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Abstract

Spectral estimation is a prominent issue: besides the classical applications in infor-
mation engineering, such as signal processing, communications and model identifica-
tion, techniques that are able to deal with this matter can be useful in a widespread
variety of fields, from biology to seismology.

To the present, multivariable spectral estimation with complexity constraints
on the acceptable solutions is a challenging issue. There are at least two reasons
that make this subject significant. Firstly, nowadays the ability of dealing with non
scalar processes is necessary, since they play a key role in practice. Secondly, the
requirement that the complexity of the solution is bounded is indispensable from
the viewpoint of concrete implementation.

In this work, spectral estimation problem is recast in the form of a matricial
generalized moment problem with a complexity constraint expressed in the form of
a bound on the McMillan degree of the obtained interpolants. Interpolation data
are achieved via a proper filterbank and an information-theoretic index is introduced
in order to measure the distance between spectral density functions. This frame-
work naturally leads to formulate the issue of interest in the form of a constrained
optimization problem. This can be efficiently tackled by means of duality theory,
because the corresponding dual problem turns out to be particularly suitable for a
solving strategy based on Newton-type algorithmic approach.

An existence theorem for the dual problem is deduced, and the global convergence
of the proposed algorithm is proved.

Index Terms

Multivariable spectral approximation, spectral approximation, relative entropy, gen-
eralized moment problem, convex optimization, matricial Newton algorithm.
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Hf (·) The Hessian of f

Sx(ej·) Power spectral density of the stochastic process x
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Chapter 1
Multivariate Spectral Estimation:
Introduction

One of the most important features of modern information engineering is that it
makes use of statistics as a general framework, providing mathematic tools for mod-
eling reality. The cornerstone of this approach is the concept of statistical process,
that allows us to deal with random signals. Indeed, statistical processes represent
an effective mathematical model for random signals, whose introduction outper-
forms the traditional deterministic viewpoint, since it allows, for instance, an easier
description of mechanisms such as information transmission or the presence of dis-
turbance in control systems. On the one hand, the process of conveying information
is strictly linked to the idea of randomness: a signal, whose values can be completely
predicted on the basis of its present state, carries no new information. On the other
hand, control theory is motivated by the necessity of achieving and preserving the
desired behavior for a system, counteracting the effects of disturbances. An effec-
tive manner to perform this task is to regard disturbances, whose exact trend is, by
definition, unknown, as random signals.

Of course, these simple examples do not deplete the potentialities of statistical
processes, that can be productively employed in a widespread variety of application
fields. In particular, they can also be employed to provide a manageable model when
the deterministic description of a phenomenon is excessively complex. As a result,
they find applications also in economics, meteorology and medicine, for instance.

This work deals with a problem associated with the description of random pro-
cesses: the estimation of its spectrum (also known as the power spectral density)
according to available finite data records obtained from some realizations of the pro-
cess itself. Deferring mathematical details to the subsequent section, an idea of what
this problem involves is briefly introduced next. A meaningful way to interpret a
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2 CHAPTER 1. INTRODUCTION

random process is to consider it as a family of ordinary signals, parameterized by a
random variable. Once that the value of the random variable is chosen (exactly as it
happens in extractions from a ballot-box), a realization of the stochastic process is
attained. Without loss of generality, realizations are assumed to be signals defined
on a time-domain, so the obtained samples can be labeled by a time index. From the
observed values is possible to estimate parameters of interest such as the mean value
of the process and its correlation function. This function provides a measure of how
any two of the samples are interlaced. Recall that, under stationarity assumptions,
the correlation depends only on the difference of the time indexes of the samples.
If these assumptions hold, it is possible to introduce a description of the process in
the frequency domain, considering the Fourier-transform of the correlation function,
that is the previously introduced power spectral density.

However, in order to obtain the spectrum of a process, one should have at its
disposal all the correlation lags, whose number is infinite. This is a consequence
of the definition of the Fourier-transform. Moreover, the correlation lags should be
known exactly. As a consequence, a real setting originates a duplex problem: on the
one hand, the number of correlation lags available is ineluctably finite; on the other
hand, only an estimate of them is available.

These considerations describe the essence of the spectrum estimation problem: it
consists in estimating how the total power of a process is distributed over frequency,
given a finite record of a stationary data sequence. This is one of the fundamental
matters in information engineering, with widespread applications in communica-
tions, control systems and signal processing. Think about speech analysis: spectral
techniques can be adopted in speech compression and recognition. However, it is
restrictive to concentrate only on this context. Spectral analysis finds applications
also in many other fields. In economics, astronomy and meteorology it can reveal
hidden periodicities in the phenomena of interest; in mechanics it is a useful tool
in order to deal with vibration monitoring and reduction; in seismology it can be
employed with the purpose of investigating the nature of the seismic events, so it
may help to predict them. Finally, in medicine a meaningful example of the benefits
that stem from the application of spectral analysis is given by the diagnostic value
of electrocardiogram and electroencephalogram.

This work focuses on a particular setting, the challenging case in which the aim
is to estimate the spectrum of a multivariate random process, providing a rational
solution of bounded complexity. These requirements are necessary, from a system-
theoretic point of view, in order to assure that the solution, i.e. the estimated
spectrum, is concretely serviceable in practice. Actually, a rational transfer func-
tion can be realized by a state-space model, that is particularly convenient for an
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algorithmic implementation. However, an excessive complexity could make it unem-
ployable in realistic situations, so the necessity of a complexity bound comes forth.
Since the MIMO (Multiple Input Multiple Output) case is concerned, this bound
will be expressed in terms of the McMillan degree of the solution. The McMillan
degree is a measure of the complexity of a system, as discussed in Appendix A.

A solution will be proposed, in the spirit of a convex optimization approach
that has been developed in the last decade, in the context of generalized moment
problems. It provides a fertile perspective, since it tackles the classical problem of
analytic interpolation by means of an innovative point of view, that allows to deal
with the complexity constraints.

This approach will be presented in the state of-the-art section, after a brief review
on some mathematical background and notation.

The outline of the thesis is the following. Chapter 2 is devoted to introduce some
basic mathematical background and the state of-the-art approaches to spectral esti-
mation, with particular regard to the multivariable framework. Chapter 3 describes
the model that will be employed in order to tackle the issue of interest. Moreover,
the feasibility of the problem is investigated. Chapter 4 is the crucial part of the
thesis. A new approach to multivariate spectral estimation with a constraint on the
complexity of the estimate is exposed. The problem, that is recast in the form of a
convex optimization, is reduced to the minimization of a proper function. To begin
with, it is proven that the solution, if it exists, is unique. Then the existence of
such a solution is established. Finally, a Newton-type algorithm is introduced, and
its convergence to the optimal solution is proven. Chapter 5 shows the results of
some numerical simulations of the proposed approach. Chapter 6 proposes a brief
summary of the achieved results and outlines some hints for future improvements
and investigations.





Chapter 2
Preliminaries and State of-the-art

2.1 Mathematical Background

This section provides a brief review on some useful mathematical facts about stochas-
tic processes. The aim is to recall basic definitions and to fix the notation that will
be used throughout the thesis. A more detailed exposition about this subject can
be found, for instance, in [4] and [13].

Definition 2.1.1 (Stochastic process). Given the probability space S = (Ω,A,P),
where Ω is the sample space, A is the set of the events defined over Ω and P
is a probability measure, a (discrete time) scalar stochastic process is a function
x : Z× Ω→ R, such that x(t, ·) is a random variable defined on S, for each t ∈ Z.

The complete statistic description of a process is provided by the family of the
probability distributions {Fn s.t. n ∈ N}, that are defined as

Fn(x1, . . . , nn; t1, . . . , tn) := P [x(t1) ≤ x1, . . . ,x(tn) ≤ xn] , xi ∈ R, ti ∈ Z. (2.1)

If Fn is absolutely continuous, or if generalized functions are considered, it is possible
to define the corresponding probability density function fn, defined as

fn(x1, . . . , nn; t1, . . . , tn) := ∂nFn(x1, . . . , nn; t1, . . . , tn)
∂x1 . . . ∂xn

xi ∈ R, ti ∈ Z. (2.2)

Usually, a complete knowledge of the statistical description of the process is not
available. Therefore, it is useful to introduce the second order statistical description,
that corresponds to the knowledge of mean and correlation or covariance. It the case
of Gaussian processes the second order description provides the complete statistical
description. Introducing the expectation operator E[·], the mean is defined as the

5



6 CHAPTER 2. PRELIMINARIES AND STATE OF-THE-ART

function m : Z→ C given by

m(t) := E[x(t)] =
∫
R
xf1(x, t)dt t ∈ Z. (2.3)

Correlation r(t, s) and covariance σ(t, s) are functions that map Z× Z in C, in the
general case of complex-valued processes. They are defined as

r(t, s) := E[x(t)x∗(s)], t, s ∈ Z. (2.4)

where x∗(t) denotes the complex conjugate of x(t), and

σ(t, s) := E[(x(t)−m(t))(x∗(s)− m̄(t))], t, s ∈ Z. (2.5)

They both have the property of being positive semidefinite functions. A function
g(·, ·) is positive semidefinite if and only if

n∑
h,k=1

ahg(th, tk)ak∗ ≥ 0, a1, . . . , an ∈ C, t1, . . . , tn ∈ Z.

A stochastic process is said to be strictly stationary if, ∀ τ, n ∈ Z, the following
equation holds:

Fn(x1, . . . , xn; t1 + τ, . . . , tn + τ) = Fn(x1, . . . , xn; t1, . . . , tn), xi ∈ R, ti ∈ Z. (2.6)

A less tight condition is known as second order (or weak, or wide sense) stationarity,
since it involves only the second order probability description, requiring that the
mean is a constant function and the correlation (or equivalently, the covariance)
depends on the difference between the time indexes of its arguments rather than their
values. In formulae, weak stationarity is equivalent to the two following identities:

1. m(t) = m, ∀ t ∈ Z;

2. r(t, s) = r(t− s, 0), ∀ t, s ∈ Z (similarly for the covariance function).

With abuse of notation, since it actually depends on a unique argument, r(t− s, 0)
is then expressed as r(k), or rk, with k = t− s.

At last, it is now possible to introduce the spectrum (or power spectral density)
S(·) of a (weakly) stationary stochastic process, defined as the Fourier-transform of
the correlation function r(·):

S(ejθ) =
∞∑

τ=−∞
r(τ)e−jθτ , θ ∈ [−π, π]. (2.7)
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Bochner’s theorem allows to conclude that, since r(·) is a positive semidefinite func-
tion, its Fourier-transform Sx(ej·) is real and non-negative.

A multivariate stochastic process is a vector whose elements are scalar stochastic
processes. If it takes complex values, the real and the imaginary part of each of its
components are required to be random variables defined on the same probability
space. In the multivariate case, the mean becomes a vector function, whereas cor-
relation and covariance are given by positive semidefinite matrices R(τ) = E[x(t +
τ)x∗(t)] and Σ(τ) = E[(x(t + τ) − m)(x(t) − m)∗], where ∗ denotes the transpose
and conjugate operator. If the weak stationarity assumption holds, it is possible
to define the power spectral density S(ejω). Since R(τ) = R∗(−τ), it holds that
S(ejθ) = S∗(ejθ) i.e. the spectrum displays the Hermitian symmetry. In addition,
since the correlation matrix keeps the property of being a positive semidefinite func-
tion, it holds that S(ejθ) ≥ 0 ∀θ ∈ [−π, π]. For each value of θ ∈ [−π, π], the power
spectral density is a positive semidefinite matrix.

A result that will significantly be employed in the following sections is that it is
possible to attain an additive decomposition of the spectrum. Let the function f(z)
be defined by:

f(z) = 1
4π

∫ π

−π
S(ejθ)z + ejθ

z − ejθ
dθ. (2.8)

It is a positive real function, i.e. it is analytic with positive real part in |z| > 1. The
power spectral density can be expressed as

S(ejθ) = 2<
[
f(ejθ)

]
(2.9)

and f admits the following series representation for |z| > 1:

f(z) = 1
2r0 +

+∞∑
k=1

rkz
−k (2.10)

In addition, some results on spectral factorization are recalled (see [14], for an
exhaustive description). Consider a spectral density S ∈ Sm×m+ (T), where Sm×m+ (T)
is the set of Cm×m-valued bounded and coercive spectral densities. A measurable
function W with values in Cm×p is said to be a spectral factor of S if

W (ejθ)W ∗(ejθ) = S(ejθ), a.e. onT.

It is possible to prove that W is full row rank and that necessarily p ≥ m. Since
W is bounded on T, it belongs to the set of Lm×p2 functions, i.e.

∫
TrWW ∗ < ∞.
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Moreover, since any S ∈ Sm×m+ (T) satisfies the Szegö condition

∫ π

−π
log detS(ejθ)dθ2π > −∞,

it admits a spectral factor W in Hm×m
2 , i.e. the Hardy space of functions in Lm×m2

that have an analytic extension in |z| > 1. These can be interpreted as the Z-
transform of causal signals. A square factor that exhibits these properties is called
outer or minimum phase spectral factor. Let W1 ∈ Lm×m2 and W2 ∈ Lm×p2 be
spectral factors of S ∈ Sm×m+ (T). Then U := W−1

1 W2 is an all-pass function, i.e.
U(ejθ)U∗(ejθ) = I ∀ θ ∈ [−π, π].

It is also useful to recall some notions about linear transformations of stochastic
processes, that will be widely employed in the following sections. To begin with, it
is worthwhile to remind that a linear time invariant (LTI) BIBO system transforms
the input process x, that is required to be weakly stationary, in the jointly (weakly)
stationary output process y, defined by

y(t) =
∞∑

s=−∞
H(t− s)x(s), t ∈ Z, (2.11)

where H(·) is the impulse response of the system, that is BIBO stable if and only
if ∑∞s=−∞ |H(s)| < ∞. The transfer function of the system is denoted by Ĥ(ej·).
Actually, in order to obtain the wide sense stationarity of the output process, a
weaker condition suffices:

My =
∫ π

−π
Ĥ(ejθ)Sx(ejθ)Ĥ∗(ejθ)dθ2π <∞. (2.12)

If this condition holds, from eq. (2.11) it is possible to obtain a statistical (second
order) description of the output process y. Here it is sufficient to recall the expression
of the spectrum of the output process, given by

Sy(ejθ) = Ĥ(ejθ)Sx(ejθ)Ĥ∗(ejθ), θ ∈ [−π, π]. (2.13)

In the introduction a system-theoretic index that describes the complexity of
MIMO systems, the so-called McMillan degree, has been mentioned. The reader is
deferred to appendix A for the theory that leads to its definition. To the purpose of
this work, it is sufficient to recall that the McMillan degree is the dimension of each
state space minimal realization of a given rational transfer matrix.
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2.2 State of-the-art

Spectral estimation has a long history, that dates back to early applications of
Fourier analysis. Many techniques have been developed: some of them require only
the process of interest to be stationary and do not need further knowledge about
the structure of the process to be analyzed. This is the case of non-parametric
approaches. They aim at estimating the spectrum by means of Fourier transform
of a finite sequence of sample covariance lags, which are obtained from a finite
data record. The ancestor of such techniques is the periodogram method. Other
techniques have been derived from it, allowing to improve the performances in terms
of the variance of the estimate. On the other hand, when additional information
about the process of interest is available, it can be convenient to recast the problem of
spectral estimation, so that it amounts to estimate the parameters of a proper model,
that takes into consideration the knowledge about the process. This is a parametric
approach, that has brought to the development of a variety of techniques, whose
efficacy is related to the specific context. For example, the issue of spectral lines
analysis has been a fertile framework, in which many high resolution methods have
been worked out. The reader is deferred to [21] for an exhaustive analysis of the
aforementioned techniques.

The method that is proposed in this work draws inspiration from a new approach
that has succeeded in the last decade. It follows in the footsteps of recent results
about generalized moment problems with complexity bound (see [3] and references
therein, for instance). A typical problem of this kind is the following:

Problem 2.2.1. Given a set of distinct points in the outside of the unit circle, say

Z := {z0, . . . , zn}

and a set of values in the right half of the complex plain, denoted by

W := {w0, . . . , wn} ,

find a parameterization of all the functions f(z) that they

1. fulfill the interpolation conditions, i.e. f(zk) = wk for k = 0, . . . , n;

2. are positive-real, i.e. they are analytic and have nonnegative real part outside
the unit circle;

3. are rational of McMillan degree at most n.
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Whereas condition 1) and 2) originate the Nevanlinna-Pick interpolation prob-
lem, that is a classical issue in complex analysis with important applications in
systems and control theory (e.g. in robust stabilization and control), the third con-
dition represents a genuine novelty. Classical theory dealing with Nevanlinna-Pick
interpolation provides effective techniques that allow to compute rational solutions,
but do not suggest a policy that is capable of obtaining the complete parameteriza-
tion of all the rational solution with bounded degree. The fact that the interpolant
is rational with bounded degree, however, is of capital importance in practical im-
plementation. These considerations are the starting point for the definition of a new
class of techniques. A leading role in this framework is played by convex optimiza-
tion and duality theory. Indeed, a cost function, that in the case of interest is an
index that measures the distance (or the pseudo-distance) between two spectral den-
sities, is introduced. A convex functional, the so-called primal Lagrangian function,
is then obtained by considering the cost function and the interpolation conditions.
Unconstrained minimization of the primal function allows to discriminate the solu-
tions which are compatible with the interpolation constraints. It is interesting to
anticipate that information theory suggests many interesting metrics. Initial meth-
ods usually included the solution given by the maximum entropy spectrum as a
special case, for instance. Whilst the primal problem is infinite dimensional, since
the solution is given by a function, the dual one is finite dimensional. Moreover, it
is possible to prove that a solution exists and it is unique. In principle, it can be
computed trough gradient descent methods.

An implementation of this approach with regard to spectral estimation, focusing
on the scalar case, has been exhaustively presented for the first time in [2]. The
result is the so-called Tunable High-Resolution Estimator, (THREE) which is made
up of three elements, as the name suggests:

• a bank of filters;

• the theory for parameterizing the set of the solutions that are consistent with
the interpolation data provided by the filters;

• an algorithm that is capable of extracting a spectrum belonging to the previ-
ously introduced set.

In the following, it will be clarified how filters can be used to collect interpolation
data about the spectral density function. Traditional methods need to collect as
many covariance lags as possible, exploiting the fact that they provide the coefficients
of the series expansion of f(z) introduced in equation (2.9). THREE method, on the
contrary, requires only to compute zeroth-order lags, assuring robustness and better
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performances in the presence of short data records. In [2], the estimation problem is
recast so that it turns out to be equivalent to fix the optimal values of the parameters
of an ARMA model. It is proved that the MA parameters (also known as spectral
zeros) can be chosen arbitrarily, as much as the poles of the filterbank. The poles of
the ARMA model, however, are univocally defined once the MA part of the model
and the poles of the filter are fixed. The particular case in which the poles and the
spectral zeros coincide can be solved in closed form by means of linear equations. It
correspond to the central solution of the Nevanlinna-Pick interpolation. Any other
choice of the spectral zeros implies that a convex optimization problem has to be
solved, whose features are the ones that have been introduced before. In particular,
the cost function that is employed by THREE is a generalization of the entropy
gain. Let Ψ be defined as

Ψ(z) = ρ(z)ρ(z−1)
τ(z)τ(z−1) ,

where ρ(z) and τ(z) are monic polynomial with roots given by the spectral zeros
and the filterbank poles, respectively. The cost function is defined as

IΨ(f) = 1
2π

∫ π

−π
log[f(ejθ) + f(e−jθ)]Ψ(ejθ)dθ.

The special case in which ρ(z) = τ(z) (i.e. Ψ = 1), that has been introduced
before, leads to the solution that maximized the entropy gain of the spectrum.
The dual problem is suitable to be solved by a Newton-type algorithm. A very
interesting property of THREE is its effectiveness in discovering spectral lines and
steep variation in the spectrum of interest. The reason is that the selection of the
poles of the filter in the proximity of any arc of the unit circle allows to improve the
resolution of the power spectrum in the corresponding frequency range.

The problem of the choice of the spectral zeros in the THREE method has
naturally led the authors to consider the possibility to include the presence of some
a priori information about the spectrum in the problem formulation. This topic
has been developed in [10]. Available information, that could be achieved by means
of a coarse estimation of the spectrum of interest, is expressed in the form of a
spectral density Ψ to be approximated by the solution Φ̂. In order to measure the
distance between spectral densities, an information-theoretic criterion is employed,
namely the Kullback-Leibler (pseudo-)distance (also known as relative entropy or
information divergence, see [11] and [6]):

DKL(Ψ||Ψ) =
∫

Ψ log Ψ
Φ . (2.14)
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A state-space realization of the filterbank used to collect the interpolation data is
given by

x(k + 1) = Ax(k) +By(k), (2.15)

where (A,B) is a reachable pair, A is asymptotically stable (i.e. it has all its
eigenvalues in the unit circle), B is assumed to be full column rank, for simplicity,
and the filter is fed by the scalar, zero-mean stochastic process y, whose power
spectral density is to be estimated. The transfer function that describes the filter is
given by

G(z) = (zI − A)−1B. (2.16)

The covariance of the output
Σ = E [xkx∗k] , (2.17)

where ∗ denotes the transpose and complex conjugate, can be estimated with tradi-
tional techniques from the observation of the steady state output of the filter. The
problem of interest is then formalized as follows.

Problem 2.2.2. Given Σ and Ψ ∈ S+(T), find Φ̂ that solves: minimize
DKL(Ψ||Φ)

over {Φ ∈ S+(T) |
∫
GΦG∗ = Σ}

A key role is played by the operator Γ : C(T,H(m))→ H(n), such that:

Γ(Φ) :=
∫
GΦG∗. (2.18)

Recall thatH(n) denotes the set of the Cn×n-valued Hermitian matrices and C(T,H(m))
the space of the continuous functions with values in H(m), defined on the unit circle.
Clearly, the covariance Σ has to belong to Range(Γ) in order to make the problem
feasible. It is interesting to point out the the minimization is performed in respect
of Φ(ejθ), that is the second argument of the function defined by eq. (2.14). This
choice is imposed by the desire of obtaining maximum entropy solution as a special
case (when Ψ = 1, as it has been previously described). Moreover, given that Ψ
is rational, the solution of the approximation problem turns to be rational with a
bound on its McMillan degree, that cannot exceed deg Ψ + 2n, where n is equal to
the degree of the transfer function realized by the filterbank. In this framework,
under the hypothesis that the conditions of feasibility hold (the proof can be found
in [9], for instance), it is possible to prove existence and uniqueness of the solution
of the dual problem. A suitable Newton-type algorithm is described. However, it is
affected by numerical instability due to the fact that the gradient tends to infinity
in the vicinity of the boundary. An alternative approach (see for instance [19] and



2.2. STATE OF-THE-ART 13

[15]) is based on the iteration of a non-linear map on a bounded subset. In [19] a
local convergence result is obtained and the successful thorough simulations moti-
vate a conjecture about its global validity. In [15] a new proof of the existence and
uniqueness of the solution of the Kullback-Leibler scalar approximation problem is
presented. Moreover, the non-linear map algorithm is proved to be equivalent to a
modified gradient descent method with fixed step size.

2.2.1 Multivariable Spectral Estimation

The multivariate case is much more challenging. In [10] the authors propose to
employ the matricial Kullback-Leibler-von Neumann generalization of the scalar
relative entropy as an index for optimization. This is defined by

DKL(Ψ||Φ) := Tr
∫

Ψ (log Ψ− log Φ) ,

where the function log(·) denotes now the matricial logarithm, as defined in [7]. Even
though it is possible to derive a closed expression for the solution in the simple case
in which Ψ = I, in [16], it is shown that the general case is much harder. Indeed,
the variational analysis cannot be carried out easily in the case of minimization in
respect of the second argument. As a consequence, it seems that Kullback-Leibler
distance cannot be generalized nicely to the multivariable case. On the contrary,
another index, the Hellinger distance, that stems from statistics, turns out to be
very effective. In the scalar setting, it is defined by

DH(Ψ||Φ) :=
[∫ (√

Φ−
√

Ψ
)2
] 1

2

The proposed multivariate extension is given by

D̃H(Ψ||Φ) :=
[
inf
{
||WΨ −WΨ||22 : WΨ, WΦ ∈ Lm×m2 , WΨW ∗

Ψ = Ψ, WΦW ∗
Φ = Φ

}] 1
2

(2.19)
It is proved that the infimum is a actually a minimum, that it provides a bona
fide distance (relative entropy is not, conversely) and that it coincides with the L2

distance between the set of all the spectral factors of Ψ and Φ, respectively. The
correspondent multivariable problem has the same structure of the scalar problem
2.2.2:

Problem 2.2.3. Given Σ and Ψ ∈ S+(T)m×m, find Φ̂ that solves:

minimize DH(Ψ||Φ)
over {Φ ∈ S+(T)m×m |

∫
GΦG∗ = Σ}
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Papers [16] and [17] describe a Newton-type matricial algorithm for the dual
problem, that exploits some key systems theoretic ideas such as spectral factorization
and the connected systematic usage of Lyapunov and Riccati equations in order to
solve complex integrals. In particular, [17] tackles the issue of existence providing
an exhaustive proof. Moreover, further results that prove the global convergence of
the matricial Newton algorithm are achieved. In the scalar case m = 1 the usage of
the Hellinger distance allows the computation of a solution with McMillan degree
higher than the one that is attained via Kullback-Leibler approach. Indeed, in the
Hellinger case the resulting upper bound on the degree is given by deg Ψ+4n, instead
of deg Ψ + 2n. This method, however, was the only one allowing to deal with the
multivariate case efficiently, when it was introduced. Nevertheless, the fact that the
degree is 2n higher can be very significant in practice. This work aims at proposing
an alternative method that is able to manage the multivariate case, providing a
lower upper bound on the complexity of the achieved solution. It will be shown that
this bounds amounts to deg Ψ + 2n, as in the Kullback-Leibler case approach.

Another significant contribution is given in [18], where the focus is on the well-
posedness of the previously introduced constrained minimization problems. In par-
ticular, the scalar case with the Kullback-Leibler distance and the multivariable one
with the Hellinger distance are tackled. A problem is said to be well posed, in the
sense of Hadamard, if the following requirements are fulfilled:

1. a solution exists;

2. the solution is unique;

3. the solution depends continuously on the data.

In the case of interest, the purpose is to prove that the solution of the problem
depends continuously on the covariance Σ. The main result of that paper is that
both the problems 2.2.2 and 2.2.3 are well posed, for Σ > 0 and variations δΣ
belonging to Range(Γ), where Γ is defined as in equation (2.18). The importance
of this result is clear in the concrete framework in which the real value of Σ can
only be estimated, for instance by averaging on some records that are observed after
the filter has reached the steady-state. A notable consequence of the results on
well-posedness is that, if the estimate Σ̂ of Σ is strongly consistent, i.e.

lim
N→∞

Σ̂(x1, . . . , xN) = Σ almost surely,

then the solutions obtained starting from the estimate Σ̂ converge to the one cor-
responding to Σ almost surely. This result holds not only for problems 2.2.2 and
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2.2.3, but whenever the functional of the primal problem depends continuously on
the Lagrange parameter Λ, whose optimal choice is the aim of the dual problem
solution.

The results provided in [18] are significant in the real setting: the covariance
of the filter output Σ has to be estimated and, since its estimate Σ̂ is not the true
variance, the feasibility condition could be violated. Therefore, a method is required
in order to obtain the best approximation of the estimated covariance that makes the
problem feasible. A simple-minded approach could be to project the estimate onto
Range(Γ). This method, however, could make the estimate lose positive definiteness.
Therefore, another approach has been proposed in [8]. The issue of the choice of
the best approximation of the estimated state covariance is recast in the form of a
stand-alone optimization problem, in the same spirit of the previously introduced
ones. As a measure of distance between positive definite covariances in Range(Γ),
an information criterion is employed, that is the same multivariate extension of the
Kullback-Leibler distance that will be analyzed in Chapter 3. Duality theory is
applied, leading to a convex optimization problem that can be solved via a matricial
Newton algorithm. Simulations show that this method significantly outperforms
the results that are obtained via simple projection of the estimated covariance on
Range(Γ) and, in case, by the addition of a positive term in order to make the
approximant positive definite. This is true both in the scalar and the multivariable
framework (described by problem 2.2.2 and 2.2.3 on page 13, respectively). It is
significant to point out that this method turns out to be more effective, even in the
case that the starting covariances it generates are quite similar to the ones obtained
via the projection method.





Chapter 3
Multivariate Spectral Estimation: Problem
Statement and Preliminary Considerations

3.1 Problem Statement and Mathematical Model

Consider a zero-mean, wide-sense stationary m−dimensional process y(t), with t ∈
Z, whose spectral density Φ ∈ Sm×m+ (T) is unknown. The aim is to estimate Φ.
Denoting the unit circle by T, recall that Sm×m+ (T) is the set of the bounded and
coercive1 spectral density functions with values in Cm×m.

The method that is proposed is based on three elements:

1. information given in the form of the steady-state covariance Σ of the output
of a proper bank of filters, fed by the process y (see figure 3.1);

2. a prior spectral density Ψ ∈ Sm×m+ (T);

3. a suitable index that measures the distance between spectral densities.

G(z)
y(t) x(t)

Figure 3.1: Filterbank fed by the input process y(t). The matrix Σ represents the
covariance of the output process x(t).

Soon it will be clear that the role of the filterbank is to provide interpolation data
for the spectral estimation. Regarding the spectral density Ψ, it allows to take
into account the presence of a priori information, a contingency that is frequent in

1Recall that Φ(ejθ) is said to be coercive if there exists a positive constant k such that Φ(ejθ)−
kI > 0 a.e. on T

17
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practice, for example when a coarse estimate of Φ is available. Since, in general,
Ψ is not consistent with the interpolation conditions imposed by the filterbank, an
approximation problem arises. It follows that it is necessary to introduce an index
that measures how far the estimate Φ̂ is from the prior Ψ.

The purpose of this section is to analyze the ingredients that have been previously
introduced. It is worthwhile to recall that this kind of model draws inspiration from
the new convex optimization approach that has been developed, for instance, in [2],
[10], [16] and [17], as already summarized in the state of-the-art section 2.2. Let us
face these issues one at a time, starting from the role of the bank of filters.

3.1.1 The Bank of Filters

To begin with, a state-space realization of the bank of filters is introduced. It can
be expressed by means of the difference equation

x(t+ 1) = Ax(t) +By(t), t ∈ Z, (3.1)

whose corresponding transfer function is

G(z) = (zI − A)−1B, (3.2)

where A ∈ Cn×n is a stability matrix (i.e. it has all its eigenvalues inside the unit
circle T), B ∈ Cn×m is full rank, n ≥ m and (A,B) is a reachable pair. Moreover,
although most of the theory could be developed in complete generality, only the case
in which Ψ is rational will be considered. In fact, this is the case of interest in all
practical situations. Actually, the results that will be achieved can be extended to
the general case, at the price of a moderate extra burden.

As it was previously hinted, the filterbank provides the interpolation data. In-
deed, a straightforward consequence of (2.7) and (2.13) is that the estimate of the
spectrum of interest Φ has to satisfy the constraint

∫
GΦG∗ = Σ, (3.3)

where Σ is the covariance matrix of the output x in (3.1). Two examples can make
this result more significant, showing how the problem of interest has reference to
classical issues such as Nevanlinna-Pick interpolation and the covariance extension
problem. Before dealing with them, it is convenient to write the transfer function
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G(z)

G2(z)

G1(z)

Gn(z)

y

x1

x2

xn

Figure 3.2: Block diagram of the bank of filters

G(z) in the form

G(z) =


G1(z)
G2(z)

...
Gn(z)

 .

whose corresponding block diagram representation is shown in figure 3.2.

Example 3.1.1. For the sake of simplicity, assume that the wide-sense stationary
stochastic process y(t) is scalar. Suppose Gk(z) to be a first order stable filter, i.e.

Gk(z) = z

z − pk
, |pk| < 1. (3.4)

Feeding the filter with y(t) the output stationary process x(t) is attained. The
difference equation that allows to compute x(t) on the basis of the past and present
values of the input process is the following:

x(t) = y(t) + pkx(t).

As a result, it is possible to conclude that x(t) = ∑∞
h=0 pk

hy(t− h). If pk is real, the
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output process is real too and its covariance can be expressed as E [x2(t)]. Therefore,

E
[
x2(t)

]
= E

( ∞∑
h=0

pk
hy(t− h)

)2


= E
[(
y(t) + pky(t− 1) + pk

2y(t− 2) + . . .
)2
]

= E[y2(t)]
(
1 + p2

k + p4
k + . . .

)
+ 2pkE [y(t)y(t− 1)]

(
1 + p2

k + p4
k + . . .

)
+ 2pk2E [y(t)y(t− 2)]

(
1 + p2

k + p4
k + . . .

)
+ . . .

= r0
(
1 + p2

k + p4
k + . . .

)
+ 2pkr1

(
1 + p2

k + p4
k + . . .

)
+ 2pk2r2

(
1 + p2

k + p4
k + . . .

)
+ . . .

= 2
1− pk2

(1
2r0 + r1 + r2 + . . .

)
= 2

1− pk2f(pk−1),

where the last equality can be written thanks to the additive decomposition de-
scribed by eq. (2.9). The knowledge of the covariance provides the interpolation
condition

f(pk−1) = 1
2
(
1− pk2

)
E
[
x2(t)

]
.

In [2] it was shown that an adequate choice of the filterbank poles can improve
the resolution of the estimate in the corresponding frequency range. This approach
differs from the traditional one, in which the spectrum of interest is estimated on
the basis of the series expansion of f(z) near infinity (since its coefficients are given
by the covariance lags). If pk is a complex pole, the covariance of the output process
is given by

E [x(t)x∗(t)] = 1
1− |pk|2

(
f(pk−1) + f(p̄k−1)

)
,

where p̄k is the complex conjugate of pk.

Assume Gk(z) has the same structure of (3.4), for each k = 1, . . . , n. A state
space realization could be given by the matrices:

A =


p1 0 . . . 0
0 p2 . . . 0
... ... . . . ...
0 0 . . . pn

 , B =


1
1
...
1

 .

The covariance matrix of the n-dimensional output process attained by means of
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such a filterbank is

Σ = E [x(t)x̄(t)]

=



w1+w̄1
1−p1p̄1

w1+w̄2
1−p1p̄2

. . . w1+w̄n
1−p1p̄n

w2+w̄1
1−p2p̄1

w2+w̄2
1−p2p̄2

. . . w2+w̄n
1−p2p̄n... ... . . . ...

wn+w̄1
1−pnp̄1

wn+w̄2
1−pnp̄2

. . . wn+w̄n
1−pnp̄n

 ,
(3.5)

where, by means of (2.10), wk = f(pk−1) = 1
4π
∫ π
−π

e−jθ+pk
e−jθ−pk

Φ(ejθ)dθ, k = 1, . . . , n.
The covariance has the form of a Pick matrix. The problem of parameterizing
the set of spectral density functions that satisfy (3.3) can be recast in the form a
classical Nevanlinna-Pick interpolation problem (see section 2.2 on page 9 for a brief
description of this issue). Recall that, since Σ ≥ 0, such a problem admits a solution
and if the covariance is a positive definite matrix, there are infinitely many solutions.

Example 3.1.2. Assume that the filter realizes the transfer function

G(z) =



1
z
...

zn−2

zn−1


,

whose state-space realization can be obtained by means of the matrices

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... . . . . . . ...
0 0 . . . 0 1
0 0 . . . 0 0


, B =



0
0
...
0
1


.

The k-th component of output of the filter, fed by y(t), is given by its time-delayed
version y(t− k + 1). Therefore, the covariance of the output process is equal to

Σ =


r0 r1 . . . rn−1

r̄1 r0 . . . rn−2
... ... . . . ...

r̄n−1 r̄n−2 . . . r0

 .

The class of functions that satisfy (3.3), as in the previous case, is nonempty since
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Σ ≥ 0 and has infinitely many elements if Σ > 0. Such functions are given by all the
possible extensions of the covariance sequence given by r0, . . . , rn−1. In this case, the
issue of finding a proper interpolant is known as the covariance extension problem.
Such a problem is of paramount importance in many control applications.

3.1.2 On the Prior Density and the Necessity for a Distance
Measure

As it was previously hinted, the proposed mathematical model allows to take into
account a prior spectral density Ψ. In practice, a rough estimation of the spectral
density of interest is often available (by means of traditional techniques such as
periodogram, for instance). In [2], where an ARMA model is sought in order to work
out the problem of spectral estimation, it is suggested that the a priori information
could be used to determine an adequate choice for the spectral zeros. These can be
fixed arbitrarily, but it is proved that choosing them near the effective spectral zeros
improves the resolution (in terms of spectral lines and steep variations detection). In
subsequent works, drawing inspiration from the same convex optimization approach,
such as [10] and [16], it is proposed to represent a priori information in the form
of a spectral density Ψ ∈ Sm×m+ (T). Since, in general, Ψ is not consistent with
the constraint (3.3), that can be imposed once the state covariance is known, an
approximation problem arises. The aim is to estimate Φ, so that the estimation
procedure generates a spectral density that satisfies (3.3) and is as close as possible,
in a sense that has to be defined, to the prior Ψ.

Therefore, the choice of the index employed to measure how far a spectral density
is from another one tuns out to be a key point. This issue has been of crucial impor-
tance in the most recent developments of the approach that was firstly proposed in
[2]. In particular, it widely depends on the choice of the distance measure whether
or not it is possible to apply the method to the multivariate context. For instance,
the Kullback-Leibler (pseudo-)distance (2.14) has been effectively employed in the
scalar framework, as shown in [10]. However, its natural multivariate extension has
turned to be very challenging to deal with (the reader is deferred to [16] for the
analysis leading to this result). In [16] and [17] this issue has been resolved by
means of an ad hoc multivariate extension of the Hellinger distance, see (2.19). It
is worthwhile to recall that the proposed extension is such that the distance of two
multivariate spectral densities amounts to the L2 distance between the sets of their
spectral factors. Such a method, however, provides an upper bound on the com-
plexity of the estimate that is equal to deg Ψ + 4n, whereas in the Kullback-Leibler
case it amounts to deg Ψ + 2n. The remainder can be very significant in practical
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applications.

This work aims at proposing an approach that is effective in the multivariable
context and, at the same time, provides an upper bound on complexity that is equal
to deg Ψ + 2n. Such an approach is based on the choice of a different distance
measure, that is inspired to the scalar Kullback-Leibler distance, too. In order to
explain how this index was attained, a brief review is exposed. Assume ρ and σ

are probability density functions (of a continuous random variable). Then their
Kullback-Leibler divergence is defined as

DKL(ρ||σ) =
∫
ρ log ρ

σ
. (3.6)

This distance index arises in the context of hypothesis testing as explained in [11]
and in [6, chapter 11], for instance. DKL(p(x|H0)||p(x|H1)) can be interpreted as
the expected discrimination information for H0 over H1, i.e. the mean information
per sample for discriminating in favour of a hypothesis H0 against a hypothesis H1,
when hypothesis H0 is true.
Kullback-Leibler distance has widespread applications in a variety of fields, from
information theory to quantum mechanics. It is also known as relative entropy, gain
of information or Kullback-Leibler divergence, and many generalizations and ad hoc
formulations are available. Actually, relative entropy is not a proper distance mea-
sure, because it is not symmetric and it does not obey to the triangular inequality.
Nevertheless, it is possible to prove that it is nonnegative and that it vanishes if and
only if ρ = σ (a.s.). Indeed, since log(·) is a convex function, − log(·) is convex and
the Jensen’s inequality holds:

DKL(ρ||σ) =
∫
ρ log ρ

σ

= −
∫
ρ log σ

ρ

= Eρ[log σ
ρ

]

≥ logEρ[
σ

ρ
]

≥ log
∫
σ

≥ 0.

(3.7)

From Jensen’s inequality it follows that DKL(ρ||σ) = 0 if and only if ρ = σ a.e. This
is sufficient, in many applications, in order to ascribe a distance character to this
index.

In [10] relative entropy is generalized to the case of scalar spectral density func-
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tions. Given Ψ and Φ in Sm×m+ (T), it has been defined as

DKL(Ψ||Φ) =
∫

Ψ log Ψ
Φ . (3.8)

Since the normalization condition
∫
ρ =

∫
σ = 1 does not necessarily hold for spectral

densities, the positivity of (3.8) has to be analyzed. From the inequality log(x) ≤
x− 1 and the monotonicity of the integral, it follows that:

DKL(Ψ||Φ) =
∫

Ψ log Ψ
Φ

= −
∫

Ψ log Φ
Ψ

≥
∫

Ψ
(

1− Φ
Ψ

)

≥
∫

Ψ−
∫

Φ

(3.9)

If
∫

Ψ =
∫

Φ, (3.9) allows to conclude that DKL(Ψ||Φ) ≥ 0. Moreover, equality holds
if and only if Ψ = Φ. If λ :=

∫
Φ is known, it is possible to rescale Ψ to Ψ̃ so that the

minimum possible value of DKL

(
Ψ̃||Φ

)
over the set S+(T) is zero, that is achieved

if and only if there exists Φ̂ ∈ S+(T) such that Φ̂ = Ψ̃. Therefore, the minimization
is performed with regards to Ψ̃, instead of Ψ. It means that the solution would turn
out to be the best approximation of the shape of Ψ rather of Ψ itself. However,
this is usually what is sought in practical situations (think about speech processing,
for instance). In [10], it is proved that if the matrix A is singular, λ can be easily
computed as

λ = v∗Σv
‖v∗B‖2 .

Moreover, even though A is non singular, the problem of minimizing DKL(Ψ||Φ)
is still significant. Indeed, given Φ̂ that minimizes DKL (Ψ||Φ), it is possible to
normalize Ψ to Ψ̃ a posteriori, so that Ψ̃ =

∫
Φ̂∫
ΨΨ is such that

∫
Ψ̃ =

∫
Φ. As a
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consequence,

DKL(Ψ̃||Φ) =
∫

Ψ̃ log Ψ̃
Φ

= Ψ
∫

Φ̂∫
Ψ

[
log Ψ + log

∫
Φ̂− log

∫
Ψ− log Ψ

]

=
∫

Φ̂∫
Ψ

∫ [
Ψ log Ψ

Φ

]
−
∫

Φ̂∫
Ψ

∫ [
Ψ log Ψ

Φ̂

]

=
∫

Φ̂∫
Ψ

∫ [
Ψ log Ψ

Φ

]
+
∫

Φ̂ log
∫

Φ̂∫
Ψ

= αDKL(Ψ||Φ) + β.

(3.10)

where α =
∫

Φ̂∫
Ψ > 0 and β =

∫
Φ̂ log

∫
Φ̂∫
Ψ are constants. Therefore, the minimizing Φ

would be the same, justifying the usage of DKL(Ψ||Φ) as an index to measure how
far Φ is from the prior.

The extension to the multivariate setting proposed in [10] is based on the Kullback-
Leibler-Von Neumann distance. This index is usually related to quantum mechanics.
Let ρ and σ be Hermitian matrices with unit trace. These are employed in statistical
quantum systems theory to describe the state of an n−level system. The quantum
relative entropy of ρ with respect of σ is given by

S(ρ||σ) = Tr [ρ (log ρ− log σ)] . (3.11)

it follows from Klein’s inequality that S(ρ||σ) ≥ 0, and that S(ρ||σ) = 0 if and only
if ρ = σ. This is the so-called Von Neumann-Umegaki extension of the Kullback-
Leibler relative entropy. It suggests the following distance-type index between two
multivariate spectral densities Ψ and Φ:

DKLvNU(Ψ||Φ) = Tr
∫

[Ψ (log Ψ− log Φ)]. (3.12)

Its features are analyzed in [16]. In particular, the issue of nonnegativity is tackled.
It is proved that the index is nonnegative if

∫
Tr Ψ =

∫
Tr Φ. Under this assumption

it vanishes if and only if Ψ = Φ. Therefore, in the same spirit of what has been done
in the case of the scalar version, in general it is necessary to rescale Ψ a posteriori,
considering the minimization of DKLvN(Ψ̃||Φ) with Ψ̃ =

∫
Tr Φ̂∫
Tr ΨΨ. As previously

hinted, the variational analysis of the primal functional arising from (3.12) shows
that an explicit form for the solution Φ̂ in terms of Ψ it cannot be obtained. This
prevents us from using this distance for our estimation purposes.

Therefore, the necessity of resorting to other indexes, in order to successfully
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deal with the multivariate spectral estimation problem, arises. This work proposes
a different usage of the relative entropy index, that gives encouraging results for spec-
tral estimation. As usual, assume Ψ, Φ ∈ Sm×m+ (T). Then, the distance-measure
between spectral densities that will be considered is given by

D(Φ‖Ψ) :=
∫ 1

2

[
log det Ψ

det Φ + Tr(Ψ−1Φ)−m
]

=
∫ π

−π

1
2

[
log det Ψ(ejθ)

det Φ(ejθ) + Tr(Ψ(ejθ)−1Φ(ejθ))−m
]
dθ

2π .
(3.13)

The choice of this index draws inspiration from the expression assumed by the
relative entropy when two Gaussian probability density functions, relating to a (real)
random vector, are compared. Recall that the probability density function of a
Gaussian random vector is defined once its mean and covariance are known. In
particular, x ∼ N (µρ,Σρ), with Σρ ∈ Rn×n, exhibits the density function

ρ(x) = 1√
(2π)n det(Σρ)

exp
[
−1

2(x− µρ)>Σρ
−1 (x− µρ)

]
, (3.14)

Assume σ to describe a random vector x ∼ N (µσ,Σσ). Since the second order de-
scription is equivalent to the complete statistical description of a Gaussian random
vector, is predictable that the relative entropy will depend only on means and co-
variance matrices. Firstly, the relative entropy is written in the form of a difference
of expectations.

DKL(ρ||σ) =
∫
ρ log ρ

σ

=
∫
ρ log ρ−

∫
ρ log σ

= Eρ [log ρ]− Eρ [log σ] .

Secondly, the explicit expression of the probability density functions is inserted,
dealing separately with the two addends.

Eρ [log ρ] = Eρ
[
−1

2(x− µρ)>Σρ
−1 (x− µρ)−

1
2 log (2π)n det Σρ

]
= −1

2Eρ
[
Tr (x− µρ)(x− µρ)>Σρ

−1
]
− 1

2 log (2π)n det Σρ

= −n2 −
1
2 log (2π)n det Σρ.

Notice that the linearity of the trace operator has been exploited in order to replace
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E [Tr] with Tr [E]. Regarding the second expectation term,

Eρ [log σ] = Eρ
[
−1

2(x− µσ)>Σσ
−1 (x− µσ)− 1

2 log (2π)n det Σσ

]
= −1

2Eρ
[
Tr (x− µσ)(x− µσ)>Σσ

−1
]
− 1

2 log (2π)n det Σσ

= −1
2Eρ

[
Tr (x− µρ + µρ − µσ)(x− µρ + µρ − µσ)>Σσ

−1
]
− 1

2 log (2π)n det Σσ

= −1
2Eρ

[
Tr (x− µρ) (x− µρ)>Σσ

−1 + 2 Tr (x− µρ) (µρ − µσ)>Σσ
−1

+(µρ − µσ)>Σσ
−1 (µρ − µσ)

]
− 1

2 log (2π)n det Σσ

= −1
2
[
Tr ΣρΣσ

−1 + (µρ − µσ)>Σσ
−1 (µρ − µσ)

]
− 1

2 log (2π)n det Σσ.

where it has been used the fact that

Eρ
[
Tr (x− µρ) (µρ − µσ)>Σσ

−1
]

is null, because Eρ [(x− µρ)] = 0. Finally, the relative entropy can be written as

DKL(ρ||σ) = Eρ [log ρ]− Eρ [log σ]

= −n2 −
1
2 log (2π)n det Σρ + 1

2
[
Tr ΣρΣσ

−1 + (µρ − µσ)>Σσ
−1 (µρ − µσ)

]
+ 1

2 log (2π)n det Σσ

= 1
2

[
Tr ΣρΣσ

−1 + (µρ − µσ)>Σσ
−1(µρ − µσ) + log det Σσ

det Σρ

− n
]
.

(3.15)

Starting from this result, the new distance measure between spectral density
functions (3.13) has been defined. The argument can be interpreted as the relative
entropy between two Gaussian densities, such that, for all ejθ ∈ T, Ψ(ejθ) and
Φ(ejθ) play the role of covariance matrices. Therefore integration on the unit circle
is introduced. In addition, the term depending on the mean values disappears,
because the stochastic processes of interest are assumed to have zero mean. It is
worthwhile to recall that the case that will be dealt with corresponds to the choice
of considering D(Φ||Ψ). As it will be explained in section 4.2, see remark 4.2.1
on page 38, variational analysis shows that the alternative choice D(Ψ||Φ) is not
convenient.

Remark 3.1.1. The nonnegativity of the distance measure (3.13) is patent, because
it is a natural consequence of the fact that relative entropy is nonnegative and that,
pointwise, the spectral densities Φ(ejθ) and Ψ(ejθ) behave exactly like the covariance
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matrices Σσ and Σρ in (3.15): they are hermitian and positive definite. Since the
integrand in (3.13) is nonnegative, such is the distance measure. Moreover, no
rescaling of the prior spectral density is required.

3.2 Problem Formalization and Feasibility

It is now possible to present a precise formulation of the issue of interest:

Problem 3.2.1. (Approximation problem) Let Ψ ∈ Sm×m+ (T) and let Σ ∈ Cm×m

such that Σ = Σ∗ > 0. Find Φ̂ that solves

minimize D(Φ||Ψ)

over
{

Φ ∈ Sm×m
+ (T)|

∫
GΦG∗ = Σ

}
In order to tackle the problem, a convex optimization approach, in the spirit

of [10] and [16], will be developed. To begin with, the first issue to face is the
one of feasibility. The question to answer for is whether, given a bank of fil-
ters of the form (2.15) and the steady-state covariance of its output, Σ, a co-
ercive spectral density function Φ ∈ Sm×m+ (T) exists such that (3.3) holds, i.e.∫
GΦG∗ = Σ. A convenient way to deal with this problem is to introduce a suit-

able operator. Let H(n) = {M ∈ Cn×n |M = M∗} and C(T;H(m)) the space of the
continuous functions defined on the unit circle with values in H(m). The operator
Γ : C(T;H(m))→ H(n) is defined by

Γ(Φ) :=
∫
GΦG∗. (3.16)

As regards the range of the above defined operator, i.e. the set Range (Γ) :=
{M ∈ H(n) | ∃Φ ∈ C(T;H(m)) such that

∫
GΦG∗ = M}, the following theorem holds

(the proof can be found in [17] and [9]):

Theorem 3.2.1. Consider Σ ∈ H(n) and a system described by (3.1), where A is
(asymptotically) stable, B is full column rank and (A;B) is a reachable pair. Then:

1. Σ is in Range(Γ) if and only if there exists H ∈ Cm×n such that

A− AΣA∗ = BH +H∗B∗. (3.17)

2. Σ is in Range(Γ) if and only if it satisfies the rank condition

rank
Σ− AΣA∗ B

B∗ 0

 = rank
 0 B

B∗ 0

. (3.18)
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3. Let Σ be positive definite. The following facts are equivalent:

• There exists H ∈ Cm×n that solves (3.17).

• There exists Φ ∈ C(T;H(m)), Φ > 0, such that Γ(Φ) = Σ.

• There exists Φ ∈ Sm×m+ (T) such that
∫
GΦG∗ = Σ.

As a consequence, for Σ ∈ Range (Γ) s.t. Σ > 0, the Problem 3.2.1 is feasi-
ble, because there exists a bounded and coercive spectral density Φ such that the
constraint (3.3) is satisfied.

Remark 3.2.1. Assume that the hypotheses of Theorem 3.2.1 hold and consider an
Hermitian matrix Σ > 0. It is interesting to derive an expression for a matrix
H ∈ Cm×n which solves equation (3.17). Let Φ be a spectral density such that∫
GΦG∗ = Σ. Recall that the transfer function realized by the system (3.1) has the

form (2.16). Therefore, G(z) = AG(z)z−1 +Bz−1. Then, it is possible to write

Σ =
∫
GΦG∗

=
∫ (

AG(ejθ)e−jθ +B
)

Φ(ejθ)
(
AG(ejθ)e−jθ +B

)∗
=
∫
AG(ejθ)Φ(ejθ)G∗(ejθ)A∗ +

∫
BΦ(ejθ)G∗(ejθ)A∗

+
∫
AG(ejθ)Φ(ejθ)B∗ +

∫
BΦ(ejθ)B∗

= AΣA∗ +B
∫ [1

2Φ(ejθ)B∗ + Φ(ejθ)G∗(ejθ)A∗
]
dθ

2π
+
∫ [1

2BΦ(ejθ) + AG(ejθ)Φ(ejθ)
]
B∗

= AΣA∗ +BH +H∗B∗.

(3.19)

In view of (3.19), an expression of H ∈ Cm×n such that (3.17) holds is obtained.
It is worthwhile to analyze it, in order to make clearer its relation with the sta-
tistical description of the input process. Recalling that G(z) = (zI − A)−1B =
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∑∞
k=1A

k−1Bz−k, it is possible to write:

H =
∫ [1

2Φ(ejθ)B∗ + Φ(ejθ)G∗(ejθ)A∗
]
dθ

2π

=
∫ [1

2Φ(ejθ)B∗ + Φ(ejθ)(Be−jθ + ABe−j2θ + A2Be−j3θ + . . . )∗A∗
]
dθ

2π

=
∫ [1

2Φ(ejθ)B∗ + Φ(ejθ)(B∗ejθ +B∗A∗ej2θ +B∗(A∗)2ej3θ + . . . )A∗
]
dθ

2π

=
∫ [1

2Φ(ejθ)B∗ + Φ(ejθ)ejθB∗A∗ + Φ(ejθ)ej2θB∗(A∗)2 + . . .
]
dθ

2π

=
[

1
2ry(0) ry(1) ry(2) . . .

]


B∗

B∗A∗

B∗(A∗)2

...

 ,

(3.20)

where the result follows from the fact that covariance lags ry(k) (recall that y is
assumed to be zero-mean) can be evaluated on the basis of the spectral density
Φ(ejθ) via inverse Fourier transform:

ry(k) =
∫ π

−π
Φ(ejθ)ejkθ dθ2π .

Another condition equivalent to the facts of Theorem 3.2.1, in the case in which
Σ > 0, involves geometric considerations. It states that:

Proposition 3.2.1. A positive definite matrix Σ >∈ H(n) belongs to Range (Γ),
i.e. there exists Φ ∈ Sm×m+ (T) such that

∫
GΦG∗ = Σ, if and only if

(I − ΠB)(Σ− AΣA∗)(I − ΠB) = 0

where ΠB = B(B∗B)−1B∗ is the orthogonal projection onto RangeB.

The proof can be found in [8]. It is reported here for the sake of completeness.

Proof. As regards necessity, it easily follows from algebraic manipulations applied



3.2. PROBLEM FORMALIZATION AND FEASIBILITY 31

to equation (3.17). Indeed,

(I − ΠB)(Σ− AΣA∗)(I − ΠB) = (I − ΠB)(BH +H∗B∗)(I − ΠB)

= BH −BHΠB +H∗B∗ −H∗B∗ΠB − ΠBBH

− ΠBH
∗B∗ + ΠBBHΠB + ΠBH

∗B∗ΠB

= BH −BHB(B∗B)−1B∗ +H∗B∗

−H∗B∗ −BH −B(B∗B)−1B∗H∗B∗

+BHB(B∗B)−1B∗ +B(B∗B)−1B∗H∗B∗

= 0.
(3.21)

As for sufficiency, it is possible to achieve the result by means of (3.18). To begin
with, a new matrix is defined

T :=
[
C B

]
∈ Cn×n,

where C ∈ Cn×(n−m) has full column rank and it is such that RangeC⊥RangeB
(i.e. ∀x ∈ C(n−m×1), y ∈ Cm×1, it holds that the scalar product 〈Cx,By〉 = x∗C∗By

is null). The matrix C is chosen in order to guarantee that T is invertible. Moreover,
since C is full column rank and its range is orthogonal to RangeB, it is possible to
express to express it as C = (I −ΠB)V , where V ∈ Cn×(n−m) has full column rank.
From the necessity part and the new expression of C it follows that

C∗(Σ− AΣA∗)C = 0.

Consider now the matrix Σ− AΣA∗ B

B∗ 0

 ,
a congruent matrix ∆ is obtained via

∆ :=
T ∗ 0

0 I

 Σ− AΣA∗ B

B∗ 0

T 0
0 I

 =
T ∗ (Σ− AΣA∗)T T ∗B

B∗T 0

 .
As a consequence,

∆ =


C∗ (Σ− AΣA∗)C C∗ (Σ− AΣA∗)B C∗B

B∗ (Σ− AΣA∗)C B∗ (Σ− AΣA∗)B B∗B

B∗C B∗B 0

 =


0 ? 0
? ? B∗B

0 B∗B 0

 . (3.22)
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Since B∗B is invertible (recall that B is assumed to have full column rank) and
matrix rank is not changed by multiplication by an invertible matrix, it follows that

rank
Σ− AΣA∗ B

B∗ 0

 = rank ∆ = 2m.

Finally, result (3.18) allows to conclude that Σ belongs so Range Γ.

Next, a result on the dimension of Range (Γ) is proved.

Proposition 3.2.2. The real dimension of the linear space Range (Γ) is equal to
m(2n−m)

This result is proved in [8], along the same lines that follow:

Proof. To begin with, it is worthwhile to notice that the real dimension of Range (Γ)
amounts to the real dimension of the linear space of the matrices that can be written
in the form BH +H∗B∗, with H ∈ Cm×n. This is a consequence of Theorem 3.2.1.
A change of basis in the state space of the system (3.1) does not affect Range (Γ).
Under the hypothesis that B has full column rank, the change of basis can be chosen

so that it is possible to write B such as B :=
Im

0

. Therefore, partitioning H so

that H =
[
H1 H2

]
, with H1 ∈ Cm×m and H2 ∈ Cm×(n−m), each matrix that can be

expressed as BH +H∗B∗, has the form

M := BH +H∗B∗ =
Im

0

 [H1 H2

]
+
H∗1
H∗2

 [Im 0
]

As a consequence, M can be written as

M =
H1 +H∗1 H2

H∗2 0


Since the element in position (1, 1) is real, whereas H2 can assume complex values, in
general, the resulting real dimension is given bym2+2 [m(n−m)] = m(2n−m).

A simplifying assumption that will be employed from now on is that Σ = I.
However, this is not an oversimplification. The hypothesis that the covariance matrix
is positive definite already holds. Therefore, it is sufficient to consider the matrix
transformation induced by Σ 1

2 . Apply the coordinate change only to the matrices A
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and B, so that:

Ã← Σ− 1
2AΣ 1

2 ;

B̃ ← Σ− 1
2B;

Now the system has the transfer function G̃(ejθ) = Σ− 1
2G(ejθ). As a consequence

∫
G̃ΦG̃∗ = I.

Henceforth, Ã, B̃, G̃ will be referred as A,B,G and the covariance matrix will be
assumed to be the identity matrix.





Chapter 4
A Convex Optimization Approach to
Multivariate Spectral Estimation

4.1 Convex Optimization Approach: Motivations

This work burgeons along the same lines developed in [10], focusing on the multivari-
ate framework such as [16] and [17]. In the following, we assume that the feasibility
condition 3.17 holds. The aim is to recast the issue of multivariate spectral esti-
mation so that it can be efficiently worked out by means of suitable algorithmic
procedures. To this purpose, the formalization that has been introduced so far has
two key elements: a prior spectral density and a distance measure. This has been
done because it naturally gives rise to a convex optimization problem, that can be
dealt with by means of traditional tools such as duality theory and variational anal-
ysis. It will be proven that the solution to Problem 3.2.1 exists and it is unique.
Moreover, it can be computed via consolidated techniques, such as a Newton type al-
gorithm. Of course, this should be implemented in a smart manner, so as to achieve
the best performances.

Preliminary, it is worthwhile to recall that the choice of the duality theory ap-
proach is motivated by the fact that, in the case of interest, it allows to solve a
challenging problem (the starting one, that henceforth will be called primal prob-
lem) through the solution of a simpler one (the corresponding dual problem). Indeed,
the primal problem aims at finding the optimal approximant directly. Therefore it
is infinite-dimensional, because the minimization of a proper functional, that will
be introduced soon, takes place over the infinite dimensional space Sm×m+ (T). On
the contrary, the corresponding dual problem is finite dimensional, because the op-
timization is carried out over a subset of H(n). Since the previously introduced
formalization allows to solve the dual problem manageably and the solution of the

35
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primal one can be straightforwardly obtained once the solution of the dual problem
is known, this method turns out to be really effective and suitable for a numeric
implementation.

In order to make the following part clearer, some fundamental notions about
duality theory are recalled in Appendix B.

4.2 Variational Analysis

In this section the focus is on the Lagrangian and the dual Lagrangian function
arising from Problem 3.2.1 on page 28. As it has been already mentioned, the
choice of the distance measure allows to elaborate the variational analysis, so that a
closed form for the optimal solution of the primal problem is obtained. In addition,
the dual problem is deeply analyzed, and it is proved that the solution is unique,
if it exists. The issue of existence is much more challenging and it will be dealt
with separately. Moreover, the policy that will be proposed in order to prove that
Problem 3.2.1 admits a solution, leads to meaningful achievements in the light of
an algorithmic implementation of the estimation procedure. Indeed, the key result
stated in Theorem 4.3.1 allows to conclude both on the existence of a solution for
the dual problem and the global convergence of a Newton-type algorithm that can
be employed to compute it.

To deal with analysis, it is necessary to introduce the scalar product between
two n-dimensional Hermitian matrices A,B. It will defined by

〈A,B〉 := Tr(AB∗). (4.1)

This choice represents the natural extension of the standard scalar product between
vectors a and b ∈ Rk:

〈a,b〉 := a∗b.

Indeed, by defining a and b as the (n×n)-dimensional vectors that are obtained by
putting in a column the columns of A and B, respectively, it turns out that

〈A,B〉 = Tr (AB∗) = a∗b = 〈a,b〉 .

Now it is possible to write the Lagrangian function corresponding to Problem
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3.2.1. Remind that the simplifying assumption Σ = I holds (see Section 3.2).

LΨ(Φ,Λ) =
∫ [

log det(Ψ)
det(Φ) + Tr(Ψ−1Φ)

]
+
〈

Λ,
∫
GΦG∗ − I

〉

=
∫ [

log det(Ψ)
det(Φ) + Tr(Ψ−1Φ) + Tr(ΛGΦG∗)

]
− Tr Λ.

(4.2)

The first addend comes from the distance measure to minimize, see eq. (3.13). The
second takes into account the constraint (3.3). Λ ∈ H(n) is the Lagrange multiplier
and plays the role of the coefficients λi encountered in Appendix B. Each Λ ∈ H(n)
can be decomposed in only one way as the sum of a term in Range (Γ) and a term
that is orthogonal to Range (Γ). The orthogonal direct sum takes the form:

Λ = ΛΓ ⊕ Λ⊥, ΛΓ ∈ Range (Γ), Λ⊥ ∈ (Range (Γ))⊥.

Λ belongs to (Range (Γ))⊥ if and only if, ∀Φ ∈ C(T;H(m), it holds that

0 =
〈

Λ,
∫
GΦG∗

〉
= Tr

[∫
GΦG∗Λ

]
= Tr

[∫
G∗ΛGΦ

]
,

where the cyclic property of the trace has been employed. As a consequence, ∀Λ ∈
(Range (Γ))⊥, the following identity is satisfied:

G∗(ejθ)ΛG(ejθ) ≡ 0, ∀θ ∈ [−π, π] . (4.3)

Moreover, for each Λ ∈ (Range (Γ))⊥, Tr [Λ] = 〈Λ, I〉 = 0, because I ∈ Range (Γ)
in views of the feasibility assumption. Hence, a term Λ⊥ ∈ (Range (Γ))⊥ gives no
contribution to the Lagrangian (4.2). Therefore, the Lagrange parameter Λ can be
assumed to belong to Range(Γ).

The purpose is now to pursue the unconstrained minimization of the functional
(4.2). In this setting the role of partial derivatives is played by the directional
derivatives (also knowns as Gateaux derivatives). We remark that LΨ(·, ·), defined as
in (4.2), is strictly convex in Φ. This is also a result of the choice of distance measure.
Moreover, the Lagrangian function in (4.2) is differentiable in Φ, in the sense of
directional derivatives, i.e. it has continuous directional derivatives in whatever
direction δΦ ∈ C(T). As a consequence, the unconstrained minimization is realized
by imposing that the first variation is zero in each direction. For δΦ ∈ C(T), the
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first variation is given by

δL(Φ,Λ; δΦ) =
∫ [
−Tr(Φ−1δΦ) + Tr(Ψ−1δΦ) + Tr(G∗ΛGδΦ)

]
. (4.4)

This results comes from the properties of the trace operator and the fact that

δ log det(X, δX) = Tr(X−1δX). (4.5)

Therefore, (4.4) is zero ∀ δΦ ∈ C(T) if and only if

Φ =
[
Ψ−1 +G∗ΛG

]−1
. (4.6)

This value is defined as Φ◦. Afterwards, it will be interesting to consider also some
alternative forms for the expression of Φ◦:

Φ◦ =
[
Ψ−1 +G∗ΛG

]−1
; (4.7)

Φ◦ = WΨ(I +G∗1ΛG1)−1W ∗
Ψ; (4.8)

Φ◦ = Ψ−ΨG∗(Λ−1 +GΨG∗)GΨ; (4.9)

where G1(ejθ) is defined by

G1(ejθ) := G(ejθ)WΨ(ejθ), (4.10)

with WΨ being a stable and minimum phase spectral factor of Ψ. Note that WΨ

exists because Ψ ∈ Sm×m+ (T) (see Section 2.1).
Since Φ◦ is required to be a bounded spectral density, i.e. it has to be integrable

on the unit circle T, a posteriori we require that the minimization takes place over
a proper subset of Range (Γ). To this aim, the second expression provided by (4.7)
highlights that one has to ask that Λ ∈ L+, where

L+ :=
{

Λ ∈ Cn×n |Λ = Λ∗, I +G∗1ΛG1 > 0∀ ejθ ∈ T
}
. (4.11)

Therefore, in this setting the natural set for the Lagrangian multipliers Λ turns out
to be

LΓ
+ := L+ ∩ Range (Γ). (4.12)

To sum up, the main result is that for each Λ ∈ LΓ
+ there exists a unique Φ◦

that minimizes the Lagrangian functional. Its expression in terms of the Lagrangian
multiplier Λ is given by (4.7).

Remark 4.2.1. As previously hinted in Subsection 3.1.2, a possible alternative in the
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definition of the distance measure could have been

D̃(Ψ‖Φ) =
∫ 1

2

[
log det Φ

det Ψ + Tr(Φ−1Ψ)−m
]
. (4.13)

This choice, however, turns out to be difficult to deal with in the light of a convex
optimization approach. Indeed, the corresponding Lagrangian function is defined
by

L̃Ψ(Φ,Λ) =
∫ [

log det(Φ)
det(Ψ) + Tr(Φ−1Ψ) + Tr(ΛGΦG∗)

]
− Tr Λ. (4.14)

and the first directional derivative can be written as

δL̃Ψ(Φ,Λ; δΦ) =
∫

Tr
{[

Φ−1 − Φ−1ΨΦ−1 +G∗ΛG
]
δΦ
}
. (4.15)

The condition that has to be satisfied by stationary points, i.e. δL̃Ψ(Φ,Λ; δΦ) = 0,
for all δΦ ∈ C(T), is equivalent to ask that

Φ−1 − Φ−1ΨΦ−1 +G∗ΛG = 0. (4.16)

This equality allows to obtain an expression of stationary points in terms of Λ,
that is not as simple as the one provided when the distance (3.13) is considered.
Nevertheless, such an expression is computed for the sake of completeness. Consider
equation (4.16). By pre-multiplication and post-multiplication by Φ, it is possible
to rewrite it as

Φ−Ψ + ΦG∗ΛGΦ = 0 (4.17)

Assume WΛ such that G∗ΛG = WΛ
∗WΛ. Then

0 = Φ−Ψ + ΦG∗ΛGΦ

= WΛΦWΛ
∗︸ ︷︷ ︸

ΦΛ

−WΛΨWΛ
∗︸ ︷︷ ︸

ΨΛ

+WΛΦWΛ
∗WΛΦWΛ

∗

= ΦΛ −ΨΛ + ΦΛ
2.

(4.18)

Equation (4.18) is solved by choosing

ΦΛ = −1
2I +

(1
4I + ΨΛ

) 1
2
,

as can be proven by substitution:

−1
2I +

(1
4I + ΨΛ

) 1
2

+ ΨΛ + 1
4I −

(1
4I + ΨΛ

) 1
2

+ 1
4I + ΨΛ = 0
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Therefore, we can obtain the following expression for the optimal solution Φ◦:

Φ◦ = −1
2(G∗ΛG)−1 +WΛ

−1
(1

4I +WΛΨWΛ
∗
)
WΛ

−∗.

The next step is to consider the dual Lagrangian function, that can be written as
infΦ L(Φ,Λ) = L(Φ◦,Λ), because the previous considerations allow to conclude that
the infimum is actually a minimum. The reasoning proceeds along the same line
exposed in Appendix B. To begin with, let us consider the expression of L(Φ◦,Λ):

L(Φ◦(Λ),Λ) =
∫

log det(Ψ)
det(WΨ [I +G∗1ΛG1]−1W ∗

Ψ)
+ Tr

[
Ψ−1WΨ (I +G∗1ΛG1)−1W ∗

Ψ

]
+ Tr

[
ΛGWΨ (I +G∗1ΛG1)−1W ∗

ΨG
∗
]
− Tr Λ

=
∫

log det(I +G∗1ΛG1) + Tr
[
(I +G∗1ΛG1)−1

]
+ Tr

[
ΛG1 (I +G∗1ΛG1)−1G∗1

]
− Tr Λ

=
∫

log det(I +G∗1ΛG1) + Tr
[
(I +G∗1ΛG1)−1 (I +G∗1ΛG1)

]
− Tr Λ

=
∫

log det(I +G∗1ΛG1) + n− Tr Λ.

(4.19)

Instead of maximizing L(Φ◦(Λ),Λ), we will focus on the minimization of a simpler
functional arising from it, that is defined as:

J(Λ) :=
∫

[Tr Λ− log det(I +G∗1ΛG1)] =
∫

Tr [Λ− log(I +G∗1ΛG1)] . (4.20)

Hereafter, we will refer to J(·) as the dual function.

The main result that will be achieved here and in the following sections is that
the solution that minimizes the dual function exists and it is unique. Moreover,
a Newton-type algorithm with backtracking, that solves the problem efficiently, is
proposed. To this purpose, the starting point is to prove that the dual function is
strictly convex. This allows to conclude that the optimal solution, if it exists, is
unique. As regards existence, it is a more challenging issue, that is deferred to the
following section. In order to analyze the problem of convexity, a straightforward
procedure is to evaluate the first and second variation of J(Λ). They are given by

δJΨ(Λ; δΛ) =
∫ {

Tr [δΛ]− Tr
[
(I +G∗1ΛG1)−1G∗1δΛG1

]}
(4.21)
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and

δ2JΨ(Λ; δΛ1, δΛ2) =
∫

Tr
[
(I +G∗1ΛG1)−1G∗1δΛ2G1(I +G∗1ΛG1)−1G∗1δΛ1G1

]
.

(4.22)
These expressions have been obtained by exploiting (4.5) and the fact that, denoting
the matrix inversion operator by R : M 7→M−1, its first derivative in direction δM
is given by

δR (M, δM) = −M−1δMM−1. (4.23)

It is now possible to define the linear functional ∇JΨ,Λ(·) := δJΨ(Λ; ·) as the
gradient of JΨ at Λ. Instead, the bilinear form HΛ(·, ·) := δ2JΨ(Λ; ·, ·) is the Hessian
of JΨ at Λ. In order to prove that the dual function admits a unique minimum
on LΓ

+, we will first establish that the dual function is strictly convex. Recall that a
function f : A ⊆ Rn → R is said to be strictly convex if A is a convex set and, for
each x, y ∈ A s.t. x 6= y, given λ ∈ (0, 1), the following inequality holds:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

Two preliminary results are given by the following lemmata. The first is a result
on the continuity of the map from an Hermitian matrix to its minimum eigenvalues.
The second one extends Lemma 5.2 in [17]. They allow to prove the continuity of
the derivatives of the dual function.

Lemma 4.2.1. Let H ∈ H(n) and m be its minimum eigenvalue. The map H 7→ m

is continuous.

The following proof is set out in [17].

Proof. Let a(s) be the characteristic polynomial of H, i.e. a(s) := det(sI − H).
Since its coefficients are obtained by means of sums and products of the elements of
H, the map from H to the vector of the coefficients of its characteristic polynomial
is continuous. Moreover, the roots of a monic polynomial depend continuously on
its coefficients. As a consequence the map from the Hermitian matrix H to its
minimum real eigenvalue is continuous, because it is a compositions of continuous
maps.

Lemma 4.2.2. Let QΛ(z) := I + G∗1(z)ΛG1(z). Consider a sequence Λn ∈ LΓ
+

converging to Λ ∈ LΓ
+. Then Q−1

Λn are well defined and converge uniformly to Q−1
Λ

on T.
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Taking into account the fact that Ψ is bounded, the proof is extremely similar to
the one offered in [17]. It provides the existence of a uniform upper bound on Q−1

Λ ,
too.

Proof. Since Λ ∈ LΓ
+, it also belongs to L+, so that QΛ is a positive definite contin-

uous matrix on T. From positive definiteness and Lemma 4.2.1 it follows that there
exists a continuous function m(ejθ) such that for all ejθ ∈ T, QΛ(ejθ) ≥ m(ejθ)I. Let
mΛ := minθm(ejθ). Therefore, the inequality QΛ(ejθ) ≥ mΛI holds for each value
ejθ ∈ T. Recall that G1(ejθ) = G(ejθ)WΨ(ejθ) and let δΛ ∈ B(0, ε), the closed ball
of radius ε centered in 0. It is possible to write that

||G∗1δΛG1|| = ||W ∗
ΨG
∗δΛGWΨ|| ≤ εMG1 ,

where MG1 is defined by

MG1 = max
θ
‖W ∗

Ψ(ejθ)G∗(ejθ)‖‖G(ejθ)WΨ(ejθ)‖.

Since the prior density Ψ is bounded, so is its minimum phase spectral factor WΨ

and, therefore, MG1 is bounded, too. Choose ε < mΛ
MG1

, so that ||G∗1δΛG1|| <
mΛ. As a consequence, the set of the matricial functions I + G∗1 (Λ + δΛ)G1, with
(δΛ, θ) ∈ B(0, ε)×[−π, π] is compact and does not contain any singular matrix. Since
the matrix inversion operator is continuous at any nonsingular matrix, Q−1

Λ+δΛ(ejθ)
admits a uniform bound M(Λ, ε) on B(0, ε) × [−π, π]. For n sufficiently large,
(Λ − Λn) ∈ B(0, ε) because Λn → Λ. The last result is that Q−1

Λn → Q−1
Λ uniformly

on T. Indeed,

sup
θ
||Q−1

Λn −Q
−1
Λ || = sup

θ
||Q−1

Λn [G∗1 (Λ− Λn)G1]Q−1
Λ ||

≤M2 sup
θ
||G∗1 (Λ− Λn)G1||

≤M2εMG1 .

On the basis of these result, it is possible to establish the following theorem:

Theorem 4.2.1. The dual functional JΨ(Λ) is C2(LΓ
+) and strictly convex on (LΓ

+).

Proof. To begin with, we prove the continuity of the first variation of JΨ(Λ), by
exploiting the previously introduced result on the convergence of the sequence Q−1

Λn .
We recall that a real function f(x) is said to be continuous in x0 ∈ X if, given that
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the sequence xn → x0, the following result holds:

lim
n→+∞

f(xn) = f
(

lim
n→∞

xn

)
= f(x0).

Considering a sequence Mn ∈ Range (Γ), such that Mn → 0, by Lemma 4.2 it
is possible to conclude that QΛ+Mn

−1 converges uniformly to QΛ
−1, that is upper

bounded. Applying element-wise the bounded convergence theorem, it turns out
that

lim
n→∞

∫
Tr
[
QΛ+Mn

−1G∗1δΛG1
]

=
∫

Tr
[
Q−1

Λ G∗1δΛG1
]
.

As a consequence, JΨ(Λ) is C1(LΓ
+). It is easy to see that the same result holds

for δ2JΨ(Λ; δΛ1, δΛ2), too. Therefore, JΨ(Λ) is C2(LΓ
+). Recall that JΨ is said

to be Ck(LΓ
+) if and only if it is continuous in each point of LΓ

+ and has continuous
directional derivatives of any order up to k, in whatever directions {δΛ1, . . . , δΛk} ∈
Range (Γ).

The next point to investigate is the strict convexity of the dual functional JΨ(Λ).
Recall that a function f : S ⊂ RN → R that is C2(S), where S is open, is strictly
convex if and only if its Hessian is positive definite at each x ∈ S.

HΛ(δΛ, δΛ) = δ2JΨ(Λ; δΛδΛ)

=
∫

Tr
[
(I +G∗1ΛG1)−1G∗1δΛG1(I +G∗1ΛG1)−1G∗1δΛG1

]
=
∫

Tr
[
Q
− 1

2
Λ G∗1δΛG1Q

−1
Λ G∗1δΛG1Q

− 1
2

Λ

]
.

(4.24)

Looking over the integrand of equation (4.24), it is possible to recognize a
positive-definite quadratic form:

HΛ(δΛ, δΛ) =
∫

Tr
[
X∗Q−1

Λ X
]
, X = G∗1δΛG1Q

− 1
2

Λ

Indeed, for Λ ∈ LΓ
+, QΛ > 0. The integral vanishes if and only if the integrand is

identically zero. Moreover, since G∗1ΛG1 = W ∗
ΨG
∗ΛGWΨ = 0∀ θ ∈ [−π, π], if and

only if Λ ∈ Range(Γ)⊥, it follows that the integrand is identically zero, if and only
if δΛ = 0. Hence the Hessian is positive-definite and the dual functional is strictly
convex.

This result allows to conclude that the solution that minimizes the dual func-
tion, if it exists, is unique. The next step is to prove existence. Then it will be
possible to introduce an algorithmic procedure to solve the problem arising from the
minimization of the dual function (4.20).
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4.3 Existence of the Solution

In this section the matter of the existence of a solution for the dual problem is
tackled. It is worthwhile to anticipate that our approach allows to successfully
settle both this issue and the one of the convergence of the algorithmic procedure
that will be exposed in the next section. As regards existence, the key result that is
achieved is that, even though the set LΓ

+ is open and unbounded, the search for the
optimal solution can be restricted to a compact subset.

The purpose is to prove that the function JΨ(Λ) is inf-compact, i.e. ∀α ∈ R,
the set

{
Λ ∈ LΓ

+ | JΨ(Λ) ≤ α
}
is compact. The proof is inspired by the one offered

in [15]. At first, define L̄Γ
+ as the closure of LΓ

+, i.e. the set

L̄Γ
+ =

{
Λ = Λ∗ ∈ Cn×n |Λ ∈ Range(Γ), I +G∗1ΛG1 ≥ 0, ∀ejθ ∈ T

}
Given that, for Λ belonging to the boundary ∂LΓ

+, the Hermitian matrix I +G∗1ΛG1

is singular, it will be useful to define on L̄Γ
+ the sequence of functions:

JnΨ(Λ) =
∫

Tr[Λ + log(I +G∗1ΛG1 + 1
n
I)]. (4.25)

Three lemmata will lead to the final result, stated in Theorem 4.3.1. Preliminary,
recall that a real-valued function f is said to be lower semicontinuous at x0 if, ∀ ε > 0,
there exists a neighborhood U of x0 such that, ∀x ∈ U , f(x) ≥ f(x0) − ε. Recall
also that, given f : Cn×n → R, its epigraph epi(f) is defined by

epi(f) :=
{

(x, a) ∈ Cn×n × R| a ≥ f(x)
}
.

Moreover, f is a lower semicontinuous function if and only if its epigraph is closed.

Lemma 4.3.1. The pointwise limit J∞Ψ (Λ), defined as J∞Ψ (Λ) := limn→∞ J
n
Ψ(Λ),

exists and is a lower semicontinuous and convex function defined over L̄Γ
+, with

values in the extended reals.

Proof. The additive term 1
n
I ensures that, for each n, JnΨ(Λ) is a continuous and

convex function of Λ on the closed set L̄Γ
+. From the properties of JnΨ(Λ), it fol-

lows that epi(JnΨ(Λ)) is a closed and convex subset of Cn×n × R. In addition, the
pointwise sequence is monotonically increasing, since JnΨ(Λ) < Jn+1

Ψ (Λ). Therefore,
it converges to J∞Ψ (Λ), that is equal to supn JnΨ(Λ). Since the intersection of closed
sets is closed and the intersection of convex sets is convex, epi J∞Ψ (Λ) = ∩n epi JnΨ(Λ)
is closed and convex. As a consequence, J∞Ψ (Λ) is lower semicontinuous and convex.
The proof of the latter implication can be found in [20].



4.3. EXISTENCE OF THE SOLUTION 45

Lemma 4.3.2. Assume that the feasibility condition (3.17) holds.
Let B :=

{
Λ ∈ ∂LΓ

+ | det [G∗1ΛG1 + I] = 0, ∀ejθ ∈ T
}
and consider its complement

set Bc :=
{

Λ ∈ ∂LΓ
+ |Λ /∈ B

}
. Then:

1. J∞Ψ (Λ) is bounded below on L̄Γ
+;

2. J∞Ψ (Λ) = JΨ(Λ) on LΓ
+;

3. J∞Ψ (Λ) is finite over Bc.

Proof.

1. In order to prove the existence of a lower bound for J∞Ψ (Γ) on L̄Γ
+, let us

consider Tr(Λ). If the feasibility condition (3.17) holds, there exists ΦI in
C+(T) such that

∫
GΦIG

∗ = I. Therefore,

Tr [Λ] = Tr
[∫

GΦIG
∗Λ
]

= Tr
[∫

G∗ΛGΦI

]
= Tr

[∫
W ∗

ΨG
∗ΛGWΨW

−1
Ψ ΦIW

−∗
Ψ

]
= Tr

[∫
G∗1ΛG1Ξ

]
,

(4.26)

where the cyclic property of the trace has been employed and the auxiliary
spectral density Ξ has been defined as

Ξ := W−1
Ψ ΦIW

−∗
Ψ . (4.27)

It follows that

Tr [Λ] = Tr
[∫

G∗1ΛG1Ξ + Ξ− Ξ
]

= Tr
[∫

(G∗1ΛG1 + I)Ξ
]
− Tr

[∫
Ξ
]
.

(4.28)

Let ∆ be such that (G∗1ΛG1 + I) = ∆∗∆ (equation (4.52) provides an explicit
expression to compute the factor ∆). Therefore it is possible to write

Tr [(G∗1ΛG1 + I)Ξ] = Tr [∆Ξ∆∗] .

Given that Ξ = W−1
Ψ ΦIW

−∗
Ψ is a coercive spectrum, because both ΦI and Ψ

belong to Sm×m+ (T), ∃µ |Ξ(ejθ) ≥ µI ∀ ejθ ∈ T. Finally, recall that the trace
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and the integral are monotonic operators. Therefore

Tr [Λ] = Tr
[∫

(G∗1ΛG1 + I)Ξ
]
− Tr

[∫
Ξ
]

≥ µTr
[∫

(G∗1ΛG1 + I)
]
− Tr

[∫
Ξ
]
.

(4.29)

As a consequence,

JnΨ(Λ) =
∫

Tr
[
Λ− log(I +G∗1ΛG1 + 1

n
I)
]

≥ −
∫

Tr [Ξ] +
∫

Tr
[
µ(I +G∗1ΛG1)− log(I +G∗1ΛG1 + 1

n
I)
]
.
(4.30)

In order to find a lower bound for JnΨ(Λ), it is useful to consider the problem
of minimizing the auxiliary function

JnΨ,r(Λ) =
∫

Tr
[
µ(I +G∗1ΛG1)− log(I +G∗1ΛG1 + 1

n
I)
]
. (4.31)

Let {xi} be the eigenvalues of (I +G∗1ΛG1). Then,

JnΨ,r(Λ) =
∫

Tr
[
µ(I +G∗1ΛG1)− log(I +G∗1ΛG1 + 1

n
I)
]

=
∫
µ

m∑
i=1

xi −
m∑
i=1

log
(
xi + 1

n

)
=
∫
i (x1, . . . , xm) ,

(4.32)

where i(x1, . . . , xm) := µ
∑m
i=1 xi −

∑m
i=1 log

(
xi + 1

n

)
. Moreover,

∂

∂xi
[i(x1, . . . , xm)] = µ− 1

xi + 1
n

∀ i.

The minimum is attained by choosing xi = 1
µ
− 1

n
, ∀ i. Therefore,

i(x1, . . . , xm) ≥ m− µm

n
+m log µ

Going back to the function JnΨ(Λ), the final result that JnΨ(Λ) is bounded below
over L̄Γ

+ follows:

JnΨ(Λ) ≥ −
∫

Tr [Ξ]︸ ︷︷ ︸
α

+m− µm

n
+m log µ︸ ︷︷ ︸
β

≥ α + β.

(4.33)
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2. Beppo Levi’s Theorem allows to conclude that J∞Ψ (Λ) = JΨ(Λ) in LΓ
+:

J∞Ψ (Λ) =
∫

Tr[Λ] +
∫

Tr
[

lim
n→∞

log(I +G∗1ΛG1 + 1
n
I)
]

= JΨ(Λ).
(4.34)

3. Finally, since for Λ ∈ Bc we have that the rational function det (I +G∗1ΛG1)
is not identically zero, its logarithm is integrable over T, so J∞Ψ (Λ) is finite.
Instead, J∞Ψ (Λ) = +∞ for Λ ∈ B.

Lemma 4.3.3. If the feasibility hypothesis holds, then

lim
‖Λ‖→+∞

JΨ(Λ) = +∞. (4.35)

Proof. From equation (4.28) it is clear that Tr [Λ] > −Tr [
∫

Ξ], so Tr [Λ] it is bounded
below (because Ξ is bounded). Consider a sequence {Λk} ∈ LΓ

+, such that

lim
k→∞
‖Λk‖ = +∞.

Let Λ0
k be Λk

‖Λk‖
. Since LΓ

+ is convex and Λ = 0 belongs to LΓ
+, ∀α ∈ [0, 1], αΛ ∈ LΓ

+.
Therefore Λ0

k ∈ LΓ
+ for sufficiently large k. Let η := lim inf Tr [Λ0

k] 1. Since

Tr Λ0
k = 1
‖Λk‖

Tr Λk > −
1
‖Λk‖

Tr
[∫

Ξ
]
→ 0,

for ‖Λk‖ → ∞, it holds that η ≥ 0. There exists a subsequence such that the limit of
its trace is η. Given that Λ0

k belongs to the surface of the unit ball, which is compact,
the subsequence contains a subsubsequence

{
Λ0
km

}
that is convergent. Define

Λ∞ := lim
m→∞

Λ0
km .

The next step is to prove that Λ∞ ∈ LΓ
+. To this aim, notice that Λ∞ is the limit of

a convergent sequence in the finite-dimensional linear space Range (Γ). Therefore it
belongs to Range (Γ). Moreover, recall that the primary sequence {Λk} has elements

1Recall that, given a sequence of real numbers {xk}, lim inf xk is defined as follows:

lim inf xk := lim
k→∞

{
inf
m≥n

xm

}
.

Moreover, given an arbitrary sequence of real numbers, {xk}, there exists a subsequence converging
to lim inf xk.
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belonging to LΓ
+. It means that, for each Λk, (I +G∗1ΛkG1) > 0. As a consequence,

it holds that, for each l, (
1
‖Λkl‖

I +G∗1Λ0
kl
G1

)
> 0 on T .

Taking the pointwise limit for l→∞, it results thatG∗1Λ∞G1 is positive semidefinite,
and so (I +G∗1Λ∞G1) is strictly positive definite on T. Therefore, Λ∞ ∈ LΓ

+.

The next step is to prove that Tr Λ∞ > 0. If the feasibility condition (3.17)
holds, there exists ΦI such that I =

∫
GΦIG

∗. Therefore, it is possible to write:

Tr Λ∞ = Tr
∫
GΦIG

∗Λ∞

=
∫

Tr [G∗Λ∞GΦI ]

=
∫

Tr
[
W−∗

Ψ W ∗
ΨG
∗Λ∞GWΨW

−1
Ψ ΦI

]

=
∫

Tr

G∗1Λ∞G1W
−1
Ψ ΦIW

−∗
Ψ︸ ︷︷ ︸

Ξ

 ,
(4.36)

where Ξ is defined as in equation (4.27). Therefore,

Tr Λ∞ =
∫

Tr [G∗1Λ∞G1Ξ]

=
∫

Tr
[
Ξ 1

2G∗1Λ∞G1Ξ 1
2
]
.

(4.37)

Since G∗1Λ∞G1 ≥ 0, in order to prove that the trace of Λ∞ is positive, in view
of (4.37) it is sufficient to show that G∗1Λ∞G1 is not identically zero. Assume by
contrast that this condition is not satisfied, so G∗1Λ∞G1 ≡ 0. As a consequence,

0 ≡ G∗1Λ∞G1

= W ∗
ΨG
∗Λ∞GWΨ

(4.38)

Therefore, G∗Λ∞G ≡ 0. However, this means that Λ∞ ∈ Range(Γ)⊥. But it has
already been proved that Λ∞ ∈ Range(Γ). Moreover, Λ∞ 6= 0, since it belongs to the
surface of the unit ball. This is a contradiction, because Range (Γ) ∩ Range (Γ)⊥ =
{0}. Therefore, G∗1Λ∞G1 is not identically zero, and from (4.37) it follows that
η = Tr Λ∞ > 0.

Hence, there exists K such that Tr Λ0
k >

η
2 for all k > K. Notice that G∗1G1 is

positive definite on T (and indeed coercive). Moreover, G∗1Λ0
kG1 ≤ G∗1G1, because
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Λ0
k belongs to the unit ball. Therefore,

lim inf
k→∞

JΨ(Λk) = lim inf
k→∞

∫
Tr [Λk − log(I +G∗1ΛkG1)]

= lim inf
k→∞

Tr
[
‖Λk‖Λ0

k

]
−
∫

Tr
[
log

(
I +G∗1‖Λk‖Λ0

kG1
)]

= lim inf
k→∞

Tr
[
‖Λk‖Λ0

k

]
−
∫

Tr
[
log

[
‖Λk‖

(
1
‖Λk‖

I +G∗1Λ0
kG1

)]]

≥ lim inf
k→∞

‖Λk‖
η

2 −
∫

Tr [log ‖Λk‖]−
∫

Tr
[
log

(
1
‖Λk‖

I +G∗1G1

)]

= lim inf
k→∞

η

2

(
‖Λk‖ −

2
η

∫
Tr [log ‖Λk‖]

)
−
∫

Tr
[
log

(
1
‖Λk‖

I +G∗1G1

)]
= +∞.

(4.39)

Lemmata (4.3.1), (4.3.2) and (4.3.3) imply that JΨ(Λ) is inf-compact over L̄Γ
+.

As a consequence, employing Weierstrass’ Theorem we can conclude that there exists
a minimum point Λ◦ ∈ L̄Γ

+. Besides, more can be proved: such a minimum point
belongs to LΓ

+. This is the content of the following theorem.

Theorem 4.3.1. If the feasibility condition (3.17) holds, the problem of minimizing
JΨ(Λ) over LΓ

+ admits a unique solution Λ◦ ∈ LΓ
+.

Proof. Since JΨ(Λ) is inf-compact over L̄Γ
+, it admits a minimum point Λ◦ there.

Obviously, Λ◦ /∈ B, because for Λ ∈ B, JΨ(Λ) = +∞. Suppose Λ◦ ∈ Bc. By
Lemma 4.3.2 it follows that JΨ(Λ◦) is finite. By convexity of L̄Γ

+, ∀ ε ∈ [0, 1],
Λ◦+ε(I−Λ◦) ∈ L̄Γ

+, since the feasibility condition (3.17) ensures that I ∈ LΓ
+. The

one-sided directional derivative is:

δJΨ+(Λ◦; I − Λ◦) = lim
ε↘0

[
JΨ (Λ◦ + ε (I − Λ◦))− JΨ(Λ◦)

ε

]

= Tr [I − Λ◦]−
∫

Tr
[
(I +G∗1Λ◦G1)−1G∗1 (I − Λ◦)G1

]
= Tr [I − Λ◦]−

∫
Tr
[
(I +G∗1Λ◦G1)−1 (G∗1G1 −G∗1Λ◦G1 + I − I)

]
= Tr [I − Λ◦]−

∫
Tr
[
(I +G∗1Λ◦G1)−1 (I +G∗1G1)− I

]
= −∞,

(4.40)

because, for each Λ ∈ Bc, (I +G∗1ΛG1) is singular. As a consequence, the minimum
point cannot belong to ∂LΓ

+. Therefore the optimal solution Λ◦ ∈ LΓ
+.
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Therefore, the existence of a solution for Problem 3.2.1 is proven. Indeed, as a
consequence of the previous theorem, the Lagrangian multiplier Λ◦, defined as

Λ◦ := min
Λ∈LΓ

+

Jψ(Λ),

exists. Uniqueness has been already proven in Section 4.2. Given Λ◦, the corre-
sponding spectral density Φ◦ is unique and can be computed as in equation (4.6),
providing the solution of the spectral estimation problem.

4.4 Proposed Algorithm

Our purpose is to minimize the dual function (4.20). Once the solution is found, it
is straightforward to solve the multivariate spectral approximation Problem 3.2.1,
by means of equation (4.6). The proposed approach is based on Newton method,
that is described in Appendix C. Consequently the most important steps to analyze
are the following:

1. Find the search direction ∆Λi;

2. Compute the Newton step length t.

They are dealt with separately in the following subsections. As regards the choice
of a starting point for the minimizing sequence {Λi}, it is possible to choose Λ0 = 0.

Search direction

Even though the problem is finite dimensional, the computation of the search direc-
tion is more demanding than a matrix inversion, because in the case of interest a
matricial expression of the Hessian and the gradient, allowing to compute the search
direction ∆x as

∆x = −Hx
−1∇fx,

is not available. In order to find the Newton step ∆Λi s.t.

HΛi(∆Λi, ·) = −∇JΨ,Λi(·),

one has to solve the equation:
∫
G1(I +G∗1ΛiG1)−1G∗1∆ΛiG1(I +G∗1ΛiG1)−1G∗1 =

∫
G1(I +G∗1ΛiG1)−1G∗1 − I
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The idea is to consider a set of generators of Range(Γ). This set can be obtained
easily, by recalling that Σk ∈ Range(Γ) ⇔ ∃Hk ∈ Cm×n s.t.Σk −AΣkA

∗ = BHk +
Hk
∗B∗. Therefore, considering a base {H1, . . . , HN} for Cm×n, a corresponding

set of generators {Σ1, . . . ,ΣN} can be found. Note that these are not necessarily
independent. The procedure goes along as follows:

1. Compute
Y =

∫
G1(I +G∗1ΛiG1)−1G∗1 − I (4.41)

2. For each generator Σk, compute

Yk =
∫
G1(I +G∗1ΛiG1)−1G∗1ΣkG1(I +G∗1ΛiG1)−1G∗1 (4.42)

3. Find {αk} s.t. Y = ∑
k αkYk;

4. Update ∆Λi = ∑
k αkΣk.

The most challenging step is to compute Y and Yk. A solution is to employ the
spectral factorization techniques: they allow to compute integrals (4.41) and (4.42)
by means of the evaluation of the steady state covariance of the output of adequate
linear systems.

In the light of the problem of interest, the following results in linear stochastic
systems theory are particularly significant. They are exposed in the form of lemmata.

Lemma 4.4.1. Let A be a stability matrix and assume that W (z) is a minimal
realization of the spectral factor Φ(z), i.e. Φ(z) = W (z)W ∗(z), such that W (z) =
C (zI − A)−1B +D. Let Π be the unique solution of the Lyapunov equation

P = APA∗ +BB∗.

Then, the following facts hold:

1.
∫

Φ(ejθ) dθ2π = CΠC∗ +DD∗.

2. Z(z) = C(zI − A)−1 (AΠC∗ +BD∗)+ 1
2 (CΠC∗ +DD∗) is a realization of the

causal part of Φ(z), i.e. Φ(z) = Z(z) + Z∗(z), with Z(z) analytic outside the
unit circle T.

Lemma 4.4.2. Let F (z) = C (zI − A)−1B+D be a square transfer function, where
D is invertible. A realization of the inverse transfer function is given by

F−1(z) = −D−1C
(
zI −

(
A−BD−1C

))−1
BD−1 +D−1.
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Lemma 4.4.3. Let P = P ∗ be a matrix belonging to Cn×n. Then

[
B∗ (z−1I − A∗)−1

I
] A∗PA− P A∗PB

B∗PA B∗PB

(zI − A)−1B

I

 = 0

Lemma 4.4.4. Let A be a stability matrix and H(z) = C (zI − A)−1B + D be a
minimal realization. Let P be a solution of the Lyapunov equation

P = A∗PA+ C∗C. (4.43)

Let
K
J

 be an orthonormal basis of the kernel of the matrix
[
A∗P

1
2 C∗

]
, i.e.

[
A∗P

1
2 C∗

] K
J

 = 0,
[
K∗ J∗

] K
J

 = I. (4.44)

Let G := P−
1
2K and define H1(z) as

H1(z) := (D∗C +B∗PA) (zI − A)−1G+B∗PG+D∗J. (4.45)

Then, H∗(z)H(z) = H1(z)H∗1 (z).

Lemmata 4.4.1 and 4.4.2 are classic results in stochastic linear system theory. As
regards Lemmata 4.4.3 and 4.4.4, the proof can be found in Appendix D on page 85.

By means of the previous results, it is possible to efficiently tackle the problem
of evaluating the integrals (4.41) and (4.42). At first, one should try to factorize
QΛ(z) = (I + G∗1(z)ΛG1(z)). To this purpose, it is worthwhile to introduce some
considerations about the transfer function G1(z) = G(z)WΨ(z). Assume that a
realization of the (canonical) minimum phase spectral factor WΨ(z) is given by

WΨ(z) = CΨ(zI − AΨ)−1BΨ +DΨ, (4.46)

so that Ψ = WΨWΨ
∗ Then, recalling that G(z) is defined by equation (2.16), G1 can

be interpreted as a series of two systems. This is shown in figure 4.1.
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G1(z)

WΨ(z) : Σ1 (AΨ, BΨ, CΨ, DΨ) G(z) : Σ2 (A,B, I, 0)ε x

Figure 4.1: Representation of the transfer function G1(z) as a series of systems

Therefore, a state space realization for G1(z) is given by the following system:


x1(t+ 1)

x2(t+ 1)

 =

 AΨ 0

BCΨ A


︸ ︷︷ ︸

A1

x1(t)

x2(t)

+

 BΨ

BDΨ


︸ ︷︷ ︸

B1

ε(t)

y(t) =
[
0 I

]
︸ ︷︷ ︸

C1

x1(t)

x2(t)


(4.47)

As a consequence, the quantity QΛ(z) = I + G∗1(z)ΛG1(z) can be expressed in the
form of the matrix product

QΛ(z) =
[
B∗1(z−1I − A∗1)−1 I

] C∗1ΛC1 0
0 I

 (zI − A1)−1B1

I

 . (4.48)

By Lemma 4.4.3, it is possible to conclude that, ∀P = P ∗ ∈ Cn×n the following
expression holds:

QΛ(z) =
[
B∗1(z−1I − A∗1)−1 I

] A∗1PA1 − P + C∗1ΛC1 A∗1PB1

B∗1PA1 B∗1PB1 + I


︸ ︷︷ ︸

X

(zI − A1)−1B1

I


(4.49)

The linear matrix inequality
X ≥ 0 (4.50)

is solvable for P = P ∗ > 0 if and only if the following ARE is solvable for P = P ∗ >

0:
P = A∗1PA1 − A∗1PB1(B∗1PB1 + I)−1B∗1PA1 + C∗1ΛC1 (4.51)

Taking P as the stabilizing solution of (4.51), X can be written as

X =
M∗

N∗

 [M N
]
,
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where N = (B∗1PB1 + I)
1
2 and M = (B∗1PB1 + I)−

1
2B∗1PA1. As a consequence, the

minimum phase spectral factor

∆Λ(z) =
[
M N

] (zI − A1)−1B1

I

 (4.52)

is such that:
QΛ(z) = ∆∗Λ(z)∆Λ(z). (4.53)

It follows that Q−1
Λ (z) = ∆Λ

−1(z)∆−∗Λ (z). Applying this result to the computation
of (4.41) and (4.42), it turns out that:

Y + I =
∫
G1(I +G∗1ΛiG1)−1G∗1

=
∫
G1∆−1

Λ︸ ︷︷ ︸
WY

∆−∗Λ G∗1

=
∫
WYW

∗
Y

(4.54)

As concerns the evaluation of Yk, if the generator Σk is positive definite, it can be
achieved as follows:

Yk =
∫
G1(I +G∗1ΛiG1)−1G∗1ΣkG1(I +G∗1ΛiG1)−1G∗1

=
∫
G1∆−1

Λ

(
∆−∗Λ G∗1Σ

1
2
kΣ

1
2
kG1∆−1

Λ

)
∆−∗Λ G∗1

=
∫
G1∆−1

Λ (H∗kHk) ∆−∗Λ G∗1

=
∫
G1∆−1

Λ WHkW
∗
Hk︸ ︷︷ ︸

H∗
k
Hk

∆−∗Λ G∗1

=
∫

WYk︸ ︷︷ ︸
G1∆−1

Λ WHk

WYk
∗.

(4.55)

In the last but one inequality, Lemma 4.4.4 has been employed in order to compute
a left factor, WHk , starting from the right one, Hk.

Remark 4.4.1. Notice that the generators Σk are not necessarily positive definite. If
Σk is not positive defined, in order to evaluate the integral (4.42) by means of the
previously introduced spectral factorization techniques, the following procedure can
be applied. Let −λk ≤ 0 be the minimal eigenvalue of Σk. Then, Σk+(1+λk)I > 0.
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Therefore, equation (4.55) can be written as follows:

Yk =
∫
G1(I +G∗1ΛiG1)−1G∗1ΣkG1(I +G∗1ΛiG1)−1G∗1

=
∫
G1∆−1

Λ ∆−∗Λ G∗1

Σk + (1 + λk)I︸ ︷︷ ︸
≥0

−(1 + λk)I

G1∆−1
Λ ∆−∗Λ G∗1

=
∫
G1∆−1

Λ ∆−∗Λ G∗1 [Σk + (1 + λk)I]G1∆−1
Λ ∆−∗Λ G∗1

− (1 + λk)
∫
G1∆−1

Λ ∆−∗Λ G∗1G1∆−1
Λ ∆−∗Λ G∗1

=
∫
G1∆−1

Λ

(
H∗k,1Hk,1

)
∆−∗Λ G∗1

− (1 + λk)
∫
G1∆−1

Λ

(
H∗k,2Hk,2

)
∆−∗Λ G∗1

=
∫
G1∆−1

Λ

(
WHk,1W

∗
Hk,1

)
∆−∗Λ G∗1

− (1 + λk)
∫
G1∆−1

Λ

(
WHk,2W

∗
Hk,2

)
∆−∗Λ G∗1

=
∫

WYk,1︸ ︷︷ ︸
G1∆−1

Λ WHk,1

WYk,1
∗ − (1 + λk)

∫
WYk,2︸ ︷︷ ︸

G1∆−1
Λ WHk,2

WYk,2
∗.

(4.56)

Again, Lemma 4.4.4 has been employed in order to compute a left factor, WHk,i ,
starting from the right one, Hk,i, for i = 1, 2.

In conclusion, once Y and Yk are written as in equations (4.54) and (4.55) (or in
(4.56) if the generator Σk is not positive definite), Lemma 4.4.1 allows to evaluate
the above integrals by means of appropriate state space realizations of WY (z) and
WYk(z) (or WYk,i(z) for i = 1, 2).

Step length

With regards to the backtracking line search, it proceeds until the two following
conditions hold:

Λi + tki ∆Λi ∈ LΓ
+; (4.57)

JΨ(Λi + tki ∆Λi) < JΨ(Λi) + αtki∇JΨ,Λi∆Λi. (4.58)

The first one can be evaluated by testing if QΛi+tki ∆Λi admits a factorization of the
kind introduced in the previous subsection. If equation (4.51) is not solvable for
P = P ∗ > 0, then ti is halved (tk+1

i = 1
2t

k
i ) until the it gets solvable.

The second condition, however, requires to compute

JΨ(Λ) = Tr
∫

[Λ− log(I +G∗1ΛG1)] . (4.59)
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The evaluation of

Tr
[∫

log(I +G∗1ΛG1)
]

=
∫

log det(I +G∗1ΛG1) (4.60)

can be attained straightforwardly in the light of a fundamental result in statistical
filtering and estimation theory, known as Wiener-Masani theorem. Its main result
is to provide a tool for determining whether a stochastic process is purely non-
deterministic (p.n.d. in the following) on the basis of the analysis of its spectral
density function. As a spin off, it establishes an equation that can be employed to
evaluate (4.60). Before stating the theorem, let us introduce some preliminaries.
After the theorem statement, some remarks about it and the techniques leading to
prove it will be exposed. Notice that in this part the symbol Λ will have a different
meaning, given in Lemma 4.4.6. The reader is deferred to [12] for an exhaustive
exposition and the rigorous proofs of all the results.

To begin with, assume y to be a zero mean real stationary process or rank m.
define yN by

yN(t) :=
[
y(t)′ y(t− 1)′ . . . y(t−N)′

]′
. (4.61)

The covariance matrix of yN is given by

TN := E
[
yN(t)yN(t)′

]
= [Σ(t− j)]i,j , (4.62)

where Σ(τ) = E
[
yN(t+ τ)yN(t)′

]
, as usual. TN will be called the covariance matrix

of order N of the process y. Notice that it is symmetric positive semidefinite m(N+
1)×m(N + 1) matrix and has a block Toeplitz structure. The first important result
about it is given in the form of the following lemma.

Lemma 4.4.5. Assume y to be a full rank process. If TN is singular for some N ,
then the process y is purely deterministic.

As regards TN , it can be easily obtained through a bordering scheme, defined by

TN =
Σ(0) B

B′ TN−1

 ,
where B =

[
Σ(1) Σ(2) . . .Σ(N)

]
. Another very interesting consideration arises

from the introduction of the finite memory predictor of y(t) of memory N :

ŷN(t) = E [y(t)|y(t− 1), y(t− 2), . . . , y(t−N)] .

The one-step prediction error vector eN := y(t)− ŷN(t) is called also the innovation
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of memory N of the process y and, by definition, it is orthogonal to the subspace
generated by the yN , i.e. H(y(t− 1), . . . , y(t−N)). As a consequence,

Var


eN(t)

yN−1

 =
ΛN 0

0 TN−1

 ,
where ΛN := Var eN(t). Since ŷ(t) := BTN1

†yN−1, it follows that
ΛN 0

0 TN−1

 =
Im −BTN1

†

0 ImN

Σ(0) B

B TN−1

  Im 0
−BTN1

† ImN


:= UNTNUN

′,

(4.63)

where TN1
† is the Moore-Penrose pseudoinverse of TN1 . Therefore,

TN = UN
−1

ΛN 0
0 TN−1

U ′N−1
.

Since UN is an upper triangular matrix with determinant equal to 1, it follows that

detTN = det ΛN detTN−1 N = 1, 2, . . .

and a recursion formula is established:

detTN =
N∏
k=1

det Λk det Λ0, N = 1, 2, . . . (4.64)

Notice that Λ0 can be assumed to be Σ0. An important result arising from eq. (4.64)
is the following lemma.

Lemma 4.4.6. Assume the process y to have full rank m. The finite memory
prediction error eN(t) converges, when N → ∞, to a stationary process e, whose
variance Λ := E

[
e(t)e(t)′

]
is equal to

Λ = lim
N→∞

ΛN . (4.65)

Moreover,
lim
N→∞

1
N

log detTN = log det Λ. (4.66)

Finally, the process is p.n.d. if and only if Λ is nonsingular.

It is interesting to analyze the relation between the the spectrum of the covariance
matrix of order N of the process y, that will be referred to as σ(TN), and the spectral



58 CHAPTER 4. A CONVEX OPTIMIZATION APPROACH

density Φ. Recall that, given a matrix A and its eigenvalues {λAk}, the following
equations hold:

TrA =
∑
k

λAk , detA =
∏
k

λAk .

Since the diagonal blocks of the m(N + 1)×m(N + 1) matrix TN are equal to the
m×m matrix Σ(0), it follows that

1
N + 1 TrTN = Tr Σ(0) =

∫ π

−π
Tr Φ(ejθ)dθ2π , (4.67)

where the second equation is obtained by bringing the trace operator, which is
linear, under the integral sign and recalling the relation established by eq. (2.7).
The spectral distribution is assumed to be absolutely continuous. Dividing both the
members of eq. (4.67) by m, an interesting result is attained:

1
m(N + 1)

m(N+1)∑
k=1

λk(TN) =
∫ π

−π

1
m

m∑
k=1

λk(θ)
dθ

2π . (4.68)

Therefore, the arithmetic mean of the eigenvalues of TN is equal to the average over
the unit circle of the arithmetic mean of the eigenvalues of the spectral density. A
much more general result, in the same spirit of the former one, is now exposed, in
order to introduce the main result of this section. It is known as the matrix version
of the Szegö theorem. It will presented in the form of a lemma:

Lemma 4.4.7. Assume that the process y is full rank and with continuous spectral
distribution. Let Φ ∈ C(T;H(m)) be its spectral density and {λ1(θ), λ2(θ), . . . , λm(θ)}
be the set of the eigenvalues of the matrix Φ(ejθ). Then, for any continuous real val-
ued function F with compact support on the positive half line [0,+∞):

lim
N→∞

1
N

Σλ∈σ(TN )F (λ) =
∫ π

−π

m∑
k=1

F (λk(θ))
dθ

2π (4.69)

Actually, another step is needed in order to dispose of all the elements that are
needed to prove the Wiener-Masani theorem. Indeed, the previous lemma is valid
for functions F that are continuous with compact support on the positive half line.
However, the function that is involved in the theorem is the logarithm, that does
not have compact support on the right half plane, nor it is continuous at zero.
Nevertheless, it is possible to prove that eq. (4.69) holds also in this case. The basic
idea of the proof is to represent the logarithm as a difference between two adequate
functions, that are chosen so that it is possible to prove that they obey to eq. (4.69).
As a consequence, this equation hold also for F = log. At last, the main result is
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stated:

Theorem 4.4.1 (Wiener-Masani). Assume the stationary stochastic process y is
full rank and has an absolutely continuous spectral distribution with spectral density
Φ. Moreover, recall that TN is the covariance matrix of order N of the process y,
as defined by eq. (4.62) and that Λ is the covariance of the one-step ahead optimal
prediction error, defined by eq. (4.65). Then

lim
N→∞

1
N

log detTN =
∫ π

−π
log det Φ(ejθ)dθ2π , (4.70)

so that
log det Λ =

∫ π

−π
log det Φ(ejθ)dθ2π . (4.71)

Therefore, y is p.n.d. if and only if
∫ π

−π
log det Φ(ejθ)dθ2π > −∞ (4.72)

Proof. Once that it is established that choosing F (·) = log(·) Lemma 4.4.7 still
holds, an heuristic proof is the following. Firstly, recalling the properties of the
logarithm, it holds that

1
N

∑
λ∈σ(TN )

log λ = 1
N

log
∑

λ∈σ(TN )
λ = 1

N
log detTN

Secondly,

∑
λ(θ)∈σ(Φ(ejθ))

log λ(θ) = log
∏

λ(θ)∈σ(Φ(ejθ))
λ(θ) = log det Φ(ejθ)

Finally, Lemma 4.4.6 allows to conclude that y is p.n.d. if and only if log det Λ =∫ π
−π log det Φ(ejθ) dθ2π > −∞.

With regard to the computation of the integral (4.60), the most significant result
offered by the previous theorem is that it establishes that

∫
log det Φ is equal to

log det Λ, where Λ is the variance of the prediction error of the one-step ahead
predictor of the process y, whose spectral density is Φ. Assume that the spectral
factorization Φ = ∆∗∆ holds. As a consequence of Binet’s theorem,

log det Φ = log det [∆∗∆]

= log det [∆∆∗] .
(4.73)

The variance of one-step ahead prediction error, Λ, corresponds to ∆(0). In order to
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compute it, it is possible to consider a realization of the spectral factor ∆. Suppose
that such a realization is given by the state space system Σ(A,B−, C,D−). Then, Λ
is given by D−D−>. Indeed, recall that ∆ is the canonical minimum phase spectral
factor of QΛ, and it has been obtained by solving (4.51). Therefore,

∫
log det(I +G∗1ΛG1) = log det

(
D−D−

>
)

In conclusion, spectral factorization techniques play a key role in the backtracking
line search, because they allow to check whether the candidate step length tk is
acceptable. Indeed, they are widely employed in order to evaluate both the condition
(4.57) and (4.58).

4.5 Convergence Analysis

In this section, the key problem of the convergence of the proposed algorithm is
tackled. As it has been already anticipated, this issue is tightly linked with the
matter of the existence of a solution for the dual problem.

Recall that the underlying hypotheses for the convergence result attained in
Section C.2, with respect to the dual functional JΨ(·), are the following:

1. JΨ(·) is twice continuously differentiable;

2. The starting point Λ0 ∈ LΓ
+ and the sublevel set S =

{
Λ ∈ LΓ

+|JΨ(Λ) ≤ JΨ(Λ0)
}

is closed;

3. JΨ(·) is strongly convex, i.e. ∃ m s.t. ∇2JΨ(Λ) > mI, ∀ Λ ∈ S. Moreover, ∃
M s.t. ∇2JΨ(Λ) < MI, ∀ Λ ∈ S;

4. The Hessian is Lipschitz continuous in S, i.e. ∃L such that:
∥∥∥∇2JΨ(Λ1)−∇2JΨ(Λ2)

∥∥∥
2
< L

∥∥∥Λ2 − Λ1

∥∥∥
2
∀Λ1,Λ2 ∈ S

Under these hypotheses, the proposed algorithm converges to the solution Λ◦ ∈ LΓ
+

that minimizes the dual function JΨ. Moreover, after a certain number of iterations
the backtracking line search always select the full step (i.e. t = 1). During the last
stage the rate of convergence is quadratic, since

‖Λi+1 − Λ◦‖ ≤ C‖Λi − Λ◦‖2, ∃ costant C

The continuous differentiability of the dual function has already been proved
in 4.2 on page 36. Theorem 4.3.1 states that the sublevel sets of the the dual function
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JΨ are compact, and hence closed (recall that, in a finite dimensional vector space,
a set is compact if and only if it is closed and bounded). Moreover, it is possible
to conclude straightforwardly on strong convexity and Lipschitz continuity of the
Hessian. Indeed, let us consider the sublevel set

S =
{

Λ ∈ LΓ
+ | JΨ(Λ) ≤ JΨ(Λ0)

}
.

Notice that, assuming that Λ0 is the starting point, the minimizing sequence com-
puted by the Newton algorithm with backtracking line search is such that ∀ k ≥
0, Λk ∈ S. The continuity of the Hessian over LΓ

+ has already been proved in Section
4.2. Moreover, since the map from a Hermitian matrix to its minimum eigenvalue
is continuous (see Lemma 4.2.1), the map from Λ ∈ LΓ

+ to the minimum eigenvalue
of HΛ(δΛ, δΛ) is continuous, being a composition of continuous maps. Since S is
compact, Weierstrass’ theorem holds. Therefore, there existsm that is the minimum
in the set whose elements are the eigenvalues of the Hessian HΛ(δΛ, δΛ), ∀Λ ∈ S.
Recall that the hypothesis of strict convexity holds (as proved in Theorem 4.2.1).
As a consequence, the Hessian HΛ is a positive definite matrix ∀Λ ∈ S, therefore
m > 0. In conclusion, there exists m > 0 such that HΛ > mI, ∀Λ ∈ S, i.e. JΨ(Λ)
is strongly convex. As regards the Lipschitz continuity of the Hessian of JΨ(Λ), it is
easy to see that HΛ is C1(LΓ

+). Indeed, δ3JΨ(Λ; δΛ1, δΛ2, δΛ3) can be expressed as:

δ3JΨ(Λ; δΛ1, δΛ2, δΛ3) =
∫

Tr
[
(I +G∗1ΛG1)−1G∗1δΛ3G1(I +G∗1ΛG1)−1

× G∗1δΛ2G1(I +G∗1ΛG1)−1G∗1δΛ1G1

+(I +G∗1ΛG1)−1G∗1δΛ2G1(I +G∗1ΛG1)−1

× G∗1δΛ3G1(I +G∗1ΛG1)−1G∗1δΛ1G1
]
.

(4.74)

The continuity can be proved, along the same line developed in the proof of Theorem
4.2.1. Moreover, the result can be extended leading to the conclusion that JΨ(Λ) is
C∞(LΓ

+). Continuous differentiability implies Lipschitz continuity on a compact set.
Therefore, it is possible to state that the Hessian is Lipschitz continuous on S.

As a result, all the hypotheses under which convergence of the Newton algorithm
is assured, as proven in Section C.2, hold. Therefore, the proposed algorithm repre-
sents an effective computational tool in order to provide the solution of the spectral
estimation Problem 3.2.1.





Chapter 5
Simulation Results

The proposed algorithm has been implemented and tested in Matlab. The re-
sults are encouraging and suggest that our approach tackles the problem of spectral
estimation efficiently, both in the scalar and the multivariate case.

To begin with, let us consider a scalar example. The procedure was run over a
set of N = 300 samples of a process described by the following difference equation:

y(t) = 0.5y(t− 1)− 0.42y(t− 2) + 0.602y(t− 3)− 0.0425y(t− 4)

+ 0.1192y(t− 5) + e(t) + 1.1e(t− 1)− 0.08e(t− 2)− 0.15e(t− 3),

where e(t) is a zero mean Gaussian white noise with unit variance. The filterbank
was chosen accordingly to the covariance extension setting with six covariance lags:

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


B =



0
0
0
0
0
1


.

Two prior spectral densities were considered. The first one is the constant
spectrum Φ̂(ejθ) = σ̂2

y, where σ̂2
y denotes the sample covariance of the process

y, computed as σ̂2
y = 1

N−1
∑N
k=1 |yk|2. The second one is the estimate Φ̂PEM =

WPEMW
∗
PEM , with WPEM of dimension 3, that has been obtained from the data

by means of the Prediction Error Method procedure available in Matlab System
Identification toolbox. The proposed approach was applied with the tolerance of
the Newton algorithm set to ε = 10−16. The results are shown in plot 5.1. In both
the cases, our method provided a good approximant Φ◦ of the true spectrum. As
concerns the complexity of the estimates, the dimension of a minimal state-space
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realization of Φ◦ was 10 in the first case and 16 in the second one.

Let us consider a multivariable example, now. The method was applied to the
estimation of the spectrum of a process obtained by feeding a bivariate Gaussian
process z, with mean 0 and variance equal to the identity matrix, to a filter Gy(z)
with transfer matrix

Gy(z) = Cy(zI − Ay)−1By,

where

Ay =



0.9 cos(0.52) 0.9 sin(0.52) 0 0 0 0 0 0 0
−0.9 sin(0.52) 0.9 cos(0.52) 0 0 0 0 0 0 0

0 0 0.2 0 0 0 0 0 0
0 0 0 0.6 cos(0.58) 0.6 sin(0.58) 0 0 0 0
0 0 0 −0.6 sin(0.58) 0.6 cos(0.58) 0 0 0 0
0 0 0 0 0 −0.3 0 0 0
0 0 0 0 0 0 −0.8 0 0
0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0 0


,

By =



1 0.2633
1 0.8916
1 0.5861
1 0.9387
1 0.6181
1 0.2507
1 0.1025
1 0.5464
1 0.4426


, Cy =

[
0.6915 0.3994 0.2056 0.5128 0.2291 0.6894 0.6569 0.5805 0.8787
0.7594 0.5674 0.9435 0.2762 0.929 0.7079 0.7790 0.5032 0.3929

]
.

Note that each minimal state space realization of Φ has order 16. The matrices A
and B of the filterbank G(z) = (zI − A)−1B were set to

A =



0 0 0 0 0 0 0 0 0
0 0.9 0 0 0 0 0 0 0
0 0 0.9 0 0 0 0 0 0
0 0 0 0.9 cos(π4 ) 0.9 sin(π4 ) 0 0 0 0
0 0 0 −0.9 sin(π4 ) 0.9 cos(π4 ) 0 0 0 0
0 0 0 0 0 0.9 cos(π2 ) 0.9 sin(π2 ) 0 0
0 0 0 0 0 −0.9 sin(π2 ) 0.9 cos(π2 ) 0 0
0 0 0 0 0 0 0 0.9 cos(3π4 ) 0.9 sin(3π4 )
0 0 0 0 0 0 0 −0.9 sin(3π4 ) 0.9 cos(3π4 )


,

and

B =



1 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1


.
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The considered prior was the constant spectrum equal to the sample covariance of
the process y. Firstly, the procedure was run over N = 200 samples of the process
of interest. The results provided by the proposed approach were compared to the
spectrum estimate computed by the standard N4SID procedure. Such a method,
available in Matlab System and Identification toolbox, provided an estimate of
the spectrum, Φ̂N4SID = WN4SIDW

∗
N4SID, by selecting WN4SID of order 18. As

can be observed by considering the results shown in plot 5.2, the performances of
the proposed approach were similar to those achieved by the N4SID method. The
dimension of a minimal realization of Φ◦ was 16. Finally, the method was applied
to the case in which a shorter sequence of samples of the process y was available.
With N = 100, the proposed approach outperformed the N4SID procedure, that
was also affected by artifacts. This is shown in plot 5.3. As expected (see Section
3.2), the proposed approach seems to assure good performances even if the sequence
of available sample of the process of interest is short.

Other aspects should be taken into consideration in future experiments. To begin
with, it is worthwhile to analyze the effect of the positions of the poles of the bank
of filters on the resolution of the estimate in the corresponding range of frequencies.
In addition, the case in which the true covariance matrix Σ is substituted by an
estimate Σ̂, that is typical in practical applications, should be investigated. In
particular, the method proposed in [8], that aims at finding an adequate estimate
of the covariance matrix Σ, should be applied to the proposed spectral estimator.
At last, the performances of the proposed estimator should be compared with the
those achieved by the state of-the-art techniques described in Section 2.2.
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(a) Constant prior.

(b) PEM 3 prior.

Figure 5.1: Scalar example
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Chapter 6
Conclusions and Future Work

The main contribution of this work is the proposal of a new spectral estimation
technique. Such an approach allows to successfully tackle the challenging issue of
multivariable spectral estimation. Moreover, it provides an upper bound on the
complexity of the estimate that outperforms the one offered by the state of-the-art
technique for the multivariable framework described in [16] and [17].

The proposed approach draws inspiration from modern methods (described in
[10] and [16]) which are based on convex optimization. As a consequence, the first
step has been to recast the issue of interest in a proper form, described by Problem
3.2.1. This result has been achieved by means of the introduction of a prior spec-
trum, a bank of filters and an adequate index for measuring the (pseudo-)distance
between spectral densities. Such an index represents a novelty, with regard to the
state of-the-art approaches that have been analyzed in Section 2.2. Primarily, the
choice of the distance measure defined by 3.13 has allowed to develop the variational
analysis straightforwardly, achieving the expected results.

Indeed, once feasibility conditions have been investigated, the primal Lagrangian
corresponding to Problem 3.2.1 has been analyzed. The variational analysis has al-
lowed to obtain an easy expression of the optimal solution, Φ◦, in terms of the
Lagrangian multiplier Λ. Therefore, the dual problem has been tackled. Recall that
such a problem is finite dimensional, while the primal one is not. In particular, the
minimization of the function defined by (4.20) has been sought. Firstly, the unique-
ness of the solution has been proven. Secondly, its existence has been established by
means of Lemmata 4.3.1, 4.3.2, 4.3.3 and Theorem 4.3.1. Thirdly, a Newton-type
algorithm with backtracking line search has been proposed in order to find the opti-
mal solution Λ◦. Many ideas offered by Linear Systems Theory have been applied:
search direction is performed by recurring to spectral factorization techniques, for
instance, while in backtracking line search the values assumed by the function of in-
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terest are computed by means of Wiener-Masani Theorem. Finally, the convergence
of the proposed algorithm has been proven. Experimental results suggest that our
approach tackles both the scalar and the multivariate spectral estimation problem
efficiently. Moreover, it seems to be very effective in the case of short available data
records.

In the future, further numerical simulations should be performed, with the pur-
pose of evaluating the performance of the estimator in practice, also in terms of
numerical robustness. Moreover, the results obtained when the true covariance ma-
trix Σ is substituted by an estimate Σ̂ should be analyzed, with particular regard
to the method proposed in [8], that could be applied to our estimator in order to
achieve better performances, since in practical applications the starting covariance
matrix Σ has to be estimated from the data. Another issue that requires further
investigation is to determine how the position of the poles of the filterbank affects
the resolution of the estimate. Indeed, the estimators described in [10] and [16],
which propose an approach that is quite similar to the one that has been developed
in this work, exhibit a remarkable property. If the poles are chosen in proximity of
the unit circle, the resolution of the estimate in the corresponding range of frequen-
cies is very high (as described in [2]). This result allows to detect lines and deep
variations in the spectrum of interest. In addition, other distance measures between
spectral densities should be taken into consideration, in order to analyze their prop-
erties and to evaluate the possibility to develop other estimation techniques along
the same line that has been described in this thesis. At last, the statistical analysis
of the achievable performance of the proposed estimator should be tackled.



Appendix A
The McMillan Degree

The introduction of the McMillan degree arises from the necessity of measuring the
complexity of a MIMO (Multiple Input Multiple Output) system. It provides the
dimension of each minimal (i.e. reachable and observable) state space realization of
a given n×m transfer matrix G(z).
It is interesting to introduce such an index starting from the definition of the Smith
McMillan form, because it provides an overview on some of the problems that come
to light in the multivariate setting. To begin with, recall that G(z) is a transfer
matrix, whose element Gi,j is given by the transfer function from the j−th input to
the i−th output. Assume that its rank is p, with p ≤ min (m,n).

The poles and zeros of interest and their multiplicities are the ones of the matrix
itself (not the poles and zeros of its individual elements). Indeed, even though the
location of the poles of the matrix transfer function can be identified by inspection
of its individual elements, their multiplicity is not available for direct computation.
With regard to the system zeros, not only their locations, but also their existence
cannot be evaluated by looking at the individual elements of the transfer matrix.
Therefore, the issue of studying the poles and the zeros of the matrix transfer func-
tion is not trivial.

The Smith-McMillan form provides a powerful tool to solve this problem. In
order to compute such a form, the first step is to attain the Smith form. To begin
with, the matrix transfer function G(z) is expressed as

G(z) = 1
d(z)P (z), (A.1)

where d(z) is the least common multiple of the denominators of all the elements of
G(z). As a consequence, P (z) turns out to be a polynomial matrix, i.e. a matrix
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whose entries are all polynomials. By means of elementary row and column opera-
tions, P (z) is transformed into an equivalent matrix S(z), known as the Smith form,
that is given by

S(z) = diag [ε′1(z), ε′2(z), . . . , ε′r(z), 0, . . . , 0], (A.2)

where the polynomials ε′i, known as the invariant factors of P (s), are monic and
exhibit the following property:

ε′i(z)|ε′i+1(z) ∀z ∈ [0, . . . , r − 1] ,

where | has to be read as "exactly divides". In order to compute the entries of the
Smith form of P (s) the rule to follow is the following:

ε′i(z) = Di(z)
Di−1(z) , D0(z) := 1,

where the polynomial Di(z) is the least common divisor of all the minors of order
i that can be obtained from P (z). Once that the Smith form of P (z) is computed,
the step to the Smith Mcmillan form of G(z) is short. In the light of eq. (A.1), It
is given by

M(z) = diag
[
ε′1(z)
d(z) ,

ε′2(z)
d(z) , . . . ,

ε′r(z)
d(z) , 0, . . . , 0

]

= diag
[
ε1(z)
ψ1(z) ,

ε2(z)
ψ(z) , . . . ,

ε′r(z)
ψr(z) , 0, . . . , 0

]
,

(A.3)

where
εi(z)
ψi(z) = ε′i(z)

d(z)

with all the possible cancellations between ε′i(z) and d(z) being performed. The
degree of the pole polynomial

p(z) :=
r∏
i

ψi(z)

is the McMillan degree of the transfer function G(z), that provides the dimension
of each minimal state space realization of a systems whose transfer function is given
by G(z). Note that the transmission zeros are available by finding the roots of the
polynomial

r(z) :=
r∏
i

εi(z).

They do not coincide, in general, with the zeros of the individual entries of G(z).
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Actually, since M(z) and G(z) have the same rank, r, because they are equivalent,
the zeros are the values that make the rank of G(z) drop below r.





Appendix B
A Brief Review on Duality Theory

Next, some fundamental notions about duality theory are recalled. The aim of this
appendix is simply to provide some basic tools. They are sufficient to develop the
strategy which has been proposed in section 4.2 on page 36, in order to tackle the
spectral estimation problem. For an exhaustive explanation about duality theory,
the reader is deferred to [1].

Suppose that the problem to solve is

Problem B.0.1. Minimize f0(x), subject to

fi(x) ≤ 0; i = 1, . . . ,m

hi(x) = 0; i = 1, . . . , p

where x ∈ D := (∩mi=0 dom fi) ∩ (∩pi=1 dom hi) ⊆ Rr.

No assumption about the convexity of f0(·) are required. Indeed, it is only
assumed that D 6= ∅. In order to solve the problem, the Lagrangian function L :
Rr × Rm × Rp → R is introduced. It is defined by

L(x, λ, ν) := f0(x) +
m∑
i=1

νifi(x) +
p∑
i=1

λihi(x). (B.1)

The sets {λi} and {νi} define the so-called dual variables. Now it is possible to
introduce the Lagrangian dual function g : Rm × Rp → R, such that

g(ν, λ) := inf
x∈D

L(x, ν, λ) = inf
x∈D

f0(x) +
m∑
i=1

νifi(x) +
p∑
i=1

λihi(x). (B.2)

Since the dual function is the pointwise infimum of a family of affine functions in
(ν, λ), it is concave, even if problem B.0.1 is not convex. Under the hypothesis that
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νi ≥ 0, for all i = 0, . . . ,m, g(ν, λ) ≤ L(x̃, ν, λ) ≤ f0(x̃), ∀x̃ ∈ D. In the case of
interest for spectral estimation, the Lagrangian dual function obeys to the former
inequality. Indeed, there are no constraints of the kind fi(x) ≤ 0, therefore {νi} is
an empty set. Equivalently, νi can be assumed to be null for all the values taken by
the index i. The Lagrangian dual problem is defined by

Problem B.0.2. Maximize g(ν, λ), subject to

ν ≥ 0

Denote the optimal value that solves problem B.0.1 as x∗ and define p∗ = f0(x∗).
As regard the dual problem, let (ν∗, λ∗) be the optimal solution and d∗ = g(ν∗, λ∗).
The optimal value of the Lagrange dual problem, d∗, represents the best lower bound
on p∗ that can be obtained from the Lagrange dual function. Therefore, the following
inequality is always satisfied:

d∗ ≤ p∗.

This property is called weak duality. The difference p∗ − d∗, which is always non-
negative, is called optimality gap. When the optimality gap is zero, i.e. d∗ = p∗,
there is strong duality. It means that the lower bound provided by the dual problem
is as tight as possible. If strong duality holds and there exists a pair (ν∗, λ∗) such
that it solves the dual problem, then each optimal solution of the primal problem
minimizes L(x, ν∗, λ∗).



Appendix C
Basic Notions about Unconstrained
Optimization

Some definitions and fundamental results about convex optimization are revised.
In particular, the focus is on algorithmic procedures to tackle this issue. Indeed,
the aim of this subsection is to describe and motivate some ideas that are widely
employed, with reference to multivariate spectral estimation, in the present work.
The reader is referred to [1] for an exhaustive exposition about convex optimization.

Preliminary, a specification is needed. For the sake of simplicity, in the following,
the theory is developed with regard to the case in which the function to be minimized,
f , is defined over Rr. In the case of interest, however, the dual function whose
minimization is sought, JΨ, is defined over a subset of the linear space Range (Γ).
Starting from a base {H1, . . . , HN} of Rm×n and solving equation (3.17) for each Hk,
k = 1, . . . , N , it is possible to find a set of generators {Σ1, . . .ΣN} for Range (Γ).
As a consequence, Range (Γ) has a finite dimension r ≤ N . Therefore, given a base
of Range (Γ), it is possible to establish a homeomorphic correspondence between
this space and Rr. In particular, to every matrix Λ in LΓ

+ there corresponds a
vector in Rr. Similarly, to each positive definite bilinear form over Range (Γ) there
corresponds a positive definite matrix in Rr×r. As a consequence, each result that
can be proven in Rr holds in the matricial setting of interest, too.

Suppose that the following unconstrained minimization problem has to be solved:

minimize f(x)

such that the function f(x) : Rr → R satisfies the following assumptions:

• f is convex and twice continuously differentiable;

• The problem is solvable, i.e. ∃ an optimal x? such that infx f(x) = x? = p?
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Take into consideration algorithms computing aminimizing sequence, i.e. a sequence
of points x0, x1, . . . ∈ dom f such that limk→∞ f(xk) = p?. It is necessary to attain
a starting point x0 ∈ dom f and to impose another assumption on f:

S = {x ∈ dom f |f(x) ≤ f(x0)} is a closed sublevel set.

An assumption that makes easier the evaluation of the convergence of the algorithms
is that the function f is strongly convex. This means that there exists m such that:

H(x) = ∇2f(x) > mI ∀x ∈ S.

It can be proved that, under this hypothesis,
∥∥∥∇2f(x)

∥∥∥
2
≤ (2mε)

1
2 ⇒ f(x)− p? ≤ ε. (C.1)

It should be highlighted thatm is usually unknown; however, equation (C.1) suggests
that when the Hessian norm is small enough the minimizing sequence is quite near
to the optimal point (it provides a suboptimal condition).

Let us focus on descent methods. The minimizing sequence is defined such that:

xk+1 = xk + tk∆xk,

where tk is called the step length and it is positive (except when xk is optimal), while
∆xk is the search direction and obeys to the condition

∇>f(xk)∆xk < 0,

which is necessary in order to assure that f(xk+1) ≤ f(xk) (i.e. the sequence is
actually decreasing).

Algorithm C.1 The general descent method
1: given x0 ∈ dom f
2: repeat
3: Find descent direction ∆x
4: Line search: choose t > 0
5: Update: x← x+ t∆x
6: until optimality criterion is satisfied (e.g.

∥∥∥f(x)− p?
∥∥∥ ≤ ε)

Line search can be performed in two ways:

• Exact line search
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• Backtracking line search

In the former, t is chosen as t = arg mins≥0 f(x + s∆x). In the latter, which is
usually easier to implement, the following procedure is performed:

Algorithm C.2 Backtracking line search
1: given α ∈ (0, 0.5)
2: given β ∈ (0, 1)
3: given ∆x for f at x ∈ dom f
4: t← 1
5: while f(x+ t∆x) > f(x) + αt∇>f(x)∆x do
6: t← βt
7: end while

In the previous algorithm, before the inequality in line 5 is evaluated, it is impor-
tant to check whether x+ t∆x ∈ dom f , otherwise t is reduced until this condition
holds.

C.1 Newton’s Algorithm

There are many different procedures that implement the descent methods: here the
focus will be on the Newton method, because the algorithm that is proposed to
solve the multivariate spectral estimation employs this approach. The key idea is to
consider the search direction as:

∆xnt = −
(
∇2f(x)

)−1
∇f(x). (C.2)

Under our hypothesis on f , its Hessian is surely positive defined, so ∇>f(x)∆xnt =
−∇>f(x) [∇2f(x)]−1∇f(x) < 0 (unless x is optimal). Therefore, the Newton step
actually moves in a descent direction. This choice can be easily interpreted. For
instance, given that a point x̃ is optimum for a convex function f if and only if
∇f(x̃) = 0, by taking into account the approximation

∇f(x+ v) ≈ ∇f(x) +∇2f(x)∆x

it follows that the the optimality condition is satisfied by

v = ∆xnt = −
(
∇2f(x)

)−1
∇f(x).
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Alternatively, the same result can be attained by considering the second order Taylor
approximation of f :

f(x+ v) ≈ f̂(x+ v) = f(x) +∇>f(x)v + 1
2v
>∇2f(x)v

and minimizing it. Since f is twice differentiable, the quadratic model of f will be
very accurate in proximity of the value x?. It follows that when x is near x?, the
point x+ t∆xnt should be a very good estimate of the optimum.

Define the Newton decrement λ(x):

λ(x) =
(
∇f(x)>

[
∇2f(x)

]−1
∇f(x)

) 1
2
.

It is significant to point out that

−λ2(x) = ∇f(x)>∆xnt = d

dt
f(x+ t∆xnt)

∣∣∣∣∣
t=0

.

Is plays an important role in the convergence analysis.

Algorithm C.3 Newton’s method
1: given a starting point x0 ∈ dom f , tolerance ε > 0
2: repeat
3: Compute the Newton step ∆xnt and the squared Newton decrement λ2(x).
4: Stopping criterion: quit if λ2(x)

2 ≤ ε.
5: Line search. Choose step size t by backtracking line search.
6: Update: x← x+ t∆xnt .
7: until stopping criterion is satisfied

C.2 Convergence Analysis of Newton’s Algorithm
with Backtracking

Finally, the convergence analysis is faced. The underlying hypotheses are the fol-
lowing:

1. f is twice continuously differentiable;

2. f is strongly convex (∃ m,M s.t. mI < ∇2f(x) < MI, ∀ x ∈ S);

3. The starting point x0 ∈ dom f and the sublevel set S = {x ∈ dom f |f(x) ≤ f(x0)}
is closed;
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4. The Hessian is Lipschitz continuous in S, i.e. ∃L such that:
∥∥∥∇2f(y)−∇2f(x)

∥∥∥
2
< L

∥∥∥y − x∥∥∥
2
∀x, y ∈ S

The last assumption has been added to the ones considered so far and gives a bound
on the third derivative of f . It should be interpreted as a request on the quality of
the approximation of f given by a quadratic model (the smaller L is, the better the
quadratic model describes f).

Now, it will be proved that there exist some positive constants η s.t. 0 < η ≤ m
L2

and γ such that the Newton algorithm naturally falls into two stages: the first
one, that is called damped Newton phase, occurs when

∥∥∥∇f(x)
∥∥∥ ≥ η; the second

one, also known as the pure Newton phase, takes place when
∥∥∥∇f(x)

∥∥∥ < η. The
convergence is actually assured and an upper bound on the number of iterations
required to converge to the solution with the required tolerance ε can be attained
straightforwardly. In particular:

• If ‖∇f(xk)‖2 ≥ η , then

f(xk+1)− f(xk) ≤ −γ. (C.3)

The number of iterations in this stage is upper-bounded by

f(x0)− p?
γ

.

• If ‖∇f(xk)‖2 < η then the backtracking line search selects tk = 1 and

L

2m2‖∇f(xk+1)‖2 ≤
(
L

2m2‖∇f(xk)‖
)2
. (C.4)

It follows that once ‖∇f(xk)‖2 < η, ‖∇f(xl)‖2 < η, ∀l ≥ k. As a consequence,

L

2m2‖∇f(xl)‖2 ≤
(
L

2m2‖∇f(xk)‖
)2l−k

≤
(1

2

)2l−k

.

Since f(xl) − p? ≤ 1
2m‖∇f(xl)‖2

2, the previous inequality allows to conclude
that

f(xl)− p? ≤
2m3

L2

(1
2

)2l−k+1

.

So, f(xl)− p? ≤ ε after at most log2 log2
ε0
ε
steps, where ε0 = 2m3

L2 .
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Therefore, the total number of iterations is bounded by

f(x0)− p?
γ

+ log2 log2
ε0

ε
.

Moreover, it should be highlighted that the the algorithm converges quadratically
once the second condition on ‖∇f(x)‖2 holds, so that the pure Newton phase is also
called the quadratically convergent stage.

Finally, these results are proved. Firstly, the damped Newton phase will be dealt
with, showing that if ‖∇f(xk)‖2 ≥ η , then f(xk+1) − f(xk) ≤ −γ, ∃ 0 < η < m2

L
,

γ > 0. Assuming that ‖∇f(xk)‖2 ≥ η, a lower bound on the step length chosen
in the backtracking procedure is computed. Recall that f is strongly convex, so
∃M : ‖∇2f(x)‖ < MI ∀x ∈ S. It follows that:

f(x+ t∆ntx) ≤ f(x) + t∇>f(s)∆xnt + 1
2M‖∆xnt‖2

2

≤ f(x)− tλ2(x) + M

2mt2λ2(x).

The facts that λ2(x) = −∇>f(x)∆xnt and ∆>xnt∇2f(x)∆xnt ≥ m‖∆xnt‖2
2 have

been employed. As a consequence, t̃ = m
M

satisfies the exit condition of backtracking
line search:

f(x+ t̃∆xnt) ≤ f(x)− 1
2 t̃λ

2(x) ≤ f(x)− αt̃λ2(x)

Therefore, the chosen t is such that t > β m
M
. Finally, the difference between f(x +

t∆xnt) and f(x) is upper bounded, since, by recalling that λ2(x) ≥ 1
M
‖∇2f(x)‖2

2:

f(x+ t∆xnt)− f(x) ≤ −αtλ2(x)

≤ −αβ m
M
λ2(x)

≤ −αβ m

M2‖∇f(x)‖2
2

≤ −αβη2 m

M2

≤ −γ.

Now, let us focus on the quadratically convergent phase. Assuming that η ≤
3 (1− 2α) m2

L
, it is possible to prove that a step length that obeys to the stopping

condition of backtracking line search is given by t = 1. The hypothesis on the
Lipschitz continuity of the Hessian allows to write

‖∇2f(x+ t∆xnt)−∇2f(x)‖2 ≤ Lt‖∆xnt‖2.
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As a consequence, given that f̃(t) = f(x+ t∆xnt), it can be attained that

|f̃ ′′(t)− f̃ ′′(0)| ≤ Lt‖∆xnt‖2
2.

Since λ2(x) ≥ m‖∆xnt‖2
2, f̃ ′(0) = −λ2(x) and f̃ ′′(0) = λ2(x), by means of iterated

integrations it can be proved that

f̃(t) ≤ f̃(0)− tλ2(f) + t2

2 λ
2(x) + t3L

6m 3
2
λ3(x).

Assuming that ‖∇f(x)‖2 ≤ η ≤ 3 (1− 2α) m2

L
, under the hypothesis of strong con-

vexity it can be attained that λ(x) ≤ 3 (1− 2α) m
3
2
L
. Therefore, if t = 1,

f(x+ ∆xnt) ≤ f(x)− λ2(x)
[1
2 −

L

6m 3
2
λ(x)

]
≤ f(x)− αλ2(x)

≤ f(x) + α∇>f(x)∆xnt.

So the stopping criterion is satisfied by t = 1. Moreover, ‖∇f(xk)‖2 ≤ η imply
inequality (C.4). Indeed,

‖∇f(x+ t∆xnt)‖2 = ‖∇f(x+ t∆xnt)−∇f(x)−∇2f(x)∆xnt‖2

= ‖
∫ 1

0

(
∇2f(x+ t∆xnt)−∇2f(x)

)
∆xntdt‖2

≤ L

2 ‖∆xnt‖2
2

= L

2 ‖∇
2f(x)−1∇f(x)‖2

2

≤ L

2m2‖∇f(x)‖2
2.





Appendix D
Proof of Some Useful Algebraic Facts

The proof of Lemma 4.4.3 on page 52 and 4.4.4 on page 52 are now provided, based
on the ones given in [5] and [16], respectively.

Proof of Lemma 4.4.3. For each P = P T ∈ Rn×n,

[
B∗ (z−1I − A∗)−1

I
] A∗PA− P A∗PB

B∗PA B∗PB

 (zI − A)−1B

I


= B∗

(
z−1I − A∗

)−1
(A∗PA− P ) (zI − A)−1B

+B∗PA (zI − A)−1B +B∗
(
z−1I − A∗

)−1
A∗PB +B∗PB.

Since

A∗PA− P = −
(
z−1I − A∗

)
P (zI − A)− A∗P (zI − A)−

(
z−1I − A∗

)
PA,

it follows that

[
B∗ (z−1I − A∗)−1

I
] A∗PA− P A∗PB

B∗PA B∗PB

(zI − A)−1B

I

 = 0.

Lemma 4.4.4 provides a relation between left and right spectral factors of a
given rational spectral density function Φ(z). Given the right minimal spectral
factor H(z), it allows to compute the correspondent minimal left factor H∗1 (z), so
that Φ(z) = H∗(z)H(z) = H1(z)H∗1 (z). Here this result is recalled.

Lemma 4.4.4. Let A be a stability matrix and H(z) = C (zI − A)−1B + D be
a minimal realization. Let P be a solution of the Lyapunov equation

P = A∗PA+ C∗C. (D.1)
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Let
K
J

 be an orthonormal basis of the kernel of the matrix
[
A∗P

1
2 C∗

]
, i.e.

[
A∗P

1
2 C∗

] K
J

 = 0,
[
K∗ J∗

] K
J

 = I. (D.2)

Let G := P−
1
2K and define H1(z) as

H1(z) := (D∗C +B∗PA) (zI − A)−1G+B∗PG+D∗J. (D.3)

Then, H∗(z)H(z) = H1(z)H∗1 (z).

Proof of Lemma 4.4.4. Recall that, given the spectral density function Φ(z), each
left spectral factor of Φ, W (z), is given by the product

W (z) = W1(z)Q(z),

where W1(z) is the minimum phase left spectral factor corresponding to Φ(z), also
known as outer function, and Q(z) is an inner function, i.e. such that QQ∗ =
Q∗Q = I on T. The aim is to prove that H∗1 = Q∗H, for a proper inner function Q.
Let Q := C (zI − A)−1G + J . The first step is to prove that the latter is actually
an inner function. Let us evaluate

Q∗Q = G∗
(
z−1I − A∗

)−1
C∗C (zI − A)−1G+G∗

(
z−1I − A∗

)−1
C∗J

+ J∗C (zI − A)−1G+ J∗J.
(D.4)

Assume that P is the solution to the algebraic Riccati equation (4.43). It is easy to
check that

C∗C = −
(
z−1I − A∗

)
P (zI − A) +

(
z−1I − A∗

)
Pz + z−1P (zI − A) . (D.5)

Therefore, equation (D.4) can be rewritten as

Q∗Q = −G∗PG+G∗Pz (zI − A)−1G+G∗
(
z−1I − A∗

)−1
z−1PG

+G∗
(
z−1I − A∗

)−1
C∗J + J∗C (zI − A)−1G+ J∗J.

(D.6)

Now recall that
z (zI − A)−1 = I + A (zI − A)−1 (D.7)

and (
z−1I − A∗

)−1
z−1 = I +

(
z−1I − A∗

)−1
A∗, (D.8)
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therefore

Q∗Q = (J∗C +G∗PA) (zI − A)−1G+
(
(J∗C +G∗PA) (zI − A)−1G

)∗
+G∗PG+ J∗J.

(D.9)

From (D.2), it follows that Q∗Q is an inner. It means that H∗H = H∗QQ∗H. The
last step is to prove that Q∗H = H∗1 . This result is obtained by means of (D.7),
(D.8) and (D.5). Indeed,

Q∗H =
(
G∗

(
z−1I − A∗

)−1
C∗ + J∗

) (
C (zI − A)−1B +D

)
= −G∗

(
z−1I − A∗

)−1 (
z−1I − A∗

)
P (zI − A) (zI − A)−1B

+G∗
(
z−1I − A∗

)−1 (
z−1I − A∗

)
Pz (zI − A)−1B

+G∗
(
z−1I − A∗

)−1
z−1P (zI − A) (zI − A)−1B

+G∗
(
z−1I − A∗

)−1
C∗D + J∗C (zI − A)−1B + J∗D

= −G∗PB +G∗Pz (zI − A)−1B +G∗
(
z−1I − A∗

)−1
z−1PB

+G∗
(
z−1I − A∗

)−1
C∗D + J∗C (zI − A)−1B + J∗D

= −G∗PB +G∗P
(
I + A (zI − A)−1

)
B

+G∗
(
I +

(
z−1I − A∗

)−1
A∗
)
PB

+G∗
(
z−1I − A∗

)−1
C∗D + J∗C (zI − A)−1B + J+D

= G∗PB +G∗PA (zI − A)−1B +G∗
(
z−1I − A∗

)−1
A∗PB

+G∗
(
z−1I − A∗

)−1
C∗D + J∗C (zI − A)−1B + J∗D

= G∗
(
z−1I − A∗

)−1
(C∗D + A∗PB) + (G∗PA+ J∗C) (zI − A)−1B

+G∗PB + J∗D

= G∗
(
z−1I − A∗

)−1
(C∗D + A∗PB) +G∗PB + J∗D

= H1
∗.

(D.10)
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