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Introduction

The physics we deal with in our everyday life consists mostly in thermodynamics, clas-
sical mechanics and electromagnetism. Even though from a fundamental point of view
electromagnetism plays the most important role, from a phenomenological point of view
one is more familiar with classical mechanics and thermodynamics. With these two
theories one can describe a lot of phenomena we are very familiar with: falling bodies,
collisions, heating or cooling. . .

All this picture works perfectly until one recognizes that every “big” system is formed
by particles whose dynamics is described by classical mechanics. One thus expects that
large systems described with this theory show thermodynamical behaviours. This is not
true in general. For example integrable systems are very faraway from such a behaviour.

Some physicists in the first half of the XX century thought that generic small per-
turbations added to an integrable system could lead to a thermodynamical behaviour.
In this direction, the Fermi-Pasta-Ulam work was the first numerical experiment aimed
to check whether this hypothesis was true or not.

The outcome of the experiment was quite surprising and, to the eyes of Enrico Fermi,
seemed a paradox to solve in order to build up a strong bridge between classical mechanics
and thermodynamics.

Looking at the literature on the Fermi-Pasta-Ulam problem, one sees that a wide part
of the works tries to explain the phenomenology or to determine the equipartition time.
In this thesis we approached the problem from a different point of view. We tried to
check how long the Fermi-Pasta-Ulam system displays an integrable dynamics because,
up to the time-scale this is true, one cannot expect energy sharing between all the degrees
of freedom. This point of view gives us a lower bound to the equipartition time because
we do not know what happens during the time the system no longer behaves in an
integrable way.(1) Actually one can expect both that the integrable behaviour lasts up
equilibrium (if any), or that it ends up earlier and just a few integrals of motion survive
up to the time the system thermalizes. We have some indications on what happens on
longer time-scales from numerical experiments to which the result obtained in this thesis,
agrees perfectly.

(1)We do not even know, actually, if such an equipartition time exists.



In the first chapter of this thesis we briefly resume the history of the FPU system, its
connection between the two closest integrable systems (Toda and KdV) and we analyze
the physical meaning of the model. In the second chapter we sum up some aspects of
classical mechanics we will use in the following chapters.

In the third chapter we present the Hamiltonian theory of perturbations and the
standard way to compute normal form of vector fields. The latter is the non-canonical
and the most general way to construct normal forms which will be necessary in the last
two chapters in order to map the FPU normal form into the KdV hierarchy.

The last two chapters are devoted to the computation of normal forms for the α+ β
and pure β models to second order. In these chapters we start from the system introduced
in chapter 1 and we first compute the first order normal form to get the KdV (or the
mKdV in the β model) and then we go beyond computing the normal form at second
order. We then try to find another transformation to map our system into the KdV
hierarchy. We succeeded in it for the α + β model but we failed for the pure β model.
This is a proof of the integrability to second order for the α + β model and a signal for
a possible integrability breaking in the pure β model.



CHAPTER 1

The Fermi-Pasta-Ulam system

1.1 The Fermi-Pasta-Ulam experiment

In the 1950s Enrico Fermi, John Pasta and Stanislaw Ulam conceived a series of numer-
ical experiments aimed to enlighten the dynamical foundations of statistical mechanics.
Following a very diffused idea, according to which every non-linearity in a physical sys-
tem would cause an ergodic behaviour, they planned to simulate with a computer the
dynamics of discrete systems with increasing complexity.

Starting from the simplest possible one, which they recognized to be a one dimensional
chain of N oscillators, they looked at the time evolution of energies associated to Fourier
modes. This is an indicator of the approach to thermal equilibrium since such a state is
characterized by the equipartition of energy between them.

In a Hamiltonian framework we say that the system used in the experiment was a
system of N particles with unitary mass and Hamiltonian

H =
N−1∑
n=1

p2
n

2
+

N∑
n=1

[
1

2
(qn−1 − qn)2 +

α

3
(qn−1 − qn)3 +

β

4
(qn−1 − qn)4

]
. (1.1)

This system is today called the Fermi-Pasta-Ulam (FPU) system. Since the first numer-
ical experiment ran with only the first Fourier mode initially excited, we refer today to
FPU initial data as the ones on which only long wavelength Fourier modes are excited.

Fermi and co-workers expected to see Fourier modes exchanging energy until all of
them had reached the same value (state of equipartition of energy), which is a signal
of the thermodynamical equilibrium. The outcome of the numerical experiment wasn’t
this and, later, people referred to this as the FPU paradox.

In fact, instead of a gradual drift to the equipartition of energy, they saw a nearly
periodic exchange of energy between the first few Fourier modes. In figure 1.1 one of
their numerical results is reported.

The impact of the FPU work, 10 years later, stimulated a work of Zabusky and
Kruskal [23] in which they explained the FPU paradox in terms of interaction of solitons
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Figure 1.1: Time dependence of energy per Fourier mode for the first Fourier mode excited
as initial state. In this numerical experiment N = 32, α = 1/4 and β = 0. (From [12]).

of the KdV equation. In this work they conclude that if the system approaches the
thermodynamical equilibrium, it happens on a time-scale longer than the one observed
by FPU. Later it has been shown in some numerical experiments that the FPU system
approaches the thermodynamical equilibrium on such a longer time. Nowadays, the
phase of the dynamics during which the interaction between solitons takes place is usually
referred to as the “metastable state”, and such a scenario is usually referred to as the
“metastable scenario”.

The golden year for FPU problem can be considered today the 1982. Two works of
this year are really important cornerstones for the understanding of the FPU paradox.
The first one by Fucito et al. [14] introduced the so-called metastable scenario; the
second one, by Ferguson et al. [11], explained the long time approach to the equilibrium
of FPU showing that for the studies concerning the approach to equilibrium is better
to regard the FPU model as a perturbed Toda chain instead of a perturbed harmonic
chain.

Further developments are more recent and in [3, 6, 21] it is shown what is the relation
between KdV and FPU proving that, when long wavelength modes are initially excited,
the first order normal form of the FPU chain is precisely the KdV.

1.2 Connection with Toda and KdV equations

The Toda model is a model of one-dimensional crystal with non-linear nearest-neighbour
interactions. In the case of periodic boundary conditions, denoting with ZN = Z/N , its
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Hamiltonian has the form

H(q, p) =
∑
k∈ZN

(
p2
k

2
+ V0(eΛ(qk+1−qk) − 1− Λ(qk+1 − qk))

)
, (1.2)

with V0 and Λ free parameters of the potential. If one expands the potential in Taylor
series, one gets

H(q, p) =
∑
k∈ZN

[
p2
k

2
+ V0Λ2

(
1

2
(qk+1 − qk)2 +

Λ

6
(qk+1 − qk)3 + . . .

)]
. (1.3)

One then sees that with the choice Λ2 = 2α and V0 = Λ−2, one gets FPU system up to the
cubic order. In other words the Toda Hamiltonian is tangent to α+β-FPU Hamiltonian
to third order. The Toda system is integrable and then, for the time FPU remains
tangent to Toda, we can’t expect FPU to show an approach to the thermodynamical
equilibrium. In the metastable state what one observes is then the formation of the
actions related to the tangent Toda system, the so-called “Toda packet”.

Numerical experiments like [5, 7] show that, calling βT = 2α2/3 the Taylor coefficient
of the Toda potential expansion involving the fourth power in q, if β 6= βT the dynamics
proceeds as follows. Fixed, for example ε ∼ 10−4, in a short time (say ∼ 103) one
observes the formation of the metastable state which coincides with the state of the pure
Toda system. In a longer time (say ∼ 109) it is possible to see energy to be shared
between all the normal modes.

If β = βT the Toda packet lasts for more time. This is interpreted as indication of
the stronger tangency between Toda and FPU.

Figure 1.2: Comparison between time evolution of energy per Fourier modes for Toda and
FPU systems. On the left (FPU) one sees the formation of the Toda Packet for t ∼ 103 and
the freezing of Toda actions until t ∼ 105. One thus sees the slow walk to equipartition. On
the right (Toda) one sees the freezing of actions for Toda model standing, as a numerical proof
of its integrable dynamics. (From [7])

The connection with the Korteweg-de Vries (KdV) equation was first established by
Zabusky and Kruskal looking at the recurrence of initial states in the soliton dynamics
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of the KdV. Looking at Figure 1.1 one can see that after nearly 29 thousands cycles the
status of the FPU system resembles the initial one.

Solitons in the KdV have a similar behaviour and, after some time, they form back
the initial status. Several years later a work by Ponno [20] explains the metastable packet
in terms of the KdV. In particular, in that paper, it is explained its width (ε1/4) and
its formation time (ε−3/4). Moreover, in two works by Bambusi and Ponno [3, 21] it is
shown that the normal form of the FPU system consists in a couple of KdV equations.

1.3 Physical meaning of the model

The Hamiltonian of a wide part of physical systems can be written as a sum of a Kinetic
part and a Potential one. Thus its general form is

H(x, v) = K(v) + V (x), (1.4)

where x are the coordinates and v the conjugate momenta. For a one dimensional system
of N interacting particles with mass m, nearest neighbours interaction and periodic
boundary conditions (1.4) takes the form

H(xn, vn) =
∑
n∈ZN

(
v2
n

2m
+ V (xn+1 − xn)

)
. (1.5)

Our goal, in this section, is to show how it is possible to perform a canonical coordi-
nate transformation(1) which maps the Hamiltonian H of equation (1.5) in the Hamilto-
nian HFPU of the Fermi-Pasta-Ulam system,(2) which is

HFPU(qn, pn) =
∑
n∈ZN

(
p2
n

2
+ φa(qn+1 − qn)

)
. (1.6)

As notation we will use the (xn, vn) coordinates for the physical dimensional coordi-
nates and the (qn, pn) for the dimensionless FPU coordinates.

To reach our aim we will use the following proposition which will be proved in the
second chapter.

Proposition 1.3.1. A coordinate transformation

(q, p,H, T ) 7→ (x, v,H, t) = (αq, βp, γH, δT ) (1.7)

is canonical, and then it preserves the Hamiltonian structure, if αβ = γδ.

We want to build this transformation and, moreover, we want that after the trans-
formation, the new variabiles are dimensionless.

Let us say that the system described by the Hamiltonian H in (1.5) is in equilibrium
when xn = xn,eq and let’s call a the quantity a = xn,eq − xn−1,eq. It is obvious that
sufficient conditions for the system in the {xn,eq, pn,eq} configuration is that{

pn,eq = 0 ∀n ∈ ZN
V ′(xn+1,eq − xn,eq)− V ′(xn,eq − xn−1,eq) = 0 ∀n ∈ ZN .

(1.8)

(1)For the definition of canonical coordinate transformation see section 2.1.1.
(2)Connection with equation (1.1) is discussed below.
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So if ∀n ∈ ZN , xn+1 − xn = a, the system is in equilibrium. It is easy to calculate the
xn,eq for a system of N identical particles with periodic boundary conditions described
by Hamiltonian (1.5). These are

xn,eq = n
L

N
(1.9)

where L represents the length of the system and N the total number of particles. The
relation (1.9) together with the definition of a implies a = L/N . If one thus fix the
lenght L, a is the inverse of the total number of particles in the chain. A way to create
a dimensionless variable is to set

xn = aqn + xn,eq (1.10)

so the qn has the physical meaning of displacement from equilibrium of the n-th particle
in units of a and a is the length scale of oscillations.

To get a dimensionless momentum we set

vn =
ma

τ
pn (1.11)

where τ is a parameter with the physical dimension of a time.
To get a dimensionless time T it is natural to set

t = τT. (1.12)

Now, since we want a canonical transformation, (1.7) must hold, and then

γ =
ma2

τ 2
. (1.13)

We thus get, for the Hamiltonian transformation,

H(xn(q), vn(p)) =
ma2

τ 2
H(qn, pn). (1.14)

Substituting equations (1.9)-(1.12) into (1.5) we get

H(qn, pn) =
ma2

τ 2

∑
n∈ZN

(
p2
n

2
+

τ 2

ma2
V (a+ a(qn+1 − qn))

)
(1.15)

The transformed Hamiltonian emerges from the previous equation and it is

H(qn, pn) =
∑
n∈ZN

(
p2
n

2
+

τ 2

ma2
V (a+ a(qn+1 − qn))

)
(1.16)

which is clearly in the form of (1.6).
We want to show that without any further assumption the power series in the neigh-

bourhood of qn+1 − qn = 0 of (1.16) is, up to fourth order, the one of the classical FPU
model, which is

HFPU(qn, pn) =
∑
n∈ZN

(
p2
n

2
+

1

2
(qn+1 − qn)2 +

α

3
(qn+1 − qn)3 +

β

4
(qn+1 − qn)4

)
. (1.17)
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This calculations will provide us also relations between the FPU coefficients of the series
and the physical potential.

The series expansion of V (a+ a(qn+1 − qn)) around qn+1 − 1n = 0 is

V (a+ a(qn+1 − qn)) = V (a) + aV ′(a)(qn+1 − qn) +
a2

2
V ′′(a)(qn+1 − qn)2+

+
a3

3!
V ′′′(a)(qn+1 − qn)3 +

a4

4!
V ′′′′(a)(qn+1 − qn)4 + . . .

(1.18)

Substituting (1.18) in (1.16) we get

H(qn, pn) =
∑
n∈ZN

[
p2
n

2
+

τ 2

ma2

(
V (a) + aV ′(a)(qn+1 − qn) +

a2

2
V ′′(a)(qn+1 − qn)2+

+
a3

3!
V ′′′(a)(qn+1 − qn)3 +

a4

4!
V ′′′′(a)(qn+1 − qn)4 + . . .

)]
.

(1.19)

Notice that V (a), V ′(a), V ′′(a), . . . are constants.We can thus rescale the energies and
put V (a) = 0 without changing Hamilton’s equations. We note then∑

n∈ZN

(qn+1 − qn) = 0 (1.20)

and so the only important terms of the Hamiltonian are

H(qn, pn) =
∑
n∈ZN

(
p2
n

2
+

1

2

τ 2V ′′(a)

m
(qn+1 − qn)2+

+
1

3!

V ′′′(a)aτ 2

m
(qn+1 − qn)3 +

1

4!

V ′′′′(a)τ 2a2

m
(qn+1 − qn)4

)
.

(1.21)

We can now set the free parameter τ to get

τ 2V ′′(a)

m
= 1, (1.22)

thus getting, as natural time-scale for the physical problem, the quantity

τ =

√
m

V ′′(a)
(1.23)

which is the very well known relation between the period of the small oscillations around
the equilibrium in a and the potential energy V (3). Using the relation (1.23) in (1.21)
we note that if we set

α =
1

2

V ′′′(a)a

V ′′(a)
β =

1

6

V ′′′′(a)a2

V ′′(a)
(1.24)

we put the Hamiltonian in the form

HFPU(qn, pn) =
∑
n∈ZN

(
p2
n

2
+

1

2
(qn+1 − qn)2 +

1

3
α(qn+1 − qn)3 +

1

4
β(qn+1 − qn)4

)
(1.25)

(3)See for example [1] chap 5 par 22.
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which is the classical Hamiltonian of the FPU problem(4).
If we transform (1.5) we get for φa(ξ) the expression

φa(ξ) =
τ 2

ma2
(V (a+ aξ)− V (a)− V ′(a)aξ) . (1.26)

We conclude this section noting that all the calculations we will perform will be in
the (qn, pn) variables. If we want to know something about the real physical problem
we have to map back our results to the physical coordinates with (1.9) - (1.12), (1.14)
where the parameter τ in (1.12) is given by the (1.23).

Potential Expression τ α β

Harmonic V = 1
2
ω2x2

Lennard-Jones V (x) = V0

[(
a
x

)12 − 2
(
a
x

)6
]

∼ 3× 10−13 s −10.5 61.83

Morse V = V0

(
e−2(x/a−1) − 2e−(x/a−1)

)
∼ 10−13 s −1.5 1.17

Table 1.1: Computation of the values for the α+ β-FPU parameters for common interaction
potentials. The parameters in the potentials are chosen in order to have the deep of the
potential well equal to V0 and the equilibrium point at x = a. For the numerical evaluation of
times we chose a ∼ 10−10 m, m ∼ 10−26 kg, V0 ∼ 10−19 J which are typical order of magnitude
values for a crystal (see [16]).

(4)But it is different from (1.1) because of the different boundary conditions.
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CHAPTER 2

Hamiltonian systems

In this chapter we briefly recall some classical definitions and properties of Hamiltonian
systems with a particular attention to the Poisson environment and its role in the studies
of infinite dimensional systems. Poisson environment is a generalization of the classical
symplectic environment in Hamiltonian mechanics.

Last section is devoted entirely to the Korteweg-de Vries equations which are inte-
grable Hamiltonian systems involved in our study of FPU problem.

2.1 Poisson structures

Let us consider a manifold Γ as phase space of our physical system.(1) We then introduce
a vector field on Γ, i.e. a section of its tangent bundle, X(x) ∈ TΓ connected to the time
evolution of our physical system by the differential equation

ẋ = X(x). (2.1)

The difference between general dynamical systems and Hamiltonian systems is given
by Poisson structures. This is a request on the phase space which, for the latters, is
more rich than a purely naked differential manifold.

The same is true even if we are considering infinite-dimensional physical systems like
wave propagation. In those cases the phase space Γ is an infinite-dimensional space of
functions (which most of the time is a Hilbert space) and its time evolution is not given
by an ODE but by a PDE:

ut = X(u), (2.2)

where we denote with pedices the partial differentiations.
We have now to state some definitions in order to be more precise on the ideas

introduced above.

(1)Usually the phase space of a finite-dimensional classical mechanical system with configuration space
on a manifold M is its cotangent bundle Γ = T ∗M .
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Definition 2.1.1 (Poisson bracket). Let Γ be a (finite or infinite dimensional) manifold
and A (Γ) the algebra of real valued smooth functions(2) defined on Γ. A function
{ · , · } : A (Γ) × A (Γ) → A (Γ) is called a Poisson bracket on Γ if it satisfies the
following properties:

i) {F,G} = −{G,F} (skew-symmetry);

ii) {αF + βG,H} = α{F,H}+ β{G,H} (left linearity);

iii) {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0 (Jacobi identity);

iv) {FG,H} = F{G,H}+ {F,H}G (left Leibniz rule);

∀F,G,H ∈ A (Γ) and α, β ∈ R.

Observe that i) and ii) implies right linearity which means that actually Poisson
brackets are bi-linear. Observe also that i) and iv) implies the right Leibnitz rule.

Definition 2.1.2 (Poisson algebra). Given a phase space Γ, the algebra of real valued
smooth functions on Γ, A (Γ), and a Poisson bracket { · , · } on A (Γ), we say that the
pair (A (Γ), { · , · }) is a Poisson algebra on Γ.

It is then straightforward to define a Poisson manifold as follows

Definition 2.1.3 (Poisson manifold). Given a phase space Γ and a Poisson algebra on
it (A (Γ), { · , · }), we say that the structure (Γ,A (Γ), { · , · }) is a Poisson manifold.

In the following proposition we show that the choice of a bi-linear Poisson bracket is
equivalent to the choice of a skew-symmetric tensor on Γ. This tensor is called Poisson
tensor.(3)

Proposition 2.1.4. Given a Poisson algebra on a finite dimensional phase space, there
exists a skew-symmetric tensor J such that

{F,G} = 〈∇F, J∇G〉 (2.3)

and ∑
s

(
J is

∂J jk

∂xs
+ J js

∂Jki

∂xs
+ Jks

∂J ij

∂xs

)
= 0. (2.4)

where we denoted with 〈 · , · 〉 the Euclidean scalar product.

The same proposition can be stated for infinite dimensional spaces. Here we focus on
L2 where it is enough to substitute the gradient with the L2-gradient, if one wants the
analogous of (2.3) and (2.4), the Euclidean scalar product with the L2-scalar product
and the last condition is∑

s

(
J is

DJ jk

DF s
+ J js

DJki

DF s
+ Jks

DJ ij

DF s

)
= 0 (2.5)

where D/DF is the weak derivative defined in subsection 2.3.2.

(2)Sometimes it is denoted by C∞(M,R).
(3)Sometimes it is also referred as Poisson bivector.
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Remark 2.1.5. Because of this duality between skew-symmetric tensors and Poisson
brackets sometimes one refers to a Poisson manifold as a structure (Γ,A (Γ), J) where
J is the Poisson tensor related to {·, ·} via Proposition 2.1.4.

Remark 2.1.6. Sometimes we deal with different Poisson structures on the same mani-
fold. To each Poisson bracket is related a (different) Poisson tensor. If J and J̃ are two
different Poisson tensors we refer to the related brackets as {·, ·}J and {·, ·}J̃ . We will
use this when dealing with the bi-Hamiltonian structures in subsection 2.4.2.

We are then ready to define what a Hamiltonian system is.

Definition 2.1.7 (Hamiltonian system). Given a phase space Γ endowed with a Poisson
structure (i.e. a Poisson manifold (Γ,A (Γ), { · , · })), a Hamiltonian system on Γ is a
dynamical system described by a differential equation (ODE or PDE) whose vector field
has the form

X(x) = XH(x) = {x,H} (2.6)

where H ∈ A (Γ) is called Hamiltonian of the system.

In the definition above the Poisson bracket {x,H} is defined by means of its compo-
nents. More precisely we shall write

Xk(x) = {xk, H} (2.7)

where k isn’t necessary a discrete index.
As a consequence of the proposition above we can replace Poisson brackets by an

expression involving Poisson tensor:(4)

XH(x) = J(x)∇xH(x) finite-dimensional case

XH(u) = J(u)∇L2H(u) infinite-dimensional case
(2.8)

Poisson brackets are useful also in writing the time derivative of a function f : Γ×R→
R along a trajectory of a Hamiltonian system as the following proposition shows

Proposition 2.1.8. Let f ∈ C∞(Γ×R,R) be a function, let (Γ,A (Γ), {·, ·}) be a Poisson
manifold and H ∈ A (Γ) be a Hamiltonian function. Then if γ : R → Γ is a trajectory
of the Hamiltonian system with Hamiltonian H we have

df(t, γ(t))

dt
=
∂f

∂t
(t, γ(t)) + {f(t, γ(t)), H(γ(t))} (2.9)

Proof. Using the chain rule we get(5)

df(t, γ(t))

dt
=
∂f

∂t
(t, γ(t)) + 〈∇f(t, γ(t)), γ̇(t)〉

=
∂f

∂t
(t, γ(t)) + 〈∇f(t, γ(t)), XH(γ(t))〉 =

=
∂f

∂t
(t, γ(t)) + 〈∇f(t, γ(t)), J(γ(t))∇H(γ(t)))〉 =

=
∂f

∂t
(t, γ(t)) + {f(t, γ(t)), H(γ(t))}

(4)For the definition of L2-gradient, ∇L2
see subsection 2.3.2.

(5)We use ∇ in order to be very general and to not specify if we are using L2-gradient or x-gradient.
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which is precisely our thesis. We used, in order: the fact that γ is a solution of (2.1)
with X(x) given by (2.7), equation (2.8) and then Proposition 2.1.4.

Differently from symplectic environment where the Poisson tensor J is required to be
non degenerate, in the Poisson environment Poisson tensor can be degenerate. In other
words there can be some functions C ∈ A (Γ) whose gradient is in the kernel of J :

J(x)∇C(x) = 0 (2.10)

where we denoted with ∇ the gradient without specifying whether it is the L2 or the
usual one. These functions (or functionals) are called Casimirs associated to the given
Poisson tensor J .

Proposition 2.1.9. Let C ∈ A (Γ) be a Casimir invariant associated to the Poisson
tensor J , then C is a constant of motion for any Hamiltonian system with vector field
XH associated to J .

Proof. To show that C is a first integral it is sufficient to prove that dC
dt

= 0 along the
trajectory of a Hamiltonian system with Hamiltonian H. From Proposition 2.1.8 we
have

dC

dt
=
∂C

∂t
+ {C,H}.

Recalling now Proposition 2.1.4 we can write the Poisson bracket using the Poisson
tensor

{C,H} = 〈∇C, J∇H〉 = −〈J∇C,∇H〉 = 0

where we used the skew-symmetry of Poisson tensor and the fact that ∇C ∈ ker J . Thus
we get

dC

dt
=
∂C

∂t
= 0

because C is a function on Γ and therefore cannot depend explicitly from t. Since the
proof is given for a generic Hamiltonian H the result is valid for every Hamiltonian
H ∈ A (Γ).

2.1.1 Canonical transformations

In the previous section we defined a Hamiltonian system in an intrinsic way. This means
that the Hamiltonian character of a dynamical system is independent of the coordinates
on which it is described. An immediate consequence of this fact is that mapping a
Hamiltonian system into another dynamical system through a diffeomorphism gives us
another Hamiltonian system. Among all possible changes of variables, an important
role is played by the ones which preserve the Hamiltonian structure. These are called
canonical for this reason.

We begin this section presenting how the Hamiltonian structure changes under dif-
feomorphisms.

Proposition 2.1.10. Let (Γ,A (Γ), J) a Hamiltonian system with Hamiltonian H and
let f : Γ̃ 7→ Γ be a diffeomorphism. Let H̃ = H ◦ f be the transformed Hamiltonian. The
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dynamical system on (Γ̃,A (Γ̃), J̃) is an Hamiltonian system with Hamiltonian H̃ and
Poisson tensor

J̃ = (Df)−1J(Df)−T (2.11)

where T denotes transposition.

Proof. As a first step we find the transformation rule for the Poisson tensor. For the
sake of simplicity we present the proof for a finite dimensional system. For the same
reason we will use Einstein sum convention. We will denote with x coordinates on Γ̃ and
with y coordinates on Γ. Starting from Hamilton equations on Γ:

ẏi = J ij(y)
∂H(y)

∂yj
.

We now compose both sides of the equation with yi = f i(x). On the left hand side we
get

ẏi =
∂f i(x)

∂xk
ẋk,

while on the right hand side

∂H(f(x))

∂yj
=
∂H̃(f−1(y))

∂yj

∣∣∣∣∣
y=f(x)

=
∂H̃(f−1(y))

∂xl

∣∣∣∣∣
y=f(x)

∂f−1l(y)

∂yj

∣∣∣∣∣
y=f(x)

.

Substituting these two expressions in the differential equation above we get

∂f i(x)

∂xk
ẋk = J ij(f(x))

∂H̃(x)

∂xl
∂f−1l(y)

∂yj

∣∣∣∣∣
y=f(x)

.

In a matricial form this reads

∂f(x)

∂x
ẋ = J(f(x))

(
∂f−1(y)

∂y

)T
y=f(x)

∂H̃(x)

∂x
,

which is exactly

ẋ =

(
∂f(x)

∂x

)−1

J(f(x))

(
∂f(x)

∂x

)−T
∂H̃(x)

∂x
.

To show that the transformed system is still Hamiltonian we have to prove that is a
Poisson tensor. Namely we have to prove that that {·, ·}J̃ is a Poisson bracket. First of
all we prove the skew-symmetry of J̃ under the hypothesis that JT = −J :

J̃T =

[(
∂f(x)

∂x

)−1

J(f(x))

(
∂f(x)

∂x

)−T]T
=

(
∂f(x)

∂x

)−1

JT (f(x))

(
∂f(x)

∂x

)−T
= −J̃ .

We then have that J̃ is obviously linear since it is a composition of linear operators.
To verify Jacobi identity we prove that(6)

εijkJ̃
is∂J̃

jk

∂xs
= 0

(6)It is an equivalent statement of (2.4).
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where εijk is the three dimensional Levi-Civita symbol. Substituting the expression above
we get (calling g = f−1)

εijkJ̃
is∂J̃

jk

∂xs
= εijk

∂gi

∂ym
Jmn

∂gs

∂yn
∂

∂xs

(
∂gj

∂yo
Jop

∂gk

∂yp

)
=

= εijk
∂gi

∂ym
Jmn

∂gs

∂yn

(
∂2gj

∂xs∂yo
Jop

∂gk

∂yp
+
∂gj

∂yo
∂Jop

∂yq
∂f q

∂xs
∂gk

∂yp
+
∂gj

∂yo
Jop

∂2gk

∂xs∂yp

)
.

The first and the third term cancel each other because of the skew-symmetry of J . We
are left with

εijk
∂gi

∂ym
∂gs

∂yn
∂f q

∂xs
∂gj

∂yo
∂gk

∂yp
Jmn

∂Jop

∂yq
= εijk

∂gi

∂ym
δqn
∂gj

∂yo
∂gk

∂yp
Jmn

∂Jop

∂yq
=

= εijk
∂gi

∂ym
∂gj

∂yo
∂gk

∂yp
Jmn

∂Jop

∂yn
= det

(
∂g

∂y

)
εmopJ

mn∂J
op

∂yn
.

Where we used the following property of the Levi-civita symbol

εijkA
i
mA

j
nA

k
o = detAεmno.

Now since f is a diffeomorphism also g is a diffeomorphism and then the determinant
of its jacobian is not vanishing. We then obtain that J̃ satisfies Jacobi if and only if J
satisfies Jacobi.

Last we have to show that {AB,C}J̃ = {A,C}J̃B + A{B,C}J̃ . It is easy since

{AB,C}J̃ = ∂i(AB)J̃ ij∂jC = ∂iAJ̃
ij∂jC B + A∂iBJ̃

ij∂jC = {A,C}J̃B + A{B,C}J̃
which is precisely what we had to prove.

From the above proposition we can state the definition of canonical transformation.

Definition 2.1.11 (Canonical transformation). Let f : Γ̃→ Γ be a diffeomorphism. We
say that f is a canonical transformation if

J̃ = J (2.12)

or, in other words, if it leaves unchanged the Poisson tensor.

Remark 2.1.12. Directly from Proposition 2.1.10 and Definition 2.1.11 we get
that if Df is the jacobian of the diffeomorphism this is a canonical transformation if

(Df)J(Df)T = J. (2.13)

We can look at the canonical transformations as the ones which leave unchanged the
equation of motions. Starting from the action functional one can show the following
proposition to hold.

Proposition 2.1.13. Let (q, p) be the coordinate on the cotangent bundle of a configu-
ration manifold M endowed with the standard symplectic structure. The transformation
(q, p,H, t) 7→ (Q,P,K, T ) is canonical if

pdq −Hdt = c(PdQ−KdT ) + dF (q,Q, t) (2.14)

for some constant c and some function F .
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The constant c is often referred as the valence of the canonical transformation. In
the first chapter we used the following corollary:

Corollary 2.1.14. The rescaling

(q, p,H, t) 7→ (Q,P,K, T ) = (αq, βp, γH, δt) (2.15)

is canonical if
αβ = γδ. (2.16)

Proof. We will make use of Proposition 2.1.13. To do so we calculate RHS of (2.14)
for the rescaling. We get:

P = βp dQ = αdq K = γH dT = δdt.

Substituting in (2.14) we get the following equality

pdq −Hdt = c(αβpdq − γδHdt) + dF

which holds if F = 0 and αβ = γδ.

Here we propose another method to perform a canonical transformation. It is using a
function which depend in a mixed way from new and old variables. Under the hypothesis
of non-degenerate second derivatives one can use such a function to build a canonical
transformation. Such a function is called generating function and, to be more precise,
the following proposition holds:

Proposition 2.1.15. Let F be a function of 2n variables define in an open set of R2n,
F (q,Q) and, in such a domain, we suppose

det

(
∂2F

∂q∂Q

)
6= 0. (2.17)

Equations

p =
∂F

∂q
(q,Q), P = −∂F

∂Q
(q,Q) (2.18)

defines implicitly a local transformation of coordinates (p, q) = f(Q,P ) from a neigh-
bourhood Ũ ⊂ R2n to its image U ⊂ R2n which is canonical.

Proof. The definition of the transformation is well posed since the condition on the
determinant ensures the local invertibility of (2.18). So that f is locally invertible. To
show the canonicity we see that it is preserved the Liouville 1-form:

dF =
∂F

∂q
(q(Q,P ), Q)dq +

∂F

∂Q
(q(Q,P ), Q)dQ = pdq − PdQ

which states exactly Proposition 2.1.13 with F (Q,P ) = F (q(Q,P ), Q).

Among the transformations defined by a function F with the properties listed above,
the identity map misses. This is an important lack if one wants to perform perturbation
theory with generating functions. By the way this is not a real problem since the following
result holds.
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Proposition 2.1.16. Let S(P, q) be a given function which, in its domain, has

det

(
∂2S

∂P∂q

)
6= 0. (2.19)

Then equations

p =
∂S

∂q
(P, q), Q =

∂S

∂P
(P,Q) (2.20)

defines implicitly a canonical coordinate transformation.

Another way to perform canonical transformations is via Lie series as the following
proposition states.

Proposition 2.1.17. We denote with Φs
G the flow at time s along the vector field XG.

Given a Hamiltonian system with Hamiltonian H ∈ A (Γ), for every Hamiltonian G ∈
A (Γ) the coordinate transformation

(Q,P ) = Φs
G(q, p) (2.21)

is canonical.

In this context we define also the Lie derivative along the Hamiltonian vector field
XH as

LH = { · , H}. (2.22)

This leads to the following expression for the canonical change of coordinates

(Q,P ) = esLG(q, p). (2.23)

We recall that, if X, Y are vector fields on a n-dimensional manifold Γ, in differential
geometry we usually define the Lie derivative of X along Y as

[X, Y ] = LYX (2.24)

where [X, Y ] is the Lie bracket of the above two vector fields

[X, Y ]i =
n∑
j=1

(
∂X i

∂xj
Y j − ∂Y i

∂xj
Xj

)
. (2.25)

These two apparently different Lie derivatives are connected by the following proposition
which justifies the same name for them.

Proposition 2.1.18. Let X, Y, Z vector fields defined on a Poisson manifold Γ and let
us suppose there exist three functions A,B,C : A (Γ)→ R such that

X = J∇A Y = J∇B Z = J∇C (2.26)

then
{A,B} = C ⇔ [X, Y ] = Z (2.27)
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Proof. For the sake of simplicity we will do this proof for the finite dimensional case
and using the Einstein sum convention. It is a straightforward computation. We start
computing the vector field associated to C:

C = ∂kAJ
kl∂lB

So that

X i
C = J ij∂j(∂kAJ

kl∂lB) = J ij(∂2
jkAJ

kl∂lB + ∂kA∂jJ
kl∂lB + ∂kAJ

kl∂2
ljB).

We calculate Z then:

Zi = ∂jX
iY j − ∂jY iXj = ∂j(J

ik∂kA)J jl∂lB − ∂j(J il∂lB)J jk∂kA =

= J jl∂jJ
ik∂kA∂lB + J ikJ jl∂2

jkA∂lB − J jk∂jJ il∂lB∂kA− J ilJ jk∂2
ljB∂kA =

= (J lj∂jJ
ki + Jkj∂jJ

il)∂lB∂kA+ J ik(∂2
jkAJ

jl∂lB + ∂lAJ
lj∂2

kjB)

which is equal to X i
C if we use (2.4). In the last step we renamed several indices and we

used skew-symmetric property of J .

We can use Lie derivative also to express the derivative with respect to time of a
function f : Γ×R→ R along the flow of a Hamiltonian system wit Hamiltonian H. Let
γ : R→ Γ be a trajectory of the Hamiltonian system, from Proposition 2.1.8 follows
directly

df(t, γ(t))

dt
=
∂f

∂t
(t, γ(t)) + LHf(t, γ(t)). (2.28)

We conclude this subsection with a remark on the Lie method. It is proved (for exam-
ple in [10]) that on symplectic manifolds there is a one-to-one corrispondence between
one-parameter group of canonical transformations and Hamiltonians in the following
sense. We have that for every one parameter group of canonical transformation there
exists a Hamiltonian G such that

G(λ;x) = eλLGx (2.29)

where G(λ;x) denotes the action of the element of the group G with parameter λ.
This is, in general, not true for Poisson manifolds. Therefore if the Poisson tensor

is degenerate we can find a one-parameter group of canonical transformation for which
there not exists a correspondent Hamiltonian. We will show this fact with an example.

Let Γ = R3 with Poisson tensor

J =

 0 0 0
0 0 −1
0 1 0

 (2.30)

and with coordinates (x, y, z). It is easy to see that the x coordinate is a Casimir func-
tion(7). Let us consider the following one parameter group of canonical transformations

x̃(x, λ) = x+ λ

ỹ(y) = y

z̃(z) = z

(2.31)

(7)More precisely, the projection on the x-axis is a Casimir Function.
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Let us now suppose that there exists a Hamiltonian function G such that this canonical
transformation can be expressed as Lie series. We then have x̃

ỹ
z̃

 = eλ{·,G}

 x
y
z

 . (2.32)

Expanding in series of λ we get

x+ λ = x+ λ{x,G}+ . . .

y = y + λ{y,G}+ . . .

z = z + λ{z,G}+ . . .

(2.33)

This means G = G(x) and then

x+ λ = x+ λ
∑
ij

∂ixJ
ij∂jG = x+ λJ11∂xG = x (2.34)

which implies λ = 0. We than deduce the non-existence of such a G.

2.1.2 Integrability: Liouville

When one writes down a physical equation one is interested in finding exact solutions of
such an equation. Tipically the first solutions that one can find are the so called free solu-
tions which are the solutions of the equation without a potential energy term. So are, for
example, the trajectories for free particles in classical mechanics or the electromagnetic
waves propagation in electrodynamics.

These are not, of course, the only easy solutions to find. There usually exist some
potentials for which it is possible to find exact solutions of the physical equations. Exam-
ple of this are the Kepler problem or the harmonic oscillator in classical mechanics and
their quantum correspondents (harmonic oscillators and hydrogen atom) for quantum
mechanics.

The request of finding systems for which were possible to write an exact solution is
precisely the request of finding the so called integrable systems. These are systems for
which the solutions are written up to quadrature. This means that one can compute the
exact solutions solving a finite number of algebraic equations, integrations and inversion
of functions.

Historically the first answer to the question “which systems can be solved by quadra-
ture?” was given by Liouville and this section is devoted in recalling what is nowadays
called a Liouville integrable system.

To state Liouville’s definition of integrable systems we start recalling that a function
on the phase space which doesn’t change along the flow of a dynamical system is called
first integral and, by using Proposition 2.1.8, we can state the following definition.

Definition 2.1.19. A function I is said to be a first integral of a Hamiltonian system
with Hamiltonian H ∈ A (Γ) if

∂I

∂t
+ {I,H} = 0. (2.35)
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Definition 2.1.20. Given two first integrals I1 and I2 of the same Hamiltonian system
with Hamiltonian H, we say that they are in involution if

{I1, I2} = 0. (2.36)

Definition 2.1.21. Given two first integrals I1 and I2 we say that these are dependent
if ∇I1 = c∇I2 for some c ∈ R. Otherwise we say that they are independent.

Definition 2.1.22. Given a 2n-dimensional Hamiltonian system. We say that it is
integrable in the sense of Liouville if it admits n independent first integrals in involution
with each other.

The importance of the Liouville integrable systems is due to the fact that Liouville
proved that if in a Hamiltonian system we know n independent first integrals in invo-
lution, then the system is integrable by quadrature. For the exact formulation of the
theorem see [1].

Thanks to the theorem it is showed that, if the 2n-dimensional Hamiltonian system
is integrable and I1, . . . , In are n first integrals of the system, it is possible to perform
a canonical transformation f : (q, p) → (ϑ, I) such that the transformed equations of
motion are

İ = 0,

θ̇ = ω(I)
(2.37)

and their solution, very trivially, is

I(t) = I0 ϑ(t) = ω(I0)t+ ϑ0. (2.38)

Variables I are called action variables while ϑ are called angle variables. Explicit solution
shows that the motion takes place on the n-dimensional submanifold defined by I = I0

and, more, it is trivial in these coordinates. To get the motion in the original coordinate
system one has to invert f and this is usually very hard to do (it is the quadrature).

Example. Harmonic oscillators(8). As a first example of integrable system we con-
sider a chain of n unitary masses interacting with their first neighbours with an armonic
force and periodic boundary conditions. The Hamiltonian of the system is

H(q, p) =
∑
k∈ZN

(
p2
k

2
+

1

2
(qk+1 − qk)2

)
. (2.39)

It is convenient now to write the Hamiltonian in a matricial expression as

H(q, p) =
1

2
pTp− 1

2
qTSq (2.40)

where T denotes transposition and S is the matrix

S =


−2 1 0 1
1 −2 1 . . .
0 1 −2

...
. . .

1 1 −2

 . (2.41)

(8)Taken from [11].
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Since S is symmetric we can diagonalize it using an orthogonal matrix O:

OTSO = diag (−ω2
1, . . . ,−ω2

n) (2.42)

and

ωj = 2 sin(kj/2), kj =
2πj

n
. (2.43)

We can then perform the canonical transformation

q̃ = Oq̃, p̃ = Op. (2.44)

It is easy to see that this transformation is canonical since it preserves the Liouville
1-form (Proposition 2.1.13):

p̃ · dq̃ = Op ·Odq = p ·OTOdq = p · dq. (2.45)

In the new coordinates the Hamiltonian takes the form

H̃(q̃, p̃) =
∑
j∈Zn

(
p2
j

2
+ ω2

j q
2
j

)
. (2.46)

The equation of motion associated to this Hamiltonian are

˙̃qj = p̃j ˙̃pj = −ω2
j q̃j (2.47)

which are easily solved

q̃j = cj sin(ωjt+ θ0
j ) q̃n = cnt+ θ0

n. (2.48)

In this example we see that the q̃j are angles while the cj are actions and they don’t
evolve in time.

2.2 Isospectral method and Lax pairs

Isospectral method is a very general procedure to get a series of first integrals of motion of
a given Hamiltonian system if the equations of motion can be written in a very particular
form, involving a pair of operators called Lax pair.

We supposte to have a Hamiltonian system(9) and to have a pair of operators L,M
such that the equations of motion can be written in the form

L̇ = [L,M ] (2.49)

where the square bracket denotes the usual commutator [A,B] = AB − BA. More we
suppose that M is skew-symmetric. We can then state

Theorem 2.2.1. If the equations of motions are in the form (2.49) then eigenvalues of
L are first integrals of the system.

(9)At this level it is not required the system to be Hamiltonian.
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Proof. The proof consists in showing that there exist an invertible operator U such that

d

dt

(
U(t)L(t)U−1(t)

)
= 0.

In this way L(t) and L(0) have the same spectrum.(10) Since U is invertible we have

U(t)U−1(t) = 1

where with 1 we denote the identity operator. Deriving both sides with respect to t we
get

dU(t)

dt
U−1(t) + U(t)

dU−1(t)

dt
= 0

which gives us an expression for the time derivative of U−1:

dU−1(t)

dt
= −U−1(t)

dU(t)

dt
U−1(t).

Setting now
dU(t)

dt
U−1(t) = M(t) U(0) = 1

we have a Cauchy problem for U which, under suitable hypothesis on M , guarantees the
existence of U . Last we verify that the spectum of L is conserved by this transformation:

d

dt

(
ULU−1

)
= U−1

(
−dU
dt
U−1L+

dL

dt
+ L

dU

dt
U−1

)
U =

= U−1

(
−ML+

dL

dt
+ LM

)
U =

= U−1

(
dL

dt
− [L,M ]

)
U = 0.

We then proved that a system with a Lax pair has n first integrals.
As a first remark we see that the Lax pair is not unique. In fact if S is an invertible

matrix we see that

L 7→ SLS−1 M 7→ SMS−1 +
dS

dt
S−1

is also a Lax pair.
As a second remark it is possible to see that every Liouville-integrable system admits

a formulation with Lax pairs. We don’t enter in this subject but we refer to [2].
We recall now that a system is integrable in the sense of Liouville if it has n indepen-

dent integrals which are in involution between them. The spectrum of L matrix simply
gives n first integrals but it is not proved that these are in involution between them. We
don’t enter in such a general treatment.

The following adaptation of [13] shows that Toda system admits a Lax pair.(11)

(10)This property is often called isospectral deformation.
(11)In the same paper it is shown also that Toda system is integrable.
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Example. Toda lattice. In this example we will show, thanks to a Lax pair, that the
N -dimensional Toda lattice admits a N integrals of motion. Toda lattice is a system
with N particles with Hamiltonian

H(q, p) =
∑
k∈ZN

(
p2
k

2
+ V0e

α(qk+1−qk)

)
. (2.50)

And its equation of motion are

q̇m = pm,

ṗm = αV0

(
eα(qm+1−qm) − eα(qm−qm−1)

)
.

(2.51)

According to [11] we introduce the quantities

ak =

√
V0α

2
eα(qk+1−qk)/2 bk =

1

2
pk. (2.52)

And we see that Lax pair for Toda system is given by

L =


b1 a1 an
a1 b2 a2 . . .

a2 b3 a3
...

. . .

an an−1 bn

 (2.53)

M =


0 a1 −an
−a1 0 a2 . . .

−a2 0 a3
...

. . .

an −an−1 0

 . (2.54)

A proof of the fact that the equation of motion for Toda system can be written as

L̇ = [M,L] (2.55)

is a straightforward calculation. We can begin from the one involving ṗk:

L̇kk = [M,L]kk =
n∑
j=1

(MkjLjk − LkjMjk) =

= Mk,k+1Lk+1,k +Mk,k−1Lk−1,k − Lk,k+1Mk+1,k − Lk,k−1Mk−1,k

(2.56)

where we understood that if k = 1, k − 1 = n. Moreover from the expressions above we
get

Mk,k+1 = −Mk+1,k = ak Mk,k−1 = −Mk−1,k = −ak−1 (2.57)

Lk,k+1 = Lk+1,k = ak Lk,k−1 = Lk−1,k = ak−1 Lkk = bk (2.58)

and then
ḃk = 2(a2

k − a2
k−1) (2.59)
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with the help of the definitions above this reads

ṗk = V0α
(
eα(qk+1−qk) − eα(qk−qk−1)

)
. (2.60)

An analogous calculation gives the equation involving q̇m.
Thanks to Lax pair we can find n first integral of Toda lattice. These are the eigen-

values of the matrix L. Since eigenvalues of L are conserved quantities so is also their
sum. We obtain in this way the (obvious)

I1 = TrL =
n∑
j=1

bj =
1

2

n∑
j=1

pk =
1

2
Ptot. (2.61)

This states nothing more than the conservation of total momentum.

Another example of system which admits a Lax Pair is the KdV (see section 2.4).

2.3 Some tools from functional analysis

In this section we recall some notions of functional analysis that will be useful in the
following. The first two subsections are entirely inspired by [17].

2.3.1 Normed spaces

The notion of linear space (also called vector space) is one of the basic notions in mathe-
matics. It is also well known that a vector space can be endowed with different additional
structures as scalar products or norms. A normed space is a vector space on which it is
defined the length of a vector. Here we recall precise definitions of that.

Definition 2.3.1 (Linear space). A structure (X,+, ∗, K) where X is a set, + : X×X →
X is a function, ∗ : K ×X → X is a function and K is a field, is called vector space if
the following properties hold:

1. commutativity of the sum: x1 + x2 = x2 + x1 ∀x1, x2 ∈ X;
2. associativity of the sum: x1 + (x2 + x3) = (x1 + x2) + x3 ∀x1, x2, x3 ∈ X;
3. existence of the neutral element: ∃e ∈ X such that x1 + e = 0 ∀x1 ∈ X;
4. a(bx) = (ab)x ∀a, b ∈ K and ∀x ∈ X;
5. 1x = x ∀x ∈ X where 1 is the neutral element in K;
6. (a+ b)x = ax+ bx ∀a, b ∈ K and ∀x ∈ X;
7. a(x1 + x2) = ax1 + ax2 ∀a ∈ K and ∀x1, x2 ∈ X.

Definition 2.3.2 (Norm). Given a vector space X, a norm on X is a function ‖ · ‖ :
X → R such that

1. ‖x‖ ≥ 0 ∀x ∈ X;
2. ‖x‖ = 0 if and only if x = 0;
3. ‖x1 + x2| ≤ ‖x1‖+ ‖x2‖;
4. ‖ax‖ = |a|‖x‖.

A normed space is a vector space endowed with a norm.
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Example. The space of square integrable functions, L2(T) with the L2-norm defined as
follows

‖f‖L2 =
√
〈f, f〉L2 =

(∫
T
f 2(x) dx

) 1
2

(2.62)

is a normed space.

2.3.2 Differentiation on linear spaces

On linear spaces it is possible to define two kind of derivatives. This is the mirror of
what happens in the real analysis when one consider the directional derivative and the
differential of a function: one is stronger and one is weaker. Imaginatively these two
kind of differentiations are referred as strong and weak differentiations.

Let X, Y be two normed spaces with norms ‖ · ‖X and ‖ · ‖Y and let f : X → Y be
a function.

We say that f is differentiable in a given point x ∈ X if there exists a bounded linear
operator Lx : X → Y such that for every ε > 0 there exists δ > 0 such that ‖h‖X < δ
implies

‖F (x+ h)− F (x)− Lx(h)‖Y ≤ ε‖h‖X (2.63)

Expression Lx(h) represents an element in Y which is often called differential of f or
Fréchet differential of f in x. The operator Lx is called strong derivative of the function
f at x. We will often write f ′(x) instead of Lx.

Remark 2.3.3. Uniqueness of the strong derivative is obvious for linear operators. In
fact, let us suppose there exist two different derivatives called L

(1)
x and L

(2)
x . Since these

operators are linear and bounded we have ‖L(1)
x h− L(2)

x h‖ = o(h) implies L
(1)
x = L

(2)
x .

Beside very trivial (but important) results like the sum of two differentiable function
is still differentiable, multiplication for a scalar keeps differentiability, one of the most
important results concerning strong derivatives is the so-called “chain rule”:

Proposition 2.3.4 (Chain rule). Let X, Y, Z be three normed spaces, U(x0) an open
neighbourhood of x0 ∈ X, F a continue application of this neighbourhood in Y , y0 =
F (x0), V (y0) an open neighbourhood of y0 ∈ Y and G a continue application of this
neighbourhood in Z. If F is differentiable in x0, G is differentiable in y0 then H = GF
defined in a neighbourhood of x0 will be differentiable in x0 and

H ′(x0) = G′(y0)F ′(x0) (2.64)

Proof. From the hypothesis above we have

F (x0 + ξ) = F (x0) + F ′(x0)ξ + o(ξ),

G(y0 + η) = G(y0) +G′(y0)η + o(η).
(2.65)

Both F ′ and G′ are bounded linear operators, then

H(x0 + ξ) = G(y0 + F ′(x0)ξ + o(ξ)) =

= G(y0) +G′(y0)(F ′(x0)ξ + o(ξ)) + o(F ′(x0)ξ + o(ξ)) =

= G(y0) +G′(y0)F ′(x0)ξ + o(ξ)

(2.66)

which is precisely our thesis.
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Let us consider again an application f : X → Y . The weak differential (also called
Gateaux differential) of f in x ∈ X with increment h is the limit

Df(x, h) =
d

dε
f(x+ εh)|ε=0 = lim

ε→0

f(x+ εh)− f(x)

ε
(2.67)

where the convergence is meant with the norm convergence in Y . If the Gateaux deriva-
tive exists for every h ∈ X then f is said to be Gateaux-derivable in x.

Weak differential can be non linear in h. If this happens the linear operator Lx such
that

Df(x.h) = Lx(h) (2.68)

is called Gateaux derivative or weak derivative of f in x and we will denote it with
D/Dx. It is interesting to note that for weak derivatives the theorem for the derivative
of composed functions does not hold.

In the previous sections we often referred to the L2 gradient. We define it starting
from the weak derivative: if we take a real-valued functional F : X → R we define its
L2 gradient as

DF (x, h) = 〈∇L2F (x), h〉L2 (2.69)

where DF (x, h) is defined as (2.67).

2.3.3 Anti-derivative operators

Since we will focus our attention on the Fermi-Pasta-Ulam problem on the torus T = R/Z
we will often deal with periodic functions. We remind that (nearly) every function on
the torus can be expanded in Fourier series as follows

f(x) =
∑
k∈Z

f̂ke
2πikx. (2.70)

We recall also how a derivative operator acts on a function represented in Fourier
series

∂xf(x) = ∂x
∑
k∈Z

f̂ke
2πikx = 2πi

∑
k∈Z

kf̂ke
2πikx. (2.71)

It is possible to define an anti-derivative operator, denoted by ∂−1
x , which acts on f as

follows

∂−1
x f(x) =

∑
k∈Z\{0}

1

2πik
f̂ke

2πikx. (2.72)

From the definition one gets

∂x∂
−1
x f = f − f̂0 (2.73)

where, obviously, f̂0 = 〈f〉T =
∫
T f(x) dx. This operator has a property which is analo-

gous to the integration by parts of the derivative, as the proposition below shows.

Proposition 2.3.5 (Integration by parts). The anti-derivative operator satisfies an anal-
ogous of the integration by parts formula which is∫

T1

f(x)∂−1
x g(x) dx = −

∫
T1

g(x)∂−1
x f(x) dx. (2.74)



26 Hamiltonian systems
The Korteweg-de Vries equation

2.4

Proof. The proof consists on a straightforward calculation:∫
T1

f(x)∂−1
x g(x) dx =

∫
T1

dx
∑
k∈Z

∑
k′∈Z\{0}

f̂k
1

2πik′
ĝk′e

2πi(k′+k)x =

=
∑
k∈Z

∑
k′∈Z\{0}

f̂k
1

2πik′
ĝk′δk+k′,0 =

= −
∑
k∈Z

∑
k′∈Z\{0}

f̂k
1

2πik
ĝk′δk+k′,0 =

= −
∫
T1

dx
∑
k∈Z

∑
k′∈Z\{0}

f̂k
1

2πik
ĝk′e

2πi(k′+k)x =

= −
∫
T1

g(x)∂−1
x f(x) dx

where we noted that the term with k = 0 vanishes because of the Kronecker delta.

2.4 The Korteweg-de Vries equation

The Korteweg-de Vries equation (KdV) is a nonlinear partial differential equation which
arises in the study of many physical systems. It was introduced in the second half of the
eighteenth century by Boussinesq ([8] footnote on pag. 360(12)) and then re-discovered
by Korteweg and de Vries around fifteen years later to describe the evolution of long
water waves down a canal of rectangular cross section.

Among the many (equivalent) forms on which one can find it in the literature, we
choose to present it in the following one

ut = buux + auxxx. (2.75)

To connect this form with the others, one can eliminate the parameter a simply rescaling
time by the same factor. One then obtains the following equation depending only on a
parameter γ = b

a
:

ut = γuux + uxxx. (2.76)

One can then choose the value of γ simply rescaling u.(13)

It will be important for us the connection anticipated in chapter 1 between KdV and
FPU that will be treted in chapter 4.

In order to prove the existence of infinitely-many constants of motion we introduce
some “immediate” conservation laws for the KdV. Since it depends on x and t only
through differentiations, it is unchanged for every translation t′ = t + τ and x′ = x + ξ
with τ and ξ constants. More, KdV equation is unchanged if one applies the Galileian
transformation

t′ = t, x′ = x− ct, u′(x′, t′) = u(x, t) +
c

b
, (2.77)

(12)An historical reconstruction of the discovery of this equation can be found in [9].
(13)It is also possible, with opportune scaling, to bring KdV equation in the form ut = uux + δ2uxxx

which is very useful if one studies the small dispersion limit.
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where c is a constant. Physically this corresponds to going on a steady moving reference
frame with velocity c.

To prove this fact we simply transform quantities in (2.75) with (2.77):

ut =
∂u′

∂t
=
∂t′

∂t

∂u′

∂t′
+
∂x′

∂t

∂u′

∂x′
= u′t′ − cu′x′

buux + auxxx = b
(
u′ − c

b

)
u′x′ + au′x′x′x′ = bu′u′x′ + au′x′x′x′ − cu′x′ .

(2.78)

When we put (2.78) in (2.75) we get

u′t′ = bu′u′x′ + au′x′x′x′ (2.79)

which is precisely the KdV equation (2.75) for the transformed quantities.

2.4.1 Conservation laws and integrals of the motion

Usually we refer to conservation laws as equations like

ρt +Xx = 0 (2.80)

where ρ is a conserved density and −X is its flow. Equations of this form are very
common in physics (conservation of charge in electromagnetism, conservation of mass
for fluids, . . . ). Dealing with KdV, ρ and X are functions of x, t, u and the derivatives
of u, ∂nxu.

One of the interesting properties of the KdV equation is that it has an infinite number
of conserved density.

To see how special is this property, we have to consider one of the possible classes of
generalization of KdV equation given by the following

wt = bwpwx + awxxx (2.81)

where we recognize that for p = 1 we get exactly the KdV. The first equation in this
class, the one with p = 2, is called modified KdV (mKdV) and it reads

vt = bv2vx + avxxx. (2.82)

This equation arises in the study of nonlinear discrete mass string with cubic force law
between masses (like β-FPU, see chapter 5).

This equation is as special as KdV from the point of view of conservation laws. A
study of the generalized (2.81) with p ≥ 3 leads to the discovery of only three polynomial
conservation laws. In other words the only “very special” equations in this class are the
KdV and the mKdV. Assuming (for the moment) the special role of KdV, the special
role of the modified KdV can be understood in terms of the following theorem by Miura
[19]:

Theorem 2.4.1 (Miura). If v is a solution of

vt = bv2vx + avxxx (2.83)
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then, if i is the imaginary unit,

u = v2 + i

√
6a

b
vx (2.84)

is a solution of
ut = buux + auxxx. (2.85)

Proof. For the sake of simplicity we call σ = i
√

6a
b

. Substituting (2.84) in (2.85) we get

ut − buux − auxxx = (v2 + σvx)t − b(v2 + σvx)(v
2 + σvx)x − a(v2 + σvx)xxx =

=

(
2v + σ

∂

∂x

)
(vt − bv2vx − avxxx).

Where the last step is valid if and only if

σ2 = −6a

b

which is precisely the statement of the theorem.

Remark 2.4.2. We will denote with M (v) the operator M (v) =
(
2v + σ ∂

∂x

)
.

Remark 2.4.3. This theorem connects KdV and mKdV. Thanks to the transformation
(2.84), the infinitely-many constants of motion of KdV are mapped in infinitely many
constants of motion for mKdV (see subsection 2.4.5).

We note that the theorem works only in one sense. Anyway this is the starting point
for the Gardner proof of the existence of infinitely many integrals of KdV equation. We
chose to adapt this proof in [19] to KdV equation in the form (2.75) because it shows
directly the existence of quantities satisfying the conservation equation (2.80) without
involving Hamiltonian structures.

The idea of the proof is to generalize the transformation (2.84) and to proceed in the
converse direction of Theorem 2.4.1. Recalling that KdV equation is Galileian invariant
(2.77) whereas mKdV is not, we introduce the following transformation of variables:

t′ = t

x′ = x− 3a

2ε2
t

u′(x′, t′) = u(x, t) +
3a

2bε2

v(x, t) = εw(x′, t′) +
1

2ε

√
−6a

b

(2.86)

where the specific dependence on the formal parameter ε has been chosen in order to get
the desired results below.

The above transformation implies the following transformation rule for derivatives:

∂

∂t
=
∂t′

∂t

∂

∂t′
+
∂x′

∂t

∂

∂x′
=

∂

∂t′
− 3a

2ε2

∂

∂x′
,

∂

∂x
=
∂x′

∂x

∂

∂x′
+
∂t′

∂x

∂

∂t′
=

∂

∂x′
.

(2.87)
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Hence, calling

P (u) = ut − buux − auxxx, Q(v) = vt − bv2vx − avxxx, (2.88)

we get, because of the Galileian invariance,

P ′(u′) = P (u) (2.89)

and

Q′(v′) =

(
∂t′ −

3a

2ε2
∂x′

)(
εw +

σ

2ε

)
− b
(
εw +

σ

2ε

)2

εwx′ − awx′x′x′ =

= εwt′ − bε(ε2w2wx′ + σwwx′)− aεwx′x′x′ .
(2.90)

Transforming now the operator connecting mKdV and KdV we get

M ′(v′) =

(
2v + σ

∂

∂x

)′
=
(

2εw +
σ

ε
+ σ∂x′

)
. (2.91)

If we recall now that P (u) = 0 if u is a solution of KdV equation, P ′(u′) = P (u) and
P ′(u′) = M ′(v′)Q′(v′) we get 0 = P (u) = P ′(u′) = M ′(v′)Q′(v′). Dropping the primes
one is thus left with

0 = P (u) = (ε2w + σ + σε∂x)(wt − b(ε2w2wx + σwwx)− awxxx). (2.92)

Transforming both sides of (2.84) with (2.86) we get a relation between u and w:

u = ε2w2 + εσwx + σw. (2.93)

One can now suppose to expand w in a formal series of ε:

w(x, t; ε) = w0(x, t) + εw1(x, t) + ε2w2(x, t) + . . . (2.94)

which, substituted into (2.93), provides power by power in ε some expressions connecting
wi, i = 0, 1, . . . , with u and its derivatives:

w0 =
u

σ
, w1 = −ux

σ
, w2 = −u

2

σ2
+ uxx, . . . (2.95)

Because of the structure of (2.92) one gets a conservation law for every power of ε. Since
these are infinitely-many, one has infinitely many conservation laws for KdV. Here we
conclude this proof finding, as an example, the first one (i.e. the one related to ε0).
Substituting (2.95) in (2.92) and taking only terms with order 0 in ε one gets:

ut −
(
b

2
u2 + auxx

)
x

= 0 (2.96)

which is the conserved form of KdV equation.
Another way to show that KdV equation has infintely many constant of motion is

noting that it admits a Lax pair

L =
6b

a
∂2
x + u, M = 4b∂3

x +
a

2
(u∂x + ∂xu) (2.97)
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and then all the eigenvalues of L are constant of motion (as Theorem 2.2.1 shows).
Last, as far as I know, one can prove the existence of infinitely many integrals of motion
involviong the twofold Hamiltonian structure underlying the KdV equation. In advantage
this last proof shows that integrals of motion are in involution and then, consequently,
KdV equation is an integrable system.(14)

2.4.2 Bi-Hamiltonian structure of KdV

We saw in the previous subsections that a Hamiltonian system lives naturally on a
Poisson manifold which is a differentiable manifold with a Poisson bracket defined on
the algebra of the real-valued functions over the manifold. There are particular systems
for which it is possible to define two Poisson structures on the same dynamical system.
Namely it is possible to define two different Poisson tensors that, applied to the gradient
of two different Hamiltonians, lead to the same equations of motion. In other words one
has

Xh = {H1, x}J1 = {H2, x}J2 (2.98)

where the pedices denote the Poisson bracket associated respectively to the Poisson
tensor J1 and J2.

Since we are not interested in a general treatment, we focus on the Korteweg-de Vries
equation (2.75) which admits the following bi-Hamiltonian decomposition:

H1 =

∫ (
b

6
u3 +

a

2
ux

2

)
dx, J1 = ∂x, (2.99)

H2 =

∫
u2

2
dx, J2 = a∂xxx +

2b

3
u∂x +

b

3
ux. (2.100)

We can note that {H1, H2}J1 = {H1, H2}J2 = 0 and then both Hamiltonians are con-
served functionals of KdV. Noting then that, posing F0 = C

∫
u dx, F1 = H2 and F3 = H1

(the lower number is the degree of the integrand of these functionals)

J1
δF1

δu
= J2

δF0

δu
(2.101)

and

J1
δF2

δu
= J2

δF1

δu
(2.102)

one can guess the existence of a recursion formula for finding the infinitely many first
integrals on the form

J1
δFn+1

δu
= J2

δFn
δu

. (2.103)

Before to go ahead we prove that this recursion formula is true. Following [18], we start
proving the following proposition.

(14)Here, with integrable, we mean simply the existence of infinitely many integrals of motion in
involution.
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Lemma 2.4.4. There exists a sequence Gn of polynomials in u and its derivatives up to
order 2n− 2 satisfying an analogous of (2.103) in the form(15)

J1Gn+1 = J2Gn. (2.104)

More, Gn is uniquely determined if we set the constant terms equal to zero during inte-
grations.

Proof. We use the following calculus lemma: suppose that Q is a polynomial in u and
its derivatives up to order k, such that for every periodic function u of period p∫ p

0

Q(u) dx = 0.

Then there exists a polynomial G in derivatives of u up to order k − 1 such that

Q = J1G.

We assume that Gk has been constructed for all k ≤ n; to construct Gk+1 we have
to solve (2.104). According to the above calculus lemma, we have to show that for all u,∫

J2Gk dx = 0.

Since we can pose G0 = const we have that this equation is equivalent to

〈J2Gk, G0〉L2 = 0

Using now repeatedly the skew-symmetric property of J2 and the recursion formula
(2.104) we have

〈J2Gk, G0〉L2 = −〈Gk, J2G0〉L2 = −〈Gk, J1G1〉L2 = 〈J1Gk, G1〉L2 = 〈J2Gk−1, G1〉L2 .
(2.105)

One can now repeat the procedure until one gets

〈J2Gn/2, Gn/2〉L2 or 〈J1G(n+1)/2, G(n+1)/2〉L2 (2.106)

depending on whether n is even or odd. Because of the skew-symmetry of Ji i = 1, 2
both these expressions vanish and then we can apply calculus lemma.

It is possible to show that Gk are gradients, i.e. that for every k there exists a
functional Fk such that

Gk =
δFk
δu

. (2.107)

For a proof see [18]. Accepting the existence of these functionals(16), we show that they
are in involution between them.

(15)We simply identified Gn = ∇L2
Fn.

(16)The very technical part of this proof is the existence of these functionals.
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Proposition 2.4.5. Given a Poisson tensor J = J1, J2 and a set of functionals F0, . . . , Fn
conserved for the Hamiltonian system under examination satisfying (2.103), we have that
functionals F0, . . . , Fn are in involution with respect to {·, ·}J . In other words we have

{Fn, Fm}J = 0 ∀m,n. (2.108)

Proof. The case m = n is straightforward since Poisson brackets are skew-symmetric.
We can then assume m > n. Writing explicitly Poisson brackets one has, assuming
J = J1,

{Fn, Fm}J1 = 〈δFn
δu

, J1
δFm
δu
〉L2 .

Thus one is left in proving that last quantity is vanishing. To do so we use (2.103) in a
iterative manner:

〈δFn
δu

, J1
δFm
δu
〉L2 = 〈δFn

δu
, J2

δFm−1

δu
〉L2 = −〈J2

δFn
δu

,
δFm−1

δu
〉L2 =

= −〈J1
δFn+1

δu
,
δFm−1

δu
〉L2 = 〈δFn+1

δu
, J1

δFm−1

δu
〉L2 =

= · · · = {Fµ, Fµ}J1 = 0.

(2.109)

Where µ can be (m+ n)/2 or (m+ n+ 1)/2 depending on m+ n odd or even.

Remark 2.4.6. The very technical part of the proof is showing that Gn are precisely
gradients of Fn. We don’t think this is very enlightening so we simply refer to the
original paper by Lax [18].

2.4.3 KdV hierarchy

In this section we will derive explicit expressions for the conserved functionals of KdV.
These, increasing with the grade of the polynomial in u, are usually referred as KdV
hierarchy. This subsection is then a straightforward application of recursion formula
(2.103). To apply such a formula we have to choose two things: first one is which
Poisson tensor we want to invert; second one we have to choose a conserved functional
from which we start the computation. We choose, to invert J1 = ∂x since it is easier to
invert and to start from

F0 = C

∫
T
u dx (2.110)

which is a Casimir for J1 and hence it is also a conserved functional because of Proposition
2.1.9. We now can calculate its L2-gradient

G0 = C. (2.111)

Applying (2.104) we get the gradient of the second order first integral

∂xG1 =

(
a∂xxx +

2

3
bu∂x +

b

3
ux

)
C. (2.112)

From this it follows that G1 = bC
3
u and then, inverting the L2 gradient one obtains

F1 =
bC

6

∫
T
u2 dx. (2.113)
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We can iterate this procedure to get the third conserved functional

∂xG2 =

(
a∂xxx +

2

3
bu∂x +

b

3
ux

)
bC

3
u (2.114)

which implies, after a straightforward calculation,

G2 =
abC

3
uxx +

b2C

6
u2. (2.115)

Which is the L2 gradient of

F2 =

∫
T

(
abC

6
uuxx +

b2C

18
u3

)
dx. (2.116)

As last step we calculate F3 by applying once again the recursion formula:

∂xG3 =

(
a∂xxx +

2

3
bu∂x +

b

3
ux

)(
abC

3
uxxx +

b2C

3
uux

)
. (2.117)

This time the calculation is a bit tedious and the result is

∂xG3 =
a2bC

3
uxxxxx +

ab2C

18

(
4uuxxx + 2uxuxx + 3(u2)xxx

)
+
b3C

18

(
2u(u2)x + uxu

2
)
.

(2.118)
We can now integrate on the torus both sides of the equation to get

G3 =
a2bC

3
uxxxx +

5

9
ab2C

∫
T
(uuxxx + 2uxuxx) dx+

5

18
b3C

∫
T
u2ux dx (2.119)

and, after some integration by parts, we get the following expression

G3 =
a2bC

3
uxxxx +

5

9
ab2Cuuxx +

5

18
ab2C(ux)

2 +
5

54
b3Cu3. (2.120)

We can see that this is the L2-gradient of the functional

F3 =

∫
T

(
a2bC

6
uuxxxx −

5

18
ab2Cu(ux)

2 +
5

216
b3Cu4

)
dx. (2.121)

Integrating by parts we can find the following alternative expression for F3:

F3 =

∫
T

(
a2bC

6
(uxx)

2 +
5

36
ab2Cu2uxx +

5

216
b3Cu4

)
dx. (2.122)

With some algebra we get the following expressions for the conserved functionals

F0 = C

∫
T
u dx

F1 =
bC

6

∫
T
u2 dx

F2 =
abC

6

∫
T

(
uuxx +

1

3
γu3

)
dx

F3 =
a2bC

6

∫
T

(
5

36
γ2u4 +

5

6
γu2uxx + (uxx)

2

)
dx

(2.123)

where we called γ = b
a
.
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2.4.4 Generalized KdV equations

In the above subsection we found explicit expressions for the infinitely many conserved
functionals of KdV. Each of them can be taken to be a Hamiltonian for a system which
will be integrable (since is has enough conserved functionals in involution between them).
The physical system related to these Hamiltonians are called generalzied KdVs and the
corresponding equation of motion generalized KdV equations. Since they will be useful
later we spend some time to derive the generalized KdV equations till order 2.

The generalized KdV equation of order j is characterized by

ut = ∂x
δFj
δu

. (2.124)

The equation involving F0 is trivial since its gradient is a constant we have

ut = C C = const (2.125)

The one involving F1 is the so-called transport equation which is, roughly speaking,
half of the wave equation

ut = Bux. (2.126)

From F2 one gets the KdV equation

ut = γuux + uxxx (2.127)

where we put equal to 1 the multiplicative constant in front of the equation and γ is
the parameter appearing in the hierarchy. For the third functional we get, after a longer
calculation than above, the following vector field up to multiplicative constants

ut =
5

3
γ2u2ux +

20

3
γuxuxx +

10

3
γuuxxx + 2uxxxxx. (2.128)

2.4.5 mKdV hierarchy

Previously we showed the relation between KdV and mKdV and we deduced that if KdV
is integrable also is mKdV. Now, thanks to Miura transformation, it is possible to write
down explicitly the conserved functionals for mKdV. Recalling (2.84):

u = v2 + i

√
6

γ
vx (2.129)

Starting from F0 =
∫
u dx we get

F
(m)
0 = F0(v2 + i

√
6

γ
vx) =

∫
v2 dx. (2.130)

If we keep on going

F
(m)
1 =

∫ (
v2 + i

√
6

γ
vx

)2

dx =

∫ (
v4 − 6

γ
v2
x

)
dx. (2.131)
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Last one we are interested in is

F
(m)
2 =

∫ (
uuxx +

γ

3
u3
)
dx

∣∣∣∣
u=v2+i

√
6γ−1vx

=

=

∫ (
γ

3
v6 +

6

γ
vxx

2 − 10v2v2
x

)
dx.

(2.132)

which can be written, equivalently as

F
(m)
2 =

∫ (
γ2v6 + 10γv3vxx + 18vxx

2
)
dx. (2.133)

Equations (2.131) and (2.133) are the first of a infinite series of conserved functionals for
mKdV equation and they constitute the mKdV hierarchy.
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CHAPTER 3

Perturbation theory

In the physical world integrable systems are very rare and hard to find while there exists
a lot of system “close” to an integrable one. Examples of this are very common in
nature (in celestial mechanics the Solar system, in systems of masses and springs the
harmonic chain and the Toda one. . . ). It is known that also the Fermi-Pasta-Ulam
system with low-frequency modes initially excited is close to another integrable system:
the KdV one. Since it is already proved that at first order FPU can be written, by
a canonical transformation, as the sum of the first two term of KdV Hierarchy and
numerical experiments show that the FPU actions evolve on a time-scale of the order of
ε−9/4 (where ε is the specific energy) we try to see if FPU is in KdV Hierarchy at second
order. In this section we will briefly recall the main ideas of perturbation theory and we
develop the tools that will be used for such a proof in the next two chapters.

3.1 Classical theory of perturbations

To introduce the classical theory of perturbations we consider a Hamiltonian system
whose Hamiltonian is the sum of a first integrable piece (unperturbed part) and a second
piece, small with respect to the first one, which is usually called perturbation. In the
action-angle variables of the unperturbed system we have

H(I, ϕ) = h(I) + λQ1(ϕ, I) + λ2Q2(ϕ, I) + . . . (3.1)

where h is the integrable Hamiltonian, Q1 and Q2 are the perturbations and λ is a small
parameter. Here we implicitly assumed that Q1 and Q2 have the same order in λ of h.

The aim of this theory is to answer the question whether and for how long the actions
of the unperturbed system remain λ-close to the actions of the perturbed system. The
classical way to answer such a question is to look for a λ-close to the identity canonical
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transformation(1)

fλ : Tn ×B → Tn ×B′
(ϕ, I) 7→ (ϑ, J)

(3.2)

such that in the transformed Hamiltonian, the first term of perturbation, if not removed,
is simplified as much as possible. The best one can expect is that such a new perturbation
term is independent of the angles. If one is able to find such a transformation and this
machinery works for the first k steps, one gets a Hamiltonian in the form

H(f−1
λ (ϑ, J)) = h(J) + λZ1(J) + · · ·+ λkZk(J) +Rk(ϑ, J ;λ). (3.3)

If one supposes or proves that the remainder at the k−th step satisfies Rk = O(λk+1)
and ∂Rk

∂ϑj
= O(λk+1) then the time evolution of actions is governed by

J̇j = {Jj, H ◦ f−1
λ } = {Jj, Rk}. (3.4)

From this we obtain the following inequality

|J(t)− J(0)| ≤
∫ t

0

∣∣∣∣∂Rk

∂ϑj
(ϑ(s), J(s);λ)

∣∣∣∣ ds ≤ cjλ
k+1t = (cjλ)λkt (3.5)

which directly yields |Jj(t)−Jj(0)| = O(λ) over times t ≤ λ−k. On the other hand, since
the canonical transformation is λ-close to the identity we get

|Ij(t)− Ij(0)| = |Ij(t)− Jj(t) + Jj(t)− Jj(0) + Jj(0)− Ij(0)| ≤
≤ |Ij(t)− Jj(t)|+ |Jj(t)− Jj(0)|+ |Jj(0)− Ij(0)| =
= O(λ) +O(λ) +O(λ) = O(λ)

(3.6)

again over times t ≤ λ−k. Thus the original actions variables undergo a slow change,
so that, on a long time interval 0 ≤ t < λ−k, the dynamics of the perturbed system
resembles that of the unperturbed, integrable one.

The λ-closeness to the identity of the canonical transformation fλ prevents one from
improving the estimate on the variation of the original action variables. For example, if
|Jj(t) − Jj(0)| = O(λ2) equation (3.6) tells us that |Ij(t) − Ij(0)| = O(λ). This shows
that, in going back to the original actions such a sharper control is lost and the best one
can do is decided by the canonical transformation.

3.1.1 A first perturbative step: Lie method

A way to perform the near-to-identity canonical transformation described above is the
so-called Lie method (see section 2.1.1). This method consists in finding a canonical
transformation as flow of another Hamiltonian system. More precisely we set

f−1
λ = Φλ

G1
(3.7)

where G1 is the Hamiltonian generating the canonical transformation at first order. By
a series expansion one gets

H ◦ f−1
λ = (1 + λL1 + λ2 . . . )(h+ λP1 + λ2 . . . ) = h+ λ(L1h+ P1) + λ2 . . . . (3.8)

(1)Which is a family of canonical transformations depending on a parameter λ such that for λ = 0
one obtains the identity map.
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Requiring the above equation to be equal to h + λZ1 + λ2 . . . one has the so-called
homological equation

L1h+ P1 = Z1. (3.9)

If one requires the latter quantity to be independent of angles and that h = h(I) one
gets

ω(J) · ∂G1(ϑ, J)

∂ϑ
= P1(ϑ, J)− Z1(J) (3.10)

where

ω(J) =
∂h(J)

∂J
. (3.11)

If we average the homological equation (3.9) on the torus we get the following explicit
expression for Z1:

Z1 =

∫
Tn

P1(ϑ, J) dnϑ. (3.12)

Looking at (3.12) one could think that we completed our project of finding a Z1

independent of angles. This is not completely true since till now we proceeded supposing
that there exists a Hamiltonian G1 which is O(1) and which generates the canonical
transformation. Equation (3.12) represent a small perturbations only if there exists an
Hamiltonian with these characteristics.

We can try to find such a Hamiltonian expanding in Fourier series the homological
equation. Defining

Ĝ1,k(J) =

∫
Tn

G1(J, ϑ)e−2πik·ϑ dnϑ,

P̂1,k(J) =

∫
Tn

P1(J, ϑ)e−2πik·ϑ dnϑ,

(3.13)

where Tn = (R/Z)n we can set

G1(J, ϑ) =
∑
k∈Zn

Ĝ1,k(J)e2πik·ϑ, P1(J, ϑ) =
∑
k∈Zn

P̂1,k(J)e2πik·ϑ. (3.14)

Inserting these expressions in the homological equation (3.9) we get

ik · ω(J)Ĝ1,k(J) = P̂1,k(J)− δk,0P1,0(J) (3.15)

and if ω · k 6= 0 its solution is

Ĝ1,k(J) =
P̂1,k(J)

ik · ω(J)
. (3.16)

There are two important things to note here. First, we have no informations about the
mean of G1 and this is a sort of “gauge freedom” of our problem. Second by, we cannot
find Ĝ1,k̃ of order O(1) if k̃ ·ω(J) ∼ λ. In fact, if this happens, we have that Ĝ1,k̃ ∼ λ−1.(2)

In the literature this is referred as the small divisors problem and one refers to the

(2)At a deeper level, considering the vector fields of the transformations, one finds out that, in general,
dangerous small denominators are those satisfying k̃ · ω(J) ∼

√
λ.
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relations k̃ · ω(J) ∼ λ as to the resonances of the system. If we call K∗(J) the set of all
k̃ such that the divisor is very dangerous, i.e. K∗(J) = {k ∈ Zn : ω(J) · k = 0},(3) we
get

G1(J, ϑ) =
∑

k∈Zn\K∗(J)

P̂1,k(J)

ik · ω(J)
e2πik·ϑ,

Z1(J, ϑ) =

∫
T
P1(ϑ, J) dϑ+

∑
k∈K∗(J)

P̂1,k(J)e2πik·ϑ
(3.17)

and we see that in general it is not possible to have a normal form at first order indepen-
dent of the angles. We see also that in general, since K∗(J) depends on J , the normal
form can vary from a point to another one in the phase space.

To better understand the construction in the next section we have to write the ex-
pressions for G1 and Z1 in (3.17) in terms of time average.

We start from the following definition

Definition 3.1.1 (Quasi-periodic motion(4)). Let Tn = (R/Z)n be the n-dimensional
torus and ϕ = (ϕ1, . . . , ϕn) angular coordinates.(5) Then by a quasi periodic motion we
mean the flow Tn × R→ Tn of the following differential equations

ϕ̇ = ω ω = (ω1, . . . , ωn) = const. (3.18)

These differential equations are easily integrated and this integration gives

ϕ(t) = ϕ(0) + ωt. (3.19)

The quantities ω1, . . . , ωn are called frequencies of the conditionally periodic motion.
Frequencies are called (rationally) independent if they are linearly independent over the
field of rational numbers, i.e. if k ∈ Zn and k · ω = 0 implies k = 0.

Let now f(ϕ) be an integrable function on the torus Tn. We recall the following

Definition 3.1.2 (Space average). The space average of a function f on the torus Tn is
the number

〈f〉Tn =

∫
Tn

f(ϕ) dnϕ (3.20)

If we now consider the value of the function f(ϕ) on the trajectory of ϕ(t) = ϕ(0)+ωt
we get a function of time. We can consider its time average

Definition 3.1.3 (Time average). The time average of the function f on the torus Tn
is the function

f(ϕ0) = lim
t→∞

1

t

∫ t

0

f(ϕ0 + ωs) ds (3.21)

defined where the limit exists.

(3)It is obvius that K∗ depends on J if ω(J) depends on J .
(4)Sometimes one refers to these as conditionally-periodic motions, see for example [1].
(5)Our angular coordinates are ϕ ∈ [0, 1)n.
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Theorem 3.1.4. The time average exists everywhere, and coincides with the space av-
erage if f is continuous (or merely Riemann-integrable(6)) and the frequencies ωi are
rationally independent.

Proof. The proof can be found in [1] paragraph 51.

This result is interesting because it means that we can write Z1 exactly as a time
average. Since the motion of the integrable system is conditionally periodic we can state

Z1(J) = lim
t→∞

1

t

∫ t

0

esLhP1(J, ϑ) ds (3.22)

if the frequencies are independent. If the frequencies are dependent we have ω(J) ·k = 0
for some k 6= 0 and this is precisely the definition of resonant frequence. One finds

Z1(J, ϑ) = lim
t→∞

1

t

∫ t

0

esLhP1(J, ϑ) ds =

∫
T
P1(θ, J) dθ +

∑
k∈K∗(J)

P̂1,k(J)e2πik·ϑ. (3.23)

One can repeat the same argument to find an expression for G1. Anyway this is not
very important for the theory of perturbations above and, since our plan is to connect
the classical theory of perturbations and the one in the next section, equation (3.23) is
sufficient for our scope. To be more concrete we perform the calculations described in
this section in an example.

Example. Let us calculate the first order normal form for a Hamiltonian system in
T2 × R2 with Hamiltonian

H = I1 + I2 + ε(cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2)). (3.24)

It is straightforward to calculate the normal form using (3.17) once one notes that the
only resonant frequency is ω = (1, 1). One gets

H̃ = I1 + I2 + ε cos(ϕ1 − ϕ2). (3.25)

To use the time-average machinery one has to write the unperturbed equations of
motion which are

ϕ̇1 = 1, ϕ̇2 = 1, İ1 = 0, İ2 = 0. (3.26)

One then calculate the time average of the perturbation P1 = cos(ϕ1 +ϕ2)+cos(ϕ1−ϕ2)
using the unperturbed flux which is φ(t) = φ0 + t:

P1 = lim
t→∞

1

t

∫ t

0

(cos(ϕ1 + ϕ2 + 2t) + cos(ϕ1 − ϕ2)) dx. (3.27)

Due to the linearity of the integral one can split it. The first term vanishes while the
second one remains the same. One thus get precisely (3.23)

H̃ = I1 + I2 + ε cos(ϕ1 − ϕ2) (3.28)

which is the same result obtained before in the “standard way”.

(6)It is sufficient Lebesgue-integrability.
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3.2 Infinite-dimensional Hamiltonian perturbation the-

ory

The perturbation theory exposed above is deeply linked to the action-angle variables.
In this chapter we develop the canonical standard formalism with the aim of finding
expressions independent of the choice of coordinates. This is very useful in order to
treat perturbations for which expressions for action-angle variables are not friendly to
handle.

3.2.1 Hamiltonian normal form

We start from a perturbed Hamiltonian system whose Hamiltonian in in the form

H(x) = h(x) + λP1(x) + λ2P2(x) + . . . (3.29)

where x is a generical variable. Our goal is to simplify as much as possible the pertur-
bative series bringing it in the so-called normal form. This means that we will look for
a near-to-identity canonical transformation which maps (3.29) into

H ◦ f−1 = h+ λS1 + λ2S2 + . . . (3.30)

where S1, S2, . . . “commute” with h. More precisely we say that H is in normal form to
λ-th order if {Sj, h} = 0 for every j = 1, . . . , λ.

To outline the procedure in a concrete way we perform a canonical transformation
setting H in normal form to second order. If one is interested in a j-th order normal
form one can generalize the procedure outlined here.

To perform the near-to-identity canonical transformation we use Lie method and we
call K the transformed Hamiltonian. We thus get

K = eλ
2L2eλL1H (3.31)

where, as in the previous section, we denoted with Gj the Hamiltonian generating the
canonical trasformation at the j-th order and with Lj(·) the Lie derivative associated to
it, Lj(·) = {·, Gj}. K will be in the form

K = h+ λS1 + λ2S2 +O(λ3). (3.32)

Let us perform the calculations in detail to find explicit expressions for S1 and S2.
Expanding in series the exponentials in (3.31) till the second order we get

K = eλ
2L2eλL1H =

(
1 + λ2L2

)(
1 + λL1 +

λ2

2
L2

1

)(
h+ λP1 + λ2P2

)
+ · · · =

=
(
1 + λ2L2

)(
h+ λ(P1 + L1h) + λ2

(
P2 +

1

2
L2

1h+ L1P1

))
+ · · · =

= h+ λ (P1 + L1h) + λ2

(
L2h+ P2 +

1

2
L2

1h+ L1P1

)
+ . . .

(3.33)
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This defines in a natural way the perturbative series for K with

S1 = L1h+ P1

S2 =
1

2
L2

1h+ L1P1 + P2 + L2h.
(3.34)

From above we notice the following general feature which is supposed to be true at
every order in λ: we can always write the j-th part of the perurbation as

Sj = Ljh+ P \
j P \

j = Pj + F (Pj−1, . . . , P1). (3.35)

Now we apply esLh at both sides of the above equation. If we require Sj to be in normal
form with respect to h we have {Sj, h} = 0 which implies that Sj doesn’t change under
the flow of h: esLhSj = Sj. Using this property we can find Gj and Sj:

Sj = esLhSj = esLh
(
Ljh+ esLhP \

j

)
. (3.36)

The skew-symmetric property of the Poisson bracket tells us that Ljh = {h,Gj} =
−{Gj, h} = −LhGj and the above expression yields

Sj = esLhSj = −esLhLhGj + esLhP \
j = − d

ds

(
esLhGj

)
+ esLhP \

j . (3.37)

We integrate now both members between 0 and t, then we divide by t to obtain an
equation for Sj:

Sj = −1

t

(
etLhGj −Gj

)
+

1

t

∫ t

0

esLhP \
j ds. (3.38)

A smart way to choose t in the integration extrema is choosing, if it exists, a t∗ such
that the first term vanishes. In the following two cases this is for sure possible:

• periodic flow: if the flow of h is periodic with period t∗ then et
∗Lh = 1. Under this

hypotesis (3.38) becomes

Sj =
1

t∗

∫ t∗

0

esLhP \
j ds. (3.39)

• bounded flow: if the flow of h is bounded for every t the first term vanishes. It
follows that

Sj = lim
t→∞

1

t

∫ t

0

esLhP \
j ds. (3.40)

Comparing now (3.40) with (3.23) one can recognize some similarities. Anyway we
get something more here since we didn’t require the starting system to be in action-angle
variables.

Assuming that our system satisfies one of the previous condition, from (3.40) or (3.39)
we have now the perturbation in normal form, that is

Sj = 〈P \
j 〉h (3.41)

where we denoted with 〈·〉h = limt→∞
1
t

∫ t
0
(·)ds.
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As we see from (3.34) to calculate the j-th order we need all Hamiltonians generating
the canonical transformations till (j − 1)-th order. Looking for such a Hamiltonian we
start from (3.35):

Sj = −LhGj + P \
j (3.42)

that, combined together to the expression above for Sj, reads

LhGj = P \
j − 〈P

\
j 〉h. (3.43)

For the simplicty of notations we define P̃ \
j = P \

j − 〈P
\
j 〉h. Our problem consists in the

inversion of (3.43).
Let us multiply both sides of (3.43) by (s− t∗) and integrate them between 0 and t∗.

We get ∫ t∗

0

(s− t∗)esLhLhGj ds =

∫ t∗

0

(s− t∗)esLhP̃ \
j ds (3.44)

We recognize on the left side that d
ds

(
esLhGj

)
= esLhLhGj and then,

LHS =

∫ t∗

0

(s− t∗)esLhLhGj ds =

∫ t∗

0

(s− t∗) d
ds

(
esLhGj

)
ds =

= (s− t∗)esLhGj

∣∣s=t∗
s=0
−
∫ t∗

0

esLhGj ds = t∗Gj −
∫ t∗

0

esLhGj ds

(3.45)

After equating the left-hand side to the right-hand side, with some elementary algebra
we get

Gj =
1

t∗

∫ t∗

0

esLhGj ds+
1

t∗

∫ t∗

0

(s− t∗)esLhP̃ \
j ds. (3.46)

Using the above notations, this last expressions reads

Gj = 〈Gj〉h +
1

t∗

∫ t∗

0

(s− t∗)esLhP̃ \
j ds. (3.47)

As in the classical case we see that we have no informations about 〈Gj〉h (recall equation
(3.16)).

3.2.2 Some semplifications for the second order

Since the aim of the following chapters is to look for a canonical transformation to bring
the FPU Hamiltonian in normal form to the second order, we dedicate this subsection
to simplify as much as possible the expression for S2.

Our starting point is given by equations (3.34) and (3.41). Putting together these
equations we get

S1 = 〈P1〉h

S2 = 〈P2 + L1P1 +
1

2
L2

1h〉h.
(3.48)

While the first order expression cannot be simplified more, there is a smart way to
write the expression for S2.
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The way to do it is very simple: it consists in splitting every functional U in an
averaged part 〈U〉h and in a zero-mean part Ũ :

U = 〈U〉h + Ũ . (3.49)

Doing these splittings on the second term of the RHS of (3.48) we have

L1P1 = {P1, G1} = {〈P1〉h + P̃1, 〈G1〉h + G̃1} =

= {〈P1〉h, 〈G1〉h}+ {P̃1, 〈G1〉h}+ {〈P1〉h, G̃1}+ {P̃1, G̃1}
(3.50)

Since they have to be averaged along the flow of h, we get that all the terms with only
one fluctuating (i.e. “tilded”) function will be zero after the average. Thus

〈L1P1〉h = {〈P1〉h, 〈G1〉h}+ 〈{P̃1, G̃1}〉h. (3.51)

Doing the same procedure on the third term we get

L2
1h = L1L1h = −L1P̃1 = −{P̃1, G1} = −{P̃1, G̃1} − {P̃1, 〈G1〉h}. (3.52)

Averaging both sides of the preceding equation we get

〈L2
1h〉h = −〈{P̃1, G̃1}〉h. (3.53)

Inserting both semplifications in (3.48) we obtain

S2 = 〈P2 +
1

2
{P̃1, G̃1}〉h + {〈P1〉h, 〈G1〉h}. (3.54)

This is the final expression for S2.

3.3 Normal form of vector fields

In this section we present the perturbative approach to general (i.e. not necessarily
Hamiltonian) differential equations.(7) Because of Proposition 2.1.10, if the starting
system is Hamiltonian, also the transformed system is Hamiltonian but with a different
Poisson tensor, in general.

Let us start from the autonomous system of differential equations on a manifold M

ẋ = X(x;λ) (3.55)

where x is the coordinate on M , X ∈ TM is a vector field and λ is a small parameter in
the system we are studying. We can expand X in series of λ:

X(x) = X0(x) + λX1(x) + λ2X2(x) + . . . (3.56)

We are thus left with a natural perturbative series expansion of the vector field X.
Roughly speaking we now ask if it is possible to perform a coordinate transformation
such that the form of the perturbative series is “as simple as possible” for the transformed

(7)We will restrict ourselves to autonomous systems.
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vector field Y . Pratically we require that the transformed field Y is in normal form with
respect to X0 to a certain order m:

[Yk, X0] = 0 k < m (3.57)

where the square brackets denote the Lie bracket on the tangent bundle. In a coordinate
system and using Einstein sum convention this reads

[X, Y ]i =
∂X i

∂xj
Y j − ∂Y i

∂xj
Xj. (3.58)

The relation between the definition of normal form with Lie brackets and with Poisson
brackets is discussed below in subsection 3.3.3.

We are then looking for a “near to the identity” diffeomorphism(8) in the form

x(y) = y + λf1(y) + λ2f2(y) + . . . (3.59)

such that the transformed differential equations

ẏ = Y0(y) + λY1(y) + λ2Y2(y) + . . . (3.60)

are in normal form to every fixed order.

3.3.1 Transformation rule for vector fields

In order to find explicit expressions for Yk we need to find the transformation rule for
vector fields under the diffeomorphism (3.59). For the sake of simplicity we will use
Einstein sum convention in this section.

At first we substitute (3.59) on the left hand side of the differential equation (3.55).
We get

ẋi =
d

dt

(
yi + λf i1(y) + λ2f i2(y) + . . .

)
=

(
δij + λ

∂f i1
∂yj

(y) + λ2∂f
i
2

∂yj
(y) + . . .

)
ẏj (3.61)

where we used the chain rule. Substituting on the right-hand side we get

X0(x(y)) + λX1(x(y)) + λ2X2(x(y)) + . . . . (3.62)

Expanding each term we obtain for the first one

X i
0(x(y)) = X i

0(y + λf1(y) + λ2f2(y) + . . . ) =

= X i
0(y) + λ

∂X i
0

∂yj
(y)f j1 (y) + λ2

(
∂X i

0

∂yj
f j2 (y) +

1

2

∂2X i
0

∂yk∂yj
fk1 f

j
1

)
+ . . .

(3.63)

for the second one

λX i
1(y + λf1(y) + . . . ) = λX i

1(y) + λ2∂X
i
1

∂yj
f j1 (y) + . . . (3.64)

(8)Which is a one-parameter family of diffeomorphism depending on a parameter λ and such that it
reduces to identity map if λ = 0.
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and the last one remain unchanged to order λ2. Grouping terms with the same order in
λ we get

X i(x(y);λ) = X i
0(y) + λ

(
∂X i

0

∂yj
(y)f j1 (y) +X i

1(y)

)
+

+ λ2

(
∂X i

0

∂yj
f j2 (y) +

1

2

∂2X i
0

∂yk∂yj
fk1 f

j
1 +X i

2(y) +
∂X i

1

∂yj
f j1 (y)

)
.

(3.65)

We still don’t have the transformation law for vector fields since the LHS is not
composed only by ẏ. We have then to invert

Df = δij + λ
∂f i1
∂yj

(y) + λ2∂f
i
2

∂yj
(y) + . . . (3.66)

Let us now suppose that
Dg = δij + λg1

i
j + λ2g2

i
j + . . . (3.67)

is the inverse of Df , i.e. DgDf = 1 where 1 is the identity. We can use this relation to
find an expression for g1 and g2 as function of f1 and f2. This is(

δij + λ
∂f i1
∂yj

(y) + λ2∂f
i
2

∂yj
(y) + . . .

)(
δjk + λg1

j
k + λ2g2

j
k + . . .

)
= δik. (3.68)

Computing the LHS of this expression we get

δik + λ

(
∂f i1
∂yk

+ g1
i
k

)
+ λ2

(
∂f i2
∂yk

+
∂f i1
∂yj

g1
j
k + g2

i
k

)
+ · · · = δik. (3.69)

So we have to solve equations

∂f i1
∂yk

+ g1
i
k = 0,

∂f i2
∂yk

+
∂f i1
∂yj

g1
j
k + g2

i
k = 0. (3.70)

which give

g1
i
j = −∂f

i
1

∂yj
, g2

i
j =

∂f i1
∂yk

∂fk1
∂yj
− ∂f i2
∂yj

. (3.71)

Thus we get:

Dgij = δij − λ
∂f i1
∂yj

+ λ2

(
∂f i1
∂yk

∂fk1
∂yj
− ∂f i2
∂yj

)
+ . . . (3.72)

From (3.61), (3.65) and (3.72) we have

ẏi = Dgij

(
Xj

0 + λ

(
∂Xj

0

∂yk
fk1 +Xj

1

)
+ λ2

(
∂Xj

0

∂yk
fk2 +

1

2

∂2Xj
0

∂yk∂yl
fk1 f

l
1 +Xj

2 +
∂Xj

∂yk
fk1

))
.

(3.73)
Order by order in λ we obtain

Y i
0 (y) = X i

0(y) (3.74)

and then

Y i
1 =

∂X i
0

∂yj
f j1 −

∂f i1
∂yj

Xj
0 +X i

1 = [X0, f1]i +X i
1 (3.75)
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For the second order we get

Y i
2 =

∂X i
0

∂yj
f j2 +

1

2

∂2X i
0

∂yj∂yk
f j1f

k
1 +X i

2 −
∂f i1
∂yj

(
∂Xj

0

∂yk
fk1 +Xj

1

)
+
∂X i

∂yk
fk1 +

+

(
∂f i1
∂yj

∂f j1
∂yk
− ∂f i2
∂yk

)
Xk

0 =

=
∂X i

0

∂yj
f j2 +

1

2

∂2X i
0

∂yj∂yk
f j1f

k
1 +X i

2 −
∂f i1
∂yj

(
∂Xj

0

∂yk
fk1 −

∂f j1
∂yk

Xk
0 +Xj

1

)
−

− ∂f i2
∂yk

Xk
0 +

∂X i

∂yk
fk1 =

= [X0, f2]i − ∂f i1
∂yj

Y j
1 +

∂X i
1

∂yj
f j1 +

1

2

∂2X i
0

∂yj∂yk
f j1f

k
1 +X i

2

(3.76)

At the end we have

ẏ = Y0 + λY1 + λ2Y2 + . . . (3.77)

With

Y i
0 = X i

0 Y i
1 = [X0, f1]i +X i

1

Y i
2 = [X0, f2]i − ∂f i1

∂yj
Y j

1 +
∂X i

1

∂yj
f j1 +

1

2

∂2X i
0

∂yj∂yk
f j1f

k
1 +X i

2.
(3.78)

These are the expressions for the transformed vector fields under the diffeomorphism
(3.59).

We see clearly that if we choose f̃1 = f1 + g with g such that [X0, g] = 0 obtain a
diffeomorphism which leaves unchanged the transformed vector field to first order but
changes the second order. We will refer to this freedom as gauge freedom.

3.3.2 Continuous case

We can transport the above construction to the infinite dimensional case making suitable
changes. That is replacing partial derivatives respect to y with weak differentiations with
respect to the variables we are considering. Since in the FPU system we will deal with
two variables, V + and V − (see chapter 4), we focus our treatment on this case.

As an example we see that after these substitutions, the Lie bracket definition reads
(i = +,−):

[X, Y ]i =
DX i

DV j
Y j − DY i

DV j
Xj. (3.79)

If we begin with an infinite dimensional dynamical system with equations of motion

V i
t = X i

0(V ) + λX i
1(V ) + λ2X i

2(V ) + . . . (3.80)

we can repeat the above construction introducing the diffeomorphism

V (U) = U + λf1(U) + λ2f2(U) + . . . . (3.81)
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We then get, for the transformed equations of motion:

U i
t = Y i

0 (U) + λY i
1 (U) + λ2Y i

2 (U) + . . . . (3.82)

We save paper in writing directly that

Y i
0 = X i

0 Y i
1 = [X0, f1]i +X i

1

Y i
2 = [X0, f2]i − Df i1

DV j
Y j

1 +
DX i

1

DV j
f j1 +

1

2

D2X i
0

DV jDV k
f j1f

k
1 +X i

2.
(3.83)

We will be interested, later, in the case of X1 = Y1 and D2X i
0 = 0. In this case the

expression for Y2 simplifies and it reads

Y i
2 = [X0, f2]i + [X1, f1]i +X i

2. (3.84)

Also in these expressions we see that it is possible to introduce a function g which,
added to f1, does not modify the equations of motion to first order if [X0, g] = 0. This
is again the same gauge freedom we found in the previous section, but for the infinite
dimensional case.

3.3.3 Relation between normal form of vector field and Hamil-
tonian normal form

In the section above we said that two functionals are in normal form when the Poisson-
commute while two vector fields are in normal form one with respect to the other if they
Lie-commute. One is justified in calling both them normal forms because of Proposition
2.1.18. In fact a straightforward corollary of that proposition is the following

Proposition 3.3.1. Let X, Y vector fields defined on a Poisson manifold Γ and let us
suppose there exist a couple of functionals A,B : A(Γ)→ R such that

X = J∇A, Y = J∇B (3.85)

then
{A,B} = 0 ⇔ [X, Y ] = 0. (3.86)

This is why one is justified in calling both them normal forms.
By the way, such a treatment, is valid if and only if one has Hamiltonian vector fields.

Once one leaves this constraint one can have non-Hamiltonian vector fields in normal
form with a given Hamiltonian vector field. More precisely we have two vector fields
which Lie-commute but we don’t have a correspondent relation between functionals.
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CHAPTER 4

Normal form of the α + β-FPU system

In this chapter we will use all the techniques presented above to build the normal form
Hamiltonian of the Fermi-Pasta-Ulam system to second order. Our aim is to prove that
such a normal form consists of the first few terms of the KdV hierarchy. In particular,
the FPU normal form to the second order is integrable.

4.1 Extension to continuum

The aim of this section is to include the Hamiltonian for the Fermi-Pasta-Ulam system
and its equations in a continuous model.

We start from (1.6):

HFPU(qn, pn) =
∑
n∈ZN

[
p2
n

2
+ φ(qn+1 − qn)

]
. (4.1)

Due to translational invariance, the flow of the system preserves the total momentum.
As a consequence it is a constant of motion which is zero in the mass center system:∑

n∈ZN

pn = 0. (4.2)

Since Hamiltonian (4.1) depends on q coordinates only through their difference we
can consider new coordinates rn such that

rn := qn+1 − qn. (4.3)

If we want to preserve the Hamiltonian structure use these new coordinates we have to
perform a canonical transformation (q, p) 7→ (s, r). Here sn is the conjugate variable to
rn. Such a transformation can be found defining the generating function(1)

F (q, s) =
∑
n∈ZN

sn(qn − qn+1). (4.4)

(1)See section 2.1.1.
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Its differential is given by dF =
∑

n∈ZN
(pndqn − rndsn) and the transformation is found

by solving

rn = − ∂F
∂sn

pn =
∂F

∂qn
. (4.5)

This is simply due to the form of F and one can find sn by inverting

pn = sn − sn−1. (4.6)

We have to notice that, among the new variables, the rn play the role of momenta while
the sn play the role of coordinates.(2) New momenta are periodic by construction and
thus, thanks to (1.20), one gets ∑

n∈ZN

rn = 0. (4.7)

After this change of variables, the transformed Hamiltonian (which we denote by H)
takes the form:

H(sn, rn) =
∑
n∈ZN

[
φ(rn) +

(sn+1 − sn)2

2

]
. (4.8)

Its equations of motion are
ṡn =

∂H

∂rn
= φ′(rn)

ṙn = −∂H
∂sn

= sn+1 + sn−1 − 2sn.
(4.9)

Next we have to find the physical dimension of our variables. With this purpose
we can start from (4.1) and, denoting in this section with square brackets the physical
dimension, calculate [pn] and [qn]. From (4.8)

[H] =

[∑
n∈ZN

(
p2
n

2
+

(qn+1 − qn)2

2

)]
. (4.10)

Denoting with N = h−1 the total number of masses in the chain, with E the total energy
in the chain and with ε = E/N the energy per degree of freedom, we have [

∑
n∈ZN

] = N ,

[H] = E and [qn+1 − qn] ∼ [∂qn
∂x
h] = [q][h]. We thus obtain

[pn] =
√
ε [qn] =

√
ε

h
. (4.11)

From (4.6) we get

[pn] =
√
ε = [sn+1 − sn] ≈

[
∂sn
∂x

h

]
[sn] =

√
ε

h
(4.12)

Thus one can obtain the physical dimension of rn calculating the physical dimension of
[F ] or from the transformed Hamiltonian. The second one, by an analogy of the previous
case, yields immediately to

[rn] = [pn] =
√
ε. (4.13)

(2)This is obvious if one looks at the form of dF and recalls Proposition 2.1.13.
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We assume now there exist a couple of dimensionless analytical functions R, S : T×R→
R such that  rn(t) =

√
εR(x, τ)|x=hn,τ=τ(t)

sn(t) =

√
ε

h
S(x, τ)|x=hn,τ=τ(t).

(4.14)

As one can see from equations above, the last quantity we have to investigate is time: we
are left in finding a dimensionless time τ . For this purpose we have to use the equations
of motion of the system (4.9). From the first one we get

dsn(t)

dt
=
dφ(rn)

drn
(4.15)

where the physical dimensions of φ are easily found from (4.1) to be [φ] = ε. As a
consequence we obtain for the ratio [φ/rn] =

√
ε. On the other side we have, from a

dimensional point of view,
1

[t]

√
ε

h
=
√
ε. (4.16)

This implies that [t] = h−1 and we can define a dimensionless time as

τ = ht. (4.17)

Figure 4.1: The idea below the study of the interpolating system.

We can now substitute (4.14) into (4.9) and transform all the time derivatives in
derivatives with respect to τ . From the first substitution one gets

√
ε

h

∂S(x, τ)

∂t
= φ′(

√
εR(x, τ))

√
ε
R(x, τ)

∂t
=

√
ε

h
(S(x+ h, τ) + S(x− h, τ)− 2S(x, τ))

(4.18)

To be precise these equations are not equivalent to (4.9). This equivalence is true only
if x = nh and τ = ht.
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Transforming time derivatives one gets
∂S(x, τ)

∂τ
=

1√
ε
φ′(
√
εR(x, τ))

∂R(x, τ)

∂τ
=

1

h2
(S(x+ h, τ) + S(x− h, τ)− 2S(x, τ))

(4.19)

We can rewrite second equation in a clearer form recalling that if S is analytical in
T we have

S(x+ h, τ) =
∑
n=0

hn

n!
∂nxS(x, τ) = eh∂xS(x, τ) (4.20)

Hence

S(x+ h, τ) + S(x− h, τ)− 2S(x, τ) = (eh∂x + e−h∂x − 2)S(x, τ). (4.21)

Defining the discrete Laplacian as

∆h =
eh∂x + e−h∂x − 2

h2
=
∞∑
n=1

2

(2n)!
h2n−2∂2n

x (4.22)

the equations of motion read
∂S(x, τ)

∂τ
=

1√
ε
φ′(
√
εR(x, τ))

∂R(x, τ)

∂τ
= ∆hS(x, τ)

. (4.23)

At this point we can drop the constraints x = nh, t = hτ and we can assume these
equations to be valid for every x ∈ T = R/Z and τ ∈ R. We see immediately that these
equations of motion are still Hamiltonian with

H[S,R] =

∫
T

(
1

ε
φ(
√
εR(x, τ))− 1

2
S(x, τ)∆hS(x, τ)

)
dx, (4.24)

and with Poisson tensor the standard symplectic matrix

E =

(
0 1
−1 0

)
(4.25)

To show that (4.23) are the equations of motion related to Hamiltonian (4.24) with
Poisson tensor E it is sufficient to calculate the L2-gradient of H and then to verify that
(4.23) are precisely E∇L2H.

To find the L2-gradient of H we can calculate

d

dε
H(S + εh,R + εk)

∣∣∣∣
ε=0

=
d

dε

∫
T

(
1

ε
φ(
√
ε(R + εk))− 1

2
(S + εh)∆h(S + εh)

)
dx

=

∫
T

(
1√
ε
φ′(
√
εR)k − h∆hS

)
dx

(4.26)
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where we used the symmetry of ∆h. We thus get, for the L2-gradient, the expression

∇L2H(S,R) =

 −∆hS
1√
ε
φ′(
√
εR)

 . (4.27)

Finally, we see that equations of motion are(
S
R

)
τ

=

(
0 1
−1 0

)(
−∆hS

1√
ε
φ′(
√
εR)

)
(4.28)

which are precisely (4.23).

4.2 Hamiltonian normal form of α + β-FPU

In this section we apply the perturbation theory presented in the previous chapter to
the Hamiltonian normal form of the continuous Fermi-Pasta-Ulam Hamiltonian system.
We start from (4.24)

H[S,R] =

∫
T

(
1

ε
φ(
√
εR)− 1

2
S∆hS

)
dx (4.29)

where we recall that ∆h is defined as (4.22) and φ(ξ) is definded as

φ(ξ) =
1

2
ξ2 +

α

3
ξ3 +

β

4
ξ4 + . . . (4.30)

In this section our aim is to expand (4.29) in series of
√
ε and h2 and to build up

a normal form of the perturbation series to second order. Our perturbative parameters
are both h and ε.(3)

We start expanding the Hamiltonian at first order:

H[S,R] =

∫
T

(
R2

2
+
α
√
ε

3
R3 − 1

2
S∂2

xS −
h2

4!
S∂4

xS

)
dx =

=

∫
T

(
R2

2
− 1

2
S∂2

xS

)
dx︸ ︷︷ ︸

=h[S,R]

+

∫
T

(
α
√
ε

3
R3 − h2

4!
S∂4

xS

)
dx︸ ︷︷ ︸

=P [S,R]

(4.31)

which in the last row is written as sum of an unperturbed Hamiltonian h[S,R] and a
perturbation P [S,R]. Using (4.23) we get

Sτ =
δH

δR
= R + α

√
εR2, (4.32)

Rτ = −δH
δS

= ∂2
xS +

h2

12
∂4
xS. (4.33)

(3)The ordering will be explained in subsection 4.2.2.
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Performing the derivative with respect to τ on the second one, using the first one and
ignoring terms of order

√
εh2 we get, as equation of motion

Rττ = Rxx +
h2

12
Rxxxx + 2α

√
εRRx. (4.34)

This is an integrable Boussinesq equation.
Using the fact that ∂x is a skew-symmetric operator in L2(T) we can rewrite (4.31)

integrating by parts the term with S. We get

H[S,R] =

∫
T

(
R2

2
− 1

2
S∂2

xS

)
dx+

∫
T

(
α
√
ε

3
R3 − h2

4!
S∂4

xS

)
dx =

=

∫
T

(
R2

2
+

(Sx)
2

2

)
dx+

∫
T

(
α
√
ε

3
R3 +

h2

4!
Sx∂

2
xSx

)
dx

(4.35)

Setting S̃ = Sx we obtain a new Hamiltonian (which, by abuse of notation, we denote
again by H)

H[S̃, R] =

∫
T

(
R2

2
+
S̃2

2

)
dx+

∫
T

(
α
√
ε

3
R3 +

h2

4!
S̃∂2

xS̃

)
dx (4.36)

Taking the derivative of (4.32) with respect to x and substituting Sx = S̃ we obtain the
new equations of motion

S̃τ = ∂x
(
R + α

√
εR2

)
= ∂x

δH

δR
, (4.37)

Rτ = ∂x

(
S̃ +

h2

12
∂2
xS̃

)
= ∂x

δH

δS̃
. (4.38)

In a matricial form, after the transformation, Hamilton equations are(
S̃
R

)
τ

=

(
0 1
1 0

)
∂x

(
δH
δS̃
δH
δR

)
(4.39)

We are now ready to perform the third change of variables. We are going to split the
right-going solutions and the left-going ones in a sense that will be clear below, when we
will explicitly solve the wave equation. To do so we set

V ± =
R± S̃√

2
. (4.40)

The Hamiltonian in this new set of variables takes the form

H[V +, V −] =

∫
T

(
1

4
(V + + V −)2 +

1

4
(V + − V −)2

)
dx+

+

∫
T

(
α
√
ε

6
√

2
(V + + V −)3 − h2

4!2

(
∂x(V

+ − V −)
)2
)
dx =

=

∫
T

1

2

(
V +2

+ V −
2
)
dx+

+

∫
T

α
√
ε

6
√

2

(
V +3

+ 3V +2
V − + 3V +V −

2
+ V −

3
)
dx−

−
∫
T

h2

4!2

(
V +
x

2 − 2V +
x V

−
x + V −x

2
)
dx

(4.41)
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To find out the form of the Poisson tensor in these new coordinates we transform the
equations of motion. After calculations analogous to (4.37) and (4.38) we get(

V +

V −

)
τ

=

(
1 0
0 −1

)
∂x

(
δH
δV +

δH
δV −

)
. (4.42)

Before starting calculations we determine the Casimir invariants for the Poisson ten-
sor J . This is done allows to choose the functions V + and V − with vanishing spatial
mean. This choice, which is the most natural one if one recalls relations (4.7) and (1.20),
simplifies a lot the calculations below.

Let’s start recalling the definition of Casimir invariant given in Section 2.1.

Definition 4.2.1 (Casimir invariant). Given a Poisson tensor J , we say that a function
C ∈ A (Γ) is a Casimir invariant associated to J if

{C,H}J = 0 ∀H ∈ A (Γ). (4.43)

From the definition it follows that, to find the Casimirs, we have to solve the equation

J∇C = 0 (4.44)

that takes the form (
1 0
0 −1

)
∂x

(
δC
δV +

δC
δV −

)
= 0 (4.45)

or, more explicitly, 
∂x

δC

δV +
= 0

∂x
δC

δV −
= 0

. (4.46)

This means, by integration,

δC

δV +
= A,

δC

δV −
= B, (4.47)

which are satisfied for functionals of the form

C(V +, V −) = F̃ + A

∫
V +(t, x) dx+B

∫
V −(t, x) dx (4.48)

where F,A and B are arbitrary constants.
Both

∫
T V

+ dx and
∫
T V

− dx are Casimirs and thus constants of motion. So they are
not influent in the equations of motion. We can therefore suppose

∫
T V

+ dx =
∫
T V

− dx =

0 from now on. Notice that from definition (4.40) one gets(4)∫
V ± dx =

1√
2

∫
Rdx (4.49)

which is constant. From (4.7) and recalling the relation between R and r one sees that
the natural choice is

∫
Rdx = 0. Once this choice is taken this remains for every time.

In fact the value of a Casimir does not vary along the flow of the Hamiltonian system.
In fact

C(t) = etLHC = C + t{C,H}+ · · · = C. (4.50)

Thus the value of C is preserved both from the flux and from canonical transformations.

(4)One has to recall that the average of S̃ is vanishing because S̃ = Sx.
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4.2.1 First order normal form

According to subsection 3.2.1 we have first to calculate the flow associated to the unper-
turbed Hamiltonian system Φs

h(V
+, V −). We start writing the equations of motion of h.

We get {
V +
τ (x, τ) = V +

x (x, τ)
V +
τ (x, τ) = −V −x (x, τ)

(4.51)

To solve the first PDE(5) we see that if we consider a curve in the (x, t) plane like
r 7→ (x0 + r,−r) = γ(r) we find that this PDE evaluated on the curve is reduced to the
ODE

d

dr
(V + ◦ γ(r)) = 0 (4.52)

with the obvious solution

0 =

∫ R

0

d(V + ◦ γ(r))

dr
dr = V +(γ(r))− V +(γ(0)) = V +(x0 + r,−r)− V +(x0, 0). (4.53)

At this point we define V +(x, τ) = V +(x0 + r,−r) and we obtain, as natural definition
x = x0 + r and τ = −r. We then define V +(x0, 0) = Ṽ +(x0) and so we get for free

Ṽ +(x0) = V +(x, τ) ⇒ V +(x, τ) = Ṽ +(x+ τ) (4.54)

since x0 = x − r = x + τ . With an easy adaptation of this procedure to the other case
we get, the following expression for the flow

V +(x, s) = Ṽ +(x+ s)

V −(x, s) = Ṽ −(x− s).
(4.55)

From the spatial periodicity of V ± we deduce the time periodicity of the unperturbed
flow. This is important in order to apply equation (3.39) and to compute S1[V +, V −].
To do so we state the following propositions:

Proposition 4.2.2. Given two real valued function on the torus T, we have∫ 1

0

dx

∫ 1

0

ds u(x± s)v(x∓ s) =

∫
T
u(x) dx

∫
T
v(y) dy (4.56)

Proof. This proof is a straightforward calculation∫ 1

0

dx

∫ 1

0

ds u(x± s)v(x∓ s) =

∫ 1

0

dx

∫ 1

0

ds
∑
k,k′∈Z

ûkv̂k′e
2πik(x±s)e2πik′(x∓s) =

=
∑
k,k′∈Z

ûkv̂k′δk+k′,0δk−k′,0 = û0v̂0

where we expanded u and v in Fourier series and integrated the exponential functions
over the torus and û0 =

∫
T u(x) dx, v̂0 =

∫
T v(x) dx.

(5)Here we use the method of characteristics.
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Proposition 4.2.3. Given a real valued function on the torus T, we have that∫ 1

0

dx

∫ 1

0

ds u(x± s) =

∫ 1

0

u(x) dx (4.57)

Proof. This proof, like the ones above, it is a straightforward calculation∫ 1

0

dx

∫ 1

0

ds u(x± s)
∑
k∈Z

∫ 1

0

dx

∫ 1

0

ds ûke
2πik(x±s) =

=
∑
k∈Z

∫ 1

0

dxûkδk,0 =

∫ 1

0

dxû0 = û0 =

∫ 1

0

u(x) dx.

Using the two propositions above we can calculate S1[V +, V −]. Starting from (4.41)
and exploiting the zero-mean conditions

∫
V ± dx = 0, we obtain:

S1[V +, V −] =

∫
T

(
α
√
ε

6
√

2

(
(V +)3 + (V −)3

)
− h2

4!2

(
(V +

x )2 + (V −x )2
))

dx. (4.58)

The equations of motion associated to h + S1 are two uncoupled KdVs: from Vτ =
J∇L2H we get 

V +
τ = V +

x +
α
√
ε√

2
V +V +

x +
h2

4!
V +
xxx

V −τ = −V −x −
α
√
ε√

2
V −V −x −

h2

4!
V −xxx

(4.59)

As showed in [15, 18, 19] KdV equations are integrable. One has then the result that
normal form of the FPU system to first order consists in two KdV equations and thus
is integrable. integrable and it is related to KdV. This should not make surprise since
at first order FPU system is tangent to the Toda one which is the discrete analogous of
KdV.

4.2.2 Analyticity of the interpolating function

The aim of this section is to discuss the perturbative parameters in our problem. We left
this discussion up to this point because it is easier to discuss it using the KdV equations
above. Anyway one can repeat the same argument for the equation of motion associated
to the full Hamiltonian. At the end we see that the correct parameter in this analysis is
λ ∼ α

√
ε ∼ h2.

We begin this section recalling that our working hypothesis is that the initial datum
is a long wavelength oscillation. Such an initial datum is analytical on the torus.(6) We
write equations (4.59) setting u = V ±:

ut = ux +
α
√
ε√

2
uux +

h2

4!
uxxx (4.60)

(6)I.e. it is an analytical function with periodic real part.
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and, since u is analytical, we use Cauchy estimates to weight each term.
We recall that(7) thanks to a theorem by Cauchy, we have that

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ (4.61)

where γ is a circle inside the analyticity region of f . If M is the maximum of f along γ
we can estimate the value of f as follows

|f(z)| ≤
∣∣∣∣ 1

2πi

∫
γ

f(ξ)

ξ − z
dξ

∣∣∣∣ ≤M

∣∣∣∣ 1

2πi

∫
γ

1

ξ − z
dξ

∣∣∣∣ = M. (4.62)

We thus get an estimate of f(z). To get an estimate of its derivatives one can derive
both sides of (4.61) with respect to z. One thus gets an expression for the derivative

dnf(z)

dzn
=

(−1)n+1n!

2πi

∫
γ

f(ξ)

(ξ − z)n+1
dξ (4.63)

and, consequently, an extime∣∣∣∣dnf(z)

dzn

∣∣∣∣ = n!

∣∣∣∣ 1

2πi

∫
γ

f(ξ)

(ξ − z)n+1
dξ

∣∣∣∣ ≤ n!
M

σn
(4.64)

where we called σ the minimum width of the strip of analyticity which is the maximum
radius one can take to perform the integration if one wants to integrate the function
along a circular path.

We now go back to (4.60) and we weight every term on the right hand side. Forgetting
the numerical constants we concentrate on the dependence of the parameters

ux ≤
M

σ
, α

√
εuux ≤ α

√
ε
M2

σ
, h2uxxx ≤ h2M

σ3
. (4.65)

We recall now how the dynamics associated to the KdV works: at the beginning
the dispersive term (the one involves three derivatives) is irrelevant and the dynamics is
governed by the so-called Burgers equation

ut = α
√
εuux (4.66)

but after a finite time the solution starts to steepen a lot and then the term with three
derivatives balances the formation of multivalued-solutions splitting the initial datum in
solitons. At this time one has

α
√
εuux ≥ h2uxxx (4.67)

using the estimates above one gets the following relation

Mσ2 ≥ h2

α
√
ε
. (4.68)

(7)For an introduction see [22].
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At this point if we can treat M as a number (i.e. it is independent of the parameters(8)).
We get

σ ≤
(

h2

α
√
ε

) 1
2

. (4.69)

Inserting this expressions of σ in (4.65) one sees that the nonlinear term and the disper-
sive one have the same weight and this is why we formally treated h2 ∼

√
ε.

4.2.3 Hamiltonian generating canonical transformation to first
order

If we want to go beyond the first order, from section 3.2.1 and according to (3.54), we
have to find the Hamiltonian generating the canonical transformation to the first order.

We start from (3.47) which, in the present case, reads

G1 = 〈G1〉h +

∫ 1

0

(s− 1)esLhP̃ \
1 ds. (4.70)

where, we recall P̃ \
1 = P̃1 = P1 − 〈P1〉h = P1 − S1 as given by (4.41) and (4.58). Making

these substitutions we obtain for P̃1 the expression

P̃1[V +, V −] =

∫ 1

0

[
α
√
ε

2
√

2

(
V +V −

2
+ V +2

V −
)

+
h2

4!
V +
x V

−
x

]
dx. (4.71)

The integral we have to evaluate to find the Hamiltonian is then(9)

G1 =

∫ 1

0

∫ 1

0

s

[
α
√
ε

2
√

2

(
V +V −

2
+ V +2

V −
)

+
h2

4!
V +
x V

−
x

]
dxds. (4.72)

The above calculation cannot be performed using the propositions of the previous
subsection because of the s factor multiplying the functions. We can, anyway, state the
following proposition

Proposition 4.2.4. Given two real-valued function on the torus T we have∫ 1

0

ds

∫ 1

0

dx su(x± s)v(x∓ s) =
1

2

(∫ 1

0

u(x) dx

)(∫ 1

0

v(x) dx

)
± 1

2

∫ 1

0

v(x)∂−1
x u(x) dx

(4.73)
where ∂−1

x is the operator defined in section 2.3.3.

(8)There are several reasons to trust this if the initial datum is chosen with initial “random phases”
between the excited Fourier modes. Otherwise it is proportional to

√
N , where N is the number of

particles in the discrete system.
(9)Where s − 1 is replaced by s just because the periodicity of the flow of h guarantees that∫
esLh P̃ dx = 0.
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Proof. We make the computation∫ 1

0

ds s

∫ 1

0

dx u(x± s)v(x∓ s) =
∑
k,k′∈Z

∫ 1

0

ds s

∫ 1

0

dx ûkv̂k′e
2πik(x±s)e2πik′(x∓s) =

=
∑
k,k′∈Z

∫ 1

0

ds sûkv̂k′e
±2πi(k−k′)s

∫ 1

0

dx e2πi(k+k′)x dx =

=
∑
k,k′∈Z

∫ 1

0

ds sûkv̂k′e
±2πi(k−k′)sδk+k′,0 =

=
∑
k∈Z

ûkv̂−k

∫ 1

0

se±4πiks ds.

We have to compute carefully last integration splitting the case k = 0 and k 6= 0.∫ 1

0

se±4πiks ds = δk,0

∫ 1

0

s ds± (1− δk,0)

∫ 1

0

se±4πiks ds.

The first integration is straightforward and gives 1
2
; the second one can be done by

parts(10) and, recalling that
∫ 1

0
e±4πiks ds = 0 we obtain∫ 1

0

se±4πiks ds = ± 1

4πik
.

Using this result we can continue the calculation above which yields∑
k∈Z

ûkv̂−k

∫ 1

0

se±4πiks ds =
∑
k∈Z

ûkv̂−k

[
1

2
δk,0 ±

1

4πik
(1− δk,0)

]
=

=
1

2
û0v̂0 ±

1

2

∑
k∈Z\{0}

1

2πik
ûkv̂−k.

We recognize in this last expression the definition of the anti-derivative operator acting
on u (see equation (2.72)) and since δk+k′,0 =

∫ 1

0
e2πi(k+k′)x dx we obtain the thesis.

The calculation of G1[V +, V −] is just a straightforward application of the above
proposition and it leads to the following expression

G1[V +, V −] =

∫ 1

0

[
α
√
ε

4
√

2

(
V −

2
∂−1
x V + − V +2

∂−1
x V −

)
+

1

2

h2

4!
V +∂xV

−
]
dx. (4.74)

With this explicit expression of G1 one may prove whether all the calculations per-
formed till now are correct or not. It is sufficient to prove that

P1 + L1h = S1. (4.75)

We exhibit this calculation in appendix B.1. We have now all the elements to build up
the normal form to the second order.

(10)In this second computation k 6= 0.
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4.2.4 Second order

In this subsection we will carry on the calculation of (4.31) till the second order and we
will outline how to build the normal form. Since the calculations are tedious we will not
repeat all the steps. In this order of ideas we can start by expanding ∆h until the fourth
order and φ till the second one to get

P2[S,R] =

∫
T

(
βε

4
R4 +

h4

6!
(Sxxx)

3

)
dx. (4.76)

After performing the same two change of variables as in the beginning of section 4.2, we
obtain by substitution the following expression for P2[V +, V −]:

P2[V +, V −] =

∫ 1

0

[
βε

16

(
V +4

+ V −
4

+ 4V +3
V − + 4V −

3
V + + 6V +2

V −
2
)]

dx+

+

∫ 1

0

[
1

2

h2

6!

(
V +
xx

2 − 2V +
xxV

−
xx + V −xx

2
)]

dx.

(4.77)

We recall then (3.54) which will be used to calculate the second order normal form of
the perturbation under the hypothesis of vanishing mean of the Hamiltonian generatrix
function

S2 = 〈P2 +
1

2
{P̃1, G̃1}〉h. (4.78)

We do not exhibit calculations here but we write directly the result(11)

S2[V +, V −] =

∫ 1

0

[(
βε

16
− α2ε

32

)(
V +4

+ V −
4
)

+
h2α
√
ε

4
√

24!

(
V −

2
V −xx + V +2

V +
xx

)
+

+
3

20

h4

(4!)2

(
V +
xx

2
+ V −xx

2
)]

dx+

(
3βε

8
− α2ε

4

)
〈V +2〉T〈V −

2〉T+

+
α2ε

32

(
〈V −2〉2T + 〈V −2〉2T

)
.

(4.79)

We don’t report the equations of motion associated to this Hamiltonian since they
are not very enlightening.

4.3 Integrability of the FPU hierarchy

In this section we show that the problem of mapping the normal forms we got to a system
of generalized KdV equations is not trivial.

4.3.1 First order

We can compare the first order normal form of the perturbation S1 as (4.58) and the
conserved functional of KdV F2 as (2.123). On a first sight we can recognize some
analogies between them. This link is precisely the one stated at the end of subsection

(11)For the full calculation see Appendix B.2.
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4.2.1. In fact with an opportune choice of the parameter γ in the expression of F2 one
obtains S1. We begin recalling their expressions:

S1[V +, V −] =

∫
T

(
α
√
ε

6
√

2

(
(V +)3 + (V −)3

)
− h2

4!2

(
(V +

x )2 + (V −x )2
))

dx

F2[u] = C

∫
T

(
uuxx +

1

3
γu3

)
dx

(4.80)

We see that F2[V +] + F2[V −] is very similar to the above expression of the first order
perturbation in normal form. This Hamiltonian can be written in a smarter form:

S1 =
h2

4!2

∫
T

(
4α
√

2ε

h2
(V +3

+ V −
3
) + V +V +

xx + V −V −xx

)
dx. (4.81)

With a straightforward comparison we obtain

C =
h2

4!2
γ =

12α
√

2ε

h2
. (4.82)

This means that the first order perturbation is “on KdV hierarchy” with the choice of
parameters as (4.82) or, more explicitly:

S1[V +, V −] = F2[V +] + F2[V −]. (4.83)

This is a remarkable result already known in literature, see for example [3, 4].

4.3.2 Second order

Since the previous result was already known and we have an expression for a normalized
second order we can check if we are in hierarchy or not at this order.

This time the value of γ parameter is fixed from the previous subsection. Substituting
in F3 we obtain the form of the conserved functional for the KdV equation:

F3 = C

∫
T

(
40α2ε

h4
u4 +

10α
√

2ε

h2
u2uxx + (uxx)

2

)
dx (4.84)

There are some analogies between this form and Ŝ2 defined as follow:

Ŝ2 =

∫ 1

0

[(
βε

16
− α2ε

32

)(
V +4

+ V −
4
)

+
h2α
√
ε

4
√

24!

(
V −

2
V −xx + V +2

V +
xx

)
+

+
3

20

h4

(4!)2

(
V +
xx

2
+ V −xx

2
)]

dx.

(4.85)

We therefore see that S2, in this form, cannot be reduced to (4.84) because of the presence
of β on the first term. A deeper analysis shows that the real obstruction in this reduction
is due to a factor 2 on the second term.(12)

(12)See next section.
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One can now ask if it is possible to go through this difficulty inserting 〈G1〉h. The
following sections show that this is not enough.(13)

To prove this fact and to check if it is possible to transform the FPU system in a
generalized KdV one we will use the technology of general diffeomorphisms described in
section 3.3.

4.4 Normalization of vector fields

Here we try to use the perturbation theory developed for general diffeomorphisms to
find the normal form of FPU. As a first step we will look for the transformation at first
order to find an explicit hint for the “gauge function”.(14) This hint will be very helpful
in finding a first order transformation which will not change the KdV at first order but
which will “tune” the second order Hamiltonian to the hierarchy one.

4.4.1 First perturbative step

In this framework we deal with the equations of motion of the form{
V +
τ = V +

x + F+
1 + F+

2 + . . .
V −τ = −V −x −F−1 −F−2 − . . .

(4.86)

where

F±j = ∂x
δPj
δV ±

(4.87)

and with a diffeomorphism in the form

V ± = id± + G±1 + G±2 + . . . (4.88)

If we require that the normal form is the KdV hierarchy vector field which we indicate
with FKdV3 + FKdV5 we will have{

V +
t = V +

x + FKdV3(V +) + FKdV5(V +) + . . .
V −t = −V −x −FKdV3(V −)−FKdV5(V −)− . . . (4.89)

or, in a more compact form,

Vτ = Vx + FKdV3(V ) + FKdV5(V ) + . . . (4.90)

From equations (3.78) one obtains, at first order

[Vx,G1(V )] + F1(V ) = FKdV3(V ) (4.91)

which, component by component, it reads

+ :
DV +

x

DV +
G+

1 −
DG+

1

DV +
V +
x +

DG+
1

DV −
V −x + F+

3 = FKdV3 (4.92)

(13)In these terms the sentence is false since if β = 7
9α

2 such a transformation is possible and it involves
an Hamiltonian in the form 〈G1〉h = G(V +)−G(V −) with G(u) = A

∫
T u∂

−1
x u2 dx for a fixed parameter

A. Exhibiting these calculations here is not very interesting from a physical point of view. With some
economy one can get the same solution looking at the next section.
(14)Where, with gauge function, we mean the g appearing in 3.3.2.



66 Normal form of the α + β-FPU system
Normalization of vector fields

4.4

− : −
(
DV −x
DV −

G−1 −
DG−1
DV −

V −x +
DG−1
DV +

V +
x + F+

3

)
= −FKdV3 . (4.93)

If one recalls now that DV ±x /DV
± = ∂x and, by chain rule ∂xG±1 = G±1,+V +

x +
G±1,−V −x where the low ± indicates a derivative with respect V ±, one is left with partial
cancellations and thus the equations to solve are{

2G+
1,−V

−
x + F+

1 = KdV+
3

2G−1,+V +
x + F−1 = KdV−3 .

(4.94)

We try to solve the first equation in the unknown G+
1 . After, using time reversal symme-

try, we can deduce the form of G−1 . At this level the two unknowns are G±1 . Substituting
in the first one the expressions (4.59) and (2.123) we get

2G+
1,−V

−
x +

h2

4!

(
γ(V + + V −)(V +

x + V −x ) + (V +
xxx − V −xxx)

)
= 2A(γV +V +

x + V +
xxx) (4.95)

Here it is natural to pose A = h2

2·4!
to obtain

G+
1,−V

−
x = − h2

2 · 4!

(
γ(V +V −x + V −V +

x + V −V −x )− V −xxx
)

(4.96)

Using anti-derivative operators one can rewrite RHS as

G+
1,−V

−
x = − h2

2 · 4!
(γ(V + + V +

x ∂
−1
x + V −)− ∂2

x)V
−
x . (4.97)

Thus one immediately has

G+
1,− = γ(V + + V +

x ∂
−1
x + V −)− ∂2

x). (4.98)

One can now see that this is the derivative with respect to V − of the following function

G+
1 = − h2

2 · 4!

(
γ(V +V − + V +

x ∂
−1
x V − +

1

2
V −

2
)− V −xx

)
+ g(V +) (4.99)

where g(V +) is a generic function of V + and its derivatives. With a simple argument of
time-reversal symmetry (t→ −t⇒ V + ↔ V −) we get G−1 .

G−1 = − h2

2 · 4!

(
γ(V +V − + V −x ∂

−1
x V + +

1

2
V +2

)− V +
xx

)
+ g(V −). (4.100)

We thus find a precise expression for the gauge function g. It is, for example, possible to
choose g(f) in a way such that the above expressions look more simple. If one imposes
that he obtains

g(f) = − h2γ

2 · 4!

1

2
f 2 (4.101)

And one gets, for example

G+
1 = − h2

2 · 4!

(
γ

(
1

2

(
V + + V −

)2
+ V +

x ∂
−1
x V −

)
− V −xx

)
+ g̃(V +) (4.102)

where g̃(V +) is the freedom left in the choice of the transformation which leaves invariant
the first order vector field.

We will, anyway, deal with G1 in the form (4.99) and (4.100).
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4.4.2 Relation between vector fields and Hamiltonian transfor-
mations

Here we write both the transformations at first order. First the Hamiltonian functional
one and then the vector field one. We have

G1 =
h2

2 · 4!

∫
T

(γ
2

(
V −

2
∂−1
x V + − V +2

∂−1
x V −

)
+ V +∂xV

−
)
dx (4.103)

G+
1 = − h2

2 · 4!

(
γ(V +V − + V +

x ∂
−1
x V − +

1

2
V −

2
)− V −xx

)
+ g(V +) (4.104)

where we set

γ =
12α
√

2ε

h2
. (4.105)

From relations between Poisson brackets and Lie brackets we want now to prove that

J∇G1 =

(
G+

1

−G−1

)
. (4.106)

With this aim it is sufficient to calculate ∂x(δG1/δV
+) and ∂x(δG1/δV

−). We have
thus

δG1

δV +
=

h2

2 · 4!

(
−γ

2
∂−1
x V −

2 − γV +∂−1
x V − + V −x

)
. (4.107)

If we derive now this expression with respect to x we obtain

∂x
δG1

δV +
= − h2

2 · 4!

(
γ

(
1

2
V −

2
+ V +V − + V +

x ∂
−1
x V −

)
− V −xx

)
(4.108)

which is precisely G+
1 as stated in (4.99). We can perform the same calculation for G−1

to obtain the agreement between the two transformations.

4.5 Second order homological equation

If one tries to write down the equations for the normal form at second order with the vec-
tor fields formalism one gets immediately sick because of the quantity of commutators to
evaluate. Luckily we can start from the Hamiltonian canonical transformation and then
perform a more general transformation which leaves invariant first order normal form.
The advantage of this procedure is that most of the work is done by the Hamiltonian
transformation. One is thus left with (3.84) where [f2, X0] = 0 since f2 is already in
normal form with respect to X0 and D2X0 = 0 because of the form of our vector field.
We have then to solve the following homological equation

[F1, g] = P (4.109)

where P is the vector field associated to a functional of the form

F = F

∫ (
a1k

2u4 + a2ku
2uxx + a3(uxx)

2
)
dx (4.110)
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where F is a constant proportional to h4; a1, a2, a3 are numbers, k = α
√
ε

h2
and F1 and

g are respectively the first order KdV vector field and a vector field generating the
canonical transformation to be determined:

F1 = G(bkuux + uxxx), g =
F

G
(kg1 + g0) . (4.111)

We recall that the Lie bracket of F1 and g is [F1, g] = F ′1g − g′F1. Direct computations
show that

F ′1 = G[bk(u∂x + ux) + ∂3
x] (4.112)

and

F ′1g = F [bk(u∂x + ux) + ∂3
x](kg1 + g0) =

= F{k2b(u∂xg1 + uxg1) + k[b(u∂xg0 + uxg0) + ∂3
xg1] + ∂3

xg0}
(4.113)

The second term is

g′F1 = F (kg′1 + g′0)(kbuux +uxxx) = F [k2bg′1uux +k(bg′0uux + g′1uxxx) + g′0uxxx]. (4.114)

Subtracting the second equation from the first one we get the Left Hand side of equation
(4.109)

L.H.S. = F{k2b(u∂xg1 + uxg1 − g′1uux) + k[b(u∂xg0 + uxg0 − g′0uux)+
+ ∂3

xg1 − g′1uxxx] + ∂3
xg0 − g′0uxxx}.

(4.115)

When we pose LHS=RHS we get three equations. One for every power of k. We are
then left to the following system

b(u∂xg1 + uxg1 − g′1uux) = 12a1u
2ux

b(u∂xg0 + uxg0 − g′0uux) + ∂3
xg1 − g′1uxxx = 4a2(2uxuxx + uuxxx)

∂3
xg0 − g′0uxxx = 2a3uxxxxx

(4.116)

We have now to solve these two equations. To get a hint on the form of g we do a
dimensional analysis of the first and third equations. Denoting with square brackets the
physical dimensions

[g1] = [u]2 [g0] = [∂x]
2[u]. (4.117)

Since the Poisson tensor consists in a derivative operator we can use at most an anti-
derivative operator. From this and the dimensional considerations above we can then
assume that

g1 = Au2 + cux∂
−1
x u g0 = duxx. (4.118)

Substituting these expression in the system above we obtain from the third equation
a3 = 0.

To get informations from the second equation we shall calculate

∂3
xg1 = A∂3

xu
2 + c∂3

x(ux∂
−1
x u) =

= A(6uxuxx + 2uuxxx) + c(uxxxx∂
−1
x u+ 3uuxxx + 4uxuxx)

(4.119)

and

g′1uxxx = (2Au+ cux∂
−1
x + c∂−1

x u∂x)uxxx =

= 2Auuxxx + cuxuxx + cuxxxx∂
−1
x u

(4.120)
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substituting on the second equation we obtain

(6A− 2bd+ 3c)uxuxx + 3cuuxxx = 8a2uxuxx + 4a2uuxxx (4.121)

From this one, we get a couple of algebraic equations for A, c and d:{
3c = 4a2

6A− 2bd+ 3c = 8a2
(4.122)

so we get

3c = 4a2 d =
3A− 2a2

b
(4.123)

From the first one we get A = 12a1
b
− 2

3
a2. So that we obtain for g the following

expression

g =
F

G

{
k

[(
12
a1

b
− 2

3
a2

)
u2 +

4

3
a2ux∂

−1
x u

]
+
(

36
a1

b2
− 4

a2

b

)
uxx

}
. (4.124)

This treatment is just formal. We have now to find explicit expressions for the various
coefficients.

We recall that P is the vector field related to FKdV5−S2. Since the following equalities
hold

FKdV5 =
3

20

h4

4!2

∫
T

(
40
α2ε

h4
u4 +

10α
√

2ε

h2
u2uxx + uxx

2

)
dx

Ŝ2 =
3

20

h4

4!2

∫
T

((
β

α2
− 1

2

)
240α2ε

h4
u4 +

20α
√

2ε

h2
u2uxx + uxx

2

)
dx

FKdV3 =
h2

4!

(
12α
√

2ε

h2
uux + uxxx

) (4.125)

by an immediate comparison with the above definitions one gets immediately

F =
3

20

h4

4!2
G =

h2

4!
a1 = 80

(
2− 3

β

α2

)
a2 = −10

√
2 b = 12

√
2

(4.126)
which shows that, if β = 2

3
α2 (Toda), a1 = 0 and one sees that the real obstruction

is a2.

Remark 4.5.1. we notice that, if we were interested only in simplifying as much as
possible the expression for the vector field equation we would have chosen a1 and a2 in a
way such that the transformed system would have looked Hamiltonian with Hamiltonian

K = F

∫
T
(uxx)

2 dx. (4.127)

Anyway this functional is not an integral of motion for H0 + λS1 and then it is not very
useful for our purposes.
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Remark 4.5.2. If we try to choose parameters α and β in order to make the coefficient
in front of uxx in (4.124) equal to zero we obtain β = 7

9
α2. With this choice of coefficients

g has the form

g = − α
√
ε

12
√

2
(u2 + 2ux∂

−1
x ) (4.128)

which is an Hamiltonian vector field with

Ḡ =
α
√
ε

12
√

2

∫
T
u∂−1

x u2 dx. (4.129)

In the next section it will be clear that this is the only case for which this transformation
can be done in a Hamiltonian way.

4.6 Canonicity of last transformation

At a first sight it seems that we performed a canonical transformation since we mapped
a Hamiltonian system with Poisson tensor J as given in equation (4.42) into another
Hamiltonian system with the same Poisson tensor J . It is then natural to ask if this
transformation is canonical or not. This section is devoted to answer such a question.

We first recall that a canonical transformation is a diffeomorphism which preserves
in form the Poisson tensor. Here we are sure that the transformation performed via Lie
method is canonical (see 2.1.1). The only doubt can arise from the last step, the one
that we call gauge fixing.

The transformation is

V + 7→ V + + λ(G+
1 + g(V +)) + λ2G+

2 +O(λ3)

V − 7→ V − + λ(G−1 + g(V −)) + λ2G−2 +O(λ3)
(4.130)

We recall that a transformation is canonical at order λ if it preserves the Poisson tensor
till order λ. It means

J = (1 + λDF1 + λ2Df2)J(1 + λDF1 + λ2Df2)T . (4.131)

For a proof of canonicity of G1
(15) we invite the reader to look at the appendix B.3. Thus

we have to prove just that

DgJ + JDgT = 0 (4.132)

Since g(V +, V −) = g(V +)+g(V −) depends only on V + or V − the equation above reduces
to prove

Dg∂x + ∂xDg
T = 0. (4.133)

Writing g as

g(u) = Au2 +Bux∂
−1
x u+ Cuxx (4.134)

we get

Dg(u) = 2Au+B∂−1
x u∂x +Bux∂

−1
x + C∂2

x (4.135)

(15)It is obvious since the transformation G1.
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and DgT (u)

DgT (u) = 2Au−Bu−B∂−1
x u∂x −B~∂−1

x ux + C∂2
x. (4.136)

Here with the arrow above the differential operator we mean the action on the operator
on all what follows by multiplication. If we try to check if the above equation is satisfied
we get

Dg(u)∂x = 2Au∂x +B∂−1
x u∂2

x +Bux + C∂3
x (4.137)

∂xDg
T (u) = 2Aux + 2Au∂x − 2Bux − 2Bu∂x −B∂−1

x u∂2
x + C∂3

x (4.138)

One thus obtains

Dg∂x + ∂xDg
T = 4Au∂x + 2Aux −Bux − 2Bu∂x + 2C∂3

x (4.139)

and then one conclude that the Poisson tensor is not conserved in form by the transfor-
mation.

Here we summarize what we got till now. We performed a Canonical transformation
via Lie method to get a Hamiltonian in “normal form” with respect to the first term.
Then we performed a general transformation which mapped our system in another dy-
namical system which is still Hamiltonian with the same Poisson tensor of the starting
system but here we found that such a transformation is not canonical so it should not
preserve the Poisson tensor.

To enlighten why the Poisson tensor seemed to be unchanged during these processes
we start recalling that if we have a Hamiltonian system we can write its equation of
motion as

ẏ = J∇yH(y) (4.140)

or, after a diffeomorphism y = f(x)

ẋ = Df−1J(f(x))Df−T∇xH(f(x)). (4.141)

If such a transformation is a near-to identity transformation in the form f(x) = x +
λf1 + . . . we get

ẋ = (1 + λDf1)−1 J(x+ λf1) (1 + λDf1)−T ∇xH(x+ λf1). (4.142)

After some steps of algebra and assuming that J does not depend on x, one is left with

ẋ =
(
J + λ(−Df1J − JDfT1 )

)
∇x(H0 + λ(H ′0f1 +H1)). (4.143)

Defining J1 = (−Df1J − JDfT1 ), equation (4.140) can be written as

ẋ = (J0 + λJ1)∇x(H0 + λ(H ′0f1 +H1)) =

= J0∇xH0 + λ (J1∇xH0 + J0∇x(H
′
0f1 +H1)) .

(4.144)

It will be possible to write RHS as J0∇xH1 (which is precisely what happens in the FPU
case with the first order) iff RHS is independent of f1, i.e. if

J1∇xH0 + J0∇xH
′
0f1 = 0. (4.145)



72 Normal form of the α + β-FPU system
Canonicity of last transformation

4.6

This test is easy in our case since f1 = g and J1 = −DgJ − JDgT . So it is diagonal
and it is sufficient to prove that

−(Dg∂x + ∂xDg
T )∇uH0 + ∂x∇uH

′
0g (4.146)

Since ∇uH0 = u and

H ′0g =

∫
ug dx =

∫
(Au3 +Buux∂

−1
x + Cuuxx) dx (4.147)

its L2 gradient is easy to compute

∇u(H
′
0g) = 3Au2 +Bux∂

−1
x u−B∂x(u∂−1

x u)−Bu
2

2
+ 2Cuxx =

= 3Au2 − 3

2
Bu2 + 2Cuxx

(4.148)

Applying J one obtains

J∇u(H
′
0g) = 6Auux − 3Buux + 2Cuxxx. (4.149)

On the other side we have

(DgJ + JDgT )u = (4Au∂x + 2Aux −Bux − 2Bu∂x + 2C∂3
x)u =

6Auux − 3Buux + 2Cuxxx
(4.150)

and the condition is satisfied since (4.149)− (4.150) = 0.
Here we see that if B = 2A and C = 0 both (4.149) and (4.150) vanishes. This

happens only when β = 7
9
α2. Under these conditions, in fact, as showed in remark 4.5.2,

the transformation is canonical. Last we see that in (4.128) one has precisely B = 2A.



CHAPTER 5

Normal form of the β-FPU system

The phenomenology related to the β model is quite different from the one related to the
α+β one. This is probably due to the non-existence of an integrable system playing the
same role of the Toda for the α+β one. One thus sees the formation of a metastable state
with the modes of the mKdV equation and then one expects the breaking of integrability
to happen at second order.

The study of how the breaking of integrability occurs in the beta model could help
to understand how it will happen in the α + β one.

5.1 Hamiltonian first order normal form

We don’t repeat the general treatment for the interpolation procedure and the choice of
variables of the previous chapter in detail. We start again from (4.29):

H[S,R] =

∫
T

(
1

ε
φ(
√
εR)− 1

2
S∆hS

)
dx (5.1)

where, instead of (4.30), we get for the potential φ

φ(ξ) =
1

2
ξ2 +

β

4
ξ4. (5.2)

One can, in analogy of section 4.2, define the right-travelling and left-travelling waves as

V ± =
R± Sx√

2
(5.3)
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and one obtains, in analogy with (4.41):

H[V +, V −] =

∫
T

1

2

(
V +2

+ V −
2
)
dx+

+

∫
T

[
βε

16

(
V +4

+ V −
4

+ 4V +3
V − + 4V +V −

3
+ 6V +2

V −
2
)

+

+
h2

2 · 4!

(
V +
x

2 − 2V +
x V

−
x + V −x

2
)]

dx+

+

∫
T

h4

2 · 6!

(
V +
xx

2 − 2V +
xxV

−
xx + V −xx

2
)
dx.

(5.4)

When one calculates the first order normal form averaging the first order perturbation
(3.48) one gets

S1 =

∫
T

[
βε

16

(
V +4

+ V −
4
)
− h2

2 · 4!

(
V +
x

2
+ V −x

2
)]

dx+
3βε

8
〈V +2〉T〈V −

2〉T. (5.5)

From a comparison with mKdV hierarchy (subsection 2.4.5) we see that this Hamiltonian
can be mapped into a couple of mKdV Hamiltonians as (2.131) choosing

γ =
18βε

h2
. (5.6)

When we calculate the vector field related to h+ S1 we get
V +
τ =

(
1 +

3βε

4
〈V −2〉T

)
V +
x +

3βε

4
V +2

V +
x +

h2

4!
V +
xxx

V −τ = −
(

1 +
3βε

4
〈V +2〉T

)
V −x −

3βε

4
V −

2
V −x −

h2

4!
V −xxx

(5.7)

To get the perturbative ordering we have to weight each term as we did in section
4.2.2. The procedure is the same and then denoting with M the maximum of V on the
integration path we have

V ≤M (5.8)

and, calling σ the width of analyticity strip, we get

h2

4!
Vxxx ≤

6h2M

4!σ3
,

3βε

4
V 2Vx ≤

3βεM3

4σ
. (5.9)

In analogy of section 4.2.2 we have to balance the nonlinear term and the dispersive one
to get the following relation between M and σ:

M2σ2 ≤ h2

3βε
. (5.10)

If M is independent of the parameters and, forgetting the numerical coefficients, one
gets

σ2 ∼ h2

βε
. (5.11)

This last relation, once introduced in (5.7), shows that the perturbative parameter is
formally λ ∼ βε ∼ h2. This justifies the perturbative approach above.
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5.2 Hamiltonian second order normal form

As we did in the previous chapter one can now try to answer the question whether
the second order is or is not in mKdV hierarchy. To do so we have to calculate the
Hamiltonian generating the canonical transformation at first order. For this computation
we need to use equation (3.54), where P̃1 is

P̃1 =

∫ [
βε

16

(
4V +4

V − + 4V −
3
V + + 6V +2

V −
2
)

+
h2

4!
V +
x V

−
x

]
dx− 3βε

8
〈V +2〉T〈V −

2〉T.

(5.12)
Thus a straightforward application of (3.47) yields

G1 =

∫
T

[
βε

16

(
2V −

3
∂−1
x V + − 2V +3

∂−1
x V − + 3V −

2
∂−1
x V +2

)
+

h2

2 · 4!
V −x V

+

]
dx−

− 3βε

16
〈V +2〉T〈V −

2〉T.
(5.13)

To compute the second order normal form one has to use (3.54) and thus, after a long
calculation, one gets

S2 =

∫ [
−β

2ε2

64

(
V +6

+ V −
6
)

+
βεh2

8 · 4!

(
V −

3
V −xx + V +3

V +
xx

)
+

3h4

20(4!)2

(
V +
xx

2
+ V −xx

2
)]

dx

+
β2ε2

64

[
〈V −3〉2 + 〈V +3〉2 + 24

(
〈V +4〉〈V −2〉+ 〈V −4〉〈V +2〉

)
+ 36〈V +3〉〈V −3〉

]
−

− 9β2ε2

64
〈V +2〉〈V −2〉

(
〈V +2〉+ 〈V −2〉

)
+

3h2βε

8 · 4!

(
〈V +2〉〈V −xxV −〉+ 〈V +V +

xx〉〈V −
2〉
)
.

(5.14)

With this expression we have all the ingredients to answer the question on integrability.

5.3 Integrability at second order

Due to the quantity of terms appearing in (5.14) we try to eliminate all the terms out
of hierarchy piecemeal. Starting from the ones involving only V + one can try to bring
in hierarchy the following Hamiltonian

Ŝ2 + S̃2 =
3h4

20 · 4!2

[∫ (
− 5

27
γ2V +6

+
10

9
γV +3

V +
xx + V +

xx
2

)
dx+

5

27
γ2〈V +3〉2

]
. (5.15)

Then it is convenient to write F
(m)
2 , as defined in (2.133), in the following form

F
(m)
2 = M

∫ (
γ2

18
v6 +

5γ

9
v3vxx + vxx

2

)
dx (5.16)

then we will need the first order normal form for the β model (5.5) that, after some
maniplulations, reads

S1 =
h2

2 · 4!

{∫ [
1

6

18βε

h2
(V +4

+ V −
4
)− (V +

x
2

+ V −x
2
)

]
dx+

18βε

h2
〈V +2〉T〈V −

2〉T
}
.

(5.17)
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Setting γ = 18βε
h2

one gets

S1 =
h2

2 · 4!

{∫ [γ
6

(V +4
+ V −

4
)− (V +

x
2

+ V −x
2
)
]
dx+ γ〈V +2〉T〈V −

2〉T
}
. (5.18)

From now on we call

A =
h2

2 · 4!
, B =

3h4

20 · 4!2
, M = B (5.19)

where the last condition is posed in order to get a solution for the homological equation.
We will not consider the interaction part in S1 (i.e. the one involving 〈V +2〉〈V −2〉

since it is already in hierarchy due to the fact that 〈V ±2〉 is a constant of motion (see
appendix A). From now on we denote with Ŝ1 the first order Hamiltonian without the
interaction term. We then get for the mKdV the expression

vt = 2A(γv2vx + vxxx) (5.20)

where we wrote v instead of V ±. To get equations of motion related to Ŝ1 one has to
calculate its L2 gradient and then apply the Gardner tensor. The functional derivative
of Ŝ1 is

Ŝ ′1 = B

(
−10

9
γ2v5 +

20

3
γ(v2vxx + vvx

2) + 2vxxxx

)
. (5.21)

Applying Gardner tensor one gets

vt = B

(
−50

9
γ2v4vx +

80

3
γvvxvxx +

20

3
γv2vxxx +

20

3
γvx

3 + 2vxxxxx

)
= S2. (5.22)

Doing the same procedure for F
(m)
2 one gets, for its functional derivative,

F
(m)
2

′
= B

(
γ2

3
v5 +

10γ

3
v2vxx +

10γ

3
vvx

2 + 2vxxxx

)
. (5.23)

Applying Gardner tensor to (5.23) one gets the following equation of motion

vt = B

(
5γ2

3
v4vx +

40γ

3
vvxvxx +

10γ

3
v2vxxx +

10γ

3
vx

3 + 2vxxxxx

)
= F2. (5.24)

The equation we have to solve in order to bring the β-FPU system in mKdV hierarchy
is

[S1, g] = S2 −F2. (5.25)

in the unknown g. If we are able to find such a g then our problem is solved and the
β-FPU model can be mapped in mKdV hierarchy at second order. If we were able to
show the non existence of such a g then the system will not be integrable at this order.
We start computing RHS of (5.25)

S2 −F2 = B

(
−65

9
γ2v4vx +

10γ

3

(
4γvvxvxx + v2vxx + vx

3
)

+
20

9
〈v3〉vvx

)
. (5.26)
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Recalling the definition of Lie bracket we have

[S1, g] = S ′1g − g′S1 (5.27)

We thus get for S ′1 the following expression

S ′1 = 2A(2γvvx + γv2∂x + ∂3
x) (5.28)

The LHS of (5.25) becomes

2AG
[
(2γvvx + γv2∂x + ∂3

x)g̃ − g̃′(γv2vx + vxxx)
]

(5.29)

where g̃ = g/G and G ∼ h2. We can choose G to get 2AG = B. We are thus left with
the following equation

(2γvvx + γv2∂x + ∂3
x)g̃− g̃′(γv2vx + vxxx) = −65

9
γ2v4vx +

10γ

3

(
4γvvxvxx + v2vxx + vx

3
)
.

(5.30)
Setting

g̃ = γg1 + g0 (5.31)

and substituting in (5.30) one obtains

(2γvvx + γv2∂x + ∂3
x)(γg1 + g0)− (γg1 + g0)′(γv2vx + vxxx) =

= −65

9
γ2v4vx +

10γ

3

(
4vvxvxx + v2vxx + vx

3
)
.

(5.32)

Writing LHS as a polynomial in γ one gets

γ2[(2vvx + v2∂x)g1 − g′1(v2vx)] + γ[(2vvx + v2∂x)g0 + ∂3
xg1 − g′1vxxx − g′0(v2vx)]+

+ ∂3
xg0 − g′x(vxxx) = −65

9
γ2v4vx +

10γ

3

(
4vvxvxx + v2vxx + vx

3
)
.

(5.33)

Proceeding as we did in section 4.5 we compare terms with the same order in γ. This
gives us the system of equations

(2vvx + v2∂x)g1 − g′1(v2vx) = −65

9
v4vx +

20

9
〈v3〉vvx + c1〈v4〉vx + c2〈v2〉v2vx

(2vvx + v2∂x)g0+∂3
xg1 − g′1vxxx − g′0(v2vx) =

=
10

3

(
4vvxvxx + v2vxx + vx

3
)

+ c3〈v2〉vxxx + c4〈vvxx〉vx
∂3
xg0 − g′x(vxxx) = 0

(5.34)

From a dimensional analysis we get

[g1] ∼ v3 [g0] ∼ ∂2
xv. (5.35)

and then without losing generality(1)

g1 = a1v
3 + a2vvx∂

−1
x v + a3vx∂

−1
x (v2) + a4〈v3〉+ a5〈v2〉v, (5.36)

(1)In our opinion the following are all the possible terms which can appear in the transformation.
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g0 = bvxx. (5.37)

Our aim is now to insert (5.36) and (5.37) in (5.34) to get a relation between coefficients.
Deriving (5.36) and (5.37) one gets

g′1 = 3a1v
2 + a2(vx∂

−1
x v + v∂−1

x v∂x + vvx∂
−1
x ) + a3(∂−1

x v2∂x + 2vx~∂
−1
x v)+

+ 3a4〈v2(·)〉+ a5(2v〈v(·)〉+ 〈v2〉),
(5.38)

g′0 = b∂2
x. (5.39)

Starting from the easier equation to solve we see that the third one of (5.34) has as
solution

g0 = bvxx (5.40)

while substituting (5.36) and (5.37) in the second one of (5.34) one gets, on the left hand
side(

2a1 +
2

3
a2 +

a3

2

)
v4vx +

(
2a4 +

a2

3

)
〈v3〉vvx + (2a5 − a3)〈v2〉v2vx +

a3

2
〈v4〉vx (5.41)

which has to be solved by looking for a solution of the associated homogeneus equation
and a particular one. The solution of the associated homogeneus equation is

a2 = −3a1 a4 =
a1

2
(5.42)

Which yields directly

g
(homog)
1 = a(2v3 − 6vvx∂

−1
x v + 〈v3〉). (5.43)

To find a particular solution one is left with the problem of finding a solution of
2a1 + 2

3
a2 + a3

2
= −65

9

2a4 + a2
3

= 20
9

2a5 − a3 = c2
a3
2

= c1.

(5.44)

One can see immediately that

a3 = 2c1, a5 =
c2

2
+ c1, a1 = −65

18
− c1

2
, a4 =

10

9
. (5.45)

is a particular solution of (5.44). One thus obtains for g
(part)
1 :

g
(part)
1 =

(
−65

18
− c1

2

)
v3 +

10

9
〈v3〉+ 2c1vx∂

−1
x v2 +

(c2

2
+ c1

)
〈v2〉v. (5.46)

Summing (5.43) and (5.46) one gets for g1

g1 = −
(
f1

2
+
c1

2
+ 2a

)
v3 +

(
f2

2
− a
)
〈v3〉+ 6avvx∂

−1
x v+ 2c1vx∂

−1
x v2 +

(c2

2
+ c1

)
〈v2〉v.

(5.47)
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The term involving v3 when inserted in left hand side of the second equation of (5.34)
gives

(3f1 − 3c1 − 12a)(v3
x + 3vvxvxx) (5.48)

The term involving 〈v3〉, after the substitution on the same equation gives

−3

(
f2

2
− a
)
〈v2vxxx〉 (5.49)

which is a forcing term in the vector field. The term involving vvx∂
−1
x v yields to

18a(v2
xx∂
−1
x v + vxvxxx∂

−1
x v + 4vvxvxx + v3

x + v2vxxx), (5.50)

the term involving vx∂
−1
x v2 gives

6c1(v2vxxx + 2vvxvxx + v3
x − 〈v2〉vxxx − 3vx〈v2

x〉) (5.51)

and the term involving 〈v2〉v vanishes. The terms involving g0, inserted in the same
equation, gives

−bv3
x − 4bvvxvxx. (5.52)

Summing (5.48)-(5.52) one obtains an explicit equation to solve with respect to the
parameters. The LHS of this equation is

(3f1 − 3c1 − 12a)(v3
x + 3vvxvxx)− 3

(
f2

2
− a
)
〈v2vxxx〉+

+ 18a(vxx
2∂−1
x v + vxvxxx∂

−1
x v + 4vvxvxx + v3

x + v2vxxx)+

+ 6c1(v2vxxx + 2vvxvxx + v3
x − 〈v2〉vxxx − 3vx〈v2

x〉)−
− bv3

x − 4bvvxvxx

(5.53)

and it has to put equal to RHS of the second equation of (5.34). So far, comparing with
the RHS, one sees that all the terms involving anti-differentiations must disappear which
implies a = 0. Also the forcing term 〈v2vxxx〉 must disappear which means that f2 = 0.
But f2 is fixed from the equation above and then it doesn’t exist a transformation in the
form g = γg1 + g0 which maps the second order of β-FPU in mKdV hierarchy.

Up to this point we have that we were not able to map the β model normal form into
the mKdV hierarchy. Of course we cannot conclude that it is not possible to do so; but
we proceeded in the most general path, in our eyes.
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APPENDIX A

Symmetries of the continuous FPU

In the discrete FPU system the translational invariance is a discrete group of transforma-
tions which leaves the Hamiltonian invariant. Once we study the extension to continuum
this group becomes a U(1) and then there is a constant of motion associated to it thanks
to Nöther theorem.

The main consequence of this new constant of motion is that the L2 norm of V + and
V − are conserved until the motion of the α + β-FPU is due to the KdV hierarchy.

A.1 Nöther theorem for Hamiltonian systems

In this first section we state Nöther theorem for Hamiltonian system as it is stated in
[10].

Theorem A.1.1 (Nöther for Hamiltonian systems). If a system with Hamiltonian H(x)
has a one-parameter group of symmetries G(x, α), the Hamiltonian K(x) of which the
group is the flow is a first integral for the flow associated with H.

Proof. The invariance of K can be interpreted as its being constant along the flow
generated by K. Therefore LKH = {H,K} = 0.

Conversely this implies that K is a first integral for the flow generated by H.

A.2 Translational invariance

We take the dynamical system with Hamiltonian (4.24) and Poisson tensor (4.25):

H[S,R] =

∫
T

(
1

ε
φ(
√
εR(x, τ))− 1

2
S(x, τ)∆hS(x, τ)

)
dx, (A.1)

E =

(
0 1
−1 0

)
. (A.2)
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We recall that S is the coordinate while R is the momentum.
The one-parameter group of diffeomorphism which gives the translation x 7→ x+a is

S(x, τ) 7→ S(x+ a, τ), R(x, τ) 7→ R(x+ a, τ) (A.3)

This is the flow at time a associated to the Hamiltonian

K =

∫
T
RSx dx. (A.4)

In fact, once we write down the equations of motion we get

Sa =
δK

δR
= Sx, Ra = −δK

δS
= Rx. (A.5)

These can be solved by means of the characteristics and give

Φa
K(S(x), R(x)) = (S(x+ a), R(x+ a)). (A.6)

Introducing the right-travelling and left-travelling waves

V ± =
R± Sx√

2
. (A.7)

One gets, for the conserved functional, the expression

K̃ =
1

2

∫
T

(
V +2 − V −2

)
dx. (A.8)

Among the conserved functionals of the FPU system, until the order on which the
normal form holds, it is conserved also

h =
1

2

∫
T

(
V +2

+ V −
2
)
dx. (A.9)

It is a straightforward consequence of the definition of normal form:

{h,H} = {h, h+ λP} = {h, h}+ λ{h, P} (A.10)

which vanishes if P is in normal form with respect to h.
At this point a linear combination of conserved functionals is still a conserved func-

tional. These are K + h and h−K which are precisely

K + h =

∫
T
V +2

dx (A.11)

K − h =

∫
T
V −

2
dx (A.12)

and this states the conservation of the L2 norm of V + and V − up to the time scale on
which the dynamics is the one of the normal form.



APPENDIX B

Perturbative computations for the α + β-model

B.1 Exactness of the generating Hamiltonian at first

order

We recall here the result (3.42) of section 3.2.1 which states the relation between the
perturbative Hamiltonian (more precisely, between its Lie derivative) and the first order
normal form S1.

S1 = P1 + L1h (B.1)

where the Lie derivative can be expressed by definition via Poisson brackets as (2.22)
states:

L1h = {h,G1}. (B.2)

It is also useful for the present computation recall that

{h,G1} = 〈∇L2h|J∇L2G1〉L2 , (B.3)

and the coordinate expressions for L2-gradient and Poisson tensor J are

∇L2 =

 δ

δV +

δ

δV −

 J =

(
1 0
0 −1

)
∂x (B.4)

To show that the expression found for G1 in (4.74) satisfies (B.1) it is sufficient to put
together that expression for G1, the expression for S1 in (4.58) and the expressions for
h and P1 in (4.41) and verify if (B.1) is satisfied. We write down here these expressions
for completeness:

h[V +, V −] =

∫ 1

0

1

2

(
V +2

+ V −
2
)
dx, (B.5)

P1[V +, V −] =

∫ 1

0

[
α
√
ε

6
√

2

(
V +3

+ 3V +2
V − + 3V +V −

2
+ V −

3−
)

− h2

4!2

(
V +2 − 2V +V − + V −

2
)]

dx

(B.6)
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S1[V +, V −] =

∫ 1

0

[
α
√
ε

6
√

2

(
V +3

+ V −
3
)
− h2

4!2

(
V +
x

2
+ V −x

2
)]

dx, (B.7)

G1[V +, V −] =

∫ 1

0

[
α
√
ε

4
√

2

(
∂−1
x V +V −

2 − ∂−1
x V −V +2

)
+

1

2

h2

4!
V +∂xV

−
]
dx. (B.8)

We start calculating the L2-gradient of G1 and, using the integration by parts prop-
erty of anti-derivative operators stated in section 2.3.3 we get

∇L2G1(V +, V −) =

(
α
√
ε

4
√

2
(−2V +∂−1

x V − − ∂−1
x (V −)2) + h2

2·4!
V −x

α
√
ε

4
√

2
(∂−1
x (V +)2 + 2V −∂−1

x V +)− h2

2·4!
V +
x

)
. (B.9)

We now apply the Poisson tensor (B.4) to get(1)

J∇L2G1 =

 −α
√
ε

4
√

2

(
2V −V + + 2V +

x ∂
−1
x V − + V −

2 − 〈V −2〉T
)

+ h2

2·4!
V −xx

−α
√
ε

4
√

2

(
2V +V − + 2V −x ∂

−1
x V + + V +2 − 〈V +2〉T

)
+ h2

2·4!
V +
xx

 . (B.10)

For sake of completeness we write down also the L2 gradient of h which is

∇L2h(V +, V −) =

(
V +

V −

)
. (B.11)

We recall then that the L2 scalar product works as

〈v|w〉L2 =

∫
T
v · w dx (B.12)

where with · we denote the standard Euclidean scalar product. We obtain then

{h,G1} = 〈∇L2h, J∇L2G1〉L2 =

=

∫ 1

0

[
−α
√
ε

4
√

2

(
2V −V +2

+ 2∂−1
x V −V +

x V
+ + V +V −

2
+ V −V +2

+2V −V −
2

+ 2V +∂−1
x V +V −

)
+

h2

2 · 4!

(
V +V −xx + V −V +

xx

)]
dx =

=

∫ 1

0

[
−α
√
ε

4
√

2

(
3V +2

V − + 3V +V −
2

+ 2∂−1
x V −V +

x V
+ +

+2V −∂−1
x V +V −x

)
+

h2

2 · 4!

(
V +V −xx + V −V +

xx

)]
dx.

(B.13)

We now use the identity 2V +V +
x = ∂x(V

+)2 and we integrate by parts to bring the
derivative operator in front of the antiderivative operator. We obtain then

{h,G1} =

∫ 1

0

[
−α
√
ε

4
√

2

(
3V +2

V − + 3V +V −
2 − V +2

V − − V −2
V +
)
−

−h
2

4!

(
V +
x V

−
x

)]
dx =

=

∫ 1

0

[
−α
√
ε

4
√

2

(
2V +2

V − + 2V +V −
2
)
− h2

4!

(
V +
x V

−
x

)]
dx

(B.14)

If we now sum (B.6) and (B.14) we obtain (B.7), which is what we wanted to prove.

(1)Note that it is not possible to apply here the integration by parts property of anti-derivative
operators or for derivative ones since this expression is not integrated alone.
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B.2 Normal form of second order perturbation

We start this section recalling that the second order normal form can be obtained from
the perturbative series with (4.78):

S2 = 〈P2 +
1

2
{P̃1, G̃1}〉h. (B.15)

where from (4.77) we have

P2[V +, V −] =

∫ 1

0

[
βε

16

(
V +4

+ V −
4

+ 4V +3
V − + 4V −

3
V + + 6V +2

V −
2
)]

dx+

+

∫ 1

0

[
1

2

h2

6!

(
V +
xx

2 − 2V +
xxV

−
xx + V −xx

2
)]

dx.

(B.16)

and we recall (4.71):

P̃1 =

∫ 1

0

[
α
√
ε

2
√

2

(
∂−1
x V +V −

2
+ V +2

∂−1
x V −

)
+
h2

4!
V +
x V

−
x

]
dx.. (B.17)

As a first step we evaluate 〈P2〉h. Starting from (B.16), using Proposition 4.2.2

and Proposition 4.2.3 we obtain immediately

〈P2〉h =

∫ 1

0

[
βε

16

(
V +4

+ V −
4
)

+
h2

2 · 6!

(
V +
xx

2
+ V −xx

2
)]

dx+
3β

8
ε〈V +2〉T〈V −

2〉T (B.18)

We then calculate the Poisson bracket {P̃1, G̃1} where G̃1 = G1 − 〈G1〉h and, under
the assumptions of the previous section, we have G̃1 = G1. In the previous section we
calculated already J∇L2G1 in (B.10). We calculate then ∇L2P̃1:

∇L2P̃1(V +, V −) =

 α
√
ε

2
√

2

(
V −

2
+ 2V +V −

)
− h2

4!
V −xx

α
√
ε

2
√

2

(
V +2

+ 2V +V −
)
− h2

4!
V +
xx

 . (B.19)

With this result we have to calculate the L2-scalar product. With this aim we start
computing the scalar product ∇L2P̃ · J∇L2G1 component by component:

J11
δG1

δV +

δP̃1

δV +
=

= −α
2ε

16

(
V −

4
+ 4V −

3
V + + 4V +2

V −
2

+ 2∂−1
x V −V +

x V
−2

+ 4V +V −∂−1
x V −V +

x −

−2〈V −2〉TV +V − − 〈V −2〉TV −
2
)

+
h2α
√
ε

4
√

24!
V −xx

(
2V −

2
+ 4V −V + + 2∂−1

x V −V +
x −

−〈V −2〉T
)
− 1

2

h4

(4!)2
V −xx

2

(B.20)
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B.2

J22
δG1

δV −
δP̃1

δV −
=

= −α
2ε

16

(
4V +V −V −x ∂

−1
x V + + 4V +2

V −
2

+ 4V +3
V − + 2V +2

V −x ∂
−1
x V + + V +4−

−2〈V +2〉TV −V + − 〈V +2〉TV +2
)

+
h2α
√
ε

4
√

24!
V +
xx

(
2V −x ∂

−1
x V + + 4V +V − + 2V +2−

−〈V +2〉T
)
− 1

2

h4

(4!)2

(
V +
xx

)2
.

(B.21)

We have to sum the two expressions above, to integrate the sum on the torus and
then we have to perform a time average. We don’t write the sum of these two terms since
it is just a waste of paper. After writing the integral, we use Leibnitz rule to simplify
the expression obtained and then we perform a time average(2) to obtain

〈{P̃1, G1}〉h =

∫ 1

0

[
−α

2ε

16

(
V +4

+ V −
4
)
− h4

2(4!)2

(
V +
xx

2
+ V −xx

2
)

+

+
h2α
√
ε

2
√

24!

(
V −

2
V −xx + V +2

V +
xx

)]
dx+

α2ε

2
〈V +2〉

2

T〈V
−2〉

2

T

(B.22)

During the calculations we used the following statement

Proposition B.2.1. Let f and g be two real valued functions on the torus such that,
under the flow of h,

f(x) 7→ f(x+ s) g(x) 7→ g(x− s) (B.23)

we have∫ 1

0

ds

∫ 1

0

esLh
(
4f 2g2 − 2f 2gx∂

−1
x g − 2g2fx∂

−1
x f

)
dx = 8〈f 2〉T〈g2〉T. (B.24)

Proof. We start calculating 〈gx∂−1
x g〉T:

〈gx∂−1
x g〉T =

∫
T
gx∂

−1
x g dx

Leibnitz
= −

∫
T
g2 dx = −〈g2〉T.

The same holds for f , so we have

〈fx∂−1
x f〉T = −〈f 2〉T.

Using now Proposition 4.2.2 we can perform the integration (B.24) to get∫ 1

0

ds

∫ 1

0

esLh
(
4f 2g2− 2f 2gx∂

−1
x g − 2g2fx∂

−1
x f

)
dx =

= 4〈f 2〉T〈g2〉T − 2〈f 2〉T〈gx∂−1
x g〉T − 2〈g2〉T〈fx∂−1

x f〉T
which can be simplified using the results above as∫ 1

0

ds

∫ 1

0

esLh
(
4f 2g2 − 2f 2gx∂

−1
x g − 2g2fx∂

−1
x f

)
dx = 8〈f 2〉T〈g2〉T

which is precisely our thesis.

(2)We recall that V ± has vanishing mean and so are its derivatives.



Summing now (B.18) and (B.22) divided by two, taking into account that V ±xx have
vanishing mean, we get as Second order normal form

S2[V +, V −] =

∫ 1

0

[(
βε

16
− α2ε

32

)(
V +4

+ V −
4
)

+
h2α
√
ε

4
√

24!

(
V −

2
V −xx + V +2

V +
xx

)
+

+
3

20

h4

(4!)2

(
V +
xx

2
+ V −xx

2
)]

dx+

(
3βε

8
− α2ε

4

)
〈V +2〉T〈V −

2〉T+

+
α2ε

32

(
〈V −2〉T + 〈V −2〉T

)
(B.25)

B.3 Canonicity at first order: a direct calculation

Here we want to verify that the transformation generated by G1 is canonical at first order
using the definition. If we recall results of section 2.1.1 we have that a transformation
G1 is canonical at first order if and only if

DG1J + J(DG1)T = 0 (B.26)

Where J is given by (B.4) and G1 is given by

G1 =

(
G+

1

G−1

)
=

(
−AV −2 − 2AV +

x ∂
−1
x V − − 2AV +V − +BV −xx

−AV +2 − 2AV −x ∂
−1
x V + − 2AV +V − +BV +

xx

)
(B.27)

We have to calculate its Jacobian and we obtain

DG1 =

(
−2A∂−1

x V −∂x − 2AV − −2AV − − 2AV +
x ∂
−1
x − 2AV + +B∂2

x

−2AV + − 2AV −x ∂
−1
x − 2AV − +B∂2

x −2A∂−1
x V +∂x − 2AV +

)
(B.28)

Recalling that given an operator O we define its transposed, denoted as OT , as the
operator satisfying the following relation

〈f(u)|OTg(u)〉L2 = 〈Of(u)|g(u)〉L2 (B.29)

where f and g are vector fields on L2. A direct calculation shows that

(DG1)T =

(
2A∂−1

x V −∂x −2AV + + 2A~∂−1
x V +

x − 2AV + +B∂2
x

−2AV − + 2A~∂−1
x V +

x − 2AV + +B∂2
x 2A∂−1

x V +∂x

)
.

(B.30)
We have just to prove that these two operators satisfies the canonicity relation above
(B.26). Thus we calculate

DG1J =

(
−2A∂−1

x V −∂2
x − 2AV −∂x 2AV −∂x + 2AV +

x + 2AV +∂x −B∂3
x

−2AV +∂x − 2AV −x − 2AV −∂x +B∂3
x 2A∂−1

x V +∂2
x + 2AV +∂x

)
(B.31)

Similarly

J(DG)T =

(
2A∂−1

x V −∂2
x + 2AV −∂x −2AV −∂x − 2AV +

x − 2AV +∂x +B∂3
x

2AV +∂x + 2AV −x + 2AV −∂x −B∂3
x −2A∂−1

x V −∂2
x + 2AV +∂x

)
(B.32)

And we see that the condition of canonicity is completely satisfied.
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