∧ [ri1 ri2 ti] ·

Xij

Yij

1

 . (3.13)

This equation can be split into 3 different homogeneous equations:

vij · (r31Xij + r32Yij + t3)− f(ρij) · (r21Xij + r22Yij + t2) = 0 (3.14)

f(ρij) · (r11Xij + r12Yij + t1)− uij(r31Xij + r32Yij + t3) = 0 (3.15)

uij(r21Xij + r22Yij + t2)− vij(r11Xij + r12Yij + t1) = 0 (3.16)

Coordinates of the planar pattern points ([Xij,Yij]
T) and coordinates on the sensor plane ([uij, vij]T)are known

and it is possible to notice that the last equation only considers extrinsic parameters.
By stacking m-times equation 3.16, one for each point belonging to the pattern in the i-th image, we get the
homogeneous linear system

U · h = 0, (3.17)

with

U =


−vi1Xi1 −vi1Yi1 ui1Xi1 ui1Yi1 −vi1 ui1

...
...

...
...

...
...

−vimXim −vimYim uimXim uimYim −vim uim


and

h = [r11, r12, r21, r22, t1, t2]T.
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Equation 3.17 can be approximately solved by minimizing ||U · h||2, with ||h|| = 1. This constraint avoids to
fall in the case h = 0.
The approach used to get the solution for h is applying an SVD decomposition. First of all, matrix U is decom-
posed into its Single-Value-Decomposition form, which means that U = WSVT, withW ∈ Rmxm, S ∈ Rmx6

and V ∈ R6x6. W and V are unitary orthogonal matrices and S is a rectangular diagonal matrix, whose non-0
elements are called singular values.
The solution turns out to be the right-singular vector of U corresponding to the smallest singular value, which
corresponds to the last row of matrixV.
Given the constraint stated above, the solution of 3.17 is known up to a scale factor, which can be determined by
including that ri1 and r2 must be orthonormal. We can also computed r3, always because of orthonormality.
With this passage, all the extrinsic parameters are found, with the exception of t3, for all the calibration images.
The following step focuses on intrinsic parameters, i.e the coefficients a0, ... , aN that define the shape of the
imaging function.
By rewriting the function f(ρ) using its polynomial form, equations 3.14 and 3.15 become:

vij · (r31Xij + r32Yij + t3)−

( N∑
k=0

ak · ρk
)

· (r21Xij + r22Yij + t2) = 0 (3.18)

( N∑
k=0

ak · ρk
)

· (r11Xij + r12Yij + t1)− uij(r31Xij + r32Yij + t3) = 0 (3.19)

Following the same procedure as described earlier, we gather all the unspecified elements from equations 3.18 and
3.19 and arrange them into a vector, which allows us to rephrase the equations as a linear system. However, in
this iteration, we extend this approach to encompass all n images. in addition to the simplifications implemented
at the beginning of this section, [13] also worries about the shape of the imaging function. In fact, if we desire to
have a function f(ρ) ∈ C1, it is needed the constraint

df(ρ)
dρ

∣∣∣∣
ρ=0

= 0 (3.20)

which implies that a1 = 0. The resultant system takes the form:



A1 A1ρ21 ... A1ρN1 −v1 0 ... 0
C1 C1ρ21 ... C1ρN1 −u1 0 ... 0
...

... ...
...

...
... ...

...
An Anρ2n ... AnρNn 0 0 ... −vk
Cn Cnρ2n ... CnρNn 0 0 ... −uk

 ·



a0
a2
...
aN
t13
...
tn3


=



B1

D1
...
Bn

Dn

 (3.21)

with
Aij = ri21Xij + ri22Yij + ti2
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Bij = vij · (ri31Xij + ri32Yij)

Cij = ri11Xij + ri12Yij + ti1

Dij = uij · (ri32Xij + ri32Yij).

System 3.21 does not show j indices, referring to the points in a specific image, for sake of easily reading. In fact,
the system is made up by 2mn equations, 2 for all the points belonging to the calibration pattern.
The least-squares solution of the previous system can be reached by using the pseudoinverse of the matrix.
The pseudoinverse (also known asMoore–Penrose inverse) of a matrix A (A†) is the generalization of the concept
of inverse matrix for non-squared matrices and it can be easily computed starting from the SVD decomposition.
Given A = USVT, A+ = VS†UT, with

S =


σ1 0 0 . . . 0 0 . . . 0
0 σ2 0 . . . 0 0 . . . 0
0 0 σ3 . . . 0 0 . . . 0
...

...
... . . . ...

... . . .
...

0 0 0 . . . σk 0 . . . 0


S† =



σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
... . . . ...

0 0 0 . . . σk
0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0


.

These steps provide a starting point for the choice of the calibration parameters, both extrinsic and intrinsic.

3.4.2 Parameters refinement
In the previous steps we have defined an initial estimate for our calibration parameters, following equations 3.14,
3.15 and 3.16. As reported by Davide Scaramuzza in [13], now parameters are refined through linear estimation.
This first refinement passage is made up by 2 steps:

• Given the first approximation of intrinsic parameters a0, a2, ..., aN, extrinsic parameters are computed
by solving equations 3.14, 3.15 and 3.16. The challenge results in a linear homogeneous system, solvable
through the application of Singular Value Decomposition (SVD), with a scale factor being present. Sub-
sequently, the scale factor is exclusively ascertained by leveraging the inherent orthonormality between
vectors r1 and r2.

• Given these new values for extrinsic parameters, coefficients of the polynomial are re-computed with the
same procedure used for the their first estimation (now without focusing on t3, which is refined together
with the other extrinsic parameters).

As highlighted in the introductory part of section 3.4.1, we are assuming that the center of the sensor plane
coincidewith the center of the image plane. Consequently, we aspire to possess the ability to accurately determine
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the center of the omnidirectional image (Oc), even when the external boundary of the sensor isn’t directly visible
within the image.

To achieve this objective, we note that our calibration procedure effectively estimates the intrinsic paramet-
ric model when Oc is treated as the origin of the image coordinates. Deviating from this, if Oc is not considered
the origin, and instead, the 3D points of the calibration pattern are backprojected into the image, a significant
reprojection error would be observed concerning the calibration points. Drawing inspiration from this observa-
tion, we undertook multiple trials of our calibration procedure, varying the center locations. For each trial, we
computed the Sum of Squared Reprojection Errors (SSRE). Notably, our findings consistently affirmed that the
SSRE consistently attains a global minimum at the precise correct center location.

This outcome guides us towards an iterative search for the centerOc, whichhaltswhen the discrepancybetween
twopotential center locations becomes smaller than a certain fraction of a pixel ε (we reasonably set ε = 0.5pixels):

1. At each iteration of this iterative search, a specific image region is uniformly sampled at a certain number
of points.

2. For each of these points, calibration is executed, employing that point as a potential center location, and
the Sum of Squared Reprojection Errors (SSRE) is calculated.

3. The point yielding the minimum SSRE is considered as a potential center.

4. The search continues by improving the sampling in the vicinity of that point, and steps 1, 2, and 3 are
reiterated until the termination condition is met.

The last step of the refinement phase is the one which focuses more on the training data, that in this case are
the images of the chessboards. In fact, our pattern points could be corrupted by independent and identically
distributed noise. As wewill better describe in following chapters, the detection of the vertices on the chessboards
may be prone to errors, and even littlemistakes in the labelling of the corners wouldmove our situation away from
the theory introduced in this chapter.
To tackle this issue, we can look forMaximum Likelihood Estimate, which can be obtained by minimizing the
MSE:

MSE =

n∑
i=1

m∑
j=1

∣∣∣∣∣∣u′′ij − u′′(Ri,Ti, a0, a2, ..., aN,Mij)
∣∣∣∣∣∣2 (3.22)

where u′′(Ri,Ti, a0, a2, . . . , aN,Mij) is the projection the i-th image of the 3D pointMij, according to equation
3.10 and u′′ij is the location of the j-th point of the i-th image during the corner extraction phase.
The algorithm used to perform this is the Levenberg-Marquadt.

3.4.3 Levenberg-Marquadt algorithm
Thealgorithmchosen for thefinal optimizationofboth extrinsic and intrinsic parameters is theLevenberg-Marquadt
method, which is described in a very precise form in [14].
The Levenberg-Marquardt algorithm is an iterative optimization technique used to solve non-linear least squares
problems. It represents a meeting point between the classicGradient descent and theGauss-Newton method. The
first one behaves better when the starting point is far from the local optimum, while the second speeds up the
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achievement of the solution if starting from a point close to it.
Given the function general MSE function:

MSE =

n∑
i=1

||yi − ŷ(xi, p)||2 = (y− ŷ(p))T · (y− ŷ(p)) (3.23)

we get ŷ : Rm −→ Rn, which takes in input a vector of parameter of size m (p)and outputs a vector of size n (one
for each data point). Let dŷ(p)

dp = J, the Jacobian of the function.
According to the Gradient Descent algorithm, in this case the parameter update pGD that moves the parameters
in the direction of steepest descent is given by:

pGD = −α · JT(y− ŷ) (3.24)

In a similar manner, the parameter update given by Gauss-Newton method is the value solving the equation:(
JTJ
)
pGN = JT(y− ŷ) (3.25)

The Levenberg-Marquardt algorithm dynamically adjusts the parameter updates by alternating between the gra-
dient descent update and the Gauss-Newton update:(

JTJ+ λI
)
pLM = JT(y− ŷ) (3.26)

whereas small values of the damping parameter λ lead to a Gauss-Newton update, larger values of λ lead to a
gradient descent update (in this case λwould take the role of α). The algorithm proceeds as follows:

1. Initialize an initial guess for the solution vector p.

2. Compute the Jacobian matrix J of at the current p point.

3. Solve the system:
(
JTJ+ λI

)
Δp = JT(y− ŷ), where Δp is the update to p.

4. Compute the gain ratio ρ. The gain ratio is used to determine whether the proposed update is accepted
or not. It’s calculated as the ratio of the reduction in the objective function to the reduction predicted by
a quadratic approximation.

5. If ρ > τ, where τ is a threshold, accept the update (p = p+Δp) and decrease the damping parameter. The
damping parameter balances between the Gauss-Newton step and the Gradient Descent step, helping to
handle ill-conditioned problems.

6. If ρ ≤ τ, reject the update and increase the damping parameter. This step prevents aggressive updates that
could lead to divergence.

7. Repeat steps 2-7 until convergence or a maximum number of iterations is reached. Convergence is typi-
cally achieved when the changes in p become small or the objective function reaches a satisfactory value.
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4
Omnidirectional Camera Calibration

Toolbox for Matlab

Davide Scaramuzza developed a useful Matlab toolbox for the calibration of an omnidirectional lens, which can
downloaded for free at [15]. In this chapter, we are going to provide a comprehensive explanation of all the steps
thatmakeup the calibrationprocedure. The images involvedportray black-and-white chessboards, whose internal
corners are the points building up the pattern useful for the calibration procedure. Example of these images are
4.1 and 4.2, where we can notice the donut shape, with the blank space in the middle, which is a peculiarity given
by the fact that our camera has a blind spot on the top.

The calibration procedure consists in these 5 passages:

1. loading images: pictures are captured and charged into the toolbox;

2. corners extraction: the internal vertices’ locations are marked, for each chessboard;

3. first estimate of the parameters: intrinsic and extrinsic parameters are find by solving the equations in
section;

4. find center: determine the location of the center of the image;

5. parameter refinement: parameters are fine-tuned through a non-linear optimization procedure. This pas-
sage is required since points might be subject to noise.

The toolbox and its functions are user-friendly and they are based on the class C_calib_data, which stores
neatly all the parameters involved in the calibration procedure.
The following list comprehends the parameters which will be necessary to understand all the steps and the func-
tions that will be discussed in this chapter:

• ima_proc: indices of images to be processed and not erased;
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Figure 4.1: 7x10 chessboard, picture acquired by PANCAM lens

• RRFin: a tensor of dimensions 3x3xima_proc containing all the roto-translationmatrices, which contain
the extrinsic parameters for each grid;

• Xt, Yt: vectors containing metric coordinates of the corners;

• Xp_abs, Yp_abs: vectors containing the pixel coordinates of the corners;

• dX, dY: size of chessboard squares;

• taylor_order: grade of the polynomial f(ρ), also known asN;

• ocam_model: an internal struct containing

– ss: vector containing the coefficients of the polynomial;

– xc, yc: pixel coordinates of the image center
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Figure 4.2: 28x10 chessboard, picture acquired by PANCAM lens

4.1 Loading images

Images are the data onwhich is based ourmodel, and they directly influence the calibration coefficients. To attain
accurate calibration results, it is recommended to position the checkerboard in close proximity to either themirror
or the fish-eye lens. This strategy not only enhances calibration accuracy but also boosts the chances of successful
corner detection through the Automatic Checkerboard Extraction tool. It is imperative that every corner of the
checkerboard remains visible in each image, and the presence of a white border encompassing the pattern is essen-
tial for optimal performance of the Automatic Checkerboard Extraction tool.
Furthermore, capturing images of the checkerboard from various perspectives is recommended to cover the en-
tire visible area of the camera. This approach facilitates the compensation for potential misalignment between
the camera and mirror axes during the calibration process. Additionally, capturing images from different angles
aids in the automatic identification of the center of the omnidirectional image, a pivotal step in the calibration
procedure.
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4.2 Corners extraction
The extraction phase consists in identifying the location of the internal corners of the grids, automatically or
manually. The internal corners are intended as the vertices of the squares, without considering the ones on the
border. So given a checkerboards of dimension ax · b, the considered squares are (a − 2) · (b − 2) and the
internal corners are (a− 1) · (b− 1). To speed up the computations, the code incorporates an automated corner
detection process based on the Harris corner detector [16], a widely used operator in computer vision algorithms
for extracting corners and inferring image features. This algorithm [17] operates by analyzing the eigenvalues
of the 2D discrete structure tensor matrix at each pixel in the image. A pixel is identified as a corner when the
eigenvalues of its structure tensor exceed a certain threshold, ensuring a high-quality corner detection.
The software itself recommends to perform the manual extraction of the vertices, but using an automatic corner
detector. This choice allows theuser to check and alsomodify the locations of the corners identifiedby the toolbox.
It is also possible to erase a whole picture, in the case of having particular difficulties in the corners detection

4.3 First estimate of the parameters
The calibration process executed by the code follows the procedures outlined in section 3.4. It initiates by estimat-
ing all extrinsic parameters, excluding t3, through an iterative approach across all images. The solution is derived
using SVD on the matrix U defined in 3.4.1 while leveraging the inherent orthogonality of the grid.

Similar to the second step, the code defines the variables Aij,Bij,Cij, and Dij, and then determines the poly-
nomial coefficients and t3 by employing a linear least-squares approach on the system 3.21. The degree of the
polynomial can be selected by the user; Scaramuzza proposes employing a fourth-degree polynomial equation
based on empirical experiments with various camera models, demonstrating its superior performance.

The parameters obtained from this swift calibration step offer an initial estimation, subject to further refine-
ment following the determination of the omnidirectional image center,OC.

There exist three primary functions pivotal to this calibration step:

• [RRfin,ss] = calibrate(Xt, Yt, Xp_abs, Yp_abs, xc, yc, taylor_order_default, ima_proc)
This function yields an initial estimationof extrinsic parameters andpolynomial coefficients, elucidated in
the preceding section. Specifically, it establishes all extrinsic parameters except for t3, with the subsequent
function entrusted to ascertain the remaining factors.

• [RRfin,ss]=omni_find_parameters_fun(Xt, Yt,Xp_abs, Yp_abs, xc, yc,RRfin, taylor_order_default,ima_proc)
Employed by the preceding function, this one concludes the estimation ofRRfin and ss. The linear opti-
mization of all parameters is effectuated via the Matlab Optimization Toolbox, specifically the function
lsqlin.

• reprojectpoints(calib_data)
The outputs comprise:
- The average reprojection error, computed for each checkerboard, which represents the mean of the re-
projection errors across all corners of the checkerboard.
- The average error, signifying the mean of all the aforementioned errors.
- The Sum of Squared Reprojection Errors (SSRE).
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This function employs the estimated parameters and the omni3d2pixel function to project the corners
and determine the distance from the extracted ones.

4.4 Find center
As discussed in chapter 3, the centre of the image planeOC is made to coincide with the centre of the sensor plane,
IC. The iterative search for the location ofOC avoids great reprojection errors. In order to avoid the algorithm to
take a lot of time to get the result, it is recommended to choose a starting point close to the center of the images,
otherwise it would take hours for the algorithm to end.
The function that deals with finding the Image center is named findcenter(calib_data), which takes in input the
information of the class coming from the first estimate step and, after finding the proper center, it performs both
the functions calibrate and reprojectpoints, to display the new SSRE.

4.5 Refinement phase
As presented in the subsection 3.4.2, last step of the algorithm is the refinement of the parameters, both intrinsic
and extrinsic. This phase will be examined more in detail in the next chapter, where the the new models and the
theory behind them will be introduced.
The function responsible for this last step is named optimizefunction(calib_data).
At first, the user is asked to specify the maximum number of iterations that we want the algorithm to perform.
Then awhile cycle starts, with as stopping condition the reaching of themaximumnumber of iterations or aMSE
value that isn’t much smaller than the previous one (MSE_old - MSE_new < tolerance).
The alternating refinement of intrinsic and extrinsic parameters is governed by two functions, which could be
described as the most important of the entire toolbox, which allow the calculation of reprojections:

• [x, y] = omni3d2pixel(ss, xx, width, height)
The parameters provided to this function include the polynomial coefficients (ss), the corners 3D coordi-
nates in the camera’s reference system (xx), and the pixel dimensions of the image (width and height, with
values of 2448 and 2048 pixel respectively). The resulting output is the projection of these corners onto
the image plane, specified in pixels. This function calculates the pixel coordinates of the projected points
using the distance ρ from the image center. This function will be the focus of next chapter.

• m=world2cam(M, ocam_model)
The provided inputs encompass the corners 3D coordinates in the camera’s reference system (M) and the
ocam_model, which holds the intrinsic parameters of the model as well as the width and height of the im-
age. The resulting output is the projection of these corners onto the sensor plane. This function initiates
by invoking omni3d2pixel(ss, xx, width, height) and subsequently employs an affine transformation (the
matrix A defined in 3.6) to rectify the pixel coordinates of the projected points.
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5
Adaptation of Scaramuzza’s model to a non

central projection model

This chapter is going to showhowScaramuzza’smodel has beenmodified, in order to fit the case of the PANCAM
lens described in chapter 2.
The core idea behind the new models developed is that the lens can’t be approximated with a central projection
(as assumed by Scaramuzza) but we can model it with a non central model, that can also be renamed as A-central
Model (AM). The order in which the models are presented follows the chronological order on which they were
thought and implemented inMatlab, whose codes are reported in every section.
Every model is then tested with for the calibration of the camera over 2 different sets of images:

1. Small chessboards: a set of 54 images, each containing a 7x10 black-and-white chessboard. Square’s sizes
are 10cm and grids cover the whole azimuth FoV, with a special attention in placing our patterns also in
the hyper-hemispherical side.

2. Big chessboards: a set of 50 images, now regarding 28x10 chessboards, with the same square size of pre-
vious data bench . This new grids can cover almost the whole zenithal FoV, but at the cost of being way
difficult to work with during corner extraction.

Both sets of images are caught in bmp format, with 2048x2448 as pixel dimensions.
The degree of the polynomial (N) is set to 4, since it is the best value, as assessed by Scaramuzza.

Figures 5.1 is an example taken from the first set of images, which is peculiar since it is located close to the hyper-
hemispherical part. The grey ellipse is used just to cover the long chessboard, which was fixed in the laboratory.
Anyway, it doesn’t effect the calibration process at all.
Image 5.2 shows the long chessboard, which was fixed onto the wall during image acquisition.

Figures 5.3 and5.4 show thepositions of the chessboards,with respect to the camera. These plots are computed
by the toolbox, through thebuttonShowextrinsic, which runs the function create_simulation_points(calib_data).
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Figure 5.1: Hyper‐hemispherical picture taken by the lens, small grid

Figure 5.2: Hyper‐hemispherical picture taken by the lens, large grid
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Figure 5.3: Positions of small chessboards. Unit of measurements is millimeter.

Figure 5.4: Positions of big chessboards. Unit of measurements is millimeter.
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Grids are drawn following the extrinsic parameters, that are the roto-translationmatrices associated to the images.
This chapter represents the core part of the discussion.
We will begin with the results and the issues of the calibration procedure following Scaramuzza’s model.
After that, the latter will be modified, moving away from the single effective viewpoint property. This new model,
calledAMmodel, will be analyzed together with its basic assumptions and its calibration results commented.
AM model will be further modified, in order to tackle problems of reprojection on the hyper-hemispheric part,
in the so called piecewise-AMmodel.
The last model presented is named AM-RZ, which extends the previous models by assuming that the points to-
wards whom the light rays are directed are not constrained anymore to lie on the Z axis of the camera coordinate
system.
The performances of these models are assessed through these indicators:

• Average reprojection error: the mean distance between a location of a corner and its reprojection on the
image;

• Standard deviation error, on both axis: for each image, computed the difference between the coordinates
of the true location of the corners and the coordinates of their reprojections on to the image. For both
coordinates it is computed the standard deviation and then these value are averaged over all the pictures.

5.1 Scaramuzza’s Camera model
In the preceding chapter, we conducted an extensive examination of the projectionmodel that underpins OCam-
Calib. However, for the purpose of our current analysis, it becomes imperative to introduce a revision of equation
3.7 that relies on the zenith angle.
From the definition of the g function, called imaging function, each pixel u′′ on the image plane is associated to
a point in the 3D world, with coordinates [u′′, v′′, f(ρ)]T. Then all the points lying on the line intersecting the
latter point and the center of the camera coordinate system will be mapped onto u′′.
So, when we are projecting a world point onto the image plane, the following equation holds:

tan(θ) =
f(ρ)
ρ

, θ = arctan(
zM√

x2M + y2M
) (5.1)

where θ is the zenith angle (with respect to the horizon plane), [xM, yM, zM]T are the corners 3d coordinates in
mm and ρ the distance in pixel of the reprojection from the centre of the image. . The smallest ρ ∈ Rwhich solves
this equation, which can be easily rewritten as

a0 − tan(θ)ρ+ a2ρ2 + · · ·+ aNρN = 0. (5.2)

This equation is the one solved by function omni3d2pixel. In particular, this function looks for the smallest real
solution of equation 5.2, by performing the roots function, a built-in tool useful to compute the solutions of a
polynomial. Itworks by creating the companionmatrix associated to the left termof 5.2, which shall be previously
rewritten as a monic polynomial. The eigenvalues of this matrix are the roots of the former polynomial.
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Figure 5.5: Reprojection of corners onto the image

As it was presented in chapter 2, the camera can’t be properly approximated with a pinhole projection model.
This is due to the fact that theFoVcomprehends 50◦ under the equator,making thePANCAManhyper-hemispherical
lens.
To verify the relevance of our idea of having to change the nature of themodel, two calibration test are performed,
one for each set of images.

In 5.5, red crosses represent where the points were located at at the beginning of the calibration, while blue
circles show the reprojections of the corners using the relation defined in 3.10. As we can see in the picture 5.5,
Scaramuzza’s model performs well, as crosses are really close to circles. This does not hold true fore the hyper-
hemispheric part.

As we can see in the zoom displayed in 5.6, reprojections of corners associated to real-world points which have
high zenithal angles in the camera coordinate system are remarkably distant from their true locations in the image.
It is possible to quantify the error committed by Scaramuzza’smodel in the reprojections of the corners with these
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Figure 5.6: Zoom of figure 5.5 on the HH part

indicators:

• average reprojection error: 0.823725 px;

• std error on x axis: 0.622204 px;

• std error on y axis: 0.576497 px.

Regarding the second set of images, the one including pictures of long chessboards, we can anticipate that now
the errors are going to be greater, since the corner extraction is less efficient.
The grid is 2.80m long, which means that the points on top and at the bottom of the chessboard are significantly
distant from the camera. So, we can state that these points are more prone to noise and they are more difficult
to exactly identify during the corner extraction procedure. While for small chessboards the automatic corner
extractor manages to correctly identify every corner in almost all the images, for long chessboards, on average,
80% of the corners are found, and so user intervention is needed to get accurate locations.
The errors committed during this calibration procedure are:

• average reprojection error: 2.215582 px;

• std error on x axis: 1.519904 px

• std error on y axis: 1.589742 px
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Figure 5.7: Reprojection of corners onto the image, long chessboard

Figure 5.8: Zoom on the HH part

Figure 5.7 shows the reprojections of the corners onto an image, while plots in 5.8 highlight the behaviour of
the lens on the hyper-hemispherical side, where reprojections are not so close the exact locations, as we would.
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5.2 First models with non central projection
The idea of a non central projection comes from a thoughtful analysis of the behaviour of the lens, and the diffi-
culties faced by Scaramuzza’s model during its calibration.
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Figure 5.9: Left: projections of two points. Right: differences in the projections of a point according to pinhole camera
model and the new model.

The concept is simple: we suppose that not all the points are projected to a unique point, as the case of the
pinhole projection.
Plots in 5.9 show how the new projections work. Here the situation focuses only on one plane, but the situation
can be easily generalized to the whole 3D space, since the mirror (here represented through the blue curve) is
radially symmetric.
The left plot shows how each point on the image plane (u’) is associated to a point on the Z axis (O). The vector (p)
starting fromO and passing through the projection of u’ on the mirror defines a specific direction. All the points
belonging to this direction will be mapped onto u’. The figure on the left provides to examples of projections,
for the pointsM1 andM2. The right figure, instead, remarks how the difference between the points associated
toM2, with u′1 found according to the classic pinhole projection, withO1 as the center of the camera, while u′2 is
found with this new procedure.
The relationshipbetween thepoint on the imageplane and thepoint on theZ axis canbe expressedwith a function
of the variable ρ, that we are going to name z0 = z0(ρ). This function is meant to bemonotonous, to avoid chaos
in the images. Its dependence from ρmakes it easy to integrate this new term into our equations.
In fact, we just have to modify 5.1 such that:

(zM − z0(ρ))√
x2M + y2M

=
f(ρ)
ρ

, (5.3)

By introducing anoncentralmodel, wehave that points associated to vectors pwith samedirection arenotmapped
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onto the samepixel anymore. In fact, in the case of a central camerawehad a ”privileged”point, the one considered
as the center of the camera coordinate system. Let M a point in the camera coordinates system and rewrite its
coordinate in spherical polar coordinates, that is

M = (r, θ, φ), with r ≥ 0, θ ∈ [0, 2π) and φ ∈ [0, π)

Then points associated to the same θ andφ angles used to bemapped onto the same pixel. Since in the non central
model the directions (p) do not start from a unique point, this relation falls.
How can we define the z0 function? At the beginning, a first guess is to focus on a linear function:

z0 = b0 + b1 · ρ . (5.4)

By doing this, we are introducing 2 new parameters, b0 and b1, which are to be determined during the calibration
process. In order to optimize these two variables, they are considered as new intrinsic parameters, along with the
coefficients of f(ρ).
In this way , we can rewrite equation 5.3 as:

(zM − (b0 + b1 · ρ))√
x2M + y2M

=
f(ρ)
ρ

(5.5)

Having zO in a polynomial form allows us to rewrite the latter equation as:

a0 −
(zM − b0)√
x2M + y2M

ρ+

(
a2 +

b1√
x2M + y2M

)
ρ2 + · · ·+ aNρN = 0 . (5.6)

Given how easily thismodification can be introduced in our equations, it is also possible to define z0 as a quadratic
function. We can sum up everything as:

z0 = b0 + b1 · ρ+ b2 · ρ2 (5.7)

Equations 5.5 and 5.6 can be rewritten as:

(zM − (b0 + b1 · ρ+ b2 · ρ2))√
x2M + y2M

=
f(ρ)
ρ

(5.8)

and

a0 −
(zM − b0)√
x2M + y2M

ρ+

(
a2 +

b1√
x2M + y2M

)
ρ2 +

(
a3 +

b2√
x2M + y2M

)
ρ3 + · · ·+ aNρN = 0 . (5.9)

In order to evaluate these new models, two different calibrations are performed, over the datasets previously de-
scribed: the one with 7x10 chessboards and the one with 28x10 chessboards.
The performances of the the two models following a non central projection are very similar. Moreover, they do
not out-preform the results obtained by Scaramuzza’s model. In tables 5.2, we can see that the errors committed
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by the models are almost the same.

Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 0.823725 0.622204 0.576497

Linear z0 0.818188 0.620968 0.572519
Quadratic z0 0.814733 0.617055 0.570284

Table 5.1: Comparison between performances of the Scaramuzza’s model and the two versions of the AM model, over
7x10 chessboards

Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 2.215582 1.519904 1.589742

Linear z0 2.173670 1.509782 1.567191
Quadratic z0 2.177170 1.510186 1.572896

Table 5.2: Comparison between performances of the Scaramuzza’s model and the two versions of the AM model, over
28x10 chessboards

New models reach slightly smaller errors than the Scaramuzza’s one. This is natural since we are adding new
parameters and in the worst case they would just be ignored (put to 0) during the computations of the algorithm.
AMmodels introduce new parameters (b0, b1 and b2) to Scaramuzza’s model, which means that they increase its
complexity. Given that there aren’t considerable improvements in the performances, we shall review the underly-
ing theory, with new ideas and new equations.
Moreover, we can see from the plots in 5.10a and 5.12a that the distributions of the errors do not change, always
with high reprojection errors when dealing with corners with high zenith angles.
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(a) Distribution of the errors with respect to the zenithal angle, following Scaramuzza’s model over small chessboards

(b) Distribution of the errors with respect to the zenithal angle, following AM model over small chessboards (quadratic z0)

As far as the Matlab toolbox is concerned, the function to be modified is optimizefunction, the one respon-
sible for the refinement phase. Here a new field is added, named lin_coeff, a vector containing the coefficients
related to the z0 function, [b0, b1] in the case of z0 as a linear function and [b0, b1, b2] in the case of z0 as a quadratic
function. This vector is merged with the one containing the coefficients of the polynomial (ss), creating a vector
state whose aim is to keep together all the intrinsic parameters. This new vector is now the replacement of ss in
the function omni3d2pixel. The updates of omni3d2pixel, renamed as omni3d2pixel_am, can be found in the
tables 5.3 and 5.4, respectively for the cases of z0 as a linear function or a quadratic one.
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f unc t i on [ x , y ] = omni3d2pixel_am_linear ( vs , xx )
% z_0 = b0 + b1*x , l i n e a r func t i on

b0 = vs ( end - 1 ) ;
b1 = vs ( end ) ;

m = (xx ( 3 , : ) - b0 ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m1 = b1 . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;

rho = [ ] ;

%c o e f f i c i e n t s o f the polynomial do not comprehend the l a s t 2 elements ,
%that are the c o e f f i c i e n t s o f z_0
poly_coef = vs ( end - 2 : - 1 : 1 ) ; %inve r t ed polynomial
poly_coef_tmp = poly_coef ;

f o r j = 1 : l ength (m)
%sum the c o e f f i c e n t s o f the polynomial to the con t r i bu t i on s g iven

by z_0
poly_coef_tmp ( end - 1 ) = poly_coef ( end - 1 ) -m( j ) ;
poly_coef_tmp ( end - 2 ) = poly_coef ( end - 2 )+m1( j ) ;
rhoTmp = roo t s ( poly_coef_tmp ) ; %f i nd a l l the s o l u t i o n s

%f i l t e r and keep only the r e a l and p o s i t i v e s o l u t i o n s
r e s = rhoTmp( f i nd ( imag (rhoTmp)==0 & rhoTmp>0) ) ;

%pick the sma l l e s t s o l u t i o n
i f isempty ( r e s ) %| l ength ( r e s )>1

rho ( j ) = NaN;
e l s e i f l ength ( r e s )>1

rho ( j ) = min ( r e s ) ;
e l s e

rho ( j ) = r e s ;
end

end

%r ep r o j e c t the po in t s onto the senso r plane
x = xx ( 1 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;
y = xx ( 2 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;

Table 5.3: MATLAB code for the solution of the equation 5.5
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f unc t i on [ x , y ] = omni3d2pixel_am_quadratic ( vs , xx )
% z_0 = b0 + b1*x + b2*x^2 , quadrat i c func t i on
b0 = vs ( end - 2 ) ;
b1 = vs ( end - 1 ) ;
b2 = vs ( end ) ;

m = (xx ( 3 , : ) - b0 ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m1 = b1 . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m2 = b2 . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;

rho = [ ] ;
%c o e f f i c i e n t s o f the polynomial do not comprehend the l a s t 3 elements ,
%that are the c o e f f i c i e n t s o f z_0
poly_coef = vs ( end - 3 : - 1 : 1 ) ; %inve r t ed polynomial
poly_coef_tmp = poly_coef ;

f o r j = 1 : l ength (m)
%sum the c o e f f i c e n t s o f the polynomial to the con t r i bu t i on s g iven

by z_0
poly_coef_tmp ( end - 1 ) = poly_coef ( end - 1 ) -m( j ) ;
poly_coef_tmp ( end - 2 ) = poly_coef ( end - 2 )+m1( j ) ;
poly_coef_tmp ( end - 3 ) = poly_coef ( end - 3 )+m2( j ) ;
rhoTmp = roo t s ( poly_coef_tmp ) ; %f i nd a l l the s o l u t i o n s

%f i l t e r and keep only the r e a l and p o s i t i v e s o l u t i o n s
r e s = rhoTmp( f i nd ( imag (rhoTmp)==0 & rhoTmp>0) ) ;
%pick the sma l l e s t s o l u t i o n
i f isempty ( r e s ) %| l ength ( r e s )>1

rho ( j ) = NaN;
e l s e i f l ength ( r e s )>1

rho ( j ) = min ( r e s ) ;
e l s e

rho ( j ) = r e s ;
end

end

%r ep r o j e c t the po in t s onto the senso r plane
x = xx ( 1 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;
y = xx ( 2 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;

Table 5.4: MATLAB code for the solution of the equation 5.8
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5.3 Noncentralprojectionmodelsperformingpiece-
wise functions

In the previous section it was stated that AMmodels do not solve our problems, since they do not manage to ob-
tain better results and, in particular, they do not succeed in the task of reducing the reprojection errors for corners
associated with high zenithal angles.
In order to tackle this last issue, the idea that we are going to introduce in the following lines is to insert a modifi-
cation in AMmodel, by defining z0 as a piecewise function, with 2 pieces.
First of all, let’s introduce R, an hyper-parameter whose function is to split the space of an image in 2 distinct
parts:

• the hyper-hemispherical part, i.e. the portion the image including all the pixels whose distance from the
image center is bigger than R;

• the ”narrow” part, i.e. the portion of the image closer to the image center, where the pixels are distant
from it less than R.

In the new definition of z0 as a piecewise function, the value R defines where these two pieces meet, so that the
function can be written as:

z0(ρ) =

z10(ρ), se ρ ≤ R

z20(ρ), se ρ > R
(5.10)

Given that pixels which lie further from the center of the image are associated to points in the real world, which,
in the camera coordinate system, have high zenith angles, this new reformulation of z0 substantially implies the
creation of two differentmodels, one for the narrowpart and another for the hyper-hemispheric portion. This last
model is going to be specific for the points highly misclassified by previous models, that are the points associated
to high zenith angles.
Picture 5.11 displays a picture belonging to one of the datasets used to test the calibration models, the one with
28x10 chessboards. The green point in the middle is the center of the image, while the red circumference marks
all the pixels whose distance from the center is R. In this specific example R is set to 720 pixels. The red curve
clearly splits the image in two parts, dividing in two the chessboards as well.
The solutions of equation 5.3 will consider the function z10(ρ) for corners in the narrow portion and z20(ρ) for
corners in the hyper-hemispheric part.

In order to have a smooth z0 function, at first we have to impose z10, z20 ∈ C0(R+) and z10, z20 ∈ C1(R+). In
order to have the whole z0 function continuous and with continuous derivative, we have to simply introduce the
following constraints:

z10(R) =z20(R)
d
dρ

z10(ρ)
∣∣∣∣
ρ=R

=
d
dρ

z20(ρ)
∣∣∣∣
ρ=R

(5.11)

Obviously we can put constraints involving also derivative of higher orders, but for the models that are going to
be introduced these two constraints are enough.
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Figure 5.11: Example image to see practically the meaning of R

Models following the idea discussed in this section will be named piecewise-AM.
The first piecewise-AMmodel presented draws inspiration from theAMmodels described in the previous section.
In fact, the function z0 is taken as a linear function for corners in the narrow part and as a quadratic function for
corners belonging to the hyper-hemispheric, such that 5.12 can be expressed as:

z0(ρ) =

aρ+ b, se ρ ≤ R

cρ2 + dρ+ e, se ρ > R
(5.12)

The constraints defined in 5.11 can be rewritten as

aR+ b =cR2 + dR+ e

a =2cR+ d .
(5.13)
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Solutions of these equations are d = a− 2cR and e = b+ cR2. In this way, the number of parameters is reduced
from 5 to 3, that are coefficients a, b and c. This model can be compared to the quadratic version of former AM
model, since they share the same number of parameters. Therefore, we can say that the new model does not add
complexity to the previous one.
After having defined the idea of a piecewise function and its integration in the equations, we are ready to perform
a calibration test, either on the dataset with the small chessboards or on the dataset with the large ones. The R
hyper-parameter is set to 700, since it is the one which lets the model achieve the best results.
Firstly, the calibration is performed using as data the small grids, which is made up by 54 images. In order to
evaluate the performance of the model, we compare its indicators about the reprojection errors with previous
models and the results are in table 5.5.

Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 0.823725 0.622204 0.576497
Quadratic-AM 0.814733 0.617055 0.570284
Piecewise-AM 0.615650 0.481807 0.421362

Table 5.5: Comparison between Scaramuzza’s model, Quadratic‐AM model and piecewise‐AM model. The dataset involved
is the one regarding small chessboards.

(a) Distribution of the errors with respect to the zenithal angle, following AM model (quadratic z0).

(b) Distribution of the errors with respect to the zenithal angle, following piecewise‐AM model.

Figure 5.12: Comparison between AM model and piecewise‐AM. Dataset used for the calibration is the one involving 7x10
chessboards.
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The newmodel clearly obtains better results than its predecessors, both in the average reprojection errors and
in the standard error on each axis. Given these positive results, let’s give a look at the distribution of the repro-
jection error with respect to the zenith angles. Plots in 5.12 display the comparison between a version of the AM
model and the piecewise-AMmodel. In particular they show how for high zenith angles Scaramuzza model gen-
erates high residuals (i.e. chessboard 42) while AMmodel fits correctly the same FoV region.
This new model clearly manages to get almost uniform distributions of the errors, without a significant increase
for high zenith angles.
The images 5.13 present a comparison between the last two models. The pictures highlight a particular zone of
one of the images, that is the hyper-hemispheric part and some corners belonging to it.
Now, it is interesting to examine the pictures, by looking at how far the reprojections of the corners are from the
real locations. The locations of the vertices identified in the corners extraction phase are marked with red crosses,
while the reprojections computed by the models are marked with blue circles.
The lower image shows the results due to the new piecewise-AMmodel. There the circles are clearly closer to the
red crosses than in the upper image, where blue circles are the result of the calibration following AMmodel.
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Figure 5.13: Differences in the reprojection of the corners between AM model (above) and piecewise‐AM model (below).
Piecewise‐AM model behaves better especially on the corners belonging to the upper row.
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Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 2.215582 1.519904 1.589742
Quadratic-AM 2.177170 1.510186 1.572896
Piecewise-AM 1.250087 0.922428 0.919204

Table 5.6: Comparison between Scaramuzza’s model, Quadratic‐AM model and piecewise‐AM model. The dataset involved
is the one regarding long chessboards.

After having dealt with the dataset of images of 7x10 chessboards, now the calibration following piecewise-AM
model is performed over the dataset containing long chessboards.
The results of this last calibration are displayed in the table 5.6.
These results prove that even in this case the new piecewise-AMmodel behaves way better, since the average error
is almost halved and the mean standard errors on both axis decrease significantly. As we have done before, let’s
visualize the distributions of these error indicators with respect to the zenith angle.
The last three plots in 5.14 suggest that the piecewise-AMmodel reduces errors for high zenith corners, even if in
this case the residuals are still very high, if compared with the other corners.

(a) Distribution of the errors with respect to the zenithal angle, following AM model (quadratic z0).

(b) Distribution of the errors with respect to the zenithal angle, following piecewise‐AM model.

Figure 5.14: Comparison between AM model and piecewise‐AM. Dataset used for the calibration is the one involving
28x10 chessboards.
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Figure 5.15: Plot of z0 according to its coefficients. The blue dot marks the beginning of the second trait.

In order to further deepen the analysis of this new model, let’s give a look at the function z0. In the case of
the calibration procedure involving 7x10 chessboards, the coefficients a, b, c of the z0 function design the curve
plotted in 5.15. The plot shows that the linear trait is almost a constant function. Therefore, a possible idea is
to define a newmodel, a variant of the previous piecewise-AMmodel, now with a constant function instead of a
linear one. The core idea behind this new model is that we may get a similar model to the former one, but with
one less parameter. This modification even prevents the function to be not monotonic as the one displayed in the
plot (which is something quite strange). For this new variant, the equation 5.12 and the respcetive constraints can
be rewritten as :

z0(ρ) =

a se ρ ≤ R

b+ cρ+ dρ2, se ρ > R
(5.14)

and

a =b+ cR+ dR2

0 =c+ 2Rd.
(5.15)

Solutions to the constraints expressed in 5.15 are b = a + dR2 and c = −2Rd. In this way only 2 parameters
define the function z0, instead of 3 as the former piecewise-AMmodel, thus reducing the complexity.
In order to verify whether this new piecewise-AM model with one less parameter performs well or not, we can
compare the results obtained after the calibration procedure with the previous model’s ones.

Table 5.7 reports the calibration results computed starting from images containing small chessboards. It can be
immediately seen that the two piecewise-AMmodels perform in a similar way, despite that the second one has one
less parameter. The distributions of the error indicators (average error andmean standard deviations for both axis)
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Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 0.823725 0.622204 0.576497
Quadratic-AM 0.814733 0.617055 0.570284

Piecewise-AM (1st trait: linear) 0.615650 0.481807 0.421362
Piecewise-AM (1st trait: constant) 0.624592 0.484726 0.428303

Table 5.7: Comparison between Scaramuzza’s model, Quadratic‐AM model and piecewise‐AM models. The dataset
involved is the one regarding small chessboards.

with respect to the zenith angle are really quite identical with the ones regarding the first piecewise-AM model,
which ensure that even in this case the issue encountered by Scaramuzza’s model and AMmodels (high errors for
high zenith corners) is well tackled (figures 5.16a).

(a) Distribution of the errors with respect to the zenithal angle, following the second version of piecewise‐AM model.

(b) Distribution of the errors with respect to the azimuthal angle, following the second version of piecewise‐AM model.

Figure 5.16: Distributions of the errors for zenithal (a) and azimuthal (b) angles, involving 2nd piecewise‐AM model. Dataset
used for this calibration is the one involving 7x10 chessboards.

For this specific case, it is also plotted analogous figures regarding the distributions with respect to the az-
imuthal angle. In figures 5.16b it is possible to notice that the distributions are quite uniform, which implies
that the radial model is well represented in the camera and there are no mounting or defocus errors.
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Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 2.215582 1.519904 1.589742
Quadratic-AM 2.177170 1.510186 1.572896

Piecewise-AM (1st trait: linear) 1.250087 0.922428 0.919204
Piecewise-AM (1st trait: constant) 1.248232 0.937039 0.929807

Table 5.8: Comparison between Scaramuzza’s model, Quadratic‐AM model and piecewise‐AM models. The dataset
involved is the one regarding long chessboards.

Analogous results occur if we base the calibration over the dataset containing long chessboards, as shown in
table 5.8. For what concerns theMatlab implementation of piecewise-AMmodels, the main function considered
is always the one named optimizefunction. In addition to the changes introduced in the previous section, the
one regarding AM models, there must be introduced some lines of code to individuate which points belong to
the hyper-hemispheric part. Script in table 5.9 is the modification introduced in optimizefunction to solve this
issue. It also adds two new fields to the class calib_data, both Boolean objects that mark with a 1 a corner on the
hyper-hemispheric zone and with a 0 a corner who is not. Scripts in tables 5.10 and 5.11 show how the function
omni3d2pixel gets modified for the case of piecewise-AMmodel.

%% Hyper - hemispher ic s t r u c tu r e
%Rewrite the coo rd ina t e s with r e sp e c t to the cente r o f the images
Xp_centered = cal ib_data . Xp_abs - ca l ib_data . ocam_model . xc ;
Yp_centered = cal ib_data . Yp_abs - ca l ib_data . ocam_model . yc ;

iper_emi = [ ] ;
%load a f i l e c on ta i n i g the value o f the hyper - parameter
load (”R_parameter . mat”) ;
f o r i=cal ib_data . ima_proc %cyc l e over images

%compute the d i s t ance between co rne r s and the cent e r o f the
image

ragg i = sq r t ( Xp_centered ( : , 1 , i ) .^2 + Yp_centered ( : , 1 , i ) . ^2 ) ;
Iper_Emi{ i }=( ragg i>R_parameter ) ’ ;
iper_emi = [ iper_emi , ( ragg i>R_parameter ) ’ ] ;

end
cal ib_data . ocam_model . Iper_Emi = Iper_Emi ;
ca l ib_data . ocam_model . iper_emi = iper_emi ;

Table 5.9: MATLAB code for the identification of hyper‐hemispheric points
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f unc t i on [ x , y ] = omni3d2pixel_am_piecewise_linear ( vs , xx , iper_emi )
%de f i n e hyper - h em i s f e r i c co rne r s
load (”R_parameter . mat”) ; % hyper - parameter which g i v e s us the

d i s t i n c t i o n between narrow and hyper - hemispher ic
i s i=f i nd ( iper_emi ) ; % de f i n e i n d i c e s o f iper - em i s f e r i c co rne r s
% func t i on d iv ided in to 2 p i e ce s , b e f o r e l i n e a r and then quadrat i c
b0=vs ( end - 2 ) ; % constant term : b in z_0^1 = ax+b
b1=vs ( end - 1 ) ; % s l ope term : a in y = ax+b
b2=vs ( end ) ; % c o e f f i c i e n t o f the pa rabo l i c t r a i t : c in y = e+dx+cx^2
% de f i n e m’ s
m = (xx ( 3 , : ) - b0 ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m1 = b1 . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ; m2 = 0*m1;
% de f i n e m’ s f o r hyper - hemispher ic po in t s
m( i s i ) = ( xx (3 , ( i s i ) ) -b0 - b2 *(R_parameter^2) ) . / sq r t ( xx (1 , ( i s i ) ) .^2+xx

(2 , ( i s i ) ) . ^2 ) ;
m1( i s i ) = (b1 -2* b2*R_parameter ) . / sq r t ( xx (1 , ( i s i ) ) .^2+xx (2 , ( i s i ) ) . ^2 ) ;
m2( i s i ) = b2 . / sq r t ( xx (1 , i s i ) .^2+xx (2 , i s i ) . ^2 ) ;
rho = [ ] ;
poly_coef = vs ( end - 3 : - 1 : 1 ) ; %inve r t ed polynomio
poly_coef_tmp = poly_coef ;
f o r j = 1 : l ength (m)

poly_coef_tmp ( end - 1 ) = poly_coef ( end - 1 ) -m( j ) ;
poly_coef_tmp ( end - 2 ) = poly_coef ( end - 2 )+m1( j ) ;
poly_coef_tmp ( end - 3 ) = poly_coef ( end - 3 )+m2( j ) ;
rhoTmp = roo t s ( poly_coef_tmp ) ;
%f i l t e r and keep only the r e a l and p o s i t i v e s o l u t i o n s
r e s = rhoTmp( f i nd ( imag (rhoTmp)==0 & rhoTmp>0) ) ;
%pick the sma l l e s t s o l u t i o n
i f isempty ( r e s ) %| l ength ( r e s )>1

rho ( j ) = NaN;
e l s e i f l ength ( r e s )>1

rho ( j ) = min ( r e s ) ;
e l s e

rho ( j ) = r e s ;
end

end
%r ep r o j e c t the po in t s onto the senso r plane
x = xx ( 1 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;
y = xx ( 2 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;

Table 5.10: MATLAB code for the solution of the equation 5.5
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f unc t i on [ x , y ] = omni3d2pixel_am_piecewise_constant ( vs , xx , iper_emi )
%de f i n e hyper - h em i s f e r i c co rne r s
load (”R_parameter . mat”) ; % hyper - parameter which g i v e s us the

d i s t i n c t i o n between narrow and hyper - hemispher ic
i s i=f i nd ( iper_emi ) ; % de f i n e i n d i c e s o f iper - em i s f e r i c co rne r s
% func t i on d iv ided in to 2 p i e ce s , b e f o r e constant and then quadrat i c
a = vs ( end - 1 ) ; % constant parameter o f the f i r s t t r a i t
d = vs ( end ) ; % c o e f f i c i e n t o f the pa rabo l i c t r a i t : d in y = b+cx+dx^2
%de f i n e m’ s
m = (xx ( 3 , : ) - a ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m1 = 0*m; m2 = 0*m1;
%de f i n e m’ s f o r hyper - hemispher ic po in t s
m( i s i ) = ( xx (3 , ( i s i ) ) -a - d*(R_parameter^2) ) . / sq r t ( xx (1 , ( i s i ) ) .^2+xx (2 , (

i s i ) ) . ^2 ) ; %zeta - b
m1( i s i ) = ( -2*d*R_parameter ) . / sq r t ( xx (1 , ( i s i ) ) .^2+xx (2 , ( i s i ) ) . ^2 ) ;
m2( i s i ) = d . / sq r t ( xx (1 , i s i ) .^2+xx (2 , i s i ) . ^2 ) ;
rho = [ ] ;
poly_coef = vs ( end - 3 : - 1 : 1 ) ; %inve r t ed polynomio
poly_coef_tmp = poly_coef ;
f o r j = 1 : l ength (m)

poly_coef_tmp ( end - 1 ) = poly_coef ( end - 1 ) -m( j ) ;
poly_coef_tmp ( end - 2 ) = poly_coef ( end - 2 )+m1( j ) ;
poly_coef_tmp ( end - 3 ) = poly_coef ( end - 3 )+m2( j ) ;
rhoTmp = roo t s ( poly_coef_tmp ) ;
%f i l t e r and keep only the r e a l and p o s i t i v e s o l u t i o n s
r e s = rhoTmp( f i nd ( imag (rhoTmp)==0 & rhoTmp>0) ) ;
%pick the sma l l e s t s o l u t i o n
i f isempty ( r e s ) %| l ength ( r e s )>1

rho ( j ) = NaN;
e l s e i f l ength ( r e s )>1

rho ( j ) = min ( r e s ) ;
e l s e

rho ( j ) = r e s ;
end

end
%r ep r o j e c t the po in t s onto the senso r plane
x = xx ( 1 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;
y = xx ( 2 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;

Table 5.11: MATLAB code for the solution of the equation 5.5
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5.4 AM-RZ model
The models discussed in previous chapters describe the mathematical relationship between the coordinates of a
point in the real world and its projection onto the image plane. Starting from the model introduced by Scara-
muzza, the contribution given by this thesis is to evolve the latter in the case of hyper-hemispheric cameras,
considering that light rays do not converge towards a single point. This is more in agreement with the
physical model which assumes the entrance pupil starting to appear tilted for low zenith angles.
This change was performed by taking as an assumption that each light ray points to a point on a line, identified
as the Z axis of the camera coordinate system, so that we can imagine the z0 function as a shift of the focus of the
projection away from the point nominated to be the .
From direct measurements on the behaviour of the lens, what transpires is that the projection can be better de-
scribed if we take into account that this particular shift occurs both on the Z axis and on the {X,Y} plane.
The plots in 5.17 are examples of what is meant with this new concept of projecting a point outside the Z axis.
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Figure 5.17: Left: projections of two points with the shift also on the ρ axis.
Right: comparison between projections of a point according AM model and this new theory.

The plot on the left side shows themeaning of this new idea, with the Z axis that is nomore involved in the projec-
tion. On the right, it is shown the difference between the projection according to the previous models, AM and
piecewise-AM, and the projection which also adds along axis ρ, a vector lying in the {X,Y} plane.
Obviously, one could argue that it would be possible to extend p vectors towards the Z axis, thus ending up in the
case of the previously mentioned AM and piecewise-AMmodels.
Despite that, a model which replies in a more accurate form the nature of the lens can perform interesting results.
Given these new initial premises, the path is ready for an additional edit to the equations and the toolbox code.
We can proceed similarly to what we did in section 5.3 and introduce a new function, whose name is going to be
r0(ρ), to rule the shift on the {X,Y} plane. Equation 5.3 can be updated in its following version:

zM − z0(ρ)
rM − r0(ρ)

=
f(ρ)
ρ

, (5.16)
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where rM =
√
x2M + y2M.

The nature of r0 is defined as a function of the parameter ρ and it follows from the same reasoning as for z0:
considering an ideal point towards whom every light ray shall converge, according to pinhole camera model and
Scaramuzza’s model, both functions z0 and r0 define two shifts from it in the projections, respectively on the Z
axis and in the {X,Y} plane.
Similarly to what we did for z0, the function r0 is chosen to be a piecewise function, with two traits: the first one
as the null function, just to keep themodel similar to all the previous ones, while a second trait follows a quadratic
function.
The value that determines the switch form a trait to the other is chosen to be the hyper-parameter R, because we
are assuming that the quadratic trait of r0 is needed only for points related to high zenith angles.
Under these assumptions, equation 5.16 can be rewritten in the two forms:

zM − a
rM

=
f(ρ)
ρ

, ρ ≤ R and
zM − (b0 + b1 · ρ+ b2 · ρ2)
rM − (c0 + c1 · ρ+ c2 · ρ2)

=
f(ρ)
ρ

, ρ > R . (5.17)

Equations 5.17 take z0 from the second version of the piecewise-AMmodel, defined in 5.12 (a constant trait and
a quadratic one). It is interesting to notice that, given f(ρ) to be a polynomial of the fourth order, solving the
second equation of 5.17 would mean to find the roots of a polynomial of the sixth order.
Similarly to what we did in the case of the z0 function, we shall add simple constraints in order to get r0 to be
continuous and with continuous derivative. We can set up the following system:0 = c0 + c1 · R+ c2 · R2

0 = c1 + 2 · c2 · R .
(5.18)

This system’s solutions are c1 = −2 · c2 ·R and c0 = c2 ·R2, and, from a total of 7 parameters that we can find in
5.17, with these conditions of continuity, we end up with only 3 parameters:

• a, the constant value indicating the 1st trait of z0;

• b2, the quadratic coefficient of the parabola in the second trait of z0,

• c2, the quadratic coefficient of the parabola in the second trait of r0.

From now on, we can name this model asAM-RZ, reminding at the functions r0 and z0.
In order to evaluate the robustness of this model, calibrations are performed, on both datasets we have come to
know in this discussion.
Starting from the dataset containing 7x10 chessboards, table 5.12 shows a comparison among different models
regarding the errors committed in the reprojection of the corners on the images.
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Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 0.823725 0.622204 0.576497
Quadratic-AM 0.814733 0.617055 0.570284

Piecewise-AM (1st trait: constant) 0.624592 0.484726 0.428303
AM-RZmodel 0.630071 0.490191 0.427288

Table 5.12: Comparison among AM‐RZ model and previous ones. The dataset involved is the one regarding small
chessboards.

The new model behaves similarly to the previous piecewise-AM model meaning, outperforming the models
introduced at the beginning of the discussion, Scaramuzza’s one and AMmodels.
From the plots regarding the distributions of the error with respect to the zenith angle, plots 5.18, we get that even
this model manages to reduce the error in the hyper-hemispheric side, which is comparable with the residuals of
the errors regarding the narrow zone.

Figure 5.18: Distributions of the errors for zenithal angles, involving AM‐RZ model. Dataset used for this calibration is the
one involving 7x10 chessboards.

Analogous results occur if we focus on 28x10 chessboards dataset. Table 5.13 shows the residuals of the errors
in the reprojection of the corners onto the images.
Along with these results, pictures 5.19 and 5.20 portray the image 49 of this dataset. The first one contains the
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reprojection of the corners according to Scaramuzza’s model. The second one, instead, performs AM-RZmodel.
It is immediate tonotice how in the secondpictures the reprojections (blue circles) are closer to the corner locations
(red crosses), which means that the last model is way more accurate. For what concerns the implementation in
Matlab of this last model, the function to be modified is always the one named omni3d2pixel, whose new code is
reported in 5.14. The greatmole of calculations present is due to the solution of the right equation of 5.17, which
also increases the degree of the polynomial f by 2.
Images acquired by PANCAM camera, as previously stated, are fish-eye pictures, with a black hole in the middle,
which gives them the classical donut shape. In this images, the FoV is represented in a circle of radius 900 pixels.
Now we can compare r0 parabola to the shift that physically occurs in the lens, to investigate howmuch accurate
this model is. Despite the good results achieved through this work, we don’t have any matching between values
assumed by the parabolic traits of r0 and z0 and the shift of the pupil measured.

Avg error (px) Std error on x (px) Std error on y (px)
Scaramuzza’s model 2.215582 1.519904 1.589742
Quadratic-AM 2.177170 1.510186 1.572896

Piecewise-AM (1st trait: constant) 1.248232 0.937039 0.929807
AM-RZ 1.250087 0.922428 0.919204

Table 5.13: Comparison between Scaramuzza’s model, Quadratic‐AM model and piecewise‐AM models. The dataset
involved is the one regarding long chessboards.
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Figure 5.19: Reprojection of the corners for the 49th picture, according to Scaramuzza’s model
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Figure 5.20: Reprojection of the corners for the 49th picture, according to AM‐RZ model.
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f unc t i on [ x , y ] = omni3d2pixel_am_rz ( vs , xx , iper_emi )
%de f i n e iper - em i s f e r i c co rne r s
load (”R_parameter . mat”) ; % de f i n e hyper - parameter
i s i=f i nd ( iper_emi ) ; % de f i n e i n d i c e s o f iper - em i s f e r i c co rne r s

%ex t r a c t the three parameters o f the model
a = vs ( end - 2 ) ; % f i r s t t r a i t o f z_0 : z_0 = a
b2 = vs ( end - 1 ) ; % z_0 = b0 + b1*x +b2 *x^2
c2 = vs ( end ) ; % r_0 = c0 + c1*x + c2*X^2

%de f i n e parameters cons t ra ined by con t i nu i t y equat ions
c0 = c2*R_parameter ^2 ;
c1 = -2* c2*R_parameter ;
b0 = b2*R_parameter^2 + a ;
b1 = -2*b2*R_parameter ;

r = sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
poly_coef = vs ( end - 3 : - 1 : 1 ) ; %inve r t ed polynomio
poly_coef = [ 0 ; 0 ; poly_coef ’ ] ; %polynomial to s o l v e has a degree

which i s N+2

%e x p l i c i t l y name c o e f f i c i e n t s o f the polynomial
a0 = poly_coef ( end ) ;
a1 = poly_coef ( end - 1 ) ;
a2 = poly_coef ( end - 2 ) ;
a3 = poly_coef ( end - 3 ) ;
a4 = poly_coef ( end - 4 ) ;
a5 = poly_coef ( end - 5 ) ;
a6 = poly_coef ( end - 6 ) ;

%modify c o e f f i c i e n t s o f the polynomial , f o r narrow part
m1 = a1 - ( xx ( 3 , : ) - a ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) ;
m0 = a0 -0*m1;
m2 = a2 -0*m1;
m3 = a3 -0*m1;
m4 = a4 -0*m1;
m5 = a5 -0*m1;
m6 = a6 -0*m1;
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%modify c o e f f i c i e n t s o f the polynomial , HH part
r ( i s i ) = sq r t ( xx (1 , ( i s i ) ) .^2+xx (2 , ( i s i ) ) . ^2 ) ;

m0( i s i ) = a0* r ( i s i ) - a0*c0 ;
m1( i s i ) = a1* r ( i s i ) - a1*c0 - a0*c1 - xx (3 , i s i ) +b0 ;
m2( i s i ) = a2* r ( i s i ) - a2*c0 - a1*c1 - a0*c2 + b1 ;
m3( i s i ) = a3* r ( i s i ) - a3*c0 - a2*c1 - a1*c2 +b2 ;
m4( i s i ) = a4* r ( i s i ) - a4*c0 - a3*c1 - a2*c2 ;
m5( i s i ) = - a4*c1 - a3*c2 ;
m6( i s i ) = - a4*c2 ;

rho = [ ] ;
poly_coef_tmp = poly_coef ;
f o r j = 1 : l ength (m1)

poly_coef_tmp ( end ) = m0( j ) ;
poly_coef_tmp ( end - 1 ) = m1( j ) ;
poly_coef_tmp ( end - 2 ) = m2( j ) ;
poly_coef_tmp ( end - 3 ) = m3( j ) ;
poly_coef_tmp ( end - 4 ) = m4( j ) ;
poly_coef_tmp ( end - 5 ) = m5( j ) ;
poly_coef_tmp ( end - 6 ) = m6( j ) ;

rhoTmp = roo t s ( poly_coef_tmp ) ;
%f i l t e r and keep only the r e a l and p o s i t i v e s o l u t i o n s
r e s = rhoTmp( f i nd ( imag (rhoTmp)==0 & rhoTmp>0) ) ;
%pick the sma l l e s t s o l u t i o n
i f isempty ( r e s ) %| l ength ( r e s )>1

rho ( j ) = NaN;
e l s e i f l ength ( r e s )>1

rho ( j ) = min ( r e s ) ;
e l s e

rho ( j ) = r e s ;
end

end

%r ep r o j e c t the po in t s onto the senso r plane
x = xx ( 1 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;
y = xx ( 2 , : ) . / sq r t ( xx ( 1 , : ) .^2+xx ( 2 , : ) . ^2 ) . * rho ;

Table 5.14: MATLAB code for the solution of the equation 5.5
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6
Conclusion

Throughout this work, we introduced a very peculiar lens, called PANCAM, which belongs to the group of the
hyper-hemispheric lenses, which historically have no precise geometrical model for their characterisation. The
focus of the discussion has been to define a proper mathematical model for the geometrical calibration of this
specific lens, an initial but indispensable step in image processing and possible applications in photogrammetry,
where the chef ray direction associate to each pixel must be known as accurately as possible.
At first, the pinhole camera projectionmodel was introduced, a basic model which assumes that all light rays con-
verge towards a single point. This model represents the basis of the one introduced by Scaramuzza, whose aim
is to calibrate hyper-hemispheric cameras. Scaramuzza is Professor of Robotics and Perception at the University
of Zurich, where he directs the Robotics and Perception Group. It research lies at the intersection of robotics,
computer vision, andmachine learning and he is involved in projects with NASA, PHILIPS, BOSCH, DAIM-
LER.
Despite this, Scaramuzza’s model did not adapt very well to PANCAM lens, since it struggled in the reprojections
of high zenith points While the algorithm is strong for fish eye cameras (which can be considered central cameras
) the PANCAM (which has the advantage to cover with their field of view more than one hemisphere) is a non-
central camera. This thesis proposed new models which abandon the single effective viewpoint assumption, by
introducing a function, named z0, which associates each pixel to a point on the Z axis of the coordinate system of
the camera, such that all the light rays directed towards this point are then mapped onto the given pixel.
These A-central models (AM) were the first brand new models of this category and they feature a linear or
quadratic z0 function. Despite these new assumptions, these models still don’t manage to overcome the results
obtained by Scaramuzza’smodel. Moreover, they did not tackle the issue regarding points on the image associated
to high zenith real-world points.
A second category ofmodels is proposed hereafter, named piecewise-AM.They differ from the previousmodel by
defining a different z0 function (which defines the pupil position). As the name suggests, this function is defined
with two different traits, one of which is specific for the hyper-hemispheric part.
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The results provided by piecewise-AM models are way better than the previous ones, either in the errors of pro-
jection and in the capability of correctly managing high-zenithal points.
The last model proposed is namedAM-RZ and it introduces a new function, named r0. The aim of this function
is to move the point towards which a light ray is directed out of the Z axis of the camera coordinate system .
Differently with the Scaramuzza model or the other proposed the AM-RZ model is the closer representation of
the pupilla phenomenology in an hyper-hemispheric lens. The projection center in fact must be not considered
fix or moving only in an axis but tilting himself even radially. In this manner, this modification wants to create a
model closer to the physical description of the lens. Results of this model are comparable with the ones occurred
for piecewise-AMmodels.
What inputs would be useful to extend the analysis that were provided and continue the work defended in this
discussion?
First of all, we can state that refusing the single viewpoint property, stated at the beginning of chapter 3, proved to
be crucial in order to obtain better results. Splitting the z0 function, allowed to build up a sort of different model
for the hyper-hemispheric side, which solves the problems regarding points belonging to this part of the image.
This idea is the core of the work and the results obtained by piecewise-AMmodel are enough to state that this is
the concept that new researches shall follow.
Also the architecture can be improved, for example in the choice of the hyper-parameter R, which can be included
in the set of intrinsic parameters and refined during the refinement phase.
Moreover, it was certainly useful to build a model which follows the characteristics of the lens.
Including in our models the fact that we are dealing with a non-central camera allowed us to obtain better results,
since the models are now closer to reality. This is an example suggesting that a new model capable of describing
in a better way some aspects of the lens would certainly lead to interesting results.
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