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Abstract

The aim of this thesis is to find a tighter mathematical programming formulation for an air
traffic flowmanagement problemwith dynamic selection of the airspace configuration. In par-
ticular, we start froman IntegerLinear Programmingmodel proposed in literature, we improve
some of its constraints and we devise some valid inequalities. We thus obtain a tighter formu-
lation that allows us to better approximate the region of the feasible solutions of the problem.
The importance of finding a tight formulation lies in the fact that the methods for solving an
integer linear programming problem are, in principle, more efficient if the formulation is tight.
The ideal would be to find the tightest possible formulation, i.e. the convex hull of the solu-
tions of the problem, but in practice this is very difficult to obtain. The formulation that we
propose is not at all close to the ideal one, but it is significantly tighter than the starting one as
shown by the computational experiments we carried out.
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1
Introduction

This first chapter is devoted to briefly describe the motivations behind our work, pointing out
the increasing importance of air traffic flow management (with particular attention to the Eu-
ropean scenario). A brief summary of the content of each chapter of this thesis as well as its
main contributions are also provided.

1.1 Motivations

In our increasingly connected world, aviation plays an extremely important role, being the
fastest worldwide transportation network. Through aviation, people can travel all around the
world and international business is extremely facilitated. Of course, it is essential to ensure that
flights are carried out safely. It is therefore also necessary that the flow of air traffic is managed
efficiently and in such a way as to avoid potentially dangerous situations. Air traffic flowman-
agement (ATFM), described in Section 2.1, addresses this issue. But before delving into this
more specific aspect, in this chapter we give a more general description of the motivations be-
hind our work.

To understand better the importance of aviation in our society let us see some data. Before
doing so it is important to remark that, due to a number of restrictions related to COVID-
19 pandemic, the number of worldwide scheduled flights dropped down in 2020 and has not
reached yet pre-COVID levels. According to the Air Transport Action Group (ATAG) this
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might happen in 2024 [6]. Figure 1.1 clearly shows how the number of passengers carried by
air in the European Union dropped down in 2020 (after having almost always increased in the
previous 11 years).

Figure 1.1: Number of passengers carried by air in the EU from 2008 to 2021 [24].

In 2018, always in accordance with [6]: “Air transport supported 13.5 million jobs and $991
billion in European economic activity. That is 3.6% of all employment and 4.4% of all GDP
in European countries in 2018”. Of these 13.5 million people, around 2.7 million were di-
rectly employed in the aviation sector. Furthermore in Europe, in 2018, there were: 9,112,303
flights; approximately 1.2 billion passengers; around 10million tonnes of cargo. Moreover, be-
fore COVID-19 pandemic, air travel in Europe was “expected to continue to grow at about
2.1% per year over the next two decades” [6]. However, despite the effects of COVID-19 pan-
demic, it is still expected that there will be around 16 million flights in Europe by 2050, a 44%
increase compared to the number of flights (11.1 million) performed in 2019 in Europe (this
estimate corresponds approximately to an average growth of 1.2% per year) [12]. These data
should give the reader an idea of the importance of the growing air transport industry.

According to [14], in 2022 in Europe, “en-route ATFM delays increased to levels observed
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during the capacity crisis in 2018/19, notwithstanding traffic levels still being lower than in
2019”. Furthermore, “10.4% of all flights were en-route ATFM delayed and the average en-
route ATFM delay reached 1.74 minutes”. From 2015 to 2021 the percentage of en-route
delayed flights never reached 10% (it was 3.9% in 2015). Also the average en-route ATFMdelay
per flight (1.74minutes in 2022, for a total en-routeATFMdelay of approximately 15.9million
minutes) is a record from 2015 to 2022 (equalling 2018). In 2015 the average en-route ATFM
delay per flight was 0.73 minutes. In 2022, however, punctuality deteriorated to the worst per-
formance on record. In fact, “in July 2022, slightlymore than half (52%) of the flights departed
within 15minutes of their scheduled departure time” [14]. All this happened despite “in 2022,
traffic in the EUROCONTROL area increased by 48.3% compared to 2021 but remained
16.7% below the level of 2019”. It is also worth noting that “the average delay per departure in
2022 was 17.6 minutes, with a peak of over 25minutes in June and July. This represents a 33%
increase compared to the average delay in 2019”. The war in Ukraine (impacting on airspace
availability) is one of the causes which contributed to 2022 bad performances [14].

Air transport industry has also a significant environmental impact. In 2019 aviation produced
4.3% of greenhouse gas (GHG) emissions in Europe and in 2018, globally, around 2.5% (ap-
proximately 1.04 billion tonnes, a quantity doubled since 1987 and quadrupled since 1966) of
the total CO2 emissions are attributable to air transport industry (at that time the highest per-
centage value ever recorded) [14, 21]. In Europe, despite having decreased by 57% in 2020 (due
to the reduction in the number of flights provoked by COVID-19 pandemic), CO2 emissions
“increased again in line with traffic recovery reaching 81% of the level of 2019 in 2022” [14].
At global level, the International Civil Aviation Organization (ICAO) “adopted a Long-Term
Aspirational Goal (LTAG) for international aviation of net-zero carbon emissions by 2050. In-
ternational air transport association (IATA) member airlines approved in 2021 a resolution
committing them to achieving net-zero carbon emissions from their operations by 2050 (Fly
Net Zero)” [14]. Without normal fleet renewal and without any advancements in the use of
sustainable aviation fuels (SAFs), in EuropeCO2 emissions might reach 279million tonnes in
2050 (they were around 150 million tonnes in 2005 and around 200 million in 2019) [12].

All the previous data (and considerations) point out the importance of air traffic flow man-
agement. A goodATFMpermits to limit delays, costs (keeping an airplanemore time en-route
increases costs related to fuel) and CO2 (and, more in general, GHG) emissions. All of this
must be done, obviously, in the safest possible way (structural capacities of airports must never
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be exceeded and air traffic must always be under control).

1.2 Structure of the thesis and main contributions

Chapter 1: Introduction The first chapter is devoted to briefly describe the motivations be-
hind our work, pointing out the increasing importance of air traffic flow management (with
particular attention to the European scenario). A brief summary of the content of each chapter
of this thesis as well as its main contributions are also provided.

Chapter 2: The Air Traffic Flow Management Problem In this second chapter, we intro-
duce the ATFM problem. In particular, we describe it, outline the related planning of opera-
tions, see four possible ATFM strategies and present the specificATFMproblem treated in this
thesis.

Chapter 3: Theoretical framework and computational tools In the first four sections of the
third chapter, we recall some theoretical notions that will play a fundamental role in this thesis.
In particular, the model we use to address the ATFM problem (as well as the models proposed
inOperations Research literature that we recall in Chapter 4) is an integer linear programming
model. For this reason, we review the notions of linear programming, integer linear program-
ming and linear programming relaxation. We then illustrate two methods for solving integer
linear programming problems and a technique, based on valid inequalities, which permits to
tighten their formulation. To conclude this chapter, in the fifth section, we briefly describe the
optimization softwareused inorder toobtain the computational results presented in this thesis.

Chapter 4: State of the art In the first section of the fourth chapter, we briefly recall some of
the most relevant integer linear programming models for ATFM present in literature. In the
second section, we instead describe in detail the model presented in [26], which is the basis of
the work developed in this thesis.

Chapter 5: A tighter formulation for the ATFM problem with dynamic selection of the
airspace configurationThe fifth chapter is the core of the thesis. In the first section, we prove
the redundancy of the class of valid inequalities proposed in [26]. In the following three sec-
tions, we present our contributions in order to tighten the formulation presented in [26]. Our
contributions are presentedhere froma theoretical viewpoint (the results of our computational
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experiments are exhibited in Chapter 7) and basically consist in replacing some constants and
adding new classes of valid inequalities. The new formulation thus obtained is explicitly writ-
ten down in the fifth section. Finally, in the sixth section, we provide some estimates regarding
the size of the new formulation.

Chapter 6: Model implementation and instance generation In the first section of this sixth
chapter, we describe how the instances used for our computational experimentswere generated.
To conclude the chapter, in the second section, we illustrate the actual implementation of the
model (described through the new formulation) in AMPL, an algebraic modelling language
for mathematical programming.

Chapter 7: Computational results In the seventh chapter, we report some results, relating
to our computational experiments, which show “howmuch” our contributions (presented in
Chapter 5) allow us to tighten the formulation proposed in literature.

Chapter 8: Conclusions In the last chapter, we draw the conclusions of our work and pro-
pose some ideas for possible improvements and potential future developments.

Appendix In the appendix, we report the MATLAB file flights.m used to generate the spatial
trajectories of the flights present in the instances on which we carried out our computational
experiments. We also report the atfm.dat, atfm.mod and atfm.run files associated with Flights
10 as examples of the .dat, .mod and .run files used to implement the model presented in this
thesis in AMPL.
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2
The Air Traffic FlowManagement Problem

In this second chapter, we will introduce the ATFMproblem. In particular, we will describe it,
outline the related planning of operations, see four possible ATFM strategies and present the
specific ATFM problem treated in this thesis.

2.1 Air Traffic FlowManagement

According to [18], ATFM is a service established with the aim of contributing to a safe, orderly
and expeditious flow of air traffic by ensuring that air traffic control (ATC) capacity is used
to the maximum extent possible, and that the traffic volume is compatible with the capacities
declared by the appropriate air traffic services (ATS) authority. Its purpose is, therefore, to
optimize air traffic flow according to ATC capacity without exceeding the capacities declared
by the competent ATS authority (thus ensuring airlines to operate safe and efficient flights).
ATFM is sometimes also called Air Traffic Flow and Capacity Management (ATFCM) and is
part of the more general Air Traffic Management (ATM), which encompass also other type
of services (for example air traffic services such as flight information services, alerting services,
…). The EUROCONTROL Network Manager Operations Centre (NMOC) plays today “a
pivotal role in managing, streamlining and improving air traffic operations in Europe, with a
strong network-minded approach” [13]. It constantly monitors the balance between traffic
load and airspace capacity.
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The ATFM activities are divided into the three following phases [19]:

Strategic phase During this phase, which begins about one year and ends about one week
before the flight takes place, the NMOC “helps the Air Navigation Service Providers
(ANSPs) to predict what capacity they will need to provide in each of their air traffic
control centres”. Note that “this also includes avoiding imbalances between capacity
and demand for events taking place a week or more in the future” [19].

Pre-tactical phase It takes place fromone to six days before real time operations. In this phase
the MNOC staff must “coordinate the definition of a daily plan aimed at optimising
the overall ATM network performance and minimizing delay and cost, after a collabo-
rative decision making process involving operational partners” and “inform operational
partners about the ATFCMmeasures that will be in force in European airspace on the
following day via the publication of the agreed plan for the day of operations” [19].

Tactical phase It occurs the day of operations (the same day in which the flight takes place).
During this phase the daily plan, made the day before, is monitored and updated by the
MNOC staff. “The staff continues working on capacity optimisation according to real
time traffic demand, and where aircraft are affected by a regulation, offers alternative so-
lutions tominimize delays. Flights taking place on that day receive the benefit of the flow
management service, which includes inter alia the allocation of individual aircraft depar-
ture slots, re- routings to avoid bottlenecks and alternative flight profiles in an attempt
to maximise flight efficiency and make the best use of the available capacity” [19].

2.2 The problem and four possible strategies

As we have already seen, the ATFM problem consists in optimizing air traffic flow without ex-
ceeding the capacities declared by the competent ATS authority. Let us provide a more precise
description of the problem. Let us consider an airport network. We have a certain number of
scheduled flights, each of themwith its own flight path. Every scheduled flight path is given by:
the departure airport and the scheduled departure time; a sequence of sectors that (except for
changes) will be crossed while travelling by air and, for each one of these sectors, the scheduled
entry time; the destination airport and the scheduled arrival time. It is important to note that
every flight path is defined by a 4D space-time trajectory. In this thesis, however, we will con-
sider (for the sake of simplicity) every flight path as a 3D space-time trajectory since, as in [26],
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we will not take into account the flight level dimension. In the ATFM problem faced in thesis,
we want to minimize a cost defined by the weighted sum of all flights’ delays without exceed-
ing the various capacities. There are also ATFM problems that require to minimize other cost
functions (see, for instance, [1] or [2]). To be more clear, let us explore the concept of cost in
the ATFM problem considered in this thesis, as well as the concepts of sectors, capacities and
airspace configurations.

2.2.1 The cost function

The ATFM problem faced in this thesis requires to minimize a weighted sum of all flights’
delays without exceeding the various capacities described in Subsection 2.2.2. To understand
better the previous sentence we need to do some considerations. First of all, let us observe that
the delay of a flight can be seen as a deviation from the time component of its scheduled space-
time trajectory. In the ATFM problem faced in this thesis only time deviations with respect to
scheduled departure and arrival timesmatter. This means that, in the cost functionwewant to
minimize, it does not matter if there is a delay in the intermediate stages between takeoff and
landing, the only important thing is whether the flight leaves/arrives in time or not. However
there are differentways inwhich a flight can accumulate delay. One of themost importantways
is through the application of the so-called ground-holding policy, which consists in postpon-
ing the scheduled departure of the flight. Another possible strategy, which can be implemented
for example in the event that the destination airport is momentarily congested, is given by the
airborne-holding policy and consists in preventing the aircraft, ready to land, from landing for
a certain amount of time. Other ways in which a flight can accumulate delay are, for example,
traveling at lower speed (thus increasing time spent en-route) or changing the scheduled route.
All these strategies will be presented in more detail in Subsection 2.2.3. In light of these con-
siderations, it is easy to understand why the considered sum is weighted since, for example, 15
minutes of air-borne holding, requiring extra fuel consumption, are more expensive than 15
minutes of ground-holding.

2.2.2 Sectors, airspace configurations and capacities

Sectors are contiguous 3D portions of the airspace. We distinguish two different types of sec-
tors (see [4]): elementary sectors and collapsed sectors. The former are pairwise disjoint and
can be interpreted as the “atoms” in which the airspace is divided (see Figure 2.1), whereas the
latter, which are not necessarily pairwise disjoint, can be thought as a sort of “molecules”. In
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particular, each collapsed sector is a contiguous 3D portion of the airspace given by the union
of one or more elementary sectors (see Figure 2.2).

Figure 2.1: Three elementary sectors in northeastern Italy [4].

An airspace configuration (or, more simply, a configuration) is a partition of the set of elemen-
tary sectors into subsets corresponding to collapsed sectors. Since, generally, there exist several
possible different partitions, it is usually possible to achievemany different configurations start-
ing from the same elementary sectors. In this work, as in [26], the possibility of changing the
chosen (or active) configuration during the day is contemplated. Airspace configurations play
a fundamental role in this thesis since, by selecting the most convenient configuration, it is
possible to reduce the value of the cost function. To better understand the importance of con-
figurations, let us first introduce the concept of capacities.

At any time of the day, to each elementary sector is associated a capacity, which represents
the maximum number of aircraft allowed to be simultaneously in that sector (in that moment
of the day). The capacity of an elementary sector can be changed over time by the competent
ATS authority (due, for example, to bad weather conditions). Similarly, at any time of the day
every airport has a departure capacity and an arrival capacity (and also these can be changed
over time). Moreover, every collapsed sector has a capacity that depends on the capacities of
the contained elementary sectors and other factors related to, e.g., its shape or position in the
airspace.
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Figure 2.2: A collapsed sector in northeastern Italy [4].

Obviously the competent ATS authority establishes the various capacities in order to guaran-
tee a high degree of safety (avoiding, in this way, dangerous situations). It is clear that the
constraints given by the various limited capacities are some of the main causes of delays. The
reason why we distinguish two different types of sectors is that, in reality, usually there are not
enough controllers to monitor traffic on every elementary sector. For this reason we will as-
sume that the controllers monitor the air traffic only on the collapsed sectors belonging to the
temporarily active airspace configuration, as well as controlling also the traffic situation during
the various takeoffs and landings phases, guaranteeing that for every airport, at any time of the
day, both the departure and the arrival capacity will not be exceeded. In general, the capacity of
a collapsed sector represents the maximum number of aircraft that the controllers of that col-
lapsed sector can simultaneously monitor without much difficulty (the presence, at the same
time, of too many flights inside a collapsed sector is a major risk factor). As one would expect,
the capacity of a collapsed sector depends on many factors. Some of them are the size of the
sector, its shape and the weather conditions affecting it.

In light of the previous considerations, we can finally understand the importance of airspace
configurations. Suppose, for example, that there are only two contiguous elementary sectors
that would be quite congested at the same time if we respected the scheduled flight paths. The
choice to use, at that critical moment, an airspace configuration in which these two elementary
sectors are part of the same collapsed sector could lead to exceeding the capacity of the latter,
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thus forcing some flights to accumulate delays. Instead, by choosing a configuration such that
the two elementary sectors are not part of the same collapsed sector, itmaybepossible to respect
all the capacities of the collapsed sectors belonging to the configuration in question.

2.2.3 Possible ATFM strategies

In this subsection, we present four possible strategies to face the ATFM problem (describing
also pros and cons of the first two approaches). The aim of these strategies is to avoid traffic
congestion. An optimal balance between these different approaches is an essential element in
ATFM. Our model will take into account only the first three strategies (re-routing is not an
available option).

Ground-holdingApplying ground-holding policy to a flight means deciding to postpone its
departure (in this way we anticipate the delay on the ground at the departure airport).
This policy does not require extra fuel consumption, so it is particularly advantageous
both from an economic and an environmental viewpoint. It is also a particularly safe
policy (since the aircraft is not in the air). The major drawback is that, deciding to antic-
ipate the delay on the ground at the departure airport (in order to avoid future air traffic
congestion), a certain amount of delay is immediately produced. This means that, if for
some reason the expected air traffic congestion will not happen (for example because
meanwhile, due to an improvement of weather conditions, the collapsed sectors capaci-
ties are increased), we have already caused an avoidable delay.

Airborne-holdingApplying airborne-holding policy to a flight means deciding to postpone
its landing, keeping in this way (for a certain amount of time) the aircraft airborne over
the departure airport. Airborne-holding results in additional fuel consumption (this
implies higher economical costs and a greater impact on the environment) and is more
dangerous than ground-holding (since the aircraft is in the air). If on one hand airborne-
holding presents these disadvantages, on the other hand this policy does not cause any
avoidable delay (unlike ground-holding policy).

Speed control A flight is subject to speed control if it is possible to adjust its cruise speed.
In this way the aircraft can reach a certain sector (or the destination airport) before or
after an expected air traffic congestion. In our model speed control can be used only
to slow down a flight. In other words, we assume the impossibility of increasing the
scheduled speed of a flight. This means that it will not be possible to reduce a flight’s
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delay (and it will not be possible to increase the speed of an aircraft in order to avoid
traffic congestion).

Re-routingRe-routing a flightmeans deciding to change its route (the flightwill take another
route, different from the scheduled one). This one is also a very important strategy to
avoid air traffic congestion. In ourmodel, however, re-routing is not an available option.

2.3 TheATFMproblemwithdynamicairspaceconfig-
uration

In this section, we formalize the details of the specific ATFM problem treated in this thesis,
which is the same one addressed in [26].

2.3.1 Elementary sectors, collapsed sectors and airspace con-
figurations

As we have already seen, sectors are contiguous 3D portions of the airspace. They are divided
into two different types: elementary sectors and collapsed sectors. Elementary sectors are a sort
of “atoms” in which the airspace is divided. Let us denote with J the set whose elements are
the elementary sectors. The elements of this set are pairwise disjoint and their union is the en-
tire airspace. In other words, elementary sectors form a partition of the airspace. Each airport
is not a sector, but it is entirely contained within an elementary sector.

Each collapsed sector is a contiguous 3D portion of the airspace given by the union of one
or more elementary sectors (but not necessarily every union of one or more elementary sec-
tors resulting in a contiguous 3D portion of the airspace is a collapsed sector). Let us denote
with H the set whose elements are the collapsed sectors. For instance, let us consider J =
{a, b, c, d} and H = {C1, C2, C3, C4}, where C1 = {a, b}, C2 = {c, d}, C3 = {a, c}
and C4 = {b, d}.

An airspace configuration (or, more simply, a configuration) is a partition of the set J into
subsets of H. With respect to the previous example, there are only two possible airspace con-
figurations: the first one is given by C1 and C2 ; the second one is given by C3 and C4. Since,
in general, there are not enough controllers to monitor air traffic on every elementary sector,
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choosing an airspace configuration is very useful (it permits to monitor traffic only on the col-
lapsed sectors belonging to the active configuration). A list of configurations M is a set whose
elements are airspace configurations (but not necessarily every possible airspace configuration
belongs to M). For instance, with respect to the example above, a list of configurations is given
by M = {M1, M2}, where M1 = {C1, C2} and M2 = {C3, C4}.

2.3.2 Time representation

A long time period is divided into a set of smaller time periods of equal duration. For instance,
we can decide to divide a 3 hour (180 minutes) period into 36 smaller time periods of equal
duration. In this way by t = 1 we mean the time interval [0, 5), by t = 1 we mean the time
interval [5, 10), and so on. Note that, realistically speaking, it is not possible to choose the
most appropriate airspace configuration at each time period. For this reason, as in [26], let us
define the parameter τ , which indicates the minimum number of consecutive time periods in
which the chosen configuration must remain active before it can be changed.

2.3.3 Flights

The spatial trajectory of each flight is described (for some integer n > 1) by a sequence of the
type ABC, a1, . . . , an, XY Z , where ABC is the departure airport, a1, . . . , an are, in order,
the elementary sectors that the flight will cross and XY Z is the destination airport. For each
flight we assume that ABC (which is entirely contained within a1) and XY Z (which is en-
tirely contained within an) are different airports and that a1 and an are different elementary
sectors. For our purposes it will be much more practical (and more precise) to describe the
spatial trajectory of a flight through a list containing elementary sectors rather than using a list
containing collapsed sectors (see [26]).

2.3.4 Capacities

As we have already seen, at any time period t to each elementary sector is associated a capac-
ity. However, since only some collapsed sectors are monitored in the model, we can directly
consider the capacities associated to the collapsed sectors. We can assume (although it is not
actually necessary) that the capacity of a collapsed sector is given by the sum of the capacities
of the elementary sectors contained in that collapsed sector. The capacity of a collapsed sector
at the time period t represents the maximum number of aircraft allowed to be in that sector
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at time t. The capacity of a collapsed sector can change over time. Similarly, recalling Subsec-
tion 2.2.2, at time t every airport has a departure capacity (representing themaximumnumber
of flights that are allowed to take off from the airport in the time period t) and an arrival capac-
ity (representing the maximum number of flights that are allowed to land at the airport in the
time period t).

2.3.5 Delays

As we have already seen, each flight has a scheduled flight path and, therefore, a scheduled de-
parture time and a scheduled arrival time. Moreover, each flight has a scheduled entry time for
every elementary sector that will be crossed while travelling by air. In our problem the available
options to face the ATFM problem are ground-holding, airborne-holding and speed control
(re-routing is not allowed). However, speed control can be applied to a flight only to make it
slow down. As a consequence, it is not possible to use speed control in order to reduce a flight’s
delay. This means that, for each flight and for every elementary sector in its spatial trajectory,
the scheduled time to cross that elementary sector coincides with the minimum time necessary
(for that flight) to go through that sector. For each flight f let us denote with ∆f the maxi-
mumdelay in arrival allowed for flight f . Therefore, each elementary sector j belonging to the
spatial trajectory of f must be reached within a very precise time window. The lower bound
of this time window is given by the scheduled departure time plus the sum of all the scheduled
time periods that the flight is expected to spend in the elementary sectors preceding j. The up-
per bound of this time window is given by the lower bound plus ∆f . In this way we are able to
guarantee the maximum flexibility on how a flight can spread the allowed delay.

2.3.6 Problem definition

Basedon the elements presented so far, wedefine theATFMproblemwithdynamic selectionof
the airspace configuration as follows. Given a set of scheduledflights and a list of configurations,
the goal is to minimize a weighted sum of all flights’ delays without exceeding the capacities of
the various airports and collapsed sectors belonging to the active configuration. To do this, we
can combine the strategies presented in Subsection 2.2.3 with the possibility of choosing, and
possibly updating every now and then, which airspace configuration to adopt.
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3
Theoretical framework and computational

tools

Before presenting the model for the ATFM problem with dynamic selection of the airspace
configuration, we recall the basic required theoretical and computational background. In the
first four sections of this third chapter, we will recall some theoretical notions that will play
a fundamental role in this thesis. In particular, the model we will use to address the ATFM
problem (as well as the models proposed in Operations Research literature that we will recall
in the next chapter) is an integer linear programming model. For this reason, we will review
the notions of linear programming, integer linear programming and linear programming relax-
ation. We will then illustrate two methods for solving integer linear programming problems
and a technique, based on valid inequalities, which permits to tighten their formulation. To
conclude this chapter, in the fifth section, we will briefly describe the optimization software
used in order to obtain the computational results presented in this thesis.

The theoretical part of this chapter will be mainly based on [10]. We point out that, in this
thesis, 0 ∈ N by convention.
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3.1 Integer Linear Programming problems

First of all, let us recall what a linear programming (LP) problem is. A LP problem is a problem
that can be written in the form

max cT x

subject to Ax ≤ b

x ≥ 0,

(3.1)

where c, x ∈ Rn, A ∈ Rm×n and b ∈ Rm (A, b, c are given parameters, whereas x is a vec-
tor of variables). The feasible region of (3.1) is given by the set S := {x ∈ Rn : Ax ≤ b, x ≥
0}, which is the set consisting of the points satisfying the constraints of (3.1). Each element of
S is called a solution of the LP problem. We say that x ∈ S is an optimal solution of (3.1) if
(and only if) ∀x ∈ S wehave that cT x ≤ cT x (x maximizes the objective function cT x in S).
The real number cT x is called the optimal value of (3.1). If S = ∅, the problem admits no
solution (we have an infeasible LP problem) and, obviously, no optimal solution (the feasible
region is empty). Otherwise, if S ̸= ∅, meaning that the LP problem is feasible, the feasible
region is given by the intersection of finitely many half-spaces and, therefore, it is a convex poly-
hedron in Rn, which can be unbounded or bounded. If the polyhedron is unbounded, then
the LP problemmay have an optimal solution (and consequently an optimal value) ormay not
(∀M ∈ R we can find xM ∈ S such that cT xM > M , so the problem is unbounded and does
not have an optimal value). If the polyhedron is bounded, then the LP problem has an optimal
solution. As it is well known, if a LP problemhas an optimal value, then there exists an optimal
solutionwhich is at a vertex. To find an optimal solutionwhich is at a vertex (if the LP problem
has an optimal value), we can use the well-known simplex algorithm, which can also be used to
understand if a LP problem is infeasible or unbounded. This famous algorithm, developed by
George Bernard Dantzig in 1947, is currently used to solve large-scale problems in all sorts of
application areas [10]. The simplex algorithm, although very fast in practice (it is still nowadays
a fundamental computational instrument to solve LP problems) does not guarantee a polyno-
mial running time. However, it is possible to solve a LP problem with a polynomial algorithm
using, for example, the Karmarkar’s interior point algorithm. Therefore the complexity class
of LP problems is P [10].

As we have already seen, there exist very efficient algorithms to solve LP problems in practice.
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This is not true for integer linear programming (ILP) problems. An ILP problem is a problem
that can be written in the form

max cT x

subject to Ax ≤ b

x ≥ 0 integral,

(3.2)

where c, x ∈ Rn, A ∈ Rm×n and b ∈ Rm (A, b, c are given parameters, whereas x is a vec-
tor of variables). In the exact same way as we did for LP problems, we can define the notions of
objective function, constraints, feasible region, solution, optimal solution and optimal value (the
main difference is that the constraints also impose the integrality of the variables). Also an ILP
can be infeasible or feasible and (if it is feasible) unbounded or not. However, the feasible region
of a feasible ILP is not a polyhedron, but a discrete set of points (with integer coordinates) inRn.
Sometimes only some variables are required to be integral, in this case we speak about mixed
integer linear programming (MILP) problems. In this thesis, we will consider a particular type
of ILP problems, in which all the variables are binary (restricted to take value 0 or 1). Binary
variables are sometimes also called binary decision variables. Since ILP problems are in theNP-
hard complexity class, they are in practicemuchmore difficult to solve than LP problems [10].

The linear programming relaxation (LPR) of an ILP problem is the LP problem obtained re-
moving the integrality constraints from the ILP problem. Let us see a simple example to clarify
the situation. Let us consider the following ILP problem (taken from [10]):

max 5.5x1 + 2.1x2

subject to − x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17

x1, x2 ≥ 0
x1, x2 ∈ Z.

(3.3)

On one hand in Figure 3.1 are shown the feasible region of (3.3) (given by the black points
and the red point) and its optimal solution (the red point). On the other hand, with respect
to the LPR of the ILP problem (3.3), Figure 3.1 represents its feasible region (the light blue
polyhedron, which in this case is a polygon) and its optimal solution (the yellow point). In
fact, it is easy to check that the feasible region of the LPR of our ILP problem is the quadri-
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lateral whose vertices have coordinates: (0, 0), (0, 2), (2.125, 0) and (1.3, 3.3). Since, as we
already know, there is an optimal solution of the LPR at a vertex (which, in this case, is the only
optimal solution of (3.3) as one can easily check, for example, with some basic considerations
involving the level sets of the cost function), we can compute the values assumed by the cost
function on the vertices of the polygon to find the optimal solution in question. The values are
respectively: 0, 4.2, 11.6875 and 14.08. Therefore, the optimal solution of the LPR of our
problem is (1.3, 3.3) (the yellow point in Figure 3.1) and the optimal value is 14.08. The fea-
sible region of problem (3.3) consists of the polygon’s points with integer coordinates. These
8 points (see the black points and the red point in Figure 3.1) have the following coordinates:
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3) and (2, 0). Here the cost function take, re-
spectively, the following values: 0, 2.1, 4.2, 5.5, 7.6, 9.7, 11.8 and 11. Therefore, the optimal
solution of our problem is (1, 3) (the red point in Figure 3.1) and the optimal value is 11.8.

Figure 3.1: Geometrical representation of the ILP problem (3.3) and of its LPR [10].

In the previous example we were able to enumerate all the solutions of the ILP problem. This
was possible because the problemwas very simple (it is not at all practical, even for a computer,
to follow this strategy for more complex ILP problems). We will see now two methods for
solving ILP problems.
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3.2 The branch-and-bound method

Thebranch-and-boundmethod is a general techniquewhich allows to solve optimizationprob-
lems by subdividing them into smaller sub-problems and utilizing a bounding function to
discard a number of sub-problems that, certainly, will not contain the optimal solution. In
particular, for our purposes, we will focus on the branch-and-bound method applied to ILP
problems. In this context, to solve an ILP problem, the branch-and-bound method is used to-
gether with a method (usually the simplex algorithm) which permits to solve LP problems.

An example will help us to clarify how the branch-and-bound method works (we will use the
same simple example presented in [10]). Let us consider again the LP problem (3.3). As we
have already seen, the optimal solution of its LPR is given by x1 = 1.3 and x2 = 3.3. This
optimal solution provides 14.08 as the optimal value of the LPR. Consequently, 14.08 is an
upper bound on the optimal solution of the ILP problem. Branching on variablex1, we obtain
two ILP problems. The LPR of the one with the additional constraint x1 ≤ 1 has optimal
solution x1 = 1, x2 = 3 with optimal value 11.8. Since this optimal solution is an integer
solution we prune by integrality this sub-problem. Therefore, 11.8 is a lower bound on the
optimal value of (3.3). On the other hand, the LPR of the sub-problem with the additional
constraint x1 ≥ 2 has optimal solution x1 = 2, x2 = 0.5 with optimal value 12.05. Let us
define z := 5.5x1 + 2.1x2 for the sake of simplicity. All the above steps are represented in the
enumeration tree shown in Figure 3.2.

Figure 3.2: Branching on variable x1 [10].

Note that, in the optimal solution of the sub-problem with the additional constraint x1 ≥
2, x2 is fractional, so this solution is not feasible to the integer program. Since, in this case, z =
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12.05 is greater than 11.8 (the value of the best integer solution found so far), we need to in-
vestigate further the right branch of the enumeration tree represented in Figure 3.2. Thus we
now branch on variable x2. In this way we obtain two ILP problems, one with the additional
constraint x2 ≤ 0 the other with the additional constraint x2 ≥ 1. The LPR of the second
of these ILP problems is infeasible, so we prune this problem by infeasibility. The optimal so-
lution of the LPR of the first of these ILP problems is given by x1 = 2.125, x2 = 0 and the
optimal value is 11.6875. Since this value is smaller than the best lower bound 11.8, we prune
by bound the corresponding node of the enumeration tree. The enumeration is now complete.
Therefore, the optimal solution of (3.3) is given by x1 = 1, x2 = 3 and the optimal value is
11.8. The complete enumeration tree is represented in Figure 3.3.

Figure 3.3: Example of a complete branch‐and‐bound tree [10].

To summarize what we have seen, the branch-and-boundmethod alternates two different pha-
ses: in the branching phase a feasible region is split into two parts; in the bounding phase a LP
problem is solved (typically using the simplex algorithm) in order to find an upper bound for
the considered region.

3.3 The cutting plane method

Suppose we want to solve an ILP problem that admits an optimal solution. Let us denote
with F the feasible region of the ILP problem and with R0 the feasible region of its LPR. Ob-
viously F ⊆ R0. Using, for example, the simplex method we can can find an optimal solu-
tion x0 in R0 (for the LPR of our ILP problem). If x0 ∈ F , then we have found an optimal
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solution (x0) of the ILP problem, so we are done (without even applying the cutting plane
method). Otherwise we have that x0 /∈ F and we can use the cutting plane method. We have
to find a valid inequality. This means that we have to find an inequality (namely a new con-
straint of the form αT

1 x ≤ β1, where α1 ∈ Rn and β1 ∈ R) which, added to the original
formulation of our ILP problem, does not modify F . This inequality will describe, obviously,
an half-space of Rn which will be denoted byP1 and (since the new constraint must be a valid
inequality) will satisfy F ∩P1 = F . However, to be a cutting plane, the inequality we are look-
ing for must also (besides being a valid inequality) be violated by x0 (meaning that x0 /∈ P1).

Now suppose we have found such an inequality. Let R1 := P1 ∩ R0. We can solve the LP
problem with feasible region R1 with the simplex algorithm in order to find an optimal solu-
tionx1. If x1 ∈ F , thenwe have found an optimal solution (x1) of our ILP problem, sowe are
done. Otherwisewe find another cutting plane αT

2 x ≤ β2 (where α2 ∈ Rn and β2 ∈ R), de-
scribing the half-spaceP2. Now, being αT

2 x ≤ β2 a cutting plane, F ∩P2 = F and x1 /∈ P2.
So we can define R2 := P2 ∩ R1 and repeat the procedure described above. Our hope is that,
at a certain point, we will find k ∈ N such that xk ∈ F . If this will happen (which is not, in
general, guaranteed), then xk will be an optimal solution of our ILP problem.

We have just described, from a general viewpoint, the way in which the cutting plane method
operates. Remember that, in the above notation, F ⊆ Rk ⊆ Rk−1 ⊆ · · · ⊆ R1 ⊆ R0. Note
that, at every iteration, there are infinitely many possible cutting planes to add. It is worth not-
ing that there are cutting planes that always work, such as, for example, the so-called Gomory
fractional cuts. In fact, using, at every iteration, a Gomory fracional cut it is possible to ensure
that the cutting plane method will always terminate (we will always find, in the above nota-
tion, k ∈ N such that xk ∈ F ) [10]. Another possibility, given a specific ILP problem, is to
search for ad hoc cutting planes. The latter, however, do not always guarantee that we will be
able to find k ∈ N such that xk ∈ F .

It is also possible to combine the cutting plane method with the branch-and-bound algorithm.
This is done in the branch-and-cutmethod, “which is currently themost successfulmethod for
solving integer programs” [10]. Always citing [10], the branch-and-cut method “is obtained
by adding a cutting-plane step before the branching step in the branch-and-bound algorithm”.
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3.4 Cover inequalities

Before introducing cover inequalities, let us recall the notion of convex hull. Given S ⊆ Rn,
the convex hull of S is the intersection of all the convex sets containing S. The convex hull
is the unique smallest convex set containing S and is also the set of all convex combinations
of points in S [22]. Assume we want to write a formulation for an ILP problem. There are
infinitely many possible formulations (for our ILP problem) which result in the same feasible
region. Let us consider two possible formulations of this type, let us say F1 and F2. By con-
struction F1 and F2 have the same feasible region F . Let R1 be the feasible region of the LPR
of F1. Let R2 be the feasible region of the LPR of F2. If R1 = R2, then F1 and F2 are sub-
stantially the same formulation. Otherwise, if R1 ̸= R2, we say that F1 and F2 are different
formulations. If R1 ⊊ R2, then formulation F1 is tighter than formulation F2. The tightest
possible formulation (the so-called ideal formulation) is the one whose LPR’s feasible region
coincides with the convex hull of F . Let us call H this formulation and R its feasible region.
Formulation H has an extremely important property. If our ILP problem has an optimal so-
lution, then solving the LPR ofH (with, for example, the simplex algorithm) we find a certain
point x ∈ R which always satisfy x ∈ F . This means that, using formulation H , to solve
our ILP problem it is sufficient to solve its LPR (and, as we have already seen, this is a huge
advantage). However, in general, it is extremely difficult to find the formulation H . To be as
clear as possible, in Figure 3.4 is shown the convex hull (the pink polygon) of the feasible region
of problem (3.3).

Figure 3.4: Convex hull of the feasible region of problem (3.3).
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To tighten a given formulation of an ILP problem, we can add some valid inequalities, as de-
fined in Section 3.3. An important class of valid inequalities, which will play a crucial role in
this thesis, is given by the so-called cover inequalities. The remaining part of this section is based
on [11].

3.4.1 Cover inequalities for the knapsack problem

Let us consider the so-called knapsack problem. In this problem, we suppose to have n items
of weight a1, . . . , an ≥ 0 and profit p1, . . . , pn ∈ R respectively, and a bag (the knapsack)
of maximum capacity β ≥ 0. We want to find a subset of these n items that maximize the
total profit without exceeding β. We also assume that a1, . . . , an, β ∈ Z. Defining binary
variables x1, . . . , xn, where xi = 1 if and only if item i is selected, we can give the following
ILP formulation of the knapsack problem:

max
n∑

i=1
pixi

subject to
n∑

i=1
aixi ≤ β

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ∈ Z ∀i ∈ {1, . . . , n}.

(3.4)

The feasible region of the LPR of problem (3.4) is usually much larger than the convex hull
of the solutions of problem (3.4). For this reason we would like to find valid inequalities to
strengthen the formulation. We call cover any subset of the n items that exceeds the knapsack
capacity. This means that a cover is a subset C ⊆ {1, . . . , n} satisfying

∑
i∈C

ai > β.

Remembering that a1, . . . , an, β ∈ Z (by assumption), we can rewrite the previous condi-
tion as ∑

i∈C

ai ≥ β + 1.
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By definition, it is impossible to put all the elements of a cover C in the knapsack. Therefore
we have the following valid inequality:

∑
i∈C

xi ≤ |C| − 1.

This inequality is called cover inequality.

If we add all possible cover inequalities to the original formulation of the knapsack problem,we
obtain a better formulation. It can be shown, however, that this is not the ideal formulation yet.
Since in the worst case there is one cover inequality for every non-empty subset of {1, . . . , n},
we can have up to 2n − 1 cover inequalities. Even though in most practical cases only some of
these subsets are actually covers, the number of covers is still too large. Consequently, adding
all cover inequality is not practical at all (we cannot simply enumerate them and search for a
violated one). Therefore, the idea is to add dynamically the cover inequalities only when they
are really needed [11]. We will now see how to put in practice this idea.

Suppose that we have solved the LPR of problem (3.4) and we have found an optimal solu-
tion x that is not an integer vector. We want to check if there exists a cover inequality violated
by x in order to (if it exists) add it to the formulation and solve the new LP problem. The
problem of finding a cover inequality violated by x, or deciding that none exists, is known as
the separation problem for the cover inequalities [11]. Understanding if there is a cover inequal-
ity violated by x means understanding if we can find a subset C ⊆ {1, . . . , n} such that:

(i)
∑

i∈C
ai ≥ β + 1;

(ii)
∑

i∈C
xi > |C| − 1.

Condition (i) guarantees that the set C is a cover, while condition (ii) says that x does not
satisfy the corresponding cover inequality. In order to understand if there is a cover inequality
violated by x or not, let us introduce the binary variables z1, . . . , zn, where zi = 1 if and only
if item i belongs to the cover C . We can rewrite condition (i) as follows:

n∑
i=1

aizi ≥ β + 1.

26



Since, by definition,
∑n

i=1 zi = |C|, we can rewrite condition (ii) as follows:

n∑
i=1

xizi > −1 +
n∑

i=1
zi or, equivalenly,

n∑
i=1

(1 − xi)zi < 1.

Let us now consider the following ILP problem (where the xis are known values and not vari-
ables):

min
n∑

i=1
(1 − xi)zi

subject to
n∑

i=1
aizi ≥ β + 1

0 ≤ zi ≤ 1 ∀i ∈ {1, . . . , n}
zi ∈ Z ∀i ∈ {1, . . . , n}.

(3.5)

The constraints guarantee that the variables zi define a cover. If we solve now problem (3.5),
assuming that it is feasible (otherwise there are no covers and, therefore, there are no cover in-
equalities), we find an optimal (integer) solution z with optimal value v. There are now two
possible different scenarios. If v < 1, meaning that

∑n
i=1(1 − xi)zi < 1, then (as we have

seen above) the cover inequality defined by z is violated by x. Otherwise, if v ≥ 1, there is
not any cover inequality violated by x (since, in this case,

∑n
i=1(1 − xi)zi ≥ 1 for any vector

z defining a cover). So, to establish if there is a cover inequality violated by x (and find it), it is
sufficient to solve the ILP problem (3.5). Let us observe that this problem is very similar to the
ILP problem (3.4). One might therefore expect it would be better to solve directly the original
problem rather than solving a similar problem just to find a new inequality to include in the
formulation. However, this approach is muchmore promising inmore general situations [11].
This means that it is possible to apply, with more efficiency from a computational viewpoint,
this method to ILP problems different from the knapsack problem.

Before seeing how we can proceed to find cover inequalities for more general ILP problems,
let us put in practice the above procedure on a trivial example. Let us consider the following
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knapsack problem:

max x1 + 3x2

subject to x1 + 2x2 ≤ 1
0 ≤ x1, x2 ≤ 1

x1, x2 ∈ Z.

(3.6)

It is trivial to check that the feasible region is the subset of R2 containing only the points (0, 0)
and (1, 0). The last one is the optimal solution (and the optimal value is 1). However, solving
the LPR of problem (3.6), we obtain the optimal solution x1 = 0, x2 = 0.5, with optimal
value 1.5. Since this solution is not integer, we look for a cover inequality. Following the above
procedure (see (3.5)), we have to solve this ILP problem:

min z1 + 0.5z2

subject to z1 + 2z2 ≥ 2
0 ≤ z1, z2 ≤ 1

z1, z2 ∈ Z.

(3.7)

As one can trivially check, problem (3.7) admits only two solutions. Its feasible region is the
subset of R2 containing only the points (1, 1) and (0, 1). The last one is the optimal solution
(and the optimal value is 0.5). Therefore, we get the following cover inequality:

x2 ≤ 0.

Let us add it to the formulation in (3.6). The LPR of the new formulation is:

max x1 + 3x2

subject to x1 + 2x2 ≤ 1
0 ≤ x1 ≤ 1

x2 = 0.

(3.8)

As one can trivially check, the optimal solution of problem (3.8) is x1 = 1, x2 = 0. Since
it is an integer solution, it is also (as we already have seen) the optimal solution of problem
(3.6). Figure 3.5 represents the feasible region of problem (3.6) (the two black points) and of
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its LPR (the green triangle). Moreover, the feasible region of problem (3.8) is represented by
the red segment (which includes the two black points).

Figure 3.5: Feasible regions of problem (3.6), problem (3.8) and problem (3.6)’ s LPR.

3.4.2 Cover inequalities for more general integer linear pro-
gramming problems

Let us now see how it is possible to find cover inequalities also for more general ILP problems
(not only knapsack problems). Let us consider an ILP problem that can be written in the form

max cT x

subject to Ax ≤ b

Bx ≤ d

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ∈ Z ∀i ∈ {1, . . . , n},

(3.9)

where c, x ∈ Rn, A ∈ Nm×n, b ∈ Nm, B ∈ Rk×n and d ∈ Rk (A, B, b, c, d are given
parameters, whereas x is a vector of variables). Since A ∈ Nm×n and b ∈ Nm, every single
constraint of the system Ax ≤ b can be seen as knapsack-type constraint. This means that, if
we replace the system given by constraints Ax ≤ b and Bx ≤ d with any constraint among
those present in Ax ≤ b (forgetting all the others), then we obtain an ILP problem that looks
exactly like a knapsack problem. It is therefore possible to add to the formulation the cover
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inequalities associatedwith each of the knapsack problems obtained this way (i.e., removing all
constraints Ax ≤ b and Bx ≤ d except one constraint belonging to Ax ≤ b) [11]. We can
use themethod described above in order to add the cover inequalities only when they are really
needed, thus trying to contain the number of inequalities to be added.

Suppose that we have solved the LPR of problem (3.9), finding an optimal non-integer so-
lution x. At this point, for every knapsack problem obtained by removing all the constraints
of the system (given by constraints Ax ≤ b and Bx ≤ d) except one constraint among those
present in Ax ≤ b, we want to check if there is a cover inequality violated by x. To do this, it
suffices to solve a problem of the form (3.5). If this problem is feasible and the optimal value
is smaller than 1, then we have just found a cover inequality violated by x that we can add to
the formulation; otherwise there is no cover inequality violated by x. We can then solve the
new LPR of (3.9) (which includes the cover inequalities that have been added) and repeat this
procedure until the current solution satisfies all cover inequalities. The entire process is well
explained in Algorithm 3.1.

With Algorithm 3.1 we have to solve many problems of the form (3.5), which are ILP prob-
lems (thus hard to solve generally speaking). However, problem (3.5) is (quoting [11]) “one
of the simplest integer linear programming problems and therefore, although in principle an
exponential time might be needed to solve it, in practice an optimal solution can be found in
a reasonable amount of time”. As we have seen above, Algorithm 3.1 terminates when the
current solution, assuming it exists, does not violate any cover inequality (pay attention that
when this happens, x is not necessarily integer, since cover inequalities are not usually suffi-
cient to describe the ideal formulation of the problem). It is, of course, possible to stop the
algorithm before its natural termination if we think that the cover inequalities that we have
already found are sufficient to provide a good formulation of the problem. However, if x is
not integer, we can apply the branch-and-bound method. Adding some cover inequalities al-
lows us to start from a better formulation and usually makes the branch-and-bound method
terminate in a shorter time. This kind of approach, in which the formulation is strengthened
with valid inequalities and then branch-and-bound is applied, is known as cut-and-branch [11].
In this thesis, the cut-and-branch technique will be used in order to get some computational
results.
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Algorithm 3.1: Generation of cover inequalities
Step 1: Solve the LPR of problem (3.9). If there is no solution, then STOP: problem

(3.9) is infeasible. Otherwise let x be the optimal solution obtained.

Step 2: Check if x is integer. If this is true, then STOP: an optimal solution of problem
(3.9) has been found. Otherwise proceed to the next step.

Step 3: For every constraint of the system Ax ≤ b, solve the corresponding ILP problem
(3.5) (where a1, . . . , an and β are the coefficients and the right-hand side of the
constraint). If for every constraint of the system Ax ≤ b the corresponding ILP
problem (3.5) is infeasible, then STOP: there are no covers and, therefore, there
are no cover inequalities. Otherwise, for every constraint of the system Ax ≤ b
such that the corresponding ILP problem (3.5) is feasible, let z be the optimal in-
teger solution (obtained by solving the corresponding ILP problem (3.5)) and v
the corresponding optimal value.

Step 4: For every optimal value v found at the previous step, check whether v < 1 holds.
For each v such that v < 1 holds, the corresponding z gives a cover inequality
violated by x and this cover inequality is the one associated with the cover given by
the set C = {i ∈ {1, . . . , n} : zi = 1}.

Step 5: If for all the problems solved at Step 3 we have that v ≥ 1, then there are no cover
inequalities violated by x. In this case STOP. Otherwise proceed to the next step.

Step 6: Add to formulation (3.9) all the cover inequalities found so far (which, to be clear,
will become part of the new systemBx ≤ d) and go back to Step 1.
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3.5 Computational tools

In this section, we briefly illustrate the computational tools used in the development of this
thesis. To run our computer simulations (consisting in solving many ILP problems and LP
problems) we have used the optimization software IBM ILOG CPLEX (version 11.1.1 and
version 12.8.0.0) through its AMPL (version 20080701) interface. The various instances used
in our computational experiments have been generated using the softwareMATLAB. Some of
these instances have been created by us (using version R2022b), whereas others are taken from
[26] (and have been generated by version R2020b).

3.5.1 IBM ILOGCPLEX

IBMILOGCPLEX,often informally referred to simply asCPLEX, is a solver formathematical
optimization. The CPLEXOptimizer was named after the simplex algorithm as implemented
in theCprogramming language, although nowadays it alsomakes available other algorithms of
mathematical programming and it provides interfaces to programming languages other thanC
(such as, for example, C#, C++, Java andPython). TheCPLEXOptimizerwas originally devel-
oped by Robert E. Bixby. It has been sold commercially since 1988 by CPLEX Optimization
Inc., which was acquired by ILOG in 1997. ILOG was acquired by IBM afterwards (in Jan-
uary 2009). CPLEX is currently maintained and developed by IBM. The IBM ILOGCPLEX
Optimizer is able to solve: ILP problems; very large LP problems (using either primal or dual
variants of the simplex algorithm or the barrier interior pointmethod); convex and non-convex
quadratic programming problems; convex quadratically constrained problems. Formore infor-
mation on the IBM ILOGCPLEXOptimizer, visit [17].

3.5.2 AMPL

AMPL (the name is an acronym for “A Mathematical Programming Language”) is a high-
level algebraic modelling language for mathematical programming. It was designed and im-
plemented by Robert Fourer, David Gay and Brian Kernighan at Bell Labotatories in 1985.
AMPL has been developed in order to describe and solve high-complexity problems for large-
scale mathematical computing (it permits to deal with, for example, large-scale optimization
and scheduling-type problems). AMPL is not a solver, so it does not solve problems by itself.
However, it writes files with complete details of the problem instances to be solved and in-
vokes separate solvers (both open source and commercial software). Some of these solvers are
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CBC,CPLEX,Gurobi andMINOS.A big advantage of AMPL is the closeness of its syntax to
the mathematical notation of optimization problems (this permits to have a very succinct and
readable definition of optimization problems). AMPL is available for many operating systems
(such as Linux, macOS, Solaris, AIX and Windows). For more information on AMPL, visit
[3].

3.5.3 MATLAB

MATLAB (an abbreviation of “MATrix LABoratory”) is an environment, developed byMath-
Works (andwritten in the programming languagesC,C++andMATLAB), for numerical com-
puting and statistical analysis, which also includes the homonymous programming language
(the latter, also developed byMathWorks, was originally designed by mathematician and com-
puter programmer Cleve Moler in the late 1970s). The software MATLAB was first released
as a commercial product in 1984 byMathWorks, Inc. (which was founded in order to develop
the software). MATLAB permits to manipulate matrices, plot data and functions, implement
algorithms and create user interfaces. It also allows interfacing with programs written in other
languages. Nowadays, MATLAB has millions of users worldwide (it is widely used in both
universities and industry). They come from various backgrounds (such as engineering, science
and economics). The success of MATLAB is due to its many tools which can be used in the
most varied applied fields of study. Moreover, a big advantage of MATLAB, is the possibility
to run it on various operating systems, includingLinux,macOS,Unix andWindows. Formore
information onMATLAB, visit [20].
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4
State of the art

TheATFMproblem has been addressed and solved through different approaches in the course
of time. These various approaches lead tomodels that can be deterministic or stochastic, static
or dynamic, linear or nonlinear, more detailed or less detailed (depending, for example, on how
many of the ATFM strategies described in Subsection 2.2.3 are taken into account) and so on.
The model to use must be chosen depending on which features and characteristics we want
to highlight. One of these possible approaches is based on integer linear programming. Com-
pared to other types ofmodels, ILPmodels have some very useful features. In fact, they are: dis-
crete; adequate to represent many real-world problems; solvable with standard (and relatively
efficient) methods; usually easily readable; often easily generalizable. The model considered in
this thesis is an ILP model.

In the first section of this fourth chapter, we will briefly recall some of the most relevant ILP
models for ATFMpresent in literature. In the second section, we will instead describe in detail
the model presented in [26], which will be the basis of the work developed in this thesis.

4.1 Some relevant ILP models for ATFM

Let us briefly recall (in chronological order) some of the most relevant ILP models for ATFM
present in literature.
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Helme (1992) [16]: In the ILP model here proposed there are only two possible strategies
to minimize delays: ground-holding and airborne-holding. This means that, for each flight,
the only possible choices are: decide whether or not to postpone its departure and, if so, for
how long; decide whether or not to postpone its landing and, if so, for how long. It is not pos-
sible instead to adjust its cruise speed (speed control is not an available option) or to change its
route (re-routing is not allowed). In other words, for each flight, it is possible to deviate from
the scheduled trajectory only from a temporal viewpoint (and without using speed control).

Andreatta, Odoni and Richetta (1993) [5]: The model presented in this paper allows to
use only the ground-holding policy to face the ATFM problem. In addition to speed control
and re-routing, also airborne-holding is not an available option (since it is more expensive than
ground-holding).

Bertsimas and Stock Patterson (1998) [8]: This model is particularly interesting for our
purposes, since the formulation presented in [26], hence ours, is based on it. As in [16] (and
also in [5]), for each flight, it is possible to deviate from the scheduled trajectory only from a
temporal viewpoint (re-routing is not allowed, although the paper presents two possible ap-
proaches to add also re-routing policy to the model). However, besides ground-holding and
airborne-holding policies, this model provides the possibility to adjust the cruise speed of every
flight (speed control is an available option). A fundamental contribution present in this article
is given by the introduction of a new type of binary variables. Fixed a flight f , a sector j (or an
airport k) and a time t we have that wj

f,t = 1 (or wk
f,t = 1) if and only if f arrives at j (or f

takes off from k, or f lands at k) by time t (and not, as it had always been done before, at time
t). These new variables have some great advantages compared to those used until then. They
permit to write down some constraints in amore clear (and elegant) way. Furthermore, the for-
mulation is pretty tight (some constraints are facet defining for the convex hull of solutions):
solving the LPR of the formulation in a number of instances the authors have found, almost
always, an integral solution. There are three different types of connectivity described by the
model’s constraints: connectivity between sectors; connectivity between airports; connectivity
in time. This model takes also into account continued flights (which are consecutive flights
operated by a same aircraft).

Bertsimas and Stock Patterson (2000) [9]: In this model also re-routing (in addition to
ground-holding, airborne-holding and speed control) is an available option tominimize the to-
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tal cost of delays. Using this model to solve an instance of the ATFM problem requires a long
computation time. This model is not suitable for being applied to real-world ATFMproblems
(the instances are too big).

Bertsimas, Lulli and Odoni (2011) [7]: This model is basically an improvement of [9], since
it allows to solve bigger instances (“of size comparable to that of the entire U.S. air traffic man-
agement” [7]). Similarly to [8], this formulation is pretty tight. Ground-holding, airborne-
holding, speed control and re-routing are all available strategies in this model. Note that re-
rounting is possible thanks to sets of local conditions that enable to represent re-routing op-
tions compactly by only introducing some new constraints. Furthermore, the objective func-
tion presented in this paper favors a fair distribution of delays, trying to avoid excessive accu-
mulation of delays on a restricted number of flights.

Agustín, Alonso-Ayuso, Escudero and Pizarro (2012) [1, 2]: This article is divided into
two parts. In the first one the authors present an ILP (or, to be more precise, a MILP) model
which, if necessary, allows for flight cancellation and re-routing. A wide range of possible ob-
jective functions is provided. Quoting [1]: “The global objective function to be optimized can
include different terms, depending on the goal of the decision maker”. For this reason, the
article lists a number of possible terms to be combined together (with appropriate weights) in
order to create the desired objective function to beminimized. Among them there are (besides
a number of terms related to various delays), for example, the total cancelation cost (which is
related to canceled flights) and the cost of using alternative flights routes (different from the
scheduled ones). Also this formulation is pretty tight and permits to treat large-scale instances.
In the second part of the article, taking a certain degree of uncertainty into account, a stochas-
tic variation of the previous model is presented.

Fomeni, Lulli and Zografos (2017) [15]: This paper provides a binary ILP model that con-
tributes to the optimization and optimum configuration of the TBO (an acronym for “Trajec-
tory Based Operations”) concept. TBO is “the concept of improving throughput, flight effi-
ciency, flight times, and schedule predictability through better prediction and coordination of
aircraft trajectories” [23]. The model considers the favourite 4D-trajectory of all the flights in
the pre-tactical planning phase and provides an optimal pre-departure 4D-trajectory for each
flight to be shared or negotiatedwith other stakeholders and subsequently handled throughout
the flight. These trajectories are obtained by minimizing the deviation (relatively to time delay,
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lateral and vertical deviation) from the original favourite trajectories. The novelty of thismodel
is that, besides considering the complete space-time 4D-trajectory for each flight, it takes into
account the priorities and the preferences of the ATM stakeholders [15].

4.2 AnILPmodelfortheATFMproblemwithdynamic
airspace configuration

Let us now introduce the model presented in [26] in detail. This section is based on the fifth
chapter of [26] and is very important for the continuation this thesis, since the aim of our work
is to find a tighter formulation for the same specific ATFM problem faced in [26] and already
recalled in Section 2.3.

4.2.1 Notation

Let us now recall the data and the notation present in the formulation proposed in [26] (they
will also be used in this thesis). For the sake of simplicity (it will be useful later on), wewill write
C̃h(t) instead of Ch(t) (the latter notation is the oneused in [26]). Wewill alsowrite lj

f instead
of lfj .

F = {1, . . . , F} is the set of flights.

K = {1, . . . , K} is the set of airports.

J = {1, . . . , J} is the set of elementary sectors.

H = {1, . . . , H} is the set of collapsed sectors.

M = {1, . . . , M} is a list of configurations (recall Subsection 2.3.1).

T = {1, . . . , T} is the set of time periods.

Pm = {h ∈ H : their union is the configuration m ∈ M} is the set of collapsed sectors
belonging to the configuration m ∈ M.

Bh = {j ∈ J : their union is the collapsed sector h ∈ H} is the set of elementary sectors
which form the collapsed sector h ∈ H.
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Nf = number of elements belonging to the sequence that describes the spatial trajectory of
flight f (remember what we have seen in Subsection 2.3.3). Note that, according to our
assumptions, Nf ≥ 4.

P (f, i) =


the departure airport if i = 1,

the (i − 1)-th elementary sector in flight f ’s path if 1 < i < Nf ,

the destination airport if i = Nf .

Pf = {P (f, i) : 1 ≤ i ≤ Nf}.

Dk(t) = departure capacity of airport k at time t.

Ak(t) = arrival capacity of airport k at time t.

Sh(t) = capacity of collapsed sector h at time t.

df = scheduled departure time of flight f .

rf = scheduled arrival time of flight f .

∆f = maximum delay in arrival allowed for flight f .

cg
f = cost of holding flight f (through ground-holding policy) on the ground for one unit of

time.

ca
f = cost of holding flight f (through airborne-holding and/or speed control policies) in the

air for one unit of time.

lk
f = 0 is the scheduled number of time units that flight f must spend in its departure air-

port k. This quantity is equal to zero since, once it has taken off, flight f is immediately
inside the first elementary sector of its path (remember that in this model, as we have
already seen in Subsection 2.3.1, each airport is entirely contained within an elementary
sector).

lj
f = scheduled number of time units that flight f must spend in the elementary sector j. We

assume lj
f ≥ 1.

T k
f = first feasible time period for flight f to take off from (or land at) airport k.

T
k
f = T k

f + ∆f = last feasible time period for flight f to take off from (or land at) airport k.

39



T k
f = {T k

f , . . . , T
k
f} is the set of feasible time periods for flight f to take off from (or land

at) airport k. The minimum of the set T k
f is T k

f , whereas the maximum is T
k

f .

T j
f = first feasible time period for flight f to arrive at elementary sector j.

T
j

f = T j
f + ∆f = last feasible time period for flight f to arrive at elementary sector j.

T j
f = {T j

f , . . . , T
j
f} is the set of feasible time periods for flight f to arrive at elementary

sector j. The minimum of the set T j
f is T j

f , whereas the maximum is T
j
f .

τ = minimum number of consecutive time periods in which the (temporarily) chosen air-
space configuration must remain active before it can be changed (τ ∈ N \ {0}).

C̃h(t) =


∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,
1<i<Nf

1


−Sh(t) = constant used to make capaci-

ty constraints redundantwhen related to h, t and a non-active airspace configuration. A
constant C̃h(t) is defined for each collapsed sector h and every time period t.

4.2.2 Decision variables

Let us now recall the two different types of decision variables present in the formulation pro-
posed in [26] .

The first type is the same used in [8]. For the sake of clarity, we distinguish two different
cases, depending on whether the variables in question give indications relating to an airport
or an elementary sector crossed during the flight. In the first case, for every f ∈ F , k ∈
K ∩ Pf and t ∈ T k

f , we define

wk
f,t =

1 if flight f takes off from (or lands at) airport k by time t,

0 otherwise.
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In the second case, for every f ∈ F , j ∈ J ∩ Pf and t ∈ T j
f , we define

wj
f,t =

1 if flight f arrives at elementary sector j by time t,

0 otherwise.

The second type of decision variables is defined as follows. For every m ∈ M and t ∈ T we
define

ym,t =

1 if configuration m is active at time t,

0 otherwise.

The variables ym,t allow to easily capture the fact that one only one configuration must be ac-
tive in a certain period of time. Furthermore, as we will see, they permit (together with τ ) to
impose constraints related to the stability of an airspace configuration over time.

In the next subsection, we will write down explicitly the model’s ILP formulation provided
by [26]. Wewill later describe in detail this formulation. For themoment, we limit ourselves to
observe that, from a formal viewpoint, in some constraints (as well as in the objective function)
of the formulation undefined variables appear (see Subsection 4.2.3). To bemore precise, some
of these variables are of the type wj

f,t, where f ∈ F , j ∈ Pf (note that, in this case, j can also
be an airport) and t ∈ T , t < T j

f . Besides this type of variables, undefined variables appear in
constraints (4.9) when t = 1. All these undefined variables appear only because, for the sake
of clarity, the formulation presented is not as formal as possible (otherwise there would not
be any issue). To fix this “problem” it is sufficient to set to zero all these “undefined variables”
(which simply, in a more formal formulation, would not appear).
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4.2.3 The model’s formulation

min
∑
f∈F

[
(cg

f − ca
f )

∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

+ ca
f

∑
t∈T k

f
, k=P (f,Nf )

t(wk
f,t − wk

f,t−1)

+ (ca
f − cg

f )df − ca
frf

]

subject to ∑
f∈F : P (f,1)=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.1)

∑
f∈F : P (f,Nf )=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.2)

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t)

 ≤

≤ Sh(t) + C̃h(t)(1 − ym,t) ∀ m ∈ M, h ∈ Pm, t ∈ T

(4.3)

wj′

f,t+lj
f

− wj
f,t ≤ 0

∀ f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i + 1), 1 ≤ i < Nf

(4.4)

wj
f,t − wj

f,t−1 ≥ 0 ∀ f ∈ F , j ∈ Pf , t ∈ T j
f (4.5)

wj
f,t ∈ {0, 1} ∀ f ∈ F , j ∈ Pf , t ∈ T j

f (4.6)

wj

f,T
j
f

= 1 ∀ f ∈ F , j ∈ Pf (4.7)

∑
m∈M

ym,t = 1 ∀ t ∈ T (4.8)

ym,t − ym,t−1 ≤ ym,u ∀ m ∈ M, t ∈ T , u ∈ {t + 1, . . . , min{t + τ − 1, T}} (4.9)

ym,t ∈ {0, 1} ∀ m ∈ M, t ∈ T . (4.10)
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4.2.4 The objective function

The objective function of the previous formulation is the same used in [8]. Recalling also what
we seen in Subsection 2.2.1, the objective function presented in Subsection 4.2.3 is, at first
sight, quite difficult to understand. The reason is that both [26] and [8] originally wanted to
minimize the objective function ∑

f∈F

[
cg

fgf + ca
faf

]
,

where gf is the total number of time units that flight f is held on the ground (through ground-
holding policy) and af is the total number of time units that flight f is held in the air (through
airborne-holding and/or speed control policies). Note that this objective function is aweighted
sum of all flights’ delays.

Let us show that this weighted sum is exactly the objective function present in Subsection 4.2.3.
First of all, let us observe that gf equals the difference between the actual departure time of
flight f and its scheduled departure time. This means that

gf =

 ∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

− df .

Similarly, we can observe that af can be expressed as the actual arrival time of flight f minus
its scheduled arrival time minus the amount of time that flight f has been held on the ground.
This means that

af =

 ∑
t∈T k

f
, k=P (f,Nf )

t(wk
f,t − wk

f,t−1)

− rf − gf .

Therefore∑
f∈F

[
cg

fgf + ca
faf

]
=
∑
f∈F

cg
f

 ∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

− df


+ ca

f

 ∑
t∈T k

f
, k=P (f,Nf )

t(wk
f,t − wk

f,t−1)

− rf

−

 ∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

+ df

.
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Finally, rearranging terms on the right-hand side, we obtain

∑
f∈F

[
cg

fgf + ca
faf

]
=
∑
f∈F

[
(cg

f − ca
f )

∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

+ ca
f

∑
t∈T k

f
, k=P (f,Nf )

t(wk
f,t − wk

f,t−1)

+ (ca
f − cg

f )df − ca
frf

]
.

The last right-hand side is exactly the objective function present in Subsection 4.2.3.

4.2.5 The constraints

Let us now describe the formulation’s constraints in detail. At the end of this subsection, we
will also recall a class of valid inequalities proposed, but not used, in [26].

Capacity constraints

Constraints (4.1), (4.2) and (4.3) are the capacity constraints. In particular, for every k ∈
K and t ∈ T , constraints (4.1) ensure that the number of flights which may take off from
airport k at time t will not exceed Dk(t) (the departure capacity of airport k at time t).

∑
f∈F : P (f,1)=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.1)

Similarly, for every k ∈ K and t ∈ T , constraints (4.2) guarantee that the number of flights
which may land at airport k at time t will not exceed Ak(t) (the arrival capacity of airport k at
time t). ∑

f∈F : P (f,Nf )=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.2)

While constraints (4.1) and (4.2) are also used in [8], constraints (4.3) are specific of the formu-
lation presented in [26]. They guarantee that, at any time period t, for every collapsed sector
h belonging to at least one configuration m ∈ M, the total number of flights present in h

at time t (represented by the left-hand side) will have an upper bound. Let us focus now our
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attention on these upper bounds in order to fully understand constraints (4.3).

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t)

 ≤

≤ Sh(t) + C̃h(t)(1 − ym,t) ∀ m ∈ M, h ∈ Pm, t ∈ T

(4.3)

These various upper bounds are expressed by the right-hand sides. Let us now consider m ∈
M and t ∈ T . If ym,t = 1 (configuration m is active at time t), then, for every h ∈ Pm, the
right-hand side is simply given by Sh(t). In other words, in this case we obtain the following
constraints:

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
)

 ≤ Sh(t) ∀ h ∈ Pm. (4.11)

If, on the other hand, ym,t = 0 (configuration m is not active at time t), then we have

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
)

 ≤

≤
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,
1<i<Nf

1

 ∀ h ∈ Pm.

(4.12)

Note that constraints (4.12) are completely irrelevant (they are satisfied by every combination
of binary variables). In fact, since we are using binary variables, each term of the form wj

f,t
−
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wj′

f,t
present in the left hand-side satisfies wj

f,t
− wj′

f,t
≤ 1 − 0 = 1. Therefore, we have that

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
)

 ≤

≤
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

1

 ∀ h ∈ Pm.

(4.13)

Since, for every h ∈ Pm and j ∈ Bh, we (obviously) have

{f ∈ F : P (f, i) = j, P (f, i + 1) = j′, 1 < i < Nf , t ∈ T j
f } ⊆

⊆ {f ∈ F : P (f, i) = j, P (f, i + 1) = j′, 1 < i < Nf},

it follows that

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

1

 ≤

≤
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,
1<i<Nf

1

 ∀ h ∈ Pm.

(4.14)

Combining (4.13) and (4.14) we understand that constraints (4.12) are completely irrelevant
(they are satisfied by every combination of binary variables).

Connectivity constraints

There are two different groups of connectivity constraints (which are also used in [8]). The
first of these two groups is given by constraints (4.4), which substantially express connectivity
between elementary sectors. To be more precise, they guarantee that a flight f cannot enter
the next elementary sector on its path (or land at its destination airport) until it has spent lj

f

time units (the minimum possible) traveling through elementary sector j, the current elemen-
tary sector in its path [26]. Note that, to be exact, here j can also be the departure airport of
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flight f and in this case, remembering what we have seen in Subsection 4.2.1, lj
f = 0.

wj′

f,t+lj
f

− wj
f,t ≤ 0

∀ f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i + 1), 1 ≤ i < Nf

(4.4)

The second group of connectivity constraints is given by constraints (4.5). They express con-
nectivity in time:

wj
f,t − wj

f,t−1 ≥ 0 ∀ f ∈ F , j ∈ Pf , t ∈ T j
f . (4.5)

In particular, constraints (4.5) stipulate that if flight f has arrived in elementary sector j (or has
taken off from/landed at airport j if j is an airport) by time t ∈ T j

f (that is to say ifwj
f,t = 1),

then wj
f,t′ = 1 for every t′ ∈ T j

f , t′ > t.

Configuration constraints

Constraints (4.8) and (4.9) are the configuration constraints. They are specific of the formula-
tion proposed in [26]. In particular, for every t ∈ T , constraints (4.8) guarantee that exactly
one configuration m ∈ M will be active at time t (remember that we are using binary vari-
ables). ∑

m∈M
ym,t = 1 ∀ t ∈ T (4.8)

Regarding constraints (4.9), quoting [26], they ensure that “once a configuration is chosen, it
must be maintained for at least τ periods of time before it can be changed”.

ym,t − ym,t−1 ≤ ym,u ∀ m ∈ M, t ∈ T , u ∈ {t + 1, . . . , min{t + τ − 1, T}} (4.9)

If, for instance, T = 5, M = {1, 2} and τ = 2, then the sequences of configurations sat-
isfying constraints (4.9) are exactly the following: (1, 1, 1, 1, 1); (2, 2, 2, 2, 2); (1, 1, 1, 1, 2);
(2, 2, 2, 2, 1); (1, 1, 1, 2, 2); (2, 2, 2, 1, 1); (1, 1, 2, 2, 2); (2, 2, 1, 1, 1); (1, 1, 2, 2, 1);
(2, 2, 1, 1, 2). This last example should have clarified the role of constraints (4.9). Note also
that, for the sake of clarity, the notation used in constraints (4.9) is not as formal as possible.
In fact, in addition to what we have already seen in Subsection 4.2.2, when we write

∀ u ∈ {t + 1, . . . , min{t + τ − 1, T}} (4.15)

47



we actually mean

∀ u ∈ {û ∈ T : t + 1 ≤ û ≤ min{t + τ − 1, T}}. (4.16)

It is worth observing that if t+1 > min{t+ τ −1, T} (it happens when t = T and/or τ =
1), then the set appearing in (4.16) is the empty set. Thismeans that if τ = 1, then there are no
constraints of the form (4.9) in the formulation. On the other hand, if τ > 1, then constraints
(4.9) appear in the formulation for every t ∈ T , with t ̸= T (there are no constraints of the
form (4.9) associated to t = T ).

Other constraints

Constraints (4.7) stipulate that, for every f ∈ F and j ∈ Pf (note that j can also be an
airport), flight f must arrive at elementary sector j (or take off from/land at airport j if j is an
airport) by time T

j

f , which is the last feasible time period for flight f to arrive at elementary
sector j (or to take off from/land at airport j).

wj

f,T
j
f

= 1 ∀ f ∈ F , j ∈ Pf (4.7)

These constraints are necessary to avoid trivial solutions in which all the variables of the form
wj

f,t (where j can also be an airport) are equal to zero. Constraints (4.7) do not appear explicitly
in [26]. However, they have been used by Zanardelli in order to do his computational exper-
iments (see, for instance, the “# basic constraints” on page 78 of [26]). Similarly, constraints
(4.7) do not appear explicitly in [8] (here the various wj

f,T
j
f

are not seen as variables, but they
are simply set to 1 as parameters before solving the problem). For the sake of clarity, we pre-
ferred to include directly constraints (4.7) in the formulation.

Finally, constraints (4.6) and (4.10) establish that all the variables involved in the formulation
must be binary variables.

wj
f,t ∈ {0, 1} ∀ f ∈ F , j ∈ Pf , t ∈ T j

f (4.6)

ym,t ∈ {0, 1} ∀ m ∈ M, t ∈ T (4.10)
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A class of valid inequalities

In addition to the constraints already described, in [26] a class of valid inequalities is also pro-
posed in order to tighten the formulation. However, these inequalities are never actually used
and, technically, they are not even proven to be valid inequalities. The inequalities in question
are the following:

∑
j∈Bh: P (f,i)=j,

1<i<Nf

(wj
f,t − wj

f,t−1) ≤ 1 ∀ m ∈ M, h ∈ Pm, f ∈ F , t ∈ T . (4.17)

Inequalities (4.17) stipulate that, for every m ∈ M, h ∈ Pm, f ∈ F and t ∈ T , flight f can
enter at most one elementary sector j ∈ Bh at time t. As we will see in Section 5.1, constraints
(4.17) are really valid inequalities, but they do not tighten the formulation at all.

4.2.6 Size of the formulation

To conclude this detailed description of themodel presented in [26], we calculate the size of the
formulation recalled in Subsection 4.2.3. To bemore precise, we compute the exact number of
variables involved in the formulation (providing also an upper bound) and the exact number of
constraints involved in the formulation (providing also an upper bound). Similar calculations,
in which, however, constraints (4.6), (4.7) and (4.10) were not taken into consideration, have
already been done in [26].

Let us denote with D the maximum cardinality of the set of feasible times for flight f to ar-
rive at elementary sector j (or take off from/land at airport j if j is an airport instead of an
elementary sector) taken over all f and j. This means that

D = max
f∈F , j∈Pf

|T j
f |.

Remember that, in this model, for every f ∈ F and j ∈ Pf (note that j can also be an
airport) we have T j

f = {T j
f , . . . , T

j

f}, where T
j

f = T j
f + ∆f . Therefore, for every f ∈

F and j ∈ Pf , we have |T j
f | = 1 + ∆f . Consequently, in this model, we also have that

D = 1 + max
f∈F

∆f .
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Let us denote with X the maximum number of elements belonging to the sequence that de-
scribes the spatial trajectory of flight f (rememberwhatwehave seen in Subsection 2.3.3) taken
over all f . In other words, we have

X = max
f∈F

Nf .

Let us denote with Y the maximum number of collapsed sectors contained in configuration
m taken over all m. This means that

Y = max
m∈M

|Pm|.

Moreover, |F| is the total number of flights, |K| is the total number of airports, |J | is the total
number of elementary sectors, |H| is the total number of collapsed sectors, |M| is the total
number of configurations and |T | is the total number of time periods.

The exact number of variables of the type wj
f,t (where j can also be an airport) involved in

the formulation is given by

∑
f∈F

∑
j∈Pf

|T j
f |

or, equivalently (in this model), by

∑
f∈F

∑
j∈Pf

(1 + ∆f ).

Since

∑
f∈F

∑
j∈Pf

|T j
f | ≤

∑
f∈F

∑
j∈Pf

(
max

f∈F , j∈Pf

|T j
f |
)

=
∑
f∈F

∑
j∈Pf

D ≤
∑
f∈F

XD = |F|XD,

|F|XD is an upper bound on the number of variables of the type wj
f,t.

The exact number of variables of the type ym,t involved in the formulation is |M||T |. There-
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fore, the exact number of variables involved in the formulation is given by

|M||T | +
∑
f∈F

∑
j∈Pf

|T j
f | (4.18)

or, equivalently (in this model), by

|M||T | +
∑
f∈F

∑
j∈Pf

(1 + ∆f ). (4.19)

An upper bound on the total number of variables is given by

|M||T | + |F|XD. (4.20)

Let us now compute the exact number of constraints involved in the formulation. There are
exactly:

• |K||T | constraints of the form (4.1);

• |K||T | constraints of the form (4.2);

• |T | · ∑
m∈M

|Pm| constraints of the form (4.3);

•
∑

f∈F

( ∑
j∈Pf \{P (f,Nf )}

|T j
f |
)
constraints of the form (4.4);

•
∑

f∈F

∑
j∈Pf

|T j
f | constraints of the form (4.5);

•
∑

f∈F

∑
j∈Pf

|T j
f | constraints of the form (4.6);

•
∑

f∈F
Nf constraints of the form (4.7);

• |T | constraints of the form (4.8);

• |M|· ∑
t∈T

min{t+τ −1−(t+1)+1, T −(t+1)+1} = |M|· ∑
t∈T

min{τ −1, T −t}
constraints of the form (4.9);

• |M||T | constraints of the form (4.10).
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Therefore, the exact number of constraints involved in the formulation is

2|K||T | + |T | ·
∑

m∈M
|Pm| +

∑
f∈F

 ∑
j∈Pf \{P (f,Nf )}

|T j
f |

+ 2
∑
f∈F

∑
j∈Pf

|T j
f |

+
∑
f∈F

Nf + |M| ·
∑
t∈T

min{τ − 1, T − t} + |T |(1 + |M|).
(4.21)

An upper bound on the total number of constraints is given by

2|K||T |+ |T ||M|Y + |F|(X −1)D +2|F|XD + |F|X + |M|(|T |−1)+ |T |(1+ |M|),

which can be rewritten as

2|K||T | + |T ||M|Y + 3|F|XD − |F|D + |F|X + 2|M||T | − |M| + |T |

or, equivalently, as

(2|K| + 2|M| + |M|Y + 1)|T | + (3XD − D + X)|F| − |M|. (4.22)

To conclude this subsection, let us compute the upper bounds provided by (4.20) and (4.22)
in the case of a real-size instance. Suppose we have the following situation:

• |F| = 10,000, representing 10,000 flights;

• |K| = 20, representing 20 of the most important European airports;

• |J | = 200, representing 200 elementary sectors;

• |H| = 100, representing 100 collapsed sectors;

• |M| = 5, representing 5 different possible configurations;

• |T | = 168, representing a 14 hour day subdivided into five-minute intervals;

• D = 7, representing the fact that 30minutes is, for each flight f ∈ F , an upper bound
on the maximum delay in arrival allowed for flight f ;

• X = 10, representing an upper bound of 8 elementary sectors in a flight’s path;
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• Y = 50, representing an upper bound on the number of collapsed sectors that can be
found in each configuration.

Substituting these values into (4.20) and (4.22), we find that this instance will surely have no
more than 700,840 variables and 2,180,563 constraints belonging to those present in Subsec-
tion 4.2.3. Note that, since |F|XD = 700,000, the parameters that significantly affect the
upper bounds just calculated are |F|, X and D (if, for example, one of these parameters dou-
bles, then both the upper bounds approximately double).
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5
A tighter formulation for the ATFM

problem with dynamic selection of the
airspace configuration

This fifth chapter is the core of the thesis. In the first section, we will prove the redundancy of
the class of valid inequalities proposed in [26] and recalled at the endof Subsection 4.2.5. In the
following three sections, we will present our contributions in order to tighten the formulation
presented in [26]. Our contributions will be presented here from a theoretical viewpoint (the
results of our computational experiments will be exhibited in Chapter 7) and basically consist
in replacing some constants and adding new classes of valid inequalities. The new formulation
thus obtained will be explicitly written down in the fifth section. Finally, in the sixth section,
we will provide some estimates regarding the size of the new formulation.
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5.1 A class of redundant valid inequalities

Let us recall the class of valid inequalities proposed in [26] and also present at the end of Sub-
section 4.2.5. The inequalities in question are the following:

∑
j∈Bh: P (f,i)=j,

1<i<Nf

(wj
f,t − wj

f,t−1) ≤ 1 ∀ m ∈ M, h ∈ Pm, f ∈ F , t ∈ T . (4.17)

Inequalities (4.17) stipulate that, for every m ∈ M, h ∈ Pm, f ∈ F and t ∈ T , flight f

can enter at most one elementary sector j ∈ Bh at time t.

For the sake of clarity, let us now prove that constraints (4.17) are indeed valid inequalities.
Note that this fact, although intuitively very sensible, has not been proven in [26].

Proposition 5.1. Constraints (4.17) are valid inequalities for the formulation present in Sub-
section 4.2.3.

Proof. Let us consider an instance of the formulation present in Subsection 4.2.3 and let (w, y)
be a solution of this instance (instead of listing all thewj

f,ts and all the ym,ts of our solution we
use the more compact notation (w, y)). Our goal is to prove that (w, y) satisfies constraints
(4.17). Let us consider m ∈ M, h ∈ Pm, f ∈ F and t ∈ T . For our purposes it is sufficient
to prove that ∑

j∈B
h

: P (f,i)=j,

1<i<N
f

(wj

f,t
− wj

f,t−1) ≤ 1. (5.1)

Since
{j ∈ Bh : P (f, i) = j, 1 < i < Nf} ⊆ {P (f, i) : 1 < i < Nf},

remembering that the solution (w, y) satisfies constraints (4.5), we obtain

∑
j∈B

h
: P (f,i)=j,

1<i<N
f

(wj

f,t
− wj

f,t−1) ≤
∑

1<i<N
f

(wP (f,i)
f,t

− w
P (f,i)
f,t−1 ). (5.2)

The right-hand side of (5.2) can be rewritten as

(wP (f,2)
f,t

− w
P (f,2)
f,t−1 ) +

∑
2<i<N

f

(wP (f,i)
f,t

− w
P (f,i)
f,t−1 ). (5.3)
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Since the solution (w, y) satisfies constraints (4.4), remembering that l
P (f,i)
f

≥ 1 for every i

such that 1 < i < Nf (because, since 1 < i < Nf , we know that P (f, i) is an elementary
sector), we have

(wP (f,2)
f,t

− w
P (f,2)
f,t−1 ) +

∑
2<i<N

f

(wP (f,i)
f,t

− w
P (f,i)
f,t−1 ) ≤

≤ (wP (f,2)
f,t

− w
P (f,2)
f,t−1 ) +

∑
2<i<N

f

(wP (f,i−1)
f,t−1 − w

P (f,i)
f,t−1 ).

(5.4)

The right-hand side of (5.4) can be rewritten (taking advantage of the telescopic summation)
as

w
P (f,2)
f,t

− w
P (f,N

f
−1)

f,t−1 , (5.5)

which obviously (since we are using binary variables) satisfies

w
P (f,2)
f,t

− w
P (f,N

f
−1)

f,t−1 ≤ 1 − 0 = 1. (5.6)

Combining (5.2), (5.3), (5.4), (5.5) and (5.6), we finally get (5.1). Therefore constraints (4.17)
are valid inequalities for the formulation present in Subsection 4.2.3.

At this point, it is worth observing carefully the proof of Proposition 5.1. We have that (5.2),
(5.3), (5.4), (5.5) and (5.6) hold even if (w, y) is a solution of the instance’s LPR (it is sufficient
to repeat the exact same reasoning since in this reasoning, even to deduce (5.6), it is enough that
we use real variables satisfying the instance’s LPR). As a consequence, also (5.1) holds even if
(w, y) is a solution of the instance’s LPR. Keeping this observation in mind we will be able to
prove very quickly the next proposition.

Proposition 5.2. Valid inequalities (4.17)are redundant for theLPRof the formulation present
in Subsection 4.2.3.

Proof. Let us consider an instance of the formulation present in Subsection 4.2.3 and let (w̃, ỹ)
be a solution of this instance’s LPR (instead of listing all the w̃j

f,ts and all the ỹm,ts of our
solution we use the more compact notation (w̃, ỹ)). Our goal is to prove that (w̃, ỹ) satisfies
constraints (4.17). Let us consider m̃ ∈ M, h̃ ∈ Pm̃, f̃ ∈ F and t̃ ∈ T . For our purposes
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it is sufficient to prove that

∑
j∈B

h̃
: P (f̃ ,i)=j,

1<i<N
f̃

(w̃j

f̃ ,̃t
− w̃j

f̃ ,̃t−1
) ≤ 1. (5.7)

Aswe have previously observed, to prove (5.7) it is sufficient to repeat the exact same arguments
we have already made to prove Proposition 5.1. Therefore valid inequalities (4.17) are redun-
dant for the LPR of the formulation present in Subsection 4.2.3.

5.2 Tightened values for model’s constants

The formulation proposed in [26], and reviewed (with slightly different notation) in Subsec-
tion 4.2.1, has a considerable drawback: its LPR’s feasible region is “really far” from the convex
hull of the solutions of the ILP problem. To be more precise, in every computational experi-
mentwe carried out, regardless of whether the specific instance of the ILP problemwas feasible
or not, the optimal value of its LPRwas always equal to 0. This is due to the excessively high val-
ues of the constants C̃h(t), which can be exploited to ensure that constraints (4.3), already de-
scribed in Subsection 4.2.5, are satisfied. The goal of this section is, therefore, to find new con-
stants Ch(t), as small as possible, such that, replacing constants C̃h(t) with constants Ch(t)
inside constraints (4.3), the feasible region of any instance of the formulation present in Sub-
section 4.2.3 does not change.

Let us recall how constants C̃h(t) are defined in [26]. For every h ∈ H and t ∈ T , C̃h(t)
is given by the difference between the number of times a flight f ∈ F will, sooner or later,
enter an elementary sector belonging to Bh and Sh(t).

C̃h(t) =


∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,
1<i<Nf

1


− Sh(t) ∀ h ∈ H, t ∈ T (5.8)
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Let us now define new constants Ch(t) as follows:

Ch(t) :=


∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

1


− Sh(t) ∀ h ∈ H, t ∈ T . (5.9)

For every h ∈ H and t ∈ T , Ch(t) is given by the difference between the number of times
a flight f ∈ F could be within, at time t, an elementary sector belonging to Bh and Sh(t).
Repeating the exact same argument we have already made to prove the validity of inequalities
(4.14), we get

Ch(t) ≤ C̃h(t) ∀ h ∈ H, t ∈ T . (5.10)

Remembering that inequalities (4.13) hold for every combination of binary variables, we de-
duce that it is possible to replace constants C̃h(t)with constants Ch(t). Thismeans that, recall-
ing the role of constants C̃h(t) described in Subsection 4.2.1, each constant Ch(t) also make
capacity constraints redundant when related to h, t and a non-active airspace configuration.
Therefore, we have almost proven the following proposition.

Proposition 5.3. Replacing constants C̃h(t) with constants Ch(t) inside constraints (4.3) the
feasible region of any instance of the formulation present in Subsection 4.2.3 does not change.

Proof. As we have just seen, for every h ∈ H and t ∈ T , both C̃h(t) and Ch(t) make ca-
pacity constraints redundant when related to h, t and a non-active airspace configuration. Fur-
thermore, capacity constraints related to h, t and an active airspace configuration are, in both
cases, the same (remember constraints (4.11)).

It is important to use, as far as possible, small constants inside capacity constraints (4.3) since,
obviously, in this way we can try to obtain a tighter formulation. Let us now prove a proposi-
tion in this regard.

Proposition 5.4. Constants Ch(t) are as small as possible. This means that, given an instance
of the formulation present in Subsection 4.2.3, it is not possible, in general, to replace even just one
of these constants with a smaller one in constraints (4.3) without changing the instance’s feasible
region.
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Proof. Let us consider a very simple instance of the formulation present in Subsection 4.2.3. In
this instance there are two flights (f1 and f2), four airports (AMS, DUB, FRA and LHR),
four elementary sectors (a, b, c and d), four collapsed sectors (C1 = {a, c}, C2 = {b, d},
C3 = {a, b} and C4 = {c, d}), two configurations (M1 = {C1, C2} and M2 = {C3, C4})
and four time periods (T = {1, 2, 3, 4}). The capacities of a, b, c and d are always 1, 0, 0
and 1 respectively and, therefore, the capacities of C1, C2, C3 and C4 are always all equal to
1. Airports DUB, AMS,LHR and FRA are entirely containedwithin a, b, c and d respec-
tively. The spatial trajectory of flight f1 is DUB, a, b, AMS, whereas the spatial trajectory of
flight f2 is LHR, c, d, FRA. The departure capacities of both DUB and LHR are always
equal to 1. The arrival capacities of both AMS and FRA are always equal to 1. Using the no-
tation already presented in Subsection 4.2.1, for every h ∈ H and t ∈ T , we have Sh(t) = 1.
Moreover: lDUB

f1 = 0; la
f1 = 1; lb

f1 = 1; lLHR
f2 = 0; lc

f2 = 1; ld
f2 = 1; df1 = 1; df2 =

1; rf1 = 3; rf2 = 3; ∆f1 = 1; ∆f2 = 1; ca
f1 = ca

f2 = 3; cg
f1

= cg
f2

= 1; τ = 1. It is easy
to check that, using the constants Ch(t) previously defined, the optimal value of our instance
is 0 (any delay can be avoided if, for example, the active configuration is always M2).

However, limiting ourselves to replace CC1(1) = (1+1)−1 = 1 with CC1(1) = CC1(1)−
1 = 0 in constraints (4.3), it is no longer possible to avoid any delay. In fact, using configura-
tion M1 at time t = 1, the constraint wDUB

f1,1 + wLHR
f2,1 ≤ SC1(1) + CC1(1)(1 − yM1,1) =

1 + 0 · (1 − 1) = 1 (which, remembering what we have seen at the end of Subsection 4.2.2,
belongs to constraints (4.3)) forces at least one of the two flights to postpone its departure.
On the other hand, using configuration M2 at time t = 1, the constraint wDUB

f1,1 + wLHR
f2,1 ≤

SC1(1) + CC1(1)(1 − yM1,1) = 1 + 0 · (1 − 0) = 1 (which, remembering what we have seen
at the end of Subsection 4.2.2, belongs to constraints (4.3)) forces at least one of the two flights
to postpone its departure. Therefore, limiting ourselves to replace CC1(1) = (1 + 1) − 1 =
1 with CC1(1) = CC1(1)−1 = 0 in constraints (4.3), it is no longer possible to avoid any de-
lay. This means that the optimal value of our instance is no longer 0. It is easy to check that the
optimal value after replacement is 1. In fact, if the active configuration is alwaysM1, a solution
is obtained simply by postponing, for example, the departure of flight f2 at time t = 2 (so that
flight f2 will arrive at airport FRA at time t = 4, whereas flight f1 will respect its scheduled
arrival time). Consequently, since it must be a natural number other than zero, the optimal
value after replacement is 1.

Figure 5.1 represents the airspace of the instance considered in this proof.
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Figure 5.1: The airspace of the instance considered in the proof of Proposition 5.4.

As we have just proven, in order to tighten the formulation present in Subsection 4.2.3, the
smallest constants that can be used in constraints (4.3) are the constants Ch(t). We will see in
Chapter 7 towhat extent these new constants contribute to tighten, in the cases of the instances
considered in this thesis, the formulation present in Subsection 4.2.3.

Finally, note that the possibility of replacing constants C̃h(t)with constants Ch(t) inside con-
straints (4.3) was pretty clear since Subsection 4.2.5. However, this possibility emerges so
clearly only because in the formulation present in Subsection 4.2.3 we used a richer (but also
heavier) notation for the summations than that used in [26] (the latter has the advantage of
being lighter but the flaw of being less rigorous and, in this case, it does not allow you to notice
this possibility so easily).

5.3 A new class of valid inequalities

Let us consider the following class of constraints:

∑
f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t) ≤ max
h∈H: j∈Bh

Sh(t) ∀ j ∈ J , t ∈ T . (5.11)
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These constraints stipulate that, at any time period t and for every elementary sector j, the total
number of flights present in j at time t will not exceed the maximum of the capacities of the
collapsed sectors containing j. These are apparently rather weak constraints compared to con-
straints (4.3). In fact, for every j ∈ J and t ∈ T , constraints (5.11) provide an upper bound
on the number of flights present in j at time t, but j in an elementary sector (and, in general,
not a collapsed sector) whereas the upper bound is a capacity of a collapsed sector that contains
j (and, in general, this collapsed sector is strictly larger than j). One might therefore expect
that, as it has already happened with constraints (4.17), constraints (5.11) will also be both
valid inequalities for the formulation present in Subsection 4.2.3 and redundant constraints
for the LPR of the same formulation. However, this is not true. Indeed, as we will see in this
subsection, constraints (5.11) are really valid inequalities for the formulation present in Sub-
section 4.2.3 but they also have the advantage of not being redundant for the LPR of the same
formulation.

First of all, let us prove the following proposition.

Proposition 5.5. Constraints (5.11) are valid inequalities for the formulation present in Sub-
section 4.2.3.

Proof. Let us consider an instance of the formulation present in Subsection 4.2.3 and let (w, y)
be a solution of this instance (instead of listing all thewj

f,ts and all the ym,ts of our solution we
use the more compact notation (w, y)). Our goal is to prove that (w, y) satisfies constraints
(5.11). Let us consider j ∈ J and t ∈ T . For our purposes it is sufficient to prove that

∑
f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
) ≤ max

h∈H: j∈Bh

Sh(t). (5.12)

Let us denote with m the configuration, active at time t, associated to the solution (w, y). Let
h be the collapsed sector, belonging to m, that contains j. Obviously, since

{f ∈ F : P (f, i) = j, P (f, i + 1) = j′, 1 < i < Nf , t ∈ T j
f } ⊆

⊆ {f ∈ F : P (f, i) = j, P (f, i + 1) = j′, j ∈ Bh, 1 < i < Nf , t ∈ T j
f },
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we have that ∑
f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
) ≤

≤
∑

j∈B
h


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
)

 .

(5.13)

Remembering that the solution (w, y) satisfies constraints (4.3) and that ym,t = 1, we have

∑
j∈B

h


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj

f,t
− wj′

f,t
)

 ≤ Sh(t). (5.14)

Since h ∈ {h ∈ H : j ∈ Bh}, we (obviously) have that

Sh(t) ≤ max
h∈H: j∈Bh

Sh(t). (5.15)

Combining (5.13), (5.14) and (5.15), we finally get (5.12). Therefore constraints (5.11) are
valid inequalities for the formulation present in Subsection 4.2.3.

Let us now investigate the relationship between constraints (4.3) and constraints (5.11) better.
As we have just seen in Proposition 5.5, constraints (5.11) are valid inequalities for the formu-
lation present in Subsection 4.2.3. One might therefore ask whether it is possible to replace
constraints (4.3) with constraints (5.11) in the formulation present in Subsection 4.2.3 with-
out changing the feasible region whatever the instance. The answer, as the reader might expect,
is negative.

Proposition 5.6. Replacing constraints (4.3) with constraints (5.11) in the formulation present
in Subsection 4.2.3, the feasible region can change.

Proof. Let us consider a simple instance (whose airspace is the same represented in Figure 5.1).
In this instance there are four flights (f1, f2, f3 and f4), four airports (AMS, DUB, FRA

andLHR), four elementary sectors (a, b, c and d), four collapsed sectors (C1 = {a, c}, C2 =
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{b, d}, C3 = {a, b} and C4 = {c, d}), two configurations (M1 = {C1, C2} and M2 =
{C3, C4}) and five time periods (T = {1, 2, 3, 4, 5}). The capacities of a, b, c and d are al-
ways 1, 0, 0 and 1 respectively and, therefore, the capacities of C1, C2, C3 and C4 are always
all equal to 1. Airports DUB, AMS, LHR and FRA are entirely contained within a, b, c
and d respectively. DUB, a, b, AMS is the spatial trajectory of both f1 and f2. LHR, c, d,
FRA is the spatial trajectory of both f3 and f4. The departure capacities of both DUB and
LHR are always equal to 2. The arrival capacities of both AMS and FRA are always equal
to 2. Using the notation already presented in Subsection 4.2.1, for every h ∈ H and t ∈ T ,
we have Sh(t) = 1. Moreover: lDUB

f1 = lDUB
f2 = 0; la

f1 = la
f2 = 1; lb

f1 = lb
f2 = 1; lLHR

f3 =
lLHR
f4 = 0; lc

f3 = lc
f4 = 1; ld

f3 = ld
f4 = 1; df1 = df3 = 1; df2 = df4 = 2; rf1 = rf3 =

3; rf2 = rf4 = 4; ∆f1 = ∆f2 = ∆f3 = ∆f4 = 1; ca
f1 = ca

f2 = ca
f3 = ca

f4 = 3; cg
f1

= cg
f2

=
cg

f3
= cg

f4
= 1; τ = 1.

It is easy to check that, using the formulation present in Subsection 4.2.3 (where the constants
inside constraints (4.3) can be indifferently, as we have seen in Proposition 5.3, the Ch(t)s or
the C̃h(t)s), this instance has a nonempty feasible region. In fact, using always configuration
M2, it is possible to respect the scheduled arrival time (t = 3) of both f1 and f3 and to post-
pone the departure of both f2 and f4 at time t = 3 so that both f2 and f4 arrive at their
destination airports at time t = 5. Consequently there is at least one solution and the value
of the objective function, associated with this solution, is 2. Note also that, since the airspace
is the same represented in Figure 5.1, there cannot be three or more planes in the air at the
same time. Otherwise both M1 and M2 (one of which must be active) would contain a col-
lapsed sector with two flights simultaneously inside (and, remembering that Sh(t) = 1 for
every h ∈ H and t ∈ T , this is not possible due to constraints (4.3)). Therefore there can be
at most two planes in the air at the same time and, as a consequence, 2 (the value of the objec-
tive function associated with the previously described solution) is also the optimal value.

On the other hand, replacing constraints (4.3) with constraints (5.11) in the formulation pres-
ent in Subsection 4.2.3, the optimal value of this instance is 0 (and no longer 2). In fact, one
can easily check that it is possible to respect the scheduled arrival time of each flight.

We have therefore proven that, in this instance, any optimal solution of the formulation ob-
tained replacing constraints (4.3) with constraints (5.11) is not a solution of the formulation
present in Subsection 4.2.3 (where the constants inside constraints (4.3) can be indifferently,
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as we have seen in Proposition 5.3, the Ch(t)s or the C̃h(t)s). This concludes our proof.

To conclude this section, let us prove that constraints (5.11) are not redundant for the LPR
of the formulation present in Subsection 4.2.3 (we will see in Chapter 7 to what extent the
addition of these new constraints contribute to tighten, in the cases of the instances considered
in this thesis, the formulation present in Subsection 4.2.3). This proof would not be necessary
in light of the results we will see in Chapter 7. However, for the sake of clarity, we preferred to
provide a proof of the next proposition (which, at first glance, may not seem so intuitive).

Proposition 5.7. Constraints (5.11) are not redundant for the LPR of the formulation present
in Subsection 4.2.3. This is true even if, inside constraints (4.3), we use constants Ch(t) instead of
constants C̃h(t).

Proof. Our goal is to prove that there exists at least one instance such that, adding constraints
(5.11) to the LPR of the formulation present in Subsection 4.2.3 (where the constants inside
constraints (4.3) canbe the Ch(t)s or the C̃h(t)s), its feasible region change. Let us consider the
same instance that appears in the proof of Proposition 5.6 except for the values of the Sh(t)s.
In fact, in this instance we have Sh(t) = 0 for every h ∈ H and t ∈ T (the airspace is the
same represented in Figure 5.1). This means that, in this instance, the capacities of a, b, c and
d are always all equal to 0.

Using the formulation present in Subsection 4.2.3, this instance’s LPR admits (even if, inside
constraints (4.3), we use constants Ch(t) instead of constants C̃h(t)) the following solution:
wDUB

f1,1 = 0.5; wDUB
f1,2 = 1; wa

f1,1 = 0.5; wa
f1,2 = 1; wb

f1,2 = 0.5; wb
f1,3 = 1; wAMS

f1,3 =
0.5; wAMS

f1,4 = 1; wDUB
f2,2 = 0.5; wDUB

f2,3 = 1; wa
f2,2 = 0.5; wa

f2,3 = 1; wb
f2,3 = 0.5; wb

f2,4 =
1; wAMS

f2,4 = 0.5; wAMS
f2,5 = 1; wLHR

f3,1 = 0.5; wLHR
f3,2 = 1; wc

f3,1 = 0.5; wc
f3,2 = 1; wd

f3,2 =
0.5; wd

f3,3 = 1; wF RA
f3,3 = 0.5; wF RA

f3,4 = 1; wLHR
f4,2 = 0.5; wLHR

f4,3 = 1; wc
f4,2 = 0.5; wc

f4,3 =
1; wd

f4,3 = 0.5; wd
f4,4 = 1; wF RA

f4,4 = 0.5; wF RA
f4,5 = 1; yM1,1 = yM1,2 = yM1,3 = yM1,4 =

yM1,5 = yM2,1 = yM2,2 = yM2,3 = yM2,4 = yM2,5 = 0.5. Therefore, using the formulation
present in Subsection 4.2.3, this instance’s LPR has (even if, inside constraints (4.3), we use
constants Ch(t) instead of constants C̃h(t)) a nonempty feasible region.

However this solution does not satisfy constraints (5.11) and, more generally, no solution of
this instance’s LPR satisfy constraints (5.11). In this case, in fact, constraints (5.11) (remember-
ing what we have seen at the end of Subsection 4.2.2, constraints (4.4) and our assumptions on
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the lj
f s) force all the wj

f,ts to be equal to 0, contradicting constraints (4.7). Therefore, adding
constraints (5.11) to the formulation present in Subsection 4.2.3 (where the constants inside
constraints (4.3) can be the Ch(t)s or the C̃h(t)s), this instance’s LPR has no solution (the fea-
sible region is empty).

We have therefore proven that in this instance, adding constraints (5.11) to the LPR of the
formulation present in Subsection 4.2.3 (where the constants inside constraints (4.3) can be
the Ch(t)s or the C̃h(t)s), the feasible region change. This concludes our proof.

5.4 A class of valid cover-like inequalities

Replacing constants C̃h(t)with constants Ch(t) inside constraints (4.3), we get the following
constraints:

∑
j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t)

 ≤

≤ Sh(t) + Ch(t)(1 − ym,t) ∀ m ∈ M, h ∈ Pm, t ∈ T .

(5.16)

Let us denote withF the formulation obtained by adding constraints (5.11) and replacing con-
straints (4.3) with constraints (5.16) in the formulation present in Subsection 4.2.3.

Our goal is to apply an algorithm very similar to Algorithm 3.1 to formulation F in order
to obtain some cover inequalities. To do this, we observe that formulation F can be rewrit-
ten in a form very similar to (3.9). First of all, in both F and (3.9) the variables involved are
binary variables. Let us denote with the compact notation f(w) the objective function of for-
mulation F. Since, using a not very formal notation (a formal notation is not necessary to
express the following well-known property), min f(w) = − max(−f(w)), it is possible to
replace min f(w) with max(−f(w)) in formulationF and solve the instance in question (re-
membering that, once the instance has been solved, it will be necessary to change the sign of
the optimal value obtained if the latter exists). Alternatively, it is possible to observe that all
the reasoning related to cover inequalities that we made in Section 3.4 holds even if we replace
max with min in both (3.4) and (3.9). Therefore the objective function is in no way a prob-
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lem for the purposes of rewriting formulation F in the form (3.9). Remember that, in (3.9),
constraints Bx ≤ d have no particular conditions on B and d. Constraints (4.1), (4.2), (4.4)
and (5.11) can be easily seen as constraints of the type Bx ≤ d. Also constraints (4.5) can
be easily seen as constraints of the type Bx ≤ d (just multiply both members of each con-
straint by −1). Since a system of the type B̃x = d̃ is equivalent to the system given by B̃x ≤
d̃ and −B̃x ≤ −d̃, also constraints (4.7) and (4.8) can be easily seen as constraints of the
type Bx ≤ d. Also constraints (4.9) can be easily seen as constraints of the type Bx ≤ d, it is
sufficient to rewrite them as follows:

ym,t − ym,t−1 − ym,u ≤ 0 ∀ m ∈ M, t ∈ T , u ∈ {t + 1, . . . , min{t + τ − 1, T}}.

Therefore, temporarily ignoring constraints (5.16), formulationF can be rewritten in the form
(3.9). Note that, for the moment, no constraints of formulation F have been interpreted as
constraints of the system Ax ≤ b present in (3.9). Let us now focus on constraints (5.16).
Keeping in mind how constants Ch(t) are defined, constraints (5.16) can be rewritten as

Ch(t) · ym,t +
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t)

 ≤

≤
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

1

 ∀ m ∈ M, h ∈ Pm, t ∈ T .

(5.17)

Note that (also in this more convenient form) constraints (5.17) cannot be seen as constraints
of the system Ax ≤ b present in (3.9). In fact, in general (remember what we have seen at the
end of Subsection 4.2.2), the coefficients on the left-hand sides of constraints (5.17) are not
always natural numbers. These coefficients are, typically, 1, 0 (associated with variables that do
not appear on the left-hand sides), −1 and the Ch(t)s. The only problematic coefficients are
the various −1 (which are strictly negative) and the Ch(t)s (which could be strictly negative).
The first critical issue, related to the −1 coefficients, can be fixed with a simple trick. In fact,
since we are using binary variables, constraints (4.4) imply that the various wj

f,t − wj′

f,t are
such that wj

f,t − wj′

f,t ∈ {0, 1}. Denoting the various wj
f,t − wj′

f,t with the notation uj,j′

f,t ,
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constraints (5.17) can be rewritten as

Ch(t) · ym,t +
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

uj,j′

f,t

 ≤

≤
∑

j∈Bh


∑

f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

1

 ∀ m ∈ M, h ∈ Pm, t ∈ T .

(5.18)

Pretending that the various uj,j′

f,t are binary variables, constraints (5.18) can almost be been
seen as constraints of the system Ax ≤ b present in (3.9), the only critical aspect is related to
the presence of constants Ch(t), which could be strictly negative. However, despite the pres-
ence of constants Ch(t), it is possible to look for cover inequalities for constraints (5.18) as
if the latter were real knapsack-type constraints (recall (3.4)). Since constraints (5.18) are con-
straints of the form (5.19), the previous fact is an immediate consequence of the following
simple proposition.

Proposition 5.8. Given a constraint of the form

αxn+1 +
n∑

i=1
xi ≤ n, (5.19)

where n ∈ N (if n = 0, then the constraint in question is nothing other than αx1 ≤ 0), α ∈
Z and x1, . . . , xn+1 ∈ {0, 1} are binary variables, it is possible to look for cover inequalities in
the exact same way described in Subsection 3.4.1.

Proof. If α ≥ 0, then there is nothing to prove (we are in the same conditions present in Sub-
section 3.4.1). But what happens if α < 0? Also in this case, there is no problem in looking
for cover inequalities since there are no covers (and, therefore, there are no cover inequalities).
In fact, to find a cover inequality we need to find a cover. This means that in this case, remem-
bering what we have seen in Subsection 3.4.1 (recall, in particular, (3.5)), we need to find for
which values of the binary variables z1, . . . , zn+1 we have that

αzn+1 +
n∑

i=1
zi ≥ n + 1. (5.20)
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Since we are using binary variables and α < 0, the maximum possible value for the left-hand
side of (5.20) is n (setting z1, . . . , zn = 1 and zn+1 = 0). Since there are no values of the
binary variables z1, . . . , zn+1 such that (5.20) holds, there are no covers. Since there are no
covers, there cannot be cover inequalities and, therefore, there are no issues in looking for cover
inequalities in the exact same way described in Subsection 3.4.1 (despite the fact that α < 0).

As a consequence of what we have just seen, it is possible to look for cover inequalities for con-
straints (5.18) as if the latter were real knapsack-type constraints (in the sameway described in
Section 3.4). Any cover inequality added to the formulation in this way will be expressed using
the quantities uj,j′

f,t . At this point, for each of these cover inequalities, it will be sufficient to
replace the various uj,j′

f,t with the corresponding wj
f,t − wj′

f,t in order to obtain the cover-like
inequalities, which from now on we will simply call cover inequalities, that will be added to
formulation F. In Algorithm 5.1, the procedure used to obtain the formulation that will be
presented in the next section is summarized (to understand in more detail how cover inequali-
ties are added to formulation F, the reader can also consult the code present in the appendix).

Algorithm 5.1: Generation of the formulation present in Section 5.5 for a given instance of
formulation F

Step 0: Suppose we want to find an optimal solution for a given instance of formulation F.

Step 1: Solve the instance’s LPR. If there is no solution, then STOP: the instance is infea-
sible. Otherwise let (w, y) be the optimal solution obtained.

Step 2: Check if (w, y) is integer. If this is true, then STOP: an optimal solution of the
instance has been found. Otherwise proceed to the next step.

Step 3: For every constraint belonging to constraints (5.16) check whether there are cover
inequalities violated by (w, y) (we have seen how it is possible to do this). If there
are no cover inequalities violated by (w, y), then STOP. Otherwise add to formu-
lation F all the cover inequalities found so far and go back to Step 1.

Note that the formulation generated using Algorithm 5.1 is not at all immediate to obtain
since, unlike both formulationF and the formulation proposed in [26], the number of inequal-
ities is huge and a separation procedure is appropriate. However, this is a tighter formulation.
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We will see in Chapter 7 to what extent this use of cover inequalities contributes to tighten
even further, in the cases of the instances considered in this thesis, the formulation present in
Subsection 4.2.3. We will also see, again in Chapter 7, how the formulation generated using
Algorithm 5.1 takes, given an instance of formulation F, quite a lot of time to be obtained.

To conclude this section, let us clarify an important point. As we have seen, with some tricks,
constraints (5.16) can be treated as if they were real knapsack-type constraints. One of these
tricks allowed us to eliminate the problem of the−1 coefficients. One might wonder whether,
using essentially the same trick, other constraints of formulation F could also be treated as if
they were real knapsack-type constraints (in this way we could look for further cover inequali-
ties). The answer is that, although it is possible to treat other constraints of formulation F as
if they were real knapsack-type constraints (this is quite evident, for example, for constraints
(4.1), (4.2) and (5.11)), this does not allow to tighten even further formulationF (and, actually,
not even to tighten the formulation present in Subsection 4.2.3). This is due to the fact that
all possible cover inequalities obtainable in this way are redundant for the LPR of formulation
F (and also for the LPR of the formulation present in Subsection 4.2.3). This observation we
have just made is an immediate consequence of the following proposition.

Proposition 5.9. Let us consider a constraint of the form

n∑
i=1

xi ≤ m, (5.21)

where m, n ∈ N, n > 0 and x1, . . . , xn ∈ {0, 1} are binary variables. All possible cover
inequalities obtainable by interpreting (5.21) as a knapsack-type constraint are, also relaxing the
integrality constraints on the variables, redundant. Thismeans that, besides being obviously valid
inequalities, all possible cover inequalities obtainable by interpreting (5.21) as a knapsack-type
constraint are satisfied by every combination of x1, . . . , xn ∈ [0, 1] that satisfies (5.21).

Proof. If m ≥ n, then there is nothing to prove (since there are no covers and, therefore, no
cover inequalities). Consequentlywe can assume that m < n. Let us consider a coverC . Since
C is a cover, we have that |C| = ∑

i∈C 1 > m and, therefore,

m ≤ |C| − 1. (5.22)
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The cover inequality associated with cover C is

∑
i∈C

xi ≤ |C| − 1. (5.23)

Let us consider x1, . . . , xn ∈ [0, 1] satisfying (5.21). Since C is a cover, we have

∑
i∈C

xi ≤
n∑

i=1
xi. (5.24)

Since x1, . . . , xn satisfy (5.21), we have that

n∑
i=1

xi ≤ m. (5.25)

Combining (5.24), (5.25) and (5.22), we deduce that x1, . . . , xn satisfy (5.23). Since this rea-
soning holds for any combination of x1, . . . , xn ∈ [0, 1] that satisfies (5.21), we deduce that
the cover inequality (5.23) is redundant.

Since the reasoning made for cover C holds for any possible cover inequality obtainable by
interpreting (5.21) as a knapsack-type constraint, we have proven this proposition.

In the next sectionwewillwrite down explicitly the formulation generatedusingAlgorithm5.1
(always keeping in mind what we have seen at the end of Subsection 4.2.2).

5.5 The new formulation

Based on the elements seen so far, we can finally write down explicitly our new formulation.

min
∑
f∈F

[
(cg

f − ca
f )

∑
t∈T k

f
, k=P (f,1)

t(wk
f,t − wk

f,t−1)

+ ca
f

∑
t∈T k

f
, k=P (f,Nf )

t(wk
f,t − wk

f,t−1)

+ (ca
f − cg

f )df − ca
frf

]

subject to
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∑
f∈F : P (f,1)=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.1)

∑
f∈F : P (f,Nf )=k,

t∈T k
f

(wk
f,t − wk

f,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.2)

∑
j∈Bh

 ∑
f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t)

 ≤

≤ Sh(t) + Ch(t)(1 − ym,t) ∀ m ∈ M, h ∈ Pm, t ∈ T

(5.16)

∑
f∈F : P (f,i)=j, P (f,i+1)=j′,

1<i<Nf , t∈T j
f

(wj
f,t − wj′

f,t) ≤ max
h∈H: j∈Bh

Sh(t) ∀ j ∈ J , t ∈ T (5.11)

wj′

f,t+lj
f

− wj
f,t ≤ 0

∀ f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i + 1), 1 ≤ i < Nf

(4.4)

wj
f,t − wj

f,t−1 ≥ 0 ∀ f ∈ F , j ∈ Pf , t ∈ T j
f (4.5)

wj
f,t ∈ {0, 1} ∀ f ∈ F , j ∈ Pf , t ∈ T j

f (4.6)

wj

f,T
j
f

= 1 ∀ f ∈ F , j ∈ Pf (4.7)∑
m∈M

ym,t = 1 ∀ t ∈ T (4.8)

ym,t − ym,t−1 ≤ ym,u ∀ m ∈ M, t ∈ T , u ∈ {t + 1, . . . , min{t + τ − 1, T}} (4.9)

ym,t ∈ {0, 1} ∀ m ∈ M, t ∈ T (4.10)

cover inequalities generated using constraints (5.16). (5.26)

5.6 Size of the new formulation

Note that the variables that appear in the new formulation are exactly the sameones that appear
in the formulation present in Subsection 4.2.3. Therefore, remembering what we have seen in
Subsection 4.2.6, the exact number of variables involved in the new formulation is given by

|M||T | +
∑
f∈F

∑
j∈Pf

|T j
f | (4.18)
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or, equivalently, by

|M||T | +
∑
f∈F

∑
j∈Pf

(1 + ∆f ). (4.19)

Furthermore, an upper bound on the total number of variables is given by

|M||T | + |F|XD. (4.20)

Regarding the exact number of constraints involved in the new formulation, we have already
calculated (in Subsection4.2.6) how many constraints (4.1), (4.2), (4.4), (4.5), (4.6), (4.7),
(4.8), (4.9) and (4.10) there are exactly. Since the exact number of constraints (5.16) obviously
coincides with the number of constraints (4.3), remembering what we have seen in Subsec-
tion 4.2.6, we deduce that the total number of constraints involved in the new formulation is
given by the sum of (4.21) with the number of constraints (5.11) and (5.26). Since the exact
number of constraints (5.11) is |J ||T |, the total number of constraints involved in the new
formulation is given by

2|K||T | + |T | ·
∑

m∈M
|Pm| +

∑
f∈F

 ∑
j∈Pf \{P (f,Nf )}

|T j
f |

+ 2
∑
f∈F

∑
j∈Pf

|T j
f |

+
∑
f∈F

Nf + |M| ·
∑
t∈T

min{τ − 1, T − t} + |T |(1 + |M|) + |J ||T | + ncover,

(5.27)

where ncover denotes the number of cover inequalities (5.26). We recall that, as discussed in
Section 3.4, the number of constraints (5.26) is exponential in theory. However, only a gener-
ally small subset of them will be actually included in the formulation by the separation Algo-
rithm 5.1, and their number cannot be determined a priori.
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6
Model implementation and instance

generation

In the first section of this sixth chapter, we will describe how the instances used for our compu-
tational experiments were generated. To conclude the chapter, in the second section, we will
illustrate, through a description of the .mod, .dat and .run files, the actual implementation of
the model (described through the new formulation) in AMPL.

6.1 Generation of the instances

The instances on which we carried out our computational experiments were generated exactly
as in [26] and, as will be explained in this section, some of these are precisely instances used
in [26]. All the instances on which we carried out our simulations were created using the
same airspace. Furthermore, in each of these instances, there are always the same three possible
airspace configurations.

6.1.1 Airspace and configurations

Figure 6.1 shows the airspace, taken from [26], of the instances used for our computational ex-
periments. This means that in each instance there are 8 airports (DUB,CPH ,LHR,AMS,
CDG,FRA,ZRH andV IE) and16 elementary sectors (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
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Figure 6.1: The airspace of the instances used for our computational experiments [26].

and p) arranged as shown in the figure.

Figure 6.2: The three possible configurations in our instances [26].

Figure 6.2 represents the three possible configurations, taken from [26], present in each in-
stance used for our computational experiments (to keep Figure 6.2 more readable the airports
have not been represented). This means that in each instance there are 16 collapsed sectors
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(C01 = {a, e}, C02 = {b, f}, C03 = {c, g}, C04 = {d, h}, C05 = {i, m}, C06 =
{j, n}, C07 = {k, o}, C08 = {l, p}, C09 = {a, b}, C10 = {c, d}, C11 = {e, f}, C12 =
{g, h}, C13 = {i, j}, C14 = {k, l}, C15 = {m, n} and C16 = {o, p}) and 3 configu-
rations (M01 = {C01, C02, C03, C04, C05, C06, C07, C08}, M02 = {C09, C10, C11,

C12, C13, C14, C15, C16} and M03 = {C01, C02, C07, C08, C10, C12, C13, C15}).

6.1.2 Characteristics of the instances

We now list, using the same notation present in Chapter 4, the characteristics that all the in-
stances used for our computational experiments share. In every instance we have:

• the same airspace, as in Figure 6.1;

• the same 3 different possible configurations (|M| = 3), as in Figure 6.2;

• the same 8 airports (|K| = 8);

• the same 16 elementary sectors (|J | = 16);

• the same 16 collapsed sectors (|H| = 16);

• a specific set of 256 flights (|F| = 256);

• 36 time periods, representing a 6 hour day subdivided into ten-minute intervals (|T | =
36);

• D = 3, representing the fact that 20minutes is, for each flight f ∈ F , an upper bound
on the maximum delay in arrival allowed for flight f ;

• X = 18, representing an upper bound of 16 elementary sectors in a flight’s path (actu-
ally, in the instances considered in this thesis, no flight crosses more than 9 elementary
sectors on its path but theoretically, based on how the instances have been generated,
there could be up to 16 elementary sectors in a flight’s path);

• Y = 8, representing the number of collapsed sectors present in each possible configu-
ration;

• Dk(t) = 8 for every k ∈ K and t ∈ T ;

• Ak(t) = 8 for every k ∈ K and t ∈ T ;
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• cg
f = 1 for every flight f ∈ F ;

• ca
f = 3 for every flight f ∈ F .

The spatial trajectory of each flight f and the values of the related lj
f , ∆f , df , rf , T j

f and T
j
f ,

for each elementary sector j, are randomly generated (in such a way as to satisfy, however, the
properties and the relationships between themalready described in Subsection 4.2.1). In partic-
ular, 20 possible randomflight sets (and the related random trajectories and data) are generated,
as we will detail in Subsection 6.1.3.

Regarding the capacities of the collapsed sectors, in our instances all the Sh(t) have the same
value, which, however, depends on the specific instance. In particular, we consider seven pos-
sible values of these capacities, namely 5, 10, 15, 20, 25, 30 and 35.

Our experiments will also consider different values of τ , that is the minimum number of con-
secutive time periods in which the (temporarily) chosen airspace configuration must remain
active before it can be changed (as we have already seen in Subsection 4.2.1). In particular, we
consider four different values, namely 1, 6, 12 and 36. We remark that τ = 1 is equivalent to
the case in which it is always possible to change configuration. This means that there are no
constraints of the form (4.9). On the other hand, if τ = 36 = |T | then, once a configuration
has been chosen at time t = 1, it is no longer possible to change it.

Summarizing, our experiments will consider 20 × 7 × 4 = 560 different instances of the
ATFM problem with dynamic selection of the airspace configuration.

To conclude this subsection, we give the reader an idea of the size of the formulation proposed
in [26] (and recalled in Subsection 4.2.3), and of the new formulation, in the case of the in-
stances considered in this thesis.

Remembering (4.20) and (4.22), we find that these instances will surely have no more than
13,932 variables and 47,001 constraints using the formulation present in Subsection 4.2.3.
Note that, since |F|XD = 13,824, the parameters that significantly affect the upper bounds
just calculated are |F|, X and D (if, for example, one of these parameters doubles, then both
the upper bounds approximately double). Actually, using this formulation, in the simulations
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carried out for this thesis, there are slightly less than 3,000 variables on average (with a max-
imum of 3,663) and, on average, there are slightly less than 12,000 constraints (with a maxi-
mum of 15,370).

Recalling what we have already seen in Section 5.6, using the new formulation, all the consider-
ations on the number of variables thatwemade for the formulation present in Subsection 4.2.3
still hold. Using the new formulation, in the simulations carried out for this thesis, there are
about 320 constraints of the form (5.26) on average (with a maximum of 642) and there are
always exactly 16 × 36 = 576 constraints of the form (5.11). Therefore, in the case of the
computational experiments carried out for this thesis, the new formulation provides, on av-
erage, approximately 900 more constraints than the formulation present in Subsection 4.2.3
(this is an increase of less than 8%).

6.1.3 Generation of the spatial trajectories

Since in every instance used for our computational experiments there are 256 flights, it was not
at all practical to generate the various trajectories manually. We therefore used the same pro-
cedure used in [26]. In particular, for every instance, we interpreted the airspace as a weighted
undirected graph (see [25]), where each node represents an elementary sector or an airport.
This graph was generated using MATLAB. In this graph, each node representing an airport
has degree 1, as it is connected only to the elementary sector that contains it. Furthermore, if
two elementary sectors are adjacent then there is an arc that connects the two nodes that rep-
resent them. Finally, a weight between 0 and 1 is randomly assigned to each arc. This last fact
means that (with extremely high probability) each time we generate such a graph with MAT-
LAB, we obtain a different graph (nodes and arcs are always the same, but not the weights). As
in [26], the weight assigned to the arc connecting two nodes represents how convenient it can
be to move from one node to another through that arc. If this number is close to 0, then it is
convenient to choose this arc. Conversely, if this number is close to 1 then it is not convenient.
To create such a graph in MATLAB it is possible to use the function graph() whose parame-
ters are given by: a list of source nodes; a list of corresponding target nodes; a list of weights
associated with the arcs. The undirected graph associated to the airspace of the instances used
for our computational experiments is represented in Figure 6.3.

After creating such a weighted undirected graph, we have generated the spatial trajectories of
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Figure 6.3: The undirected graph associated to the airspace of the instances used for our computational experiments [26].

256 flights following exactly the same procedure used in [26]. To do this, we have randomly
chosen, for each of 128 flights, two distinct nodes representing the arrival and destination air-
ports. Regarding the other 128 flights, after having identified 5 main airports (DUB, LHR,
AMS, CDG and FRA), their arrival and destination airports were randomly chosen among
the nodes representing these 5 main airports (always provided that, for each of these flights,
the departure and arrival airports are different). For each flight, using the function (present in
MATLAB) shortestpath() (which has as parameters the graph, the source node correspond-
ing to the departure airport and the target node corresponding to the arrival airport), we have
found the shortest path between the two nodes representing the departure and the destination
airport. For each flight the path found in this way is its spatial trajectory. Note that these paths,
once a source node and a target node are fixed, depend on the weights associated with the arcs
of the graph (graphs with different weights lead, in general, to different paths). Our compu-
tational experiments have been conducted on 20 different graph settings of this type and, in
particular, on 20 different flight sets with the related spatial trajectories and data. For simplic-
ity, wewill henceforthuse the term“flight set” to refer to a set of flights togetherwith the related
spatial trajectories and data. Five of these flight sets are associated with the instances present in
[26], whereas the other fifteenwere generated by us. Wewill call these flight sets: Flights 1; . . . ;
Flights 20. Flights 1, Flights 2, Flights 3, Flights 4 and Flights 5 are the five flight sets present
in [26].
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The procedure just described to generate spatial trajectories is implemented using the MAT-
LAB file present in the appendix.

6.2 Implementation in AMPL

To perform our computational experiments, we have used the optimization software IBM
ILOG CPLEX (version 11.1.1 and version 12.8.0.0) through its AMPL (version 20080701)
interface. In this section, we describe the structure of the .mod, .dat and .run files used to im-
plement the model in AMPL. These files contain, respectively, the definition of the model, the
data and the procedures used to test the model. Examples of these files are provided in the ap-
pendix.

6.2.1 AMPL model file .mod

In themodel file, the various sets, parameters, variables, objective functions and constraints are
declared. In particular, the use of indexed parameters was extremely useful for subsequently
implementing the separation of cover inequalities. Furthermore, again thanks to the use of
indexes allowed by AMPL, we were able to declare only the variables really necessary for the
formulation, avoiding the appearance of the “undefined variables” already described at the end
of Subsection 4.2.2.

Indicating in brackets the notation used in the file, the following sets are declared: M (MAPS);
J (ELEMENTARY); H (COLLAPSED); F (FLIGHTS); K (AIRPORTS); Pm (PARTI-
TIONS[m]) for every m ∈ M; Bh (BELONGING[h]) for every h ∈ H; T (TIMES); Pf

(PATHS[f]) for every f ∈ F .

The declared parameters, fundamental for the implementation of the model, are the follow-
ing: Dk(t) (D[k,t]) for every k ∈ K and t ∈ T ; Ak(t) (A[k,t]) for every k ∈ K and t ∈ T ;
Sh(t) (S[h,t]) for every h ∈ H and t ∈ T ; the various lj

f (l[f,j]); ∆f (delay[f]) for every
f ∈ F ; df (d[f]) for every f ∈ F ; rf (r[f]) for every f ∈ F ; a parameter representing the
scheduled duration of flight f (duration[f]) for every f ∈ F ; cg

f (cg[f]) for every f ∈ F ; ca
f

(ca[f]) for every f ∈ F ; the various T j
f (tmin[f,j]); the various T

j
f (tmax[f,j]); Ch(t) (C[h,t])
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for every h ∈ H and t ∈ T ; τ (tau); for every constraint of the form (5.16) a parameter (num-
ber_cover_inequalities), necessary to implement the separation of cover inequalities, indicat-
ing the number of cover inequalities found (using the procedure described in Algorithm 5.1)
treating that constraint as if it was a real knapsack-type constraint; some parameters (the var-
ious “cover_inequalities1” and the various “cover_inequalities2”) necessary to store the cover
inequalities found using Algorithm 5.1; some parameters (the various “wbar” and the various
“ybar”) necessary to store temporarily the various solutions found at Step 1 of Algorithm 5.1;
a parameter (flag) used to understand when to end the search for cover inequalities.

Other declared parameters, useful for collecting information from our simulations, are the fol-
lowing: a parameter indicating howmanywj

f,t variables there are (counter_w); a parameter in-
dicating howmany ym,t variables there are (counter_y); a parameter indicating howmanywj

f,t

variables are integer in the solution (counter_w_int); a parameter indicating how many wj
f,t

variables are fractional in the solution (counter_w_frac); a parameter indicating how many
ym,t variables are integer in the solution (counter_y_int); a parameter indicating how many
ym,t variables are fractional in the solution (counter_y_frac); a parameter (flag1) indicating the
number of times Step 3 of Algorithm 5.1 is executed; a parameter (flag2) indicating the num-
ber of problems of the form (3.5) solved using Algorithm 5.1; a parameter (flag3) indicating
the total number of cover inequalities found using Algorithm 5.1.

The declared variables, fundamental for the implementation of the model, are the following:
the various wj

f,t (w[f,j,t]); the various ym,t (y[m,t]); the variables (the various “z” and the var-
ious “x”) used in the various problems of the form (3.5) solved using Algorithm 5.1. Other
declared variables, useful for collecting information from our simulations, are the following:
for every f ∈ F the total number gf (g[f]) of time units that flight f is held on the ground
through ground-holding policy; for every f ∈ F the total number af (a[f]) of time units that
flight f is held in the air through airborne-holding and/or speed control policies.

The declared objective functions are the following: the objective function of our formulation
(fun); the objective functions (sl1) of the various problems of the form (3.5) solved using Algo-
rithm 5.1.

Finally, the declared constraints (besides the constraints, related to the binary nature of the
variables, already included in the declaration of the variables) are the following: constraints
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(4.1) (cons1); constraints (4.2) (cons2); constraints (5.16) (cons3); constraints (5.11) (cons4);
constraints (4.4) (cons5); constraints (4.5) (cons6); constraints (4.7) (cons7); constraints (4.8)
(cons8); constraints (4.9) (cons9); constraints (5.26) (conscover); the constraints (vsl1) of the
various problems of the form (3.5) solved using Algorithm 5.1.

6.2.2 Data file .dat

In the data file, the elements are assigned to the various sets and the values are assigned to the
various parameters. Here, indicating in brackets the notation used in the file, are assigned: con-
figurations to set M (MAPS); flights to set F (FLIGHTS); airports to set K (AIRPORTS);
elementary sectors to setJ (ELEMENTARY); collapsed sectors to setH (COLLAPSED); col-
lapsed sectors to set Pm (PARTITIONS[m]) for every m ∈ M; elementary sectors to set Bh

(BELONGING[h]) for every h ∈ H; time periods to set T (TIMES); the spatial trajectory of
flight f (PATHS[f]) for every f ∈ F .

Moreover: the departure capacity of any airport at any time is considered constant (D=8); the
arrival capacity of any airport at any time is considered constant (A=8); the cost of holding any
flight on the ground, through ground-holding policy, for one unit of time is considered con-
stant (cg=1); the cost of holding any flight in the air, through airborne-holding and/or speed
control policies, for one unit of time is considered constant (ca=3); the values of the various lj

f

(l[f,j]), ∆f (delay[f]), df (d[f]), rf (r[f]), T j
f (tmin[f,j]) and T

j
f (tmax[f,j]) are randomly gen-

erated (in such a way as to satisfy, however, the properties and the relationships between them
already described in Subsection 4.2.1).

6.2.3 .run file

In our computational experiments all the capacities Sh(t) have the same value. This means
that, in each simulation carried out, Sh1(t1) = Sh2(t2) for every h1, h2 ∈ H and t1, t2 ∈
T . Given a flight set of our ATFM problem, running the .run file we solve it for different
values of τ and of the various Sh(t). Each time an instance is solved the following happens:
the values of the constants Ch(t) are computed; Algorithm 5.1 is applied (note that initially
there are no constraints (5.26) which, therefore, will have to be found starting from the initial
formulation, i.e. formulation F) in order to find constraints (5.26) and, therefore, obtain our
new formulation together with an optimal solution (and, obviously, the optimal value) of its
LPR; our instance is solved using the new formulation.
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7
Computational results

The goal of this chapter is to highlight how our new formulation is significantly tighter than
the one present in [26]. For this purpose, some computational results, obtained by working
with the 560 instances described in Chapter 6, will be reported. In the first section of this sev-
enth chapter, we will provide a general description of how our simulations were carried out
and introduce some useful concepts to understand to what extent our contributions allow us
to tighten the formulation proposed in [26]. In the second section, we will present the results
obtained from our computational experiments and, finally, in the third section, we will com-
ment on them.

7.1 Experiment settings

In the following, we will denote with F0 the formulation present in Subsection 4.2.3, i.e. the
formulation proposed in [26]. Let F1 be the formulation obtained by replacing constraints
(4.3) with constraints (5.16) in formulationF0. FormulationF1, compared to formulationF0,
simply has smaller values for the constants (rememberwhatwe have seen in Section 5.2). Let us
denote withF2 the formulationF described at the beginning of Section 5.4. FormulationF2 is
obtained by adding constraints (5.11) to formulation F1. Let F3 be the formulation obtained
by adding the cover inequalities, found using a procedure extremely similar to that described in
Algorithm5.1, to formulationF1. Note that, in formulationF3, there are no constraints of the
form (5.11). Finally, let us denote withF4 our new formulation, the one present in Section 5.5.

85



We recall that constraints (5.26) are dynamically added by Algorithm 5.1. By comparing these
formulations, we will see to what extent our contributions, presented in Chapter 5, allow us to
tighten formulation F0.

It is also worth mentioning that the simulations related to formulations F0, F1 and F2 were
carried out using the optimization software IBM ILOG CPLEX (version 11.1.1) through its
AMPL (version 20080701) interface, whereas the simulations related to formulations F3 and
F4 were carried out using the optimization software IBM ILOG CPLEX (version 12.8.0.0)
through its AMPL (version 20080701) interface.

Let us now introduce some terminology that will be used in the tables shown in the following
section. We will use the term “Capacity” to refer to the value of all the various Sh(t). Given a
feasible instance of ourATFMproblem (which is an ILPproblem)whose optimal value (which
is independent of the formulation used) voptimal is different from 0 and a formulation whose
LPR has (regarding the instance in question) optimal value vLP R

optimal, the integrality gap is de-
fined as follows:

integrality gap :=
voptimal − vLP R

optimal

voptimal

· 100.

The integrality gap (since voptimal ≥ vLP R
optimal ≥ 0 and voptimal > 0) is a real number be-

tween 0 and 100 (extremes included) that indicates with a percentage the “relative distance”
between voptimal and vLP R

optimal (the smaller this percentage, the “closer” voptimal and vLP R
optimal

are). It is also worth remembering that, given an ILP problem to solve, the number of branch-
and-bound nodes is the number of sub-problems (excluding the original problem) that are
examined using the branch-and-bound method (or some variant thereof such as, for example,
the branch-and-cut, recall Section 3.2 and Section 3.3) in order to solve the ILP problem (for
example in Figure 3.3 there are 4 branch-and-bound nodes).

Finally, since in the next section we will compare some formulations with each other and this
comparison will be carried out for four different values of τ , we describe here how the tables in
the next section were constructed. It is worth mentioning that, depending on the values of τ

andCapacity, the contents of the cells of these tables have been derived starting from the results
obtained from the 20 different instances sharing these values of τ andCapacity (remember the
description of the instances in Subsection 6.1.2).
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Table 7.1, Table 7.6, Table 7.11 and Table 7.16 were obtained by solving 140 instances 5 times:
one to solve our ATFMproblem; four to solve the various LPRs (excluding the LPR of formu-
lation F0). In total, for each table, 700 simulations were carried out.

Table 7.2, Table 7.7, Table 7.12 and Table 7.17 were built on the basis of the same simulations
used for Table 7.1, Table 7.6, Table 7.11 and Table 7.16 respectively.

Table 7.3, Table 7.8, Table 7.13 and Table 7.18 were built on the basis of 560 of the 700 simu-
lations used for Table 7.1, Table 7.6, Table 7.11 and Table 7.16 respectively. For each table, the
140 simulations concerning our ILP ATFM problem were not used, but only the 560 simula-
tions related to the various LPRs.

Table 7.4, Table 7.9, Table 7.14 andTable 7.19 were built on the basis of 280 of the 560 simula-
tions used for Table 7.3, Table 7.8, Table 7.13 and Table 7.18 respectively. For each table, only
the 280 simulations related to formulations F3 and F4 were used.

Table 7.5, Table 7.10, Table 7.15 andTable 7.20were obtained by solving 140 instances 4 times,
one for each formulation (excluding formulation F3). In total, for each table, 560 simulations
were carried out.

7.2 Comparison of formulations

In this section, we will mainly compare formulations F1, F2, F3 and F4. This will allow us
to understand to what extent our contributions (presented in Chapter 5) make it possible to
tighten, in the cases of the instances considered in this thesis, formulation F0. As we have al-
ready seen in the previous section, this comparison between formulations will be carried out
for four different values of τ .

7.2.1 The case τ = 1

Table 7.1 reports, depending on the value of Capacity, the percentage of infeasible instances of
our ILP ATFM problem in a column. Other four columns indicate, depending on the value
of Capacity and on the formulation used, the percentage of infeasible instances whose LPR is
feasible. We recall that, according to the instance description in Subsection 6.1.2, each row of
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Table 7.1 consolidates the results over 20 instances (sharing the same τ and the same Capacity,
but having different flight sets). As we have already seen at the beginning of Section 5.2, using
formulation F0, in every computational experiment we carried out, regardless of whether the
specific instance of the ILPproblemwas feasible or not, the optimal value of its LPRwas always
equal to 0. For this reason formulation F0 does not appear in Table 7.1. In Table 7.1, when
Capacity is equal to 15, we have 19 infeasible instances (95% of 20) of our ATFM problem.
Solving all these 19 instances using the LPR of formulationF1 we always (100% of 19) find an
optimal solution (the infeasibility of the instances of our ATFMproblem is not detected at all).
Solving all these 19 instances using the LPRof formulationF2 we find an optimal solution in 5
(about 26.32% of 19) cases (the infeasibility of the instances of our ATFMproblem is detected
in 14 cases out of 19). Solving all these 19 instances using the LPR of formulation F3 we find
an optimal solution in 2 (about 10.53% of 19) cases (the infeasibility of the instances of our
ATFMproblem is detected in 17 cases out of 19). Solving all these 19 instances using the LPR
of formulation F4 we find an optimal solution in 1 (about 5.26% of 19) case (the infeasibility
of the instances of our ATFM problem is detected in 18 cases out of 19). Table 7.1 therefore
shows that each of our contributions allow us to tighten the formulation proposed in [26].

% of infeasible instances
whose LPR is feasible

Capacity % of infeasible instances F1 F2 F3 F4
5 100 15 0 0 0
10 100 90 0 0 0
15 95 100 26.32 10.53 5.26
20 30 100 16.67 16.67 16.67
25 10 100 50 50 0
30 5 100 100 0 0
35 5 100 100 0 0

Table 7.1: Infeasibility detection (in the case τ = 1).

This fact is also confirmed in Table 7.2, which reports in a column the percentage of feasible
instances of our ILP ATFM problem whose optimal value is different from 0. Other four
columns indicate, depending on the value ofCapacity and on the formulationused, the average
integrality gap. In Table 7.2, when Capacity is equal to 25, we have 8 (40% of 20) feasible in-
stanceswhose optimal value is different from 0. For these 8 instances the average integrality gap
(rounded to two decimal places) is: 100% using formulation F1; 55.31% using formulation
F2; 68.56% using formulation F3; 35.60% using formulation F4. In Table 7.2, the writing
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“N/D” appears every time the average integrality gap is not defined.

Average integrality gap (%)

Capacity % of feasible instances whose
optimal value is ̸= 0 F1 F2 F3 F4

5 0 N/D N/D N/D N/D
10 0 N/D N/D N/D N/D
15 5 100 100 50 50
20 60 99.52 60.42 57.90 34.66
25 40 100 55.31 68.56 35.60
30 15 100 33.33 53.91 21.43
35 0 N/D N/D N/D N/D

Table 7.2: Average integrality gap (in the case τ = 1).

InTable 7.3 four columns indicate, depending on the value ofCapacity and on the formulation
used, the average percentage of fractional variables of the type wj

f,t. Other four columns indi-
cate, depending on the value of Capacity and on the formulation used, the average percentage
of fractional variables of the type ym,t. In Table 7.3, for example, when Capacity is equal to 20
and the formulation used is formulation F4 we have that on average: about 5.27% of the vari-
ous wj

f,t are fractional (on average there are slightly less than 2,900 wj
f,t variables and of these,

on average, about 150 are fractional); 10% of the various ym,t are fractional (there are always
108 ym,t variables and of these, on average, about 11 are fractional). The number of instances
onwhich these two average percentages are computed, not present inTable 7.3 (to keep itmore
readable), is the number of instances whose LPR (using formulation F4) is feasible, that is (in
this case) 15 (this number can be deduced from Table 7.1). Note that formulation F4 is, on
average, the one with the smallest percentage of fractional ym,t variables. However, the use of
cover inequalities increases the number of fractionalwj

f,t variables (with formulationF4 having
fewer fractional wj

f,t variables than formulation F3). In Table 7.3, the writing “N/D” appears
every time the value present within the corresponding cell of the table is not defined.

Regarding formulationF4 and (inparticular) formulationF3, the timeneeded to separate cover
inequalities is relevant, as shown in Table 7.4. In this table two columns indicate, depending
on the value of Capacity and on the formulation used, the average time taken to separate cover
inequalities. Other two columns indicate, depending on the value of Capacity and on the for-
mulation used, the average number of cover inequalities found. Also note that (except when
Capacity is 30 or 35) in formulation F3 there are, on average, more cover inequalities than in
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Average % of fractional wj
f,ts Average % of fractional ym,ts

Capacity F1 F2 F3 F4 F1 F2 F3 F4
5 11.69 N/D N/D N/D 83.02 N/D N/D N/D
10 4.27 N/D N/D N/D 69.08 N/D N/D N/D
15 0.64 0.59 12.44 9.81 46.48 34.26 23.77 21.30
20 0.09 0.06 7.64 5.27 25.37 19.75 13.70 10
25 0 0 3.14 0.84 9.95 9.65 5.56 2.11
30 0 0 0.23 0.07 4.40 4.49 0.49 0.15
35 0 0 0 0 1.62 1.57 0 0

Table 7.3: Average percentage of fractional variables (in the case τ = 1).

formulationF4. Therefore there are no advantages in using formulationF3 instead of formula-
tion F4. Note that all these averages are calculated over 20 instances, which, however, depend
on the specific row of the table.

Average time taken to find
cover inequalities (in seconds)

Average number of cover
inequalities found

Capacity F3 F4 F3 F4
5 1.106 0.014 57.25 0
10 13.518 0.015 388.8 0
15 59.453 8.867 473.5 81.1
20 240.450 54.785 343.7 127.85
25 75.577 19.922 96.3 55.3
30 18.294 3.482 23.75 23.8
35 3.276 1.504 15.15 15.35

Table 7.4: Average time (in seconds) taken to find cover inequalities and average number of cover inequalities found (in the
case τ = 1).

Finally, assuming that we have already found formulation F4, the time needed, on average, to
solve one of the instances of our ATFM problem (which is an ILP problem) is not excessively
long, although longer than those required using other formulations (see Table 7.5). In Ta-
ble 7.5, for completeness, we also report howmany branch-and-bound nodes have been found,
on average, in the various cases.
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Average solving time
(in seconds)

Average number of
branch-and-bound nodes

Capacity F0 F1 F2 F4 F0 F1 F2 F4
5 0.010 0.006 0.011 0.020 0 0 0 0
10 0.014 0.008 0.015 0.020 0 0 0 0
15 0.017 0.011 0.018 0.026 0.05 0.05 0 0
20 0.413 0.395 0.208 1.829 287 287 61.6 215.6
25 0.053 0.045 0.031 0.232 8.45 8.45 3.6 0
30 0.022 0.016 0.023 0.033 0 0 0 0
35 0.020 0.014 0.022 0.030 0 0 0 0

Table 7.5: Average solving time (in seconds) taken to solve our ATFM problem and average number of branch‐and‐bound
nodes found (in the case τ = 1).

7.2.2 The case τ = 6

In Table 7.6, whose description is similar to that of Table 7.1, when Capacity is equal to 15,
we have 19 infeasible instances (95% of 20) of our ATFM problem. Solving all these 19 in-
stances using the LPR of formulationF1 we always (100% of 19) find an optimal solution (the
infeasibility of the instances of our ATFM problem is not detected at all). Solving all these 19
instances using the LPR of formulation F2 we find an optimal solution in 5 (about 26.32% of
19) cases (the infeasibility of the instances of our ATFM problem is detected in 14 cases out of
19). Solving all these 19 instances using the LPR of formulation F3 we find an optimal solu-
tion in 2 (about 10.53% of 19) cases (the infeasibility of the instances of our ATFM problem
is detected in 17 cases out of 19). Solving all these 19 instances using the LPR of formulation
F4 we find an optimal solution in 1 (about 5.26% of 19) case (the infeasibility of the instances
of our ATFM problem is detected in 18 cases out of 19). Table 7.6 therefore shows that each
of our contributions allow us to tighten the formulation proposed in [26].

This fact is also confirmed in Table 7.7, whose description is similar to that of Table 7.2. Here,
for example, when Capacity is equal to 25we have 8 (40% of 20) feasible instances whose opti-
mal value is different from 0. For these 8 instances the average integrality gap (rounded to two
decimal places) is: 100% using formulation F1; 55.31% using formulation F2; 61.41% using
formulationF3; 30.47% using formulationF4. In Table 7.7, the writing “N/D” appears every
time the average integrality gap is not defined.
In Table 7.8, whose description is similar to that of Table 7.3, whenCapacity is equal to 20 and
the formulation used is formulation F4 we have that on average: about 5.42% of the various
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% of infeasible instances
whose LPR is feasible

Capacity % of infeasible instances F1 F2 F3 F4
5 100 15 0 0 0
10 100 90 0 0 0
15 95 100 26.32 10.53 5.26
20 30 100 16.67 16.67 16.67
25 10 100 50 50 0
30 5 100 100 0 0
35 5 100 100 0 0

Table 7.6: Infeasibility detection (in the case τ = 6).

Average integrality gap (%)

Capacity % of feasible instances whose
optimal value is ̸= 0 F1 F2 F3 F4

5 0 N/D N/D N/D N/D
10 0 N/D N/D N/D N/D
15 5 100 100 50 50
20 65 99.61 64.49 53.86 34.35
25 40 100 55.31 61.41 30.47
30 15 100 33.33 31.09 21.43
35 0 N/D N/D N/D N/D

Table 7.7: Average integrality gap (in the case τ = 6).

wj
f,t are fractional (on average there are slightly less than 2,900 wj

f,t variables and of these, on
average, about 160 are fractional); about 29.63% of the various ym,t are fractional (there are
always 108 ym,t variables and of these, on average, about 32 are fractional). The number of
instances on which these two average percentages are computed, not present in Table 7.8 (to
keep itmore readable), is the number of instanceswhoseLPR (using formulationF4) is feasible,
that is (in this case) 15 (this number can be deduced fromTable 7.6). Note that formulationF3

and formulationF4 are, on average, the oneswith the smallest percentage of fractional ym,t vari-
ables. However, the use of cover inequalities increases the number of fractional wj

f,t variables
(with formulationF4 having fewer fractionalwj

f,t variables than formulationF3). In Table 7.8,
the writing “N/D” appears every time the value present within the corresponding cell of the
table is not defined.
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Average % of fractional wj
f,ts Average % of fractional ym,ts

Capacity F1 F2 F3 F4 F1 F2 F3 F4
5 12.28 N/D N/D N/D 98.15 N/D N/D N/D
10 4.41 N/D N/D N/D 93.93 N/D N/D N/D
15 0.66 0.56 12.46 10.41 74.68 75.46 52.78 65.28
20 0.08 0.19 7.98 5.42 55.28 57.84 36.91 29.63
25 0 0 3.59 1.26 47.73 43.42 23.10 20.68
30 0 0 0.83 0.07 40.14 35.60 11.40 12.87
35 0 0 0 0 40.32 33.52 7.60 12.04

Table 7.8: Average percentage of fractional variables (in the case τ = 6).

Regarding formulationF4 and (inparticular) formulationF3, the timeneeded to separate cover
inequalities is relevant, as shown in Table 7.9. The description of this table is similar to that of
Table 7.4. Also note that (except when Capacity is 35) in formulation F3 there are, on average,
more cover inequalities than in formulation F4. Therefore there are no advantages in using
formulation F3 instead of formulation F4. Note that all these averages are calculated over 20
instances, which, however, depend on the specific row of the table.

Average time taken to find
cover inequalities (in seconds)

Average number of cover
inequalities found

Capacity F3 F4 F3 F4
5 0.880 0.190 57.7 0
10 11.722 0.123 381.05 0
15 48.815 6.566 467.5 83.4
20 127.620 35.430 345.9 146.15
25 71.371 18.451 113.05 53.25
30 19.042 4.807 35.15 23.4
35 6.084 2.864 14.7 15.95

Table 7.9: Average time (in seconds) taken to find cover inequalities and average number of cover inequalities found (in the
case τ = 6).

Finally, assuming that we have already found formulation F4, the time needed, on average,
to solve one of the instances of our ATFM problem (which is an ILP problem) is not exces-
sively long, although longer than those required using other formulations (see Table 7.10). In
Table 7.10, for completeness, we also report how many branch-and-bound nodes have been
found, on average, in the various cases.
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Average solving time
(in seconds)

Average number of
branch-and-bound nodes

Capacity F0 F1 F2 F4 F0 F1 F2 F4
5 0.010 0.006 0.011 0.020 0 0 0 0
10 0.014 0.010 0.015 0.021 0 0 0 0
15 0.018 0.013 0.018 0.028 0 0 0 0
20 0.225 0.213 0.156 1.500 30.6 30.6 10.95 150.05
25 0.079 0.070 0.045 0.364 2.7 2.7 0.9 0
30 0.025 0.018 0.025 0.038 0 0 0 0
35 0.022 0.016 0.025 0.035 0 0 0 0

Table 7.10: Average solving time (in seconds) taken to solve our ATFM problem and average number of branch‐and‐bound
nodes found (in the case τ = 6).

7.2.3 The case τ = 12

In Table 7.11, whose description is similar to that of Table 7.1, when Capacity is equal to 15,
we have 19 infeasible instances (95% of 20) of our ATFM problem. Solving all these 19 in-
stances using the LPR of formulationF1 we always (100% of 19) find an optimal solution (the
infeasibility of the instances of our ATFM problem is not detected at all). Solving all these 19
instances using the LPR of formulation F2 we find an optimal solution in 5 (about 26.32% of
19) cases (the infeasibility of the instances of our ATFM problem is detected in 14 cases out of
19). Solving all these 19 instances using the LPR of formulation F3 we find an optimal solu-
tion in 2 (about 10.53% of 19) cases (the infeasibility of the instances of our ATFM problem
is detected in 17 cases out of 19). Solving all these 19 instances using the LPR of formulation
F4 we find an optimal solution in 1 (about 5.26% of 19) case (the infeasibility of the instances
of our ATFM problem is detected in 18 cases out of 19). Table 7.11 therefore shows that each
of our contributions allow us to tighten the formulation proposed in [26].

This fact is also confirmed inTable 7.12, whose description is similar to that of Table 7.2. Here,
for example, when Capacity is equal to 25we have 8 (40% of 20) feasible instances whose opti-
mal value is different from 0. For these 8 instances the average integrality gap (rounded to two
decimal places) is: 100% using formulation F1; 56.11% using formulation F2; 61.13% using
formulation F3; 30.87% using formulation F4. In Table 7.12, the writing “N/D” appears ev-
ery time the average integrality gap is not defined.

InTable 7.13,whose description is similar to that ofTable 7.3, whenCapacity is equal to20 and
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% of infeasible instances
whose LPR is feasible

Capacity % of infeasible instances F1 F2 F3 F4
5 100 15 0 0 0
10 100 85 0 0 0
15 95 100 26.32 10.53 5.26
20 30 100 16.67 16.67 16.67
25 10 100 50 50 0
30 5 100 100 0 0
35 5 100 100 0 0

Table 7.11: Infeasibility detection (in the case τ = 12).

Average integrality gap (%)

Capacity % of feasible instances whose
optimal value is ̸= 0 F1 F2 F3 F4

5 0 N/D N/D N/D N/D
10 0 N/D N/D N/D N/D
15 5 100 100 63.33 63.33
20 65 99.61 64.93 48.02 28.82
25 40 100 56.11 61.13 30.87
30 15 100 33.33 31.09 21.43
35 0 N/D N/D N/D N/D

Table 7.12: Average integrality gap (in the case τ = 12).

the formulation used is formulation F4 we have that on average: about 5.50% of the various
wj

f,t are fractional (on average there are slightly less than 2,900 wj
f,t variables and of these, on

average, about 160 are fractional); about 41.73% of the various ym,t are fractional (there are
always 108 ym,t variables and of these, on average, about 45 are fractional). The number of
instances on which these two average percentages are computed, not present in Table 7.13 (to
keep itmore readable), is the number of instanceswhoseLPR (using formulationF4) is feasible,
that is (in this case) 15 (this number can be deduced from Table 7.11). Note that formulation
F4 is, on average, the onewith the smallest percentage of fractional ym,t variables. However, the
use of cover inequalities increases the number of fractionalwj

f,t variables (with formulationF4

having fewer fractional wj
f,t variables than formulation F3). In Table 7.13, the writing “N/D”

appears every time the value present within the corresponding cell of the table is not defined.
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Average % of fractional wj
f,ts Average % of fractional ym,ts

Capacity F1 F2 F3 F4 F1 F2 F3 F4
5 14.87 N/D N/D N/D 99.69 N/D N/D N/D
10 4.39 N/D N/D N/D 99.89 N/D N/D N/D
15 0.94 0.88 12.90 11.58 96.67 95.37 56.79 52.31
20 0.12 0.19 8.15 5.50 79.58 72.28 48.58 41.73
25 0 0.21 3.89 1.48 58.94 50.10 37.72 28.40
30 0 0 0.82 0.07 55.88 51.02 24.90 15.94
35 0 0 0 0 54.77 47.50 19.64 16.08

Table 7.13: Average percentage of fractional variables (in the case τ = 12).

Regarding formulationF4 and (inparticular) formulationF3, the timeneeded to separate cover
inequalities is relevant, as shown in Table 7.14. The description of this table is similar to that
of Table 7.4. Also note that in formulation F3 there are, on average, more cover inequalities
than in formulation F4. Therefore there are no advantages in using formulation F3 instead of
formulation F4. Note that all these averages are calculated over 20 instances, which, however,
depend on the specific row of the table.

Average time taken to find
cover inequalities (in seconds)

Average number of cover
inequalities found

Capacity F3 F4 F3 F4
5 1.125 0.177 57.5 0
10 11.709 0.126 350.4 0
15 54.421 9.285 475.55 89.55
20 112.492 36.339 329.85 148.25
25 68.280 20.069 120.65 56.3
30 20.586 4.596 37.5 22.55
35 8.464 3.224 21.55 17.95

Table 7.14: Average time (in seconds) taken to find cover inequalities and average number of cover inequalities found (in
the case τ = 12).

Finally, assuming that we have already found formulation F4, the time needed, on average,
to solve one of the instances of our ATFM problem (which is an ILP problem) is not exces-
sively long, although longer than those required using other formulations (see Table 7.15). In
Table 7.15, for completeness, we also report how many branch-and-bound nodes have been
found, on average, in the various cases.
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Average solving time
(in seconds)

Average number of
branch-and-bound nodes

Capacity F0 F1 F2 F4 F0 F1 F2 F4
5 0.015 0.009 0.016 0.021 0 0 0 0
10 0.015 0.010 0.016 0.022 0 0 0 0
15 0.021 0.015 0.022 0.089 0 0 0 0
20 0.120 0.110 0.108 1.489 9.1 9.1 6 215.3
25 0.123 0.112 0.065 0.539 3.55 3.55 1 0
30 0.027 0.020 0.028 0.044 0 0 0 0
35 0.024 0.018 0.025 0.041 0 0 0 0

Table 7.15: Average solving time (in seconds) taken to solve our ATFM problem and average number of branch‐and‐bound
nodes found (in the case τ = 12).

7.2.4 The case τ = 36

In Table 7.16, whose description is similar to that of Table 7.1, when Capacity is equal to 15,
we have 19 infeasible instances (95% of 20) of our ATFM problem. Solving all these 19 in-
stances using the LPR of formulationF1 we always (100% of 19) find an optimal solution (the
infeasibility of the instances of our ATFM problem is not detected at all). Solving all these 19
instances using the LPR of formulation F2 we find an optimal solution in 5 (about 26.32% of
19) cases (the infeasibility of the instances of our ATFM problem is detected in 14 cases out
of 19). Solving all these 19 instances using the LPR of formulation F3 we find an optimal so-
lution in 0 (0% of 19) cases (the infeasibility of the instances of our ATFM problem is always
detected). Solving all these 19 instances using the LPR of formulation F4 we find an optimal
solution in 0 (0% of 19) cases (the infeasibility of the instances of our ATFM problem is al-
ways detected). Table 7.16 therefore shows that each of our contributions allow us to tighten
the formulation proposed in [26].

This fact is also confirmed inTable 7.17, whose description is similar to that of Table 7.2. Here,
for example, whenCapacity is equal to 25, we have 8 (40% of 20) feasible instances whose opti-
mal value is different from 0. For these 8 instances the average integrality gap (rounded to two
decimal places) is: 100% using formulation F1; 57.78% using formulation F2; 48.82% using
formulation F3; 24.70% using formulation F4. In Table 7.17, the writing “N/D” appears ev-
ery time the average integrality gap is not defined.

InTable 7.18,whose description is similar to that ofTable 7.3, whenCapacity is equal to20 and
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% of infeasible instances
whose LPR is feasible

Capacity % of infeasible instances F1 F2 F3 F4
5 100 5 0 0 0
10 100 85 0 0 0
15 95 100 26.32 0 0
20 45 100 44.44 22.22 22.22
25 10 100 50 0 0
30 5 100 100 0 0
35 5 100 100 0 0

Table 7.16: Infeasibility detection (in the case τ = 36).

Average integrality gap (%)

Capacity % of feasible instances whose
optimal value is ̸= 0 F1 F2 F3 F4

5 0 N/D N/D N/D N/D
10 0 N/D N/D N/D N/D
15 5 100 100 63.33 63.33
20 50 99.29 65.83 47.86 33.35
25 40 100 57.78 48.82 24.70
30 20 100 62.50 33.37 28.57
35 0 N/D N/D N/D N/D

Table 7.17: Average integrality gap (in the case τ = 36).

the formulation used is formulation F4 we have that on average: about 5.40% of the various
wj

f,t are fractional (on average there are slightly less than 2,900 wj
f,t variables and of these, on

average, about 160 are fractional); about 51.28% of the various ym,t are fractional (there are
always 108 ym,t variables and of these, on average, about 55 are fractional). The number of
instances on which these two average percentages are computed, not present in Table 7.18 (to
keep itmore readable), is the number of instanceswhoseLPR (using formulationF4) is feasible,
that is (in this case) 13 (this number can be deduced from Table 7.16). Note that formulation
F4 is, on average, the onewith the smallest percentage of fractional ym,t variables. However, the
use of cover inequalities increases the number of fractionalwj

f,t variables (with formulationF4

having fewer fractional wj
f,t variables than formulation F3). In Table 7.18, the writing “N/D”

appears every time the value present within the corresponding cell of the table is not defined.
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Average % of fractional wj
f,ts Average % of fractional ym,ts

Capacity F1 F2 F3 F4 F1 F2 F3 F4
5 15.26 N/D N/D N/D 100 N/D N/D N/D
10 4.67 N/D N/D N/D 100 N/D N/D N/D
15 1.17 1.01 1.48 1.48 98.33 94.44 66.67 66.67
20 0.16 0 7.43 5.40 90 75.56 53.85 51.28
25 0.01 0.01 2.40 1.74 61.67 45.61 25.93 16.67
30 0 0 1.26 0.09 38.33 28.33 19.30 10.53
35 0 0 0 0 15 11.67 0 0

Table 7.18: Average percentage of fractional variables (in the case τ = 36).

Regarding formulationF4 and (inparticular) formulationF3, the timeneeded to separate cover
inequalities is relevant, as shown in Table 7.19. The description of this table is similar to that
of Table 7.4. Also note that in formulation F3 there are, on average, more cover inequalities
than in formulation F4. Therefore there are no advantages in using formulation F3 instead of
formulation F4. Note that all these averages are calculated over 20 instances, which, however,
depend on the specific row of the table.

Average time taken to find
cover inequalities (in seconds)

Average number of cover
inequalities found

Capacity F3 F4 F3 F4
5 0.644 0.174 19.75 0
10 11.436 0.116 350.55 0
15 33.465 5.628 413.95 81.05
20 90.666 33.405 301.05 128.55
25 56.310 19.891 106.95 64.75
30 19.919 3.781 36.65 27.95
35 4.195 2.121 21.05 21.05

Table 7.19: Average time (in seconds) taken to find cover inequalities and average number of cover inequalities found (in
the case τ = 36).

Finally, assuming that we have already found formulation F4, the time needed, on average,
to solve one of the instances of our ATFM problem (which is an ILP problem) is not exces-
sively long, although longer than those required using other formulations (see Table 7.20). In
Table 7.20, for completeness, we also report how many branch-and-bound nodes have been
found, on average, in the various cases.
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Average solving time
(in seconds)

Average number of
branch-and-bound nodes

Capacity F0 F1 F2 F4 F0 F1 F2 F4
5 0.017 0.010 0.017 0.022 0 0 0 0
10 0.016 0.010 0.017 0.023 0 0 0 0
15 0.020 0.014 0.021 0.118 0 0 0 0
20 0.064 0.055 0.060 0.228 0.35 0.35 0.55 0
25 0.105 0.094 0.088 0.216 0.45 0.45 0.35 0
30 0.032 0.025 0.032 0.050 0 0 0 0
35 0.029 0.022 0.030 0.042 0 0 0 0

Table 7.20: Average solving time (in seconds) taken to solve our ATFM problem and average number of branch‐and‐bound
nodes found (in the case τ = 36).

7.3 Comments on the computational results

Table 7.1, Table 7.6, Table 7.11 and Table 7.16 show how, using the LPR of formulation F4,
the infeasibility of the instances of our ATFM problem (which is an ILP problem) is often
detected. In the worst case, the one in which τ = 36 and Capacity is equal to 20, the infeasi-
bility is detected in approximately 77.78% (7 out of 9) of the instances. This is a remarkable
improvement compared to the LPR of formulationF0. Using the latter, the infeasibility of the
instances of our ATFM problem is never detected since, as we have already seen in Section 5.2,
we always find 0 as the optimal value. Furthermore, these tables allow us to observe how each
of our contributions is useful to tighten formulation F0.

Also Table 7.2, Table 7.7, Table 7.12 andTable 7.17 allow us to observe how each of our contri-
butions is useful to tighten formulationF0. ExceptwhenCapacity is equal to 15 (case inwhich,
for each of the four values of τ , the integrality gap is calculated on a single instance), the max-
imum average integrality gap, using formulation F4, is approximately 35.60% (this happens
in the case in which τ = 1 and Capacity is equal to 25). This is a remarkable improvement
compared to formulation F0 (using the latter the integrality gap is always 100%).

It should be noted that formulation F4 unfortunately also presents some flaws. First of all,
also using the LPR of formulation F4 (to solve the instances of our ATFM problem) we find a
rather large number of fractional ym,t variables. Moreover, due to the use of cover inequalities,
using the LPR of formulation F4 (to solve the instances of our ATFM problem) we also find
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a non-negligible number of fractional wj
f,t variables (see Table 7.3, Table 7.8, Table 7.13 and

Table 7.18). Finally, the separation of cover inequalities, necessary to obtain formulation F4,
requires quite a long time to be performed (see Table 7.4, Table 7.9, Table 7.14 andTable 7.19).
Furthermore, even once it is obtained, formulation F4 requires a longer time, compared to
other formulations, to solve the instances of our ILPATFMproblem (seeTable 7.5, Table 7.10,
Table 7.15 and Table 7.20).
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8
Conclusions

In this thesis, starting from the ILP model presented in [26] for the ATFM problem with dy-
namic selection of the airspace configuration, we have proposed some contributions in order
to obtain a tighter ILP formulation. This means that our new formulation obviously has, for
each instance, the same feasible region as that of the formulation present in [26]. However,
the LPR of our formulation is generally “closer” to the convex hull of the solutions of the ILP
problem than the LPR of the formulation presented in [26]. With our new formulation, in
fact, given an instance of the ATFM problem, it is often (in approximately 90% of cases) pos-
sible to identify its possible infeasibility by solving the LPR of our ILP problem instead of the
ILP problem itself. Our new formulation also allows us to have a much smaller average inte-
grality gap (less, in most cases, than 36%) compared to the formulation presented in [26] (in
which the integrality gap, when defined, was always equal to 100% in all our computational
experiments).

In order to obtain the improvements just described, starting from the formulation presented in
[26], we proposed three different contributions. The first one consists in replacing some con-
stants of the formulation with other smaller constants, the smallest possible. We then added
to the formulation a new class of valid inequalities that allowed us to further tighten the for-
mulation. Finally, to get closer to the convex hull of the solutions of the ILP problem, we also
added some inequalities derived as cover inequalities from some of the ILP model constraints.
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However, our new formulation also has some flaws. First of all, also using the LPR of our
new formulation, we find a non-negligible number of fractional variables. Furthermore, due
to the separation of cover inequalities, our new formulation requires quite a long time to be
solved. Moreover, the model obtained after solving the linear relaxation of our new formula-
tion further requires (on average) a longer time (compared to the formulation present in [26])
to provide the optimal integer solution of a given instance of the ATFM problem.

The flaws just exposed leave room for potential improvements and pave the way for future
research possibilities. In particular, regarding the attempt to obtain an even tighter formula-
tion (with a smaller integrality gap and fewer fractional variables) than ours, we suggest trying
to find further classes of valid inequalities. It would probably be important that these classes of
valid inequalities also involve configuration-related variables. The latter seem to be the variables
that make it difficult to find a formulation whose LPR better approximates the convex hull of
the solutions of the ILP problem. In fact, it is worth noting that the formulation present in
[26], which is not tight at all, was built starting from a pretty tight formulation proposed by
Bertsimas and Stock Patterson (see [8]). The formulation presented in [8], however, unlike the
one present in [26], does not include this type of variables (note that the concept of airspace
configuration itself is not present in [8]). It could therefore be precisely these variables, and
the non-trivial challenge of connecting them with the others, that make it difficult to find a
tight formulation regardless, as our simulations show, of how often it is possible to change the
airspace configuration.

Finally, it might also be interesting to study what would happen if we introduced some vari-
ations in the model. One possibility could be, for example, to see what would happen if we
added the option of re-routing a flight, reformulating the objective function in such a way as
to penalize the choice of alternative routes compared to the scheduled ones.
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Appendix

Herewe report theMATLABfile flights.mused to generate the spatial trajectories of the flights
present in the instances on which we carried out our computational experiments. We also re-
port the atfm.dat, atfm.mod and atfm.run files associated with Flights 10 as examples of the
.dat, .mod and .run files used to implement the model (described through our new formula-
tion) in AMPL.

flights.m

1 %%%%% GENERATION OF SPATIAL TRAJECTIORIES FOR FLIGHTS
2

3 % GENERATION OF THE AIRSPACE, WHICH CAN BE SEEN AS A WEIGHTED UNDIRECTED GRAPH
4 % Note that the generation of weights is random
5 s = ["DUB" "CPH" "LHR" "AMS" "CDG" "FRA" "ZRH" "VIE" "a" "a" "a" "b" "b" "b" "b" "c"

"c" "c" "c" "d" "d" "e" "e" "e" "f" "f" "f" "f" "g" "g" "g" "g" "h" "h" "i" "i"
"i" "j" "j" "j" "j" "k" "k" "k" "k" "l" "l" "m" "n" "o"];

6 t = ["a" "d" "e" "g" "j" "k" "o" "p" "b" "e" "f" "c" "e" "f" "g" "d" "f" "g" "h" "g"
"h" "f" "i" "j" "g" "i" "j" "k" "h" "j" "k" "l" "k" "l" "j" "m" "n" "k" "m" "n"
"o" "l" "n" "o" "p" "o" "p" "n" "o" "p"];

7 rng('shuffle');
8 weights = rand(1,length(s));
9 G = graph(s,t,weights);
10 % plot(G,'EdgeLabel',G.Edges.Weight)
11 % Removing '%' from the previous line it is possible to plot the graph
12

13 % AIRPORTS AND MAIN AIRPORTS
14 AIRPORTS = ["DUB" "CPH" "LHR" "AMS" "CDG" "FRA" "ZRH" "VIE"];
15 PRIMARY = ["DUB" "LHR" "AMS" "CDG" "FRA"];
16

17 F = 256; % Number of flights
18

19 % GENERATION OF SPATIAL TRAJECTIORIES FOR THE FIRST 9 FLIGHTS
20 for i = 1:9
21 d = PRIMARY(randi([1 length(PRIMARY)]));
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22 a = PRIMARY(randi([1 length(PRIMARY)]));
23 while a == d
24 a = PRIMARY(randi([1 length(PRIMARY)]));
25 end
26 P = shortestpath(G,d,a);
27 fprintf('set PATHS[f00%d] = ',i);
28 for j = 1:length(P)
29 fprintf('%s ',P(j));
30 end
31 fprintf(';\n')
32 end
33

34 % GENERATION OF SPATIAL TRAJECTIORIES FOR FLIGHTS 10 TO 99
35 for i = 10:99
36 d = PRIMARY(randi([1 length(PRIMARY)]));
37 a = PRIMARY(randi([1 length(PRIMARY)]));
38 while a == d
39 a = PRIMARY(randi([1 length(PRIMARY)]));
40 end
41 P = shortestpath(G,d,a);
42 fprintf('set PATHS[f0%d] = ',i);
43 for j = 1:length(P)
44 fprintf('%s ',P(j));
45 end
46 fprintf(';\n')
47 end
48

49 % GENERATION OF SPATIAL TRAJECTORIES FOR FLIGHTS 100 TO 128
50 for i = 100:128
51 d = PRIMARY(randi([1 length(PRIMARY)]));
52 a = PRIMARY(randi([1 length(PRIMARY)]));
53 while a == d
54 a = PRIMARY(randi([1 length(PRIMARY)]));
55 end
56 P = shortestpath(G,d,a);
57 fprintf('set PATHS[f%d] = ',i);
58 for j = 1:length(P)
59 fprintf('%s ',P(j));
60 end
61 fprintf(';\n')
62 end
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63

64 % GENERATION OF SPATIAL TRAJECTORIES FOR FLIGHTS 129 TO 256
65 for i = 129:F
66 d = AIRPORTS(randi([1 length(AIRPORTS)]));
67 a = AIRPORTS(randi([1 length(AIRPORTS)]));
68 while a == d
69 a = AIRPORTS(randi([1 length(AIRPORTS)]));
70 end
71 P = shortestpath(G,d,a);
72 fprintf('set PATHS[f%d] = ',i);
73 for j = 1:length(P)
74 fprintf('%s ',P(j));
75 end
76 fprintf(';\n')
77 end
78

79 % PRINT FLIGHT NAMES ON THE SCREEN
80 for i = 1:9
81 fprintf('f00%d ',i);
82 end
83 for i = 10:99
84 fprintf('f0%d ',i);
85 end
86 for i = 100:F
87 fprintf('f%d ',i);
88 end
89 fprintf(';\n');

atfm.dat

1 set MAPS := M01 M02 M03 ; # LIST OF CONFIGURATIONS
2 set FLIGHTS := f001 f002 f003 f004 f005 f006 f007 f008 f009 f010 f011 f012 f013 f014

f015 f016 f017 f018 f019 f020 f021 f022 f023 f024 f025 f026 f027 f028 f029 f030
f031 f032 f033 f034 f035 f036 f037 f038 f039 f040 f041 f042 f043 f044 f045 f046
f047 f048 f049 f050 f051 f052 f053 f054 f055 f056 f057 f058 f059 f060 f061 f062
f063 f064 f065 f066 f067 f068 f069 f070 f071 f072 f073 f074 f075 f076 f077 f078
f079 f080 f081 f082 f083 f084 f085 f086 f087 f088 f089 f090 f091 f092 f093 f094
f095 f096 f097 f098 f099 f100 f101 f102 f103 f104 f105 f106 f107 f108 f109 f110
f111 f112 f113 f114 f115 f116 f117 f118 f119 f120 f121 f122 f123 f124 f125 f126
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f127 f128 f129 f130 f131 f132 f133 f134 f135 f136 f137 f138 f139 f140 f141 f142
f143 f144 f145 f146 f147 f148 f149 f150 f151 f152 f153 f154 f155 f156 f157 f158
f159 f160 f161 f162 f163 f164 f165 f166 f167 f168 f169 f170 f171 f172 f173 f174
f175 f176 f177 f178 f179 f180 f181 f182 f183 f184 f185 f186 f187 f188 f189 f190
f191 f192 f193 f194 f195 f196 f197 f198 f199 f200 f201 f202 f203 f204 f205 f206
f207 f208 f209 f210 f211 f212 f213 f214 f215 f216 f217 f218 f219 f220 f221 f222
f223 f224 f225 f226 f227 f228 f229 f230 f231 f232 f233 f234 f235 f236 f237 f238
f239 f240 f241 f242 f243 f244 f245 f246 f247 f248 f249 f250 f251 f252 f253 f254
f255 f256 ; # SET OF FLIGHTS

3 set AIRPORTS := DUB CPH LHR AMS CDG FRA ZRH VIE ; # SET OF AIRPORTS
4 set ELEMENTARY := a b c d e f g h i j k l m n o p ; # SET OF ELEMENTARY SECTORS
5 set COLLAPSED := C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 ; #

SET OF COLLAPSED SECTORS
6

7 # SETS OF COLLAPSED SECTORS BELONGING TO THE VARIOUS CONFIGURATIONS
8 set PARTITIONS[M01] := C01 C02 C03 C04 C05 C06 C07 C08 ;
9 set PARTITIONS[M02] := C09 C10 C11 C12 C13 C14 C15 C16 ;
10 set PARTITIONS[M03] := C01 C02 C07 C08 C10 C12 C13 C15 ;
11

12 # SETS OF ELEMENTARY SECTORS WHICH FORM THE VARIOUS COLLAPSED SECTORS
13 set BELONGING[C01] := a e ;
14 set BELONGING[C02] := b f ;
15 set BELONGING[C03] := c g ;
16 set BELONGING[C04] := d h ;
17 set BELONGING[C05] := i m ;
18 set BELONGING[C06] := j n ;
19 set BELONGING[C07] := k o ;
20 set BELONGING[C08] := l p ;
21 set BELONGING[C09] := a b ;
22 set BELONGING[C10] := c d ;
23 set BELONGING[C11] := e f ;
24 set BELONGING[C12] := g h ;
25 set BELONGING[C13] := i j ;
26 set BELONGING[C14] := k l ;
27 set BELONGING[C15] := m n ;
28 set BELONGING[C16] := o p ;
29

30 set TIMES := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 ; # SET OF TIME PERIODS

31

32 # SPATIAL TRAJECTORIES OF THE VARIOUS FLIGHTS
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33 set PATHS[f001] = CDG j g k f e LHR ;
34 set PATHS[f002] = LHR e f k g j CDG ;
35 set PATHS[f003] = AMS g c b a DUB ;
36 set PATHS[f004] = CDG j g k FRA ;
37 set PATHS[f005] = CDG j g AMS ;
38 set PATHS[f006] = CDG j g k f e LHR ;
39 set PATHS[f007] = AMS g k f e LHR ;
40 set PATHS[f008] = DUB a b c g j CDG ;
41 set PATHS[f009] = AMS g k FRA ;
42 set PATHS[f010] = LHR e f k g AMS ;
43 set PATHS[f011] = FRA k f a DUB ;
44 set PATHS[f012] = FRA k g j CDG ;
45 set PATHS[f013] = DUB a b c g j CDG ;
46 set PATHS[f014] = LHR e f a DUB ;
47 set PATHS[f015] = FRA k f e LHR ;
48 set PATHS[f016] = CDG j g c b a DUB ;
49 set PATHS[f017] = LHR e f a DUB ;
50 set PATHS[f018] = LHR e f k g j CDG ;
51 set PATHS[f019] = CDG j g k f e LHR ;
52 set PATHS[f020] = FRA k g AMS ;
53 set PATHS[f021] = DUB a f k FRA ;
54 set PATHS[f022] = CDG j g AMS ;
55 set PATHS[f023] = AMS g j CDG ;
56 set PATHS[f024] = AMS g k f e LHR ;
57 set PATHS[f025] = CDG j g AMS ;
58 set PATHS[f026] = DUB a f k FRA ;
59 set PATHS[f027] = CDG j g AMS ;
60 set PATHS[f028] = DUB a b c g j CDG ;
61 set PATHS[f029] = DUB a b c g AMS ;
62 set PATHS[f030] = FRA k g AMS ;
63 set PATHS[f031] = LHR e f a DUB ;
64 set PATHS[f032] = AMS g c b a DUB ;
65 set PATHS[f033] = DUB a f e LHR ;
66 set PATHS[f034] = DUB a b c g j CDG ;
67 set PATHS[f035] = DUB a f k FRA ;
68 set PATHS[f036] = FRA k f e LHR ;
69 set PATHS[f037] = AMS g k FRA ;
70 set PATHS[f038] = FRA k g j CDG ;
71 set PATHS[f039] = FRA k g j CDG ;
72 set PATHS[f040] = AMS g j CDG ;
73 set PATHS[f041] = FRA k f e LHR ;
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74 set PATHS[f042] = CDG j g c b a DUB ;
75 set PATHS[f043] = CDG j g k f e LHR ;
76 set PATHS[f044] = FRA k g AMS ;
77 set PATHS[f045] = AMS g c b a DUB ;
78 set PATHS[f046] = AMS g k FRA ;
79 set PATHS[f047] = FRA k f e LHR ;
80 set PATHS[f048] = DUB a b c g j CDG ;
81 set PATHS[f049] = FRA k g j CDG ;
82 set PATHS[f050] = CDG j g k f e LHR ;
83 set PATHS[f051] = CDG j g k FRA ;
84 set PATHS[f052] = CDG j g k f e LHR ;
85 set PATHS[f053] = DUB a b c g j CDG ;
86 set PATHS[f054] = LHR e f k g AMS ;
87 set PATHS[f055] = AMS g k FRA ;
88 set PATHS[f056] = LHR e f k FRA ;
89 set PATHS[f057] = DUB a b c g j CDG ;
90 set PATHS[f058] = LHR e f k g j CDG ;
91 set PATHS[f059] = LHR e f a DUB ;
92 set PATHS[f060] = DUB a f e LHR ;
93 set PATHS[f061] = AMS g c b a DUB ;
94 set PATHS[f062] = LHR e f a DUB ;
95 set PATHS[f063] = LHR e f k g AMS ;
96 set PATHS[f064] = AMS g c b a DUB ;
97 set PATHS[f065] = AMS g j CDG ;
98 set PATHS[f066] = AMS g k f e LHR ;
99 set PATHS[f067] = LHR e f a DUB ;
100 set PATHS[f068] = CDG j g k f e LHR ;
101 set PATHS[f069] = DUB a b c g AMS ;
102 set PATHS[f070] = LHR e f k g AMS ;
103 set PATHS[f071] = DUB a b c g AMS ;
104 set PATHS[f072] = DUB a b c g AMS ;
105 set PATHS[f073] = CDG j g AMS ;
106 set PATHS[f074] = AMS g k f e LHR ;
107 set PATHS[f075] = DUB a b c g AMS ;
108 set PATHS[f076] = LHR e f k g AMS ;
109 set PATHS[f077] = AMS g k f e LHR ;
110 set PATHS[f078] = CDG j g c b a DUB ;
111 set PATHS[f079] = FRA k f a DUB ;
112 set PATHS[f080] = CDG j g k f e LHR ;
113 set PATHS[f081] = CDG j g c b a DUB ;
114 set PATHS[f082] = DUB a f e LHR ;
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115 set PATHS[f083] = LHR e f k g AMS ;
116 set PATHS[f084] = CDG j g AMS ;
117 set PATHS[f085] = DUB a f k FRA ;
118 set PATHS[f086] = CDG j g k FRA ;
119 set PATHS[f087] = AMS g k f e LHR ;
120 set PATHS[f088] = AMS g j CDG ;
121 set PATHS[f089] = DUB a f k FRA ;
122 set PATHS[f090] = FRA k g j CDG ;
123 set PATHS[f091] = DUB a f e LHR ;
124 set PATHS[f092] = LHR e f k g j CDG ;
125 set PATHS[f093] = AMS g j CDG ;
126 set PATHS[f094] = FRA k f a DUB ;
127 set PATHS[f095] = FRA k g AMS ;
128 set PATHS[f096] = AMS g c b a DUB ;
129 set PATHS[f097] = LHR e f k g j CDG ;
130 set PATHS[f098] = FRA k f a DUB ;
131 set PATHS[f099] = CDG j g k f e LHR ;
132 set PATHS[f100] = FRA k g AMS ;
133 set PATHS[f101] = LHR e f k g j CDG ;
134 set PATHS[f102] = FRA k g j CDG ;
135 set PATHS[f103] = FRA k g AMS ;
136 set PATHS[f104] = CDG j g k f e LHR ;
137 set PATHS[f105] = CDG j g k FRA ;
138 set PATHS[f106] = AMS g j CDG ;
139 set PATHS[f107] = AMS g j CDG ;
140 set PATHS[f108] = DUB a b c g AMS ;
141 set PATHS[f109] = DUB a b c g AMS ;
142 set PATHS[f110] = LHR e f k FRA ;
143 set PATHS[f111] = AMS g j CDG ;
144 set PATHS[f112] = FRA k f a DUB ;
145 set PATHS[f113] = CDG j g k f e LHR ;
146 set PATHS[f114] = CDG j g AMS ;
147 set PATHS[f115] = FRA k g AMS ;
148 set PATHS[f116] = FRA k g j CDG ;
149 set PATHS[f117] = CDG j g AMS ;
150 set PATHS[f118] = CDG j g AMS ;
151 set PATHS[f119] = LHR e f k g j CDG ;
152 set PATHS[f120] = LHR e f k g AMS ;
153 set PATHS[f121] = LHR e f a DUB ;
154 set PATHS[f122] = AMS g j CDG ;
155 set PATHS[f123] = FRA k f e LHR ;
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156 set PATHS[f124] = FRA k f a DUB ;
157 set PATHS[f125] = FRA k g AMS ;
158 set PATHS[f126] = FRA k f e LHR ;
159 set PATHS[f127] = AMS g k f e LHR ;
160 set PATHS[f128] = AMS g c b a DUB ;
161 set PATHS[f129] = AMS g c b a DUB ;
162 set PATHS[f130] = FRA k f e LHR ;
163 set PATHS[f131] = LHR e f k g AMS ;
164 set PATHS[f132] = DUB a b c g j CDG ;
165 set PATHS[f133] = CPH d h g j CDG ;
166 set PATHS[f134] = ZRH o p VIE ;
167 set PATHS[f135] = DUB a b c g j CDG ;
168 set PATHS[f136] = VIE p l g h d CPH ;
169 set PATHS[f137] = CPH d h g k FRA ;
170 set PATHS[f138] = FRA k g j CDG ;
171 set PATHS[f139] = DUB a b c g l o ZRH ;
172 set PATHS[f140] = AMS g j CDG ;
173 set PATHS[f141] = CPH d h c b a DUB ;
174 set PATHS[f142] = CDG j g h d CPH ;
175 set PATHS[f143] = CDG j g l p VIE ;
176 set PATHS[f144] = LHR e f k g j CDG ;
177 set PATHS[f145] = DUB a b c g j CDG ;
178 set PATHS[f146] = VIE p k f e LHR ;
179 set PATHS[f147] = VIE p o ZRH ;
180 set PATHS[f148] = VIE p k f a DUB ;
181 set PATHS[f149] = VIE p l g AMS ;
182 set PATHS[f150] = DUB a f k FRA ;
183 set PATHS[f151] = ZRH o l g h d CPH ;
184 set PATHS[f152] = FRA k g AMS ;
185 set PATHS[f153] = AMS g k f e LHR ;
186 set PATHS[f154] = DUB a b c g j CDG ;
187 set PATHS[f155] = FRA k g AMS ;
188 set PATHS[f156] = CPH d h g j CDG ;
189 set PATHS[f157] = CDG j g k FRA ;
190 set PATHS[f158] = FRA k o ZRH ;
191 set PATHS[f159] = VIE p o ZRH ;
192 set PATHS[f160] = DUB a b c g AMS ;
193 set PATHS[f161] = FRA k f e LHR ;
194 set PATHS[f162] = FRA k g j CDG ;
195 set PATHS[f163] = AMS g k FRA ;
196 set PATHS[f164] = DUB a b c g l o ZRH ;
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197 set PATHS[f165] = FRA k g AMS ;
198 set PATHS[f166] = DUB a f k p VIE ;
199 set PATHS[f167] = LHR e f k g h d CPH ;
200 set PATHS[f168] = LHR e f k p VIE ;
201 set PATHS[f169] = ZRH o p VIE ;
202 set PATHS[f170] = VIE p o ZRH ;
203 set PATHS[f171] = VIE p l g h d CPH ;
204 set PATHS[f172] = LHR e f k FRA ;
205 set PATHS[f173] = ZRH o l g AMS ;
206 set PATHS[f174] = CDG j g AMS ;
207 set PATHS[f175] = FRA k g h d CPH ;
208 set PATHS[f176] = LHR e f k o ZRH ;
209 set PATHS[f177] = LHR e f k p VIE ;
210 set PATHS[f178] = CDG j o ZRH ;
211 set PATHS[f179] = ZRH o k FRA ;
212 set PATHS[f180] = VIE p o ZRH ;
213 set PATHS[f181] = FRA k f e LHR ;
214 set PATHS[f182] = DUB a b c g l o ZRH ;
215 set PATHS[f183] = ZRH o k f e LHR ;
216 set PATHS[f184] = LHR e f k FRA ;
217 set PATHS[f185] = CPH d h c b a DUB ;
218 set PATHS[f186] = DUB a f e LHR ;
219 set PATHS[f187] = ZRH o l g h d CPH ;
220 set PATHS[f188] = ZRH o j CDG ;
221 set PATHS[f189] = CPH d h g j CDG ;
222 set PATHS[f190] = ZRH o l g AMS ;
223 set PATHS[f191] = CPH d h g k f e LHR ;
224 set PATHS[f192] = CPH d h g j CDG ;
225 set PATHS[f193] = DUB a b c g AMS ;
226 set PATHS[f194] = VIE p o ZRH ;
227 set PATHS[f195] = VIE p o ZRH ;
228 set PATHS[f196] = FRA k f e LHR ;
229 set PATHS[f197] = LHR e f k g AMS ;
230 set PATHS[f198] = CDG j g k f e LHR ;
231 set PATHS[f199] = LHR e f k g h d CPH ;
232 set PATHS[f200] = AMS g l p VIE ;
233 set PATHS[f201] = VIE p k f a DUB ;
234 set PATHS[f202] = CDG j g c b a DUB ;
235 set PATHS[f203] = VIE p o ZRH ;
236 set PATHS[f204] = DUB a b c g l o ZRH ;
237 set PATHS[f205] = ZRH o k FRA ;

113



238 set PATHS[f206] = DUB a b c h d CPH ;
239 set PATHS[f207] = FRA k o ZRH ;
240 set PATHS[f208] = LHR e f k g AMS ;
241 set PATHS[f209] = CPH d h c b a DUB ;
242 set PATHS[f210] = CDG j g h d CPH ;
243 set PATHS[f211] = FRA k g h d CPH ;
244 set PATHS[f212] = CDG j o ZRH ;
245 set PATHS[f213] = DUB a f e LHR ;
246 set PATHS[f214] = ZRH o k f e LHR ;
247 set PATHS[f215] = CDG j g c b a DUB ;
248 set PATHS[f216] = VIE p l g AMS ;
249 set PATHS[f217] = VIE p l g h d CPH ;
250 set PATHS[f218] = VIE p l g AMS ;
251 set PATHS[f219] = AMS g c b a DUB ;
252 set PATHS[f220] = ZRH o k f e LHR ;
253 set PATHS[f221] = AMS g l p VIE ;
254 set PATHS[f222] = CDG j g AMS ;
255 set PATHS[f223] = CDG j g c b a DUB ;
256 set PATHS[f224] = CDG j o ZRH ;
257 set PATHS[f225] = CPH d h g l p VIE ;
258 set PATHS[f226] = ZRH o l g h d CPH ;
259 set PATHS[f227] = VIE p l g h d CPH ;
260 set PATHS[f228] = VIE p o ZRH ;
261 set PATHS[f229] = FRA k g j CDG ;
262 set PATHS[f230] = LHR e f k g AMS ;
263 set PATHS[f231] = FRA k f e LHR ;
264 set PATHS[f232] = CPH d h g l p VIE ;
265 set PATHS[f233] = DUB a f k p VIE ;
266 set PATHS[f234] = AMS g l p VIE ;
267 set PATHS[f235] = VIE p l g j CDG ;
268 set PATHS[f236] = LHR e f k o ZRH ;
269 set PATHS[f237] = CPH d h c b a DUB ;
270 set PATHS[f238] = FRA k g j CDG ;
271 set PATHS[f239] = LHR e f k o ZRH ;
272 set PATHS[f240] = ZRH o k FRA ;
273 set PATHS[f241] = AMS g j CDG ;
274 set PATHS[f242] = AMS g c b a DUB ;
275 set PATHS[f243] = AMS g c b a DUB ;
276 set PATHS[f244] = ZRH o l g c b a DUB ;
277 set PATHS[f245] = CDG j o ZRH ;
278 set PATHS[f246] = CDG j g c b a DUB ;
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279 set PATHS[f247] = DUB a b c g l o ZRH ;
280 set PATHS[f248] = FRA k g h d CPH ;
281 set PATHS[f249] = LHR e f a DUB ;
282 set PATHS[f250] = DUB a f k p VIE ;
283 set PATHS[f251] = CPH d h g j CDG ;
284 set PATHS[f252] = LHR e f k g j CDG ;
285 set PATHS[f253] = AMS g k FRA ;
286 set PATHS[f254] = DUB a f e LHR ;
287 set PATHS[f255] = VIE p l g AMS ;
288 set PATHS[f256] = AMS g l o ZRH ;
289

290 param D default 8 ; # DEPARTURE CAPACITY OF ANY AIRPORT AT ANY TIME
291 param A default 8 ; # ARRIVAL CAPACITY OF ANY AIRPORT AT ANY TIME
292 param cg default 1 ; # COST OF HOLDING ANY FLIGHT ON THE GROUND FOR ONE UNIT OF TIME
293 param ca default 3 ; # COST OF HOLDING ANY FLIGHT IN THE AIR FOR ONE UNIT OF TIME
294

295 # FOR EACH FLIGHT WE RANDOMLY GENERATE THE SCHEDULED NUMBER (> 0) OF TIME UNITS IT
MUST SPEND IN EACH ELEMENTARY SECTOR INCLUDED IN ITS PATH (THIS NUMBER IS 0 IN
THE CASE OF THE DEPARTURE AIRPORT). IN PARTICULAR, WE WILL MAKE SURE THAT IF A
FLIGHT HAS TO CROSS AN ENTIRE ELEMENTARY SECTOR IT WILL TAKE LONGER THAN IF THE
FLIGHT LANDS AT AN AIRPORT CONTAINED IN AN ELEMENTARY SECTOR

296 for {f in FLIGHTS} {
297 let l[f,first(PATHS[f])] := 0; # CASE OF THE DEPARTURE AIRPORT
298 for {j in PATHS[f]: ord0(j,PATHS[f]) > 1 and ord0(j,PATHS[f]) < card(PATHS[f])} {
299 if (prev(j,PATHS[f]) in ELEMENTARY and next(j,PATHS[f]) in ELEMENTARY) then {
300 let l[f,j] := floor(Uniform(3, 5));
301 }
302 else {
303 let l[f,j] := floor(Uniform(1, 3));
304 }
305 }
306 }
307

308 # FOR EACH FLIGHT WE: RANDOMLY GENERATE THE MAXIMUM DELAY ALLOWED IN ARRIVAL;
CALCULATE (USING THE VARIOUS l[f,j]) ITS SCHEDULED DURATION; RANDOMLY GENERATE
ITS SCHEDULED DEPARTURE AND ARRIVAL TIMES

309 for {f in FLIGHTS} {
310 let delay[f] := floor(Uniform(0, 3));
311 let duration[f] := 0;
312 for {j in PATHS[f]: ord0(j,PATHS[f]) > 1 and ord0(j,PATHS[f]) < card(PATHS[f])} {
313 let duration[f] := duration[f] + l[f,j];
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314 }
315 let d[f] := floor(Uniform(first(TIMES), last(TIMES) - delay[f] - duration[f] + 1))

;
316 let r[f] := d[f] + duration[f];
317 }
318

319 # FOR EACH FLIGHT AND EVERY ELEMENTARY SECTOR ON ITS PATH WE COMPUTE THE SET OF
FEASIBLE TIMES FOR THAT FLIGHT TO ARRIVE IN THAT ELEMENTARY SECTOR

320 for {f in FLIGHTS} {
321 let tmin[f,first(PATHS[f])] := d[f];
322 let tmax[f,first(PATHS[f])] := tmin[f,first(PATHS[f])] + delay[f];
323 for {j in PATHS[f] : ord0(j,PATHS[f]) > 1} {
324 let tmin[f,j] := tmin[f,prev(j,PATHS[f])] + l[f,prev(j,PATHS[f])];
325 let tmax[f,j] := tmin[f,j] + delay[f];
326 }
327 }

atfm.mod

1 set MAPS ordered; # SET OF CONFIGURATIONS
2 set FLIGHTS; # SET OF FLIGHTS
3 set AIRPORTS; # SET OF AIRPORTS
4 set ELEMENTARY; # SET OF ELEMENTARY SECTORS
5 set COLLAPSED; # SET OF COLLAPSED SECTORS
6 set PARTITIONS {MAPS}; # SETS OF COLLAPSED SECTORS BELONGING TO THE VARIOUS

CONFIGURATIONS
7 set BELONGING {COLLAPSED} ordered; # SETS OF ELEMENTARY SECTORS WHICH FORM THE

VARIOUS COLLAPSED SECTORS
8 set TIMES ordered; # SET OF TIME PERIODS
9 set PATHS {FLIGHTS} ordered; # SPATIAL TRAJECTORIES OF THE VARIOUS FLIGHTS
10 param D {AIRPORTS, TIMES}; # D[k,t] = DEPARTURE CAPACITY OF AIRPORT k AT TIME t
11 param A {AIRPORTS, TIMES}; # A[k,t] = ARRIVAL CAPACITY OF AIRPORT k AT TIME t
12 param S {COLLAPSED, TIMES}; # S[h,t] = CAPACITY OF COLLAPSED SECTOR h AT TIME t
13 param l {f in FLIGHTS, j in PATHS[f]: ord0(j,PATHS[f]) < card(PATHS[f])}; # l[f,j] =

SCHEDULED NUMBER OF TIME UNITS THAT FLIGHT f MUST SPEND IN j
14 param delay {FLIGHTS}; # delay[f] = MAXIMUM DELAY IN ARRIVAL ALLOWED FOR FLIGHT f
15 param d {FLIGHTS}; # d[f] = SCHEDULED DEPARTURE TIME OF FLIGHT f
16 param r {FLIGHTS}; # r[f] = SCHEDULED ARRIVAL TIME OF FLIGHT f
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17 param duration {FLIGHTS}; # duration[f] = SCHEDULED DURATION OF FLIGHT f = r[f] - d[
f]

18 param cg {FLIGHTS}; # cg[f] = COST OF HOLDING FLIGHT f ON THE GROUND FOR ONE UNIT
OF TIME

19 param ca {FLIGHTS}; # ca[f] = COST OF HOLDING FLIGHT f IN THE AIR FOR ONE UNIT OF
TIME

20 param tmin {f in FLIGHTS, PATHS[f]}; # tmin[f,j] = FIRST FEASIBLE TIME PERIOD FOR
FLIGHT f TO ARRIVE IN (OR TAKE OFF FROM/LAND AT) j

21 param tmax {f in FLIGHTS, PATHS[f]}; # tmax[f,j] = LAST FEASIBLE TIME PERIOD FOR
FLIGHT f TO ARRIVE IN (OR TAKE OFF FROM/LAND AT) j

22 param C {COLLAPSED, TIMES}; # C[h,t] = THEORETICAL MAXIMUM NUMBER OF FLIGHTS THAT
COULD BE IN COLLAPSED SECTOR h AT TIME t

23 param tau > 0 integer; # MINIMUM NUMBER OF CONSECUTIVE TIME PERIODS IN WHICH THE (
TEMPORARILY) CHOSEN CONFIGURATION MUST REMAIN ACTIVE BEFORE IT CAN BE CHANGED

24 param counter_w; # COUNTER OF VARIABLES w
25 param counter_y; # COUNTER OF VARIABLES y
26 param counter_w_int; # COUNTER OF VARIABLES w THAT ARE INTEGER
27 param counter_w_frac; # COUNTER OF VARIABLES w THAT ARE FRACTIONAL
28 param counter_y_int; # COUNTER OF VARIABLES y THAT ARE INTEGER
29 param counter_y_frac; # COUNTER OF VARIABLES y THAT ARE FRACTIONAL
30 param number_cover_inequalities {m in MAPS, h in PARTITIONS[m], t in TIMES} integer

default 0; # number_cover_inequalities[m,h,t] = NUMBER OF COVER INEQUALITIES
FOUND (USING THE PROCEDURE DESCRIBED IN ALGORITHM 5.1) TREATING THE
CORRESPONDING CONSTRAINT (5.16) AS IF IT WAS A REAL KNAPSACK-TYPE CONSTRAINT

31

32 # PARAMETERS NECESSARY TO STORE THE COVER INEQUALITIES FOUND USING ALGORITHM 5.1
33 param cover_inequalities1 {m in MAPS, h in PARTITIONS[m], j in BELONGING[h], t in

TIMES, 1..number_cover_inequalities[m,h,t], f in FLIGHTS: ord0(j,PATHS[f]) > 1
and t >= tmin[f,j] and t <= tmax[f,next(j,PATHS[f])]-1} integer default 0;

34 param cover_inequalities2 {m in MAPS, h in PARTITIONS[m], t in TIMES, 1..
number_cover_inequalities[m,h,t]} integer default 0;

35

36 # PARAMETERS NECESSARY TO STORE MOMENTARILY THE VARIOUS SOLUTIONS FOUND AT STEP 1
OF ALGORITHM 5.1

37 param wbar {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,
j]} default 0;

38 param ybar {m in MAPS, t in TIMES} default 0;
39

40 param flag integer default 0; # PARAMETER USED TO UNDERSTAND WHEN TO END THE SEARCH
FOR COVER INEQUALITIES

41 param flag1 integer default 0; # NUMBER OF TIMES STEP 3 OF ALGORITHM 5.1 IS EXECUTED
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42 param flag2 integer default 0; # NUMBER OF PROBLEMS OF THE FORM (3.5) SOLVED USING
ALGORITHM 5.1

43 param flag3 integer default 0; # NUMBER OF CONSTRAINTS (5.26) = TOTAL NUMBER OF
COVER INEQUALITIES FOUND USING ALGORITHM 5.1

44 var w {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j]}
binary; # VARIABLES w

45 var y {m in MAPS, t in TIMES} binary; # VARIABLES y
46 var g {f in FLIGHTS}; # g[f] = TOTAL NUMBER OF TIME UNITS THAT FLIGHT f IS HELD ON

THE GROUND (THROUGH GROUND-HOLDING POLICY)
47 var a {f in FLIGHTS}; # a[f] = TOTAL NUMBER OF TIME UNITS THAT FLIGHT f IS HELD IN

THE AIR (THROUGH AIRBORNE-HOLDING AND/OR SPEED CONTROL POLICIES)
48

49 # VARIABLES USED IN SOLVING THE VARIOUS PROBLEMS OF THE FORM (3.5) SOLVED USING
ALGORITHM 5.1

50 var z {j in ELEMENTARY, t in TIMES, f in FLIGHTS: ord0(j,PATHS[f]) > 1 and t >= tmin
[f,j] and t <= tmax[f,next(j,PATHS[f])]-1} binary;

51 var x {m in MAPS, t in TIMES} binary;
52

53 # OBJECTIVE FUNCTION
54 minimize fun :
55 sum{f in FLIGHTS}
56 ((cg[f]-ca[f])*(sum{t in TIMES : t >= tmin[f,first(PATHS[f])] and t <= tmax[f,

first(PATHS[f])]} (t*(w[f,first(PATHS[f]),t]-(if t-1 >= tmin[f,first(PATHS[f])]
then w[f,first(PATHS[f]),t-1] else 0))))+ca[f]*(sum{t in TIMES : t >= tmin[f,
last(PATHS[f])] and t <= tmax[f,last(PATHS[f])]} (t*(w[f,last(PATHS[f]),t]-(if t
-1 >= tmin[f,last(PATHS[f])] then w[f,last(PATHS[f]),t-1] else 0))))+(ca[f]-cg[f
])*d[f]-ca[f]*r[f]);

57

58 # CONSTRAINTS (4.1)
59 subject to cons1 {k in AIRPORTS, t in TIMES}:
60 sum {f in FLIGHTS: k = first(PATHS[f])} ((if t >= tmin[f,k] and t <= tmax[f,k]

then w[f,k,t] else if t <= tmin[f,k]-1 then 0 else 1)-(if t-1 >= tmin[f,k] and t
-1 <= tmax[f,k] then w[f,k,t-1] else if t-1 <= tmin[f,k]-1 then 0 else 1)) <= D[
k,t];

61

62 # CONSTRAINTS (4.2)
63 subject to cons2 {k in AIRPORTS, t in TIMES}:
64 sum {f in FLIGHTS: k = last(PATHS[f])} ((if t >= tmin[f,k] and t <= tmax[f,k]

then w[f,k,t] else if t <= tmin[f,k]-1 then 0 else 1)-(if t-1 >= tmin[f,k] and t
-1 <= tmax[f,k] then w[f,k,t-1] else if t-1 <= tmin[f,k]-1 then 0 else 1)) <= A[
k,t];
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65

66 # CONSTRAINTS (5.16)
67 subject to cons3 {m in MAPS, h in PARTITIONS[m], t in TIMES}:
68 sum {j in BELONGING[h]} sum {f in FLIGHTS: ord0(j,PATHS[f]) > 1} ((if t >= tmin[f,

j] and t <= tmax[f,j] then w[f,j,t] else if t <= tmin[f,j]-1 then 0 else 1)-(if
t >= tmin[f,next(j,PATHS[f])] and t <= tmax[f,next(j,PATHS[f])] then w[f,next(j,
PATHS[f]),t] else if t <= tmin[f,next(j,PATHS[f])]-1 then 0 else 1)) <= S[h,t]+C
[h,t]*(1-y[m,t]);

69

70 # CONSTRAINTS (5.11)
71 subject to cons4 {j in ELEMENTARY, t in TIMES}:
72 sum {f in FLIGHTS: ord0(j,PATHS[f]) > 1} ((if t >= tmin[f,j] and t <= tmax[f,j]

then w[f,j,t] else if t <= tmin[f,j]-1 then 0 else 1)-(if t >= tmin[f,next(j,
PATHS[f])] and t <= tmax[f,next(j,PATHS[f])] then w[f,next(j,PATHS[f]),t] else
if t <= tmin[f,next(j,PATHS[f])]-1 then 0 else 1)) <= max {h in COLLAPSED: ord0(
j,BELONGING[h]) >= 1} S[h,t];

73

74 # CONSTRAINTS (4.4)
75 subject to cons5 {f in FLIGHTS, j in PATHS[f], t in TIMES: ord0(j,PATHS[f]) >= 1

and ord0(j,PATHS[f]) < card(PATHS[f]) and t >= tmin[f,j] and t <= tmax[f,j]}:
76 ((if t+l[f,j] >= tmin[f,next(j,PATHS[f])] and t+l[f,j] <= tmax[f,next(j,PATHS[f])]

then w[f,next(j,PATHS[f]),t+l[f,j]] else if t+l[f,j] <= tmin[f,next(j,PATHS[f])
]-1 then 0 else 1)-w[f,j,t]) <= 0;

77

78 # CONSTRAINTS (4.5)
79 subject to cons6 {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <=

tmax[f,j]}:
80 (w[f,j,t]-(if t-1 >= tmin[f,j] then w[f,j,t-1] else 0)) >= 0;
81

82 # CONSTRAINTS (4.7)
83 subject to cons7 {f in FLIGHTS, j in PATHS[f], t in TIMES: t = tmax[f,j]}:
84 w[f,j,t] = 1;
85

86 # CONSTRAINTS (4.8)
87 subject to cons8 {t in TIMES}:
88 sum{m in MAPS} y[m,t] = 1;
89

90 # CONSTRAINTS (4.9)
91 subject to cons9 {m in MAPS, t in TIMES, u in t+1..min(t+tau-1,last(TIMES))}:
92 (y[m,t]-(if t-1 < first(TIMES) then 0 else y[m,t-1])) <= (if u > last(TIMES) then

0 else y[m,u]);
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93

94 # CONSTRAINTS (5.26) (THESE CONSTRAINTS WILL BE FOUND USING ALGORITHM 5.1)
95 subject to conscover{m in MAPS, h in PARTITIONS[m], t in TIMES, i in 1..

number_cover_inequalities[m,h,t]}:
96 cover_inequalities2[m,h,t,i] * y[m,t] + sum {j in BELONGING[h]} (sum{f in FLIGHTS:

ord0(j,PATHS[f]) > 1 and t >= tmin[f,j] and t <= tmax[f,next(j,PATHS[f])]-1}
(cover_inequalities1[m,h,j,t,i,f] * ((if t <= tmax[f,j] then w[f,j,t] else 1) -
(if t >= tmin[f,next(j,PATHS[f])] then w[f,next(j,PATHS[f]),t] else 0)))) <= -1
+ cover_inequalities2[m,h,t,i] + sum {j in BELONGING[h]} (sum{f in FLIGHTS:
ord0(j,PATHS[f]) > 1 and t >= tmin[f,j] and t <= tmax[f,next(j,PATHS[f])]-1}
cover_inequalities1[m,h,j,t,i,f]);

97

98

99 ### ELEMENTS FOR THE VARIOUS PROBLEMS OF THE FORM (3.5)
100

101 # OBJECTIVE FUNCTIONS FOR THE VARIOUS PROBLEMS OF THE FORM (3.5)
102 minimize sl1{m in MAPS, h in PARTITIONS[m], t in TIMES}: (1 - ybar[m,t]) * x[m,t] +

sum {j in BELONGING[h]} (sum{f in FLIGHTS: ord0(j,PATHS[f]) > 1 and t >= tmin[f,
j] and t <= tmax[f,next(j,PATHS[f])]-1} ((1 - ((if t <= tmax[f,j] then wbar[f,j,
t] else 1) - (if t >= tmin[f,next(j,PATHS[f])] then wbar[f,next(j,PATHS[f]),t]
else 0))) * z[j,t,f]));

103

104 # CONSTRAINTS FOR THE VARIOUS PROBLEMS OF THE FORM (3.5)
105 subject to vsl1{m in MAPS, h in PARTITIONS[m], t in TIMES}:
106 C[h,t] * x[m,t] + sum {j in BELONGING[h]} (sum{f in FLIGHTS: ord0(j,PATHS[f]) > 1

and t >= tmin[f,j] and t <= tmax[f,next(j,PATHS[f])]-1} z[j,t,f]) >= 1 + S[h,t]
+ C[h,t];

atfm.run

1 reset;
2 model atfm.mod;
3 data atfm.dat;
4 option presolve 0;
5 option solver "/home/0/Software/CPLEX/ibm/ILOG/CPLEX_Studio128/cplex/bin/x86-64

_linux/cplexamp";
6 problem master: w, y, g, a, fun, cons1, cons2, cons3, cons4, cons5, cons6, cons7,

cons8, cons9, conscover; # THIS IS THE ATFM PROBLEM WE WANT TO SOLVE
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7 problem slave1 {m in MAPS, h in PARTITIONS[m], t in TIMES}: x, z, sl1[m,h,t], vsl1[m
,h,t]; # THESE ARE THE PROBLEMS OF THE FORM (3.5) THAT APPEAR USING ALGORITHM
5.1

8 # WE WILL SOLVE THE PROBLEM FOR DIFFERENT VALUES OF TAU
9 for {periods in {1,6,12,36}} {
10 printf "\n************************************************************************

********************************************************\n" > atfm.txt;
11 let tau := periods;
12 # WE WILL SOLVE THE PROBLEM FOR DIFFERENT VALUES OF THE CAPACITIES OF THE

COLLAPSED SECTORS
13 for {capacity in {5,10,15,20,25,30,35}} {
14 option master.relax_integrality 1;
15 let counter_w := 0;
16 let counter_y := 0;
17 let counter_w_int := 0;
18 let counter_w_frac := 0;
19 let counter_y_int := 0;
20 let counter_y_frac := 0;
21 for {h in COLLAPSED} {
22 for {t in TIMES} {
23 let S[h,t] := capacity;
24 let C[h,t] := (sum {j in BELONGING[h]} sum {f in FLIGHTS: ord0(j,PATHS[f]) >

1 and tmin[f,j] <= t and t <= tmax[f,next(j,PATHS[f])] - 1} 1) - S[h,t];
25 }
26 }
27 ### BEGINNING OF ALGORITHM 5.1
28 solve master;
29 for {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j]}

{
30 let counter_w := counter_w + 1;
31 if (abs(w[f,j,t]-round(w[f,j,t])) > 1e-6) then {
32 let counter_w_frac := counter_w_frac + 1;
33 }
34 else {
35 let counter_w_int := counter_w_int + 1;
36 }
37 }
38 for {m in MAPS, t in TIMES} {
39 let counter_y := counter_y + 1;
40 if (abs(y[m,t]-round(y[m,t])) > 1e-6) then {
41 let counter_y_frac := counter_y_frac + 1;
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42 }
43 else {
44 let counter_y_int := counter_y_int + 1;
45 }
46 }
47 let flag := 1;
48 if match (master.message, "infeasible") > 0 then {
49 let flag := 0;
50 }
51 if (counter_w_frac = 0 and counter_y_frac = 0) then {
52 let flag := 0;
53 }
54 ### BEGINNING OF STEP 3 OF ALGORITHM 5.1
55 repeat until (flag = 0) {
56 let flag := 0;
57 for {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j

]} {
58 let wbar[f,j,t] := w[f,j,t];
59 }
60 for {m in MAPS, t in TIMES} {
61 let ybar[m,t] := y[m,t];
62 }
63 let flag1 := flag1 + 1;
64 for {m in MAPS, h in PARTITIONS[m], t in TIMES} {
65 solve slave1[m,h,t];
66 let flag2 := flag2 + 1;
67 if (match (slave1[m,h,t].message, "optimal") > 0 and sl1[m,h,t] < 1 - 1e-6)

then {
68 let flag := 1;
69 let flag3 := flag3 + 1;
70 let number_cover_inequalities[m,h,t] := number_cover_inequalities[m,h,t] +

1;
71 let cover_inequalities2[m,h,t,number_cover_inequalities[m,h,t]] := x[m,t];
72 for {j in BELONGING[h], f in FLIGHTS: ord0(j,PATHS[f]) > 1 and t >= tmin[f

,j] and t <= tmax[f,next(j,PATHS[f])]-1} {
73 let cover_inequalities1[m,h,j,t,number_cover_inequalities[m,h,t],f] := z

[j,t,f];
74 }
75 }
76 }
77 solve master;
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78 let counter_w := 0;
79 let counter_y := 0;
80 let counter_w_int := 0;
81 let counter_w_frac := 0;
82 let counter_y_int := 0;
83 let counter_y_frac := 0;
84 for {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j

]} {
85 let counter_w := counter_w + 1;
86 if (abs(w[f,j,t]-round(w[f,j,t])) > 1e-6) then {
87 let counter_w_frac := counter_w_frac + 1;
88 }
89 else {
90 let counter_w_int := counter_w_int + 1;
91 }
92 }
93 for {m in MAPS, t in TIMES} {
94 let counter_y := counter_y + 1;
95 if (abs(y[m,t]-round(y[m,t])) > 1e-6) then {
96 let counter_y_frac := counter_y_frac + 1;
97 }
98 else {
99 let counter_y_int := counter_y_int + 1;
100 }
101 }
102 if match (master.message, "infeasible") > 0 then {
103 let flag := 0;
104 }
105 if (counter_w_frac = 0 and counter_y_frac = 0) then {
106 let flag := 0;
107 }
108 ### END OF STEP 3 OF ALGORITHM 5.1
109 };
110 ### END OF ALGORITHM 5.1
111 let {f in FLIGHTS} g[f] := sum{t in TIMES: t >= tmin[f,first(PATHS[f])] and t <=

tmax[f,first(PATHS[f])]} (t*(w[f,first(PATHS[f]),t]-(if t-1 >= tmin[f,first(
PATHS[f])] then w[f,first(PATHS[f]),t-1] else 0)))-d[f];

112 let {f in FLIGHTS} a[f] := sum{t in TIMES: t >= tmin[f,last(PATHS[f])] and t <=
tmax[f,last(PATHS[f])]} (t*(w[f,last(PATHS[f]),t]-(if t-1 >= tmin[f,last(PATHS[
f])] then w[f,last(PATHS[f]),t-1] else 0)))-r[f]-g[f];

113 printf "\ntau = %d, ", tau > atfm.txt;
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114 printf "capacity = %d, ", capacity > atfm.txt;
115 printf "fun = %f, ", fun > atfm.txt;
116 printf "ground = %f, ", sum{f in FLIGHTS} g[f] > atfm.txt;
117 printf "air = %f, ", sum{f in FLIGHTS} a[f] > atfm.txt;
118 printf "counter_w = %d, ", counter_w > atfm.txt;
119 printf "counter_w_int = %d, ", counter_w_int > atfm.txt;
120 printf "counter_w_frac = %d, ", counter_w_frac > atfm.txt;
121 printf "counter_y = %d, ", counter_y > atfm.txt;
122 printf "counter_y_int = %d, ", counter_y_int > atfm.txt;
123 printf "counter_y_frac = %d, ", counter_y_frac > atfm.txt;
124 print master.message > atfm.txt;
125 printf "time_solve = %f. \n", _total_solve_time > atfm.txt;
126 printf "flag1 = %d, ", flag1 > atfm.txt;
127 printf "flag2 = %d, ", flag2 > atfm.txt;
128 printf "flag3 = %d, ", flag3 > atfm.txt;
129 ### WE CAN NOW SOLVE THE ATFM PROBLEM USING OUR NEW FORMULATION
130 option master.relax_integrality 0;
131 solve master;
132 ### WE HAVE JUST SOLVED THE ATFM PROBLEM USING OUR NEW FORMULATION
133 let counter_w := 0;
134 let counter_y := 0;
135 let counter_w_int := 0;
136 let counter_w_frac := 0;
137 let counter_y_int := 0;
138 let counter_y_frac := 0;
139 for {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j]}

{
140 let counter_w := counter_w + 1;
141 if (abs(w[f,j,t]-round(w[f,j,t])) > 1e-6) then {
142 let counter_w_frac := counter_w_frac + 1;
143 }
144 else {
145 let counter_w_int := counter_w_int + 1;
146 }
147 }
148 for {m in MAPS, t in TIMES} {
149 let counter_y := counter_y + 1;
150 if (abs(y[m,t]-round(y[m,t])) > 1e-6) then {
151 let counter_y_frac := counter_y_frac + 1;
152 }
153 else {
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154 let counter_y_int := counter_y_int + 1;
155 }
156 }
157 let {f in FLIGHTS} g[f] := sum{t in TIMES: t >= tmin[f,first(PATHS[f])] and t <=

tmax[f,first(PATHS[f])]} (t*(w[f,first(PATHS[f]),t]-(if t-1 >= tmin[f,first(
PATHS[f])] then w[f,first(PATHS[f]),t-1] else 0)))-d[f];

158 let {f in FLIGHTS} a[f] := sum{t in TIMES: t >= tmin[f,last(PATHS[f])] and t <=
tmax[f,last(PATHS[f])]} (t*(w[f,last(PATHS[f]),t]-(if t-1 >= tmin[f,last(PATHS[
f])] then w[f,last(PATHS[f]),t-1] else 0)))-r[f]-g[f];

159 printf "\nILP" > atfm.txt;
160 printf "\ntau = %d, ", tau > atfm.txt;
161 printf "capacity = %d, ", capacity > atfm.txt;
162 printf "fun = %f, ", fun > atfm.txt;
163 printf "ground = %f, ", sum{f in FLIGHTS} g[f] > atfm.txt;
164 printf "air = %f, ", sum{f in FLIGHTS} a[f] > atfm.txt;
165 printf "counter_w = %d, ", counter_w > atfm.txt;
166 printf "counter_y = %d, ", counter_y > atfm.txt;
167 printf "BB_nodes = %d, ", num0(substr(master.message,match(master.message,"s\n")

+2)) > atfm.txt;
168 print master.message > atfm.txt;
169 printf "time_solve = %f. \n", _total_solve_time > atfm.txt;
170 let flag1 := 0;
171 let flag2 := 0;
172 let flag3 := 0;
173 reset data w, y, g, a, x, z, number_cover_inequalities, cover_inequalities1,

cover_inequalities2;
174 }
175 }
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