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Chapter 1

Introduction

1.1 Graph theory: beginnings and main applications

The first time for graph theory in the history of mathematics was in 1736, thanks to
Euler’s solution of the puzzle of Königsberg’s bridges. The city of Königsberg in Prussia,
currently Kaliningrad in Russia, was set on both sides of the Pregel river and included
two large islands which were connected to each other, or to the two mainland portions
of the city, by seven bridges. The problem was to devise a walk through the city that
would cross each of those bridges once and only once. Euler reformulated the problem
in abstract terms, laying the foundations of graph theory. An undirected graph is a pair
G = (V,E) where V = {v1, . . . , vn} is a finite set of vertices, also called nodes, and E
is the edge set, a set of undirected pairs of vertices. In the Euler’s problem the vertices
are the different parts of the city and the edge set is made of the seven bridges.

(a) Königsberg city.

28/07/2017, 11)29

Page 1 of 1file:///Users/Fabione/Dropbox/Tex_Temp/Immagini/City_graph.svg

(b) Graph representation.

Figure 1.1: Seven bridges problem.

So by eliminating all features except the list of land masses and the bridges connecting
them, he proved that the problem has no solution. An urban legend says that, around
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6 CHAPTER 1. INTRODUCTION

1750, on Sundays the wealthy citizens of Königsberg walked around the city trying in
vain to find a solution to the problem, for further information we refer the interested
reader to [1]. Since then a lot has been done on graphs and their mathematical properties.
In the 20th century they have also become extremely useful as representation of a wide
variety of systems in different areas. Biological, social, technological and information
networks can be studied as graphs, and graph analysis has become crucial to understand
the features of those systems. For instance, social network analysis started in the 1930’s
and has become one of the most important topics in sociology. The main focus of social
network analysis is the study of relationships among social entities and the patterns and
implications of these relationships. Many researchers have realized that the network
view brings new ideas for answering standard social and behavioral science research
questions by giving precise formal definition to aspects of the political, economic, or
social structural evironment. In the social network analysis, the social environment can
be expressed as a graph by setting the individuals as vertices and the relationships among
interacting units as edges, for the interested reader we refer to [2].

Figure 1.2: Graph with seven communities.

In recent times, the computer revolution has provided researchers with a huge amount
of data and computational resources to process and analyze those data. One can poten-
tially handle real networks composed of milions or even billions of vertices. So discovering
efficient algorithms able to control huge networks is one of the most important topic of
graph theory for the computational point of view. Another relevant topic of graphs
representing real systems is community detection, or clustering, i. e. the organization of
vertices in clusters. Communities, also called clusters or modules, are groups of vertices
which probably share common properties and/or play similar roles within the graph.
A simple idea of community is a subset of the vertex set that is highly connected in-
side and poorly connected with the rest of the graph, for an example see Figure 1.2.
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Communities occur in many network systems coming from biology, computer science,
engineering, economics, politics and so on. For instance in [3], the authors show how an
algorithm that partitions weighted graph into communities is a useful tool in studying
the modularity organization of biological networks: genes in the same functional module
confer similar phenotype deletions, known protein complexes are largely contained in
the functional modules in their entirety and module identifiction could be very useful for
gene annotation. In the graph of the World Wide Web the communities may correspond
to groups of pages dealing with the same or related topics. The web graph is made of
web pages as nodes and hyperlinks as arcs, for further information we refer to [4]. Clus-
tering Web clients detects groups that have similar interests and are geografically near to
each other. This may improve the performance of services provided on the World Wide
Web in a way that each cluster of clients could be served by a dedicated mirror server,
we refer to [6]. Moreover, identifying clusters of customers with similar interests in the
network of buy relationships between customers and products of online retailers (like,
e. g., www.amazon.com) can set up efficient recommendation systems that better guide
customers through the list of items of the retailer and improve the business opportuni-
ties, for further details we refer to [7]. Another topic touched by community detection is
food web. Compartments have been difficult to detect in empirical food webs because of
incompatible approaches or insufficient methodological rigour. In [5] it is shown that the
social network science is a helpful tool to detect empirical food web comparments, see
Figure 1.3. The method identifies compartmental boundaries in which interactions are
concentrated, so it is compatible with the definition of compartments. As we will see in
the second chapter of this work, the method is rigorous because it maximizes an explicit
function, identifies the number of non-overlapping compartments, assigns membership
to compartments.

Figure 1.3: A food web.

Even if it will not be part of in this work, another important aspect related to
community structure is the hierarchical organization displayed by many network systems
in the real world. Real networks are usually composed by communities including smaller
communities, which in turn include smaller communities, etc. The human body offers
a paradigmatic example of hierarchical organization: it is composed by organs, organs
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are composed by tissues, tissues by cells, and so on. To conclude graph communities is
a popular topic in computer science too. For instance in parallel computing is crucial
to know what is the best way to allocate tasks to processors in order to minimize the
communications between them and enable a rapid performance of the calculation. This
can be accomplished by splitting the computer cluster into groups with roughly the same
number of processors, such that the number of physical connections between processors
of different groups is minimal, we refer to Section IV.A of [8].

1.2 About this thesis

Here we give the details related to the main topics of this thesis. The main goal is
the community detection of given graphs through maximization of a nonlinear function.
What we are going to maximize is the modularity function of a graph as it has been
studied in [8], [10] or [11]. The definition of the modularity function is based on a
random graph, called null model. In a random graph, structure introduced by [9], the
probability of having an edge between a pair of vertices is equal for all possible pairs. For
istance, the distribution of the degree of the nodes could be binomial so most vertices
have equal or similar degree. The formal introduction of graph theory is displayed at
the beginning of Chapter 2. Given a graph G = (V,E), we can create a particular null
model with the same nodes of G. Even if no definition is universally accepted, we can
say that modularity function computes the difference between the connection of G and
the connection of a null model, where connection means how many vertices there are
between nodes. Positive value of modularity indicates higher connection respect to the
null model, so these nodes assemble a community. For sure, modularity depends on
the null model that we choose, we’re going to explain formally this matter in the next
chapter. Since real systems can be represented by graphs, the final task will be finding
communities in real networks, see Figure 1.4.

(a) UKFaculty network. (b) UKFaculty network bi-partitioned.

Figure 1.4: Example of bi-partitioning of UKFaculty real network using basin hopping
global algorithm with non monotone spectral projected gradient method as local search.

In the next chapter we introduce the mathematical theory of community detection,
in particular we choose a precise definition of modularity measure and show how this is
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connected with a particular matrix M , called modularity matrix, we refer to [10]. The
leading eigenvectors of this matrix give us an upper bound of the best bi-partitioning of
a given graph. The next step will be describing how to find M, a nonlinear extension
of M , and show the strict relation between leading eigenvector of M and the best bi-
partitioning of the graph, for further information we refer to [11]. Actually this strict
relation is a maximization problem, the main goal of this thesis will be to give an
equivalent constrained formulation of the problem in order to use strong optimization
algorithms over a convex feasible set. We study four different iterative feasible local
optimization algorithms: the two classical Frank-Wolfe and projected gradient method,
with Armijo line search, and their two variations with a non monotone Armijo line
search. For all of them we give a convergence theorem and we apply them over a toy-
model graph in order to select the best parameters inside the codes. A toy model graph
is a graph where we can control the communities inside it in order to check the goodness
of our results, for further information we refer to Chapter 4 or [31]. For different cases
of graph we will study which are the best parameter setting to give to the different
algorithms. After that we introduce a probabilistic global optimization method, the
Basin Hopping algorithm, that embeds as local searches the algorithms listed before.
With the basin hopping we try to compute a global maximum, that will be the best
bi-partitioning of the given graph, and we can study the differences between the local
algorithms respect to CPU time or maximum value. In the last chapter we show the
results. We start by analyzing the best parameter setting for the local algorithms as a
function of computational time, by using the performance metric studied in [12]. Then
we apply in real network problems and we compare our results with the results in [11].
Summarizing, this work is divided into four different chapters:

• Community detection: community detection theory is displayed with a partic-
ular focus on modularity measures and its nonlinear expansion.

• Optimization algorithms: after rewriting the main bi-partitioning problem us-
ing a constrained non convex model, we introduce four local optimization algo-
rithms and how to use them inside basin hopping, a global probabilistic algorithm.
Convergence results are studied for each of them.

• Computational results: here we show the computational results of the thesis.
First, we study how to choose the best parameters of local algorithms using the
performance profile technique analyzed in [12]. To do that we apply the codes
on toy-model graphs. After that, we use the parameter setting to run the global
algorithm over real networks and we discuss the similarities and the differences
between the different approaches.

• Conclusions: in the last chapter we briefly summarize the whole work, explaining
the strength of our approach. Finally, we try to give some further developments
for this subject.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Community detection

This section has the aim to explain the mathematical theory built to analyze community
detection in a given network. In particular we are interested in detecting a partition of
the network into two sets, namely called communities. A simple definition of community
is a set of nodes highly liked with each other and poorly connected with the rest of the
nodes in the graph. A first problem is to give a precise mathematical definition of what
a community is. No definition is universally accepted but a very popular idea is based on
the concept of modularity introduced by Newman and Girvan, [10]. First of all we need
to define a null model that is a graph used as a term of comparison, to verify whether
the graph under analysis shows some community structure or not. Even the null model
could have different definitions, the one proposed by Newman and Girvan consists of a
randomized version of the original graph, where edges are chosen randomly, under the
constraint that the expected degree of each vertex matches the degree of the vertex in
the original graph. This null model brings us to the definition of modularity, a function
that calculates the goodness of partition of a graph into cluster. In this formulation
of modularity, a subgraph is a community if the number of edges significantly exceeds
the number of internal edges that the same subgraph would have in the null model.
The N-G modularity function is a particular type of what is called quality functions.
The latter are functions that assign a number to each partition of a graph. In this way
one can rank a partition based on their score given by the quality function. Partitions
with high score are ”good” and the one with the largest score is, by definition, the
best. So by assumption, high value of modularity indicate good partitions, the partition
corresponding to its maximum value on a given graph should be the best, or at least a
very good one. This is the main motivation for the topic of modularity maximization.

Notation. In order to describe this maximization problem we use the following nota-
tion. Let G = (V,E) be an undirected graph, where V indicates the vertex set and E the
edge set. The vertices are enumerated from 1 to n. µ : V → R>0 and ω : E → R>0 are
the positive measures respectively of V and E. We denote the weighted scalar product
by 〈x, y〉µ =

∑n
i=1 µixiyi. Similarly, for p ≥ 1, we write ||x||pp,µ =

∑
i µi|xi|p for the

weighted lp norm on V . Given two subsets A,B ⊆ V , the set of edges betweeen nodes

11



12 CHAPTER 2. COMMUNITY DETECTION

in A and B is denoted by E(A,B). When A and B coincide we use the short notation
E(A). The overall weight of a set is the sum of weights in the set, thus for A,B ⊆ V ,
we write

µ(A) =
∑
i∈A

µi, and ω(E(A,B)) =
∑

i,j∈E(A,B)

ω(ij).

In particular ω(E(i), V ) = di stands for the degree of node i, and ω(E(A, V )) = vol(A) =∑
i∈A di stands for the volume of the set A. For a subset A ⊆ V we write Ā to denote

the complement V \A and 1A ∈ Rn represents the characteristic vector

(1A)i =

{
1, if i ∈ A,

0, if i /∈ A.

2.1 Modularity measure

As told before, the modularity measure of a set of nodes A ⊆ V , quantifies the difference
between the actual weights of edges in A with respect to the expected weight of edges
of a null model. A subgraph G(A) is then identified as a community if the modularity
measure of A is “large enough”. Let G0 = (V0, E0) be the expected graph of the random
ensemble G0, with weight measure w0 : E0 → R+ (the null model). The definition of
modularity Q(A) of A ⊆ V is as follows

Q(A) = w(E(A))− w0(E0(A)), (2.1)

so that Q(A) > 0 if the actual weight of edges in G(A) exceeds the expected one in
G0(A). A set of nodes A is a cluster (or community) if it has positive modularity, and
the associated subgraph G(A) is called a module. Thus the Newman-Girvan modularity
is based on the assumption that A ⊆ V is a community of nodes if the induced subgraph
G(A) = (A,E(A)) contains more edges than expected, if edges were placed at random
according to a null model G0. The Newman-Girvan null model is based on the definition
of weighted Chung-Lu model that we recall here below, for further information we refer
to [13].

Definition 1. Let δ = (δ1, . . . , δn)T > 0, and let X(p) be a nonnegative random variable
parametrized by the scalar parameter p ∈ [0, 1], whose expectation is E[X(p)] = p. We
say that a graph G = (V,E) with weight function ω follows the X-weighted Chung-Lu
random graph model G(δ,X) if, for all i, j ∈ V , ω(ij) are independent random variables

distribuited as X(pij) where pij =
δiδj∑n
i=1 δi

.

According to Chung-Lu model, if G̃ is a random graph drawn from G(δ,X) then the
expected degree of node i is E[di] = δi. In our problem we assume that the null model
G0 agrees with the Chung-Lu random graph model G(δ,X) with the vector δ equal to
the degree sequence d = (d1, . . . , dn)T > 0 of the actual network G = (V,E). Under this
assumption, the modularity measure (2.1) becomes

Q(A) = ω(E(A))− vol(A)2

vol(V )
,
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and we have that Q(A) = Q(Ā), for any A ⊆ V . We recall that we want to find the
bi-partitioning {A, Ā} of the vertex set having maximal modularity. It’s easy to extend
the modularity of a subset to a modularity measure of a partition of G, by calculating
the sum of the modularities: given a partition {A1, . . . Ak} of V , its modularity value is

q(A1, . . . Ak) =
1

µ(V )

k∑
i=1

Q(Ai) (2.2)

An important alternative is a normalized version of modularity, since small groups are
difficult to be identified using the standard version. We denote this normalized modu-
larity with

Qµ(A) =
Q(A)

µ(A)
,

and the normalized modularity of a partition {A1, . . . Ak} of V as

qµ(A1, . . . Ak) =
1

µ(V )

k∑
i=1

Qµ(Ai) =
1

µ(V )

k∑
i=1

Q(Ai)

µ(Ai)
. (2.3)

In both equations (2.2) and (2.3) when the partition consists of only two sets {A, Ā} we
use the shorter notation q(A) and qµ(A) for q(A, Ā) and qµ(A, Ā) respectively. So our
problem consists of finding the maximal modularity of

q(A) =
2

µ(V )
Q(A), and qµ(A) = µ(V )

Q(A)

µ(A)µ(Ā)
,

that is:
q(G) = max

A⊆V
q(A), and qµ(G) = max

A⊆V
qµ(A). (2.4)

Finding a global solution of Q is impossible, due to the huge number of ways in which it
is possible to partition a graph. Indeed it is proved in [14] that modularity optimzation
is an NP-complete problem. Nevertheless there are many algorithms that brings us to a
good approximations of the modularity maximum in reasonable time.

2.1.1 Modularity matrix

One of the most used technique is spectral optimization. This approach consists the
leading eigenvalue and eingevector of a special matrix, the modularity matrix, to ap-
proximate the maximum value of q. According with the Newman-Girvan null model, if
d ∈ Rn is the degrees vector of the graph G, the normalized modularity matrix of G,
with vertex measure µ and edge measure ω, is

(M)ij =
1

µi

(
ω(ij)− didj

vol(V )

)
, for i, j = 1, . . . , n. (2.5)

Note that if we consider the special edge measure ω(ij) = 1 if (ij) ∈ E and ω(ij) = 0 if
(ij) /∈ E, the first term ω(ij) is the usual adjacency matrix of G. Moreover the second



14 CHAPTER 2. COMMUNITY DETECTION

term,
didj

vol(V ) , is the adjacency matrix of the expected graph described in Definition 1.
We can also observe that M is a symmetric matrix so all its eigenvalues are real and
M1 = 0, where 1 = (1, . . . , 1)T ∈ Rn.
Suppose the eigenvalues are enumerated in descending order λ1(M) ≥ · · · ≥ λn(M).
Then its largest eigenvalue λ1(M) is strictly positive or it is 0, since we have just observed
that 1 is an eigenvector with corresponding eigenvalue 0. If λ1(M) = 0, the graph is
said to be algebraically indivisible, i.e. it has no community structure (for more details
see [15]).

Spectral method

To link λ1(M) with the maximal value of the modularity function we observe that every
partition of a graph with n vertices in two groups (A and Ā) can be represented by
an index vector vA ∈ Rn with components {+1,−1}: (vA)i = 1 if vertex i ∈ A and
(vA)i = −1 if i ∈ Ā. By using the identities 1 = 1A + 1Ā and M1 = 0, we have

〈vA,MvA〉µ =
n∑
i=1

µi(1A − 1Ā)i
(
M(1A − 1Ā)

)
i

=

=

n∑
i=1

µi(21A − 1)i
(
M(21A − 1)

)
i

= 4

n∑
i=1

µi(1A −
1

2
1)i
(
M(1A)

)
i

=

= 4

(
n∑
i=1

µi(1A)i
1

µi

(∑
j∈A

ω(ij)− divol(A)

vol(V )

)
− 1

2

n∑
i=1

µi
1

µi

(∑
j∈A

ω(ij)− divol(A)

vol(V )

))
=

= 4

(
n∑
i=1

(1A)i
∑
j∈A

ω(ij)−
n∑
i=1

(1A)i
divol(A)

vol(V )
− 1

2

n∑
i=1

∑
j∈A

ω(ij) +
1

2

n∑
i=1

divol(A)

vol(V )

)
=

= 4

(
ω(E(A))− vol2(A)

vol(V )
− 1

2
vol(A) +

1

2

vol(V )vol(A)

vol(V )

)
= 4Q(A).

The vector vA can be rewritten as vA =
∑n

i=1 aiwi, where wi, i = 1, . . . , n, are the
eigenvectors of M . If vA is properly normalized, then

Q(A) =
1

4
〈vA,MvA〉µ =

1

4

n∑
i=1

µia
2
iλi, (2.6)

where λi is the eigenvalue of M corrisponding to eigenvector wi. It is worth remarking
that the sum contains at most n − 1 terms, as M has at least the zero eigenvalue. We
suppose, as before, that the eigenvalue are ordered in a decreasing way and the largest
eigenvalue λ1 is strictly positive.
For an upper bound approximation we can use the spectral method. Consider the the
Rayleigh quotient of M that is the real valued function

rM (x) =
〈x,Mx〉µ
||x||22,µ

(2.7)
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As the matrix M is symmetric with respect to the weighted scalar product 〈·, ·〉µ, its
eigenvalues can be characterized as variational values of rM . In particular, it holds:

λ1 = max
x∈Rn

rM (x).

Notice that ||vA||22,µ = µ(V ). Thus the quantity q(G) can be rewritten in terms of rM ,
so in terms of M :

q(G) = max
A⊆V

q(A) = max
A⊆V

2Q(A)

µ(V )
=

1

2
max
A⊆V

rM (vA) =
1

2
max

x∈{−1,1}n
rM (x). (2.8)

But computing max rM (x) with the constraint x ∈ {−1, 1}n is a NP-hard problem. We
can easily find a relaxation of q(G) by dropping the binary constraint, hence, we obtain
what we look for, an upper bound for the optimal bi-partition of G. The step we need
to take in order to pass from q(G) to λ1(M) = maxx∈Rn rM (x) is what we call linear
modularity relaxation.
Untill now we have discussed the unnormalized version q(A). Here we will show that
even if the solution of q(G) and qµ(G) are in general far from being the same, the linear
modularity relaxation is valid also for qµ(G). During the proof of the Proposition 2.1.1
we are going to rewrite qµ(G) in term of M as well.

Proposition 2.1.1. If the largest eigenvalue of M is positive, then it coincides with the
linear modularity relaxation of both q(G) and qµ(G).

Proof. We have already observed that λ1 is the linear relaxation of q(G). Similarly we

do with qµ(G). Consider uA = 1A − µ(A)
µ(V )1. Notice that µ(Ā) = µ(V )− µ(A).

||uA||22,µ = µ(A)µ(Ā
µ(V ) , since

||uA||22,µ =

n∑
i=1

µi(1A)2 +

n∑
i=1

µi
µ(A)2

µ(V )2
− 2

n∑
i=1

µi
µ(A)

µ(V )
(1A) =

=
µ(A)µ(V ) + µ(A)2 − 2µ(A)2

µ(V )
=
µ(A)(µ(V ) + µ(A))

µ(V )
=
µ(Ā)µ(A)

µ(V )
.

Moreover

rM (uA) =
〈uA,MuA〉µ
||uA||22,µ

=
µ(V )

µ(Ā)µ(A)

n∑
i=1

µi
(
1A −

µ(A)

µ(V )
1
)
i

(
M(1A −

µ(A)

µ(V )
1)
)
i

=

=
µ(V )

µ(Ā)µ(A)

∑
j∈A

1≤i≤n

(
(1A)iω(ij)− (1A)i

divol(A)

vol(V )
− µ(A)

µ(V )
ω(ij) +

µ(A)

µ(V )

divol(A)

vol(V )

)
=

=
µ(V )

µ(Ā)µ(A)

( ∑
j∈A

1≤i≤n

ω(ij)−
∑
i∈A

divol(A)

vol(V )
− µ(A)

µ(V )
vol(A) +

µ(A)

µ(V )

vol(A)vol(V )

vol(V )

)
=



16 CHAPTER 2. COMMUNITY DETECTION

=
µ(V )

µ(Ā)µ(A)

(
ω(E(A))− vol(A)2

vol(V )

)
=

µ(V )

µ(Ā)µ(A)
Q(A) = qµ(A, Ā).

It is easy to observe that 〈uA,1〉µ = 0, so

qµ(G) = max
A⊆V

µ(V )Q(A)

µ(A)µ(Ā)
= max

A⊆V
rM (uA) = max

x∈{−a,b}n
〈x,1〉µ=0

rM (x), (2.9)

where a, b ≥ 0.
AsM has a positive eigenvalue, dropping the binary constraint x ∈ {−a, b}n and recalling
that 1 ∈ ker(M), we get

max
x∈Rn
〈x,1〉µ=0

rM (x) = λ1.

On the other hand, a lower bound fo q(G) can be defined as follow. Notice that
maximizing Q(A) is equal to maximize the right-hand side of (2.6), the main idea is
to choose vA parallel to the corrisponding eigenvector w1: this would increase the sum.
But the index vector cannot be perfectly parallel to w1 by construction, because of the
binary constraint. The best choice is to match the sign of components. So, one can set

(v)i =

{
1, if (w1)i > 0,

−1, if (w1)i < 0.

So, using the identities (2.8) and that ||x||22,µ = µ(V ) for x ∈ {−1, 1}n, we have

1

2µ(V )
〈v,Mv〉µ ≤

1

2µ(V )
max

x∈{−1,1}n
〈x,Mx〉µ = q(G).

2.2 Nonlinear modularity operator

In this work we use the spectral method just as a starting point. By following the studies
of [11], now we explain how to obtain a nonlinear modularity operator M through a
generalization of M that gives us a tight relaxation of q(G) and qµ(G). We discover
that certain eigenvalues of M coincide with the graph modularities. Later we will show
four algorithm to compute an approximation of those eigenvalues. For the nonlinear
modularity operator we need to introduce the Clarke subdifferential Φ of the modulus
function t→ |t|. The absolute value is not differentiable at zero, so Φ is set valued and
defined by

Φ(t) =


1, if t > 0,

[−1, 1], if t = 0,

−1, if t < 0.

When x ∈ Rn the notation Φ(x) stands for the operator that applies Φ entrywise to x.
For more information about the Clarke subdifferential we refer to [16]. In order to define
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the nonlinear modularity function, we need to start with the following rewriting of M ,
that exploits the fact that 1 ∈ ker(M). For any i = 1, . . . , n we have,

(
Mx

)
i

=
n∑
j=1

Mijxj − xi
n∑
j=1

Mij =
n∑
j=1

(−Mij)(xi − xj).

Further, using the symmetry of the matrix M , notice that

n∑
i,j=1

(−M)ij |xi − xj |2 =
n∑

i,j=1

(−M)ij(x
2
i − 2xixj + x2

j ) =

=
n∑

i,j=1

(−M)ij(x
2
i −2xixj)+

n∑
i,j=1

(−M)ijx
2
j =

n∑
i,j=1

(−M)ij(x
2
i −2xixj)+

n∑
i,j=1

(−M)ijx
2
i =

=
n∑

i,j=1

(−M)ij(2x
2
i − 2xixj) = 2

n∑
i,j=1

(−M)ijxi(xi − xj).

Combining the last equalities gives us the following identity:

〈x,Mx〉µ =

n∑
i,j=1

µi(−M)ijxi(xi − xj) =

n∑
i,j=1

µi(−M)ij |xi − xj |2, (2.10)

for any x ∈ Rn.
We define the nonlinear modularity operator as follows:

M(x)i =
n∑
j=1

(−M)ijΦ(xi − xj), i = 1, . . . , n, (2.11)

as a consequence M identifies the set vectors of Rn such that

〈x, y〉µ =
1

2

n∑
i,j=1

µi(−M)ij |xi − xj |, ∀y ∈M(x). (2.12)

From now we write 〈x,M(x)〉µ to denote the quantity above. Then we introduce the
following two Rayleigh quotients associated with M(x),

rM(x) =
〈x,M(x)〉µ
||x||1,µ

, r∗M(x) =
〈x,M(x)〉µ
||x||∞

, (2.13)

where ||x||1,µ =
∑n

i=1 µi|xi| and ||x||∞ = maxi |xi|. First of all, we show briefly why
rM and r∗M are the nonlinear generalization of rM . For simplicity, we fix µi = 1, for

i = 1, . . . , n. Therefore the modularity matrix becomes (−M)ij =
didj

vol(V ) − ω(ij) for

all i, j = 1, . . . , n. Given the graph G = (V,E), consider the linear difference operator
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B : Rn → R|E| entrywise defined by (Bx)ij = xi − xj , ij ∈ E. And let ωM : E → R be

the real valued function ωM (ij) =
(−M)ij

2 . So we can write

〈x,Mx〉µ = 〈Bx,Bx〉ωM = ||Bx||22,ωM =
∑
ij∈E

ωM (ij)(Bx)2
ij ,

where we use the compact notation || · ||2,ωM , even tought that quantity is not a norm
on R|E|, as ωM attains positive and negative values. We have as a consequence

rM (x) =

(
||Bx||2,ωM
||x||2,µ

)2

.

A natural generalization of such quantity is therefore given by

rp(x) =

(
||Bx||p,ωM
||x||p,µ

)p
,

where, for p ≥ 1 and z ∈ R|E|, we are using the notation ||z||pp,ωM =
∑

ij ωM (ij)|zij |p.
Clearly rM is retrivied from rp for p = 2. Now, let p∗ be the Hölder conjugate of p,
that is the solution of the equation 1

p + 1
p∗ = 1. Notice that 2∗ = 2, so rM (x) = r2(x) =

r2∗(x): primal and dual quantities are the same. The Rayleigh quantities in (2.13) are
obtained with p = 1 for rM and p∗ =∞ for r∗M. Another interesting point about these
definitions is that the optimality conditions for rM and r∗M are related to a notion of
eigenvalues for the nonlinear modularity operator M. Let Ψ be the set-valued map
Ψ(x) = {σ11m1 , . . . , σk1mk}, where, for i = 1, . . . , k, 1 ≤ k ≤ n, mi = arg maxj |xj | and
σ1 = sgn(xmi). Notice that Ψ is the Clarke differential of ||x||∞. We have the following
result.

Proposition 2.2.1. Let x be a critical point of rM, then x is such that 0 ∈M(x)−λΦ(x)
with λ = rM(x). Similarly, if x is a critical point of r∗M, then 0 ∈ M(x) − λΨ(x) with
λ = r∗M(x).

Proof. Let ∂ be the Clarke generalized derivative, thus note that ∂||x||1,µ = DµΦ(x).
Using the chain rule for ∂ we have

∂rM(x) ⊆ 1

||x||21,µ
{||x||1,µ∂ 〈x,M(x)〉µ − 〈x,M(x)〉µ ∂||x||1,µ} =

1

||x||1,µ
{DµM(x)− rM(x)DµΦ(x)}.

For further detail we refer to [16]. Thus critical points and critical values of rM and
r∗M satisfy generalized eigenvalue equations for M. The number of eigenvalues of M
defined by means of the Rayleigh quotients in (2.13) is much larger than just the set of
varational ones. However, recall that in the linear case the eigenvalues of M coincide
with the varational values of rM .
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2.2.1 Exact relaxation

Consider the dominant eigenvalues of M, corresponding to suitable variational values
of rM and r∗M. Here we want to discuss how to use these eigenvalues to locate a
leading module in the network by means of a nonlinear spectral method. The task
of multiple community detection can also be addressed by successive bipartitions. As
already observed the relaxation coming from (2.8) and (2.9) shows that the leading
eigenvalue of the modularity matrix is an upper bound for the quantities we want to
compute. Instead, in what follows we prove that the quantities

λ1(r∗M) = max
x∈Rn

r∗M(x), λ⊥1 (rM) = max
x∈Rn
〈x,1〉µ=0

rM(x) (2.14)

coincide with the cut-modularities of the graph, q(G) and qµ(G) respecively. So, we
can localize the best bi-partitioning of G into communities according to the sign of the
entries in the vector achieving the maxima in (2.14). For the case of q(G) we use the
Lovász extension of a set valued function. We recall its definition

Definition 2. Given the set of vertices V , let P(V ) be the power set of V , and consider
a function F : P(V )→ R. For a given vector x ∈ Rn let σ be the permutation such that
xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n) and let Ci(x) ⊆ V be the set

Ci(x) = {k ∈ V : xσ(k) ≥ xσ(i)}

The Lovász extension fF : Rn → R is defined by

fF (x) =

n−1∑
i=1

F (Ci+1(x))(xσ(i+1) − xσ(i)) + F (V )xσ(1).

An important property of the Lovász extension of F : P(V ) → R, is that for any
A ⊆ V it holds F (A) = fF (1A). We have:

Lemma 2.2.2. Let F,H : P(V )→ R be the set valued functions such that 0 < H(A) ≤
1 for all A ⊆ V such that A /∈ {∅, V }. If F (V ) = 0, then

max
A⊆V

F (A)

H(A)
≥ 1

2
max
||x||∞≤1

fF (x).

Proof. Suppose w.l.o.g. that the entries of x ∈ Rn are labeled in ascending order. So

fF (x) =

n−1∑
i=1

F (Ci+1(x))(xi+1 − xi) =

n−1∑
i=1

F (Ci+1(x))

H(Ci+1(x))
H(Ci+1(x))(xi+1 − xi).

Since 0 < H(Ci+1(x)) ≤ 1 and (xi+1 − xi) ≥ 0 we get

fF (x) ≤ max
i=2,...,n

F (Ci(x))

H(Ci(x))
(xn − xi) ≤

(
max
i=1,...,n

F (Ci(x))

H(Ci(x))

)
2||x||∞.
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Since {Ci(x) : ||x||∞ ≤ 1} = P(V ), we can conclude

max
||x||∞≤1

fF (x) ≤ 2 max
||x||∞≤1

max
i=1,...,n

F (Ci(x))

H(Ci(x))
= 2 max

A⊆V

F (A)

H(A)

Thanks to Lemma (2.2.2) we can show that the nonlinear relaxation of q(G) is
optimal.

Theorem 2.2.3. Let r∗M be the dual Rayleigh quotient defined in (2.13) and let λ1(r∗M) =
maxx∈Rn r

∗
M(x). Then

q(G) = max
A⊆V

q(A) =
λ1(r∗M)

µ(V )

Proof. Consider a subset A ⊆ V and the vector vA = 1A − 1Ā. Remember that

〈vA,M(vA)〉µ =
1

2

n∑
i,j=1

µi(−M)ij |(vA)i − (vA)j |2 = 4Q(A)

and notice that ||vA||∞ = 1 and

|(vA)i − (vA)j | =

{
0, if i, j ∈ A or i, j /∈ A
2, otherwise.

We get that

〈vA,M(vA)〉µ =
1

2

n∑
i,j=1

µi(−M)ij |(vA)i − (vA)j | = 2Q(A).

Therefore rM(vA) = 2Q(A) and

µ(V )q(G) = max
A⊆V

rM(vA) ≤ max
x∈Rn

rM(x).

To show the reverse inequality we use Lemma (2.2.2). Given a graph G = (V,E) let
WG denote its weight matrix, and let cutG(A) = ω(E(A, Ā)). Then the modularity
Q(A) coincides with Q(A) = (cutK0(A) − cutG(A))/2, where K0 = (V, V × V ) is the

complete graph with edge matrix (WK0)ij =
didj

vol(V ) . The Lovász extension of cutG is

fcutG(x) =
∑n

i,j=1(WG)ij |xi − xj |, thus the Lovász extension of Q(A) is

fQ(x) = f 1
2

(cutK0
−cutG)(x) =

1

2
(fcutK0

(x)− cutG(x)) =

=
1

2

( n∑
i,j=1

(WK0)ij |xi − xj | −
n∑

i,j=1

(WG)ij |xi − xj |
)

= 〈x,M(x)〉µ ,
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due to the linearity of the extension. For more information and the calculi [17]. Let
H : P(V ) → R be the constant function H(A) = 1. As Q(V ) = 0, we can use such H
into Lemma (2.2.2) with F = H to get

max
A⊆V

Q(A) ≥ 1

2
max
||x||∞≤1

〈x,M(x)〉µ .

Notice that fQ is positively one-homogeneous, that is fQ(αx) = αfQ(x), for any α ≥ 0,
so we get

1

2
max
||x||∞≤1

〈x,M(x)〉µ ≥
1

2
max
x∈Rn

〈 x

||x||∞
,M(

x

||x||∞
)〉
µ

=
1

2
max
x∈Rn

r∗M(x).

So we have both inequalities and using the identity q(A) = 2Q(A)
µ(V ) , we conclude.

Now it is the turn of qµ(G) and rM. Again for the main result we need a preparing
Lemma. This time we omit the proof that can be found in [18].

Lemma 2.2.4. A function f : Rn → R is positively one-homogeneous, even, convex
and f(x + y) = f(x) for any y ∈ span(1) if and only if exists µ : V → R≥0 such that
f(x) = supy∈Y 〈x, y〉µ where Y is a closed symmetric convex set such that 〈y,1〉µ = 0
for any y ∈ Y .

For the next theorem we introduce the function ν : P(V ) → R such that ν(A) =
µ(A)µ(Ā)
µ(V ) . Then qµ(A) = Q(A)

ν(A) . Moreover, let wA = 1A− µ(A)
µ(V )1. As in proposition (2.1.1),

we have ||wA||1,µ = 2ν(A) and as in the proof of the theorem (2.2.3), 〈wA,M(wA)〉µ =

〈1A,M(1A)〉µ = Q(A). Thus rM(wA) =
qµ(A)

2 and qµ(G) = 2 maxx∈{−a,b}n
〈x,1〉µ=0

rM(x).

Theorem 2.2.5. Let rM be the dual Rayleigh quotient defined in (2.13) and let λ⊥1 (rM) =
max x∈Rn

〈x,1〉µ=0
rM(x). Then

qµ(G) = max
A⊆V

qµ(A) = 2λ⊥1 (rM).

Proof. For x ∈ Rn and t > 0 consider the level set Atx = {i ∈ V : xi > t}. Let
xmin = mini xi and xmax = maxi xi. We have

〈x,M(x)〉µ =
∑
xi>xj

µi(−M)ij

∫ xi

xj

dt =

∫ xmax

xmin

∑
xi>t≥xj

µi(−M)ij dt =

∫ xmax

xmin

Q(Atx) dt ≤

≤
{

max
t

Q(Atx)

2ν(Atx)

}∫ xmax

xmin

2ν(Atx) dt =

{
max
t

Q(Atx)

2ν(Atx)

}∫ xmax

xmin

||wAtx ||1,µ dt︸ ︷︷ ︸
(∗)

Now we study the (∗) term using Lemma (2.2.4). Let P : Rn → Rn be the orthgonal

projection onto {x : 〈x,1〉µ = 0}. Then P (x) = x − 〈x,1〉µµ(V ) 1. Consider the function
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f(x) = ||P (x)||1,µ. Note that f satisfies all the hypothesis of Lemma (2.2.4). Moreover
note that f(1A) = ||wA||1,µ for any A ⊆ V . Thus there exists Y ⊆ range(P ) such that∫ xmax

xmin

f(1Atx) dt =

∫ xmax

xmin

||wAtx ||1,µ dt = sup
y∈Y

∫ xmax

xmin

〈1Atx , y〉µ dt.

Assume w.l.o.g. that x is ordered so that x1 ≤ · · · ≤ xn. The function φ(t) = 〈1Atx , y〉µ
is constant on the intervals [xi, xi+1]. Letting Ai = Axix we have∫ xmax

xmin

φ(t) dt =

n−1∑
i=1

(xi+1 − xi) 〈1Ai , y〉µ =

n∑
i=1

xi 〈1Ai−1 − 1Ai , y〉µ = 〈x, y〉µ ,

thus ||P (x)||1,µ = f(x) =
∫ xmax

xmin
f(1Atx) dt, our (∗) term. Denote by A∗x the set that

attains the maximum maxt
Q(Atx)
ν(Atx) . As 〈P (x),M(P (x))〉µ = 〈x,M(x)〉µ, all together we

have

λ⊥1 (rM) = max
x∈Rn
〈x,1〉µ=0

〈x,M(x)〉µ
||x||1,µ

= max
x∈Rn

〈P (x),M(P (x))〉µ
||P (x)||1,µ

= max
x∈Rn

〈x,M(x)〉µ
||P (x)||1,µ

≤

≤ max
x∈Rn

Q(A∗x)

ν(A∗x)
||P (x)||1,µ︸ ︷︷ ︸

(∗)

1

||P (x)||1,µ
= max

x∈Rn
Q(A∗x)

ν(A∗x)
≤ qµ(G)

2
.

On the other hand,

qµ(G) = 2 max
x∈{−a,b}n
〈x,1〉µ=0

rM(x) ≤ 2 max
x∈Rn
〈x,1〉µ=0

rM(x) = 2λ⊥1 (rM).

The statement is proved.
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Optimization algorithms

Summarising, given a graph G we want to find the best bi-partitioning q(G), (2.4). To
obtain it we use the modularity measure that can be defined in terms of the modularity
matrix M , (2.6). Now the problem is that the best bi-partitioning is a constrained
maximization problem, very difficult to solve, cf. the problem gives in (2.8). One can
easily have a relaxation of q(A) calculating the largest eigenvalue of M but it is just
an upper bound, Proposition 2.1.1. Moving from the linear operator to the nonlinear
modularity, (2.13), we have obtained an exact relaxation of q(G), Theorem 2.2.3. We
have seen that the normalized version qµ(G) has similar conclusions. In what follows
we study the classic modularity q(G), it can be easily change with qµ(G) with few
differences. This section want to show four feasible algorithms that allows us to find
a maximum of q(G). The algorithms are the classical ones Frank-Wolfe algorithm and
projected gradient algorithm and their non monotone versions. All of them are iterative
and feasible algorithms, this means that every point generated from the iterations of the
algorithm has to belong to the feasible set. Moreover they use information of the first
order, so we can optimize a function f : Rn → R on the compact & convex feasible set
S ⊂ Rn if f ∈ C1(S). To apply these algorithms to our problem (Theorem 2.2.3) we
have to modify the function so that it becomes continuously differentiable and choose a
suitable feasible set, over we are looking for the maximum, to get a compact & convex
set. For the second task we have the following results.

Proposition 3.0.1. Let q(G) be the best bi-partitioning defined in (2.4) and let M(x)
the nonlinear modularity operator defined in (2.11). Then

q(G) = max
A⊆V

q(A) =
1

µ(V )
max
x∈Rn
||x||∞≤1

〈x,M(x)〉µ . (3.1)

Proof. We have proved in Theorem 2.2.3 that

q(G) = max
A⊆V

q(A) =
λ1(r∗M)

µ(V )
,

where r∗M is the dual Rayleigh quotient defined in (2.13) and λ1(r∗M) = maxx∈Rn r
∗
M(x).

Moreover we have noticed that fQ(x) = 〈x,M(x)〉µ is one-homogeneous, that is fQ(αx) =

23
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αfQ(x), for any α ≥ 0. Thus

max
x∈Rn

r∗M(x) =

C︷ ︸︸ ︷
max
x∈Rn

〈x,M(x)〉µ
||x||∞

= max
x∈Rn

fQ(x)

||x||∞
=

= max
x∈Rn

fQ
( x

||x||∞
)

= max
||x||∞=1

fQ(x) = max
||x||∞=1

〈x,M(x)〉µ︸ ︷︷ ︸
B

Now, obviuosly we have

max
||x||∞=1

〈x,M(x)〉µ︸ ︷︷ ︸
B

≤ max
||x||∞≤1

〈x,M(x)〉µ︸ ︷︷ ︸
A

and

max
x∈Rn

〈x,M(x)〉µ
||x||∞︸ ︷︷ ︸
C

≥ max
||x||∞≤1

〈x,M(x)〉µ
||x||∞︸ ︷︷ ︸

D

≥ max
||x||∞≤1

〈x,M(x)〉µ︸ ︷︷ ︸
A

.

Combining all together we have

A ≥ B = C ≥ D ≥ A,

so they are all identities and we have the statement.

A similar proof allows us to write the next Proposition for the normalized version
qµ(G).

Proposition 3.0.2. Let qµ(G) be the best bi-partitioning defined in (2.4) and letM(x)
the nonlinear modularity operator defined in (2.11). Then

qµ(G) = max
A⊆V

qµ(A) = 2 max
||x||1,µ≤1
〈x,1〉µ=0

〈x,M(x)〉µ . (3.2)

Proof. As in the Proposition (3.0.1), remember the result of the Theorem (2.2.5).

3.1 Smooth approximation of non-smooth function

The smooth approximation of non-smooth function is a big branch of the nonlinear
programming, the main ideas and results one can find in [19] and [20] and references
therein. We are not going to handle deeply this topic, it is not the goal of this thesis,
we want just to show our reasonable idea. The function that we need to make smooth
is (3.1) or (3.2). Remembering its definition (2.12), for any x ∈ Rn, we have:

fQ(x) = 〈x,M(x)〉µ =
1

2

n∑
i,j=1

µi(−M)ij |xi − xj | = f1(x).
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We introduce f1 just to make the notation clearer. Our smooth approximation idea is
adding an exponent t ∈ R, t > 1, at each absolute values. What we obtain is

ft(x) =
1

2

n∑
i,j=1

µi(−M)ij |xi − xj |t, (3.3)

and obviously now ft belongs to the family of C1(Rn) functions. For t close to 1 the
effect is a rounded absolute value as we can easily see in one dimension, Figure 3.1.

Figure 3.1: Function f1 and its approximation ft, with t = 1.3, in R.
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We can expect that ft(x) is a continuos function of t, that is for any x ∈ Rn and for
any ε > 0 there exists δ > 0 such that, if t − 1 < δ, then ft(x) − f1(x) < ε. We do not
prove this result formally.

3.2 Optimization theory

Now we are going to introduce the fundamental ideas of the optimization theory in order
to study our bi-partitioning problem in a mathematical way. An optimization problem
is defined as the minimization or maximization of a real function over a given set. In
general we have the following form:

min
x∈S

f(x) (3.4)

where f : S → R is the objective function and S is the feasible set. Here we give some
definitions.

Definition 3. The problem (3.4) is said to be infeasible if S = {∅}, i.e. there are no
feasible solutions.
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Definition 4. The problem (3.4) is said to be unlimited (from below) if for any M > 0
there exists xM ∈ S such that f(xM ) < −M .

Definition 5. It is said that the problem (3.4) admits optimal (finite) solution if there
exist x∗ ∈ S such that f(x∗) ≤ f(x) for any x ∈ S. f(x∗) is said optimal value.

Notice that we can always handle minimization problems, since a maximum point of
the problem

max
x∈S

f(x),

it is a point x∗ ∈ S where, by definition, we have

f(x∗) ≥ f(x), ∀x ∈ S.

This is equivalent to:
−f(x∗) ≤ −f(x), ∀x ∈ S,

so x∗ is a minimum point of
min
x∈S
−f(x).

We get
max
x∈S

f(x) = −min
x∈S

(−f(x)). (3.5)

So w.l.o.g. we are giving definitions and algorithms for a minimization problem. More-
over we consider S ⊆ Rn. We give the definition of minimum points.

Definition 6. A point x∗ ∈ S is said to be local minimum of f on S if there exists a
neighborhood B(x∗; ρ) ⊂ Rn, with ρ > 0 such that:

f(x∗) ≤ f(x), ∀x ∈ S ∩B(x∗; ρ).

Definition 7. A point x∗ ∈ S is said to be strict local minimum of f on S if there exists
a neighborhood B(x∗; ρ), with ρ > 0 such that:

f(x∗) < f(x), ∀x ∈ S ∩B(x∗; ρ).

Definition 8. A point x∗ ∈ S is said to be global minimum of f on S if

f(x∗) ≤ f(x), ∀x ∈ S, x 6= x∗.

Definition 9. A point x∗ ∈ S is said to be strict global minimum of f on S if

f(x∗) < f(x), ∀x ∈ S, x 6= x∗.

Since we have proved propositions 3.0.1 and 3.0.2, we are interested in optimizing
a function on a convex set. We can easily check that both {x ∈ Rn : ||x||∞ ≤ 1} and
{x ∈ Rn : ||x||1,µ ≤ 1, 〈x,1〉µ = 0} are convex sets. Before of introducing the first
algorithm, we remember the definition of feasible direction set:
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Definition 10. Let S ⊆ Rn be a nonempty set. It is defined the set of feasible directions
of S in x̄ ∈ S the following set S(x̄):

S(x̄) = {d ∈ Rn, d 6= 0 : ∃ δ > 0 such that x̄+ αd ∈ S,∀α ∈ (0, δ)},

where 0 is the null vector of Rn.

Moreover we get for the particular case of convex feasible set,

Proposition 3.2.1. Let S ⊆ Rn be convex set and x̄ ∈ S. If S 6= {x̄}, for all x ∈ S
with x 6= x̄, the direction

d = x− x̄

is feasible for S in x̄.

If S ⊆ Rn is convex, we can define the feasible directions set of x̄ ∈ S in the new
following form:

S(x̄) = {d ∈ Rn : d = x− x̄, x ∈ S, x 6= x̄} (3.6)

3.3 Monotone local algorithms

Here we propose two classical monotone algorithms for the minimization of a non linear
function. In the next section we are going to discuss their non monotone version.

3.3.1 Frank-Wolfe method

The Frank-Wolfe method is based on the following proposition.

Proposition 3.3.1. Let x∗ ∈ S be a minimum local point of the problem

min
x∈S

f(x)

with S ⊆ Rn convex and f ∈ C1(Rn). Then

• ∇f(x∗)T (x− x∗) ≥ 0, for all x ∈ S. In this case we call x∗ a critical point.

• Moreover if f ∈ C2(Rn), for any x ∈ S such that ∇f(x∗)T (x− x∗) = 0, we have:

(x− x∗)T∇2f(x∗)(x− x∗) ≥ 0.

We have noticed that our objective functions, defined in (2.13), are both not differ-
entiable. But we are going to use the approximation that we have showed in Section
3.1, with the equation (3.3). Furthermore the two Rayleigh quotients that we want
to maximize are determined by the nonlinear modularity operator (2.11), so instead
of max rM(x) and max r∗M(x) we are going to min−rM(x) and min−r∗M(x) using the
equivalence (3.5).
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Now we are ready to describe the Frank-Wolfe algorithm, at every iteration this al-
gorithm computes a feasible direction of decrease in xk by solving the following problem:

min
x∈S
∇f(xk)

T (x− xk). (3.7)

If S is compact, the problem has always a solution x̂k ∈ S. If ∇f(xk)
T (x̂k − xk) = 0,

then we have
0 = ∇f(xk)

T (x̂k − xk) ≤ ∇f(xk)
T (x− xk),

for any x ∈ S and xk is a critical point. If ∇f(xk)
T (x̂k − xk) < 0 we can define a new

feasible direction of decrease in xk:

dk = x̂k − xk,

and determinate a new point
xk+1 = xk + αkdk,

with αk ∈ (0, 1] that is a step size chooses by a search line. If the objective function is
quite structured we can compute the step size by solving the exact problem

min
α∈(0,1]

f(xk + αdk).

But in our case that problem needs too much time to be solved. So we use an ap-
proximated line search method, so called Armijo line search that we are seeing below.
Notice that can not be ∇f(xk)

T (x̂k − xk) > 0 since (3.7) is a problem of minimum and
for xk ∈ S we obtain ∇f(xk)

T (xk − xk) = 0. Here we propose the basic scheme of
Frank-Wolfe algorithm:

Algorithm 1 : Frank-Wolfe method.

1: Fix an initial point x0 ∈ S;
2: for k = 0, 1, . . . do
3: Compute x̂k ∈ S solution of

min
x∈S
∇f(xk)

T (x− xk);

4: if ∇f(xk)
T (x̂k − xk) = 0 then return xk;

5: Compute αk > 0 along dk = x̂k − xk with line search algorithm;
6: xk+1 ← xk + αkdk;

Before of studying the Armijo line search, we show the main result about the con-
vergence of Frank-Wolfe algorithm:

Proposition 3.3.2. Consider
min
x∈S

f(x)

with f ∈ C1(Rn) and S ⊆ Rn compact and convex set. Let {xk}k∈N be the sequence
produced by Frank-Wolfe algorithm with a line search that respects the following con-
ditions:
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C1. xk+1 ∈ S;

C2. f(xk+1) < f(xk);

C3. limk→∞∇f(xk)
Tdk = 0.

Then:

• either there exists T ≥ 0 such that xT is a critical point;

• or {xk}k∈N is a infinite sequence and each limit point is a critical point.

Proof. If the algorithm produces a infinite sequence {xk}k∈N, since S is compact there
exists an limit point x̄ ∈ S. From C3. we have

lim
k→∞

∇f(xk)
Tdk = 0.

Moreover,
||dk|| = ||x̂k − xk|| ≤ ||x̂k||+ ||xk||.

So dk is finite for any k ∈ N. We can define two sub-sequences {xk}k∈K and {dk}k∈K ,
with K ⊂ N, convergent to x̄ and d̄ respectively. Thus we have

∇f(x̄)T d̄ = 0.

From the definition of dk,

∇f(xk)
Tdk ≤ ∇f(xk)

T (x− xk), ∀x ∈ S.

Fix x ∈ S, considering the limit we get

0 = ∇f(x̄)T d̄ ≤ ∇f(x̄)T (x− x̄), ∀x ∈ S,

so x̄ is a critical point.

3.3.2 Armijo line search

When the exact line search is too expensive, for instance too many objective function
evaluations are required, different rules can be used for the stepsize calculation. The
line search algorithm that we use is the one proposed by Armijo in 1966, ref. [21]. We
fix the scalars δ ∈ (0, 1) and γ ∈ (0, 1

2) and we set α = δm, where m is a non negative
integer and we try these steps sequentially untill

f(xk + αdk) ≤ f(xk) + γ∇f(xk)
Tdkα. (3.8)

The inequality is satisfied for m = mk and so we define αk = δmk . Geometrically it is
easy to observe that the condition (3.8) is equivalent to ask that the value of

φ(αk) = f(xk + αkdk)
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will be below of the line passes through the point (0, φ(0)) with slope γφ̇(0).

Figure 3.2: Example of line search with Armijo algorithm.

α1α2

φ(0)

α

φ(α) φ(α)

φ̇(0)α+ φ(0)

γφ̇(0)α+ φ(0)

Actually, f(xk)+∇f(xk)
T (xk +αdk−xk) is an approximation of the first order with

the Taylor expansion of φ(α) = f(xk + αdk) centered in xk. Moreover we know that
φ̇(0) < 0, since dk is a decrease direction by construction. So multiplying ∇f(xk)

Tdkα
by γ ∈ (0, 1

2) we just lift the tangent line in (0, φ(0)). It can be proved that the sequence
prodeces by Armijo method satisfies the condition C1, C2, C3 of the proposition 3.3.2.

Algorithm 2 : Monotone Armijo line search.

1: Fix δ ∈ (0, 1) and γ ∈ (0, 0.5);
2: Set α = 1 and j = 0;
3: while f(xk + αdk) > f(xk) + γ∇f(xk)

Tdkα do
4: α← δα;
5: j ← j + 1;

6: Set αk = α; return αk;

3.3.3 Projected gradient method

We introduce formally the idea of projection on a convex set.

Definition 11. Let S ⊂ Rn be a closed convex set and x̄ ∈ Rn a given point. We define
the projection of x̄ on S the solution p(x̄) of the following problem:

min
x∈S

1

2
||x− x̄||2,

where || · || indicates the euclidean norm.
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Here we show some properties about the projection:

Proposition 3.3.3. With the same notation of the Definition (11), we have that

• y∗ ∈ S is the projection of x̄ on S, i.e. p(x̄) = y∗, if and only if

(x̄− y∗)T (y − y∗) ≤ 0, ∀ y ∈ S.

• The projection p : Rn → S is a continuous and no-expansive function, that is:

||p(x)− p(y)|| ≤ ||x− y||, ∀x, y ∈ Rn.

Proof. We skip the proof, it is enough write the necessary conditions of minimum for
the feasible convex set.

Proposition 3.3.4. Let x∗ ∈ S be a local minimum point of the problem

min
x∈S

f(x),

with S ⊆ Rn convex and f ∈ C1(Rn). Then

x∗ = p(x∗ − s∇f(x∗)),

with s ≥ 0.

Proof. x∗ is a local minimum by hypothesis, so ∇f(x∗)T (y − x∗) ≥ 0, ∀ y ∈ S. Multi-
plying by −s, s ≥ 0 we get

−s∇f(x∗)T (y − x∗) ≤ 0,

and adding and removing x∗T (y − x∗) we obtain

(x∗ − s∇f(x∗)︸ ︷︷ ︸
x̄ of Prop. 3.3.3

−x∗)(y − x∗) ≤ 0, ∀ y ∈ S.

So x∗ = p(x∗ − s∇f(x∗)).

Now we can describe the projected gradient algorithm that, at every step, computes
a descent direction in xk using

x̂k = p(xk − s∇f(xk)),

so we define
dk = x̂k − xk

and obtain a new point
xk+1 = xk + αkdk,

with αk ∈ (0, 1] found by a line search as Armijo, Algorithm 2, and s ≥ 0. In the
following the projected gradient pseudocode:

Also for the projected gradient method we show the result about its convergence.
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Algorithm 3 : Projected gradient method.

1: Choose an initial point x0 ∈ S and s ≥ 0;
2: for k = 0, 1, . . . do
3: Compute x̂k = p(xk − s∇f(xk));
4: if x̂k = xk then return xk;

5: Compute αk > 0 along dk = x̂k − xk with line search algorithm;
6: xk+1 ← xk + αkdk;

Proposition 3.3.5. Consider
min
x∈S

f(x)

with f ∈ C1(Rn) and S ⊆ Rn compact and convex set. Let {xk}k∈N be the sequence
produced by projected gradient algorithm with a line search that respects the following
conditions:

C1. xk+1 ∈ S;

C2. f(xk+1) < f(xk);

C3. limk→∞∇f(xk)
Tdk = 0.

Then:

• either there exists T ≥ 0 such that xT is a critical point;

• or {xk}k∈N is a infinite sequence and each limit point is a critical point.

Proof. From the properties of the projection we have:

(xk − s∇f(xk)− x̂k)T (x− x̂k) ≤ 0, ∀x ∈ S.

Setting x = xk,
(xk − s∇f(xk)− x̂k)T (xk − x̂k) ≤ 0,

that we can rewrite as

∇f(xk)
T (x̂k − xk) ≤ −

1

s
||xk − x̂k||2. (3.9)

Thus dk is a decrease if ||xk − x̂k|| 6= 0. If the algorithm generates an infinite succession
{xk}k∈N, from the compactness of S there exists an limit point x̄ ∈ S. We can define
a subsuccession {xk}k∈K , with K ⊂ N, convergents to x̄. From the condition C3. and
(3.9) we have

lim
k→∞
k∈K

||p(xk − s∇f(xk))− xk|| = 0.

Due to the continuity of the projection we get:

p(x̄− s∇f(x̄)) = x̄.

So x̄ is a critical point of f .
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3.4 Non monotone local algorithm

We have seen two classical algorithms for the optimization of a nonlinear function on a
closed set. In this section we are going to describe the non monotone versions of them,
that is we change the monotone line search with a non monotone one in order to obtain
better results in less time.

3.4.1 Non monotone Frank-Wolfe method

The idea of non monotone Frank-Wolfe method (NMFW) is the same as in Algorithm
1, what changes is the line search. The non monotone line search consists of accepting a
stepsize as soon as it yields a point which allows a sufficient decrease with respect to a
given reference value. A classical choice for the reference value is the maximum among
the last M objective function values computed, where M is a positive integer constant.
Here is the non monotone Armijo line search pseudocode:

Algorithm 4 : Non monotone Armijo line search.

1: Fix the parameters δ ∈ (0, 1), γ1 ∈ (0, 1
2), γ2 ≥ 0, M > 0;

2: Update
f̄k = max

0≤i≤min{M,k}
f(xk−i);

3: Choose initial stepsize α ∈ (0, αmax];
4: while f(xk + αdk) > f̄k + γ1α∇f(xk)

Tdk − γ2α
2||dk||2 do

5: Set α = δα;

6: Set αk = α; return αk;

Even in this case we have a result about the convergence of the method.

Proposition 3.4.1. Consider
min
x∈S

f(x),

with f ∈ C1(Rn) and S ⊆ Rn compact and convex. Let {xk}k∈N be te sequence of points
produced by Frank-Wolfe algorithm with non monotone line search (NMFW). Then,
either an integer T ≥ 0 exists such that xT is a critical point, or the sequence {xk}k∈N
is infinite and every limit point x̄ is a critical point.

Proof. For the proof, that is similar to the monotone case, we refer to [22].

We are showing the results in the next chapter of the thesis.

3.4.2 Non monotone spectral projected gradient method

The projected gradient method is considered to be very slow, even if projecting is inex-
pensive, as in box-constrained case. In [24] and [25] a non monotone spectral line search
is used to boost the projected gradient method. Applying those innovations, on one hand
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we extend the typical globalization strategies to the non monotone line search schemes
as in NMFW; on the other hand we propose to associate the spectral steplenght. The
algorithm starts with an feasible initial point and uses an integer M ≥ 1 as a ”memory”
parameter, a small parameter αmin > 0, a large parameter αmax > αmin, a sufficient
decrease parameter γ ∈ (0, 1), and safeguarding parameters 0 < σ1 < σ2 < 1. Initially,
α0 ∈ [αmin, αmax] is arbitrary. Given xk ∈ S and αk ∈ [αmin, αmax]. The Algorithm 5
decribes how to obtain xk+1 and αk+1 and when terminate the process. The one dimen-

Algorithm 5 : Non monotone spectral projected algorithm.

1: Choose an initial point x0 ∈ S;
2: for k = 0, 1, . . . do
3: if ||p(xk −∇f(xk))− xk|| = 0 then return xk;

4: λ← αk;
5: Step 1.
6: Set x+ = p(xk − λ∇f(xk));
7: if

f(x+) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + γ 〈x+ − xk,∇f(xk)〉 ; (3.10)

then
8: Define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk);
9: goto → Step 2;

10: else Define
λnew ∈ [σ1λ, σ2λ];

11: Set λ← λnew and goto → Step 1;

12: Step 2.
13: Compute bk = 〈sk, yk〉;
14: if bk ≤ 0 then
15: Set αk+1 = αmax;
16: else Compute αk = 〈sk, sk〉;
17: Set

αk+1 = min{αmax,max{αmin,
αk
bk
}};

sional search procedure of Algorithm 5, called NMSPG from now on, takes into account
points of the form p(xk − λ∇f(xk)) for λ ∈ (0, αk], which, in general, form a curvilin-
ear path (piecewise linear if S is a polyhedral set). For this reason, the scalar product
〈x+ − xk,∇f(xk)〉 in the non monotone Armijo condition (3.10) must be computed for
each trial point x+. It can prove that also Algorithm 5 is a well defined algorithm and
has the property that every limit point x̄ is a constrained critical point. We omit the
proof that anyone can find in [23].
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3.5 Global optimization algorithms

We are not only interested in finding a local minimum of the objective function, but
rather look for a global minimum since our main goal it is to discover the best bi-
partitioning of a given graph and so we want to solve problems (3.1) and (3.2). How
it is easy to understand, this task it is harder than just compute a critical point of the
first order. There are many global optimization algorithm, some of them use global
information like convexity, concavity or Lipschitz constant of the objective function
or of the constraints and/or number of global minimums. Other algorithms use local
information like values of the objective function and of the constraints on trial points
and/or values of the derivatives. In both cases we can get convergence properties only
through a suitable sampling. Mainly there are two kind of global algorithms:

• Deterministic algorithms: where the points are sampled on the basis of infor-
mation obtained during the iterations of the algorithm.

• Probabilistic algorithms: where the points are sampled randomly, basing on
the information given by the algorithm.

From now on, we assume that the feasible set S ⊆ Rn is a no-empty and compact set
such that:

S = Cl(S̊) (3.11)

where Cl(·) indicates the closure of a set and S̊ is the interior of S.

Definition 12. Let S be a subset of a topological space F . S is said to be dense in F
if Cl(S) = F .

Notice that in a metric space F , for any point x ∈ F and for any ε > 0 there exists a
point y ∈ B(x, ε) such that y ∈ S. For the probabilistic algorithms we have the following
convergence theorem:

Theorem 3.5.1. We assume the following hypotheses hold;

• S ⊆ Rn satisfies the assumption (3.11);

• C is the set of the continuos functions on S;

• AP is a probabilistic global algorithm that uses local information.

Then for any function f ∈ C, with x∗ global minimum of f on S, AP generates a sequence
{xk}k∈N that converges at x∗ with probability bigger than p ∈ (0, 1) if and only if any
point of S belongs to the closure of the points produced by AP , as k →∞, with probability
bigger than p.

Proof. For the proof we refer to [26] or [27].
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There is a similar result for determistic algorithms, we refer again to [26] or [27].
Anyway, convergence is a minimum requirement and does not ensure efficiency. A clas-
sical way to work is to explore the feasible set by giving priority to promising region. We
have to balance the computational work between exploration of the feasible region and
the approximation of global optimum. The algorithms can be devided into four families:

• Incomplete algorithms: they use heuristic method for the search, but they can
finish in a local minimum.

• Asymptotically complete algorithms: they guarantee to gain a global mini-
mum (almost with probability 1) if they are performed for infinite time, but there
is no way to know when we obtain a global minimum.

• Complete algorithms: they guarantee to find a global minimum if they are
performed for infinite time and in a finite time we can obtain an approximation of
global minimum given a tollerance.

• Strict algorithms: they guarantee to identify an approximation of the global
minimum, given a tollerance, even if there are errors.

In leterature one of the first algorithm that one can find is multistart algorithm. This
algorithm chooses a random feasible initial point, then it computes a local minimum by
a local optimization method and it does the same with a new random feasible point.
So, iteration by iteration, it keeps the best value that it has found so far. It’s quite
obvious that this algorithm satisfies the hypotheses of Theorem (3.5.1), nevertheless it
does not take advantage of the information of the previous iterations and the number of
local minimization could be very big, becoming inefficient. An improvement of random
search brings us to the monotonic basin hopping: Notice how a method of local opti-

Algorithm 6 : Monotonic basin hopping.

1: Choose randomly x0 ∈ S;
2: Set x∗0 = LocalSearch(x0) and k = 1;
3: Step 1.
4: Set xk = Perturb(x∗k−1);
5: Set yk = LocalSearch(xk);
6: if f(yk) < f(x∗k−1) then
7: Set x∗k = yk;
8: else x∗k = x∗k−1

9: k = k + 1 and goto → Step 1;

mization, LocalSearch(·), and a process for the perturbation of the solution, Perturb(·),
characterize this new algorithm. In particular if Perturb(·) is just choose a random fea-
sible point, we obtain the multistart algorithm. Usually, for the perturbation of x∗k−1,
a random point is choosen in a ball B(x∗k−1, δ), where δ > 0. Actually we have to take
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care about the dimension of this ball: if δ is too small, we will get stuck in a local min-
imum; on the other side if δ is too big, the algorithm will be equivalent to multistart.
In fact LocalSearch and Perturb depend on the problem. In our case we are going to
use the previous four methods (FW, GP, NMFW, NMSGP) as LocalSearch and a swap
technique as Perturb. We are explaining the reason of these choices in the next chapter.
Other global probabilistic algorithms could be simulated annealing or genetic algorithms
but they are not considered in this thesis, we refer the interested reader to [28] and [29].
From now on we write BH for monotonic basin hopping algorithm and the abbreviations
of local methods before BH to indicate the global basin hopping algorithm with the
particular LocalSearch, for example FW-BH or NMSGP-BH.
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Chapter 4

Numerical results

All the results have been computed with a MacBook Air with a processor of 1.4 GHz
Intel Core i5. In order to be as clear as possible, we make a list of the topics studied in
this chapter.

- Description of the problems.

- Description of the stochastic block model: the algorithm that we use to produce
the model graph.

- Introduction of the performance profile idea and selection of the best parameters
to be used inside the local optimization algorithms.

- Analysis of results of the global algorithm applied over the toy model graph.

- Study of real networks and comparison with the results in [11].

- Difference between non linear and linear method to detect the best bi-partioning
of a real graph.

4.1 Our riformulated problem

Given a graph G = (V,E), the equation (3.1) is presented again:

q(G) = max
A⊆V

q(A) =
1

µ(V )
max
x∈Rn
||x||∞≤1

〈x,M(x)〉µ .

This is the problem we consider here, the weighted case can be seen as a natural con-
tinuity but it is not studied in this thesis. In particular the function that we want to
maximize is

f1(x) = 〈x,M(x)〉µ .

39
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Just to fix the ideas, we consider the unit measure of V : µ(i) = µi = 1, for all i ∈ V .
Therefore the weighted scalar product 〈x, y〉µ =

∑n
i=1 xiyi = 〈x, y〉 is the usual scalar

product of Rn. Remebering (2.12), for any x ∈ Rn, we obtain

f1(x) = 〈x,M(x)〉 =
1

2

n∑
i,j=1

(−M)ij |xi − xj |. (4.1)

As seen in Section 3.1, we are going to consider an approximation of f1, adding an
exponent t ∈ R, t > 1,

ft(x) =
1

2

n∑
i,j=1

(−M)ij |xi − xj |t.

Therefore we gain ft ∈ C1(Rn), moreover it is easy observe that the constrain set

S = {x ∈ Rn : ||x||∞ ≤ 1},

is a convex compact set so we can utilize each algorithms displayed in the Chapter 3.
From now on, we present all the results as maxima, in Section 3.2 we have discussed
how to move from a minimization to a maximization problem. Furthermore we opt for
the particular edge measure ω such that

ω(ij) =

{
1, if ij ∈ E,

0, if ij /∈ E.

So by adopting the Newman - Girvan null model, the modulaity matrix M is

M = A−B, (4.2)

where:

• A is the adjacency matrix of G,

• B is the matrix resulting from the null model, we have for any i, j ∈ V , (B)ij =
didj

vol(V ) .

In most cases the adjacency matrix of a graph is a sparse matrix, a fact that has to be
taken into account to make the computational aspect efficient.
To conclude this section we remember what is the projection in a box set as S. It is
easy to prove that the projection of y ∈ Rn over S is the function π : Rn → S such that,
for any i = 1, . . . , n,

(π(y))i =


1, if yi ≥ 1,

−1, if yi ≤ −1,

yi, otherwise.

(4.3)

Notice that this projection it is very easy to program and fast to compute.
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4.2 Stochastic block model (SBM)

Probabilistic network models can be used to model real networks as it is studied in [30],
the stochastic block model (SBM) is one of the most popular network models exhibiting
community structures. The model was first proposed in the 80’s and received significant
attention in mathematics and computer science literature, for further information we
refer to [31]. The SBM puts a distribution on n-vertices graphs with a hidden (or
planted) partition of the nodes into k communities. We define the vector size ∈ Rk so
that its components are the dimension of k-th community and we assume that a pair of
nodes in communities i and j connects independently with probability Qij . The inputs
for the SBM code are the vector size and Q a k × k symmetric matrix with entries in
[0, 1]. In this work we use the SBM function showed in Algorithm 7, the outputs are
A the sparse adjency matrix of the graph and C the ground truth vector. Actually the
stochastic block model it is used to set benchmarks for clustering algorithms with well
defined ground truth that is typically no avaible in real networks. We work with k = 2
so the graph is made of just two communities. The probabilities matrix is

Q =

(
p q
q p

)
,

where p is the probabilitiy of connection inside the two communities and q the probability
between them. According to [31] we are setting low probabilities in order to create a
sparse graph and make our detection more difficult and so more interesting, moreover it
is showed that the model graph depends on the difference p−q and not on the particular
p and q choosen, so we are proposing results depending on the difference p − q. Figure
4.1 represents the non null entries of the adjency matrix of two different graph obteined
with SBM.

(a) size=[300,200], p=0.05, q=0.01. (b) size=[100,400], p=0.03, q=0.005.

Figure 4.1: Example of graph from SBM.
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Algorithm 7 : Stochastic block model function.

1: function [A, C] = SBM(Q, size)
2: I=[ ];
3: J=[ ];
4: k = length(B);
5: n = sum(size);
6: for i1=1:k do
7: for i2 = 1:size(i1) do
8: i = sum(size(1:i1-1)) + i2;
9: lrow = size(i1) - i2;

10: e = rand(1,lrow);
11: Jnew = find(e <= Q(i1,i1));
12: enew = length(Jnew);
13: if enew >0 then
14: I = [I, repmat(i,1,enew)]; J = [J i+Jnew];

15: for j1 = i1+1:k do
16: j = sum(size(1:j1-1));
17: e = rand(1,size(j1));
18: Jnew = find(e ¡= Q(i1,j1));
19: enew = length(Jnew);
20: if enew > 0 then
21: I = [I, repmat(i,1,enew)]; J = [J j+Jnew];

22: A = sparse([I J],[J I],1,n,n);
23: C = zeros(n,k);
24: for i = 1:k do
25: imin = sum(size(1:i-1)) + 1;
26: imax = sum(size(1:i-1)) + size(i);
27: C(imin:imax,i) = 1;
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4.3 Local results

Here we are going to present the results computed with the local algorithms showed in
Chapter 3. First of all we introduce performance profile as a tool for evaluating and
comparing the performance of optimization software. After that we present the results
and successively choose the best paramenters. The parameters studied are the approxi-
mation exponent t and the parameter s ≥ 0 that we find inside the code of the projected
gradient method, Algorithm 3. Instead the ”memory” parameters M in NMFW and
NMSGP or the initial step size inside the Armijo line search and other parameters are
choosen by the indication of leterature since we do not recognize important variations in
the results. At the end we give some indications/suggestions to reduce the computational
time and to detect a smart Perturb function for the global optimization algorithm.

4.3.1 Performance profile

The benchmarking of optimization software has improved a lot in the last years, one of
the most important contribution can be found in [32]. Most benchmarking efforts involve
tables displaying the performance of some solver applies to problems using as metrics
CPU time or number of function evaluations. In this section we introduce the notion
of performance profile as a mean to evaluate and compare the performance of a set of
solvers S on a test set U . Let ns, nu be the number of solvers and problems respectively.
What we use as performance measure is the computing time. For each problem u and
solver s, we define

Tu,s = {computing time required to solve problem u by solver s}.

We compare the performance on problem u by solver s with the best performance by
any solver on this problem. We define a performance ratio:

ru,s =
Tu,s

min{Tu,s : s ∈ S}
(4.4)

We assume that a parameter rN ≥ ru,s for all u, s is chosen, and ru,s = rN if and only if
the solver s does not solve the problem u. In [12] it is showed that the choice of rN does
not affect the performance evaluation and we refer to that paper for further information.
We define

ρs(τ) =
1

nu
|{u ∈ U : ru,s ≤ τ}|, (4.5)

where | · | indicates the cardinality of the set, ρs(τ) is the probability for solver s ∈ S
that a performance ratio ru,s is within a factor τ ∈ R of the best possible ratio. The
function ρs is the (cumulative) distribution funciton for the performance ratio. We use
the term performance profile for the distribution function of a performance metric, a
plot of performance profile reveals all the major performance features. In particular, if
the set of problems U is suitably large and representative of problems that are likely to
occur in applications, then solvers with large probability ρs(τ) are to be preferred.
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4.3.2 Parameters detection

Now we are going to present the first results for the parameters detection of the local
algorithms using performance profiles. In order to be coherent with the notations above,
for any algorithm, the set of solvers S depends only on the exponent t for FW, NMFW
and NMSGP algorithms

St = {1.15; 1.2; 1.3; 1.4},

while for the case of GP method we study also the inner parameter s ≥ 0 and we have
S(t, s) = {(1.15, 0.15); (1.2, 0.2); (1.3, 0.25); (1.4, 0.3)}. The set U is characterized by 4
probabilities differences {0.01; 0.02; 0.03; 0.04} and for each of them we create 10 model
graphs with SBM with 500 nodes, so the test set U is composed of 40 different problems.
For all the algorithms, the initial point x0 ∈ Rn, where n is the dimension of the graph,
is chosen randomly inside the feasible set S. From the definition, the performance profile
ρs : R → [0, 1] for a solver is a nondecreasing, piecewise constant function, continuous
from the right at each breakpoint and the value of ρs(1) is the probability that the
solver will win over the rest of the solvers. We fix rN = 1000, a value big enough for our
case. What we obtain are graphics like Figure 4.2 and 4.3 for GP and FW algorithms
respectively.

Figure 4.2: Performance profile for GP algorithm with p− q = 0.03.

The plots represent the probability for the different solvers that a performance ratio
(4.4) is within a factor 1 ≤ τ ≤ 10 of the best possible ratio. We notice that in both
figure the best choice of exponent is for t = 1.4, since the blu dotted line is the best
and reaches the probability 1 in almost 4 times of the best possible ratio for GP and in
less than 2 times for FW. Moreover, by looking at Figure 4.3 we can notice that for the
parameter t = 1.15 only the 60% of the problems are solved within τ = 10.
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Figure 4.3: Performance profile for FW algorithm with p− q = 0.02.

We study all the cases and we choose the best parameters by analizing the plots, we
resume the result in the Table 4.1 for the GP algorithm and Table 4.2 for the others.

p− q 0.01 0.02 0.03 0.04

Exponent t 1.4 1.3 1.4 1.4
Parameter s 0.3 0.25 0.3 0.3

Table 4.1: Parameters detection for GP with performance profile.

As we can see, the most common result for the approximation exponent is the value
1.4, this can be due to the fact that the function for this exponent is more likely a
quadratic function and therefore it is faster to detect a maximum point. We decide to
not choose an exponent bigger than 1.4 otherwise we would find the same results of the
linear spectral method (2.10), for further information we refer to [11].

p− q 0.01 0.02 0.03 0.04

FW 1.3 1.4 1.4 1.4
NMFW 1.4 1.4 1.4 1.4
NMSGP 1.2 1.4 1.4 1.4

Table 4.2: Best approximation exponent t computed by performance profile.
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4.3.3 Selection of Perturb function and codes improvement

From these results we find out an important property that brings us to determinate the
Perturb function inside the basin hopping global algorithm and to improve the efficiency
of the evaluation of the objective function. The property concerns the solution of the
problem (3.1), in all the cases this is approximately a vertex of the feasible set S, this
means that most of the solution’s components are 1 or −1. It seems that the iterative
algorithms, after few steps, try to reach a maximum move from a vertex to another. This
feature and the combinatoric nature of the problem gives us the idea for the Perturb
function of the basin hopping, Algorithm 6. We base it on a swap idea. In particular,
we define a function that changes a fixed percentage, from 10% to 25%, of components
of the local optimum found at every iteration of the algorithm. In this way we change
vertex of S and so, using (2.8), the particular bi-partitioning of the graph. Moreover in
order to not stop in a attracted local basin we multiply the vector for a random positive
constant η < 1.
Another suggestion comes from the results concerning the function evaluation. Each
method showed is iterative algorithm and it computes the objective function many times.
The fact that the iteratives seem to move from a vertex to another and the particular
nature of the function bring us to reformulate the code for the evaluation function in such
a way to keep the information of the previous step and update the value just computing
the function over the components that change from step to step. In order to have clear
notation, choosen any local algorithm, let x, y ∈ Rn be the solutions at step k and k+1.
We have

ft(x) =
n∑

i,j=1

(−M)ij |xi − xj |t,

and

ft(y) =
n∑

i,j=1

(−M)ij |yi − yj |t.

We define I ⊆ {1, . . . , n} such that I = {i : xi = yi}, the set of index where x and y are
equal. Remembering that the modularity matrix M is symmetric, we obtain

ft(y) =
∑
i∈I
j∈I

(−M)ij |yi − yj |t + 2
∑
i∈I
j∈IC

(−M)ij |yi − yj |t +
∑
i∈IC
j∈IC

(−M)ij |yi − yj |t =

=
∑
i∈I
j∈I

(−M)ij |xi − xj |t + 2
∑
i∈I
j∈IC

(−M)ij |yi − yj |t +
∑
i∈IC
j∈IC

(−M)ij |yi − yj |t.

And so if we define the function gt : Rn → R as

gt(y) = 2
∑
i∈I
j∈IC

(−M)ij |yi − yj |t +
∑
i∈IC
j∈IC

(−M)ij |yi − yj |t,
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we have
ft(y) = ft(x)− gt(x) + gt(y).

The result is that savig the solution x and the value ft(x) at step k, we can compute the
function value in y at step k + 1, ft(y), with just |I| · |IC | + |IC |2 = n|IC | operations,
instead of n2 operations.

4.4 Global results on toy model

After the detection of the best parameters, we are ready to test the global algorithm on
the model graph given by SBM. Since basin hopping, global Algorithm 6, is characterized
by the specific local search we are going to show the differences between the four local
methods displayed in this thesis. We present the box plots of the computational time
that allows us to select which is the best method to use. We need to be precise about
how we have obtained the results: first of all we chose a probability difference p − q ∈
{0.01, 0.02, 0.03, 0.04} and we create 10 model graphs of n = 500 nodes with SBM for
each differences. We have decided to choose a random feasible starting point and run
10 local iterations of basin hopping. We have focused our attention on the speed of the
algorithms, trying to find if there exists a method that works better with respect to
the others when the connectivity of the graph changes. A model graph obtained with
p− q = 0.01 will be more random respect to a model with p− q = 0.04 where it will be
easier to detect a bi-partitioning. So, after the detection of the best method to use in
function of the randomness of the graph we can say what are the best method to use in
a real network that presents similar features. From both Figure 4.4 and Figure 4.5 we
can observe that BH with NMSGP is really better than any other alternative.

Figure 4.4: Box plots of BH computational time with p− q = 0.02.
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Moreover, as literature said, FW is lower than GP and the non monotone versions
are better then monotone ones. We do not display here the results of the maximum since
every time we call SBM function the model graph changes and therefore the maximum
of (3.1), but we present a median of the maxima in Table 4.3.

p− q GP FW NMSGP NMFW

0.01
Median 0.11193 0.11300 0.11336 0.11485
Count 0 9 1 6

0.02
Median 0.11660 0.12023 0.11678 0.12137
Count 0 5 0 7

0.03
Median 0.12225 0.12192 0.11963 0.12550
Count 0 1 0 9

0.04
Median 0.12368 0.12629 0.12649 0.13051
Count 0 3 0 3

Table 4.3: Median and count value for BH.

By looking at Table 4.3, we have to decide to keep the FW version of BH since the
median computed with FW and NMFW is a little better than what we have computed
with GP and NMSGP. In Table 4.3, we can observe also the value Count that indicates
how many times the local search method does not find a critical point in 1000 iterations.
We notice that GP and NSGP have a better behaviour also for this point of view.

Figure 4.5: Box plots of BH computational time with p− q = 0.03.
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4.5 Real networks

The real world networks are given by Prof. Francesco Tudisco, Marie Sk lodowska Curie
Fellow, Department of Mathematics and Statistics, University of Strathclyde. The real
graphs represent data taken from different fields, from ecological networks (Benguela,
Skipwith, StMarks, Ythan2), social and economic networks (SawMill, UKFaculty, Cor-
porate, Geom, Erdös), protein-protein interaction networks (Malaria, Drugs, Hpylori,
Ecoli, PINHuman), technological and informational networks (Electronic2, USAir97, In-
ternet97, Internet98) and transcription networks (YeastS). The results are compared
with the results in [11], where the authors use a Generalized ratioDCA algorithm to
find out the solutions and for the values showed in Table 4.4 and Table 4.5 they con-
sider 100 random starting points, including w1 the leading eigenvector of M . Instead
we only consider w1 as starting point and we compute 25 iterations of basin hopping
algorithm. In the first Table 4.4, we have inserted the best value found by BH between
the four different local search. For real graphs with few nodes we have spoted the same
maximum.

Network n
q(G)

in [11] with BH

Benguela 29 0.09 0.0939
Skipwith 35 0.07 0.0659
StMarks 20 0.2 0.1971
Ythan2 92 0.22 0.2209
SawMill 12 0.39 0.3870
UKFaculty 81 0.37 0.3711
Malaria 229 0.35 0.3439
Drugs 616 0.48 0.4842
Hpylori 710 0.35 0.3484
Electronic2 252 0.47 0.4749
USAir97 332 0.3 0.2983

Table 4.4: Experiments on real networks.

A very interesting and important aspect in what we have computed is the compu-
tational time needed to BH for different local searches. In Figure 4.6, we propose a
histogram representing the running time needed to find a solution with BH on three real
networks with more than 200 nodes, for each network there are four columns that show
the total time spent by BH with the particular algorithm choices of local search. We can
notice that the results are similar to what we have computed over the toy model with
Figure 4.4 and Figure 4.5, where NMSGP is the faster algorithm and FW, NMFW the
slower ones.
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Figure 4.6: Histogram of computational time of different versions of BH apply on real
networks.

But in the real cases the difference of computational time is huge, this brings us to
choose only NMSGP for computing the best bi-partitioning of real graphs with more
than 1000 nodes. Therefore the results in Table 4.5 are obtained with the NMSGP
version of BH. By examining the two Tables of real networks we can notice that we
obtain always the same results give in [11], except for YeastS and Malaria networks.
Actually for Geom network we get a better solution.

Network n
q(G)

in [11] NMSGP-BH

Corporate 1586 0.33 0.3281
Geom 3621 0.42 0.4257
Erdös 6927 0.42 0.4162
Ecoli 1251 0.28 0.2770
PINHuman 2783 0.4 0.4028
Internet97 3015 0.4 0.4020
Internet98 3522 0.4 0.4084
YeastS 2224 0.39 0.3795

Table 4.5: Experiments on real networks. BH with NMSGP as local algorithm.

If we look at Figure 4.7, we can observe in a particular case what we have said
about the computational time and the real efficiency of the NMSGP version of BH. The
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histogram show how much the versions of BH with FW and NMFW are slow with respect
to the GP and NMSGP ones. Precisly, the computational times are: 6527.9 seconds for
FW-BH, 1185.9 seconds for GP-BH, 4761.8 seconds for NMFW-BH and 17.9 seconds for
NMSGP-BH .

Figure 4.7: Histogram of computational time of BH applies on Hpylori real netwrok.

We have to say that the best value of q(G) on the Hpylori real network is computed by
FW version of BH with q(G) = 0.34260, and the worst by NMSGP with q(G) = 0.33994.
But 27 ten-thousandths of difference is not worth the huge difference of time. The
goodness of our result derives from two aspects: on one hand we have choosen one
initial points and only 25 iterations of basin hopping algorithm, on the other hand the
computational time for NMSGP-BH version that is quite fast. Table 4.6 reports the
computational time of NMSGP-BH applies on all the real networks. As we expected,
bigger is the network more time is necessary to find a maximum. To complete the
analysis of the results we decide to study where the algorithms spent more time during
the computation. To do that we use the profiler of Matlab, for further information we
refer to the MathWorks web site. By focusing on the monomote algorithms, we can say
that both FW-BH and GP-BH spend the most of time on the Armijo line search. The
problem is not that they compute a step size too much small but the number of function
and derivative evaluations needed that is very big. By remembering the equation (4.2)
we can be more precise. Indeed, both algorithms spent lots of time to evaluate the
matrix B since it is a dense matrix. Also for NMFW-BH and NMSGP-BH the most of
computational time is spent on the function and derivative evaluations but they need
less evaluations thank to the non monotone line search and what makes NMSGP-BH the
best algorithm is the combination of non monotone line search with a spectral method.
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Network n
Computational time

of NMSGP-BH

Benguela 29 1.2”
Skipwith 35 0.5”
StMarks 48 0.5”
Ythan2 92 0.9”
SawMill 36 0.3”
UKFaculty 81 0.4”
Malaria 229 2.5”
Drugs 616 8.2”
Hpylori 710 17.9”
Electronic2 252 2.4”
USAir97 332 3.1”
Corporate 1586 53.5”
Geom 3621 337.3”
Erdös 6927 2842.7”
Ecoli 1251 56.7”
PINHuman 2783 525.5”
Internet97 3015 535.0”
Internet98 3522 888.0”
YeastS 2224 152.3”

Table 4.6: Computational time on real networks for BH with NMSGP as local algorithm.
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4.6 Comparison between linear and non linear method

To conclude this chapter we are going to show the difference between the linear and
non linear method to compute the best bi-partitioning of the graph. In Table 4.7 it
represents the maxima of the modularity computed by linear and non linear method.
For the graphs with more than 1000 the results of non linear method are computed by
NMSGP version of BH. We notice that for all the real world networks the maximum
computed by the non linear extension of M is really better than the maximum found
by the leading eigenvector of the modularity matrix M . We propose the linear results
present in [11].

Network n
q(G)

Linear Non linear

Benguela 29 0.07 0.0939
Skipwith 35 0.04 0.0659
StMarks 20 0.16 0.1971
Ythan2 92 0.2 0.2209
SawMill 12 0.33 0.3870
UKFaculty 81 0.33 0.3711
Malaria 229 0.25 0.3439
Drugs 616 0.43 0.4842
Hpylori 710 0.28 0.3484
Electronic2 252 0.36 0.4749
USAir97 332 0.28 0.2983

Corporate 1586 0.27 0.3328
Geom 3621 0.25 0.4257
Erdös 6927 0.28 0.4162
Ecoli 1251 0.25 0.2770
PINHuman 2783 0.32 0.4028
Internet97 3015 0.27 0.4020
Internet98 3522 0.25 0.4084
YeastS 2224 0.25 0.3795

Table 4.7: Comparison between modularity values computed by linear method and non
linear method.

The histogram in Figure 4.8 shows the gain of the modularity values obtained by
non linear method with respect to linear one. The gain is qNL(G)/qL(G), where qL(G)
is the modularity linear value and qNL(G) the modularity non linear value.
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Figure 4.8: Histogram of the gain of non linear method respect to linear method.



Chapter 5

Conclusions

In this thesis we analyzed the problem of bi-partitioning a given graph. We started from
a natural linear view of the problem and then we moved to a non linear extension that
gives us a strict relation between the best bi-partitiong and the maximum of a continuous
functions. Moreover we proved a new constrained formulation of the maximization
problem with a convex and compact region as feasible set. From there we decided
to approximate the objective function with a C1 function in order to use first-order
local optimization algorithms. We showed these algorithms, giving for each of them
convergence theorems and related schemes. Finally we described a probabilistic global
method that we applied first on a toy model graph, given by a stochastic block model,
and then on real world graphs. We compared results with some state of the art methods,
trying to highlight what is the strength of our approach and which is the best algorithm
to use. Some possible continuations of this work can be to maximize the weighted
version (3.2) of modularity function or to change the null model at the base of the
modularity measure’s definition, in that way it would change the B term of modularity
matrix (4.2). It would also interesting to study some further theoretical properties of
modularity functions, like e.g. hidden concavity. This might help to develop tailored
algorithms for the problem.
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