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ABSTRACT

T HE increasing issues about the use of fossil raw materials advocate for an

increasing utilization of biomass-based fuels and chemicals. Among the bio-

based furan compounds, the 5-hydroxymethylfurfural (HMF) has received consider-

able attention in the chemical industry since it can be hydrogenated to 2,5-dimethyl-

furan (DMF) that is a valuable alternative fuel. The identification of a suitable

kinetic model, where all the non-measurable kinetic parameters are reliably esti-

mated, is crucial to pursue the process optimisation.

In this work, the kinetic models currently available in literature for the HMF hy-

drogenation process are investigated to figure out their strengths and weaknesses

using a sensitivity-based identifiability analysis. The application of identifiabil-

ity analysis techniques allows to define a set of fully identifiable kinetic models to

be used for statistically reliable predictions. Furthermore, the results lead to the

characterization of the experimental design space regions that maximise the dis-

criminating power between the different models.





ABSTRACT ESTESO

L E crescenti problematiche relative all’uso delle materie prime di origine fos-

sile, rendono l’impiego di combustibili e prodotti chimici derivanti dalle biomas-

se sempre più importante. Il vantaggio di questo tipo di derivati chimici è che essi

non contribuiscono al surriscaldamento globale dato che vengono ottenuti da risorse

rinnovabili. Per questa ragione, tra tutti i composti furanici ottenuti dalle biomasse,

il 5-idrossimetilfurfurolo (HMF) sta ricevendo particolare attenzione, nel settore

dell’indutria chimica, in quanto sembra uno dei più promettenti "building blocks"

nell’immediato futuro: è considerato come il precursore di un’intera famiglia di com-

posti chimici ad elevato valore aggiunto. In particolare, l’HMF può essere sottoposto

ad un processo di idrogenazione in sistema trifasico nel quale viene convertito a 2,5-

dimetilfurano (DMF), un combustibile alternativo particolarmente pregiato. Tra le

ottime caratteristiche che lo contraddistinguono, le che più importanti sono sicura-

mente:

1. elevata densità di energia;

2. alto punto di ebollizione;

3. elevato numero di ottano;

4. marcate proprietà idrofobiche.

Per i vantaggi di cui sopra, si pensa che il DMF possa rappresentare un’alternativa

migliore rispetto all’etanolo e ai combustibili fossili attualmente in uso. Questo

lo rende una valida e sostenibile alternativa per la produzione di combustibili nel

prossimo futuro.

L’identificazione di un modello cinetico adatto alla rappresentazione del processo di

idrogenazione, che presenti la possibilità di ottenere accurate predizioni senza la

necessità di condurre misurazioni sperimentali dirette, è essenziale per lo sviluppo



ed il miglioramento del processo stesso. In particolare, l’obiettivo è quello di trovare

un modello cinetico la cui struttura matematica coinvolga variabili non misurabili

(parametri) che possano essere stimate affidabilmente ed accuratamente mediante

l’utilizzo di soli dati cinetici relativi alla concentrazione delle specie. Il raggiung-

imento di tale obiettivo può portare ad un incremento dell’efficienza ed una signi-

ficativa riduzione del costo, in termini di tempo e risorse, per l’ottimizzazione del

processo.

La capacità descrittiva di un modello cinetico e l’affidabilità delle previsioni derivanti

da questo, dipendono dalla completezza delle leggi fisiche usate per sviluppare il

modello stesso. Maggior complessità si riflette in maggior difficoltà nello stimare i

parametri (attraverso l’impiego di dati sperimentali) con un elevato livello di accu-

ratezza. Minor complessità si ripercuote sulla qualità delle predizioni ottenibili. In

ogni caso, una caratteristica fondamentale che i modelli cinetici utilizzati devono

possedere, è una completa identificabilità. A tal proposito, opportune tecniche sono

state sviluppate per verificare l’identificabilità dei modelli e riconoscere in anticipo

le debolezze strutturali (legate alla struttura matematica delle equazioni usate) e

pratiche (relative alle condizioni di applicazione del modello). In particolare, la val-

utazione della correlazione tra i parametri cinetici che richiedono di essere stimati,

in funzione del rango di quella che viene definita matrice di stimabilità, è un pas-

saggio fondamentale per lo studio di un modello cinetico.

In questo lavoro, i modelli cinetici attualmente disponibili in letteratura (Gawade

et al. (2016), Gyngazova et al. (2017), Jain and Vaidya (2016), Luo et al. (2015),

Grilc et al. (2014)) sono stati raccolti, elencati e studiati. Un’analisi di identifica-

bilità basata sulle sensitività è stata impiegata ed, in particolare, si è valutata con

attenzione la correlazione tra i parametri cinetici di ogni modello in funzione delle

condizioni sperimentali utilizzate e della tipologia di campionamento adottata. Si

è scelto di considerare una campagna "in-silico" di 10 esperimenti, ognuno rappre-

sentativo di un determinato set di variabili di design, distribuiti in modo omogeneo

in tutto il dominio sperimentale. Si è impiegato il cosiddetto Latin Hypercube Sam-

pling e le seguenti variabili di design sono state considerate:



1. concentrazione iniziale delle specie chimiche in comune tra i vari modelli ci-

netici;

2. temperatura;

3. pressione parziale dell’idrogeno.

Inoltre, le tipologie di campionamento sono state selezionate sulla base di vin-

coli pratici imposti dalle apparecchiature di laboratorio: per l’analisi della miscela

di reazione, 5 minuti sono stati considerati come il tempo minimo necessario tra

due campionamenti successivi. Fissata una durata nominale di 120 minuti per la

reazione, sono quindi state adottate tre distribuzioni con punti di campionamento:

1. maggiormente concentrati all’inizio della reazione;

2. uniformemente distanziati;

3. maggiormente concentrati alla fine della reazione.

Successivamente all’analisi della correlazione, anche l’informazione attesa è stata

studiata, in funzione della Matrice dell’Informazione di Fisher (FIM). La valu-

tazione di questa metrica, per le diverse condizioni sperimentali, ha permesso di

chiarire gli aspetti di identificabilità pratica per i vari modelli cinetici. Sono state

cioè definite le condizioni sperimentali per cui l’informazione utile alla stima dei

parametri è massima, e quelle per cui l’insufficienza di informazione comporta la

non identificabilità dei modelli cinetici. Lo studio ha evidenziato, tuttavia, la pre-

senza di errori numerici nello studio della covarianza: si è capito che la bassa

sensitività mostrata dai coefficienti di adsorbimento rispetto ad esperimenti ci-

netici, comporta che la risultante FIM abbia una struttura che ne causa la non-

invertibilità. A tal proposito, un’approssimazione può essere fornita ma l’affidabilità

che la caratterizza è scarsa.

Per concludere, lo studio svolto ha permesso di definire un set di modelli cinetici

completamente identificabili ed uno spazio di design che può essere utilizzato per

ottenere affidabili predizioni sul processo di idrogenazione. I risultati hanno por-

tato alla caratterizzazione delle regioni del dominio sperimentale in cui i parametri

dei modelli cinetici strutturalmente identificabili, possono essere stimati con ele-

vata accuratezza. Infine, sono state definite le condizioni sperimentali per le quali



l’utilizzo di modelli cinetici con una determinata struttura è maggiormente indi-

cato.
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INTRODUCTION

THE world has nowadays to face with the reality that fossil fuels are no longer

a suitable alternative for the near future. Petroleum supplies are rapidly

shrinking and the extraction companies are forced to drill always deeper with the

consequence of making the process less profitable. Moreover, a lot of countries are

trying to tackle the pollution problem by looking for more sustainable alternatives

at the petroleum derivatives. The biomass-derived fuels currently used present

some disadvantages that drove the researchers toward the investigation of better

alternatives that now seem to be represented by furan-based compounds. Thus,

especially for the non-well-established processes, a huge effort consists in the iden-

tification of a trustworthy kinetic model capable of giving accurate predictions both

inside and outside the range of the already investigated experimental conditions.

However, the model characterization always relies on the completion of specific

studies which may involve the accomplishment of highly informative experiments.

Since the number of possible mechanisms proposed can be high, a preliminary in-

vestigation of the model structure is crucial. Moreover, since the experiment execu-

tion may require considerable amounts of time and resources, a careful planning of

the study represents a key aspect on the development of reliable chemical kinetic

models. Many advanced techniques have been developed by researchers, following

the initial work of Box and Lucas (1959), and applied in this Thesis. The purpose

is to consider the existing kinetic models available in literature for the HMF hy-

drogenation process, and explore their strengths and lacks to end up with a set of

identifiable kinetic models which non-measurable parameters can be estimated in

a statistically reliable way. Both structural and practical identifiability are consid-

ered in the study.

To aid the orientation of the reader along the Thesis, the block diagram in Figure 1
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Figure 1: Block diagram representing thesis structure and connections between

different chapters.

is proposed. It shows the connections between the different chapters and underlines

the contribution of each part to the others. Chapter 1 reports the literature survey

and the state of the art about the HMF hydrogenation process. The importance

of the study is highlighted as well as the main general concepts and techniques

employed are illustrated. Chapter 2 provides an in-depth analysis of the mathe-

matical background for all the methodologies and techniques related to the model

identifiability study, model-based design of experiments and parameter estimation.

The statistical tests used to assess the parameters precision, as well as the mean-

ing of the metrics used, are also discussed. Chapter 3 presents an overview of the

most important aspects to be considered about the HMF hydrogenation process.

Moreover, it focuses on the analysis of the kinetic models available in literature

and their comparison in terms of complexity, variables involved and assumptions

made. Finally, it addresses a summary of all the chemical, physical and structural

uncertainties of the kinetic models, along with the proposals of possible solutions to

overcome the problems. Chapter 4 shows the results of the identifiability analysis

performed, with a particular focus on the discussion of the expected:

1. correlation between parameters;

2. information available for each parameter.

7
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An efficient identifiability analysis leads to a great simplification of the design of ex-

periments methodologies and allows to identify the cases in which a re-parametrization

is required. Chapter 5 describes the application of validation and optimisation tech-

niques to the final set of kinetic models. The results are discussed in details to iden-

tify the experimental domain regions that maximize the discriminating power and

the parameter estimation quality. Furthermore, the validation allows confirming

or rejecting the possibility of using in a general way the kinetic model previously

defined. The conclusions section contains final remarks of the thesis project along

with an explanation of the possible ways this work can be used as a starting point

to pursue further studies aiming at the identification of more sophisticated kinetic

models for the HMF hydrogenation process.
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CHAPTER 1
PROCESS INTRODUCTION, SCOPE OF THE

WORK AND TECHNIQUES EMPLOYED

COMMONLY, the mathematical description of a deterministic physical process

goes beyond the simple fitting of data with known curves or functions. A

well-established phenomenological model, founded on the study of the physical

and chemical behaviour of a system, makes the extrapolation of the outcome of

an experiment, not only a speculated forecast. When the system is studied outside

the range of investigated experimental conditions, a trustworthy phenomenological

model must be used to obtain reliable predictions of the result. At the purpose,

the non-measurable quantities involved carry information about the meaningful

physical reality that has to be exploited and understood for an efficient process

improvement. When it turns to chemical processes, the identification of a suit-

able kinetic model for which all the non-measurable kinetic parameters can be re-

liably estimated, is crucial to improve the operations efficiency. The procedure is

all but straightforward: the model descriptive capability and prediction reliability

depend on the completeness of the physical laws used to develop the model itself.

A high complexity in the phenomenological relations used ensures a good represen-

tation but reflects on the difficulty of estimating with a great level of accuracy the

non-measurable kinetic parameters that are typically found by fitting experimen-

tal data. Model identifiability procedures are then used to recognise in advance

structural and practical weaknesses related to models structure and application

conditions. In this introductory chapter, the description of objectives and reasons

that motivated this work is given. Moreover, it is given a brief presentation of the

tools employed for performing the analysis exploited throughout the Thesis.



CHAPTER 1

1.1 The problem of fossil fuels

During the last 150 years, crude oil has been largely exploited all around the world.

It is, in its most basic form, mineral deposits formed deep in the earth or under

the sea bed and it can be transformed into oil. That is, several million barrels a

day are produced and refined into petrol and petroleum products such as plastics.

Despite petrol-based fuels are often described as the energy of the world, used in

power plants to convert their chemical energy into electricity, in domestic boilers to

produce hot water and warm up the buildings and also in almost the entire trans-

portation system, they have to face increasing issues related to pollutants emission

and supplies abundance. As underlined by Roman-Leshkov et al. (2007), diminish-

ing fossil fuel reserves and growing concerns about global warming indicate that

sustainable sources of energy are needed in the near future. About that, the in-

terest toward some renewable fuels is rapidly increasing. In particular, according

to Demirbas (2010), biomass is the most important renewable energy source in the

world. The new biomass-derived fuels seem indeed to be an alternative solution,

clean and environmental safe, to the fossil and nuclear fuels that are liable to many

of the environmental and social problems in the world. Moreover, they would be

a cost-effective and sustainable supply of energy for the future as well as impor-

tant contributors to the world’s economy. Currently, as underlined by Chum and

Overend (2001), about 60% of the needed process energy in pulp, paper and for-

est products is provided by biomass combustion. However, for fuels to be useful in

transportation sector, they must have specific physical properties that allow for ef-

ficient distribution, storage and combustion. Unfortunately, while these properties

are fulfilled by non-renewable petroleum-derived liquid fuels, the only renewable al-

ternative produced nowadays, ethanol, suffers from several limitations. Indeed, low

energy density, high volatility and tendency to absorb water are the reasons that

bring the researchers to keep looking for a more efficient substitute. The catalytic

production of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) that

can be derived from fructose – a carbohydrate obtained directly from biomass or by

isomerization of glucose – could be the answer. In particular, advances in genetics,

biotechnology, process chemistry and engineering are leading to a new manufactur-

10
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ing concept for converting furan-based reactants to valuable fuels and products. In

these terms, the use of a catalytic process leads to the identification of a route for

transforming abundant carbon-neutral renewable biomass resources into a liquid

fuel suitable for the transportation sector (Parikka (2004), Ragauskas et al. (2006)).

For this reason, a study of the HMF characteristics allows to understand which

are the best ways it can be efficiently converted to DMF. The final result will be a

diminished reliance of world’s economy on petroleum derivatives and an increased

environmental safety.

1.2 The HMF as a possible solution

5-hydroxymethylfurfural is an organic compound consisting of a furan ring that

contains both aldehyde and alcohol functional groups. In nature, HMF is a white

solid with the very low melting temperature of 34 ◦C, and it is highly soluble either

in water or in organic solvents. It is considered an important intermediate in biore-

finery due to its rich chemistry and potential availability from carbohydrates: it is

formed by dehydration of certain sugars such as fructose, glucose, sucrose, cellulose

and inulin (van Putten et al. (2013)). Moreover, it represents a potential primary

building block that might be employed to a wide range of applications in order to

settle the current dependence on fossil-fuel resources. For this reason, as reported

by Rosatella et al. (2011), in recent years considerable efforts have been made on

the optimization and development of HMF transformation processes. Thus, over the

(a) HMF: 5-hydroxymethylfurfural (b) DMF: 2,5-dimethylfuran

Figure 1.1: Chemical structures of HMF and DMF.

entire family of furan-based compounds that could be used, the importance of HMF

is gaining impetus. As a precursor of an entire chemical tree of prominent value-

added chemicals, the products of interest are many. However, 2,5-dimethylfuran

(DMF) seems to be the most desired one in behalf of its high energy density, boiling

point and research octane number (see Table 1.1). According to Roman-Leshkov

11
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et al. (2007) and Lamia et al. (2012), DMF production reduces also the distillation

costs from water – highly energy demanding – since it does not absorb moisture

from the atmosphere. Eventually, for the reasons aforementioned, DMF represents

a better substitute to ethanol or other fossil sources, and could provide a sustainable

future for fuel production.

Table 1.1: Comparison of the most important DMF characteristics in respect to

petrol and ethanol.

Fuel type Energy density [MJ/L] RON T eb [K]

DMF 30 119.0 ∼ 365

Petrol 34 95.0 ∼ 368

Ethanol 24 108.6 ∼ 351

At present, liquid DMF is obtained from the HMF hydration/hydrogenation process

using a wide range of carbon-supported metals out of Pt, Pd and Ru as catalysts. Re-

searchers are indeed putting a lot of efforts in the identification of the most efficient

catalyst that maximizes yield and selectivity depending on the reaction conditions

and desirable products. Moreover, many studies are oriented toward the defini-

tion of the best mathematical representation for the process, in order to allow the

application of advanced model-based design of experiments techniques for process

improvement.

1.3 State of art of HMF hydrogenation

One of the HMF hydrogenation first applications was introduced by Thananatthana-

chon and Rauchfuss (2010) who wanted to examine the use of new reagents to pro-

duce liquid fuels from biomass. In this case, the reactants are said to have three

roles: to assist the isomerization/dehydration, to serve as an H2 source for the hy-

drogenation and to help deoxygenate the alcohol functional groups. To the purpose,

formic acid was used in suspension with tetrahydrofuran (THF), H2SO4 and Pd/C.

Subsequently, Zhang et al. (2012) presented the results of an investigation aimed at

identifying the optimal catalysts and solvents for the hydrogenation of glucose and

xylose to HMF and DMF. Hu et al. (2014) considered the selective hydrogenation

12



PROCESS INTRODUCTION, SCOPE OF THE WORK AND TECHNIQUES EMPLOYED

of HMF to DMF in presence of THF as solvent, and carbon-supported ruthenium

(Ru/C) as catalyst. The aim of the study was to identify the best conditions to run

the process, and to propose a plausible reaction pathway. Grilc et al. (2014) de-

veloped a reaction kinetic model, based on group contributions, to determine the

kinetic of hydrodeoxygenation (HDO), hydrogenolysis, decarboxylation, decarbony-

lation and hydrocracking of HMF and levulinic acid that are products of the low-

temperature ultrasonic waste-wood biomass liquefaction. In that case, the activity

of NiMo/Al2O3 bifunctional catalyst was investigated for three variants: oxide, re-

duced and sulphide form. A comparison with Pd/C catalyst was also presented. Fur-

thermore, particular caution was taken on the minimization of mass transfer and

heat transfer resistances. A study for the opimisation of the reaction parameters

was conduced instead by Chatterjee et al. (2014) who investigated the use of su-

percritical carbon dioxide-water over a Pd/C catalyst. Eventually, the effect of CO2

pressure on the product distribution was observed. Luo et al. (2015) investigated

the three-phase HDO of HMF and hydrogenation of DMF over six carbon-supported

metal catalysts: Pt, Pd, Ir, Ru, Ni and Co. The rate constants for the pseudo-first-

order sequential reactions were obtained and, moreover, the catalysts were classi-

fied in terms of stability. In this case, a tubular flow reactor with 1-propanol solvent

was used to study the reaction sequentiality by varying the space time. Finally,

Gawade et al. (2016) studied the efficacy of a novel metal-acid palladium-cesium

dodeca-tungsto-phosphoric catalyst supported on clay, and proposed a kinetic model

based on the Langmuir-Hinshelwood-Hougen-Watson (LHHW) theory. In this re-

search, the product DMF was reported to be used as a potential biofuel additive.

Another approach was followed by Jain and Vaidya (2016) who studied the catalytic

hydrogenation of HMF to BHMF (the less hydrogenated intermediate before DMF)

using a 5% Ru/C aqueous phase as catalyst. Disappearance of HMF initial con-

centration was modeled using both power law and LHHW mechanisms: a model

based on the competitive adsorption of the reactants was proposed. Eventually, the

work of Gyngazova et al. (2017) represents possibly the most recent study that ex-

amines in details the reaction network, considering all the possible intermediates

and by-products, and proposes a suitable kinetic model. Also in this case, particular

attention to the mass transfer resistances and to the reaction rate determining step

13
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has been taken.

A brief summary of the different contributions on the HMF hydrogenation process

understanding is proposed in Table 1.2. Despite these findings, mostly oriented to-

ward the identification of the best catalyst, conditions or solvents to be used, the

study of identifiable kinetic models involving parameters that can be estimated in

a statistically reliable way, has not been addressed yet.

Table 1.2: Some researches regarding the HMF hydrogenation process.

Main findings Catalyst Reference

Reaction screening Pd/C Thananatthanachon and
Rauchfuss (2010)

Catalyst and sol-
vents investigation

SO−2
4 /ZrO2-TiO2, Ru/C Zhang et al. (2012)

Reaction parameters Pd/C Chatterjee et al. (2014)

Reaction mechanism Ru/C Hu et al. (2014)

Kinetic model, cata-
lysts comparison

Ni/Al2O3-SiO2, MoS2,
Pd/Al2O3-SiO2, Pd/C

Grilc et al. (2014)

Catalysts compari-
son

(Pt, Pd, Ir, Ru, Ni, Co)/C Luo et al. (2015)

Kinetic model 2Pd-20CsDTP/K-10 Gawade et al. (2016)

Kinetic model 5% Ru/C aq. Jain and Vaidya (2016)

Kinetic model Ni/C Gyngazova et al. (2017)

1.4 Introduction to model identification

A first-principle mathematical model consists in a series of analytical expressions

representing the phenomenological mechanism that links inputs with outputs: the

cause-effect relationships. Since the purpose of a model is to provide insights into

the dynamic response of a system, and to predict information to be used in substi-

tution of real measurements, its structure is usually developed according to a priori

knowledge given by the physical, chemical or biological laws that rule the system

itself. In chemistry, the aim of many researchers is usually to enhance the reaction

14
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efficiency by looking for the best combination of catalyst and experimental condi-

tions which maximize the conversion of reactants and the selectivity of products.

However, this method is all but straightforward: being mainly based on a trial-

and-error procedure, it might lead to long and expensive studies. It is clear the

need of representing the chemical systems differently, in order to describe complex

processes and reaction mechanisms in a less resource-demanding way. Since any

conclusion related to the process understanding must be proved by experimental

evidences, that has to be somehow generated, the chemical industry can benefit of

mathematical models by using them in substitution of real experiments, to make

predictions through the generation of in silico data. Thus, the model identification

is a procedure that aims at accomplishing two essential tasks:

1. defining the mathematical representation that better describe the reality among

several different alternatives that can be postulated by the researchers;

2. estimating in a statistically reliable way the non-measurable parameters -

physically meaningful or not - that are always included in the model structure.

It is clear that, in order to carry out the model selection, the mathematical struc-

ture proposed must be in possession of certain characteristics that makes it identi-

fiable. For this reason, the heart of the kinetic modeling can be seen as the study

of the model structure aimed at verifying the possibility of identifying each non-

measurable parameter in a statistically reliable way. In this Thesis, the main ob-

jective is to select a set of identifiable kinetic models through the application of

model identifiability techniques.

1.5 Identifiability analysis review

The importance of the identifiability analysis is given by the fact that the model

identification problem does not always involve a solution. About that, the iden-

tifiability problems can be divided into two different categories: structural (also

called a priori) and practical (also called local). Structural identifiability is, as the

name suggests, a property of the model structure and depends on the shape of the

differential equations used for the phenomenon description. Independently of the
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measured data and of their intrinsic uncertainty, the structural identifiability de-

termines the possibility of estimating the non-measurable model parameters. Prac-

tical identifiability, instead, depends on the specific experimental conditions consid-

ered: it may happen that the model parameters are identifiable, but the conditions

required to gather enough information violate the practical constraints associated

to constructive, safety and/or economical considerations. Many techniques have

been proposed for the structural identification of both linear and nonlinear systems.

Among them, Laplace transform and Lie derivatives (Walter and Pronzato (1996)),

power series extension (Pohjanpalo (1978)) and differential algebra (Margaria et al.

(2001)). Other recent systematic model-based procedures have been instead pre-

sented by Asprey and Macchietto (2000), Blau et al. (2008) and Kreutz and Timmer

(2009) to support the development and statistical verification of dynamic process

models described by DAEs.

It is anyway clear as the more complete the model is, in terms of physical and chemi-

cal laws involved, the better the phenomenon representation. However, each model

has usually different strengths and weaknesses based on its complexity and its

descriptive capability: a huge limit is usually given by the impossibility of measur-

ing directly certain variables or coefficients. For instance, it would not be possible

to detect some species if their concentration is below the precision of the instru-

ments used. Furthermore, it might happen that the estimation of some parame-

ters requires the execution of ad-hoc experiments for which specific equipment may

not available. An example is given by the adsorption coefficients whose measure-

ment usually require the application of High Performance Liquid Chromatography

(HPLC). Finally, it may happen that it is even not possible to identify separately dif-

ferent mechanisms because their effects overlap. Imagine the case of two parallel

reactions: their combined effect could be easily measured but the single contribu-

tions might be really difficult to discriminate. In this sense, a huge effort should be

put on developing simple models:

1. capable of giving accurate predictions in a wide range of experimental condi-

tions;

2. containing the lowest number of physically meaningful parameters.
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Complex models, involving many parameters, could return very good results when

used to fit the experimental data but their excessive complexity may require the

accomplishment of costly (both in terms of time and resources) experiments. So

far, it could also result in the identification of statistically unreliable parameters.

Anyway, despite the big advantage represented by the mathematical modeling of

reactive systems, the description of the reality is all but simple. To correctly rep-

resent the phenomenon under investigation, it is always required to perform some

experiments that allow to develop a new model or to estimate the parameters of an

already existing one. If these experiments are not properly designed, the informa-

tion gathered could not be properly exploited because the data:

1. are affected by uncertainty;

2. have been gathered in poorly informative regions of the design space.

To solve this problem, optimal design of experiments techniques are born with the

purpose of minimising the resources required to acquire the maximum information

on the observed system.

1.6 Design of experiments: an overview

The DoE born from statistical considerations, based on the fact that the identifica-

tion of a trustworthy model always relies on the conduction of highly informative

experiments. Since the collection of data may require extensive amounts of time

and resources, it is natural to wonder whether it is possible to plan carefully the

experiments. Even the more sophisticated numerical techniques may be ineffec-

tive on extracting useful information from poorly informative experiments. For this

reason, it is usually better to exploit mathematical techniques aimed at defining

the conditions that maximise the amount of information and allow to get statisti-

cally satisfactory estimations and predictions from the minimum amount of data.

These techniques represent a bridge between modeling and experimentation and

they are useful tools for a rapid evaluation and development of kinetic - more gen-

erally mathematical - models, through the enhancement of the information content

of each measure.
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The merit for the DoE invention belongs to Ronald A. Fisher. As the first person to

introduce this technique, in his celebrated book The design of experiments (Fisher

(1935)) he defined the fundamental basis for the so called factorial design. The first

objective was to analyse how the factors, or single design variables, must be modi-

fied to affect the system response in a certain way. Thus, in the factorial design, the

main purpose was the identification of relationships between factors and measured

variables - with the possibility of assessing also the interaction between factors -

through a variance analysis. In the next years further methods were developed by

Davies and van Dun En (1955), who applied the basic design techniques in fields

like agriculture and industry where no mathematical models were available. More-

over, the study of DoE techniques on systems where the information is null, was

extended by Box and Wilson (1992) who identified simple linear, parabolic, or at

most polynomial relationships between factors and system response. Later, Ljung

(1999) introduced the most common technique to pursue the identification of linear

systems: it implies the perturbation of the process with the assessment of its re-

sponse. For nonlinear systems, the choice of the experiments to be performed is less

trivial although the rationale is still the same: each experiment must be as most

informative as possible according to the amount of resources available. However,

to better understand the concept of information it is possible to consider what un-

derlined by Bard (1977). Transposed to chemical processes, the best experiment is

not the one that gives the highest conversion or the best selectivity, the best exper-

iment is the one that provides exactly the information required to reach a certain

objective. Indeed, even though, virtually, any new measurement increase the to-

tal knowledge about a certain system, only the designed experiments allow with

the lowest number of trials to collect the maximum amount of information needed

to tackle a certain problem (usually the parameter estimation). For this reason,

the DoE techniques have gained importance in all the research fields and all the

industries interested in developing new processes and/or optimising the existent

ones. Moreover, during the years people started to elaborate more advanced tech-

niques to address also the systems with an high number of factors: since some of

them could not play a significant role on the overall system response, if correctly

identified they can be excluded from the design in order to reduce the resource and
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computational expenditure.

1.6.1 Optimal Experimental Design (ODE)

This technique, which represents an evolution of the DoE, leads to the identifica-

tion of the factors that are more suitable to be modified in order to obtain a certain

response from the system. The rationale is that, for complex mathematical mod-

els that involve many measurable variables, it is better to discriminate the ones

that affect heavily the model response from the others. This screening leads to a

substantial decrease of the computation power and time required to perform the

experimental design. Transposed to the chemical kinetics, the intuitions and the

hypotheses on the ongoing phenomena can be many and the definition of a model

is all but simple: different assumptions has to be investigated and their adequacy

validated case by case. The different hypotheses may concern:

1. various reaction pathways, that represent the sequence of reactions leading

to obtain the product, starting from the reactant, through a certain number

of intermediate molecules;

2. peculiar adsorption mechanisms, that represent the way different molecules

are physically adsorbed and desorbed, hence withheld or released, from and

to the catalyst surface where the reactions usually take place.

In other words, through the optimal DoE it is possible to improve the informa-

tion acquired from each experiment. As a consequence, the weight of the model

identification task on the economy of the whole process development is remarkably

lower. Eventually, since usually there are no information about the system, these

techniques have been defined as black-box design of experiments. Along the years,

however, they have been applied to a wide variety of fields, among which chemistry

(Liang et al. (2001)), and they have been improved gradually to be used also when

the preliminary information is not null.
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1.7 Model-based design of experiments

The disadvantage on the application of black-box DoE techniques is that the amount

of data required to build the model is usually high, especially if measurable and

non-measurable variables are many. Moreover, even tough a relation between fac-

tors and response can be obtained, it is usually only locally reliable and it is not easy

to determine the magnitude of the extrapolation error. However, the advantage of

working with chemical and physical phenomena is that the preliminary knowledge

is not null. It is indeed possible to describe the systems using basic principles and

largely validated laws. The resulting deterministic or phenomenological approach,

implies the formulation of a model through which any measurement can be asso-

ciated to a precise value of variables and parameters. In these terms, the DoE

previously defined must be recast in order to consider also the information intrin-

sically included on the model structure which reflects the knowledge on the system

and can be used to predict the information content of an experiment. The resulting

model-based design of experiments techniques (MBDoE) have been firstly applied to

steady-state models, both linear and nonlinear, and a large number of studies, in a

wide range of disciplines, are available in literature.

Figure 1.2: Block diagram representing the evolution of the design techniques start-

ing from the standard DoE (1) to end with the more advanced MBDoE (3)

In Figure 1.2 it is reported the evolution of the DoE techniques. For each numbered

block at the center, the inputs are reported above while the outcomes below.
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MBDoE has been introduced by Box and Lucas (1959) who studied this strategy to

reacting systems in order to estimate the kinetic parameters of simple reactions.

Kiefer (1959) introduced the design criteria that defined the objective functions of

the deterministic optimisation framework, in which the differential and algebraic

equations that describe the underlying system are embedded. This so called "al-

phabetic criteria" represents the overall uncertainty of the system and have to be

minimised. Other authors such as Hunter and Reiner (1965) and Atkinson and

Fedorov (1975) followed the seminal work of Kiefer (1959) refining the model dis-

crimination criteria to select the best model among a set of candidates. In partic-

ular, they have been the first to develop model-based experimental design criteria

for model discrimination based on the distinct predictions between candidate mod-

els. Furthermore, some years later, Buzzi-Ferraris and Forzatti (1983) developed a

MBDoE criterion for the model discrimination based on the relative variability on

the predicted models responses. The same authors refined subsequently the crite-

rion to consider also multi-response systems (Buzzi-Ferraris et al. (1990)). Eventu-

ally, among the most important contributions to the study conduced in this Thesis,

Bard (1974) described how to apply to nonlinear parameter estimation problem the

optimal design criteria based on the maximisation of scalar value related to infor-

mation metrics: the most used, and further discussed in the next Chapter, is the

Fisher Information Matrix (FIM). The use of the FIM and other metrics, leads to

the possibility of exploiting the MBDoE to:

1. discriminate among a set of possible models (MBDoE for model discrimination

or MD);

2. estimate the unknown parameters with the desired accuracy (MBDoE for pa-

rameter precision or PP).

MBDoE for MD was introduced by Espie and Macchietto (1989) and it is, as an-

nunciated, the technique that allows the selection of the best model among a set of

candidates. It is based on the design of highly discriminative experiments through

which the difference between two, or more models, is enhanced. When the best

model is selected, the quality of the estimates associated to the non-measurable

parameters is assessed with specific statistical tests. Then, if the information is
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not enough, through the MBDoE for PP new experiments are specifically designed

to improve the unsatisfactory statistics to the desired level of precision (Galvanin

et al. (2007)). Thus, MBDoE techniques lead to save time and money collecting from

few targeted experiments more information of what it would be obtainable with nu-

merous experiments at the wrong conditions. Eventually, some applications of the

MBDoE have been proposed for biological systems by Espie and Macchietto (1989),

who were the firsts to formulate the MBDoE as an optimal control problem, and

Chen et al. (2004) for the accurate estimation of the model parameters. Some of the

more recent examples of MBDoE application are reported by:

1. Donckels et al. (2009) for the study of nine rival models that describe the

kinetics of an enzymatic reaction (glucokinase). A kernel-based method is

presented to determine optimal sampling times to simultaneously estimate

the parameters of rival models in a single experiment;

2. Schöneberger et al. (2009) for the catalytic SO2 oxidation, in order to define

a systematic approach based on nonlinear experimental design as an efficient

tool for the validation of kinetic models. In this case, since the optimization

problem contained a highly nonlinear objective function, a hybrid optimiza-

tion framework is proposed to overcome the problem of local minima;

3. Zhang et al. (2012) for the protein ion-exchange equilibrium, to develop an

efficient parallel/sequential design approach for the inclusion of practical re-

strictions in the optimization problem formulation such as maximal protein

amount available, maximal solubility of protein and salt, or special character-

istics of peak area determination during the measurement of protein concen-

trations using an analytical HPLC;

4. Galvanin et al. (2011) for the development of algorithms capable of tackling

complex nonlinear dynamic systems in a continuous way. The study claims

that current measurement technologies allow to perform measurements with

a frequency so high that can almost be assumed as continuous.

To conclude, MBDoE represent the final step of the design of experiment evolution.

It started from the intuition that designed experiments could have been more useful
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to pursue a certain objective, it has been refined with the introduction of the opti-

mal design to discriminate the best factors to consider as design variables, and it

has evolved into the model-based design of experiments to account the phenomeno-

logical nature of many systems.

1.7.1 Model discrimination and parameter precision pro-

cedures

The way a phenomenological model can be identified is really important. If no prior

information is available, preliminary experiments must be performed with the aim

of understanding the mechanisms embroiled in the phenomenon of interest. Thus,

especially when there are nonlinear phenomena involved, the number of alterna-

tives proposed to describe the system could be high: a selection must be performed.

The general procedure to follow is reported in Figure 1.3. It begins by defining a set

of candidate models that are retrieved from the literature or obtained through the

observation of the physical reality. On them, an identifiability analysis is conducted

to obtain a set of identifiable models and the MBDoE for MD is applied to generate

the optimal experimental conditions to be used for the parameter estimation. The

assessment of certain statistics, that will be discussed on the next Chapter, allows

to understand if the model is satisfactory from both structural and practical point

of view. When the statistics of some parameters are unsatisfactory, the MBDoE

for PP is applied until a positive result is obtained. Since the study presented in

this Thesis is more linked to the models identifiability, this aspect is further refined

introducing the more detailed procedure in Figure 1.4.

Since the model inadequacy may affect the MBDoE procedure, the importance of

the model identifiability study must not be underestimated. It can prevent the ex-

ecution of experiments that will never lead to a positive result, and can be largely

helpful when the rejection of a model wants to be further investigated either be-

cause the set of models available is not particularly large or because a mechanism

seems promising (perhaps it is effective in similar cases). Typically, starting from

the identification of all the variables that can be manipulated, some estimability

metrics are calculated. In this Thesis, the most used metrics are based on the cor-
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Figure 1.3: General procedure for the model identification and parameter estima-

tion staring from a set of candidate models.

relation between parameters. If this assessment is satisfied, the model is hold and

the analysis is repeated with another model of the available set. If it is not satisfied

for any value of the design variables, the model is discarded.
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Figure 1.4: Detailed procedure for assessment of the model identifiability staring

from a set of candidate models.
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CHAPTER 2
KINETIC MODEL IDENTIFICATION

TECHNIQUES

O NCE a kinetic model is available, experimental data have to be used to es-

timate its non-measurable parameters. It is clear as the accuracy of these

estimates increases with the quality of the data gathered. Not only precision and

repeatability should be achieved, the experiments should also be performed at the

conditions that maximize the information they carry for the parameter estimation

purpose. In other words, within the entire experimental domain – the space of all

the possible experimental conditions that can be experienced – an optimal region

has to be found. This Chapter illustrates the most important statistical analyses

that can be used to determine whether the structure of a kinetic model is identifi-

able and if it is possible to get satisfactory estimates for its non-measurable param-

eters.

2.1 Parameter estimation problem

Considering a generic system, a model represents the phenomenological mechanism

through which the different inputs affect the outputs. According to Bard (1974), a

standard reduced model can be defined as:

ŷ(t)= f(x(t),u(t),θ) (2.1)

where f is a vector of N f model equations, ŷ(t) is a vector of Nm measurable output

variables, x is a vector of Nx state variables, u is a vector of Nu input variables that

can be manipulated, θ is a vector of Nθ parameters that require estimation and t

is the time. The kinetic models belong to a large class of nonlinear deterministic
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dynamic structures that are described by a set of differential-algebraic equations

(DAEs). Thus, (2.1) can be recast in vectorial and differential form as suggested

by Asprey and Macchietto (2000) and Franceschini and Macchietto (2008) for the

general model M:

M :

 f (ẋ(t),x(t),u(t),w,θ, t)= 0

ŷ(t)=h (x(t))
(2.2)

where, regarding the new variables introduced, ẋ(t) is the vector of Nx differen-

tial variables, w is the vector of Nw input variables time independent that can be

manipulated, h is a function of the state variables and represents the set of rela-

tions between the variables ŷ(t) and the state variables. Moreover, the system (2.2)

undergo a set of initial conditions that, in the general form, are:

M :

 f
(
ẋ(t0),x(t0),u(t0),w,θ0, t0

)= 0

ŷ(t0)=h (x(t0))
(2.3)

On the one hand, by assigning a certain time-window, the simulation of the system

through the model requires the solution of (2.2), given initial conditions (2.3), time-

invariant inputs, manipulated inputs profiles and values for the model parameters.

On the other hand, under the assumption that the measured inputs are not affected

by significant errors, the parameter estimation problem can be represented as:

ŷi(t)− f (ẋ(t),x(t),ui(t),w,θ, t)= 0 ∀ i = 1, ..., Nexp (2.4)

with 0 as a null vector consistent with the dimensionality of the system. In other

words, the parameter estimation problem consists in the identification of the pa-

rameters set θ satisfying (2.4) for all the Nexp experiments performed. However,

considering the uncertainty intrinsically associated with the measurements, the

estimation problem becomes usually over-specified and a residual function must be

defined. In reality, satisfying (2.4) is indeed practically impossible because:

1. the measurable variables are affected by a certain error ε such that ŷi(t) =
y∗i (t)+ε;

2. the set of equations f is wrong or incomplete such that ŷi(t)−f (ẋ(t),x(t),u(t),w,θ, t) 6=
0 for every choice of θ.
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Then, in order to find an approximate solution, it is first required to define the so

called residual function for each variable and each data collected. At the purpose,

ρ i j represents the difference between measured and predicted values for each of the

j-th measurable outputs of the i-th experiment:

ρ i j(θ)= yi j − f (ẋ(t),x(t),ui(t),w,θ, t)= yi j − ŷi j(θ) (2.5)

The parameter estimation problem can be recast in terms of finding the set of pa-

rameters θ that minimises a certain objective function related to the just defined

(2.5). Moreover, to account the casual nature of the measurements, both measured

outputs and parameter estimations must be treated as random variables. Thus,

statistical concepts and derivations are used to describe properly the nature of the

parameter estimation problem.

2.2 Least squares method for non linear problem

Especially in data fitting, that represents its most important application, the least

squares method is used to approximate the solution of overdetermined systems. It

means that, by defining the residual as the difference between the observed value

and the value estimated through the model, the best fitting is the one that minimise

the sum of the squared residuals. Moreover, as a function of the residuals in all

the unknowns, two categories of least-square problems can be defined: linear and

nonlinear. While the linear case has a closed-form solution, the nonlinear problem

is solved approximating the system by a linear one for each iteration. It is called

iterative refinement.

Applied to the parameter estimation problem, the least squares method is recast in

terms of finding the best set of parameters that minimise the objective function Ψ

such that:

min
θ

{Ψ}=min
θ

{Nexp∑
i=1

Nm∑
j=1

[
ρ i j(θ)

]2
}

(2.6)

Notice that, although the least squares method can be used also for the parameter

estimation problem, it does not account for the uncertainty instrinsically related to

the measurements. Beside it has been demonstrated that in some specific cases the

results are identical (Charnes et al. (1976)), it is usually preferred to adopt other

objective functions.
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2.3 The likelihood function

The usefulness of the particular function defined in this section, becomes clear con-

sidering that a mathematical model should always consider the casual nature of

the measurements used for the identification, validation and estimation purposes.

Indeed, tools and equipment used to gather the data are always characterized by

some degree of accuracy that leads to the necessity of treating the resulting mea-

surements as random variables. A good model must then address the casual nature

of the measurements starting from the fact that the different data cannot be as-

sumed to have the same level of reliability. In other words, the disturbances must

be accounted as an integral part of the physical phenomenon under investigation.

To describe appropriately the events related to this kind of variables, the concept

of probability must be introduced. Specifically for the parameter estimation case,

this is the probability of getting certain data from an assigned model or theory, in

order to answer the question: when measurements are made, how likely is it to get

the same value through the specific model that involves the parameters to be esti-

mated? The answer is given by a joint probability density function called likelihood

function:

L(θ)≡ P[data|model]. (2.7)

Considering the most common case in which the measurement errors (y = ŷ+ε)

are normally distributed random variables with zero mean and a certain standard

deviation σi j, the shape of the likelihood function is a Gaussian more or less broad

(see Figure 2.3).

If the model is exact, there is a value for the set of parameters (θ̂) for which the

prediction of the measurable outputs satisfy (2.4). The residuals follow the same

distribution of the measurement errors such that:

ρ i j(θ∗)= yi j − ŷi j(θ∗)= yi j − y∗i j . (2.8)

Under the assumption that the model is exact and through (2.8), the residuals

ρ i j(θ∗) can be assumed as random variables completely uncorrelated and normally

distributed with zero mean and the same standard deviation σi j of the measure-
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Figure 2.1: Comparison of the shape the Likelihood function can assume as a func-

tion of the variance associated with the parameter estimation.

ments. Thus, (2.7) can be written in explicit form as:

L(θ)≡
Nexp∏
i=1

Nm∏
j=1

1√
2πσ2

i j

exp
− 1

2

(
ρi j (θ)
σi j

)2

(2.9)

that is the joint probability density function of the residuals, named likelihood func-

tion.

At this point, to address the parameter estimation problem, it is possible to consider

the two distributions in Figure 2.1. First, assuming to look for the set of parame-

ters that gives a certain value of the measurable outputs ŷi j(θ), it is clear as the

red curve leads to a more accurate result: even small variations around the exact

value of the parameters θ∗ make the model outcome inconsistent. In the other case

instead, when the distribution is very broad, a peak still exists at θ∗ but there is

also a good deal of likelihood at some distance away from it. That is, with the black

distribution, consistent data can also be obtained when the values of the model pa-

rameters are significantly different from θ∗. Thus, the likelihood function can be

used to understand how the data are constrained to the assigned theory, or model,

and the narrower the range of values that satisfies the data, the more accurate the

estimation itself. Giving a set of measurements, the parameter estimation problem

reduces to the identification of the parameter values θ̂ that maximise the objective

function L(θ) and lead to final residuals distributed like the corresponding mea-
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surement errors. The technique is called maximum likelihood estimate (MLE):

max
θ

{L(θ)}=max
θ


Nexp∏
i=1

Nm∏
j=1

1√
2πσ2

i j

exp
− 1

2

(
ρi j (θ)
σi j

)2
 . (2.10)

To reduce the probability of occurring in numerical errors due to the complexity of

the problem, it is usually better to adopt the natural logarithm. Since it represents

a monotonic increasing function of its argument, the solution that maximises L(θ),

maximises also ln(L(θ)). The corresponding objective function (Bard (1974)) is:

max
θ

{ln(L(θ))}=max
θ

ln

Nexp∏
i=1

Nm∏
j=1

1√
2πσ2

i j

exp
− 1

2

(
ρi j (θ)
σi j

)2


 . (2.11)

Eventually, although the assumption of having an exact model is necessary to as-

sume residuals and measurement errors follow the same distribution, all the pre-

vious findings hold also when a model represents only a good approximation of the

reality. With these so called quasi-exact models, the discrepancy between reality

and predicted values is usually detected through specific analyses capable of iden-

tifying the lacks on the model descriptive capability. These tests, as the χ2-test

discussed later on, can be performed a posteriori. Nevertheless, the possibility of

finding an optimal point always depends on the model structure: before starting any

estimation procedure, it is extremely important to verify the model identifiability.

2.4 Model identifiability

Structural (or a priori) identifiability analysis must demonstrate the possibility of

identifying the parameters as a property of the model, independently of the mea-

sured data and their uncertainty. Local identifiability is also performed a priori

but it is valid only for a specific configuration of the system: it represents a weaker

notion in respect to the structural identifiability. According to Saccomani P. et al.

(2003), a model can be:

1. a priori globally (or uniquely) identifiable when

M(θ)=M(θ∗) (2.12)

has the only solution θ=θ∗ for all the initial states x(t0);
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2. locally identifiable when (2.12) has a finite number of solutions;

3. unidentifiable when the number of solutions for (2.12) is not defined and, in

particular, when it is satisfied for any value of θi.

Several authors tried to propose general guide lines to solve the identifiability prob-

lem. Unfortunately, the structural identifiability for a nonlinear model is usually

tough to tackle and cannot be treated in a general way: the solution usually de-

pends on the modeler experience. Thus, the impossibility of defining a standard

way to test the global identifiability led to the development of numerical methods

aimed at checking at least the local identifiability.

2.4.1 Sensitivity analysis

Among the several techniques available, the most simple and popular is the sen-

sitivity analysis: it represents the study of the model response when the value of

the parameters θ̂ is varied around their real value θ∗. It can be considered as the

investigation of how the uncertainty in the measurable outputs of a model can be

allocated to different sources of variation in the inputs (Saltelli (2002)). For the

parameter estimation problem, it leads to assess how the model response ŷ is af-

fected by a small variations on the parameter set θ̂. Thus, it practically consists on

changing one factor at a time – in respect to a nominal case – and evaluating the

partial derivative of each output with respect to each input. The goals are:

1. identifying the parameters that affect most the model response(s);

2. determining the amount of information available for certain experimental

conditions;

3. obtaining advices about the correlation between model parameters.

Virtually, from the sensitivity analysis, it is possible to derive the most important

metrics used for the model identifiability study and for the optimal design of exper-

iments. Thus, the local sensitivities for any m-th measurable output are evaluated

at each sampling time and the result is the nsp ×Nθ matrix that follows:
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Qm =


∂ ŷm

∂θ1

∣∣∣
t1

. . .
∂ ŷm

∂θNθ

∣∣∣
t1

... . . . ...
∂ ŷm

∂θ1

∣∣∣
tnsp

. . .
∂ ŷm

∂θNθ

∣∣∣
tnsp

 ∀ m = 1, ..., Nm (2.13)

These outputs can be converted to a 3D matrix (see Figure 2.2) containing all the

sensitivities for each output, in respect to each parameter, at any time. In partic-

ular, while the third dimension of this 3D matrix represent the sampling time, the

first two dimensions consist of a Nm ×Nθ matrix of local sensitivities:

Q(t)=


q1,1(t) . . . q1,Nθ

(t)
... . . . ...

qNm,1(t) . . . qNm,Nθ
(t)

=


∂ ŷ1(t)
∂θ1

. . .
∂ ŷ1(t)
∂θNθ

... . . . ...
∂ ŷNm(t)
∂θ1

. . .
∂ ŷNm(t)
∂θNθ

 (2.14)

where qi j(t) represents the local sensitivity of the i-th output ŷi in respect to the j-

th parameter θ j at any time t. Repeating the matrix above for each sampling time,

it is so possible to build layer by layer the 3D matrix reported in Figure 2.2. The

convenience of computing a matrix like this, is that with simple permutations it is

possible to obtain a wide range of information.

Figure 2.2: Schematic representation of the 3D sensitivity matrix.

At this point, in order to understand if a model is identifiable, the estimability

matrix can also be assembled. It is a Nmnsp ×Nθ matrix, based on the local sensi-
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tivities, such that:

PE =


Q(t1)

...

Q(tnsp )

=



∂ ŷ1

∂θ1

∣∣∣
t1

. . .
∂ ŷ1

∂θNθ

∣∣∣
t1

... . . . ...
∂ ŷNm

∂θ1

∣∣∣
t1

. . .
∂ ŷNm

∂θNθ

∣∣∣
t1

...
...

...
∂ ŷ1

∂θ1

∣∣∣
tnsp

. . .
∂ ŷ1

∂θNθ

∣∣∣
tnsp

... . . . ...
∂ ŷNm

∂θ1

∣∣∣
tnsp

. . .
∂ ŷNm

∂θNθ

∣∣∣
tnsp



(2.15)

where Q(ts) are the Nm × Nθ matrices of local sensitivities for each nsp-th sam-

pling time. Shaw (1999) underlines that a model can be classified as identifiable

if rank(PE) < Nθ, that is satisfied when each column of the matrix is indepen-

dent on the others. Besides, although the sensitivity analysis is a really versatile

tool, it could result very complex to represent even when the number of parameters

or outputs is not really high: it always involves Nm × Nθ × Nsp × Nexp sensitivity

terms. For this reason, it is usually more convenient to define other metrics capable

of giving a suitable scalar measure of the correlation and the information available.

2.5 Information metric

In order to mathematically define the concept of information, it is firstly required

to introduce the Hessian matrix. Given a scalar-valued function Φ in n variables,

the Hessian is a square matrix n×n of its second-order partial derivatives:

H= ∂2Φ

∂u∂u
(2.16)

Since it describes the local curvature of a function, it can be usefully applied to the

parameter estimation problem. In particular, when the scalar-valued function Φ is

the logarithm of the likelihood function, the resulting Hessian is called Fisher infor-

mation matrix (FIM). It allows to quantify the amount of information available for

each parameter that requires estimation. There are indeed two aspects to consider:

1. the ease of reaching the desired accuracy on the estimation depends on the

information available for each parameter;
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2. the information carried by different measurable variable may vary consider-

ably.

On the one hand, the Fisher information matrix analysis can help to identify in

advance the parameters that require more attention – meaning that more experi-

ments will be probably required for them – while, on the other hand, it allows to

figure out the contribution of each measurable variable to the overall information

content. The rationale is that it does not make sense to spend effort and resources

to measure something that does not substantially contribute to improve the estima-

tion quality.

However, to finally find the mathematical link between Fisher matrix and sensi-

tivity analysis, it is required first to consider totally uncorrelated measurable vari-

ables. As already specified, the function Φ must be the log-likelihood such that:

Φ= ln
(
L(θ̂)

)=−1
2

Nexp∑
i=1

Nm∑
j=1

[
ln

(
2πσ2

i j

)
+

(
ρ i j(θ̂)
σi j

)2]
(2.17)

Thus, the Hessian turns out to be a matrix containing the second-order partial

derivatives of the measurable outputs y in the unknown parameters θ and (2.16)

can be re-formulated as:

H=−∂
2ln

(
L(θ̂)

)
∂θ∂θ

=
Nexp∑
i=1

Nm∑
j=1

[
1
σ2

i j
∇yi j ·∇yT

i j

]
(2.18)

From (2.18) it is possible to calculate the Nθ elements of the FIM as the elements

of the Hessian associated to the function Φ, such that the kl-th element can be

calculated as:

[H]kl =−
[
∂2ln

(
L(θ̂)

)
∂θ∂θ

]
=

Nexp∑
i=1

Nm∑
j=1

[
1
σ2

i j

(
∂ ŷi j

∂θk

∂ ŷi j

∂θl

)
+ 1
σ2

i j
( ŷi j − yi j)

∂2 ŷi j

∂θk∂θl

]
(2.19)

which can be greatly simplified under the assumption that the residuals ρ i j = ŷi j −
yi j are small enough:

[H]kl u
Nexp∑
i=1

Nm∑
j=1

[
1
σ2

i j

(
∂ ŷi j

∂θk

∂ ŷi j

∂θl

)]
(2.20)

where the partial derivatives of the estimated outputs in respect to the non-measurable

parameters are the previously defined sensitivities.
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2.5.1 Information content representation

In most of the cases where the aim is only to collect preliminary information about

the problem to be tackled, it is less time expensive to calculate only the FIM trace:

T [H]kl =
Nθ∑
k=1

Nexp∑
i=1

Nm∑
j=1

[
1
σ2

i j

(
∂ ŷi j

∂θk

∂ ŷi j

∂θl

)]
. (2.21)

When its elements are close or equal to zero for any experimental condition, the

associated parameters are tough to identify. Notice anyway that the information

content, hence the possibility of estimating a parameter in a statistically reliable

way, strongly depends on the sampling procedure adopted. Different procedures

differ for:

1. abundance of samples;

2. distribution of the samples in the time interval considered.

The ideal case is represented by a continuous sampling that leads to the identi-

fication of the full information profile along the experiment time. Trivially, the

more abundant the samplings, the higher the knowledge about the phenomenon of

interest but unfortunately, in reality there are several constraints that prevent a

frequent sampling. Furthermore, there is no reason on having all the samplings

concentrated in a time-window where they cannot catch the most from the experi-

ment because the information at that moment is low. Thank to these features, the

FIM and its trace have been largely adopted in this Thesis. Notice however that,

in any case, the analysis of the trace is not enough to declare a model as unidentifi-

able: it considers neither the correlation between parameters nor the region of the

experimental domain explored.

An example of Fisher trace profiles is illustrated in Figure 2.3. In the first plot (a) it

is reported the overall profile given by the sum of the information available for each

parameter at any time. The area under the curve is filled because through integra-

tion over the time, it is possible to obtain the total amount of information collectable.

Besides, (b), (c) and (d) shows how the information can be decomposed for the single

parameters. Eventually, (e) gives an idea of the best way to summarise the differ-

ences in the information content available for the single parameters, against the

total.

36



KINETIC MODEL IDENTIFICATION TECHNIQUES

(a) Total information available (b) Information available for θ1

(c) Information available for θ2 (d) Information available for θ3

(e) Bar plot for comparison of the total information available

Figure 2.3: Illustration of the Fisher trace decomposition in the single parameter

contributions for a general model involving 3 parameters. Information profiles and

comparison of the area below each curve through the use of a bar plot.

2.6 The Variance-Covariance Matrix

The understand how to exploit the covariance in terms of variance-covariance ma-

trix, the parameter estimation problem has to be addressed directly. It has been
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already demonstrated how to estimate a set of parameters, the maximum of the

likelihood function must be determined. However, since the measurements are al-

ways affected by uncertainty – reason for which the variables are assumed to be

random and normally distributed – it is not possible to consider the parameter esti-

mation θ̂ as true. Indeed, any estimate must always be related to a certain level of

confidence that depends on the reliability of the data gathered. To understand the

effect of a certain variability, the impact of a measurements variation on the esti-

mation result, must be assessed. The purpose is to determine how the location of

the likelihood function optimal point is affected by the intrinsic uncertainty of the

measured values, used to perform the estimation. First, considering all the mea-

surable variables y for all the sampling points and all the experiments, the optimal

point of the log-likelihood function represents the place where the following must

hold:
∂ln

(
L(θ̂,y)

)
∂θ

= 0 (2.22)

with the left-hand side term that represents all the partial derivatives of the loga-

rithmic likelihood function with respect to all the parameters. At this point, looking

for the curvature of the objective function means looking for an indication of how

fast the log-likelihood function itself falls off from the optimal point. Hence, if it

falls off very quickly, the data are relatively constrained to the model. However, if

it falls off very slowly, the data do not feel this constraint and the optimal region

turns out to be wider. Translated in terms of information, if the likelihood function

is sharply peaked with respect to θ̂, the data provide a lot of information and only

few measurements are required to reach the desired accuracy. Contrarily, when the

likelihood is flat and spread-out, the estimation takes many experiments to be sat-

isfactory. Assuming now the ln(L(θ)) function as continuous, a small variation of

the measurable variables determines a small shift of the optimal point, such that:

∂ln
(
L(θ̂+∂θ̂,y+∂y)

)
∂θ

= 0 (2.23)

Thus, the Taylor expansion of (2.23) gives:

∂ln
(
L(θ̂+∂θ̂,y+∂y)

)
∂θ

u
∂ln

(
L(θ̂,y)

)
∂θ

+ ∂2ln
(
L(θ̂,y)

)
∂θ∂θ

∂θ̂+ ∂2ln
(
L(θ̂,y)

)
∂θ∂y

∂ŷ (2.24)

Considering (2.22) and (2.16), by simple substitutions and rearrangements the vari-
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ation of the estimated value for the parameters shift ∂θ̂ can be obtained.

∂θ̂u−H−1

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)
∂yu−FIM−1

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)
∂y (2.25)

From (2.25), it is possible to introduce the covariance matrix that represents the

expected value for the squared residuals of the parameters or, in other words, the

difference ∂θ̂ between the parameters before the shift and their expected value E(θ)

such that:

Vθ ≡ E
{
[θ−E(θ)] [θ−E(θ)]T

}
(2.26)

Assuming then E(θ) = θ̂, and replacing (2.25) into (2.26), the variance-covariance

matrix turns to be:

Vθ ≡ E


[
−H−1

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)
∂y

][
−H−1

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)
∂y

]T
 (2.27)

Vθ ≡ E

−H−1

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)
∂y∂yT

(
∂2ln

(
L(θ̂,y)

)
∂θ∂y

∂ŷ

)T

H−1

 (2.28)

where ∂y∂yT represents the variance-covariance matrix VZ of the measurements.

This derivation brings, eventually, to the formulation of Bard (1974). He demon-

strated the validity of the following approximation specifying that, by increasing

the measurements variance, hence improving the fitting of the model, the approxi-

mation quality improves as well.

VθuH−1 (2.29)

In (2.29), the Hessian matrix can be referred to any type of objective function: in

this work it is assumed to be the FIM. Furthermore, the implication of the just de-

rived formulation is in agreement with the Hessian definition and represents the

link between the likelihood function and the reverse of the variance-covariance ma-

trix. Specifically, it tells how curved is the ln(L(θ)) around the optimal point: the

higher the values of the FIM elements, the more curved and peaked the likelihood

function and, eventually, the greater the covariance reduction.

To conclude, the representation of the covariance trend along a hypothetical cam-

paign of experiments, underlines the different contribution of each experiment on

the covariance reduction and permit to figure out which are the best conditions to

ensure a statistically reliable estimation.
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2.7 The matrix inversion problem

The study of the covariance trend, hence the evolution of the variance-covariance

matrix during a theoretical campaign of experiments, leads to identify the best ex-

perimental conditions to be used for the estimation purposes. However, considering

(2.29), it is extremely important to underline as the computation of a matrix inverse

requires some caution. In particular, for a matrix to be invertible, its determinant

cannot be zero or even close to. Often, especially in the study of complex kinetic

models, this condition does not occur and the reasons for that are essentially two:

1. the FIM is singular;

2. the FIM is ill-conditioned or bad-scaled.

In general, if the sensitivities of some parameters are really low, the elements of

the FIM are small and the matrix turns out to be singular. The same problem

of ill-condition comes out by the eigenvalues analysis: they should be positive for

definition of the variance-covariance matrix itself – such that it results to be positive

semidefinite – but instead some negative values appears because numerical errors

arise when the sensitivities are extremely low. To counteract that, several methods

for modifying symmetric indefinite matrices have been developed (e.g. Nocedal and

Wright (1999)). These methods include eigenvalues modification by flipping the sign

of the negative ones, addition of a multiple of the identity and Modified Cholesky

Factorization in its many variants (Dereniowski and Kubale (2004)). Unfortunately,

once these modifications are done, it is still not well clear how to come back with a

well-posed FIM and, for this reason, they represent a risk that researchers usually

prefer to avoid: it would compromise the statistical significance of the results.

2.7.1 Condition number

The condition number is an index used in numerical analysis to assess how much

the outputs of a function can change for a variation on its inputs. It represents, in

other words, the sensitivity of a function to inputs variations.

A~x =~b (2.30)
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Considering (2.30), the main issue is that very small changes in~b can lead to huge

changes in~x. This is very critical in the case~b represents any kind of measurement

affected by any sort of errors. From a formal point of view, when this index is used

to assess the condition of a matrix, the way in which it can be calculated depends on

the matrix norm used: norm-1, norm-2, Frobenius or Infinite. However, assuming

to have a symmetric and diagonalizable matrix and to use the norm-2, the condition

number is given by the ratio between the highest and the lowest eigenvalue of the

matrix itself (see Appendix A).

CN(A)= max(λi)
min(λi)

(2.31)

The larger CN, the worst the condition of matrix and system. Specifically, a matrix

is defined well-conditioned when this number is small or ill-conditioned when the

number is large.

2.7.2 Singular Value Decomposition

The Singular Value Decomposition is a factorization technique for matrices, based

on eigenvalues and eigenvectors, that is particularly suitable to define an approxi-

mation for the matrix inverse (also called pseudo-inverse) of a rectangular matrix.

In the modeling environment, it can be used to provide an approximation of the

variance-covariance matrix when the FIM turns out to be non-invertible. Consider-

ing a generic matrix A, it can be decomposed as:

A=UDVT (2.32)

where D is a singular values matrix of non-negative diagonal elements in decreas-

ing order and U and V are two unitary matrices. According to Trucco and Verri

(1998), if A is singular or ill-conditioned, an approximation for its inverse is:

A−1 = (UDVT)−1 ≈VD−1
0 UT (2.33)

D−1
0 =

 1/δi if δi > ε;
0 if δi ≤ ε

(2.34)

where ε is a small threshold that is usually around 10−10.

Notice that, although the technique allows to compute the matrix inverse, the result

41



CHAPTER 2

represents still an approximation and the product between A−1, estimated via (2.34)

and the original matrix A does not give back the identity matrix I.

2.8 Analysis of parameter estimation results

The assessment of the diagonal values of the variance-covariance matrix, hence the

variances associated to the parameter estimates θ̂, is essential to acquire prelimi-

nary information about the most critical parameters. Moreover, the same metrics

allows also to understand whether a model is structurally weak or not. As high-

lighted by Emery (2001), to establish the statistical quality of the estimated param-

eters, two main aspects must be satisfied:

1. accuracy, that represents the proximity of the estimate to the true unknown

real value;

2. precision, that is given by the definition of the smallest uncertainty region.

When the parameter estimation is performed, the objective is then to identify a

set of parameters whose values are confined within a restricted confidence region,

thank to the information gathered through the measurements.

2.8.1 The t-test

Any statistical test whose aim is to assess the validity of an hypothesis, and in

which the test statistic follows a Student’s t-distribution under the null hypothesis,

is referred as a t-test. First, the concept of hypothesis verification must be intro-

duced: it is an inferential procedure consisting on the formulation of a hypothesis

regarding an unknown parameter of the population which then, on the basis of a

random sample, involves the decision of whether the parameter is reliable or not.

According to Neyman and Pearson (1933), the hypothesis system is composed by:

1. a null-hypothesis (H0) that must be verified. It has been formulated before

the collection of the sample and represents the actual knowledge about a phe-

nomenon;

2. an alternative-hypothesis (H1) that represents the new hypothesis formulated

on the basis of a new knowledge or a new belief of the researchers.
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The null-hypothesis is the one to be verified: it represents a conservative behaviour

that allows to reject the previous knowledge only in presence of strong adverse

evidences. Commonly, the t-test is applied when the test statistics can be normal-

ized to a Student’s t-distribution with a certain degree of freedom and it can be

used, for instance, to determine if two datasets are significantly different from each

other. However, dealing with parameter estimates, the aim is to assess the statis-

tical quality of the parameters and, in order to do that, it is required to assess how

large the confidence region of a parameter is, compared with its absolute value. In

other words, the purpose is to analyse the value of each estimated parameter in

respect to its confidence range. For this reason, it is usually preferred a one-tailed

t-test with 95% of confidence, in which the alternative hypothesis is that the true

value of a parameter lays in a range of approximately 2 standard deviations (SDVs)

of a Student’s t-distribution estimated from the available samples.

Assuming the experimental data are gathered through a campaign of Nexp, each

characterized by Nsp measurements, and Nθ is the number of parameters to esti-

mate, the reference distribution has Nexp ×Nm −Nθ degrees of freedom and mean

of θ̂i for each parameter that requires estimation. In these terms, the t-test for a

generic α level of confidence turns to be:

θ̂i

t
(
1−α

2
NexpNm −Nθ

)
·√Vθ,ii

> t
(
1−α

2
NexpNm −Nθ

)
∀i = 1, ..., Nθ (2.35)

where the t-values in both left-hand side and right-hand side terms of (2.35) are

usually evaluated from the reference Student’s t-distribution at the cumulated prob-

ability of 0.975 and 0.950 respectively. Eventually, the parameter estimation is sta-

tistically satisfactory when (2.35) is satisfied and, moreover, the higher the t-value,

the higher the estimates accuracy. Unfortunately, the t-test does not give infor-

mation about the covariance of the system, hence the possible correlation between

parameters: if high correlation is present, a multivariate normal analysis is a better

choice and, for instance, a Hotelling t2-test can be performed.

2.8.2 The χ2-test

Since in the conventional parameter estimation problem the model is used to fit a

set of data, a measure of the fitting quality is required. Thus, as for the t-test, the
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χ2-test is a statistical tool that exploits a χ2-distribution to verify a null-hypothesis.

It is widely adopted to verify if the differences between observed and attended

events are statistically meaningful or just related to the random nature of a vari-

able. Indeed, the model proposed might not be suitable for representing exactly the

physical phenomenon and this can affect the experimental data fitting. Perhaps,

the parameter estimates could be obtained with acceptable accuracy but if the fit-

ting quality is poor, the model cannot be used to make accurate predictions. For

this reason, the χ2-test allows to understand if the residuals computed at the end

of the parameter estimation are due to measurement errors or lack in the model

descriptive capability.

Let us assume that the reference distribution has again Nexp × Nm − Nθ degrees

of freedom. Since the measurable variables have been assumed to be random and

normally distributed, if the sum of the Nexp ×Nm −Nθ random variables is smaller

than the reference value χ2
re f , with a 95% of confidence the residuals are only due

to measurements errors. At this purpose, the sample statistic is given by the sum

of weighted residuals squared:

χ2 =
Nexp∑
i=1

Nm∑
j=1

[
ρ i j(θ̂)
σi j

]2

(2.36)

When a model is capable of characterizing a phenomenon, and when the sample is

sufficiently representative of the entire population, the estimates are expected to be

very close to their true value as well as the predicted profiles for the variables in-

volved. As a consequence, the residuals would be errors normally distributed such

that χ2 ≤ χ2
re f or, in the opposite case, either the assumption of having normally dis-

tributed errors with a certain SDV is wrong or the model is not suitable to represent

the data.

2.8.3 Ellipsoids of confidence

The variance-covariance matrix Vθ defines an uncertainty region that is strongly

related to the estimates precision. The graphical representation of this confidence

interval is significantly helpful to understand whether the estimated parameters

statistically satisfactory or not. The so called ellipsoids of confidence are 2D rep-

resentations in the Nθ-dimensional parameters domain that enclose the region of
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all the possible values the parameters can assume within a fixed level of confi-

dence. In this sense, they allow to consider the intrinsic uncertainty on the esti-

mates as a consequence of the data variability. Three distinctive features, given by

the fact that these ellipsoids are obtained from the variance-covariance matrix, are

acknowledged:

1. the ellipse major axis is determined by the highest value of variance - the

direction of highest variability - while the minor axis by the lowest one;

2. when the co-variance terms are null, Cartesian and ellipse axes are parallel

and it is possible to step change the value of a parameter without affecting

the others (no correlation is present);

3. when the co-variance terms are not null, the ellipse is oblique and the incli-

nation is positive or negative as a function of the correlation.

2.8.4 MBDoE criteria based on the ellipsoids of confidence

By improving the estimates quality through the enhancement of the information

available, the size of the region of confidence is expected to shrink. Formally, the

objective is to minimise some scalar measure φ of the variance-covariance matrix

and, in order to do that, several real-valued functions can be suggested: each of

them tries to represent a measure of smallness for the magnitude of the variance-

covariance matrix. Thus, the most commonly used design criteria are the so defined

"alphabetic criteria" by Kiefer (1959).

1. A-optimality: minimise the Vθ trace and corresponds to minimising the sum

of the variances for the individual parameter estimated or, in other words,

the dimensions of the smallest polyhedron in the Nθ-dimensional hyperspace

within which the confidence ellipsoid can be inscribed: φA(Vθ)= 1
Nθ

Nθ∑
k=1

(Vθ)k,k;

2. D-optimality: minimise the Vθ determinant and corresponds to minimising

the volume of the confidence ellipsoid itself: φD(Vθ)= det(Vθ)
1

Nθ ;

3. E-optimality: minimise the largest eigenvalue of Vθ hence the length of the

confidence ellipsoid longest axis with the aim of rendering the confidence re-

gion as spherical as possible: φE(Vθ)=λmax(Vθ)

The previous design criteria can be geometrically interpreted as shown in Figure
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(a) Geometrical representation of the design

criteria.

(b) Shrinking of the confidence region thanks

to DoE application.

Figure 2.4: Geometrical representations of the ellipsoids of confidence criteria and

confidence region shrinking due to the application of DoE techniques.

2.4a while in Figure 2.4b it is illustrated an example referring to the confidence

region reduction for the estimation of a couple of parameters, before and after the

application of MBDoE techniques. It is interesting that, even in the case the param-

eter values do not change, the reduction of the ellipsoid size makes the parameter

more reliable.

2.9 Parameters correlation metrics

The importance of the correlation metrics is related to the need of verifying the

existence of structural identifiability issues that prevent from obtaining reliable

predictions from the model. To the purpose of illustrating the correlation effect in a

comprehensive manner, let us consider the following model:

y= (θ1 −θ2)u (2.37)

Assuming that y and u are measurable without uncertainty, two experiments are

performed to collect the following (u,y) data points: (1,1) and (2,2). Using the least

squares method introduced in a previous section, the parameter estimation problem
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reduces to the solution of the following system:
∂S
∂θ1

= 0= θ1 −θ2 −1

∂S
∂θ2

= 0= θ2 −θ1 −1
(2.38)

Unfortunately, it represents an undetermined system that admits infinite solutions.

The consequence of this intrinsic weakness of the model, related to the structure of

(2.37), is that the parameters cannot be identified separately. Specifically, given a

value for (θ1 −θ2) there are infinite combination of θ1 and θ2 that satisfy (2.37).

While for a simple model a careful analyst can easily detect the correlation prob-

lem, in chemical kinetic models the structure of the equations and the number of

parameters involved, make the analysis not straightforward. For this reason, to

assess the presence of critical correlations between non-measurable parameters, a

comprehensive metric must be used. There are different ways in which the cor-

relation matrix can be calculated, the following techniques are considered in this

Thesis:

1. the estimability matrix PE built on the sensitivities;

2. the Fisher information matrix.

It is also important to acknowledge that the correlation matrix depends on the ex-

perimental conditions considered. It could happen that in some regions of the ex-

perimental design space couples of parameters show a certain correlation while, in

other regions, this correlation is different.

2.10 gPROMS ModelBuilder®

gPROMS ModelBuiler® 5.0.2 is an advanced process modeling environment devel-

oped by Process System Enterprise (PSE), that has been used to accomplish most

of the analyses presented in this Thesis. It allows to build, validate and execute

custom process models of virtually any level of complexity. It includes also a pow-

erful optimisation environment that allows to determine the optimal solution in a

more direct way rather than the standard trial-and-error procedure. Moreover, its

computational framework lets the user to deal with advanced nonlinear dynamic
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model simulations and leads to the possibility of validating the models against ex-

perimental data, using built-in advanced parameter estimation techniques.

For the solution of nonlinear algebraic sets of equations there are two standard

mathematical solvers named BDNLSOL and SPARSE. They are especially designed

to deal with models characterized by large and sparse systems of equations in which

the variable values must stay within specified lower and upper bounds. Thus, sim-

ulation, optimisation and parameter estimation activities make use of these solvers

especially because they can handle situations in which some of the partial deriva-

tives of the equations, with respect to the variables, are available analytically while

the rest have to be approximated.

To solve the differential-algebraic systems instead, gPROMS implements other two

advanced solvers named DASOLV and SRADAU. These are standard mathematical

solvers for the solution of mixed sets of differential and algebraic equations, that are

designed to work with large and sparse systems characterized by bounded variable

values. Moreover, they are capable of dealing with situations in which some of the

partial derivatives of the equations with respect to the variables are analytically

available while the rest have to be numerically approximated. Finally, their pecu-

liarity is that they automatically adjust each time step in a way the error incurred

in a particular variable, over a single time step, must not exceed a certain limit

that is function of the absolute tolerance, relative tolerance, and variable absolute

value.

Eventually, for the optimisation purposes, there is one standard solver based on

a control vector parametrization (CVP) approach that assumes, over a specified

number of control intervals, that the time-varying control variables are piecewise-

constant or piecewise-linear. It is applicable to large problems: the number of con-

trol variables is usually a small fraction of the total and then the algorithm has to

deal only with a relatively small number of decisions. The name of this solver is is

CVP_SS.

The characteristics of the five solvers aforementioned are briefly resumed below:

1. BDNLSOL is the acronyms of Block Decomposition Non-linear SOLver. It is

a modular solver based on a novel algorithm which is particularly suitable

when the model involve "if" conditions that, mathematically, represent sym-
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metric discontinuities. The reduction of the nonlinear equation sets to a block

triangular form, permit the use of any other nonlinear solver to compute the

individual blocks;

2. SPARSE solver is designed to solve nonlinear algebraic systems using a so-

phisticated implementation of a Newton-type method. It is a true solver com-

ponent that does not use the block decomposition;

3. DASOLV is a solver that has been proved to be efficient in several situations

and it is based on the variable time step method called Backward Differenti-

ation Formulae (BDF). Notice that for highly oscillatory problems, with fre-

quent discontinuities, it suffers from loss of stability;

4. SRADAU solver is particularly useful when the models involve transport phe-

nomena or frequent discontinuities. Based on a variable time step fully-

implicit Runge-Kutta method, it is suitable to solve problems arising from the

discretisation of partial differential algebraic equations (PDAEs). Contrarily

to DASOLV, it can address highly oscillatory ODE systems;

5. CVP_SS is used to solve steady-state and dynamic optimisation problems

involving both discrete and continuous variables. It implements a "single-

shooting" dynamic optimisation algorithm based on a single integration of

the dynamic model over the entire time horizon.

Among these five, SPARSE, DASOLVE and CVP_SS have been largely used for the

analyses performed in this study. Other features of the software, including the tools

for model validation, have been largely exploited too.
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KINETIC MODELS OF HMF

HYDROGENATION AND PROCESS
DESCRIPTION

S INCE HMF hydrogenation can be considered as a relatively new process - one

of the first studies has been published by Thananatthanachon and Rauchfuss

(2010) - a well established route to obtain the DMF has not been defined yet. The

purpose of this Chapter is to introduce the HMF hydrogenation process and to dis-

cuss the different conditions that can be used to perform the reaction. Furthermore,

the kinetic models derived by some authors are reported and compared in terms of

assumptions, equations involved and overall complexity. State variables and non-

measurable model parameters are listed as well. The last part of the Chapter is

finally dedicated to the discussion of practical and theoretical uncertainties and

limitations related to the structures of the kinetic models presented.

3.1 Overview of the HMF hydrogenation process

The reaction pathway, consisting in the sequence of reactions that characterize the

HMF hydrogenation process, varies as a function of the catalyst employed. In most

of the cases, the reaction shows two-steps in which HMF is converted first to bis-

hydroxymethyl furan (BHMF) and then it is further hydrogenated to the highly

reactive 5-methyl furfuryl alcohol (MFA). This intermediate rapidly undergoes hy-

drogenolysis to finally give DMF and small amounts of 2,5-dimethyltetrahydro fu-

ran (DMTHF) as main by-product. The formation of DMF is always presented as

the rate determining step. Some of the most important reaction pathways, identi-

fied using several catalysts, are reported in Figure 3.1.
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Figure 3.1: Comparison of reaction pathways for some of the most important cata-

lysts reported in literature.

From the industrial point of view, the reaction is usually carried out in stainless

steel reactors – the conventional equipment to obtain time course data (Nauman

(2008)) – which volume goes from 50 mL to 300 mL. The conditions, such as tem-

perature, pressure and reactants initial concentrations, may change significantly

according to the products of interest. In Table 3.1 it is possible to find the nominal

conditions at which the most important catalysts currently investigated have found

to give the best outcome.

3.1.1 Solvent influence

Apart from the liquid phase, consisting in HMF, products, by-products and interme-

diates, the other two phases of the reactive system – the ensemble of all the species

and phases which characterise a chemical transformation – are solid catalyst and

gaseous hydrogen. Thus, as a three-phase system, the solvent choice is very im-

portant as well as very complex: it must account for many different factors that

affect rate of reaction and selectivity of the products. In particular, the HMF hy-

drogenation can be carried out using both alcoholic or non-alcoholic solvents: water,
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Table 3.1: Comparison of conditions and reaction parameters for the most impor-

tant catalysts reported in literature. Table proposed by Gawade et al. (2016).

Catalyst Hydrogen source Solvent T [◦C] t [h] Conversion [%] Yield [%]

CuRu/C H2 n-butanol 220 10 100 61

Ru/C H2 THF 200 2 100 95

PtCo@HCS H2 n-butanol 180 2 100 98

PdAu/C + HCl H2 THF 60 6 100 96

Ru/Co3O4 H2 THF 130 24 100 93

Ru-NaY H2 THF 220 1 100 78

Pd/C/H2SO4 HCOOH THF 70 15 100 95

Ni/Co3O4 H2 THF 130 24 99 76

Pd/Zn/C H2 THF 150 6 99 85

NiSi-PS H2 1,4-dioxane 130 3 100 72.9

Ru-HT H2 2-propanol 220 4 100 58

2Pd-20CsDTP/K-10 H2 THF 90 2 98 81

tetrahydrofuran (THF), 2-methyl tetrahydrofuran (2-MTHF), n-butanol, 1-butanol,

2-propanol, secondary phenyl alcohols and 1,4-dioxane are among the most em-

ployed. However, not all of them are suitable to be used with every catalyst: Nickel,

for instance, is capable of hydrogenating alcohols and this makes its pairing with

alcoholic solvents incompatible. Moreover, even though the HMF conversion is to-

tal with a certain solvent, the selectivity may be extremely low. To explain this

dependency, different theories have been proposed and the main contributions are

thought to be three:

1. Hildebrand solubility parameter, or δ-value, that is a measure of the cohe-

sive energy density and provides an estimation of the interaction between

different materials. Particularly suitable for nonpolar substances, such as

many polymers, it is a good indication of solubility: components with similar

δ-values are likely to be miscible.

2. Dielectric constant, or relative static permittivity, that represents a measure

of the chemical polarity of a solvent.

3. Solvation effect, that describes the interaction between the molecules of a dis-

solved material in a solvent and represents the reorganization of solvent and

solute molecules into solvation complexes involving bond formation, hydrogen
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bounding and Van der Waals forces.

The cohesive energy density from which the δ-value is based, represents the amount

of energy needed to remove completely unit volume of molecules from their neigh-

bours to infinite separation. It has been discovered by Burke (1984) to be an indi-

cation of the solvency power because, in order to dissolve, the molecules of a mate-

rial must be separated from each other and surrounded by solvent. For the same

reason, the substances with similar solubility parameters can easily interact with

each other and give solvatation, miscibility or swelling phenomena. Regarding the

HMF hydrogenation process, on the one hand it has been found by Chatterjee et al.

(2014) as increasing the δ-value, the HMF rate of conversion oppositely decreases

because of the competitive adsorption of its molecules on the metal surface of the

catalyst. Indeed, the solvents with very low δ-value show weak interactions with

metal catalysts while for the solvents characterized by a greater δ-value the inter-

actions are much stronger. On the other hand, Toukoniitty et al. (2003) correlated

through a proportional dependency the solubility of hydrogen with the dielectric

constant value. Although the difference between the dielectric constants of two

solvents could be in principle used to determine their miscibility, other phenomena

must be considered: water and THF are indeed miscible even though their dielectric

constants are remarkably different (respectively 80.10 at 20◦C and 7.52 at 22◦C) be-

cause the oxygen atom of THF can act as hydrogen bond acceptor. Thus, the hydro-

gen solubility in the solvent used to carry on the reaction, is significative higher in

organic solvents rather than in water. Furthermore, Augustine and Techasauvapak

(1994) studied that the adsorption of components on the catalyst surface is easier

when these components are affine. Thus, in a polar medium the polar compounds

remain more strongly solvated and the same happens also for non-polar medium

with non-polar compounds. That is why, using polar solvents, the reaction interme-

diates are found to be more disperse and toughly find access to the catalyst metal

surface. Considering all these effects and characteristics briefly resumed in Table

3.2, Gawade et al. (2016) gave a comparison on the basis of yield and selectivity

measurements:

1. water usually shows a high rate of conversion for the poor interactions with

the metal catalyst surface, but a very low selectivity of DMF cause the poor
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hydrogen solubility;

2. 1,4-dioxane leads to a very low conversion due to the δ-value – even though

the solvatation effect partially helps to increase the interaction between BHMF

and catalyst – and also a low selectivity due to the high solubility of hydrogen

that leads to further hydrogenation of DMF in to DMTHF;

3. n-butanol and 1-butanol give a good conversion but a low selectivity because

of the polar nature of BHMF that tends to solubilize in the solvents and does

not undergo further hydrogenations;

4. THF and 2-MTHF are the best trade-off between the different effects: al-

though they do not ensure the highest conversion in a short time window, they

lead to the highest selectivity. Moreover, THF gives better results thanks to

the lower water miscibility as water forms during the reaction and acts as a

product inhibitor.

Table 3.2: Summary of properties for some of the most commonly used solvents in

the HMF hydrogenation process. All values were obtained at 20◦C unless specified

otherwise.

Solvent δ-value [MPa
1
2 ] Dielectic constant Polarity

Water 47.8 78.5 Polar

n-butanol 28.7 17.7 Polar

1-butanol 23.1 17.8 Polar

2-propanol 23.5 18.3 @25◦C Polar

THF 19.4 7.52 Non-polar

2-MTHF 18.2 7.00 @25◦C Non-polar

1,4-dioxane 20.5 2.21 @25◦C Non-polar

3.1.2 Mass transfer assumptions

Since the reaction system is three-phase, the problem of mass transfer relays on

the choice of the stirring speed which ensure an optimum agitation such that any
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external mass transfer resistance can be overcome. There are three critical regions

where mass transfer limitations can arise: at the liquid-solid interface, at the gas-

liquid interface and inside the catalyst pores. Through the use of an efficient stirrer,

once a sufficient agitation is provided, it is possible to exclude any inerfacial mass-

transfer resistance. At this point, no significant differences in HMF conversion or

DMF selectivity are expected if the impeller speed is increased even more. On the

other hand, Salmi et al. (2004) specified that to avoid the internal mass transfer

resistance occurring inside the catalyst pores, particles with a size smaller than

50µm should be used. To verify this resistance, the Wagner-Weisz-Wheeler criterion

in (3.1) can be used:

φ2η= l2

Deff ·Ci
·ωreff (3.1)

where φ is the Thiele Modulus, η is effectiveness factor, l is characteristic size of the

particle (m), Deff is effective diffusivity (m2/s), reff is effective reaction rate (kmol/(kg

s)), ω is the catalyst loading (kg/m3) and Ci is concentration of i-th species (M). The

value of CH2 can be estimated using a correlation suggested by Pintar et al. (1998):

CH2 = yiPtot
xg

1− xg

ρH2O

MH2O
(3.2)

where the dimensionless mole fraction solubility xg is given by an empirical rela-

tion defined by Puhl (1991). Furthermore, Crezee et al. (2003) and Negahdar et al.

(2014) found that no internal diffusion limitations are present when the value φ2η

of the criterion is in the order of magnitude of 10−3-10−2. These values are valid

considering small catalyst particles (smaller than 50µm) if biomass based feed-stock

and hydrogen are used as reactants. In such case, the investigated reaction system

is under kinetically controlled conditions. Eventually, altough some authors (Gy-

ngazova et al. (2017)) used the rigorous Wagner-Weisz-Wheeler criterion to assess

the mass-transfer, in other cases (Gawade et al. (2016)) the appropriate impeller

speed was chosen through trial-and-error procedure increasing the rotations-per-

minute (rpm) until no significant improvements on the reaction parameters were

registered.
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3.1.3 Hydrogen partial pressure and temperature influ-

ence

As a series of hydrogenation reactions, the hydrogen pressure effect is expected to

be greatly relevant for the conversion of HMF into the various intermediates, prod-

uct and side products. In practise, the rate of hydrogenation of HMF increases when

the pressure increases as well because the concentration of dissolved hydrogen in

the reaction mixture becomes higher. In general, in the paper reviewed, the authors

prefer to operate with a concentration at least three times higher for the hydrogen

rather than for the HMF, in order to assume the hydrogen amount as constant dur-

ing the whole reaction. Besides the models simplification, this ensures also a better

pressure control. However, the enhancement due to the pressure increment tends

to invert when it is increased above a certain level because it means reaching a

superabundant amount of hydrogen which promotes the formation of overhydro-

genated products. Thus, the opening and hydrogenation of the furan ring lead to a

sharp decrease in DMF yield (Hu et al. (2014)). Furthermore, not only an excessive

increase in the pressure determines an increment in the equipment and production

cost but also increases the operational risk.

Almost the same considerations hold for the temperature. However, in this case the

effect is mostly related to reaction kinetics. Since the reactions are supposed to be

kinetically controlled – hence there is no influence of any mass transfer resistance

on the reaction rates –, increasing the temperature makes the rate of hydrogena-

tion higher. Obviously, for each different catalyst, different optimal temperatures

have been identified according to the activity of the catalyst it-self. Moreover, being

a sub-sequential ring of hydrogenations, there will always be a certain temperature

above which the DMF selectivity will drop substantially. About that, each author

reports the optimal hydrogen pressure and optimal temperature to maximize yield

and selectivity, according to the specified reaction conditions.
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3.1.4 Catalyst loading influence

The determination of the optimal catalyst loading is done on the basis of yield and

selectivity measurements and often depends on the nature of the catalyst it-self

because of the nature of its active sites. It represents usually a parameters which

tends to be optimized through trial-and-error procedures which assess conversion

and selectivity at different concentrations: the catalyst loading which corresponds

to the best trade-off between these two is chosen. In any case, by increasing the

catalyst amount a significant enhancement of both conversion and selectivity is

expected due to the proportional increase in the number of active sites. The overall

effect can be indeed assessed in terms of turn over frequency (TOF) so that the

higher the amount of catalyst, the higher the number of reactants molecules that

can be adsorbed and converted on the catalyst surface per unit time. However, up

to a certain optimal quantity, the result of further increments can be undesired as

well as unpredictable. For instance, Gyngazova et al. (2017) found that an excess

of acid centres lead to an intensive polymerization which cause the product yield to

drop critically. In general, when the number of active sites becomes too large, the

DMF selectivity tends to drop because of the further hydrogenations which convert

the product of interest into over-hydrogenated species.

3.1.5 Initial concentration influence

The effect of changing the initial HMF concentration or other species is strongly

correlated to the other variables. In particular, when HMF concentration increase,

the products rate of formation decreases because the ratio between substrate to

catalyst decreases as well. Moreover, it has been previously underlined that the hy-

drogen must be in excess and an increase in the HMF concentration could lead to an

unbalance between the two reactants along with detrimental effects for the DMF

selectivity. For this reason, the initial concentrations are considered as bounded

variables, which can be varied within a certain range. The rationale is that chang-

ing the initial concentration is possible to modify the reaction profiles hence the

results of the identifiability and discrimination analysis. Eventually, initial concen-

tration of the species (not only reactants) as well as the hydrogen partial pressure
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will be used as optimisation variables for the model discrimination purposes.

3.2 Kinetic models of HMF hydrogenation state of

the art

In this section, all the most significant kinetic models currently available in liter-

ature for the HMF hydrogenation process are reported. A brief introduction an-

ticipate the system of constitutive equations that characterize each of them. The

variety of alternatives, characterized by different strengths and complexities, un-

derlines the usefulness of MBDoE and identifiability techniques. Moreover, Table

3.3 gives a first idea about the main characteristics of each model in terms of typol-

ogy and number of parameters involved.

Table 3.3: Summary of the main characteristics of the proposed kinetic models.

Paper Model type Nθ Nm

Gawade et al. (2016) Dual-site LHHWs 9 6

Gyngazova et al. (2017) Power law 5 5

Jain and Vaidya (2016) Different LHHWs variants 3 2

Luo et al. (2015) First-Order Power law 3 3

Grilc et al. (2014) Power law 4 6

3.2.1 Gawade et al. (2016) kinetic model (M1)

This model has built by considering the non-competitive and dissociative hydro-

gen adsorption on the catalyst surface: a novel bifunctional metal-acid palladium-

cesium dodeca-tungsto-phosphoric acid supported on K-10 acidic clay (2Pd-20CsDTP/K-

10). This catalyst is said by the authors to be stable, active and selective with a good

reusability over many operational cycles. Moreover, its bifunctionality causes hy-

drogen to interact with metallic sites while the other chemical species react with the

acidic ones. The dual-site Langmuir-Hinshelwood-Hougen-Watson (LHHW) theory

has been used to describe the adsorption and desorption mechanisms. The set-up

used to collect the data was a 100 mL autoclave reactor in which the agitation was
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provided by a pitched turbine impeller. The experiments were performed in 20 mL

of THF with an impeller speed of 1000 rpm, velocity that is said to guarantee the

overcoming of any mass transfer limitation. The rate determining step is assumed

to be the conversion of BHMF, since the transformation of MFA to DMF – as well

as their adsorption/desorption mechanisms – is neglected because really fast. The

measurements of the reaction mixture was performed with a gas-chromatograph

mass-spectrometer (GC-MS, PerkinElmer Clarus 500) equipped with a Flame Ion-

ization Detector (FID). Finally, the reaction equations are shown in the following.

Rate of consumption of HMF (A):

−dCA

dt
= k1KACA

√
KH2 pH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(3.3)

Rate of consumption of BHMF (B):

dCB

dt
= [k1KACA −k2KBCB]

√
KH2 pH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(3.4)

Rate of production of 2,5DMF (D):

dCD

dt
= [k2KBCB −k3KDCD]

√
KH2 pH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(3.5)

Rate of formation of DMTHF (E):

dCE

dt
= k3KDCD

√
KH2 pH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(3.6)

Through the equations above, four set of parameters have been estimated by the

authors for temperatures between 80 ◦C and 110 ◦C. Three levels of pressure have

also been tested to investigate the effect of this variable on the system response.

Notice eventually that parameter estimation statistics are not specified.

3.2.2 Gyngazova et al. (2017) kinetic model (M2)

Following the seminal work of Kong et al. (2014), Huang et al. (2014) and Yang

et al. (2015), these authors studied the transformation of HMF to DMF over a car-

bon supported nickel catalyst (Ni/C) with the purpose of elucidating the reaction

network and characterizing the key reaction intermediates. Thus, several Ni/C cat-

alysts, containing different amounts of metal loading, were prepared by incipient-

wetness impregnation. The experiments were then carried out in a 50 mL stainless
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steel batch autoclave equipped with a sampling valve and a magnetic stirrer. The

autoclave was loaded with the reactants, catalyst and 30 mL of THF: while dif-

ferent initial concentrations of HMF and catalyst loading were investigated, the

hydrogen pressure was kept constant at 100 bar. For the collection of samples, the

liquid was filtered through a 45 µm PTFE filter and then analysed off-line using a

gas-chromatograph equipped with a FID detector and high polarity bonded wax col-

umn. Finally, to study the effect of mass transfer limitations, the Wagner criterion

(3.1) was used. Since the catalyst particles were small enough, all experiments have

been performed under the assumption of intrinsic kinetically controlled regime free

of mass transfer limitations. The chosen impeller speed was 900 rpm.

Through the set-up discussed above, the authors derived a simple system of ordi-

nary differential equations where the non-measurable parameters are the apparent

kinetic constants of each reaction.

−d[HMF]
dt

= k1,app · [HMF] (3.7)

d[BHMF]
dt

= k1,app · [HMF]−k2,app · [BHMF]−k5,app · [BHMF] (3.8)

d[MFA]
dt

= k2,app · [BHMF]−k3,app · [MFA] (3.9)

d[DMF]
dt

= k3,app · [MFA]−k4,app · [DMF] (3.10)

d[DMTHF]
dt

= k4,app · [DMF] (3.11)

d[DHMTHF]
dt

= k5,app · [BHMF] (3.12)

The set of ordinary differential equations has been solved numerically by the au-

thors and the parameters were estimated by least-squares fit of experimental data,

using the Levenberg-Marquardt algorithm (Marquardt (1963)). The proposed es-

timates are told to describe the behaviour of the reactive system in a satisfactory

way, although some slight deviations on the concentration profiles are present.

3.2.3 Jain and Vaidya (2016) kinetic model (M3)

The development of this kinetic model follows previous studies that were carried out

on the kinetics of hydrogenation of biomass-derived compounds in aqueous solution

over Ru/C catalyst (Bindwal and Vaidya (2013), Bindwal and Vaidya (2014)). The

60



KINETIC MODELS OF HMF HYDROGENATION AND PROCESS DESCRIPTION

kinetic data obtained in a wider range of temperatures, H2 partial pressure, initial

HMF concentration and catalyst loading, allowed to fit to a kinetic model the initial

rates of HMF disappearance whose main assumptions are:

1. the surface reaction between non-dissociatively chemisorbed H2 and HMF

represents the rate determining step;

2. the reaction conditions are favourable for studying reaction kinetics.

While the Weisz criterion has been used to verify the intraparticle diffusion, the

resistance to mass transfer of H2 on the gas-side has been ignored due to its high

diffusivity in the gas phase and low solubility in the liquid. The resistance of liquid-

phase and liquid-solid mass transfer resistances was instead deemed negligible con-

sidering the stirring speed of 1200 rpm. Regarding the experimental set-up, the ex-

periments were performed in a 100 mL high pressure reactor equipped with a four

45° pitched-blades turbine agitator (Bindwal and Vaidya (2013)), charged with 50

mL of aqueous solution and a fixed amount of fresh catalyst. N2 was used to purge

the gas after each cycle and ensure an inert atmosphere while the liquid samples

were analysed by high pressure liquid chromatography (HPLC) supported by mass-

spectrometry. Four different mechanisms have been proposed to contemplate as

many model variants:

i. competitive adsorption of dissociatively chemisorbed hydrogen (M3.1);

ii. competitive adsorption of molecular chemisorbed hydrogen (M3.2);

iii. non-competitive adsorption of dissociatively chemisorbed hydrogen (M3.3)

iv. non-competitive adsorption of molecular chemisorbed hydrogen (M3.4)

The rates of reaction that can be used to derive the differential balances of each

species are:

ri = k1KH2 KHMFCH2CHMF

(1+KH2CH2 +KHMFCHMF)2 (3.13)

rii = k1KH2 KHMFCH2CHMF

(1+√
KH2CH2 +KHMFCHMF)3

(3.14)

riii = k1KH2 KHMFCH2CHMF

(1+√
KH2CH2)2(1+KHMFCHMF)

(3.15)

riv = k1KH2 KHMFCH2CHMF

(1+√
KH2CH2)(1+KHMFCHMF)

(3.16)
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Notice finally that the authors declare the last two alternatives did not provide a

good fit of the data and they were hence rejected.

3.2.4 Luo et al. (2015) kinetic model (M4)

The objective of the study proposed by Luo et al. (2015) was to compare the three-

phase hydrogenation of HMF and DMF over six different carbon-supported metal

catalysts: Pt, Pd, Ir, Ru, Ni, Co. These catalysts are said by the authors to have

stabilitites that follow the order Pt(most active)∼Ir>Pd>Ni>Co>Ru(less active) and

allow to speculate the possible deactivation mechanism: the deposition of humins

(a class of organic compounds insoluble in water for all pH conditions) on the cata-

lyst surface. Although other authors (Hu et al. (2014)) reported high yields to DMF

using Ru/C catalysts in THF, in this study yields as high as 60% were obtained

on a Pt/C catalyst and a tubular flow reactor with 1-propanol solvent under simi-

lar conditions of temperature and pressure. The tubular reactor was a 20-cm long,

stainless-steel tube with an internal diameter of 4.6 mm. Furthermore, the liquid

feed containing HMF and 100 mL of solvent was introduced into the reactor by an

HPLC pump which could also vary the total pressure into the reactor. The reaction

outlets were collected at room temperature and immediately injected into a gas-

chromatograph mass-spectrometer equipped with an Innowax capillary column, for

analysis where both liquid and gas phase products were examined.

The kinetic model arise from an attempt to quantify the differences between the

metal catalysts. The HMF reaction was modeled as a series of first-order, sequen-

tial reactions. As usual, no mass transfer limitations are considered and the rate

determining step is the conversion of HMF to BHMF. The system of 4 ordinary

differential equations derived from these assumptions was:

−d[HMF]
dt

= k1 · [HMF] (3.17)

d[BHMF]
dt

= k1 · [HMF]−k2 · [BHMF] (3.18)

d[DMF]
dt

= k2 · [BHMF]−k3 · [DMF] (3.19)

d[DMTHF]
dt

= k3 · [DMF] (3.20)

Notice that this model is practically equal to M2, with a less complete reaction
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pathway.

3.2.5 Grilc et al. (2014) kinetic model (M5)

The study proposed want to address the catalytic hydrocracking and hydrodeoxy-

genation (HDO) for four NiMo/Al2O3 bifunctional catalysts in oxide, reduced and

sulphide form, and Pd/C. The conversion of the liquefied biomass was performed in

a 300 mL cylindrical stainless steel reactor equipped with a magnetic turbine im-

peller located on the reactor bottom. Both gas and liquid phase products were anal-

ysed online by Fourier transform infrared (FTIR) spectroscopy. To propose a differ-

ent approach on the kinetic modeling of the HMF hydrogenation process, instead

of using the chemical species species concentration, the authors lumped together

the contributions of similar chemical groups with analogous reactivity. In that way,

the apparent rate for deoxygenation and dehydrogenation reactions was set to be

dependent on the concentration of the main oxygenated functional groups. Fur-

thermore, the external mass transfer resistance was told to have been eliminated

by intensive stirring and high hydrogen pressure while internal mass transfer lim-

itations have been implicitly incorporated in kinetic rate constant. The model is

then represented by a set of ordinary differential equations for the mass balance

for aldehyde, alcohol, ester groups and some specific molecules. Also in this case,

the rate constants are considered as temperature dependent through the Arrhenius

equation.

rn = kn yi : yi = Ci

COH
(t = 0) (3.21)

d yC=O,tot

dt
= k2 yOH −k3 yCHO −k4 yCHO (3.22)

d yCHO

dt
= k2 yOH −k3 yCHO −k4 yCHO (3.23)

d yCO

dt
= k3 yCHO (3.24)

d yCO2

dt
= k4 yCHO (3.25)

d yH2O

dt
= k1 yOH (3.26)

d yC=O,ester

dt
= 0 (3.27)

yC=O,tot = yCHO + yC=O,ester (3.28)
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For the study conduced in this Thesis, the really specific equipment required makes

the use of M5 too time and resource expensive. Even though the identifiability

study would give a positive result, it would not be possible to validate the model

with new data coming from lab experiments. Although it represents an interesting

alternative to the more simple-structure versions proposed by other authors, it will

not be further investigated in this context.

3.3 Kinetic models selection and summary of their

features

Among the 5 kinetic models listed in the previous sections, some of them appear

more suitable to be used for the analysis that have to be performed throughout this

Thesis, rather then others. In particular, each model is compared with the others in

terms of experimental conditions, parameters and state variables involved, to give

an idea about the overall complexity which depends by:

1. number of parameters to be estimated;

2. number and type of state variables to be measured;

3. ease of validation, which is the ease of replicating the reaction framework.

As already specified, although M5 represents an interesting alternative to the other

kinetic models, its validation could result very complex because of the equipment re-

quired. For this reason, only the first four kinetic models M1-M4 have been further

investigated. Below, table 3.4 presents a summary of their most important features:

it gives an idea about the range of applicability for each alternative proposed. Re-

gardless to the catalyst or solvent used, there are indeed remarkable differences

between the conditions which have been used to develop the different models. The

explored values for the hydrogen pressure, for instance, goes from 5 atm for M1 up

to 140 atm for M4. It could be interesting to study, once the identifiability has been

verified, if the kinetic models are flexible enough to be validated through in silico

data generated by other models. The purpose would be to understand if the wide

differences in the experimental conditions used affect only the catalyst activity or

the whole model behaviour.
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Table 3.4: Comparison of the most suitable models to be used for the study per-

formed in this Thesis.

Temperature [K] PH2 [atm] C0
HMF [M] Catalyst

M1 353 - 383 5 - 15 0.05 - 0.15 2Pd-20CsDTP/K-10

M2 423 - 463 100 - 140 0.143 Ni/C

M3 313 - 343 7 - 27 0.0198 - 0.0595 Ru/C (aq)

M4 523 33 N/A (Pt, Pd, Ir, Ru, Ni, Co)/C

Parameters Solvent

M1 k1, k2, k3, KHMF, KBHMF, KDMF, KDMTHF, KWATER, KH2 THF

M2 k1, k2, k3, k4, k5 THF

M3 k1, KHMF, KH2 Water

M4 k1, k2, k3 1-propanol

State variables Analysis technique

M1 CHMF, CBHMF, CDMF, CDMTHF, CWATER, PH2 GC-MS

M2 CHMF, CMFA, CBHMF, CDMF, CDMTHF GC

M3 CHMF, PH2 HPLC-MS

M4 CHMF, CBHMF, CDMF, CDMTHF GC

Among the other variables that can be used to determine the response of the system,

hence to study the behaviour of the kinetic models proposed, some are more conve-

nient to be used for design purposes rather than others. For instance, although the

wide range of temperatures explored by different authors, it never appears explic-

itly in the models equations. In order to study the dependency of the temperature

on the various kinetics, other equations have to be added and it would not be pos-

sible to use the temperature as a design variable without changing the structure of

the model it-self. Among the possible alternatives, the design variables considered

at the beginning of the study are:

1. hydrogen partial pressure, PH2 ;

2. initial concentration of HMF, C0
HMF;

3. initial concentration of DMF, C0
DMF;

4. distribution of sampling points.
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3.4 Structural uncertainties and limitations of the

candidate kinetic models

In this section all the practical and theoretical uncertainties regarding the differ-

ent models available are discussed. It represents a sort of preliminary analysis

through which it is possible to identify in advance strengths and weaknesses of

each proposed model. In this sense, it might result in a simplification of the iden-

tifiability analysis: being aware of the descriptive lacks and possible limitations or

structural issues of a model allows a faster identification of alternatives that may

be more phenomenologically reliable.

3.4.1 M1 inconsistencies and lacks

There are 3 main issues that come from the analysis of M1:

1. it is not clear whether the water concentration CWATER has been considered

as a constant or not;

2. the given units of measure for the kinetic constants
(

L2

mol·g·s
)

are not consis-

tent;

3. the reactions considered do not satisfy the atomic balance between species.

About 2., the reactions used to develop the differential balances are reported to be

the following:

A.S1 +H.S2
k1−→ B.S1 +S2 (3.29)

B.S1 +H.S2
k′

2−→ C.S1 +W .S2 (3.30)

C.S1 +H.S2
k′′

2−→ D.S1 +W .S2 (3.31)

D.S1 +H.S2
k3−→ E.S1 +S2 (3.32)

where I.S j represents the adsorbed species to the two types of catalyst active sites.

However, considering the conversion of C (MFA) into D (DMF) so fast that C (MFA)

can barely be detected, the reaction (3.30) and (3.31) can be summed up to give:

B.S1 +H.S2
k2−→ D.S1 +W .S2 (3.33)
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that does not fulfil the atomic balance between species. Actually, the overall re-

action seems to be strange. For each step, indeed, an entire molecule of hydrogen

is required but, on the reactions reported, only one atom of hydrogen seems to re-

act. Although in this way the differential balances obtained are probably the most

simple ones involving the LHHWs mechanism, a more precise stoichiometry would

result in a greater reliability of the chemical relations used to represent the sys-

tem. Furthermore, the unit of measure proposed for the kinetic constants is not

fully clear. Let us consider the model equations (3.3)-(3.6): the dimensional analy-

sis, using the units of measure provided by the authors, gives:

[
mol

s

]
6=

[
L2

mol · g · s · L
mol

· mol
L

· g
L

]
(3.34)

3.4.2 M2 and M4 limitations

The limitations of M2 are mostly related to the identification of the highly reactive

intermediate MFA. In particular, it is not sure whether the MFA can be reliably

detected or not: if not, the identification of the kinetic constant related to its con-

version appears tough and the model should be probably modified with a simplified

version that relies on a different reaction pathway. On the other hand, the same

authors who developed the model M4, warn that the model parameters proposed

may not be really accurate since the system is a complex three-phase environment

which would require further studies. However, notice that the structures of the two

kinetic models are practically equal. Since the results of the various analysis are

expected to be almost equivalent, the best choice for sake of conciseness is to study

only the kinetic model M2.

3.4.3 M3 limitations

The main limitation of the kinetic model M3 is related to the fact that it has been

developed through initial rate expressions that cause the model to be capable of rep-

resenting in a reliable way the reaction beginning only. Since all the gathered ki-

netic models have to be treated in a general way to perform the analysis illustrated

in the next Chapters, it is likely that this model will be rejected. In particular, by
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setting a common reaction duration and a common sampling scheme, the behaviour

of M3 is expected to be incompatible with the behaviour of the other models.
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RESULTS OF IDENTIFIABILITY ANALYSIS

FOR THE HMF HYDROGENATION KINETIC
MODELS

I N this Chapter, the main results obtained from the analyses conducted on the

kinetic models gathered in literature, are illustrated. After definition of the

experimental design space, considering both technical and practical constraints, a

general procedure for the models identification is employed. Throughout the Chap-

ter, it is shown as the different analyses allow to confirm or discard the different

kinetic models due to structural or practical identifiability issues. Furthermore,

the design variables values are investigated aiming at ensuring a reliable estima-

tion of the model parameters. The objectives are finding the most suitable kinetic

models to describe the HMF hydrogenation process and, in parallel, conducing a

ranking of the most informative regions of the design space.

4.1 Analysis procedure

The objective of this section is to guide the reader through the different analyses

performed. Following the block diagram in Figure 4.1, it is firstly defined a design

space common to all the kinetic models gathered in literature. The design variables

choice, that considers also practical limitations, is addressed in details. Then, the

correlation analysis results are reported with the objective of performing an initial

discrimination of kinetic models and design variables. The information analysis re-

sults are then used to discriminate among the remaining design variables and to

find the conditions that maximize the information available for a reliable parameter

estimation. Finally, the covariance analysis allows to refine and confirm the infor-
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Figure 4.1: Analysis procedure adopted throughout this Chapter to investigate the

kinetic models available for the HMF hydrogenation process.

mation analysis results. The final objective is to propose a set of kinetic models and

experimental conditions that are expected to ensure the model identifiability and

statistical reliability of the estimates.

4.2 Latin Hypercube Sampling

For sake of defining a general framework to perform the kinetic models analyses,

an experimental design space (the region that encloses all the measurable variables

meaningful to modify) must be firstly defined. However, since it is extremely time

and computationally expensive to explore each value of that domain, appropriate

techniques can be used to select few points that are still representative of the entire

space. At the purpose, the Latin Hypercube Sampling (LHS) is a statistical method

used to uniformly distribute a certain number of points into a multidimensional

space. It comes from the generalization to an arbitrary number of dimensions of the

Latin Square Sampling (LSS) that can only be applied to 2D domains (Montgomery

and Douglas (2012)). The LHS is more efficient than a random sampling, where

the sample points are generated without considering the previous ones, but simpler

than the Orthogonal Sampling where the entire experimental domain is divided

into a number of sub-spaces that ensure the resulting ensemble of measurements is

a Latin Hypercube with the same density of samples for each sub-space. The main

advantages of using a LHS are that:
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1. a few number of samplings are capable of being representative of the entire

domain under investigation;

2. the procedure does not require to increase the number of samples when the

number of dimensions (variables) increases as well;

3. the selection of the points keeps memory of the previous choices allowing to

take the samples one at a time.

In this work, in order to prevent the results from having a local reliability, the LHS

is used to select the design variables values to be used for the various analyses.

4.3 Experimental design space

The experimental design space can be:

1. either mono-dimensional or multi-dimensional, as a function of the number of

design variables that are contained in the model structure;

2. discontinuous, since some values cannot be experienced due to the existence

of practical constraints;

3. with regions that allow to obtain higher amounts of information for the pa-

rameter estimation purposes.

In this work, some restriction based on the suggestions of the chemists in the Uni-

versity where the study has been conduced, are applied to the design space. These

limitations are founded on:

1. practical constraints related to the equipment used;

2. specific regulations and security standards that applies to the experiments to

be performed.

In particular, since the HMF hydrogenation process can be exploited at high tem-

peratures and pressures, these two variables are considered as the critical ones and

the restriction is applied to them only. However, other variables need to be defined

too and in Table 4.1 all the values, or range of values, are reported.
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Table 4.1: Suggested design space taking into account the practical limitations and

safety standards of the equipment that may be employed to carry out the process.

T [K] PH2 [atm] C0
HMF [M] C0

DMF [M] SPs distribution

353 ÷ 383 5 ÷ 7 0.0 ÷ 0.2 0.0 ÷ 0.2 S1, S2, S3

4.3.1 Temperature and pressure

The problems of considering temperature and pressure as design variables are es-

sentially two:

1. none of the kinetic models gathered involve the direct reliance from the tem-

perature;

2. not all the kinetic models available contain the dependency from the hydrogen

pressure.

Although the Arrhenius equation could be used to explain the temperature effect,

the price is that two parameters are added for each kinetic constant involved. To

avoid that situation, it has been decided to consider the temperature as a discrete

variable only for the kinetic model M1 that has been proposed by Gawade A.B. and

coworkers (Gawade et al. (2016)) with four sets of estimated parameters according

to as many temperature levels.

About the pressure, since the hydrogen is always assumed to be in excess, the lower

pressure bound is set to 5 atm. However, since the pressure is not a common vari-

able to all the kinetic models, it will be considered only for the model validation on

the final set of kinetic models.

4.3.2 Initial concentrations

Being the HMF hydrogenation an equilibrium reaction, meaningful concentration

profiles can be obtained by varying both the initial concentration of reactants and/or

products. Furthermore, contrarily to temperature and pressure, the initial concen-

tration is a continuous variable hence, to contains the computational expenditure,

not all the values can be experienced. Instead, a campaign of 10 experiments is

considered a good trade-off between resource expenditure and information that can

72



RESULTS OF IDENTIFIABILITY ANALYSIS FOR THE HMF HYDROGENATION KINETIC MODELS

be collected. Thus, the LHS is used to generate the 10 combinations for the initial

concentrations of HMF and DMF, reported in Table 4.2.

Table 4.2: Sets of initial concentrations of HMF and DMF generated through the

Latin Hypercube Sampling.

Exp. C0
HMF [M] C0

DMF [M]

1 0.1556 0.0667

2 0.0667 0.0222

3 0.0000 0.0444

4 0.1333 0.0000

5 0.0889 0.0889

6 0.2000 0.2000

7 0.0222 0.1111

8 0.1778 0.1333

9 0.1111 0.1556

10 0.0444 0.1778

Although it is clear that some combinations are more meaningful – it is not likely

that the third experiment will provide useful information – other experiments seem

more promising. The analyses are then exploited for all the 10 experiments and the

results are combined together to characterize the behaviour of the different kinetic

models.

4.3.3 Sampling points distributions

For the sampling points (SPs), three distributions are arranged to allocate the vari-

ous measurements along the entire experiment duration of 120 minutes. As for the

number of experiments, 10 sampling points are assumed to be a sufficient amount

of measures. The convenience of defining different sampling frameworks is that,

since the reaction extent given by the expected kinetics of the various kinetic mod-

els may vary a lot, it is definitely interesting to assess the influence of the measure-

ment procedure on the overall analysis results. For instance, the kinetic model M3

is characterized by an expected reaction duration of 5 minutes while, according to
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Figure 4.2: Graphical representation of the 10 experiments listed in Table 4.2.

M2, the reaction should require more than 2 hours to get the completion. Thus, it is

clear how the sampling interval chosen – always respecting the physical constraints

and limitations imposed by the reality of a chemical lab – causes a variation of the

analyses results. The sampling points distributions, assuming 5 minutes as the

minimum time between consecutive measurements, are reported geometrically in

Figure 4.3 and listed below:

1. SPs concentrated at the beginning (S1);

2. SPs evenly spaced (S2);

3. SPs concentrated at the end (S3).

At this point, the experimental domain and all the values for the design variables

have been defined. It is finally possible to proceed with further studies: first the

correlation analysis has to be carried out.

4.4 Correlation analysis results

The study of the correlation based on the sensitivities, for different regions of the

design space, allows to gather information on both the structural and the practical

identifiability. On the one hand, if a model is unidentifiable for all the conditions
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Figure 4.3: Different distributions of 10 sampling points over an experiment dura-

tion of 120 minutes. Concentrated at the beginning (1), evenly spaced (2), concen-

trated at the end (3).

investigated – established that these conditions are representative of the entire de-

sign space – it is possible to assume with a significant level of confidence that the

problem of the model is structural. On the other hand, there could be regions of

the experimental domain in which some parameters show correlation that in other

regions does not exist. Then, it could happen that locally a model is not identifiable

but it turns out to be identifiable globally.

Indeed, being the correlation analysis a function of the sensitivity through the es-

timability matrix PE, it is in particular affected by the sampling procedure adopted:

1. if the expected kinetics is really fast, the sensitivities of the model parameters

are higher at the beginning and it is more likely that the distribution S1 can

collect more useful information;

2. if the expected kinetics is slow, the sensitivities are almost null at the reaction

beginning and more information is probably gathered through the distribu-

tions S2 or S3.

Although the parameters identification is, at least theoretically, always possible

when the correlations r i j are lower than 1, in practise the estimation could be ex-

tremely tough and resource expensive also when the correlation approach 1. In

this study, the condition r i j > 0.9 has been used to classify the so called critical

correlations.
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4.4.1 Correlation analysis on M1

A kinetic model like M1, characterized by a great number of parameters, is ex-

pected to show some identifiability problem because, in particular, the adsorption

coefficients are known to be difficult to estimate precisely through concentration

data. The objective is then to understand how the low sensitivities on that param-

eters reflect on the overall correlation.

From Tables 4.3 to 4.5 it is possible to appreciate the different correlation matrices

computed for the three sampling points distributions. The results are obtained at

363 K but, for the other temperature levels, apart from slight variations the conclu-

sions are exactly the same.

Table 4.3: Correlation matrix for the kinetic model M1 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1: values and

colormap.

R k1 k2 k3 KA KB KD KE KH2 KW

k1 1.000

k2 0.703 1.000

k3 -0.020 -0.058 1.000

KA 0.999* 0.687 -0.020 1.000

KB 0.700 1.000* -0.059 0.685 1.000

KD -0.027 -0.070 1.000* -0.027 -0.071 1.000

KE -0.679 -0.860 -0.008 -0.664 -0.858 0.003 1.000

KH2 0.782 0.991 0.008 0.769 0.990 -0.004 -0.868 1.000

KW -0.563 -0.904 -0.062 -0.553 -0.904 -0.049 0.841 -0.891 1.000

rcrit 1 3 1 0 2 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

It appears clear that, for all the sampling distributions, the kinetic model M1

presents at least three total correlations and many other critical ones. The prob-

lem may be caused by the fact that in the model equations (3.3) - (3.6) the ki-

netic constants at the numerator are always multiplied by some adsorption coef-

ficients. As already discussed in Chapter 2, these particular structures lead usually
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Table 4.4: Correlation matrix for the kinetic model M1 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2: values and

colormap.

R k1 k2 k3 KA KB KD KE KH2 KW

k1 1.000

k2 0.926 1.000

k3 -0.007 -0.040 1.000

KA 1.000* 0.927 -0.007 1.000

KB 0.925 1.000* -0.040 0.925 1.000

KD -0.012 -0.046 1.000* -0.012 -0.047 1.000

KE -0.817 -0.862 -0.076 -0.812 -0.861 -0.069 1.000

KH2 0.938 0.992 0.084 0.938 0.991 0.077 -0.870 1.000

KW -0.746 -0.903 -0.185 -0.743 -0.903 -0.178 0.861 -0.912 1.000

rcrit 4 4 1 2 2 0 0 1 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

to structural identifiability issues that has to be solved in order to proceed with

further analyses. In this sense, the only solution could be represented by the re-

parametrization of the kinetic model.

4.4.2 Correlation analysis on M2 and M4

The kinetic model M2 is the most simple but complete alternative available in lit-

erature. It does not involve adsorption coefficients but only kinetic constants. Fur-

thermore, the reaction pathway considers all the most common intermediates and

by-products so far identified. The model M4, instead, represents a sort of simplified

version of M2: it does not consider the formation of MFA but the equations struc-

ture is totally the same. In order to avoid repetitions on the results presentation,

from now on only the kinetic model M2 will be studied. However, M4 is not dis-

carded: in case that critical identifiability issues would arise, it will be used as first

alternative to M2.

The study of the correlation follows then the same procedure employed for M1 and,

77



CHAPTER 4

Table 4.5: Correlation matrix for the kinetic model M1 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S3: values and

colormap.

R k1 k2 k3 KA KB KD KE KH2 KW

k1 1.000

k2 0.441 1.000

k3 0.009 -0.002 1.000

KA 0.999* 0.409 0.009 1.000

KB 0.435 1.000* -0.003 0.403 1.000

KD 0.008 -0.004 1.000* 0.008 -0.005 1.000

KE -0.566 -0.808 -0.222 -0.540 -0.805 -0.220 1.000

KH2 0.654 0.931 0.243 0.629 0.929 0.241 -0.870 1.000

KW -0.217 -0.629 -0.512 -0.208 -0.631 -0.510 0.669 -0.695 1.000

rcrit 1 2 0 0 1 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

from Tables 4.6 to 4.8, the correlation matrices obtained for the 3 different sampling

distributions are reported. In this case, no critical correlations are highlight: it is

reasonably to assume that no structural issues affect the kinetic model M2. More-

over, although the single values change for the different distributions – overall the

correlation looks slightly higher with S3 – the discrimination of the best sampling

procedure has to be refined on the basis of the information analysis.

4.4.3 Correlation analysis on M3

In the correlation study of the kinetic model M3, all the four variants proposed by

the authors are considered. However, there are two characteristics of this kinetic

model that are expected to affect strongly the analysis result:

1. the low number of measurable outputs;

2. the fact that initial-rate expressions are used.

In particular, since the practical limitations assumed for the sampling procedure do

78



RESULTS OF IDENTIFIABILITY ANALYSIS FOR THE HMF HYDROGENATION KINETIC MODELS

Table 4.6: Correlation matrix for the kinetic model M2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1: values and

colormap.

R k1,app k2,app k3,app k4,app k5,app

k1,app 1.000

k2,app 0.334 1.000

k3,app 0.299 0.419 1.000

k4,app -0.246 -0.330 -0.160 1.000

k5,app -0.271 -0.580 -0.176 0.376 1.000

rcrit 0 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

Table 4.7: Correlation matrix for the kinetic model M2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2: values and

colormap.

R k1,app k2,app k3,app k4,app k5,app

k1,app 1.000

k2,app 0.419 1.000

k3,app 0.340 0.428 1.000

k4,app -0.284 -0.366 -0.157 1.000

k5,app -0.307 -0.729 -0.204 0.390 1.000

rcrit 0 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

not allow to collect high amounts of information at the beginning of the reaction, the

initial-rate expression does not look to be suitable. As a demonstration of that, the

correlation matrices for all the different cases are always equivalent to the identity

matrix I. It is clear that the model cannot be identified: it is structurally unsuitable.
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Table 4.8: Correlation matrix for the kinetic model M2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S3: values and

colormap.

R k1,app k2,app k3,app k4,app k5,app

k1,app 1.000

k2,app 0.460 1.000

k3,app 0.385 0.418 1.000

k4,app -0.305 -0.392 -0.144 1.000

k5,app -0.334 -0.865 -0.231 0.400 1.000

rcrit 0 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

4.4.4 Correlation results summary

As expected, the different model structures led to peculiar results for the correlation

analysis. Overall it has been highlighted that:

1. M1 has three couples of model parameters that are always totally correlated,

plus several other couples critically correlated;

2. M2 does not show critical correlations, regardless to the conditions adopted;

3. M3 presents an unsuitable structure, independently on the design variables

choice;

4. M4 shows an analogous behaviour to M2 and, since their structure is practi-

cally equivalent, M4 will not be investigated any more for sake of conciseness.

To conclude, while the correlation problem that affect M1 is likely to be solved

through a re-parametrization of the model, the critical correlations that charac-

terize M3 are different. The problem with this kinetic model is that its expected

kinetics is extremely fast: after almost 5 minutes the hydrogenation is assumed to

be complete and the concentration profiles become flat. The sensitivities after that
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point are null and, as a numerical consequence, the model parameters always re-

sult totally correlated. Unfortunately, since the minimum time required to take a

sample is 5 minutes, it is clear that regardless of the sampling distribution adopted,

it is not possible to obtain a different correlation. Eventually, the conclusion is that

the model structure of M3 is unsuitable for the type of investigation that has to be

conduced in this work and, for the reasons aforementioned, it is not considered in

the following sections.

Finally, about the sampling point distributions, no definitive conclusions can be

drawn yet: for all the kinetic models investigated up to this point, the different

distributions did not affect significantly the correlation results and they have to be

further investigated – and discriminated – through the next analyses.

4.5 Re-parametrization of M1

The model re-parametrization is a technique that consists in changing the model

structure, rearranging the terms of the various equations, keeping the model re-

sponse invaried. It is strongly driven by the modelist experience because, often, the

nonlinear structure of the models leads to non-trivial choices that are difficult to

foresee. Recent studies tried to propose algorithms capable of modifying the kinetic

models on the basis of certain statistics (Quaglio et al. (2019)) but the techniques

require further improvement. In this study, a trial-and-error procedure based on

the approach of Espie and Macchietto (1988), is instead used: starting from the ob-

servation of the critical correlations, new parameters are proposed, the sensitivity

for the campaign of 10 experiments is calculated again and the correlation as well.

If the changes are effective – in terms of correlation improvement – the new pro-

posed modifications are hold, otherwise different alternative are formulated. With

this rationale, several trials have been made trying to solve the critical correlation

problems of M1. Eventually, the kinetic model has been modified introducing three

new algebraic equations that represent as many lumped parameters. The new sys-
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tem of DAEs is:

P1 = k1KA

√
KH2 (4.1)

P2 = k2KB

√
KH2 (4.2)

P3 = k3KD

√
KH2 (4.3)

−dCA

dt
= P1 ·CA

ppH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(4.4)

dCB

dt
= [P1 ·CA −P2 ·CB]ppH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(4.5)

dCD

dt
= [P2 ·CB −P3 ·CD]ppH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(4.6)

dCE

dt
= P3 ·CD

ppH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(4.7)

dCW

dt
= P2 ·CB

ppH2 w

[1+KACA +KBCB +KDCD +KECE][1+√
KH2 pH2 +KWCW]

(4.8)

The correlation matrix obtained with this new model structure is reported in Table

4.9 for the sampling distribution S3: overall, it leads to the lower correlation. How-

ever, even though the three total correlations previously identified have been now

eliminated, the problem moved to parameters KD and KW. Many trials have been

made trying to tackle this issue but, eventually, the solution has not been achieved.

According to the remarkably low sensitivity found for KW and other adsorption

coefficients, the new approach to address the correlation problem involves the in-

vestigation of whether some of the model parameters can be neglected or not.

4.6 Simplified version of M1 (M1.2)

The aim of studying a simplified version for the kinetic model M1, is to bypass the

identifiability issues linked to the low sensitivities that characterize the adsorption

coefficients. As underlined by the sensitivity analysis, they do not play a significant

role on the determination of the model response, and it could be interesting to eval-

uate if they can be neglected from the model structure or not. In that case, the re-

sulting model would be more simple and its parameters would be easier to estimate

in a statistically reliable way. The new set of DAEs – with the same nomenclature
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Table 4.9: Correlation matrix for the re-parametrized kinetic model M1 based on

PE and built on a the campaign of 10 experiments with the sampling distribution

S3: values and colormap.

R P1 P2 P3 KA KB KD KE KH2 KW

P1 1.000

P2 0.441 1.000

P3 0.009 -0.002 1.000

KA -0.728 -0.780 -0.011 1.000

KB -0.712 -0.875 -0.045 0.975 1.000

KD -0.215 -0.629 -0.510 0.281 0.466 1.000

KE -0.566 -0.808 -0.222 0.781 0.858 0.667 1.000

KH2 -0.655 -0.932 -0.243 0.842 0.922 0.695 0.870 1.000

KW -0.218 -0.631 -0.509 0.284 0.469 1.000* 0.669 0.697 1.000

rcrit 0 1 0 1 1 0 0 0 -

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

used for the original model M1 – is:

−dCA

dt
= k1 CA

√
KH2 pH2 w

1+√
KH2 pH2

(4.9)

dCB

dt
= [k1 CA −k2 CB]

√
KH2 pH2 w

1+√
KH2 pH2

(4.10)

dCD

dt
= [k2 CB −k3 CD]

√
KH2 pH2 w

1+√
KH2 pH2

(4.11)

dCE

dt
= k3 CD

√
KH2 pH2 w

1+√
KH2 pH2

(4.12)

Notice that the new structure, does involve the adsorption coefficient of hydro-

gen because it is linked with the hydrogen partial pressure contribution. At this

point, the comparison of the concentration profiles obtained from the original ki-

netic model M1 and its simplified version M1.2, allows to understand the "weight"

of the approximations applied. In Figure 4.4, it is reported the comparison for one

experiment randomly chosen among the set initially defined: the same results are

anyway obtained also for all the other 9 experiments.
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(a) Concentration profiles comparison. (b) Absolute difference profiles comparison.

Figure 4.4: Response comparison between the original kinetic model M1 and the

simplified version proposed M1.2: (a) comparison between the concentration profiles;

(b) profiles of the difference between the responses. T = 363K, C0
HMF = 0.20M, C0

DMF

= 0.20M.

No substantial differences are present: the concentration profiles practically over-

lap and the average discrepancy for each species is in the order of ±0.01%. It is pos-

sible to say, with a high level of confidence, that the two models are equivalent. The

subsequent analyses will be performed for only the simplified version M1.2. The

conclusion is that, the high structural complexity and the high number of parame-

ters involved in the original kinetic model M1, cause its structural unidentifiability.

However, a simpler alternative, neglecting many of the unnecessary adsorption co-

efficients, has been found.

4.6.1 Correlation analysis on M1.2

Since the model structure has been modified, the correlation analysis is expected

to give a different result as well. Thus, the correlation between parameters is as-

sessed again for the three sampling distributions (see Appendix B) and, overall, it

is possible to conclude that:

1. S1 cause the couple of parameters k2-KH2 to be critically correlated;

2. S2 has the same effect as S1, with a critical correlation for the same couple

of parameter and high correlations – close to the critical conditions – also for

other couples;
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3. S3 leads to a situation in which no critical correlations are present.

4. different temperatures do not cause significant variations in the correlation

between parameters hence do not affect the structural identifiability of the

kinetic model.

According to the results obtained, the kinetic model M1.2 will be further investi-

gated considering only the sampling distribution S3. Eventually, the information

analysis is employed to further discriminate among the best temperature to be used.

4.7 Results from information analysis

Once a refined set of kinetic models without structural identifiability issues has

been defined, it is possible to study the system information exploiting the FIM. In

Chapter 2, all the details about the information analysis and the FIM derivation

are discussed. In this section instead, the information analysis is used to perform a

ranking of the design space regions that maximise the information required for the

parameter estimation purposes.

4.7.1 Information analysis on M1.2

Since the authors who developed the kinetic model M1 proposed 4 sets of param-

eters according to 4 temperature levels, it is possible to study the effects of this

variable on the information analysis. However, being a discrete variable, the tem-

perature represents an "external" degree of freedom for the parameter estimation

that cannot be managed by the optimizer but it can be set case by case from the

user, as a function of the parameter that requires estimation. In Figure 4.5 the

information analysis results are illustrated.

1. At the conditions of the third experiment, as expected, the information that

can be collected is almost null for all the model parameters but k3 that is

related to the conversion of DMF, the only species present in the reactive

system in this experiment.

2. Experiments 1, 8, 9 and 10 are, generally, the most informative.

85



CHAPTER 4

3. The temperature at which the information is higher varies for each parameter.

Overall, the two best alternatives are 353 K at which more information for k1

and k2 is provided, and 383 K at which both the total information and the

information available for KH2 are higher.

4. The information related to k2 and k3 is not significantly affected by the tem-

perature.

Eventually, operate at 383 K represents the best choice for the estimation purposes.

Looking at the information plots, indeed, it is clear that the hydrogen adsorption

coefficient KH2 is likely to be the most difficult parameter to estimate in a statis-

tically reliable way. For that reason, the temperature of 383 K may ensures a less

resource-expensive estimation without affecting heavily the statistics of the param-

eters. Notice finally that the condition number of the global FIM for that conditions

is CN = 1.73·1018 that is considerably high and denotes that the matrix inverse may

not be reliable.

4.7.2 Information analysis on M2

Although for M1.2 is has already been figured out that the only suitable sampling

points distribution is S3, the kinetic model M2 can be used to refine finding. At

the purpose, the dependency of the information on the sampling distributions is

assessed and, in Figure 4.6, the corresponding bar plots are reported.

1. The information provided by the third experiment is almost null, apart for the

parameter k4,app related to the conversion of DMF;

2. Experiments 1,6 and 8 correspond to the most informative regions of the de-

sign space.

3. The samplings distributions S1 and S2 allow to maximise the information for

the most critical parameter k3,app while S3 grants more information for k4,app

and k5,app.

Considering the results just listed, it is possible to conclude that the experiment 6

(C0
HMF = C0

DMF = 0.20M) and the sampling distribution S3 are the best alternatives

to maximise the information for both M1.3 and M2 through a single experiment.
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(a) Information for k1 (b) Information for k2

(c) Information for k3 (d) Information for KH2

(e) Total information

Figure 4.5: Bar plot comparing the information available for the parameters of the

kinetic model M1.2 as a function of the experimental conditions (experiments) and

temperature considered.

At this point, to further refine the analysis just concluded, a covariance analysis has

to be exploited. Through the covariance it is indeed possible to discriminate even

better among the regions of the design space that allow to obtain the best statistics
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(a) Information for k1,app (b) Information for k2,app

(c) Information for k3,app (d) Information for k4,app

(e) Information for k5,app (f) Total information

Figure 4.6: Bar plot comparing the information available for the parameters of

the kinetic model M2 as a function of the experimental conditions (experiment) and

temperature considered.

for the parameters that require estimation.
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4.8 Covariance analysis results

To study the covariance, the metrics used is the variance-covariance matrix. It al-

lows to determine the most suitable experimental conditions to use, on the basis of

both the information and the correlation analyses. Overall, the expected trend of

the covariance is opposite in respect to the information one because, using (2.29),

the lower the variance the higher the information. However, it could happen that

the conditions that maximize the information are not exactly the same that min-

imise also the covariance: the divergence is due indeed to the correlation between

parameters.

In Figure 4.7, the information and covariance profiles for the kinetic model M1.2

are reported. The abrupt increase in the covariance, for the second and third exper-

iments, denotes the presence of a numerical error. As underlined in Section §2.7,

the FIM inversion can lead to numerical problems if the matrix is not well-posed.

In this case, the remarkably difference between sensitivity values of different pa-

rameters, cause the resulting FIM to be sloppy and singular: the inversion is only

possible by using the SVD approximation that gives a pseudo-inverse of uncertain

reliability.

(a) Total cumulative information profile. (b) Total covariance profile.

Figure 4.7: Total Fisher information trace and covariance profiles for the kinetic

model M1.2 with T = 383 K, PH2 = 5 atm, S3 distribution.

In Figure 4.8, the information and covariance profiles are reported for the kinetic

model M2. In this case, the approximation of the variance-covariance matrix is not

required because the FIM is well-posed and not singular.
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(a) Total cumulative information profile. (b) Total covariance profile.

Figure 4.8: Total Fisher information trace and covariance profiles for the kinetic

model M2 with S3 distribution.

Overall, what is possible to notice from the analysis of both kinetic models is that:

1. higher initial concentrations of DMF (e.g. experiments 6 and 8) allow to

gather more information;

2. lower initial concentration of DMF (e.g. experiment 4 and 5) lead to a greater

reduction of the covariance.

To conclude, although experiment 6 is characterized by high initial concentrations

of both HMF and DMF, it appears a good trade-off between information maximisa-

tion and covariance reduction.

4.9 Results summary

The study carried out in this Chapter allowed to characterize, from an initial set

of kinetic models gathered in literature, the ones not affected by identifiability is-

sues: both structural and practical identifiability analysis have been carried out.

Furthermore, to pursue the analyses, an ad-hoc design space has been defined by

restriction of a larger domain: practical limitations related to the equipment to be

employed and to safety standards to be respected, have been considered.

Firstly, the critical correlations identified for M1 brought to the definition of M1.2:

a simplified version which structure is capable of solving all the correlation issues

when the sampling distribution S3 is adopted. Instead, for M2 no particular prob-

lems have been detected: the model parameters are not correlated regardless to the
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sampling distribution employed. Subsequently, the results for the kinetic model M3

highlighted that its structure is completely unsuitable for the type of study carried

out in this work, it has been discarded. Finally, the kinetic model M4 has been

considered as a simplified version of M2, meaningful to be further investigated only

whether some issues in using M2 would arise.

Secondly, the information analysis has been performed taking into account the ef-

fect of temperature for M1.2, and the effect of sampling points distributions for M2.

The conclusion are that:

1. at high initial concentrations of HMF and DMF the expected information

available for the parameter estimation is higher;

2. the temperature of 383 K is the best choice in order to maximize both the

global and, specifically, the information available for the most critical param-

eters;

3. the best sampling distribution is S3 because it maximise the global informa-

tion and, although other distributions are even valid, it is the only one suit-

able for both kinetic models.

To conclude, the covariance analysis based on the variance-covariance matrix has

been performed to consider both information and correlation for each model param-

eter. It demonstrated that the experimental conditions for which the information

is higher do not always correspond to the conditions that minimise also the co-

variance. Eventually, the initial concentration of experiment 6 (Table 4.2) and the

sampling point distribution S3, are considered as the best design variables to avoid

structural and practical identifiability issues and to maximise the quality of the

parameter estimation for the selected kinetic models M1.2 and M2.
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VALIDATION OF KINETIC MODELS AND

OPTIMISATION OF DISCRIMINATING POWER

W HEN a refined set of kinetic models is available, the study proceeds with

the validation and the identification of the design space regions that max-

imise the difference in predictions between candidate models. Firstly, a sensitivity

analysis is carried out to ensure the reliability of the previously obtained results to

significant variations of the model parameters value. Then, in absence of data from

real experiments, the kinetic models validation has to be performed with in-silico

data. Finally, the discriminating power optimization leads to identify the range of

application for each kinetic model: the conditions conditions allowing a clear dis-

tinction between model predictions.

5.1 Effect of parametric uncertainty on parameter

correlation and information

By definition, the sensitivity analysis depends on the local value of the model pa-

rameter. It is then required to verify whether the analyses results change signifi-

cantly when the estimated parameters vary from the original value proposed. This

verification ensures that the findings described throughout Chapter 4 and Chapter

5 are valid globally, although the analyses used to obtain them are based on the

local sensitivities. It could happen, indeed, that even slight variations in the value

of the model parameters lead to:

1. changes in the parameters correlation;

2. changes in the information profiles.
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To assess this kind of sensitivity, random variations of ±15% and ±30% are applied

to the model parameters of both M1.2 and M2: the results of correlation and infor-

mation analysis are then compared with the nominal cases already illustrated in

Chapter 4. To provide an example, the correlation matrices in Tables 5.1 and 5.2

and the information profiles in Figure 5.1, are reported for the kinetic model M2.

Table 5.1: Correlation matrix for the kinetic model M2 based on PE and built on a

campaign of 10 experiments with sampling distribution S3, after a random param-

eter variation of ±15%: values and colormap.

R k1 k2 k3 k4 k5

k1 1.000

k2 0.472 1.000

k3 0.397 0.419 1.000

k4 -0.270 -0.361 -0.100 1.000

k5 -0.333 -0.840 -0.201 0.398 1.000

rcrit 0 0 0 0 0

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

Besides some minor variations, the overall behaviour of M2 does not change: as for

the nominal case, no correlation issues characterizes the kinetic model. Therefore,

the findings coming from the several analyses performed can be treated in a general

way.

Furthermore, although for some experiments the information content diverge from

the nominal case, the overall trend is respected: the design space regions that are

more informative remain so. Notice that the conclusions illustrated here for M2

have been obtained also for the kinetic model M1.2 but they have not been reported

for sake of conciseness.

5.2 Kinetic models validation

Once a final set of identifiable kinetic models for the process of interest has been

defined, the subsequent step consists in the application of validation techniques
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Table 5.2: Correlation matrix for the kinetic model M2 based on PE and built on a

campaign of 10 experiments with sampling distribution S3, after a random param-

eter variation of ±30%: values and colormap.

R k1 k2 k3 k4 k5

k1 1.000

k2 0.489 1.000

k3 0.380 0.479 1.000

k4 -0.345 -0.378 -0.197 1.000

k5 -0.387 -0.802 -0.277 0.389 1.000

rcrit 0 0 0 0 0

-1.00 -0.75 -0.50 -0.25 0 +0.25 +0.50 +0.75 +1.00

that lead to a further discrimination and understanding of the remaining models.

At the purpose, the model validation can be carried out exploiting:

1. reliable data already available;

2. data coming from direct experiments (better if designed);

3. in-silico data generated from another kinetic model.

Through the model validation procedure it is possible to verify whether the kinetic

models under investigation can accurately fit the data and give reliable predictions

in a wide range of experimental conditions. The final objective is to find a kinetic

model – if possible – capable of being representative of the reality even when the

experimental conditions adopted are significantly different from those employed to

develop it.

5.2.1 Response comparison between M1.2 and M2

When a set of kinetic models is collected, it is expected that their structures have

been obtained by different theories, assumptions and balances. For that reason,

the model discrimination techniques are used to determine exactly which model

94



VALIDATION OF KINETIC MODELS AND OPTIMISATION OF DISCRIMINATING POWER

(a) Information for k1 (b) Information for k2

(c) Information for k3 (d) Information for k4

(e) Information for k5 (f) Total information

Figure 5.1: Bar plot comparing the information available for the parameters of the

kinetic model M2 as a function of the experimental conditions (experiment) for the

nominal case, ±15% parameters variation and ±30% parameters variation.

structure is more appropriate in order to represent the system under investiga-

tion. Thus, it is important to assess firstly the difference between the concentration

profiles obtained from the kinetic models M1.2 and M2, using the experimental con-

ditions and the parameters proposed by the authors who developed the models (see

Table 5.3).

95



CHAPTER 5

From the comparison in Figure 5.2, the concentration profiles for the species in

common are shifted toward shorter times for the left case (M1.2), and longer times

for the right one (M2). The two kinetics have indeed different velocities, suggesting

that a change on the M2 kinetic constants – supposedly an increment – could make

the profiles considerably alike. Instead, no speculations can be made for M1.2 since

it contains also an adsorption coefficient which effect on the reaction velocity is not

easy to determine as for the kinetic constants.

Table 5.3: Set of parameters and experimental conditions employed to obtain the

concentration profiles that allow to compare the two kinetic models M1.2 and M2.

Experimental conditions

T [K] P [atm] C0
HMF [M] C0

DMF [M]

M1.2 363 5 0.0667 0.0222

M2 443 100 0.0667 0.0222

Parameters

M1.2 k1 = 1.8E-3 k2 = 0.6E-3 k3 = 0.43E-4 KH2 = 8.6

M2 k1 = 0.13247 k2 = 0.55482 k3 = 2.26789 k4 = 0.00332 k5 = 0.07100

(a) Concentration profiles for M1.2. (b) Concentration profiles for M2.

Figure 5.2: Comparison between concentration profiles for the species in common

to M1.2 (left) and M2 (right) obtained using the set of experimental conditions and

parameters listed in Table 5.3.
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5.2.2 Validation of kinetic model M2 results

As anticipated previously, since the kinetic model M2 showed a more flexible be-

haviour and less critical correlations, the idea is to use the data generated from

M1.2 to determine if statistically reliable estimates can be obtained for M2. First

of all, it is important to modify the data from simulated profile adding a Gaussian

white noise with SDV σ = 0.003M, consistent to the variance model chosen for the

estimation, that simulates the measurement errors always present when the data

are collected through real experiments. Without the noise, the statistics obtained

would be exceedingly good.

The estimation is then carried out considering to perform only a single experiment,

then 5 and finally 10 experiments: from Tables 5.4 to 5.6, it is possible to appreci-

ate the improvement of the various statistics. Notice that some model parameters

cannot be estimated from the data generated: if a kinetic model cannot generate

information related to a specific reactant, product or intermediate, it is not possible

to estimate the kinetic constant related to that species. In particular, since M1.2

does not consider the production of DHMTHF, the kinetic constant in M2 related to

its production cannot be estimated and its statistics are not reported.

Table 5.4: Parameters statistics, t-test and χ2-test for the validation of the kinetic

model M2. Constant variance of σ = 3·10−3, T = 363K , P= 5atm, 1 experiments

randomly chosen among the 10 of the experimental campaign.

Par. Value 95% Conf. Interval 95% t-value Standard Deviation

k1,app 1.142·10−2 3.917·10−3 2.916 1.931·10−3

k2,app 1.400·10−3 1.794·10−4 7.802 8.845·10−5

k3,app 2.311·10−1 3.091·10+0 0.075* 1.524·10+0

k4,app 6.994·10−6 1.324·10−6 5.283 6.527·10−7

Ref. t-value: 1.688

Weighted Residual: 0.0558 χ2-Value (95%): 51.0

In Figure 5.3 are reported the predicted values against the data points used for the

validation: the results for only one temperature are illustrated but, however, all the

other cases are characterized by exactly the same peculiarities (see Appendix B).

97



CHAPTER 5

Table 5.5: Parameters statistics, t-test and χ2-test for the validation of the kinetic

model M2. Constant variance of σ = 3·10−3, T = 363K , P= 5atm, 5 experiment

randomly chosen among the 10 of the experimental campaign.

Par. Value 95% Conf. Interval 95% t-value Standard Deviation

k1,app 2.350·10−2 2.458·10−2 0.956* 1.245·10−2

k2,app 1.288·10−3 1.142·10−4 9.075 7.188·10−5

k3,app 2.362·10−1 2.331·10+0 0.101* 1.180·10+0

k4,app 6.945·10−6 8.787·10−7 7.903 4.449·10−7

Ref. t-value: 1.649

Weighted Residual: 11.799 χ2-Value (95%): 186.1

Table 5.6: Parameters statistics, t-test and χ2-test for the validation of the kinetic

model M2. Constant variance of σ = 3·10−3, T = 363K , P= 5atm, 10 experiments.

Par. Value 95% Conf. Interval 95% t-value Standard Deviation

k1,app 1.158·10−2 1.667·10−3 6.950 8.473·10−4

k2,app 1.500·10−3 8.006·10−5 18.74 4.072·10−5

k3,app 4.939·10−2 5.399·10−2 0.915* 2.746·10−2

k4,app 6.996·10−6 3.901·10−7 17.93 1.984·10−7

Ref. t-value: 1.645

Weighted Residual: 7.743 χ2-Value (95%): 401.0

Overall, what is possible to highlight is that:

1. the χ2-test is successful as to indicate a good fitting of the data;

2. the t-values for the estimated k1,app, k2,app and k4,app are significantly good

while the same does not hold for k3,app, related to the MFA consumption, that

is not satisfactory;

3. the absolute value of the estimated k3,app is, as expected, large to justify the

high reactivity of the species (MFA) at which it is related to.

At this point, the goodness of statistics and fitting stimulates the idea that, maybe,

the two kinetic models could be actually equivalent. Eventually, the low t-value of

the estimated k3,app would be justified by the fact that it is the only parameter that
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(a) Fitting of HMF concentration profile. (b) Fitting of BHMF concentration profile.

(c) Fitting of DMF concentration profile. (d) Fitting of DMTHF concentration profile.

Figure 5.3: Fitting results of the concentration profiles predicted from the kinetic

model M2 against the data points generated from M1.2 at which Gaussian noise

with σ = 0.003M has been added.

is not in common between the two models and the data generated from M1.2 do

not contain information through which it can be estimated in a statistically reliable

way. At the purpose, the comparison of the concentration profiles is reported in

Figure 5.4.

The negligible differences between the concentration profiles denote that the re-

sponses are practically equal. Moreover, since the analysis has been repeated for

all the 10 experiments previously defined, and the results showed the same be-

haviour, it is possible to conclude that the two kinetic models are equivalent in the

design space previously defined.
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(a) Concentration profiles comparison. (b) Absolute difference profiles comparison.

Figure 5.4: Response comparison between the kinetic models M1.2 and M2: (a)

comparison between the concentration profiles; (b) profiles of the difference between

the responses. T = 383K, C0
HMF = 0.20M, C0

DMF = 0.20M.

5.2.3 Validation of kinetic model M1.2 results

Following the same analysis framework described on the previous section, also the

validation of the kinetic model M1.2, exploiting the data same data generated be-

fore, is performed. The objective of this section is to understand whether it would be

possible to estimate all the non-measurable parameters of the kinetic model M1.2,

in particular KH2 , in a statistically reliable way: the information available for its es-

timation has been previously found to be extremely low on the entire design space.

The results are illustrated in Table 5.7.

Table 5.7: Parameters statistics, t-test and χ2-test for the validation of the kinetic

model M1.2. Constant variance of σ = 3·10−3, T = 383K, P= 5atm, 10 experiments.

Par. Value 95% Conf. Interval 95% t-value Standard Deviation

k1,app 8.624E-04 3.554E-01 2.426E-03* 1.809E-01

k2,app 1.091E-04 4.495E-02 2.426E-03* 2.287E-02

k3,app 1.601E-06 7.939E-04 2.017E-03* 4.040E-04

KH2 8.625E+00 1.566E+04 5.507E-04* 7.969E+03

Ref. t-value: 1.648

Weighted Residual: 327.502 χ2-Value (95%): 496.236
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Unfortunately, these results are affected by numerical issues. Although no crit-

ical correlations are present, the high determinant of the FIM cause that heavy

numerical errors occur. Eventually, the resulting pseudo variance-covariance ma-

trix, coming from the SVD approximation, cannot be trusted and, since the t-test is

based on this matrix, it turns out to be not predictable too. Unfortunately, there are

no specific techniques to solve this kind of problems. The only possible solution is to

assign a fixed value to KH2 , the parameter supposedly responsible of this problem,

and assess the behaviour of the model again. The new results are shown in Table

5.8.

Table 5.8: Parameters statistics, t-test and χ2-test for the validation of the kinetic

model M1.2. Constant variance of σ = 3·10−3, T = 383K, P= 5atm, 10 experiments.

Par. Value 95% Conf. Interval 95% t-value Standard Deviation

k1,app 8.623E-04 6.230E-05 1.384E+01 3.170E-05

k2,app 1.092E-04 3.532E-06 3.092E+01 1.797E-06

k3,app 1.600E-06 1.058E-07 1.512E+01 5.384E-08

KH2 8.600E+00 Value fixed by user

Ref. t-value: 1.648

Weighted Residual: 327.502 χ2-Value (95%): 496.236

As expected, by removing the parameter for which the information was significantly

lower in respect to the others, the overall parameter statistics improve remarkably.

At the light of the just obtained findings, KH2 should be then identified exploiting

ad-hoc adsorption experiments that ensure its reliable estimation.

5.3 Optimisation of discriminating power

The objective of this section is to find the design space regions that maximise the dif-

ference between the kinetic models M1.2 and M2. The rationale is that, after having

found that the two models are equivalent under certain experimental conditions, it

is definitely interesting to assess when they are significantly different and to find

the conditions for which each kinetic model is more suitable to be used. Supposedly,

the hydrogen partial pressure plays an important role on the discriminating power
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because it is the only measurable variable that is not in common to the two models.

However, also the effect of the initial concentrations of the chemical species – some

of which have never been accounted before – is now studied. In Tables from 5.9 to

5.11 it is possible to appreciate the results of three different studies, considering

as optimization variables: only the pressure, only the initial concentrations or both.

The results are obtained exploiting the Hunter-Reiner criterion (Hunter and Reiner

(1965)) in (5.1):

min

(
Nm∑
i=1

∫ treac

t0

∣∣∣CM1.2
i (t)−CM2

i (t)
∣∣∣dt

)
(5.1)

Table 5.9: Result of the discriminating power optimisation by varying the hydrogen

pressure.

Variable Final value Initial guess Lower bound Uper bound

PH2 1.0 4.0 1.0 20.0

Obj. function: 4.022

Table 5.10: Result of the discriminating power optimisation by varying the initial

concentrations of the species in common to M1.2 and M2 kinetic models.

Variable Final value Initial guess Lower bound Uper bound

CHMF 0.2 0.1 0.0 0.2

CBHMF 0.2 0.0 0.0 0.2

CDMF 0.2 0.1 0.0 0.2

CDMTHF 0.2 0.0 0.0 0.2

Obj. function: 0.366

It is clear that the initial concentrations do not contribute significantly to the dis-

criminating power maximisation. Even tough the difference in the concentration

profiles tends to increase when the initial concentrations increase as well, the effect

of the hydrogen partial pressure is much more remarkable. However, even tough

theoretically it would be better to set the pressure as low as possible, this is not

practically achievable because one of the basic assumptions of the kinetic models

is that, in the reactive system, the hydrogen must be in excess. For this reason,

it is not possible to decrease the hydrogen pressure too much: in such that case it
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Table 5.11: Result of the discriminating power optimisation by varying both the

initial concentrations of the species in common to M1.2 and M2 kinetic models and

the hydrogen pressure.

Variable Final value Initial guess Lower bound Uper bound

PH2 1.0 4.0 1.0 20.0

CHMF 0.2 0.1 0.0 0.2

CBHMF 0.2 0.0 0.0 0.2

CDMF 0.2 0.1 0.0 0.2

CDMTHF 0.2 0.0 0.0 0.2

Obj. function: 7.601

should be required to modify the models in order to consider also the hydrogen rate

of change by adding a specific differential equation. Since the minimum pressure

has to be 5 atm, the other alternative is to increase it as much as possible: above 20

atm the effect on the discriminating power starts to be remarkably.

5.4 Results summary

To conclude this Chapter, a brief summary of the main results attained is presented.

First of all, the study of the analyses sensitivity to the local values of the model pa-

rameters demonstrated that the kinetic models behaviour remains the same also

after significant variations of the parameter values. This result introduced the

possibility of using in-silico data, generated from the kinetic model M1.2 and equiv-

alent to M1, to validate M2 and M1.2 itself. The validation allowed to underline if,

at specific experimental conditions, the kinetic models were still capable of repre-

senting the system accurately. It emerged that:

1. the quality of the fitting provided by both kinetic models is good, as high-

lighted by the χ2-test;

2. both M1.2 and M2 show exactly the same behaviour inside the design space

defined in this Thesis, hence they can be considered as equivalent for those

experimental conditions;
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3. a reliable estimation for M1.2 is not possible when KH2 is considered as a

model parameter due to the presence of numerical errors that affect the cal-

culation of the statistics used to assess the parameters quality. In particular,

when the parameters vector θ contains both kinetic constants and adsorption

coefficients, the difference in the sensitivities order of magnitude cause the

resulting FIM to be sloppy and non-invertible.

4. for M2, a reliable estimation of the kinetic parameters is possible. However,

since the campaign of 10 experiment considered to performed the analysis

was simply generated through the LHS, to cover the entire design space with-

out distinction between more or less informative regions, the quality of the

presented statistics could be further improved by applying proper DoE tech-

niques.

At this point, considering that the two remaining kinetic models are identifiable

and equivalent inside the defined design space, the attention moved on finding the

conditions that maximise instead the discriminating power. The kinetic models

responses have been compared by changing specific variables and calculating the

integral of the absolute difference between concentration profiles in respect to the

time. Thus, it emerged that the optimisation of the discriminating power is en-

hanced by:

1. very low hydrogen pressure (below 1 atm), solution that has been marked as

infeasible since one of the main assumption common to all the kinetic model

gathered in literature, is that the hydrogen has to be in excess;

2. very high hydrogen pressure (above 20 atm), solution that leads to higher pro-

cess costs and increasing safety issues and it has been considered as suitable

only using specific equipment and safety standards.

In general, notice that the most remarkable finding is that the two kinetic models,

involving different structures and considering different phenomena, turned out to

be exactly equivalent inside the design space considered. The study proceeded by

setting a constant value for the hydrogen pressure and by allowing to change only

the initial concentrations of the species in common. It emerged that these variables

give only a minor contribution on the discriminating power optimisation. Indeed,
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even though by increasing the initial concentration as much as possible the two

model responses start to diverge, this difference is significantly smaller – one order

of magnitude on the objective function value – in respect to the divergence obtained

by changing the pressure. However, a greater improvement is obtained by varying

both initial concentrations and hydrogen pressure: by increasing the pressure, the

effect of the initial concentrations on the discriminating power is enhanced as well.

Thus, finally, the higher the hydrogen pressure and the greater the effect of the

initial concentration on the discriminating power.

In any case, the validation technique underlined as the two kinetic models can be

used to describe the process in a wide range of experimental conditions. Virtually:

1. M1.2 is more appropriate when the process is conducted at high hydrogen

pressure, and when it is possible to estimate the hydrogen adsorption coeffi-

cient through ad-hoc adsorption experiments that ensure its reliability;

2. M2 is more suitable when the process is carried out at relatively low pressure.

However, although its apparent kinetic constants can be reliably estimated

through simple concentration data, particular attention must be employed in

the measurement of the very reactive intermediate MFA which profile ensure

a reliable estimation of k3,app.
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T HE work presented in this Thesis involved the analysis of different kinetic

models, gathered in literature, for the HMF hydrogenation process. The ob-

jective was to recognize structural and practical identifiability issues and define,

finally, a set of identifiable kinetic models which parameters can be estimated in a

statistically reliable way. The kinetic models used for the analyses and the process

description were based on:

1. dual-site Langmuir-Hinshelwood-Hougen-Watson ;

2. power law;

3. initial-rate expressions.

The theories and the assumptions used to develop the models, as well as their math-

ematical structures, have been first analysed to verify the presence of limitations

and uncertainties that could have affected the identifiability analysis. The kinetic

model developed by Grilc et al. (2014) has been excluded because its characteristics

were different from all the other kinetic models and a comparison was not possible.

To assess the structural identifiability – the possibility of estimating all the model

parameters as a function of the model equations structure – an identifiability test

based on a local sensitivity analysis has been exploited. The results have been re-

arranged to perform:

1. correlation analysis;

2. information and covariance analysis.

The possibility of using the sensitivities to built the so called estimability matrix,

allowed to analyse the behaviour of each kinetic model under specific conditions.

Through the analysis of the correlation matrix and its evolution for different values

of the design variables, it has been possible to detect and classify the presence of
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identifiability issues for the kinetic models. Sometimes they turned to be structural,

hence related to the shape of the differential balances used to describe the system,

in other cases they have been found to be practical, hence related to the regions

of the design space defined. Furthermore, for the kinetic model of Gawade et al.

(2016), the results stimulated the application of re-parametrization techniques with

the objective of solving the critical correlations. Although the trial-and-error proce-

dure adopted has been finally unable of solving the correlation problem, it allowed

to underline the limited utility of some adsorption coefficients. These have been dis-

carded from the kinetic model in order to propose a simplified version not affected

by critical correlations.

Subsequently, the study of the Fisher Information Matrix (FIM) quantified the ex-

pected information content of experiments used to estimate the model parameters.

Eventually, by merging the results of correlation and information analyses, it has

been possible to define the region of the design space capable of ensuring the kinetic

models identifiability and a reliable estimation of the parameters.

The last part of the project involved the validation of the simplified version of the

kinetic model proposed by Gawade et al. (2016) and the one proposed by Gyngazova

et al. (2017). At the purpose, in-silico data have been generated and the procedure

led to establish that:

1. through concentration data only it is not possible to reliably estimate adsorp-

tion coefficients;

2. the kinetic model proposed by Gyngazova et al. (2017), and based on the power

law theory, is considerably flexible and can easily adapt to kinetics obtained

for experimental conditions significantly different from the ones at which is

has been originally developed.

Eventually, the validation techniques highlighted that the two selected models –

the simplified version of the model proposed by Gawade et al. (2016) and the origi-

nal model proposed by Gyngazova et al. (2017) – were equivalent within the design

space explored in this Thesis. The study then aimed at assessing how to modify

the design variable values to maximise the discriminating power. The conclusion

is that for a very high hydrogen pressure, above 20 atm, it should be preferred the
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use of the simplified version of the kinetic model proposed by Gawade et al. (2016),

although a reliable estimation of the hydrogen adsorption coefficient cannot be ob-

tained.

To conclude, the work presented in this Thesis represents a first step toward the

identification of a more complete kinetic model that contemplate the explicit depen-

dency of reaction rates on both temperature and pressure. Furthermore, it high-

lights that to obtain reliable predictions on concentration, an extremely complex

representation of the chemistry at the basis of the process is not required. Indeed,

kinetic models with many parameters are likely to be unidentifiable and not suit-

able to be validated through simple kinetic experiments.
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THE Appendix contains the mathematical derivation of the condition number

introduced in Chapter 2 (§2.7.1) as a function of the matrix eigenvalues. The

condition number has been used for the analyses described throughout this Thesis

to assess whether the FIM was reliably invertible or not.

A.1 Condition number calculation using the ma-

trix norm-2

The study of the condition number allows to assess the entity of the numerical

errors that may arise in solving linear equations. For the development strategy of

the condition number through the matrix norm-2, it is required to consider first the

linear equation below:

A~x =~b (A.1)

The problems occur when small changes in ~b, due to measurements or computa-

tional errors, lead to large variations of ~x. Thus, assuming to perturb ~b with a

small error vector~ε such that~b →~b+~ε, the aim is to measure the variation of~x that

results to be~x →~x+~δ. In other words, the addition of~ε causes~x to be perturbed by

~δ:

A(~x+~δ)=~b+~ε (A.2)

A~x+A~δ=~b+~ε (A.3)

Considering (A.1), (A.3) finally becomes:

A~δ=~ε (A.4)

To have an indication about the matrix condition it is now interesting to assess

how different are the norms of the two perturbation vectors just introduced. It is
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required to assess:

||~ε|| vs ||~δ|| (A.5)

However, it is better to normalize these two quantities in order to exclude any scal-

ing effect that does not affect the solution of (A.1) but, instead, affects the values

of~ε and ~δ. Thus, rather that looking directly at the two perturbations vectors, it is

better to compare the normalized values such that (A.5) becomes:

||~ε||
||~b||

vs
||~δ||
||~x|| (A.6)

where ||~b|| and ||~x|| at the denominator are called normalizing factors.

The problem with the matrix condition is when the first term of (A.6) is small com-

pared with the second term. Then, in order to find a more compact index, the ratio

of the two normalized perturbation vectors can be introduced:

||~δ|| / ||~x||
||~ε|| / ||~b||

(A.7)

When this ratio is small, either the smaller is ~δ or the bigger is~ε, the matrix condi-

tion is better. Furthermore, if the matrix A is diagonalizable, its eigenvalues λi are

real and there must be matrix eigenvectors that satisfy:

Avi =λivi (A.8)

Substituting (A.1) inside (A.8), it is possible to end up with:

||~b||
||~x|| = |λi| (A.9)

Since there are several eigenvalues – which value is not strictly required to be

known – it is possible to state that the ratio on the left-hand side of (A.9) must be

equal or lower than the maximum eigenvalue:

||~b||
||~x|| ≤ |λmax| (A.10)

Repeating exactly the same considerations from (A.8) to (A.10), the following must

hold too:
||~ε||
||~δ||

≤ |λmax| (A.11)
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Eventually, the ratio of the ratios in (A.10) and (A.11) gives almost (A.7). Thus, in

order to make it consistent with this equation, it is possible to consider:

||~ε||
||~δ||

≥ |λmin| (A.12)

which is based on the same concept of using the maximum eigenvalue.

Finally, taking its inverse, (A.12) turns to be:

||~δ||
||~ε|| ≤

1
|λmin|

(A.13)

It has been previously states as this ratio was wanted to be small. Considering

(A.11) and (A.13), the equation (A.7) has now an upper bound such that:

||~δ|| / ||~x||
||~ε|| / ||~b||

= ||~δ||
||~ε|| ·

||~b||
||~x|| ≤

1
|λmin|

· |λmax| (A.14)

Clearly, the maximum and the minimum size of the eigenvalues represent the key

to assess the condition number (CN) of a matrix. The conclusion is that, given a

symmetric matrix, the condition number is:

CN= |λmax|
|λmin|

(A.15)

It represents a measure of how good is the condition of a matrix: it is called well-

conditioned if this number is small, ill-conditioned if the number is large.
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THIS Appendix contains all the tables derived from the various analyses per-

formed on the kinetic models and not reported in Chapter 4 to avoid repeti-

tions. Here, it is possible to find the results of the structural identifiability assess-

ment for various temperatures and sampling points distributions for the kinetic

model M1.2. Moreover, the tables containing the difference, in terms of integral

value between the kinetic model M1, M1.2 and M2, are reported.

B.1 Correlation matrices of the kinetic model M1.2

Below, the correlation matrices for the kinetic model M1.2, related to all the sam-

pling points distributions and all the temperature levels, are reported.

Table B.1: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1 and T = 353 K.

R k1 k2 k3 KH2

k1 1.000 0.499 -0.038 0.684

k2 0.499 1.000 -0.105 0.970

k3 -0.038 -0.105 1.000 -0.179

KH2 0.684 0.970 -0.179 1.000

rcrit 0 1 0 -
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Table B.2: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1 and T = 363 K.

R k1 k2 k3 KH2

k1 1.000 0.631 -0.036 0.723

k2 0.631 1.000 -0.088 0.983

k3 -0.036 -0.088 1.000 -0.211

KH2 0.723 0.983 -0.211 1.000

rcrit 0 1 0 -

Table B.3: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1 and T = 373 K.

R k1 k2 k3 KH2

k1 1.000 0.700 -0.033 0.762

k2 0.700 1.000 -0.077 0.982

k3 -0.033 -0.077 1.000 -0.229

KH2 0.762 0.982 -0.229 1.000

rcrit 0 1 0 -

Table B.4: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S1 and T = 383 K.

R k1 k2 k3 KH2

k1 1.000 0.773 -0.040 0.792

k2 0.773 1.000 -0.097 0.984

k3 -0.040 -0.097 1.000 -0.263

KH2 0.792 0.984 -0.263 1.000

rcrit 0 1 0 -

B.2 Difference between kinetic models

In the tables below it is possible to find the values for the integral of the absolute

difference between the responses of different kinetic models. The values are re-
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Table B.5: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2 and T = 353 K.

R k1 k2 k3 KH2

k1 1.000 0.882 -0.040 0.898

k2 0.882 1.000 -0.091 0.988

k3 -0.040 -0.091 1.000 -0.228

KH2 0.898 0.988 -0.228 1.000

rcrit 0 1 0 -

Table B.6: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2 and T = 363 K.

R k1 k2 k3 KH2

k1 1.000 0.910 -0.024 0.894

k2 0.910 1.000 -0.067 0.972

k3 -0.024 -0.067 1.000 -0.293

KH2 0.894 0.972 -0.293 1.000

rcrit 1 1 0 -

Table B.7: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2 and T = 373 K.

R k1 k2 k3 KH2

k1 1.000 0.922 -0.013 0.888

k2 0.922 1.000 -0.051 0.958

k3 -0.013 -0.051 1.000 -0.333

KH2 0.888 0.958 -0.333 1.000

rcrit 1 1 0 -

ported for all the components in common. The total difference, to assess how much

the two models actually diverge, is also present.
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Table B.8: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S2 and T = 383 K.

R k1 k2 k3 KH2

k1 1.000 0.890 -0.017 0.848

k2 0.890 1.000 -0.075 0.956

k3 -0.017 -0.075 1.000 -0.364

KH2 0.848 0.956 -0.364 1.000

rcrit 0 1 0 -

Table B.9: Correlation matrix for the kinetic model M1.2 based on PE and built on

a the campaign of 10 experiments with the sampling distribution S3 and T = 353 K.

R k1 k2 k3 KH2

k1 1.000 0.085 -0.004 0.559

k2 0.085 1.000 -0.069 0.821

k3 -0.004 -0.069 1.000 -0.348

KH2 0.559 0.821 -0.348 1.000

rcrit 0 0 0 -

Table B.10: Correlation matrix for the kinetic model M1.2 based on PE and built

on a the campaign of 10 experiments with the sampling distribution S3 and T = 363

K.

R k1 k2 k3 KH2

k1 1.000 0.273 0.002 0.503

k2 0.273 1.000 -0.032 0.843

k3 0.002 -0.032 1.000 -0.480

KH2 0.503 0.843 -0.480 1.000

rcrit 0 0 0 -
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Table B.11: Correlation matrix for the kinetic model M1.2 based on PE and built

on a the campaign of 10 experiments with the sampling distribution S3 and T = 373

K.

R k1 k2 k3 KH2

k1 1.000 0.430 0.008 0.544

k2 0.430 1.000 -0.006 0.820

k3 0.008 -0.006 1.000 -0.534

KH2 0.544 0.820 -0.534 1.000

rcrit 0 0 0 -

Table B.12: Correlation matrix for the kinetic model M1.2 based on PE and built

on a the campaign of 10 experiments with the sampling distribution S3 and T = 383

K.

R k1 k2 k3 KH2

k1 1.000 0.539 0.012 0.524

k2 0.539 1.000 -0.030 0.838

k3 0.012 -0.030 1.000 -0.561

KH2 0.524 0.838 -0.561 1.000

rcrit 0 0 0 -
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Table B.13: Difference between models responses, kinetic model M1 and M1.2 at T

= 353K.

M1 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 2.54E-02 8.28E-02 8.12E-02 4.65E-03 1.94E-01

2 4.66E-03 1.52E-02 1.49E-02 7.85E-04 3.55E-02

3 0.00E+00 0.00E+00 4.51E-05 4.51E-05 9.01E-05

4 1.84E-02 5.89E-02 5.81E-02 2.17E-03 1.37E-01

5 8.46E-03 2.82E-02 2.75E-02 2.37E-03 6.66E-02

6 4.29E-02 1.42E-01 1.39E-01 1.19E-02 3.36E-01

7 6.01E-04 2.29E-03 2.30E-03 7.25E-04 5.92E-03

8 3.36E-02 1.11E-01 1.08E-01 7.91E-03 2.60E-01

9 1.34E-02 4.53E-02 4.42E-02 4.73E-03 1.08E-01

10 2.32E-03 8.58E-03 8.51E-03 2.18E-03 2.16E-02

Table B.14: Difference between models responses, kinetic model M2 and M1 at T =

353K.

M2 vs M1

EXP. HMF BHMF DMF DMTHF TOTAL

1 1.22E-02 4.40E-02 4.22E-02 1.60E-03 1.00E-01

2 1.26E-03 3.17E-02 3.68E-02 1.61E-03 7.13E-02

3 0.00E+00 0.00E+00 7.97E-04 7.97E-04 1.59E-03

4 7.18E-03 4.37E-02 4.56E-02 1.77E-03 9.82E-02

5 1.78E-03 3.63E-02 4.12E-02 2.00E-03 8.13E-02

6 2.59E-02 5.21E-02 4.48E-02 2.38E-03 1.25E-01

7 1.30E-03 1.32E-02 1.48E-02 2.04E-03 3.13E-02

8 1.85E-02 4.63E-02 4.15E-02 1.54E-03 1.08E-01

9 4.16E-03 3.80E-02 4.20E-02 1.89E-03 8.61E-02

10 1.47E-03 2.24E-02 2.58E-02 2.52E-03 5.22E-02
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Table B.15: Difference between models responses, kinetic model M2 and M1.2 at T

= 353K.

M2 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 1.32E-02 1.09E-01 1.20E-01 5.85E-03 2.48E-01

2 5.67E-03 4.66E-02 5.15E-02 2.39E-03 1.06E-01

3 0.00E+00 0.00E+00 8.42E-04 8.42E-04 1.68E-03

4 1.13E-02 9.31E-02 1.03E-01 3.93E-03 2.12E-01

5 7.56E-03 6.21E-02 6.82E-02 4.31E-03 1.42E-01

6 1.70E-02 1.40E-01 1.54E-01 9.69E-03 3.20E-01

7 1.89E-03 1.55E-02 1.70E-02 2.76E-03 3.71E-02

8 1.51E-02 1.24E-01 1.37E-01 7.77E-03 2.84E-01

9 9.45E-03 7.76E-02 8.51E-02 6.23E-03 1.78E-01

10 3.78E-03 3.10E-02 3.39E-02 4.68E-03 7.33E-02

Table B.16: Difference between models responses, kinetic model M1 and M1.2 at T

= 363K.

M1 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 1.37E-02 5.52E-02 5.35E-02 5.67E-03 1.28E-01

2 2.50E-03 1.01E-02 9.78E-03 9.61E-04 2.34E-02

3 0.00E+00 0.00E+00 7.19E-05 7.19E-05 1.44E-04

4 9.88E-03 3.91E-02 3.78E-02 2.62E-03 8.93E-02

5 4.56E-03 1.89E-02 1.85E-02 2.93E-03 4.49E-02

6 2.31E-02 9.55E-02 9.33E-02 1.47E-02 2.27E-01

7 3.30E-04 1.58E-03 1.87E-03 9.63E-04 4.75E-03

8 1.81E-02 7.40E-02 7.20E-02 9.69E-03 1.74E-01

9 7.22E-03 3.05E-02 3.01E-02 5.89E-03 7.37E-02

10 1.26E-03 5.89E-03 6.53E-03 2.84E-03 1.65E-02
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Table B.17: Difference between models responses, kinetic model M2 and M1 at T =

363K.

M2 vs M1

EXP. HMF BHMF DMF DMTHF TOTAL

1 2.45E-03 3.54E-02 5.16E-02 4.00E-03 9.34E-02

2 3.45E-03 2.74E-02 3.40E-02 3.14E-04 6.52E-02

3 0.00E+00 0.00E+00 5.09E-04 5.09E-04 1.02E-03

4 2.40E-03 3.68E-02 4.95E-02 6.51E-04 8.93E-02

5 3.37E-03 3.11E-02 4.21E-02 2.48E-03 7.91E-02

6 5.96E-03 3.32E-02 5.04E-02 1.37E-02 1.03E-01

7 1.66E-03 1.09E-02 1.47E-02 1.72E-03 2.90E-02

8 3.63E-03 3.37E-02 5.19E-02 8.34E-03 9.76E-02

9 2.68E-03 3.23E-02 4.85E-02 5.76E-03 8.92E-02

10 2.70E-03 1.91E-02 2.72E-02 3.93E-03 5.29E-02

Table B.18: Difference between models responses, kinetic model M2 and M1.2 at T

= 363K.

M2 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 1.38E-02 8.73E-02 1.00E-01 1.67E-03 2.03E-01

2 5.93E-03 3.74E-02 4.29E-02 7.80E-04 8.70E-02

3 0.00E+00 0.00E+00 4.37E-04 4.37E-04 8.75E-04

4 1.18E-02 7.48E-02 8.54E-02 2.00E-03 1.74E-01

5 7.90E-03 4.99E-02 5.78E-02 5.97E-04 1.16E-01

6 1.78E-02 1.12E-01 1.30E-01 1.34E-03 2.61E-01

7 1.97E-03 1.25E-02 1.53E-02 7.62E-04 3.05E-02

8 1.58E-02 9.98E-02 1.15E-01 1.40E-03 2.32E-01

9 9.87E-03 6.23E-02 7.26E-02 7.40E-04 1.46E-01

10 3.94E-03 2.49E-02 3.02E-02 1.09E-03 6.01E-02
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Table B.19: Difference between models responses, kinetic model M1 and M1.2 at T

= 373K.

M1 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 9.35E-03 3.82E-02 3.76E-02 5.68E-03 9.09E-02

2 1.72E-03 7.03E-03 6.89E-03 9.58E-04 1.66E-02

3 0.00E+00 0.00E+00 7.42E-05 7.42E-05 1.48E-04

4 6.76E-03 2.71E-02 2.63E-02 2.61E-03 6.27E-02

5 3.12E-03 1.31E-02 1.33E-02 2.95E-03 3.25E-02

6 1.58E-02 6.62E-02 6.67E-02 1.48E-02 1.63E-01

7 2.29E-04 1.11E-03 1.54E-03 9.87E-04 3.87E-03

8 1.24E-02 5.13E-02 5.11E-02 9.74E-03 1.24E-01

9 4.94E-03 2.12E-02 2.18E-02 5.95E-03 5.39E-02

10 8.68E-04 4.12E-03 5.20E-03 2.92E-03 1.31E-02

Table B.20: Difference between models responses, kinetic model M2 and M1 at T =

373K.

M2 vs M1

EXP. HMF BHMF DMF DMTHF TOTAL

1 1.47E-02 4.32E-02 3.99E-02 2.37E-03 1.00E-01

2 3.98E-03 2.54E-02 2.44E-02 4.89E-04 5.43E-02

3 0.00E+00 0.00E+00 1.30E-04 1.30E-04 2.60E-04

4 1.13E-02 4.14E-02 3.67E-02 3.69E-04 8.98E-02

5 6.14E-03 3.10E-02 3.06E-02 1.12E-03 6.88E-02

6 2.26E-02 4.67E-02 4.82E-02 1.07E-02 1.28E-01

7 9.77E-04 9.31E-03 1.01E-02 6.44E-04 2.11E-02

8 1.84E-02 4.45E-02 4.37E-02 6.04E-03 1.13E-01

9 8.72E-03 3.51E-02 3.59E-02 3.73E-03 8.34E-02

10 2.37E-03 1.72E-02 1.93E-02 2.17E-03 4.10E-02
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Table B.21: Difference between models responses, kinetic model M2 and M1.2 at T

= 373K.

M2 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 5.34E-03 7.13E-02 7.19E-02 3.30E-03 1.52E-01

2 2.29E-03 3.06E-02 3.08E-02 1.42E-03 6.51E-02

3 0.00E+00 0.00E+00 5.58E-05 5.58E-05 1.12E-04

4 4.57E-03 6.11E-02 6.16E-02 2.90E-03 1.30E-01

5 3.05E-03 4.08E-02 4.11E-02 1.82E-03 8.67E-02

6 6.86E-03 9.17E-02 9.24E-02 4.10E-03 1.95E-01

7 7.61E-04 1.02E-02 1.03E-02 3.52E-04 2.16E-02

8 6.10E-03 8.15E-02 8.21E-02 3.70E-03 1.73E-01

9 3.81E-03 5.09E-02 5.13E-02 2.22E-03 1.08E-01

10 1.52E-03 2.04E-02 2.05E-02 7.47E-04 4.32E-02

Table B.22: Difference between models responses, kinetic model M1 and M1.2 at T

= 383K.

M1 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 5.35E-03 3.13E-02 2.86E-02 5.60E-03 7.08E-02

2 9.87E-04 5.71E-03 5.19E-03 9.41E-04 1.28E-02

3 0.00E+00 0.00E+00 6.23E-05 6.23E-05 1.25E-04

4 3.87E-03 2.21E-02 2.01E-02 2.58E-03 4.86E-02

5 1.78E-03 1.08E-02 9.97E-03 2.88E-03 2.54E-02

6 9.01E-03 5.44E-02 5.05E-02 1.45E-02 1.28E-01

7 1.32E-04 9.09E-04 1.15E-03 9.24E-04 3.12E-03

8 7.06E-03 4.21E-02 3.87E-02 9.58E-03 9.74E-02

9 2.82E-03 1.74E-02 1.64E-02 5.79E-03 4.24E-02

10 4.96E-04 3.39E-03 3.92E-03 2.76E-03 1.06E-02
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Table B.23: Difference between models responses, kinetic model M2 and M1 at T =

383K.

M2 vs M1

EXP. HMF BHMF DMF DMTHF TOTAL

1 7.70E-03 3.99E-02 1.72E-02 3.02E-03 6.78E-02

2 1.98E-03 9.42E-03 4.03E-03 1.39E-04 1.56E-02

3 0.00E+00 0.00E+00 3.14E-04 3.14E-04 6.28E-04

4 5.88E-03 2.94E-02 1.18E-02 8.62E-04 4.80E-02

5 3.12E-03 1.57E-02 5.70E-03 9.72E-04 2.55E-02

6 1.20E-02 6.54E-02 3.33E-02 1.02E-02 1.21E-01

7 4.60E-04 2.15E-03 1.84E-03 3.17E-04 4.77E-03

8 9.75E-03 5.19E-02 2.44E-02 6.15E-03 9.22E-02

9 4.49E-03 2.35E-02 9.13E-03 3.03E-03 4.02E-02

10 1.16E-03 5.86E-03 2.55E-03 6.80E-04 1.03E-02

Table B.24: Difference between models responses, kinetic model M2 and M1.2 at T

= 383K.

M2 vs M1.2

EXP. HMF BHMF DMF DMTHF TOTAL

1 2.38E-03 8.76E-03 1.60E-02 2.58E-03 2.97E-02

2 1.02E-03 3.75E-03 6.81E-03 1.05E-03 1.26E-02

3 0.00E+00 0.00E+00 3.76E-04 3.76E-04 7.53E-04

4 2.04E-03 7.50E-03 1.33E-02 1.73E-03 2.46E-02

5 1.36E-03 5.00E-03 9.44E-03 1.91E-03 1.77E-02

6 3.06E-03 1.13E-02 2.12E-02 4.29E-03 3.98E-02

7 3.39E-04 1.25E-03 2.94E-03 1.23E-03 5.76E-03

8 2.72E-03 1.00E-02 1.86E-02 3.44E-03 3.48E-02

9 1.70E-03 6.25E-03 1.21E-02 2.76E-03 2.28E-02

10 6.79E-04 2.50E-03 5.58E-03 2.08E-03 1.08E-02
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1998. Catalytic liquid-phase nitrite reduction: Kinetics and catalyst deactivation.

AIChE Journal, 44(10):2280–2292.

128



REFERENCES

Pohjanpalo, H.

1978. System identifiability based on the power series expansion of the solution.

Mathematical Biosciences, 41(1):21–33.

Puhl, H.

1991. Solubility of Gases in Liquids. Chemie Ingenieur Technik, 63(12):1272–

1272.

Quaglio, M., C. Waldron, A. Pankajakshan, and A. Gavriilidis

2019. On the use of online reparametrization in automated platforms for kinetic

model identification. Chemie Ingenieur Technik.

Ragauskas, A. J., C. K. Williams, and B. H. Davison

2006. The path forward for biofuels and biomaterials. Science, 311(5760):484–

489.

Roman-Leshkov, Y., C. J Barrett, Z. Y Liu, and J. A Dumesic

2007. Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Car-

bohydrates. Nature, 447:982–5.

Rosatella, A. A., S. P. Simeonov, and R. F. M. Frade

2011. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological

properties, synthesis and synthetic applications. Green Chemistry, 13(4):754–

793.

Saccomani P., M., S. Audoly, and L. D’Angiò

2003. Parameter identifiability of nonlinear systems: the role of initial conditions.

Automatica, 39(4):619–632.

Salmi, T., D. Y. Murzin, and J. P. Mikkola

2004. Advanced Kinetic Concepts and Experimental Methods for Catalytic Three-

Phase Processes. Industrial & Engineering Chemistry Research, 43(16):4540–

4550.

Saltelli, A.

2002. Sensitivity Analysis for Importance Assessment. Risk Analysis, 22(3):579–

590.

129



REFERENCES

Schöneberger, J. C., H. Arellano-Garcia, and G. Wozny

2009. Model-Based Experimental Analysis of a Fixed-Bed Reactor for Catalytic

SO2 Oxidation. Industrial & Engineering Chemistry Research, 48(11):5165–5176.

Thananatthanachon, T. and T. Rauchfuss

2010. Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose

Using Formic Acid as a Reagent. Angewandte Chemie (International ed. in En-

glish), 49:6616–8.

Toukoniitty, E., P. Mäki-Arvela, and J. Kuusisto

2003. Solvent effects in enantioselective hydrogenation of 1-phenyl-1,2-

propanedione. Journal of Molecular Catalysis A: Chemical, 192(1):135–151.

Trucco, E. and A. Verri

1998. Introductory Techniques for 3-D Computer Vision. Prentice Hall.

van Putten, R., J. C. Waal, and E. de Jong

2013. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renew-

able Resources. Chemical reviews, 113.

Walter, E. and L. Pronzato

1996. On the identifiability and distinguishability of nonlinear parametric mod-

els. Mathematics and Computers in Simulation, 42(2):125–134.

Yang, P., Q. Cui, and Y. Zu

2015. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural

over Ni/Co3o4 catalyst. Catalysis Communications, 66.

Zhang, J., L. Lin, and S. Liu

2012. Efficient Production of Furan Derivatives from a Sugar Mixture by Cat-

alytic Process. Energy & Fuels, 26(7):4560–4567.

130



ACKNOWLEDGEMENTS

I would like to thank all the people who supported me throughout the realisation

of this Thesis. Their guidance and support has been essential to me. Prof. Fabrizio

Bezzo of the Department of Chemical Engineering at the University of Padua for

the patience, support and the wonderful opportunity he offered to me, Prof. Federico

Galvanin of the Department of Chemical Engineering at the University College

London for his precious guidance and supervision of the project.

Ed infine desidero ringraziare tutte le persone che mi hanno sostenuto e motivato

durante il mio percorso universitario. Non riesco a credere che questi anni siano

già trascorsi, mi sembra davvero ieri quando per la prima volta ho preso il treno

verso Padova con un misto di curiosità e timore per l’avventura che si prospettava

davanti a me. Le persone a me vicine lo sanno, il tempo è un aspetto della vita

che mai riuscirò a comprendere fino in fondo: mi stupisce e mi spaventa. Si pensa

sempre di averlo sotto controllo, di essere consapevoli del suo trascorrere, ma in

realtà, quando guardiamo indietro, restiamo sempre annichiliti dalla velocità con

cui ci sfugge di mano.

Grazie a papà Paolo e mamma Monica, che mi hanno permesso di diventare la per-

sona che sono ora.

Grazie a Luca, che resterà sempre il mio fratellino nonostante sia ormai più alto di

me. Posso solo augurarti il meglio per il futuro. Rimani ambizioso, credi negli obi-

ettivi che ti sei prefissato e non permettere che le insicurezze degli altri diventino

le tue. Fai sempre ciò che pensi possa essere meglio per te, confrontati con tutti ma

non paragonarti a nessuno: ognuno ha i propri pregi, difetti e capacità. Se anche

la vita ci porterà ad essere lontani, spero tu possa sempre considerarmi come una

sicurezza che, se mai dovessi avere bisogno, sarà lì per sostenerti.



Grazie di cuore a zia Silvia e nonna Maria, le due persone che mai finiranno di di-

mostrarmi quanto mi vogliono bene. Siete sempre state e siete tuttora un punto di

riferimento senza il quale mi sentirei perso.

Grazie a Sara, che mi è sempre stata vicina con amore e pazienza. Sei il mio amore,

la mia "tata", la mia "plantigrada tuberalis" (solo per veri intenditori). Abbiamo un

rapporto di cui sono orgoglioso perché in pochi possono vantarlo, grazie per questo

e per esserci sempre.

Grazie a Filippo. La nostra amicizia è esplosa in questi ultimi due anni ma non sai

quanto desidererei di averti conosciuto prima. Le giornate a giocare coi Pokémon, i

viaggi in treno, le lezioni trascorse assieme, le focacce, le pizze e gli hamburger: sei

una persona che mi ha permesso di crescere e migliorare.

Grazie a Fabrizio e Federico che mi hanno accolto nei loro team di ricerca e mi hanno

guidato, assistito e consigliato nell’ultima parte di questo importante percorso.

Grazie a tutti i ragazzi con cui ho avuto il piacere di collaborare a Londra, in parti-

colare Marco, Arun e Chunbing che hanno reso la mia permanenza all’estero vera-

mente speciale.

Grazie infine a tutte le persone che non ho nominato ma che mi sono vicine e che

comunque porto dentro di me. A voi, che siete parte della mia vita e ci avete lasciato

un segno, un ricordo, la mia più profonda gratitudine.


