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ABSTRACT 

Conodonts are the unique hard-parts of a set of teeth-like elements placed in the 

oral cavity of an eel-shaped soft-bodied organisms. The general architecture of 

conodonts’ oral skeleton is a bilaterally symmetrical array of usually 15 

phosphatic elements. There are many controversies regarding the function of 

those mineralized elements, but novel quantitative computational methods have 

opened new opportunity to study their function. Following this, the object of the 

present work is to study the arrangement and the function of the oral skeleton of 

the late Norian species Mockina slovakensis from several fused clusters found in 

the Dolomia di Forni, Seazza Creek valley, northern Italy. They were imaged 

using propagation phase-contrast X-ray synchrotron microtomography at the 

European Synchrotron Radiation Facility of Grenoble (France) and then the 

individual elements in the clusters were segmented and analyzed in details. Single 

elements were extracted from each analyzed clusters and then their relative 

positions were used to build up a revised, animated model of the M. slovakensis 

apparatus. With these results, we proposed a new motion of the apparatus that can 

be useful in future work to understand better the general function of the condonts’ 

oral skeleton. We lend also additional support to the supposed presence of a 

lingual cartilage about which the elements were rotated by pair of antagonistic 

muscles, i.e. a pulley-like mechanism, previously proposed.   

Key words: conodont apparatus, modelling, synchrotron microtomography, 

Mockina slovakensis.    
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RIASSUNTO 

I conodonti sono le uniche parti dure di un set di elementi simili a denti posti nella 

cavità orale di organismi con un corpo formato da tessuti molli di forma simile a 

quello delle anguille. L’architettura generale dell’apparato masticatorio dei 

conodonti è una serie di, solitamente, 15 elementi fosfatici a simmetria bilaterale. 

Ci sono molte controversie riguardanti il funzionamento di questi elementi 

mineralizzati, ma nuovi metodi quantitativi computazionali hanno aperto nuove 

opportunità di studio del funzionamento di questi apparati. In riferimento a queste 

nuove scoperte, l’obbiettivo di questo lavoro è di studiare la disposizione e la 

funzione dell’apparato masticatorio del specie Norica Mockina slovakensis. 

Questo è stato possibile tramite l’analisi di diversi clusters di M. slovakensis 

trovati nella formazione della Dolomia di Forni, in Friuli Venezia Giulia, Italia. 

Questi clusters sono stati scannerizzati usando la microtomografia di sincrotrone a 

contrasto di fase presso l’ESRF (European Synchrotron Radiation Facility) a 

Grenoble, Francia. Successivamente, i singoli elementi fusi nei clusters sono stati 

segmentati e analizzati in dettaglio. Le posizioni relative di ogni singolo elemento 

estratto dai clusters analizzati sono state usate per costruire un modello rivisitato e 

animato dell’apparato masticatorio della specie M. slovakensis. Con questi 

risultati è stato possibile proporre un nuovo movimento dell’apparato dei 

conodonti che sicuramente sarà utile in futuri lavori che vorranno comprendere in 

dettaglio la funzione di questo apparato masticatorio. Con questo lavoro si 

fornisce un ulteriore supporto per la supposta presenza di una cartilagine linguale 

che serviva a ruotare tutti gli elementi tramite delle coppie di muscoli antagonisti, 

con un movimento simile a una puleggia, precedentemente proposta. 

Parole chiave: apparato conodonti, modellazione, microtomografia a sincrotrone, 

Mockina slovakensis.       
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1. Introduction 

Conodonts are major components of Early Phanerozoic marine ecosystems and 

have a wide geographical and temporal distribution (fig. 1.1). Their biozones and 

the taxonomy on which they are built have long been applied to resolve regional 

and intercontinental-scale correlations.  

 

Fig. 1.1. Phylogeny of conodonts compared to other living and extinct chordates. 

The fossil record of the true conodonts (euconodonts) ranges from the Upper 

Cambrian to the uppermost Triassic and consists almost entirely of their 

dissociated skeletal elements. These became scattered in the sediment on the death 

and subsequent decay of the animals. In conditions where the conodont carcasses 

were buried and decayed without disturbances from currents, scavengers or 

burrowing organisms, the elements of the skeletal apparatus may be preserved in 

association on bedding surfaces. Partial or complete apparatuses are also found in 

form of clusters, where the elements lying in juxtaposition have become fused 

together during diagenesis.  

Conodonts have no close living relatives and there are no homologous structures 

in extant organisms to aid interpretation. Hence, only natural assemblages present 

the evidence for the original arrangement of the components of their skeleton.  

Methods as microwear analysis, computed tomography and finite element analysis 

are applied to the study of conodont elements and they now can be combined to 

interpret conodont taxonomy, stratigraphy and phylogeny. 
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1.1 Anatomy 

Conodont-animals were small elongate organisms, few centimeters long. They 

had no hard skeleton, but a stiffening rod of cartilage along their back and V-

shaped blocks of muscles along their side. The anterior end of the body was 

developed as a distinct cephalic lobe that included two fairly large eyes and the 

apparatus of mineralized elements by which conodonts are best known (fig. 1.2).  

 

Fig. 1.2. Shape of the conodont animal 

In some specimen, Aldrige et al. (1993) found traces of additional soft-tissue 

morphology in the head region. At start, they were supposed to be the eyes, but 

are now consider more likely to represent otic capsules. These features mean the 

possible presence of a nervous system that might include a brain. However, these 

considerations are still under debate.   

The main features of the trunk that can be preserved were the notochord, myomers 

and caudal fin rays. These elements are part of the so-called soft tissues of the 

conodont animal. 

Notochord. The evidence of the notochord in the fossils is some pair of axial lines, 

which represent its margins. In specimens heavily phosphatized, the area between 

these lines is mineralized and preserved in relief. It extended posteriorly to the tip 

of the tail.   
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Nerve cord. In some specimens, the anterior part of one of the axial lines 

delimiting the notochord appears thickened and divided medially by a darker 

trace. Aldridge et al. (1983) suggested that this feature might represent the dorsal 

nerve cord.  

Myomers. These represent the V-shaped muscles of the animals and their 

preservation as distinct and separated chevrons can be attributed to postmortem 

shrinkage of the muscle fibers prior to phosphatization. The evidence from all the 

specimens in which they are preserved is consistent with an arrangement of 

laterally paired V-shaped myomeres, their apices directed anteriorly and their 

limbs converging posteriorly to meet dorsally and ventrally along the midline.  

The tail. For every specimen the structure of the tail is different. The notochord 

can be extended into it or not; the fins can be more developed along one side of 

the tail than the other side. For these reasons the precise structure of the caudal fin 

remains equivocal; it may have been symmetrical, or it may have been extended 

slightly further on the dorsal or ventral margin.  

They should have had also four pairs of branchial grooves but there is lack of 

evidence to confirm their form and position. 

In addition of soft tissues, conodont animals had also hard tissues, which are the 

best-preserved parts in the paleontological record. They form a mineralized 

phosphatic feeding apparatus (fig. 1.3). The general architecture of the conodont 

oral skeleton is a bilaterally symmetrical array of usually 15 phosphatic elements. 

It is composed by one pair of obliquely pointed M elements in rostral position, 

behind them, one unpaired S0 element  (lying on the axis of bilateral symmetry) 

and four pair of elements (S1-4) located on both sides of the S0 and, more caudally, 

two pairs of pectiniform elements (P1, P2) (fig. 1.4). This apparatus may be 

preserved in a variety of configuration depending on its orientation to bedding.  
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Fig. 1.3. Apparatus within the conodont’s head 

 

Fig. 1.4. Anatomical orientation and notation. (A) Orientation of the apparatus within the conodont’s head; 

(B) Dorsal view of a reconstructed conodont's apparatus. 

In the years before the discovery of the preserved soft tissues, the affinity of these 

tooth-like phosphatic elements remained enigmatic. Some paleobiologists had 

attempted to solve this problem using comparative anatomy of the architecture of 

the feeding apparatus, element morphology and histology. These studies did not 

reach an equivocal conclusion regarding conodont affinity because they were 

without any constraint.  

After the discovery of the soft tissues and with a much clearer perception of 

conodont affinity, the considerations in conodont histology were much better than 

the previous time. One problem was that not all these studies considered the 

interactions between the component hard tissues during growth.  
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Donoghue (1998) is one of the first who made a study regarding the interpretation 

of hard tissues after the consideration of growth and patterning in the conodont 

skeleton.   

However, conodont elements are constructed from two basic units: the crown and 

the underlying basal body. The crown can be composed entirely of hyaline 

lamellar crown tissue or of a combination of lamellar crown and white matter. 

The basal body is a single component structure composed from a hard tissue 

usually called basal tissue.  

Lamellar crown tissue. This is the most coarsely crystalline tissue and usually 

comprises the major component of conodont elements. The crystallites are no 

more than a few microns long and are bounded at each end by the growth lines 

which define the lamellae. It grew by outer apposition because many elements 

display evidence of damage and subsequent repair.  

White matter. This term derived from the evidence of this tissue in reflecting the 

light. It is composed by more fine crystallites and it has lower organic content 

than the lamellar crown tissue. White matter occurs only in denticles as cores and 

has sharply defined lateral margins. In the cores, there are cavities enclosed within 

the fine-grained groundmass and they can vary in their size, shape and orientation. 

It was secreted as a continuous core of mineralized tissue, partly controlled at the 

margins by the lamellar crown. 

Basal tissue. It is often clearly punctuated by growth striae and it is so finely 

crystalline that individual crystallites cannot be distinguished with a light 

microscopy. It is the most variable of all conodont hard tissues, both between taxa 

and within a single taxon. Most basal bodies are atubular and they usually occur 

within concentric growth increments equivalent to the striae in the lamellar crown 

tissue. It grew by outer apposition and synchronously with the crown tissue; this is 

indicates by the confluent passage of incremental growth striae between the two 

tissues. 

 



 12 

1.2 Conodont affinities 

The debate about the affinities of conodonts is going on since the first conodont 

animal specimen was found. At start, it was not so easy to put them in a precise 

position in the animal world because of the lack of evidences and many authors 

forwarded many hypotheses.  

Heinz Christian Pander, a Russian biologist, discovered the first conodonts fossils 

in 1856. Initially, he interpreted them as teeth of primitive fish. However, only 

after the discovery of the first conodont animal in 1981 in the Carboniferous 

deposits of Edinburgh that was possible to make more accurate considerations 

about conodonts affinities.   

Briggs et al. (1983) established their phylogenetic position with reference of two 

groups, chordates and chaetognaths. After the discovery of new specimen, he 

placed them in a separate phylum, Conodonta, following Clark (1981). Other 

subsequent specimens and the discovery of soft tissues remains led Aldrige et al. 

(1993) to dismiss the chatognath affinity and to confirm the chordate one.  

Some authors strongly argued that conodonts could be part of a separate phylum 

and their affinity with chordates because of the lack of positive evidence about 

notochord, dorsal nerve cord and gill slits. Conodonts were also compared to the 

nemertean worms for the similarity of their soft parts. Other authors proposed a 

relationship with a Carboniferous mollusk for the similarity of their feeding 

apparatuses, the trunk and the posterior fins. Someone compared the collapsed, 

non-operational position of the apparatus of conodonts to that of chaetognaths 

(marine invertebrates) and seemed that, at least for protoconodonts, there was 

some relationship especially for the retracted position of the apparatuses. The 

problem was the definition of a relation between protoconodonts with para- and 

euconodonts. Finally, some authors listed a number of criteria in support of an 

affinity between conodonts and cephalochordates: the lack of paraxial or dermal 

elements, the V-shaped folding of the muscles in the trunk, the level of 



 13 

encephalization demonstrated by the anterior feeding apparatus and the anatomy 

of the fin rays.  

All these hypotheses were refuted by the combined evidence from soft-part 

anatomy, functionality of the feeding apparatus and element microstructure.  

Now, after lots of studies about conodonts remains, their affinity with vertebrates 

is now widely recognized and they are now considered as a major group of early 

vertebrates. 

 

Fig. 1.5. Cladogram showing conodonts as early vertebrates (a) and as basal chordates (b).   

 1.3 Objectives 

The elucidation of the controversies explained above has been slowed down due 

to the restrictions caused by outdated technologies. This work wants to show a 

new method to study and interpret the conodonts apparatus based on the analysis 

of well-preserved clusters, meaning having at least two conodonts elements fused 

together.  

The first aim of this project is to understand better the position and the function of 

all the single elements of the conodonts apparatus, in particular the one of the M 

elements that are the most problematic elements, along with the particular position 
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of the elements which would put some constraints on the functional model of the 

apparatus.   

After that, this study wants also to shed light upon the function of the entire 

conodonts apparatus by making a movie after the analysis of the specimen and the 

extraction of the elements from the clusters.  

Furthermore this work supports the assumption of the presence of a lingual 

cartilage that might have moved the apparatus helped by some pairs of 

antagonistic muscles (Goudemand et. al 2011). Consequently, the theory of the 

conodont affinity with vertebrates would be even more confirmed. 

It is expected that the use of new technologies, such as Propagation Phase-

Contrast X-Ray Synchrotron Microtomography, will allow the acquisition of 

better and more precise evidence supporting the function and the position of 

conodonts elements in the apparatus. This will be achieved through obtaining 

three dimensional virtual model in order to recognize the conodonts elements. 
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2. History of apparatus’ reconstruction 

Parallel to all the discussions about affinity and anatomy of conodonts, other 

studies have been going on since the first conodonts remains were found. They 

deal with the interpretation of the original three-dimensional arrangement of the 

elements comprise in the conodont feeding apparatus.  

As previously mentioned, the oral skeleton of conodont-animal is composed by 15 

phosphatic elements and, for this reason, they are the best preserved parts of the 

animal in the fossil record. After the death of the animal, these elements became 

scattered and if not affected by any type of disturbance, they could be preserved in 

bedding plane association, in form of clusters or as natural assemblages. 

Currently, the notation used for the 15 elements of the conodonts apparatus is the 

one of Purnell et al. (2000) with P1, P2, M, S0, S1, S2, S3 and S4 (fig. 2.1A) that 

replaced the one of Orchard and Rieber (1999) with, respectively, Pa, Pb, M, Sa, 

Sb1, Sb2, Sc1, Sc2 (Fig. 2.1B). 

 

Fig. 2.1. Schematic map of the relative positions of elements in the topological scheme of notation proposed 

by (A) Purnell et al 2000 and (B) Orchard e Rieber 1999. 

Bedding plane assemblages can be found in different type of configuration 

depending on the orientation of the apparatus relative to the plane of flattening. 
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This can be modified by any rotation of the elements during the collapse of the 

apparatus or as a result of a muscular contraction on animal’s death.  

Fused clusters are potentially more informative than most bedding-plane 

assemblages because the elements are better preserved, more often intact and may 

also better record their 3D positions. However, it is very difficult to distinguish all 

the elements without removing any if more than two or three elements are fused 

together. A way to bypass this problem is to use a non-destructive inspection 

method, such as tomography. The principle of tomography is based on the 

computed reconstruction of a series of 2D-slice images through the studied object 

under study from radiographs of the specimen acquired during its rotation.   

Linear reconstructions  

A few studies have based architectural reconstructions on interpretations of 

function. Lindstrom’s hypotheses (1964, 1973 and 1974) were based on the 

functional interpretation of the conodont apparatus as a lophophore support. 

Similarly, Nicoll (1995) assessed that the conodont apparatus morphology was 

placed in an amphioxus-like body. 

Almost all the other studies on conodonts apparatuses arrangement were based on 

analyses of clusters or bedding-plane associations. Schmidt (1934) proposed that 

Gnathodus had a linear array of 14 elements with their long axes approximately 

parallel to each other. In this reconstruction the M elements flanked the S 

elements, the denticles of which are directed downwards, inwards and towards the 

P elements. This configuration was influenced by his interpretation of similarity 

between the conodont apparatus and the mandibles of a placoderm fish. For this 

reason he put the Pa elements at the front of the apparatus. Although some errors, 

he also did not include a Sa (=S0) element, this reconstruction was ahead for that 

time and had no real rival until the work of Rhodes in 1952. 

Rhodes (1952) proposed a reconstruction for the apparatus of Idiognathodus. He 

did not include a Sa (=S0) element and did not recognize different morphologies 

of S elements, but his reconstruction was one of the most influential for that time. 
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For this reason, many authors re-illustrated his model in successive works only 

with minor modifications.  

Schmidt and Muller (1964) recognized morphological differentiation within the S 

elements and suggested a linear apparatus similar to that of Schmidt (1934), but 

with the Pa (= P1) elements in the opposite position. Many authors re-examined 

this work and proposed similar arrangement in the next years.  

This method of approaching to apparatus reconstruction had lots of weakness, in 

particular the difficulty to explain the recurrent asymmetrical patterns without 

considering post-mortem effects on the carcasses of animals.      

Three-dimensional reconstructions   

Aldridge (1987) tried to understand the three-dimensional architecture of the 

conodonts apparatus by analyzing some bedding plane associations of 

Carboniferous polygnathaceans. He demonstrated that the elements are arranged 

about a dorso-ventral plane of symmetry with the ramiforms in an anterior 

position and with their long axes close to vertical forming a V-shaped structure; 

the P elements follow posteriorly and lie vertically and almost normal to the long 

axis of the trunk. To achieve this result he took some photos of the model from 

various angles to project the three-dimensional structure onto a two-dimensional 

plane. He also proposed a functional system for this apparatus, with the anterior 

elements, the ramiforms, grasping food to be processed later by a shearing action 

of the P elements. Further reconstructions conflicts with this interpretation, 

especially for the arrangement of the ramiforms elements. 

Aldridge et al. (1995) presented a reconstruction of the architecture and the 

function of the apparatus of Promissum pulchrum. It is a large species of conodont 

found in the Upper Ordovician Soom Shale Member, Cedarberg Formation, South 

Africa. They collected and analyzed more than 100 complete apparatuses as 

natural assemblages on bedding surfaces. This reconstruction presented some 

problems because sometimes the preservation made impossible to determine the 

relative superposition of elements. However, they reached some results and the 
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apparatus reconstructed is more complex than the other conodont taxon: the 

number of elements is large and some of them have a complicated three-

dimensional morphology. This apparatus comprises 19 elements in total (two Pa, 

two Pb, two Pc, two Pd, two M and nine S) and also the arrangement is different 

form the others. In the recent notation of elements the Pa corresponds to the P1 

and the Pb to the P2; for the Pc and Pd there is not a notation used, but they can be 

called P3 and P4 respectively. The Pa, Pb and Pc are horizontally aligned, the Pd 

are positioned below the Pb, the S form an oblique array below the P elements and 

the M are at the anterior (fig. 2.2). The functionality of this apparatus is even more 

complex than the reconstruction; probably all the elements worked together to 

promote the feeding of the animal, the S elements grasped the prey and the P 

elements crushed them. Understanding the details was not possible, but probably 

the process must have involved a sequence of events.  

 

Fig. 2.2. Scheme of the apparatus of Promissum pulchrum. Pa = P1; Pb = P2; Pc = P3; Pd = P4; Sa = S0; Sb1 = 

S1; Sd = S2; Sb2 = S3; Sc = S4. From Aldridge et al. (1995).  



 19 

Purnell and Donoghue (1997) analyzed some natural assemblages of 

Idiognathodus from the Pennsylvanian of Illinois. In this case, they didn’t use 

clusters or bedding plane associations, but natural assemblages. The aim of this 

methodology was to produce a single model of apparatus architecture based on a 

variety of these assemblage patterns without recourse to ad hoc hypotheses of 

post-mortem muscle contraction. They achieved a precise scale model of the 

feeding apparatus of ozarkodinid conodonts. This apparatus is composed at the 

front by a Sa (= S0) element, flanked by two pairs of elongate Sb1-2 (= S1 and S2) 

and Sc1-2 (= S3 and S4) elements which were inclined obliquely inward and 

forwards; above these elements lay the M elements, arched and inward pointing 

(fig. 2.3). Behind them lay the Pb (= P2) and Pa (= P1) elements, they are 

transversely oriented and bilaterally opposed. This reconstruction differs from the 

previously proposed in two aspects. First, the position of the Pa elements with the 

left elements behind the right; second, the arrangement of the S and M elements at 

the anterior of the apparatus is very different from the one proposed by Aldridge 

et al. (1987). Purnell and Donoghue placed the S elements in parallel with almost 

equal forward inclination and no vertical displacement and no inward inclination; 

the M are located above and are oriented obliquely to the S elements, but the long 

axis of M and S elements are parallel. These new considerations on the conodonts 

apparatus were fundamental to analysis of functional morphology and the problem 

of food acquisition in conodonts. For the function of the apparatus, they 

confirmed that the P elements processed the food by crushing and/or slicing and 

that the S and M elements probably had a grasping function. Considering that the 

position and orientation of the M elements and the inclination of their denticles 

were markedly different from to S elements, they suggested that the M elements 

probably worked in a different way. They also proposed that the S and M 

elements were attached to cartilaginous plates and that the anterior part of the 

conodonts apparatus is comparable to those of extant agnathans; they did these 

considerations without any direct evidence.   
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Fig. 2.3. Anterior view of Idiognathus apparatus model. From Purnell and Donoghue 1997. Sa = S0; Sb1 = S1; 

Sb2 = S2; Sc1= S3; Sc2 = S4 in the current notation. 

Goudemand et al. in 2011 analyzed exceptional preserved clusters of the Early 

Triassic Novispathodus and provided a new interpretation of the apparatuses for 

the Ozarkodinina; they also proposed the presence of a pulley-shaped lingual 

cartilage similar to that of extant cyclostomes within the feeding apparatus of 

euconodonts. They imaged these clusters using propagation phase contrast X-ray 

synchrotron microtomography. They made lots of consideration about the 

movement of the elements in the conodont apparatus considering the shape and 

the position of the elements; for example, they proposed a new position of the S0 

and the M elements, called the pinching position, in which those elements overall 

a Y-shaped (in rostral view), converging motion that would have performed an 

efficient pinching and seizing function (fig. 2.4). 

At the end they assessed a general movement of the apparatus which is consistent 

with a presence of some pairs of antagonistic muscles which moved the entire 

apparatus. They also proposed a movie in which is demonstrated the movement of 
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the apparatus. This work gives a strong support to the vertebrate affinity of 

conodonts.  

 

Fig. 2.4. Reconstructed apparatus of Novispathodus in the pinching position. Oblique rostral view. From 

Goudemand et al. 2011. 

In 2012, Goudemand et al. published a work about a revision of the architecture of 

the conodont apparatus of the superfamily Gondolelloidea. They recovered 

several fused clusters of the genera Neospathodus and Novispathodus from the 

limestone beds from different localities in South China. With this work, they 

inverted the position occupied by S1 and S2 elements within apparatuses of 

members of superfamily Gondolelloidea and they did the same things for S3 and 

S4 elements within apparatuses of members of the subfamily Novispathodinae.  

Agematsu et al., in 2014, described the apparatus of the Hindeodus species, an 

early Triassic conodont; they found its fossils in a deep-water chert and claystone 

section in the Mino Terrane, Japan. They recognized 13 natural assemblages 

comprising at most 13 elements. In detail, they discriminated pairs of P1, P2 and M 

elements, and the single S0 element. They also found other elements of the S array 

that are preserved in the S2 and S3-4 positions, but not a pair of the S1 elements due 
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to the incompleteness in the natural assemblages. (Fig. 2.5) At the end, they 

support the theory of the 15 elements’ apparatus for the Hindeodus species even if 

with some doubts on the presence of the S1 elements.        

 

Fig. 2.5. The apparatus composition of Hindeodus parvus and Hindeodus typicalis. From Agematsu et al. 

2014.  

The last published work about conodont apparatuses is the one of Liu et al. 

(2017), in which they described the conodonts that they have found in the middle-

upper Darriwilian (Middle Ordovician) Winneshiek Konservat-Lagerstӓtte in 

northeastern Iowa. The particularity of these fossils is that they are giant and they 

are preserved with hyaline elements, i.e. the crown and basal bodies (fig. 2.6). 
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Fig. 2.6. Two apparently complete apparatus of the Iowagnathus grandis new genus new spwcies. Scale bar = 

2 mm. From Liu et al. 2017. 

The main species identified are the Archeognathus primus Cullison, 1938 and 

Iowagnathus grandis new genus new species. The A. primus apparatus is 

composed by six elements: two pairs of P and one pair of S elements. On the other 

hand, the apparatus of the I. grandis n. gen. n. sp. consists in 15 elements that 

comprises 7 pairs of ramiform elements and one single alate ramiform element 

(S0). They compared these two apparatuses with the one of the prioniodontid 
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Promissum; they point out that the A. primus apparatus is very different to it; 

instead, the apparatus of I. grandis n. gen. n. sp. shows some similarity to it. They 

also proposed a new family Iowagnathidae in Conodonta, based on the samples 

found in the Winneshiek section.   

After those there is my study that, it must be remembered, deals with an Upper 

Triassic conodonts (Mockina slovakensis) and, until now, is the unique one; so the 

complexity of these work is also for the lack of other apparatus of the same age.   

 2.1 Microwear analysis 

Another type of studies that developed parallel to the reconstruction of the 

apparatus is the analysis of microwear on the denticles of conodont elements. 

These regard in particular the P1 elements because they are the easiest to find in 

the fossil record and for their position in the conodont apparatus. They are in the 

most caudal position of the apparatus, behind the P2 and the ramiforms elements, 

and with the blade of the left element lying behind the blade of the right element 

with the denticles pointing each other (fig. 2.7). 

 

Fig. 2.7. Cluster of P1 elements useful for the microwear analysis. 

Microscopic wear patterns on conodonts elements provide the first unequivocal 

evidence that they functioned as teeth. These microwear were produced in vivo by 

abrasives in food and by the compressive and shearing forces that act on enamel 

during feeding.  
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Analysis of microwear represents a very powerful and direct tool for investigating 

feeding in fossil animals, but its application to fossil material is complicated by 

the problem of post-mortem abrasion. With technology such as Scanning Electron 

Microscopy (SEM) and Synchrotron Radiation X-Ray Tomographic Microscopy 

(SRXTM) the identification of microwear is becoming easier than in the past.   

The presence of wear in conodonts has a number of implication for models of 

element growth. Wears have been observed on small, immature elements, 

indicating that conodonts did not grow their teeth to full size before using them. It 

is important also for the reconstruction of functional model of the conodonts 

apparatus; by the joint analyses of microwears and relative position of single 

conodont elements in fused clusters it is possible to proposed a more precise 

model of the conodonts oral skeleton and occlusion. 

Important works were made by Purnell in 1995 and by Martinez-Perez et al. in 

2014 and 2016 that, after the analysis of these microwears, provided a general 

model for occlusal cinematic in conodonts and assessed a number of important 

implication on understanding the growth of the conodont elements. 

The presence of these microwears is a clear support to the hypothesis that the first 

vertebrates were predators. In this way, previous hypotheses that assessed that 

conodonts were microphagous pump-suspended feeders based on comparisons 

with amphioxus and larval lampreys are discarded.  

It is clear that the studies on conodonts are widespread in a number of different 

topic and there are so many authors that are giving their help on resolving most of 

them. The work is not easy but with the discovery of new technology suitable for 

conodonts studies the results will be important in next years.   
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3. Late Triassic conodont taxonomy 

The Triassic Period is divided in Lower, Middle and Upper, and in particular, 

Upper Triassic covers ca. 75% of the entire duration of the Triassic Period. The 

Upper Triassic is divided in three stages, that are Carnian, Norian and Rhaetian, 

and it goes from 227 to 201 My, at the end of which a big mass extinction led to 

disappearance of the 76% of the living species and to the mass extinction of the 

conodont fauna.  

The taxonomy of the Upper Triassic is generally characterized by an important 

diversification during the Carnian stage, but only few taxa survived toward the 

Norian and Rhaetian stages (Rigo et al., 2017).       

 

Fig. 3.1. Geological time scale of the Triassic Period. 

Conodonts are biostratigraphically very important in the Upper Triassic for their 

great abundance, worldwide distribution and mineralogical composition that 

makes them available tools for biostratigraphic and geochemical studies.  

The conodont record of the Upper Triassic documents pulses of extinctions 

followed by recovery events, but testifying a continuous decline of conodonts 

specific diversity during this period.  

In the Late Triassic, conodonts suffer four main extinction events before the final 

one at the end of the Rhaetian: the first, in the Lower Carnian that is the weak one; 

the second, in the middle Carnian; the third one, at the Carnian/Norian boundary, 
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which is more similar to a fauna turnover; the fourth, across the Norian/Rhaetian 

boundary. Each of this extinction is followed by a new speciation and by evident 

changes in the morphology of conodonts elements.  

The Lower Carnian pectiniform species that survive the first extinction are 

morphologically simple, characterized by elongated platforms without 

ornamentations and a posterior pit (i.e. paragondolellidis).  

The second extinction is more intense and related to the well know humid pulse 

called Carnian Pluvial Event and the subsequent recovery is slow, but it brings to 

a new peak of the conodont specific diversity (i.e. genera Carnepigondolella, 

Metapolygnathus, and Epigondolella). These conodonts have platforms with node 

or denticle and are characterized by a gradual reduction of the platform and the 

forward shifting of the pit.  

Late Triassic species follow another extinction event around the Carnian/Norian 

boundary and, after that, conodonts exhibit two different evolutionary trends. The 

first trend is characterised by the extension of the platform with loss of the lateral 

margin nodes and of the free blade (i.e. genus Norigondolella). The second trend, 

instead, consists of species (i.e. Epigondolella and Mockina) that bear high 

denticles distributed on the platform margins; Mockina slovakensis belong to this 

pulse. After this last pulse, the evolutionary history of conodonts until the end of 

the Triassic is characterised by a constant decline, both in terms of morphology 

and diversity.  

At the end of the Norian, the tendency to a general simplification of the 

morphological features may be observed. Even if two different branches evolved 

from the same species Mockina bidentata, all the uppermost Triassic pectiniform 

conodonts lose the platform and decrease in dimension (genera Parvigondolella 

and Misikella). This morphological simplification represented by Misikella is no 

longer successful, and after the disappearance of the last platform-bearing 

conodonts (such as Norigondolella), also platformless genus Misikella disappears 

at the end of Rhaetian. 
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4. Systematic paleontology 

In the following, a description of the Mockina slovakensis species is proposed. 

Phylum Chordata Baetson, 1886 

Subphylum Vertebrata Linneus, 1758 

Class Conodonta Eichenberg, 1930 

Order Ozarkodinida Dzik, 1976 

Superfamily Gondollelacea (Lindostrӧm, 1970) 

Family Gondollellidea Lindstrӧm, 1970 

Genus Mockina Kozur, 1989 

Mockina slovakensis (Kozur, 1972) 

1972 Metapolygnathus slovakensis n. sp. Kozur, p. 10-11, fig 23 

1983 Epigondolella n. sp. C population – Orchard, p. 185-186, fig. 9 

1990 Epigondolella multidentata – Budurov & Sudar, pl. 5, fig. 20-22 

1995 Epigondolella slovakensis – Roghi et al, pl. 1 

2003 Mockina slovakensis – Channel et al., pl. A2, fig. 56, 57, 58; pl. A3, fig. 49 

2012 Mockina slovakensis – Mazza et al., pl. 7, fig. 9,10 

2016 Mockina slovakensis – Rigo et al., fig. 2, 3  

 

Description of P1 elements. Compact species characterized by a short blade and 

thick platform margins. The platform has sharp and high denticles on the anterior 

lateral margins and, sometimes, other nodes occur on the posterior margin. On the 

anterior part, there is a free blade with 4-5 denticles. The cusp has the same shape 

of the other denticles and two or rarely three carinal nodes follow it. The blade is 

very high anteriorly and it descends abruptly inside the platform before the carina, 

which is composed by small and well-separated nodes. The last carinal node is 

usually larger than the other ones and inclined through the posterior. In lateral 

view, the specimens are characterized by a strong upward bend of the lower side 
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just before the pit. The pit is located in center; the keel is posteriorly prolonged 

and its termination is pointed.  

Description of ramiform elements. In 2005, Orchard published a work in which 

he described the genus Cypridodella that then was revisited and considered to the 

same genus as Mockina slovakensis after some consideration made by several 

authors (Moix et. al, 2007; Mazza et al., 2012; Rigo et al.). The M has a breviform 

digyrate shape; both S3 and S4 elements have a short, variably inturned anterior 

process and a joined elongated posterior process. The distal end of the larger 

process of the S1 element is characterized by a crest of high, apically curved 

denticles. In some species, the S2 element has a basal attachment scar extending 

apically towards the cusps. 

 

Fig. 4.1. A: P1; B: P2; C: M; D: S4; E: S3; F: S1, distal part of long process; G: S2; H: S1; I: S0, antero-lateral 

view; J: S0, posterior view; K: S0: posterior process. From Orchard, 2005.  
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5. Geological settings 

The Dolomia di Forni (Formation) is a lithostratigraphic unit cropping out along 

the upper valley of Tagliamento river, in the Friuli Venezia Gulia region (fig. 5.1). 

It is characterized by dark-gray to black or brown bituminous dolostones, usually 

well bedded, often in thin layers, with chert nodules and lenses. Its importance is 

due to a particular and rich fossil association constituted mainly of crustaceans, 

terrestrial plants, fishes and reptiles. The Dolomia di Forni lies on the “dolomia 

cariate”, which is mostly composed by vuggy dolostones, but the basal contact in 

the Seazza Creek valley is tectonically disturbed, being in relation with the “Linea 

dell’ Alto Tagliamento”. The Dolomia di Forni is overlain, for almost all his 

extension, by black, well and thinly bedded limestones, sometimes cherty, named 

“Calcare di Chiampomagno”, Rhaetian in age (Roghi et. al 1995). 

 

Fig. 5.1. Position of the Dolomia di Forni formation (left) and of the Seazza Creek valley (right). From Roghi 

et al. 1995. 

At the beginning of the XX century was described as a carbonatic unit of thin 

layers, grey or black, often bituminous that could be a part of the Dolomia 

Principale (Formation), and few years later, this geological unit was identified as 

the lower part of the Dolomia Principale. Ferasin et al. (1969) informally called 

this lithological unit as “Calcare di Caprizzi”.  

After that, Mattavelli e Rizzini (1974) changed the name into “Dolomia di Forni” 

and they made a detailed petrographic and sedimentological study identifying six 

lithofacies. Dalla Vecchia (1991), in particular studying one of these litofacies, the 
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Rio Seazza (Preone) one, from a sedimentological point of view. In 1994, Carulli 

et al. made a series of studies that permitted to understand better the stratigraphic 

and paleo-environmental characteristics of the bacinale facies of the Norian-

Rhaetian in the Prealpi Carniche. At first, in this formation, different lithologies 

consisting of an association of laminated dolomites, massive dolomites, 

intraclastic dolomites, stromatolitic dolomites, dolomites breccia and argillitic 

dolomites were recognized. After more detailed studies, Braga et al. (1971) and 

Dalla Vecchia (1991) subdivided the Dolomia di Forni in three members: the first 

on lithological bases and the second basing on the sedimentological characteristics 

of the Rio Seazza valley. However, this subdivision works only locally. A 

successive accurate study of the entire basin, which comprises a wide area of the 

Prealpi Carniche, permitted the distinction of an Upper and a Lower Member in 

the Dolomia di Forni. 

Lower Member 

The Lower Member, which is widespread in almost all the area, is mostly made 

up by not-laminated dolomites without any particular fabric; the rocks have a light 

gray color. There is a sharp stratification 30-100 cm thick; sometimes there may 

be little dolomitic layers 20-40 cm thick and stromatolic layers that could reach 

one meter of thickness.  

In the southern area this member is between the Carnian Dolomie Cariate and the 

Dolomia Principale, while in the northern area it is between the Dolomia Cariate 

and the Upper Member of this formation. The overall thickness of the Lower 

Member is more or less about 200-300 m. 

This member represent deposits of shallow marine, lagoon or inter-tidal 

environment, with rare risedimented facies. The organic matter is almost 

completely absent. The stromatolitic layers, which appear only in this member, 

are a clear evidence of a shallow marine environment with oxygenation events in 

an anoxic period (Carulli et al., 1997).  
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Upper Member 

The Upper Member consists in dark-gray dolomite, well stratified and laminated, 

often with marly intercalation and selciferous layers. The layers have a tabular 

geometry and are 20 cm thick. When occurs, the lamination is mostly plane 

parallel and represents the distal deposition of carbonate sediments of a turbiditic 

current. The dolomitic-marly or argillic interbedded layers may be rich in organic 

matter. In the transitional areas there are several slump deposits and, in the 

proximal area, debris flow deposits can occur. Interbedded with the bacinal facies 

can occur: olistolith of massive dolomite, brecce, bioclastic and dolo-sandstone. 

This member reach the thickness of 700 m and its boundary with the Lower 

Member is quite fast (Carulli et al., 1997).  

It represents a deeper basinal euxinic environment, as testified by the absence of 

bioturbation and the abundance of turbiditic sequences and is known for the 

different fossil associations (Roghi et al., 1995). Most of the fossiliferous outcorps 

are in the narrow valley of the Seazza Creek, near the village of Preone, and along 

the northern slope of the Verzegnis Mt massif. The radiolarians, often poorly 

preserved, came from the upper layers of the water column; instead, the 

gastropods and the foraminifera are resedimented and from the platform. Much 

more important is the presence layers with macrofossils, which are not so rich but 

often significant. Crustaceans, fish, plants and little reptiles represented most of 

the fossils that are studied from this member; all these fauna are indicative for the 

Norian stage. There are also many levels very rich in conodonts especially in the 

medium part of the Upper Member. They are concentrated in dark layers of 

laminated dolomite and they should indicate phases of positive oscillation of the 

relative sea level (Carulli et al., 1997).  

In conclusion, from the analysis made on these two members it is possible to say 

that the Dolomia di Forni formation is represented by two different evolutionary 

moments, at least from the environmental point of view. Low energy narrow tidal 

environment for the Lower Member and deep bacinale euxinic where the energy 

was very sensitive for the Upper Member.  
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The silicoclastic debris was very weak and, for this reason, there are isolated 

granules of quartz, feldspar and blades of muscovite. This is an evidence for the 

absence of wide areas subjected to erosion near to the basins (Carulli et al., 1997). 

From a diagenetic point of view, these litofacies are made by secondary dolomite 

that have replaced the calcite. 

The top of the unit is Norian in age, given from the pollinic association: 

Tsugapollenites pseudomassulae, Corollina sp., Corollina meyeriana, 

Granulopercupatipolis rudis, Ovalipollis pseudoalatus, and the presence of the 

mostly monospecific conodont fauna of Mockina slovakensis (Roghi et al., 1995). 

Several conodont elements of the species Mockina slovakensis have been found in 

this formation. They have been found above the rest of flying reptiles and 

successively studied by Roghi et al. in 1995, in order to characterize the age of the 

fossil associations. The rich conodont association, mostly monospecific, 

consisting of single elements, clusters and apparatuses permits the development of 

a 3D M. slovakensis apparatus, main aim of this thesis. 
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6. Material and Methods 

Exceptionally preserved fused clusters of elements of the Norian (Upper Triassic), 

along with separate specimens mostly belonging to a monospecific fauna of 

species Mockina slovakensis was collected in the Dolomia di Forni, Seazza Creek 

valley, northern Italy.  Clusters and apparatuses were the subject of this thesis, and 

they have been thus analyses for the 3D apparatus reconstruction and feeding 

mechanism. 

Propagation Phase-Contrast X-Ray Synchrotron Microtomography. The 

specimens were scanned at the European Synchrotron Radiation Facility (ESRF) 

on the beamline ID19. We used a pink beam with a critical energy of 17.68 keV 

delivered by a U17.6 undulator. This insertion device delivers a single harmonic 

with a narrow bandwidth (ΔE/E of 5%). The original source monochromaticity is 

good enough to perform high-quality scans at submicron resolution without a 

monochromator. It allows rapid scans of microfossils, nearly free of ring artifacts. 

Regarding the sample size, we used a detector composed of a 6-μm thick GGG 

scintillator, of a revolver microscope, and of a FReLoN CCD camera. The 

isotropic voxel sizes ranged from 0.23 to 0.46 microns. Phase contrast was 

obtained using a propagation distance of 10 mm. Because absorption contrast is 

often low in fossils, phase contrast can reveal much more in structures.  

The ESRF (European Synchrotron Radiation Facility) is the most intense source 

of synchrotron-generated light, producing X-rays 100 billion times brighter than 

the X-rays used in hospitals. These X-rays, endowed with exceptional properties, 

are produced by the high energy electrons that race around the storage ring, a 

circular tunnel measuring 844 metres in circumference. Thanks to the brilliance 

and quality of its X-rays, the ESRF functions like a "super-microscope" which 

"films" the position and motion of atoms in condensed and living matter, and 

reveals the structure of matter in all its aspects. It provides many opportunities for 

scientists in the exploration of materials and living matter in many fields. 
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Fig. 6.1. Photo of the ESRF on the left and organization of the site on the right. 

Processing of Raw Data. Radiographs were processed using in-house tools 

developed at the ESRF (European Synchrotron Radiation Facility), Grenoble 

(France). They were corrected by flatfield and darkfield reducing ring artefacts. 

An average of the processed radiographs was computed to obtain a correction map 

for ring artefacts. The volumes were then reconstructed using a filtered back-

projection algorithm. Sample movements were measured and corrected during the 

tomographic reconstruction. After the reconstruction, the remaining ring artifacts 

were corrected slice by slice. The final slices were converted into stacks of 16-bit 

TIFF files for the 3D processing. 

3D processing. For the construction of the 3D model was used the commercially 

available Amira imaging software. The fused clusters were analyzed with that 

software and all the possible single elements were extracted from them with a 

process called segmentation. Although the clusters were very compacted, all the 

15 elements composing the original apparatus were collected almost complete. I 

made the 3D processing in the Goudemand laboratory at the ENS de Lyon; it was 

a beautiful period during which I learnt a lot about conodont topic. The 3D 

processing was not so easy for the stiffness encountered in the segmentation of the 

clusters related to the high fusion of the single elements, but at the end I managed 

to extract all the information I needed.     

The clusters analyzed were 6 out of 9. For two of them, P9A-3 (fig. 7.3 and 7.4) 

and P9A-2 (fig. 7.1 and 7.2), was possible to extract all the single elements, 

instead in the other four, F1 (fig. 7.7 and 7.8), F4-A (fig. 7.9), P9A-5 (fig. 7.10 
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and 7.11), P9A-7 (fig. 7.5 and 7.6), for the intense grade of fusion, was possible to 

extract only some elements. Hence, the relative position of these elements can be 

used to obtain the composition of the complete apparatus.  
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7. Cluster analysis 

In the following, I present all the information I got from the segmentation of the 

clusters.   

P9A-2. In this cluster, there are the right and the left elements for all the S 

elements, instead is preserved only the right M elements. The P elements are not 

present (apart for something that could be a P2 element). The S0 element is 

deformed and broken into pieces but its position is fairly well distinguishable. The 

elements on the right side are moved towards the posterior part compared to the 

left elements; this means that, during the deposition, the apparatus were subjected 

to some movement. The cusps of the S4 and S3 elements are aligned, instead the 

cusp of the S2 elements is orientated more caudally and its largest denticle is sub-

parallel to the cusps of the S3 and S4. The curvature of the S1 element seems to 

follow the curvature of the S2. The position of the M element relative to the S 

elements (especially S3 and S4) is the one expected from this kind of apparatus. 

 

Fig. 7.1. Cluster P9A-2 before segmentation, sinistral view. 
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Fig. 7.2. Sinistral and dextral views of the cluster P9A-2 after segmentation. Elements present: M (yellow), S4 

(pink and purple), S3 (green and light orange), S2 (aqua and light blue), S1 (light purple and night blue), S0 

(blue), P2 (brown). 

P9A-3. In this cluster all the ramiforms elements are preserved, from the M to the 

S0. There is also a part that could be a P2 element. The S0 is the most deformed 

and broken for the very hard compaction. The elements on the right side are in a 

lower position than the elements on the left side. The S3 and S4 elements of both 

sides are very attached to each other and this confirm the fact that probably they 

were located close and sub-parallel to one another in the apparatus and worked 

together within the living animal. Having both the M elements is very important 

because we are able to measure their relative position with the S elements and so 

to reconstruct the apparatus in a better way. It’s clear that the elements in this 

cluster are very long compared to the elements of the other clusters. 

 

Fig. 7.3. Cluster P9A-3 before segmentation. 
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Fig. 7.4. Sinistral and dextral views of the cluster P9A-3 after segmentation. Elements present: M (dark and 

light green), S4 (night blue and blue), S3 (yellow and light yellow), S2 (red and purple), S1 (dark blue and light 

blue), S0 (white), P2 (pink). 

P9A-7. The element extracted here are the S2, S1 and P2 of both side and a part of 

the S0.  This cluster is important because there are the P2 elements preserved, so it 

is thus possible to put them in a precise anatomical position. I realize that the 

position of these elements is particular and characterized by the tips of the 

denticles pointing towards the posterior part of the apparatus.  

 

 

Fig. 7.5. Sinistral and dextral views of cluster P9A-7 before segmentation. 

 
Fig. 7.6. Sinistral and dextral views of the cluster P9A-7 after segmentation. Elements present: S2 (yellow and 

green), S1 (blue and light blue), S0 (white), P2 (red). 
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F1. From this cluster it was possible to extract the M, S4 and S2 elements of both 

sides and only partially the S0 and the S1 elements. It is possible to see that the S2 

elements are in a lower position compared to all the other elements. Considering 

that is evident also in other clusters, I interpret this position as peculiar for the 

Mockina slovakensis apparatus. Another peculiarity is the position of the M 

elements and the anterior part of the S0: the M are close to the S0 and above the 

other S elements; I thus suppose that this is a particular position of this elements 

in order to perform a better seizing action, the so-called pinching position.  

 

 

 

Fig. 7.7. Cluster F1 before segmentation. 

 

Fig. 7.8. Sinistral and dextral views of the cluster F1 after segmentation. Elements present: M (blu and light 

blue), S4 (dark and light green), S2 (purple and pink), posterior process of S1 (yellow), anterior process of S1 

(white). 
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F4-A. We used this cluster to extract the P1 elements. They are not in a particular 

position, maybe closer to the S elements than the apparatus of Lower Triassic 

Novispathodus. 

 

Fig. 7.9. Sinistral and dextral views of cluster F4-A. 

P9A-5. From this cluster only the M elements were extracted. However, the 

position of these M elements is very particular and it is expressed only in this 

cluster. On the left side it is possible to see the S4, S3 and S2 elements and on the 

right side the S4 or S3 and the S2 elements. The elements on the right side are 

moved a little towards the posterior part of the other elements. The M elements 

are perpendicular to the other element and this could represent a particular 

position of the apparatus when the animal was grasping food. Considering the 

configuration of the M elements, we put the S “module” with a certain inclination 

from a plane parallel to the horizontal to let the apparatus reach this configuration 

during its motion.  
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Fig. 7.10. Cluster P9A-5 before segmentation. 

 

Fig. 7.11. Sinistral and dextral views of the cluster P9A-5 after segmentation. M (purple and light blue), S 

elements not distinguishable (red). 

All this information was fundamental for the achievement of a great functional 

model of the Mockina slovakensis apparatus.     
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8. Results 

For the reconstruction of the Mockina slovakensis apparatus, I used the 

information extrapolated from the clusters of the Dolomia di Forni and the results 

of the work of Goudemand et al. (2011). In particular, using the position of all the 

elements of the clusters, especially the ramiforms. I tried to adjust the positions of 

the elements in the reconstruction made for Novispathodus to see if was possible 

to achieve a similar arrangement (fig. 8.1 and fig. 8.2).   

 

Fig. 8.1. Closed arrangement of S elements of the Early Triassic conodont Novispathodus. (a) dorsal, (b) 

ventral, (c) rostral, (d) sinistral views. From Goudemand et al. 2011. 

 

Fig. 8.2. Sinistral view of the reconstructed apparatus of Novispathodus. From Goudemand et al. 2011. 
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The general arrangement of the conodont apparatus was confirmed. The S0 is in a 

central position and lying on the axis of bilateral symmetry, next to it there are the 

other ramiforms elements in pairs, S1 S2 S3 S4, from the inner to the outer side. 

Above them and in a rostral position there are the two M elements. Caudally 

compared to the S elements there are the P2 and P1 (fig. 8.3). 

 

Fig. 8.3. General architecture of a conodonts apparatus. 

The S3 and S4, in the clusters, are always attached to each other and it is very 

difficult to find them isolated. This suggests that they were located close and 

subparallel to one another and had probably a common motion in the living 

animals. I supposed for them, and of course for also the other S elements (S1 and 

S2), an inclined position of about 20/30 degrees towards the anterior part of the 

apparatus to a plane parallel to the surface (fig. 8.4D). 

The element S2 is more ventrally than the other elements in order to respect their 

position in the analyzed clusters. Compared to the other apparatuses, their position 

is not so much different; the cusp of the S2 is still subparallel to the posterior 

process of the S3 and S4 elements and the largest denticle of its anterior part is 

aligned with the cusp of the S3 and S4. 

The S1 are located near to the S0 and with the cusps above the P2 according to the 

position of these elements in the cluster P9A-7 (fig. 7.5). The curvature of the S1 
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follows the one of the S0 and, for their shape and position, it can be presumed that 

they should have worked together in the living animal. Per definition, the tip of 

the cusp of the S1 always points posteriorly. The S0 elements was located a little 

more rostrally than the other elements (fig. 8.4D). 

Hence, considering all these position of the S elements a compact arrangement in 

which all denticle tips end up close to midplane was suggested (fig. 8.4). I 

consider this spatial configuration as the maximal closing position of the grasping 

S “module” of the apparatus.  

For the position of the P1 elements I use the information of the cluster F4-A (fig. 

7.9) and I supposed for them a common position assessed for most of the 

conodonts apparatuses. They are in the most caudal position, perpendicular to the 

S elements and with the tips of the denticles pointing inward.   

 

Fig. 8.4. General architecture of Mockina slovakensis apparatus. (A) rostral, (B) dorsal, (C) ventral, (D) 

dextral views. 
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Considering the arrangement of Novispathodus (Goudemand et al., 2011), the 

position of the P2 elements is the same as the P1, but not for Mockina slovakensis. 

I put them parallel to the S elements, more or less under the posterior part of the S  

elements and with the tips of the denticles pointing towards the P1. Of course, the 

distance between P1 and P2 is greater than in Novispathodus because of the 

different orientation of the elements. I propose this configuration according to 

their position in the cluster P9A-7 (fig. 8.5).  

 

Fig. 8.5. Comparison between the positions of the P2 elements of Mockina slovakensis in the cluster P9a-7 

(left) and in the reconstructed apparatus (right). 

Also the position of the M elements differs a little from previous arrangements. 

Considering the relative position extrapolated from the clusters I assumed that the 

M were in a rostral position, inclined with the cusps pointing more dorsally and 

the posterior part more ventrally than in Novispathodus arrangement (fig. 8.6).  

 

Fig. 8.6. Dorsal view of the reconstructed apparatus of Early Triassic Novispathodus (A) and Late Triassic 

Mockina slovakensis (B). 
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As already said, for the reconstruction of the apparatus I used the scanned 

elements of Novispathodus because the lack of single elements of Mockina 

slovakensis to scan, so I prefer to use those elements to perform a better work. 

Novispathodus was an Early Triassic conodont and I could use its elements for my 

reconstruction because they are very similar to the elements of M. slovakensis 

even if it is was a Late Triassic conodont. The shapes of their elements are so 

similar because they belong to the same family Gondolellidea.   

However, after a first reconstruction with outstanding results, I saw that the 

elements of the apparatus did not fit too much with the shape of the elements in 

the clusters, particularly in the length. Thus, I tried to stretch the elements and 

with little adjustments in the position of the elements, I arranged an apparatus 

very similar to the first and, in some detail, better than the previous one. With 

longer elements is necessary an arrangement a little bigger to keep them from 

touching each other and to allow the movement needed, but in this case the 

relative position of all the elements seems to recall better the position highlighted 

in the clusters.  

For the movement of the apparatus I made a peculiar research in order to use all 

the possible information regarding this field of work. However, the principal base 

is, again, the study made for Novispathodus. A video with the suggested apparatus 

movement is in the attached CD, in rostral, dextral, sinistral and ventral views. 

The close position of the apparatus is when the M elements are in their most 

rostral position, in front of all the other elements and with the cusps pointing 

towards the center; the S elements are completed retracted towards the P 

elements, the posterior parts of the elements are above the P2 and the tips of the 

denticles converge towards the center (fig. 8.7).  
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Fig. 8.7. Closed position of the reconstructed apparatus of Mockina slovakensis. (A) Rostral, (B) dextral, (C) 

sinistral, (D) dorsal views. 

The opening movement is composed by a caudal retraction, mostly translation, of 

the M elements and by a rostral displacement of the S elements until the tips of 

the denticles are pointed towards the front of the apparatus. In order to perform a 

good hunting, the S3-4 and the S0-1 elements probably had an additional motion. 

For the S3-4, considering the shape of their denticles, it was essentially an 

opening/closing pivot motion around an axis parallel to their posterior part as 

shown in the movies (see Appendix); in this case the animal could be able to catch 

the prey in front of it. The curvature of the denticles of the S0-1 elements and the 

shape of the cusp of S0 suggest both a rotation and an arched antero-posterior 

translation (see movies in Appendix).    
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Fig. 8.8. Reconstructed apparatus of Mockina slovakensis in opened position. (A) Rostral, (B) dorsal, (C) 

dextral, (D) sinistral views. 

As highlighted by cluster F1 (Fig. 7.7 and 7.8), it was possible that the S0 and M 

occupied a particular position that provided an efficient pinching and seizing 

function. To obtain this position, the rotation of the S0-1 should have been 

synchronized with the closure of the M; at the end of the movement, the cusps of 

the M and of the S0 elements converged in the same point (fig. 8.9, 8.10 and 

movies in Appendix). 
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Fig. 8.9. Hypothetical synchronized pinching movement of the M and S0 elements. Left, rostral view; right, 

sinistral view. Blue circle: supposed cartilage that should have permitted this movement. 

 

Fig. 8.10. Pinching movement of Mockina slovakensis apparatus. (A) Start point, opened position; (B) 

pinching position; (C) end point, closed position. 

The subsequent dorso-caudal retraction of the S0-1 elements would have ripped off 

the tissues of prey and brought them to the P1-2 elements. Then, the closure of the 

other S elements would have helped to put back the food. The function of the P 

elements was, probably, to crumble the food brought back by the S elements.  

I made some movies to show the movement of the complete apparatus. I also tried 

to make a video in which I combined all the independent movements in order to 

promote a more complex general movement that the animal could have had in its 

life. Here I present two movie (Movie1 and Movie2 that you can find in the 

attached CD-ROM).  

In Movie1 are highlighted the independent movements of some elements on 

which I base my reconstruction. In particular, the opening/closing pivot motion of 
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the S3 and S4 elements and the pinching movement of the M and the S0-1 elements. 

They are shown, respectively, in rostral, dextral, sinistral and ventral views.  

Otherwise, in Movie2 I have combined the movements of all the elements (except 

the P1 and P2 elements) to proposed a functional motion of the entire apparatus 

that could have occurred in the living conodonts. The starting point is the closed 

position of the apparatus and so it is the final one. We present it in the same views 

of the previous movie.   

This reconstruction fit the assumption of a pulley-like system with protractor and 

retractor muscles that would have moved the elements about a ventral supporting 

element cylinder-shaped or U-shaped made of an unknown material but most 

probably of cartilaginous nature as assessed by Goudemand et al. (2011).  

It must be remembered that this is the first work which deals with the 

reconstruction of Mockina slovakensis apparatus, so I do not have too many 

constrains on which base my work.   
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9. Conclusions 

The present study has allowed me to put other constraints in the conodonts 

apparatus reconstruction. Considering the relative positions measured in the 

analyzed clusters of Mockina slovakensis I confirm previous studies that deals 

with this topic. In particular, the general arrangement of the conodonts oral 

skeleton was confirmed and some peculiar positions within the apparatus were 

found also in our cluster.  

First, the pinching position on which the M and S0 elements converged towards a 

common point on the frontal part of the apparatus in order to catch and cut the 

prey; this let me to say that, probably, conodont animals were predators. 

Moreover, I present a new position for the S2 elements, which lie more ventrally 

than the other S elements, and for the S0 element, which is moved more rostrally 

compared to the other S elements. The complete S array is inclined of 20/30 

degrees towards the frontal part of the apparatus and this configuration is, for me, 

more suitable for the conodont animal because it permitted a faster opening of the 

apparatus. Furthermore, I put the P2 elements under the posterior process of the S 

elements and, together with the P1, they are close to the S array; this position 

make the apparatus more compact and so it could have had a very functional 

motion. In the end, I assign a new position to the M elements and, therefore, their 

movement become essentially translational that could be easier to explain.  

With this kind of arrangement I support the assumption of the presence of a 

lingual cartilage that may have moved the entire apparatus together with some 

pairs of antagonistic muscles. I proposed a motion of the entire conodont 

apparatus that can be used in future works to improve the knowledge about this 

area of research.    

Furthermore, this study shows the importance of synchrotron microtomography as 

a method to analyze fused clusters of conodonts elements and to extract very 

useful information. The application of this technology, together with other 

analysis, might help shedding light to many controversies related not only in the 
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reconstruction of conodonts oral apparatus, but also in other aspects of their 

history.  
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APPENDIX 

Attached in the CD there are the poster and the abstract submitted at the 

International Conodont Symposium (ICOS4_2017) which took place in Valencia, 

Spain. There is also the program of the conference and the two movies showing 

the function of the apparatus (Movie1 and Movie2).  

 

 

 

 

          

 

              

 

 

          

 

 


