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ABSTRACT 

Bacterial infections are among the most frequent causes of death in farms. Among others, Clostridium 

difficile emerges to be one of the worst pathogens leading to premature death in newborn piglets in swine 

farms, causing severe diarrhea. This infection is often managed through therapies that inhibit the toxins’ 

effects while not removing the bacterial pathogen from the swine intestine. This research, in addition to 

investigating the abundance of C. difficile in the sows' and piglets’ microbiomes in a farm adopting 

antibiotic vaccine to neutralize the effect of its toxins, delves into the evolution of microorganisms in piglets 

from 24 to 240 hours after birth. Additionally, a comparative analysis of the microbial composition between 

piglets and sows at 24,96, and 240 hours is conducted. 

This study undertakes a thorough microbiome analysis of pig fecal samples, focusing on sow-piglet pairs 

from distinct groups to count for 10 mother sows and 3 piglets each. Samples are collected at pivotal time 

points: 24, 96, and 240 hours after birth, to reveal insights into the microbial landscape. Covariates such as 

time, diarrhea occurrence, sex, category (sow or piglet sibling), gestation, family, and room are included in 

the metadata. Sows that are primiparous and pluriparous are indicated, as the formers have been exposed to 

the gestational area of the farm and where birthing takes place only once. 

The research employs a robust pipeline, including sample collection, sequencing, and QIIME2-based pre-

processing of data. Diversity analyses, encompassing different indices, are adopted to explore microbial 

compositional variations at different taxonomic levels; finally, differential abundance analysis is performed 

using the MAASLIN2 package. 

Results from Alpha diversity analysis unveil significant associations, with time, category, and at the genus 

level - diarrheic phenotype. The Beta diversity analysis shows significant microbial distinctions emerging 

between sows and piglets, with piglets exhibiting a pronounced microbial compositional shift at 24 hours 

post-birth. Surprisingly, no significant differences arise between microbial compositions at 96 hours after the 

birth of piglets, indicating stability during this critical developmental phase. At the genus level, there is a 

noteworthy convergence of piglet microbial compositions towards sow patterns, particularly evident at 96 

hours post-birth. However, by 240 hours, a subtle but discernible separation merges again. Similar trends are 

observed at the species level, although at a less pronounced level. Contrastingly, ASV analysis shows a 

distinct separation at all considered time points, highlighting a unique microbial pattern that deviates from 

the observed trends at the genus and species levels. 

Differential abundance analysis reveals the absence of specific C. difficile-related scenarios but highlights 

the differential presence of other Clostridium genera, with Clostridium perfringens significantly abundant in 

samples 24 hours from birth. Additionally, Bacteroides ovatus exhibits a threefold increase in diarrheic 

samples compared to non-diarrheic samples but with a non-significant Q-value. This study contributes 

valuable insights into swine microbiome dynamics, shedding light on microbial variations, stability, and 

evolution of new-born piglets and sows across 24,96 and 240 hours after birth. 
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1. INTRODUCTION 

Overview of Clostridium difficile in pig farm 

Background  
Clostridium difficile, commonly known as C. difficile, is a gram-positive, anaerobic bacterium that holds 

significant clinical implications. As elucidated by previous studies, the organism is distinguished by its 

remarkable capacity to produce spores, which enhances its environmental resistance (Gil et al., 2017; Shen, 

2020). This spore-forming ability, as noted by several researchers, contributes to the enduring nature of C. 

difficile in various settings.  According to Napolitano and Edmiston (2017), the bacterium is predominantly 

linked to gastrointestinal infections, especially antibiotic-associated diarrhea, and false membrane colitis in 

humans. This assertion underscores the clinical relevance of C. difficile and its propensity to cause 

substantial morbidity. Furthermore, as underscored by Tijerina-Rodríguez et al. (2019), the virulence of C. 

difficile lies in the formation of toxins. Notably, toxins A and B emerge as the primary virulence factors 

responsible for the clinical manifestations of the associated diseases. This perspective sheds light on the 

intricate molecular mechanisms employed by the bacterium to induce pathological outcomes in the host. 

Therefore, the multi-dynamic nature of C. difficile manifested by its spore-forming ability and toxin 

formation, highlights its importance with regard to gastrointestinal infections.  

Figure 1.1: Clostridioides difficile Spore Structure (Adapted from Lawler, Lambert and Worthington, 2020) 

Infections caused by C. difficile are a major concern to both veterinary and human medicine. C. difficile is 

known as a potential pathogen in veterinary medicine that affects several animals with pigs being notably 

susceptible (Grześkowiak et al., 2019). Spigaglia et al. (2023) stated that having an insight into the role of C. 
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difficile in veterinary medicine is vital not just for the health of the animal but also due to its zoonotic 

potential, stating instances where infections were transferred from animals to human. This emphasises the 

interconnectedness of health concerns across species boundaries. In addition, Tschudin-Sutter et al. (2018) 

posit that C. difficile is the leading cause of infection in healthcare settings. This has not only resulted in an 

up rise in morbidity and death rate but has also increased healthcare cost. The effect of C. difficile goes 

beyond veterinary medicine as it affects the cost of health by human as such resulting in multidimensional 

tactics in addressing and reducing its effect. 

Importance of C. difficile in pig farm 

C. difficile is a prevalent pathogen in pig farms globally, it finds pigs as natural reservoirs, where it dwells 

and shed and plays a major role in environmental contamination as highlighted by Keessen et al. (2013). The 

occurrence of the bacterium is aggravated by intensive pig farming system approaches such as high-density 

housing and consistent usage of antibiotics are employed to create an atmosphere favourable to the 

persistence and spread of C. difficile (Martin, Monaghan and Wilcox, 2016). Moreover, as highlighted by 

Maes et al. (2019), the use of intensive farming methods not only allows the nourishment of the pathogen 

but also promotes its transmission. The increased prevalence of C. difficile among pigs has elevated serious 

concerns about the possible transmission of the bacterium within the farm environment, posing risks to both 

livestock and humans. This intricate relationship between farming practices and the prevalence of C. difficile 

requires a critical examination of the related environmental and public health implications. 

C. difficile, a bacterium linked with countless of health issues in pigs, has been implicated in several adverse 

consequences. Researchers have methodically detected that its clinical manifestation in pigs involves 

debilitating symptoms like diarrhoea, reduced feeding efficiency, and, in severe cases, death (Flock, 2017; 

Luppi et al., 2023). In addition, scholars such as Hain‐Saunders et al. (2022), and Baines and Wilcox (2015) 

have shrewdly inferred that the economic effects of C. difficile range beyond its direct effect on animal 

health. It adversely affects the growth rate of pigs and increase cost linked to veterinary care and treatment. 

Moreover, Gwenzi et al. (2023) stated that the insidious cycle continues as farmers, challenged with C. 

difficile infections, frequently resort to antibiotics for treatment. This dependence on antibiotics not only 

worsens the problem but also contributes to the worrisome movement of antimicrobial resistance. Thus, the 
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unified nature of health, economic, and environmental factors demand an inclusive approach to lessen the 

far-reaching consequences of C. difficile in pig farming. 

The zoonotic potential of C. difficile emphasises an extra layer of significance in its presence among pig 

farmers. Current studies by Lim, Knight and Riley (2020) and Grześkowiak et al. (2019) have strongly 

proposed that the main reservoir of C. difficile is the gastrointestinal tract of animals, with pigs being a 

prominent host. This increases concerns about the transmission of the bacterium to humans, particularly 

those in close contact with infected animals. Consequently, individuals, such as veterinarians, farmers, and 

those involved in pork production, are stated to be at a greater risk of contracting C. difficile infections. The 

complex nature of the pathogen's transmission underlines the need for comprehensive preventive tactics 

within the agricultural and veterinary sectors. 

C. difficile: Microbiology and Pathogenesis 

Microbial characteristics of C. difficile 

C. difficile is a gram-positive, and anaerobic bacterium with distinctive structure. Cairns (2018) opined that 

C. difficile is rod-shaped and ranges from 2 to 8 micrometres. Al-Hinai, Jones and Papoutsakis (2015) stated 

that C. difficile forms characteristic endospore which are called spores under specific conditions. Awad et al. 

(2014) stated that these spores have strong exterior layer that protects against harsh environmental 

conditions like heat and radiation. In addition, Schnizlein and Young (2022) posits that the capability to 

produce spores enables C. difficile to persist in the environment for extended periods which contributes to its 

transmission as well as survival. An important feature of C. difficile lifecycle is sporulation. DuPont (2014) 

stated that whenever the bacterium faces unfavourable conditions like inadequate nutrient and exposure to 

antibiotics, sporulation occurs. However, Barra-Carrasco and Paredes-Sabja (2014) stated that spores are 

highly resistant to environmental stresses allowing them to withstand adverse conditions and facilitating 

their persistence. Furthermore, Barra-Carrasco and Paredes-Sabja (2014) also disclosed that this resistance 

contributes to the challenges linked with eradicating and controlling C. difficile in both agricultural 

environments and healthcare settings. In summary, the unique characteristics of C. difficile, with its rod-

shaped structure, spore formation, and the resilience of these spores, underline the challenges linked with 

managing and eradicating this bacterium in numerous settings. 
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Figure 1.2: Pathogenesis of C. difficile (Shen, 2012). 

C. difficile toxin production 

C. difficile generates toxins which play a crucial role in pathogenesis of linked disease. Aktories, Schwan 

and Jank (2017) opined that the two key toxins formed by C. difficile are designated as toxin A (TcdA) and 

toxin B (TcdB). While Gao et al. (2020) noted that these toxins are large and complex proteins that possess 

overlapping functions, Di Bella et al. (2016) reported that both toxin A and toxin B damage the intestinal 

epithelial cells of the host resulting to C. difficile infection. In addition, Di Bella et al. (2016) also posits that 

both toxins have similar mechanism as they target the host cells in the gastrointestinal tract. Wang et al. 

(2018) elaborated that glucosyltransferase modifies and disrupts the function of the small GTPases within 

the host cell. This alteration leads to the breakdown of the cytoskeleton, leading to death of cells and damage 

to the colon mucosal lining. Furthermore, Popoff (2018) highlighted that toxins stimulate the release of pro-

inflammatory mediators which contributes to the characteristic inflammation linked to C. difficile infections. 

This interconnected cascade of events highlights the complex and destructive nature of C. difficile toxins in 

the pathogenesis of the related disease. 
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Figure 1.3: Mechanisms of Action of TcdA and TcdB (Adapted from Di Bella et al., 2016) 

Factors affecting the development of disease. 

Numerous factors affect the development of C. difficile-related diseases. One pivotal part, as underlined by 

Lim, Knight and Riley (2020) and Spigaglia (2015), is the extensive use of antibiotics. Antibiotics interrupt 

the mild balance of the usual gut microbiota, generating an environment favourable to C. difficile 

colonisation. This illuminates a key predisposing factor that sets the stage for the subsequent cascade of 

events resulting in infection. Moreover, a broader perspective by Gebreyes et al. (2020) revealed that 

additional risk factors linked to the onset of C. difficile infection are underlying health conditions and the 

inevitable march of age. This highlights the multifaceted nature of the variables contributing to the 

vulnerability of individuals to C. difficile-related diseases. 

Lee, Chico and Renshaw (2017) investigate into the complex nature of host-pathogen collaboration, it 

becomes obvious that the interrelationship between the immune response of the host and the virulence 

factors of C. difficile is a nuanced factor in the disease's development. This perspective sheds light on the 

complex web of factors influencing the pathophysiology of C. difficile-related diseases, moving beyond 

mere predispositions to discover the natural interrelationships between the host and the pathogen. The 

seriousness of C. difficile infections varies, and ranges from asymptomatic colonization to mild diarrhea, 
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and, in severe cases, toxic megacolon. Therefore, the multidimensional nature of C. difficile-related diseases 

requires an inclusive method to understand the intricate interplay of factors prompting their development. 

Prevalence and epidemiology of C. difficile in Pig Farms 

C. difficile exhibits a vast distribution all over the globe and the prevalence varies across various area. Alves 

et al. (2022) affirmed that the prevalence of C. difficile in pig farms is affected by geographical factors such 

as climate and the structure of the pig farm. Maes et al. (2019) opined that some regions tend to face a high 

rate of C. difficile prevalence as a result of the variation in pig farming, climatic conditions, and 

antimicrobial usage. However, Spigaglia (2015) stated that the prevalence of C. difficile in pig farms is 

closely associated with farm management practices.  Gebreyes et al. (2020) stated that intensive farming 

systems with high animal density, frequent movement of animals, and limited biosecurity measures 

contributes to the fast spread of C. difficile. Furthermore, the implementation of effective management 

practices such as adequate sanitation and biosecurity tactics are vital in reducing the risk of C. difficile 

transmission in farms. 

The usage of antibiotics in pig farm is an important factor that affects the prevalence of C. difficile. Moono 

(2017) noted that antibiotics affect the normal balance of the microbiota of the gut and establish a conducive 

environment for C. difficile colonisation and overgrowth. In addition, Andrés-Lasheras et al. (2016) opined 

that selective pressure exerted by antibiotic usage leads to the emergence of antibiotic-resistant strains of C. 

difficile. It is crucial to monitor and regulate the usage of antibiotics to minimise the risk of C. difficile 

infections in addressing the wide concern of antimicrobial resistance. Keessen et al. (2013) stated that 

numerous factors contribute to the prevalence of C. difficile in pig farms. The persistence of C. difficile 

spores in the environment, particularly in faeces and contaminated surfaces enables the transmission among 

animals. 

Accurate surveillance and monitoring are vital in assessing the prevalence of C. difficile in pig farms and the 

implementation of timely intervention. Gebreyes et al. (2014) noted that the diagnostic approach plays 

crucial role in identifying animals that are infected and in monitoring contaminated environments. 

Goldenberg and French (2011) stated that the most common diagnostic techniques are polymerase chain 

reaction (PCR) and immunoassays (EIAs). According to Pallis et al. (2013) PCR allows the detection of C. 
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difficile deoxyribonucleic acid (DNA) in fecal samples. It is however important to note that the integration 

of these diagnostic tools into routine surveillance programmes allows early detection and intervention, 

thereby lowering the effect of C. difficile on pigs. 

Impact of C. difficile on Pig Health and Productivity 

Clinical manifestation of C. difficile 

Infections caused by C. difficile is often shown by clinical signs particularly diarrhoea and other 

gastrointestinal symptoms. Moono (2017) opined that diarrhoea is the most common C. difficile and that 

pigs that are affected exhibit watery faeces. Navarre and Pugh (2002) noted that gastrointestinal symptoms 

include colic, alteration of appetite and abdominal discomfort. The severity and duration of diarrhoea vary 

with certain pigs experience acute diarrhoea. In addition, Chowdhury et al. (2016) stated that the seriousness 

of C. difficile-related diseases in pigs range from mild to severe and the outcomes depend on numerous 

factors such as the strain of C. difficile as well as the overall well-being of the pig. Furthermore, Napolitano 

and Edmiston (2017) posit that severe cases of C. difficile leads to a more significant health concern like 

dehydration and weight loss, Napolitano and Edmiston (2017) also stated that in extreme cases it leads to 

death. Jurburg et al. (2019) opined that pigs with compromised immune system are more susceptible to 

severe outcomes. 

Economic implication of C. difficile 

C. difficile contributes to increasing death rate in infected pigs. Czepiel et al. (2019) opined that serious 

cases of C. difficile infection lead to dehydration, and systemic complications result in death. Mortality rates 

differ depending on the virulence of C. difficile strain, health status, and age of pigs (Grześkowiak et al., 

2019). The rising death rates not only affect the welfare but also pose economic challenges to pig farmers 

resulting in financial loss as a result of the decline in production and rise in cost linked to the care and 

treatment of pigs. C. difficile infection adversely affects the growth rate and efficient feeding of pigs 

(Grześkowiak et al., 2019). Kim et al. (2012) stated that diarrhea and gastrointestinal imbalance result in 

poor nutrient absorption which leads to weight loss and affects growth. The economic consequences of 

reduced growth rates extend beyond immediate losses as delayed growth affects the overall efficiency of 

pork production. 
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Metagenomics 
Metagenomics is the direct genetic analysis of genomes contained in an environmental sample. Kumar et al. 

(2020) stated that this field began with the cloning of environmental DNA, followed by functional 

expression screening, this was then followed by a direct random shotgun sequencing of environmental DNA. 

Kirubakaran et al. (2020) opined that this field of genomics bypasses the need for the isolation and 

cultivation of individual microbial species. In addition, Ravin, Mardanov, and Skryabin (2015) noted that 

metagenomic comprises collective genomes of all microorganisms with an environmental sample. 

Furthermore, Alves et al. (2018) posit that metagenomics goes beyond the study of an individual organism 

as it allows the analyses of genetic components from an entire microbial ecosystem simultaneously. 

Metagenomics originates from the cloning of environmental DNA (Garlapati et al., 2019; Kumar et al., 

2020), and has undergone a transformative evolution in its methodologies. The initial phase, marked by the 

cloning approach, laid the groundwork for subsequent advancements (Oulas et al., 2015). However, Denman 

and McSweeney (2015) stated metagenomics was the advent of functional expression screening that 

heralded a significant paradigm shift, propelling metagenomics into a new era characterized by a more 

targeted exploration of the functional potential encoded in environmental genomes. In addition, Creer et al. 

(2016) stated that the progression from functional expression screening effortlessly changed into the era of 

direct random shotgun sequencing of environmental DNA, a methodological leap that highlighted the 

commitment to capturing the entirety of genetic information within complex microbial communities. This 

transition was not merely a technical shift but signified a profound conceptual departure from traditional 

genomics approaches. 
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Figure 1.4: Analysis of metagenomics from an environment’s microbial population (Adapted from Riesenfeld, Schloss and Handelsman, 2004) 

The foundational principles of metagenomics, as highlighted by Garza and Dutilh (2015), challenge the 

conventional need for the isolation and cultivation of individual microbial species. This departure from 

isolation-centric methodologies has broad implications, liberating researchers from the constraints imposed 

by culture-based techniques and enabling the exploration of microbial diversity that was once inaccessible 

(Pascoal, Costa and Magalhães (2020); Garza and Dutilh, 2015). Zhang et al. (2021) noted that a pivotal 

aspect of metagenomics lies in its comprehensive nature, encapsulating the collective genomes of all 

microorganisms within an environmental sample. This holistic approach, acknowledges the 

interconnectedness and interdependence of microbial communities, emphasizing the need for a collective 

understanding rather than a reductionist focus on isolated entities. 

According to various studies, microbial communities represent a diverse and complex tapestry of 

microscopic life inhabiting various environments (Gupta, Gupta and Singh, 2016; Prasad et al., 2023). 

Gupta, Gupta and Singh (2016) added that these communities incorporate bacteria, viruses, fungi, and 

archaea, creating intricate ecosystems with critical consequences for nutrition cycles, environmental 

stability, and human health. The abundance and diversity of microbial life play pivotal roles in shaping these 

ecosystems. In addition, Fadiji and Babalola (2020) deduced that the study of microbial communities via 
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metagenomics involves the analysis of genetic material that is directly extracted from samples in the 

environment, and this gives insight into the genomes of these complex ecosystems. 

Pérez-Cobas, Gomez-Valero and Buchrieser (2020) stated that metagenomics involves the analysis of 

genetic material directly extracted from environmental samples, offering a glimpse into the genomes of these 

complex ecosystems. Contrary to traditional genomics, which focuses on individual organisms and the 

isolation of a single species' genome, metagenomics captures the collective DNA of multiple species in a 

given environment (Robbins, Krishtalka and Wooley, 2016). Furthermore, Rashid and Stingl (2015) pointed 

out that traditional genomics follows a straightforward approach, extracting DNA from pure cultures. In 

contrast, metagenomics poses unique challenges due to the extraction of DNA from a diverse mixture of 

microorganisms, necessitating the use of specialized techniques. This distinction highlights the evolving 

nature of genomic studies and the increasing complexity involved in unravelling the intricacies of microbial 

communities. 

Pipeline of a metagenomic study 

Sample Collection 

During the first stages of a metagenomic investigation, researchers collect samples from the intended 

environment, which might include a variety of habitats such as soil, water, or the human stomach. Numerous 

microorganisms, such as bacteria, fungi, viruses, and archaea, are present in these samples and are all 

essential to the operation of the ecosystem (Gilbert et al., 2014). The next step in determining the genetic 

diversity and functional potential of these microbial communities is to isolate genetic material from them 

using DNA extraction techniques (Caporaso et al., 2011). 

DNA Isolation, PCR and Sequencing 

After the isolation of DNA, it is amplified using the polymerase chain reaction (PCR) with primers that are 

intended to target conserved portions of the 16S ribosomal RNA (rRNA) gene, which is a genetic marker 

that is found in bacteria and archaea globally. By using this amplification technique, researchers can produce 

DNA sequences that provide information about the taxonomic makeup of the microbial community in the 

original sample (Gilbert et al., 2014). Then, significant sequence data is produced using high throughput 
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sequencing platforms, including Illumina sequencing, allowing for a thorough investigation of microbial 

diversity and community structure (Caporaso et al., 2011). 

Pre-processing and Downstream Analysis 

After sequencing is finished, preprocessing procedures are applied to raw sequence data to guarantee data 

dependability and quality. In order to mitigate any biases and errors induced during the sequencing process, 

these preprocessing processes include quality filtering and the elimination of sequencing artefacts (Schloss 

et al., 2011). Afterwards, sequence analysis, taxonomy categorization, and evaluation of microbial diversity 

and composition are performed using bioinformatics tools and pipelines, including QIIME2 or mothur 

(Caporaso et al., 2011). To maintain the integrity and reproducibility of their results, researchers follow best 

practices and established protocols throughout the entire pipeline. Metagenomic studies provide priceless 

insights into the composition, dynamics, and function of microbial communities in a variety of habitats by 

employing this methodical approach (Gilbert et al., 2014; Schloss et al., 2011). 

Unlocking the Secrets of Microbial Communities 

According to Miguel et al. (2019) metagenomics is a revolutionary field at the crossroads of molecular 

biology and bioinformatics, Miguel et al. (2019) also noted that it acts as the key in unravelling microbial 

tapestry. From the initial sampling of environmental niches to the intricate analyses of genetic data, 

metagenomics employs a sophisticated array of methods and techniques that collectively propel us into the 

heart of microbial mysteries. Denman and McSweeney (2015) noted that metagenomic began with the 

meticulous collection and processing of environmental samples. Environmental sampling serves as an art, 

strategically choosing habitats known for their microbial richness (Niegowska et al., 2021). Considerations 

span spatial diversity within an environment and temporal variations, ensuring a holistic representation. The 

collection process becomes an intricate dance, capturing the microbial nuances embedded in soil, water, or 

the human gut. Following this, the extraction of DNA emerges as a vital step, presenting its own set of 

challenges. The diverse array of microorganisms, each with distinct cell types and sizes, demands adaptable 

DNA extraction methods (Lasken and McLean, 2014). Traditional techniques such as phenol-chloroform 

extraction coexist with contemporary commercial kits, all geared towards maximizing DNA yield and purity. 

This extraction is the gateway, allowing us access to the genetic blueprints of entire microbial communities. 
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Kumari et al. (2017) stated that within the realm of sequencing technologies lies metagenomics which 

differentiates itself from Next-Generation Sequencing (NGS) and Third-Generation Sequencing. Kumari et 

al. (2017) deduced that NGS illustrated by Illumina and 454 sequencing, offers unparalleled high 

throughput, enabling the parallel sequencing of millions of DNA fragments while Wee et al. (2018) stated 

that Third-Generation Sequencing on the other hand represented by PacBio and Oxford Nanopore, 

introduces a revolutionary paradigm with significantly longer reads. The metagenomic voyage, guided by 

these sequencing technologies, ventures into uncharted territories, promising a deeper understanding of 

microbial diversity. 

 

Figure 1.5: Flow chart for the analysis of a metagenome from sequencing to functional annotation (Adapted from Prakash and Taylor, 2012) 

Applications of Metagenomics 

Metagenomics has altered the knowledge of soil and water ecosystems. Several studies have investigated the 

soil microbiome by revealing a tapestry that is rich with microorganisms that alter the cycle of nutrients, the 

health of the soil, and the functionality of the ecosystem (Akhtar, Gulab, and Ghazanfar, 2023; Timmis and 

Ramos, 2021). Bhargava et al. (2019) noted that metagenomic analysis discloses the range of bacteria, fungi, 
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viruses, and archaea in the soil, this study also deduced the roles of microorganisms in supporting the 

growth of the plant and their relationship. Bhargava et al. (2019) added that this has boosted the implication 

of metagenomics in sustainable agriculture thereby creating a means of attaching microbial communities to 

improve soil fertility. In addition, Abia et al. (2018) affirmed that water a crucial component of the 

ecosystem harbors numerous microbial communities essential for preserving the quality of water.  

According to Gomaa (2020), the human gut houses numerous microorganisms called the gut microbiomes. 

Malan-Muller et al. (2018) noted that metagenomics changes knowledge of the world about its effect on 

metabolism, digestion, and mental health. Insights from gut microbiome studies have implications for 

personalized medicine, as variations in microbial composition influence individual responses to drugs and 

susceptibility to diseases (Mesnage et al., 2018; Malan-Muller et al., 2018). In addition, Hellmann et al. 

(2021) noted that metagenomics extends its reach to the skin, Hellmann et al. (2021) also stated that the 

microbiome of the skin is vital in sustaining the health of the skin and in preventing infections. 
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2. RESEARCH AIMS AND OBJECTIVES 
The primary objective of this research is to examine the presence and differential abundance of C. difficile in 

the gastrointestinal tracts of both sows and piglets within a sampled pig farm with past cases of C.difficile 

infections and with saws treated via a vaccine against C. difficile toxins. Given the association between C. 

difficile and diarrhea in piglets reported by Squire and Riley (2012), this investigation aims to provide 

insights into the prevalence and distribution of the bacterium within the examined population. By assessing 

the abundance in both sows and piglets, the research seeks to contribute valuable information regarding the 

potential sources and transmission dynamics of C. difficile on the farm. 

A second key goal is to explore the complex interactions between C. difficile and other bacteria residing in 

the bowels of swine. Understanding the synergistic or antagonistic relationships between C. difficile and the 

broader microbial community is crucial for unraveling the intricate dynamics that influence the prevalence 

and impact of C. difficile infections. This objective aims to enhance our comprehension of how various 

microorganisms interact within the swine gut, shedding light on potential factors influencing the persistence 

or mitigation of C. difficile. 

Additionally, this research aims to conduct a comparative longitudinal analysis of the microbial composition 

in piglets and sows at distinct time points post-birth: 24, 96, and 240 hours. This temporal exploration seeks 

to uncover potential shifts in the microbial communities of piglets and sows during crucial developmental 

phases. By investigating these specific time points, the research aims to discern patterns in the microbial 

composition, providing valuable insights into the dynamic evolution of the gut microbiota within the early 

postnatal period. 
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3. ANALYSIS PIPELINE 

Data acquisition 

Sampling 

Sampling for this study involved a comprehensive investigation across 10 distinct pig families, each 

comprising a mother sow and three piglets. The families are categorized, considering various parameters 

encapsulated in the metadata. Sample names were encoded as S{1-10}_P{0-3}_T{0-2}. Here, 'S' denoted 

the "cage," 'P' represented the piglet number (0 indicating the mother sow), and 'T' signified the time point of 

the sample collection (0 for approximately 24 hours from birth, 1 for around 96 hours, and 2 for 

approximately 240 hours). 

The numerical variable 'sow' was employed to uniquely identify each family through the mother sow's ID. 

Families were further divided into three rooms, denoted by the numerical variable 'room,' where piglets were 

preserved from birth to the weaning stage. 

The categorical variable 'sex' delineates the gender of the animals, while 'diarrhea' provided insights into the 

health status, with options ‘yes’, 'no’, or  ‘hematic’. The latter was particularly crucial for piglets with 

minimal content in their rectums at 24 hours, making the rectal walls slightly more susceptible to swab-

induced scratches. The numerical variable 'neigh' served to identify the neighborhood family, essential for 

understanding shared water bowls between two families. 

For the identification of mothers, a Boolean variable 'is_sow' was introduced. Additionally, several numeric 

variables offered a comprehensive perspective on the reproductive and survival dynamics within each 

family. 'Gestations' denoted the number of times the sow had been pregnant, 'nest' indicated the total number 

of piglets born by each sow,  'alive' and 'dead' represented the counts of piglets that survived and perished 

after birth, 'transferred' captured the number of piglets moved to another sow, 'uw_el' accounted for piglets 

eliminated from the nest due to underweight issues, and 'weaned' indicated the number of piglets that 

survived until the weaning stage. 

The DNA extraction, amplification, library construction, and sequencing processes were conducted by BMR 

Genomics, based in Padua, Italy. As part of their commitment to quality, the BMR Genomics laboratory 
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adheres to a comprehensive Quality Management System compliant with the requirements of the 

international standard UNI EN ISO 9001:2015. 

The DNA extraction process involved the supply of sampling kits, and extraction was performed using the 

Qiagen method. Subsequent steps included the amplification of DNA using modified primers with universal 

tails, following a specific protocol. The amplified DNA was purified using magnetic beads and Thermolabile 

Exonuclease I (NEB). In a second PCR step, Illumina Nextera XT Indexes were bound to the universal tails. 

The samples were then normalized and multiplexed. The resulting library was uploaded to the Miseq 

platform for sequencing, employing a 300PE (paired end) strategy. Finally, the quality of the sequencing run 

was assessed, and the reads were delivered in the fastq format. 

Amplification and sequencing 

Tailed primers for amplifying the 16S rRNA regions (V3 to V4) were employed, as per the method 

described by Takahashi et al. (2014). The forward primer Pro341F and reverse primer Pro805R were 

designed with universal tails to facilitate subsequent steps  in the sequencing process.  

The sequencing of the V3–V4 hypervariable region of the bacterial 16S rRNA gene was conducted using 

Illumina MiSeq V2 chemistry, generating paired-end reads of 250 base pairs each. Sequencing libraries 

adhered to the Illumina 16S Metagenomic Sequencing Library Preparation Guide (Part #15044223 Rev. B) 

and employed the Nextera XT Index Kit. Post-sequencing.  

Pre-processing 

The pre-processing phase of the data involved the utilization of QIIME2, a robust microbiome data science 

platform. This platform is recognized for its reproducibility, interactivity, scalability, and extensibility in 

microbiome data analysis. This comprehensive data processing pipeline aligns with the principles of 

QIIME2 and relevant literature (Bolyen et al., 2019; Martin, 2011), ensuring accuracy and reliability in 

subsequent microbiome analyses. 

Creation of input data and Importing of Data in QIIME2 

Generate Manifest S1_1.The R script R is used to create a manifest file, which is an essential part of the 

QIIME2 analysis pipeline. This file acts as a reference, providing all the pertinent information regarding the 
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file paths for each sample's forward and reverse sequencing reads. The sample data is arranged 

systematically thanks to the tabular format it uses, which includes the columns "sample-id," "forward-

absolute-filepath," and "reverse-absolute-filepath." Another R script in the workflow, 

S1_2_GenerateMetadata.R, is responsible for creating metadata.tsv, a format that is compatible with 

QIIME2, from the original metadata file. To do this, add a label to the first row of the table for the matching 

column data type. After that, the metadata.tsv file is a crucial part of QIIME2's import and analysis process. 

A key component of the QIIME2 analytic pipeline's importation and visualization stages is a bash script 

called S2_Demux.sh. It enables the conversion of .fastq files into a QIIME2 artifact (.qza data format) by 

utilizing the qiime tools import mechanism. The manifest.tsv file, which contains file path information, the 

fastq manifest format (PairedEndFastqManifestPhred33V2), that indicates paired-end reads with a PHRED 

offset for a quality score of 33, and the type of sample data (SampleData[PairedEndSequencesWithQuality]) 

are the input parameters. Furthermore, the script uses the metadata plugin to create metadata.qzv file. Next, 

visualizations are produced using the Demux plugin, which also produces interactive positional quality 

charts and offers insights into counts per sample for all samples. QIIME2 View is used to interactively 

explore the data owing to the resulting .qzv files. 

Demultiplexing 

Demultiplexing is a critical process that separates pooled sequencing data into individual samples, ensuring 

accurate downstream analyses. The demultiplexing method employed in this study aligns with the 

established framework described by Bolyen et al. in their comprehensive work on QIIME2 (2019). Their 

approach provides a standardized and reliable means of handling microbiome data, enhancing the accuracy 

and reproducibility of subsequent analyses. 

Demultiplexed Sequence Counts Summary is reported in Table 1.0, while a boxplot overview of the 

sequencing per base position quality check is reported in Figure 1.4 for forward and reverse primers (panels 

A. and B. respectively) 
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Table 3.1 Demultiplexed sequence count summary. 

 

Figure 3.1: Interactive quality plot of the forward (panel A.) and reverse (panel B.) sequence base. 

The plot was generated using a random sampling of 10000 out of 8737075 sequences without replacement. 

The minimum sequence length identified during subsampling was 301 bases. Outlier quality scores are not 

shown in box plots for clarity. 

These plots were generated using a random sampling of 10000 out of 8737075 sequences without 

replacement. The minimum sequence length identified during subsampling was 301 bases. Outlier quality 

scores are not shown in box plots for clarity. 

Trimming (Primers and adapters removal) 

S3_TrimmingPrimer.sh is a bash script that uses the cutadapt plugin to remove primers from files. 

Additionally, a corresponding .qzv file was developed, mirroring the method used in the previous stage, to 

aid in data interpretation and produce high-quality charts for visualization on the Qiime2 viewer. Using the -

p-front-f option for forward reads and the -p-front-r parameter for reverse reads, the primer sequences that 

are specifically targeted for removal are defined. It is important to note that the primer sequences contain 
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wildcard characters that follow the IUPAC nucleotide codes, including N, V, H, and W. The --p-match-read-

wildcards option is mentioned to guarantee that certain characters are interpreted correctly during matching. 

Stressing a cautious cutting strategy, the script imposes stringent requirements: During primer matching, no 

base insertions or deletions are permitted. reads without recognized primer sequences are rejected (--p-

discard-untrimmed), a sufficient overlap of nucleotides in the primer sequence is required (--p-overlap), and 

a zero-error rate in alignment is maintained (--p-error-rate). Furthermore, reads that have a length of less 

than 200 nucleotides are not included (--p-minimum-length).  

The trimmed Sequence Counts Summary is reported in Table 1.1. The resulting quality check is reported in 

figure 3.2, with results for forward primer sequencing in panel A. and for reverse primer in panel B. 

 

Table 3.2 Summarized trimmed sequence counts. 

 

 

Figure 3.2 Trimmed sequence of the forward (panel A.) and reverse (panel B.) sequence base. 
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The plot at position 242 was generated using a random sampling of 10000 out of 7482619 sequences 

without replacement. The minimum sequence length identified during subsampling was 281 bases. Outlier 

quality scores are not shown in box plots for clarity. 

These plots were generated using a random sampling of 10000 out of 7482619 sequences without 

replacement. The minimum sequence length identified during subsampling was 276 bases. Outlier quality 

scores are not shown in box plots for clarity. 

Denoising and Imputation 

The fourth step encompassed denoising and quality filtering using the bash file S4_Denoising.sh. DADA2, a 

robust algorithm for Amplicon Sequence Variant (ASV) reconstruction, was utilized. Default DADA2 plugin 

parameters were employed, with truncation lengths based on quality plots. Outputs included ASV table, 

ASV sequences, and denoising statistics (feature_table.qza, feature_sequences.qza, denoising_stats.qza). 

Imputation was performed using the mbimpute method and R script imputation.R, resulting in 

feature_table_imp.qza. Visualization artifacts (feature_table.qzv and denoising_stats.qzv) were also 

generated. 

Imputation addresses the prevalence of zero counts in microbiome datasets which poses a challenge for 

meaningful downstream analyses and result interpretation. In response to this challenge, Jiang et al. (2020) 

introduced the mbimpute method, a specialized imputation technique tailored for microbiome data. 

Addressing the issue of false zeros, mbimpute strategically incorporates information from akin samples, taxa 

with similarities, and, optionally, covariates and taxon phylogeny. Demonstrated effectiveness in mitigating 

spurious zeros enhances the accuracy of subsequent analyses, including differential abundance testing and 

community ordination. 

Taxonomy Classification 

In the process of taxonomy classification (S5_TaxonomyClassification.sh), a bash script was utilized to 

assign each Amplicon Sequence Variant (ASV) to its corresponding bacterial taxonomy. The ASVs were 

compared against the GreenGenes reference database, and a naive Bayes classifier was employed, which had 

been trained on reference sequences clustered at 99% similarity (gg_13_8_otus/rep_set/99_otus.fasta) along 
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with their respective taxonomies (gg_13_8_otus/taxonomy/99_otu_taxonomy.txt). This reference data was 

sourced from the GreenGenes database v13.8 ftp://greengenes_release/gg_13_5/gg_13_8_otus.tar.gz.  

The naive Bayes approach was used, which is predicated on the independence of features within the same 

class and is based on the Bayes theorem. Crucially, the qiime tools import method was used to import the 

reference sequences and taxonomies into QIIME2. Notably, two distinct semantic types were used: 

FeatureData[Taxonomy] for classification and FeatureData[Sequence] for sequences. Since the taxonomy 

containing greengenes file did not have a header, the import was done with the 

HeaderlessTSVTaxonomyFormat argument. The naive Bayes classifier was trained only on the target region, 

concentrating on sequences of interest between the primers 314F and 805R, as suggested by Werner et al. To 

remove sequences that were either too short or too lengthy in comparison to the ASVs, the primer sequences 

(--p-f-primer and --p-r-primer) as well as the --p-min-length and --p-max-length parameters were taken into 

consideration while using the feature-classifier extract-reads method. The feature-classifier fit-classifier-

naive-bayes approach was used to train the classifier. After using the feature-classifier classify-sklearn to the 

classifier.qza artifact, the ASVs were classified, yielding the taxonomy table (taxonomy.qza). In the end, a 

tabular version of the taxonomy table was produced using the metadata plugin. 

Phylogenetic Tree 

The bash script S6_PhylogeneticTree.sh is dedicated to constructing a phylogenetic tree for ASVs, offering 

valuable insights for diversity analysis. This tree elucidates kinship relationships based on sequence 

similarities. Two primary computational methods for phylogenetic tree reconstruction exist: de novo or by 

integrating representative sequences into a reference tree. In this case, we employed a hybrid approach 

facilitated by the SEPP (SATé-Enabled Phylogenetic Placement) tool. SATé (Simultaneous Alignment and 

Tree Estimation) addresses complex alignments where accurate sequence alignment is challenging without 

the concurrent availability of the tree. 

The SEPP algorithm iteratively optimizes both sequence alignment estimates and tree structures. For ASVs 

absent from the reference tree, a similar iteration determines their intermediate positions in successive sub-

trees, converging to a definitive positioning. The Qiime 2 implementation utilizes the fragment-insertion 

sepp method, with sepp-refs-gg-13-8.qza containing the reference tree skeleton. This artifact is built from 

ftp://greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
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GreenGenes sequences clustered at 99% similarity. The resulting tree.qza is crucial for diversity analysis. 

Additionally, the tree_placements.qza file details the intermediate positions of each ASV within the 

algorithm. 

 

Figure 3.3 Bar plot showing the frequency of the different taxonomic features in each sample. 

Taxonomic classification and data normalization. 

The bash script S7_CollapseFilterNormalize.sh orchestrates several crucial steps in the analysis pipeline: 

collapsing ASVs at specified taxonomic levels, eliminating zero features, normalizing sample profiles, and 

importing the normalized data into Qiime2. The taxonomic levels of species and genus were chosen in 

addition to ASVs for comprehensive analysis. The taxa collapse plugin is employed to group features at the 

genus and species levels, determined by the --p-level parameter (set as 7 for species and 6 for genus). 

For each taxonomic level, subject profiles undergo normalization using the GMPR method, based on the 

Geometric Mean of Pairwise Ratios. GMPR resolves challenges posed by zero frequencies, common in 

metagenomic data, by computing the median of non-zero cell ratios for each subject pair. The size factor 

(SF), representing the relative library size, is obtained as the geometric mean of these ratios. Subsequently, 

subject taxonomic profiles are scaled based on their corresponding SF. 
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Internally, the script calls the GMPRnorm.R script, utilizing the qiime2R package for abundance table 

reading, GMPR normalization in R, and generation of the .biom file for normalized data. This .biom file is 

then converted back to .qza using qiime tools import. 

GMPR Normalization in Microbiome Sequencing Data Analysis  

Normalization is a pivotal step in microbiome sequencing data analysis, crucial for addressing the inherent 

variability in library sizes across samples. Traditional RNA-Seq normalization methods face challenges 

when applied to microbiome data, characterized by a multitude of zeros. The high frequency of zeros makes 

these methods prone to instability. In response to this issue, the Geometric Mean of Pairwise Ratios (GMPR) 

normalization method has been proposed, offering a robust solution. 

The GMPR method involves a two-step process, introducing a novel approach to normalization inspired by 

the DESeq2 normalization steps. First, the method calculates rij, the median count ratio of nonzero counts 

between samples, using the formula: 

rij=median(ckj/cki) 

Here, k ranges from 1 to the total number of Operational Taxonomic Units (OTUs), and c_{ki} and c_{kj} 

represent the non-zero counts of the kth OTU in samples i and j, respectively. 

Subsequently, the size factor (si) for a given sample i is calculated using the geometric mean of the 

previously obtained rij values: 

si= geometric_mean(rij) 

The resulting vector of GMPR size factors provides an effective means of normalizing microbiome data, 

accounting for library size variations while mitigating the challenges posed by excessive zeros. This 

innovative approach ensures stability and reliability in downstream analyses, making GMPR a valuable tool 

in microbiome research (Li Chen et al., 2018). 
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Figure 3.4 Overview of Bioinformatic Pipeline (Adapted from Bellato 2023) 

Post-processing. 
Post-processing analysis, which consists of diversity analysis (both Alpha and Beta diversity), as well as 

differential abundance analysis, was conducted utilizing the R programming language. 

Diversity analysis 

Alpha Analysis 

Alpha diversity is a vital analysis, that offers insights into the diversity within individual samples 

considering factors like evenness and richness (Magurran, A. E. 2004). The flexible R package vegan, which 

offers a comprehensive range of tools for ecological and diversity analyses, was used in this study to 

perform alpha diversity analysis. The differences in alpha diversity between samples were statistically 

evaluated using the Kruskal-Wallis test. Boxplots were employed for visualization. (Oksanen et al., 2007). 

vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan) 

A wide range of measures were employed in the alpha diversity analysis across all the genus, species, and 

ASV taxonomic levels to capture various aspects of the organization of the microbial community. Shannon's 

diversity, Simpson's diversity, Richness, Pielou's evenness, and Faith's phylogenetic diversity were all the 

metrics considered. Faith's Phylogenetic Diversity metric was used only at the ASV (amplicon sequence 

variant) level, which offers a more nuanced view of the evolutionary relationships between microbial taxa.  

Shannon Index (H) 

The Shannon index measures a community's evenness and richness. It offers a more thorough measurement 

of variety by accounting for the abundance of every species. A community with a higher Shannon diversity 
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has a greater number of species and a more uniform distribution of individuals within those species 

(Magurran,1988). 

 

Simpson Index (D) 

Dominance in a community is emphasized by the Simpson Index. It calculates the likelihood that two 

randomly chosen members of the sample are members of the same species. A more diversified group is 

shown by higher Simpson diversity, which additionally indicates less influence by a single species (Simpson 

1949). 

 

Faith’s Phylogenetic Diversity (PD) 

Faith's PD considers the links between species through evolution. It calculates the phylogenetic tree's total 

branch length, which links every species within a community. 

Greater species richness and the distinct evolutionary history of the community are both indicated by higher 

PD, which denotes greater evolutionary diversity (Faith,1992).  

, 

where di is the branch length connecting species i to its nearest ancestor. 

Pielou’s Evenness (J) 

Pielou's evenness (J index) quantifies the degree of dispersion of individuals within a species within a 

community. It shows how fairly the distribution of species abundance is distributed. Low evenness denotes 

domination by a small number of species, and high Pielou's evenness shows a more even distribution of 

individuals among species (Pielou 1966). 

, 

where H is the Shannon diversity index and S is the species richness 
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Observed Features (Richness) 

To put it simply, richness is the total number of distinct species or traits that exist in a community. More 

species are indicated by higher richness, which reflects the diversity of organisms within a community 

(Hurlbert 1971). 

S, the total count of observed species/features in a sample 

Kruskal-Wallis Statistical Test 

The significance of variations in alpha diversity indices: Shannon, Simpson, Pielou's evenness, Richness, 

and Faith phylogenetic diversity, among different samples and groups was evaluated using the Kruskal-

Wallis statistical test. This non-parametric test applies to this specific kind of data and was used at the three 

taxonomic levels considered as it compares multiple independent groups. The p-values derived from the 

Kruskal-Wallis test information regarding the presence of statistically significant differences in diversity 

metrics between the groups. In terms of alpha diversity, a low p-value suggests that at least one group differs 

from the others significantly. Understanding the differences in species richness, evenness, and phylogenetic 

diversity is essential for clarifying microbial communities' dynamics and ecological structure in each sample 

among different covariates. The statistical significance was set at a conventional threshold of p < 0.05 

(Kruskal and Wallis 1952). 

, 

N is the total number of observations across all groups, 

K is the number of groups 

Ri is the sum of ranks for group i 

ni is the number of observations in group i 

The test statistic H follows a chi-squared distribution with K - 1 degrees of freedom. The null hypothesis 

assumes that the populations from which the samples are drawn have identical distributions, and a low p-

value indicates rejection of this hypothesis, suggesting at least one group significantly differs from the 

others. 
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Beta Analysis 

Beta diversity analysis provides insights into the diversity between different samples, emphasizing the 

compositional dissimilarity across microbial communities (Lozupone and Knight 2005). In this study, beta 

diversity was assessed using the versatile R package vegan (Oksanen et al., 2007), specifically designed for 

ecological and diversity analyses. The analysis involved the calculation of dissimilarity matrices using Bray-

Curtis, and Jaccard metrics. These matrices were further visualized using principal coordinates analysis 

(PCoA) to represent the relationships between samples in a low-dimensional space.  

Principal Coordinate Analysis (PCoA) (classical scaling) on a given distance matrix D can be computed 

more easily with the help of the function pcoa, which is used in ecological and diversity investigations. 

Pairwise distances between samples are converted into a collection of orthogonal axes, or primary 

coordinates, using the PCoA technique, which reveals the underlying structure of the data. Gower first 

presented this method in 1966, and it provides a geometrically intuitive depiction of the data's dissimilarity 

patterns. The relationships between samples based on their dissimilarity profile can be seen and understood 

according to the computed main coordinates. The pcoa function, in particular, applies two corrective 

techniques to solve issues related to negative eigenvalues in the analysis, improving the robustness and 

dependability of the findings. 

Bray Curtis Dissimilarity Matrix 

In ecology, the Bray-Curtis dissimilarity is a commonly employed metric that measures the compositional 

dissimilarity of two distinct locations or samples by considering the relative abundances of several species. 

Because it considers both the existence and abundance of species, this dissimilarity index is appropriate for 

research on community ecology. Whereas a larger number denotes greater dissimilarity between samples, a 

lower Bray-Curtis dissimilarity shows greater similarity between samples (Bray and Curtis 1957).  

The mathematical formula for Bray- Curtis dissimilarity is given by: 

, 

Where a and b represent the total abundances of species in the two samples, and c represents the sum of the 

minimum abundances for each shared species. 
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Jaccard Dissimilarity Matrix  

A typical metric in ecological and biological investigations to measure the degree of dissimilarity between 

two sets, highlighting the presence or lack of shared features, is the Jaccard dissimilarity matrix. Evaluating 

compositional changes between samples is particularly useful in community ecology. By dividing the total 

number of unique elements in each set by the total number of elements in both sets together, the Jaccard 

dissimilarity index is computed (Magurran 2004). 

Mathematically, it can be expressed as: 

, 

where A and B represent two sets being compared. A Jaccard dissimilarity value of 0 indicates complete 

similarity, while a value of 1 signifies complete dissimilarity. 

Differential Abundance Analysis 

MaAsLin2 package on the R environment was employed for this analysis. MaAsLin2 is a technique 

intended to find relationships in large-scale population research between complicated metadata and 

microbiome meta-omics traits. To customize the analysis to the particulars of your study, this software 

provides a range of analysis techniques, including filtering, normalization, and transform options. It also 

supports numerous variables and repeated measures. Input data and metadata files in a tab-delimited format 

are needed to use MaAsLin2. After that, the output is sent to a specified folder. The criteria, which include 

minimum abundance, prevalence, and variance, can be customized by users to meet the specific needs of 

their studies. The software uses the q-value, or significance threshold, to find relationships. The correction 

method used for the DA analysis is the Benjamini-Hochberg method. 

A key feature of MaAsLin2 is its ability to handle the normalization and transformation of data, allowing 

users to choose the most suitable methods for their datasets. Additionally, the tool supports various analysis 

methods and provides options for both fixed and random effects in the model. Corrections for computing q-

values, such as standardization and z-score application, further enhance the robustness of the analysis. The 

software also offers visualization options, including heatmaps and scatter plots, to aid in interpreting the 

significant associations. 
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Notably, MaAsLin2 supports parallel processing with the option to specify the number of R processes to run 

concurrently. Users can choose to save full model outputs and customize the reference factor for variables 

with more than two levels. In summary, MaAsLin2 provides a user-friendly platform for comprehensive 

association analysis in microbiome studies, offering flexibility and customization to meet the unique needs 

of different research projects (Mallick et al.,2021).  

 Benjamini-Hochberg (BH) correction method 

The Benjamini-Hochberg (BH) correction method is a widely utilized statistical technique for controlling the 

false discovery rate (FDR) in multiple hypothesis testing within scientific research. This method aims to 

mitigate the risk of erroneously identifying statistically significant results when conducting numerous 

comparisons simultaneously. By adjusting p-values, the BH correction strikes a balance between identifying 

true positives and minimizing false positives. BH correction method offers practicality and it enhances the 

reliability of findings in studies with multiple comparisons Benjamini, Y., & Hochberg, Y. (1995). 
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4. RESULTS AND DISCUSSION 

Data Overview  
In this study, a total of 40 pigs were considered, consisting of 10 sows and 30 piglets. The piglets were 

organized into families, each comprising one mother and three piglets. Among the piglets, there were 16 

males and 14 females. All 40 animals underwent testing at three different time points: 24 hours, 96 hours, 

and 240 hours. For piglets, the testing times were after birth. This resulted in a total of 120 samples 

collected. All piglet mothers were negative for diarrhea however, a small subset of piglets (5 females and 1 

male) tested positive for diarrhea. Notably, all four positive females exhibited signs of diarrhea at the 96-

hour mark, with no overlap of positive piglets between different testing times. Moreover, at 96 hours, all 

male piglets were negative for diarrhea, and the sole positive male was identified at the 240-hour mark. All 

piglets showed signs of hematic content at the 24-hour time point. It is not surprising for piglets to exhibit 

minimal rectal content during this early stage, reflecting a physiological characteristic typical of their 

developmental phase shortly after birth. 

 

 

 

 

 

Table 4.1 General distribution of data. 

 

  Time 

Covariate Levels Gender # 24 96 240 

Diarrhea 

yes 

Male 1 0 0 1 

Female 4 0 4 0 

no 

Male 31 0 16 15 

Female 54 10 20 24 

hematic 

Male 16 16 0 0 

Female 14 14 0 0 
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Figure 4.1 shows the distribution of samples based on the sex of the piglets (without sows). 

 

Figure 4.2 shows the distribution of samples collected based on the diarrheic status of the piglets (without sows). 

 

Figure 4.3 Distribution of samples collected based on the diarrheic status and the sex of the piglets (without sows) with time. 
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Diversity analysis 

Alpha Diversity Analysis 

The alpha diversity analysis revealed that diarrhea is significant across at the genus, species and ASV 

taxonomic levels for most of the diversity indices. This indicates that the microbial diversity in the gut 

microbiota of diarrheal piglets differs from that of healthy piglets, suggesting changes in both composition 

and richness. 

All taxonomic levels and diversity indices show that sex is a significant factor, except Pielou evenness at the 

species level. There are clear differences between the microbial composition and diversity of males and 

females, and the lack of significance for Pielou's evenness at the species level indicates that the evenness of 

the microbial communities is similar in both genders. 

Except for richness at the ASV level, time indicates that there are temporal changes in the structure and 

diversity of microbial communities, and are significant across all diversity indices and taxonomic levels. 

This suggests that although total diversity and composition vary over time, the quantity of distinct Amplicon 

Sequence Variants (ASVs) does not change much. Changes in the distribution and quantity of already-

existing ASVs are more closely linked to the temporal dynamics in gut microbiota than are the introductions 

of completely new microbial variations. 

The category, which labels samples as siblings of piglets or as sows, is significant for all taxonomic levels 

and diversity indices. This highlights the notable distinctions in the gut microbiota between sows and their 

piglet siblings by emphasizing the significant variations in microbial diversity and composition between sow 

and piglet samples. Table 1.3 below shows the Kruskal-Wallis’s test done for the alpha diversity indexes on 

all samples at different taxonomic levels. Figures in red indicate insignificance in the relevant covariates 

considered. 
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Genus Taxonomic Level Species Taxonomic Level ASV Taxonomic Level 

Covariate Shannon Simpson Pielou Richness Shannon Simpson Pielou Richness Shannon Simpson Pielou Richness 

Diarrhea 2.46E-09 1.78E-08 1.10E-06 3.70E-05 3.48E-09 1.95E-09 3.45E-06 3.64E-05 6.38E-10 4.76E-11 4.28E-07 0.001648769 

Sex 0.01923464 0.01923464 0.028693 1.11E-05 0.03170544 0.01763981 0.079826044 6.03E-05 0.02768 0.03086 0.03968258 0.000285828 

Time 7.90E-05 1.30E-03 0.000298 0.3030253 2.07E-07 1.45E-06 3.44E-06 0.04811085 4.20E-05 8.55E-08 2.84E-07 0.05761195 

Category 1.88E-11 1.28E-12 1.58E-07 6.59E-15 1.99E-07 7.13E-09 1.80E-03 7.43E-12 8.84E-09 1.62E-08 3.38E+05 3.63E-12 

Room 0.730067 0.743424 0.2637106 0.6193903 0.7461528 0.8420008 0.2593462 0.7651181 0.72871 0.63355 0.315465 0.7160923 

Alive 0.4771554 0.4914044 0.1983525 0.7683149 0.4524807 5.24E-01 0.1562268 0.8734865 0.62881 0.782 0.320942 0.8058703 

Transferred 0.2384378 0.2202027 0.1152118 0.567879 0.3325835 0.379665 0.161185 0.4185836 0.43957 0.497739 0.1942135 0.6254032 

Dead 0.550232 0.5268012 0.2554651 0.4126006 0.315968 0.3789265 0.102962 0.7188179 0.603145 0.82027 0.2631124 0.4462988 

Gestations 0.477352 0.4053442 0.2376488 0.3664579 0.6388908 0.6458074 0.2726073 0.2031348 0.68531 0.70692 0.4244554 0.6007767 

Neigh 0.569398 0.5464761 0.2565271 0.6634289 0.7055423 0.7894326 0.3744638 0.565347 0.80301 0.82579 0.4746943 0.8515482 

Weaned 0.7877792 0.6594835 0.709047 0.2409145 0.7530594 0.6839456 0.630157 0.2016978 0.7877792 0.6058457 0.5577493 0.7810955 

     
        

Table 4.2: Kruskal-Wallis’s test done for the alpha diversity indexes on all samples at different taxonomic levels. 
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Figure 4.4: Pielou’s Evenness box plot for Diarrhea 
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Figure 4.5: Observed features (richness) box plot for Diarrhea. 
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Figure 4.6: Pielou’s Evenness box plot for sex 
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Figure 4.7: Observed features (richness) box plot for sex. 
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However, it was necessary to re-evaluate the data because sow samples could have had an impact on our 

conclusions, especially on the results from the sex since all sows are females and there is a huge difference 

in the microbial composition of sows and piglets. We were able to eliminate any possible confounding 

effects from sow samples and concentrate exclusively on piglet samples due to this tactical change. The 

diarrhea variable was also re-grouped into two categories: diarrhoeic and non-diarrheic (combining hematic 

and no). Redefining the diarrhea variable allowed us to improve the accuracy of our research and make sure 

that the piglets' circumstances were the main cause of the patterns in microbial diversity and composition 

that we saw. The objective of identifying and comprehending elements particularly related to piglet health 

and gut microbiota dynamics is in line with this methodical approach. Table 1.4 shows the result of the 

Kruskal-Wallis’s test done for the alpha diversity indexes on samples from only piglet and diarrhea 

organized into two levels (diarrheic and non-diarrheic) at different taxonomic levels. 

 Genus Taxonomic Level Species Taxonomic Level ASV Taxonomic Level 

Covariate Shannon Simpson Pielou Richness Shannon Simpson Pielou Richness Faith Shannon Simpson Pielou Richness 

Diarrhea 0.039885 0.038598 0.03738 0.08096 0.250499 0.434559 0.334406 0.054408 0.270932 0.209769 0.29041 0.290417 0.01481 

Sex 0.274941 0.190126 0.691886 0.281 0.674076 0.639008 0.839766 0.27179 0.24417 0.502043 0.486716 0.974192 0.670904 

Time 5.65E-06 1.29E-04 2.14E-04 1.59E-01 3.64E-07 3.87E-07 2.37E-05 6.28E-01 5.45E-04 9.66E-08 1.17E-08 4.74E-06 5.54E-02 

Room 0.760305 0.702833 0.417431 0.494651 0.870581 0.897785 0.610121 8.12E-01 6.65E-01 0.858372 0.795765 0.525538 0.716092 

Alive 2.62E-01 1.86E-01 1.12E-01 5.29E-01 4.74E-01 4.48E-01 1.67E-01 0.912514 0.494742 5.85E-01 7.29E-01 3.04E-01 6.88E-01 

Transferred 0.112927 0.074382 0.07261 0.015589 0.336126 0.300636 0.01724 3.56E-01 4.16E-01 0.305151 0.432623 0.252826 0.599689 

Dead 5.70E-01 3.82E-01 2.00E-01 3.02E-01 3.68E-01 3.62E-01 8.81E-02 6.61E-01 5.18E-01 0.766473 8.70E-01 3.67E-01 4.69E-01 

Gestations 0.246909 0.547186 0.205819 0.302688 0.368215 0.368215 0.442813 3.31E-01 7.83E-01 0.369181 0.547186 0.388399 0.451673 

Neigh 3.65E-01 2.55E-01 1.97E-01 3.55E-01 6.36E-01 6.36E-01 3.71E-01 2.03E-01 6.74E-01 0.71973 7.72E-01 5.74E-01 6.43E-01 

Weaned 0.484812 0.448486 0.611516 0.097115 0.658387 0.581347 0.581347 6.68E-01 4.33E-01 0.59322 0.425178 0.633696 0.6831 

 

Table 4.3: Kruskal-Wallis’s test done for the alpha diversity indexes on samples from only piglets(without sows) and diarrhea organized into two 

levels (diarrheic and non-diarrheic) at different taxonomic levels. Figures in red indicate insignificance in the covariate focused on (diarrhea and 

sex in this case). 

 

 

 



 45 

 

 

 

Figure 4.8: Pielou’s Evenness box plot for diarrhea after considering hematic samples as non-diarrheic. 
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Figure 4.9: Observed features (richness) box plot for diarrhea after considering hematic samples as non-diarrheic. 
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Figure 4.10: Pielou’s Evenness box plot for samples from piglets only 
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Figure 4.11: Observed features (richness) box plot for sex considering samples from Piglets only. 
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Diarrhea shows significance at the genus level across all diversity indexes, except for richness. Diarrhea was 

insignificant at the species and ASV taxonomic levels. This persistence at the genus level implies a 

consistent divergence in the gut microbiota of piglets with diarrhea compared to those without diarrhea at 

the genus level. 

The variable of sex has become statistically insignificant across all taxonomic levels and diversity indexes. 

This alteration underscores the influence of sow samples on the initial analysis, revealing that the microbial 

differences between male and female piglets lose statistical significance when sows' samples are excluded. 

This adjustment emphasizes that the gut microbiota of sows significantly differs from that of piglets, 

impacting the initial association observed between sex and microbial composition. 

Time, and diarrhea (only at the genus level) were found to be significant based on the results of the alpha 

diversity analysis. The impact of these two factors on changes in the microbial community was then the 

particular focus of the beta diversity analysis. 

Beta Diversity Analysis 

Two-dimensional PCoA visualizations was plotted employing Bray-Curtis and Jacccard distances. The result 

shows how time and diarrhea affect the microbial dynamics in the swine. The resulting plots are shown in 

Figures 4.12 and 4.13. These graphics provide a thorough understanding of the complex interactions 

between microbial communities by employing Bray Curtis and Jaccard dissimilarity metrics, respectively. 

The results obtained from these two dissimilarity matrices showed no significant variations.  

At the considered taxonomic levels, it is evident that a microbial composition is formed as soon as 24 hours 

after birth, highlighting a more distinct microbial profiles at 24 hours post-birth. Microbial communities 

exhibit a tendency towards convergence as time increases to 96 and 240 hours, which is noteworthy as it 

implies stability of the gut microbiota. 

However, as the gut microbiota of sows is thought to be more stable than that of piglets, incorporating sow 

samples in this analysis may have an impact on the orientation of clusters and result in an inaccurate 

conclusion. To grasp the scenario better, the sows in the graphics need to be highlighted. The outcome of this 

is displayed in figures 4.14 and 4.15. 
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Figure 4.12: 2D PcoA visualization of Bray Curtis’s dissimilarity metric showing the microbial dynamics between samples considering time and 

diarrhea. 
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Figure 4.13: 2D PcoA visualization of Jaccard dissimilarity metric showing the microbial dynamics between samples considering time and 

diarrhea. 
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Figure 4.14: 2D PcoA visualization of Bray Curtis dissimilarity metric showing the microbial dynamics between samples considering time and 

diarrhea with sows accentuated. 
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Figure 4.15: 2D PcoA visualization of Jaccard dissimilarity metric showing the microbial dynamics between samples considering time and 

diarrhea with sows accentuated. 



 54 

Upon closer examination at the 24-hour mark, the clusters of bacteria in the piglets' guts and those in their 

sows' guts are noticeably different at first. This discrepancy implies that piglets rapidly form their distinct 

microbial communities, potentially impacted by early exposure and colonization mechanisms. However, at 

96 and 240 hours post-birth, an interesting image emerges, especially at the genus and species levels. The 

mothers' and the piglets' microbial compositions here show a small overlap, suggesting that the microbial 

structures of piglets have evolved over time. This finding points to the possibility of shared environmental 

impacts or microbiological traits being transferred from mothers to piglets. Importantly, the gut microbial 

makeup of the sows remains more stable over time compared to the changes observed in piglets. This 

highlights the consistency of the maternal microbial reservoir. Exploring these time-related and taxonomic 

details gives us valuable insights into the complex relationship between the gut microbiota of sows and 

piglets with time. 

A 3D PCoA graphic as seen in figures 4.16-4.18 was created with each time split to see the dynamics of 

what occurs at each time in a 3D view in order to examine the interaction between the gut microbiota of 

sows and piglets over time in more detail across the different taxonomic levels. 
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3D PCoA bray Curtis Genus Taxonomic  level 

At 24 hours 

 

At 96 hours 

 

At 240 hours 

 

Figure 4.16: 3D PcoA visualization of Bray Curtis dissimilarity metric at the genus level showing the microbial dynamics between sows and 

Piglets. 
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3D PCoA bray Curtis Species Taxonomic level 

At 24 hours 

 

 

At 96 hours 

 

 

At 240 hours 

 

Figure 4.17: 3D PcoA visualization of Bray Curtis dissimilarity metric at the species level showing the microbial dynamics between sows and 

Piglets. 
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3D PCoA bray Curtis ASV level 

At 24 hours 

 

 

At 96 hours 

 

 

At 240 hours 

 

 

Figure 4.18: 3D PcoA visualization of Bray Curtis dissimilarity metric at the ASV level showing the microbial dynamics between sows and 

Piglets. 
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Interestingly, a clear shift toward the microbial composition of sows at the genus level was detected, which 

is most noticeable at the 96-hour mark. This implies that piglets and their mothers engage in dynamic 

interaction or possible sharing of microbiological characteristics, which may be impacted by variables such 

as nursing or close physical contact. However, at 240 hours, a faint but noticeable separation reappears, 

mirroring the situation seen at 24 hours.  

When considering the species level, we see something similar happening, but with less movement and 

interaction. This might point to a more limited impact or targeted transfer of particular microbiological taxa 

between sows and piglets. A completely different situation emerges at the ASV level, demonstrating a 

constant and clear differentiation between sows' and piglets' microbial dynamics throughout the different 

sampling times. 

Next, an additional examination is conducted to determine whether there is an association between the 

microbial features of sows and piglets belonging to the same family at different times.  Different colors were 

used to symbolize each family in this 2D PCoA visualization. 

 

 

 

Genus Taxonomic Level 
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Figure 4.19: 2D PcoA visualization of Bray Curtis dissimilarity metric at the genus level showing the microbial dynamics between sows and 

Piglets of the same family. 

 

Species Taxonomic Level 
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Figure 4.20: 2D PcoA visualization of Bray Curtis dissimilarity metric at the species level showing the microbial dynamics between sows and 

Piglets of the same family. 

 

ASV Taxonomic Level 
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Figure 4.21: 2D PcoA visualization of Bray Curtis dissimilarity metric at the ASV level showing the microbial dynamics between sows and 

Piglets of the same family. 

Sows and piglets belonging to the same family do not share clear microbial associations. The sow samples 

were separated for additional analysis to see whether piglets from the same sow or family shows any 

significant similarity of microbial traits. 
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Genus Taxonomic Level 

 

 

 

Figure 4.22: 2D PcoA visualization of Bray Curtis dissimilarity metric at the genus level showing the microbial dynamics between Piglets of the 

same family. 



 63 

Species Taxonomic Level 

 

 

 

 

Figure 4.23: 2D PcoA visualization of Bray Curtis dissimilarity metric at the species level showing the microbial dynamics between Piglets of 

the same family. 
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ASV Level 

 

 

 

 

Figure 4.24: 2D PcoA visualization of Bray Curtis dissimilarity metric at the ASV level showing the microbial dynamics between Piglets of the 

same family. 
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There are no clear associations or relationships between the microbial compositions of piglets from the same 

family. The absence of a distinct microbiological connection among piglet samples is indeed surprising. 

Given that piglets from the same sow share the same room, it would be reasonable to expect some degree of 

microbial sharing between them. However, the study results defy this expectation, suggesting that the 

microbial communities in piglets are less interconnected than anticipated. Moreover, the insignificance of 

the living space factor (room) across all alpha diversity indexes supports this outcome, emphasizing the 

consistency of the findings. This discovery raises intriguing questions about the factors influencing 

microbial transmission in this particular piglet-sow environment. Consequently, further investigation is 

needed to delve into the dynamics of microbial interactions within this specific context. 
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Differential Abundance Analysis 
Differential abundance (DA) analysis focused exclusively on the species level to attain a detailed 

understanding of microbial communities, surpassing the broader taxonomic resolutions such as genus. To 

enhance interpretability, time was transformed into a categorical variable, setting 24 hours as the reference 

point for a clearer heatmap presentation. 

Upon analysis, a notable trend emerged as seen in Figure 4.25, indicating that the majority of significantly 

altered bacteria exhibited increased abundance from 24 hours to 240 hours. However, exceptions were 

observed in the cases of C. perfringes and Parvimonas, which displayed a decline in abundance from 96 to 

240 hours concerning the reference at 24 hours. 

 

Figure 4.25: Heat map showing the DA of Piglets & Sows at different times with 24 hours as a reference. 
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Feature  metadata  value  coef  stderr  N  N.not.0  pval  qval  

Clostridium perfringens  time  time  -1.1393 0.1504 120 120 8.95E-12 1.27E-09 

Lachnospiraceae  time  time  0.59823 0.0886 120 118 5.72E-10 4.06E-08 

Anaerotruncus time  time  0.888076 0.1413 120 20 5.73E-09 2.71E-07 

Ruminococcus time  time  0.492662 0.0839 120 118 4.08E-08 1.45E-06 

Fusobacterium  time  time  -0.78482 0.1407 120 120 1.58E-07 4.25E-06 

Parabacteroides  time  time  0.675239 0.1217 120 118 1.80E-07 4.25E-06 

Tissierellaceae time  time  0.226249 0.0447 120 65 1.55E-06 3.15E-05 

Clostridium lavalense  time  time  1.059733 0.2121 120 26 2.05E-06 3.64E-05 

Blautia producta  time  time  0.678316 0.1398 120 103 3.76E-06 5.94E-05 

Eggerthella lenta  time  time  0.793603 0.1659 120 22 5.01E-06 7.12E-05 

Faecalibacterium 

prausnitzii  
time  time  0.608328 0.1304 120 16 8.20E-06 0.000106 

 

Table 4.4: Top significant features that are differentially abundant in Piglets & Sows at different times with 24 hours as a reference. 

 

Interestingly, Fusobacterium was absent at 96 hours but reappeared at 240 hours but at a diminished 

abundance compared to the reference at 24 hours. This temporal pattern suggests a dynamic microbial 

response over the tested time intervals. The decrease in abundance of certain bacteria could potentially be 

linked to shifts in the microbial community's composition or adaptations to the evolving gut environment. 

Furthermore, another analysis DA analysis performed was to check the general differentially abundant 

microbial taxa between sows and piglets without reference to any time. The table below (table 4.5) shows 

the results obtained. 

The majority of the most significant differentially abundant taxa are less abundant in the piglets except 

Clostridium aldenense, Fusobacteriaceae, and Enterobacteriaceae. Campylobacteraceae campylobacter is 

the most significant differentially abundant taxa. 

Table 4.6 shows the result of another important DA analysis done was on piglet samples only across 

different sampling times using the 24-hour mark as a reference. Figure 4.26 and Table 4.6 shows the results. 

The differential abundance (DA) study reveals C. perfringens as a major finding. It shows a considerable 

decline in abundance beginning 24 hours post-birth and continuing to drop at 96 and 240 hours. Notably, C. 

perfringens consistently emerges as the most differentially abundant characteristic, demonstrating a drop in 

abundance post the 24-hour sample time, when comparing piglets and sows at different time points with 24 

hours as a reference. 
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Feature  Metadata  value  coef  stderr  N  N.not.0  pval  qval  

Campylobacteraceae 

Campylobacter 
Category  

Piglet 

Sibling  
-2.8177 0.162 120 118 2.53E-34 3.60E-32 

Paraprevotellaceae Category  
Piglet 

Sibling  
-5.15479 0.3605 120 26 1.61E-27 1.14E-25 

Clostridium aldenense  Category  
Piglet 

Sibling  
1.33647 0.0977 120 101 4.27E-26 2.02E-24 

Coriobacteriaceae  Category  
Piglet 

Sibling  
-4.0402 0.3206 120 39 1.37E-23 4.88E-22 

Fusobacteriaceae Category  
Piglet 

Sibling  
4.169793 0.3403 120 98 9.09E-23 2.58E-21 

Spirochaetaceae Category  
Piglet 

Sibling  
-3.19615 0.2876 120 20 4.54E-20 9.20E-19 

Enterobacteriaceae Category  
Piglet 

Sibling  
3.306633 0.3061 120 114 2.50E-19 4.44E-18 

Pyramidobacter  Category  
Piglet 

Sibling  
-2.27897 0.232 120 19 5.24E-17 8.27E-16 

Bulleidia Category  
Piglet 

Sibling  
-2.21402 0.2306 120 17 1.77E-16 2.51E-15 

 

Table 4.5: Top significant features that are differentially abundant in Piglets & Sows with no reference to time. 

 

Furthermore, an analysis done on piglets’ samples alone as shown in the figure 4.26 again indicates that C. 

perfringes is the most significant differential abundant feature. The first four of the five cases of diarrheal 

samples happened at 96 hours, whereas the fifth sample wasn't seen until 240 hours. According to this, we 

can hypothesize that number of diarrhea cases decrease as C. perfringens abundance decreases from 96 to 

240 hours. 

This remark is supported by a review of the literature. Necrotic enteritis is the term for C. perfringens 

associated with diarrhea in pigs. Jacobson (2022) claims that diarrhea, tiredness, and slowed development 

rates are the normal symptoms of this sickness in young pigs. In their elaboration on the pathophysiology, 

Mehdizadeh-Gohari et al. (2021) emphasize C. perfringens' ability to produce toxins, specifically the NetB 

toxin in type A strains. This toxin destroys the lining of the stomach, interfering with normal gut function. 

As noted by Lee and Lillehoj (2022), this disruption leads to the development of necrotic lesions and 

inflammation, manifesting in diarrhea and other clinical signs. 
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Figure 4.26: Heat map showing the DA of only Piglets at different times with 24 hours as a reference. 

 

FEATURE  metadata  value  coef  stderr  N  N.not.0  pval  qval  

C. perfringens  time  240 -3.911 0.3288 90 90 6.20E-20 1.46E-17 

C. perfringens  time  96 -2.5013 0.3288 90 90 3.09E-11 3.65E-09 

Parvimonas time  240 -1.2513 0.1674 90 84 5.65E-11 4.44E-09 

Anaerotruncus time  240 2.6844 0.4095 90 20 3.79E-09 2.24E-07 

Tissierellaceae time  240 0.7172 0.111 90 35 5.76E-09 2.72E-07 

Lachnospiraceae time  240 1.5746 0.2729 90 88 1.20E-07 4.04E-06 

Ruminococcus gnavus  time  96 1.9408 0.3347 90 88 1.05E-07 4.04E-06 

Clostridium lavalense  time  240 3.4723 0.6316 90 26 3.79E-07 1.12E-05 

Parvimonas  time  96 -0.9105 0.1674 90 84 4.81E-07 1.26E-05 

Campylobacter time  240 0.2845 0.0532 90 88 7.18E-07 1.70E-05 

 

Table 4.6: Top significant features that are differentially abundant only in piglet samples across the different times with reference to the 24 hours. 

 

Finally, the microbial differential abundance between diarrheic and non-diarrheic samples was examined. 

Table 4.7 shows the outcome. Contrary to expectations, C. perfringens is not part of the significant 
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differential abundant taxa. The claim that the decrease in abundance of C. perfringens from the 24-hour to 

240-hour sampling times might be associated with the occurrence of diarrhea is questionable. Furthermore, 

none of the featured taxa in this particular DA analysis has a significant q-value. 

Feature  metadata  value  coef  stderr  N  N.not.0  pval  qval  

Bacteroides ovatus  diarrhea_status  diarrheic  2.604367 0.809517 90 88 0.00181 0.167614 

Erysipelotrichaceae  diarrhea_status  diarrheic  -0.68509 0.223109 90 56 0.00284 0.167614 

Bacteroides diarrhea_status  diarrheic  1.654933 0.591164 90 88 0.00629 0.247425 

 

Table 4.7: Top significant features that are differentially abundant in piglet diarrheic and non-diarrheic samples. 
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5. CONCLUSIONS 
The primary aim of this research is to comprehend the intricacies of C. difficile infection, particularly how 

other gut microorganisms interact synergistically or antagonistically with this infectious bacterium. 

Surprisingly, the examination of the pig farm revealed the absence of C. difficile. Initially, there was 

suspicion regarding the differential abundance of C. perfringens at various sampling times, assuming a 

potential link to the diarrheic status of piglets. This because Clostridium perfringens has been linked to 

diarrhea in pigs. According to Jacobson (2022), the disease causes diarrhoea, tiredness, and a drop in growth 

rates in young piglets. Number of diarrheic piglets reduces from four at 96 hours after birth of piglets to one 

at 240 hours after birth. This reduction in number of diarrheic piglets was thought to be related to the 

decrease in the differential abundance of C. perfringens.  However, DA analysis between diarrheic piglets 

and non-diarrheic piglets indicated that this might not be the case. This is because we would expect to 

observe a notable change in abundance of C. perfringens between the two categories. This was not the case 

as the most significant differential abundant species was Bacteroides ovatus and has an insignificant Q-

value.  

Interestingly, the beta analysis unveiled a noteworthy shift in the microbial composition of piglets, both at 

the genus and species levels, towards that of the sow from 24 hours to 240 hours post-birth. However, this 

trend experiences a deviation, marked by a noticeable separation at the 240-hour mark. Additionally, it is 

evident that the gut microbiota of sows remains relatively more stable compared to that of piglets. Some of 

the most significant genera that are differentially abundant between sows are piglets are Campylobacter, 

Clostridium aldenese, and Paraprevotellaceae. Of this list C. aldenese was the more abundant in piglets 

while the others were less abundant. Zhang et al. (2018) propose that C. aldenense holds promise in 

enhancing short-chain fatty acid (SCFA) production within the pig gut, thereby fostering intestinal health 

through mechanisms such as pH reduction, inhibition of pathogenic bacteria, and provision of nourishment 

to gut cells. Their study was conducted on weaning pigs fed varied fiber sources, suggests that inclusion of 

C. aldenense in diets may confer these beneficial effects. Additionally, it is posited that C. aldenense could 

outcompete and suppress detrimental bacteria in the gut, potentially further bolstering gut health (Li et al., 

2014). 
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For future improvement, this experiment could benefit from sampling a pig farm confirmed to have a C. 

difficile infection. This would require establishing a connection and trust between pig farmers and scientists. 

Furthermore, extending the sampling duration to include more days, with samples collected on a 24-hour 

basis, could provide a broader understanding of the dynamic evolution of the gut microbiota in piglets and 

the influential role of sows in shaping these dynamics. 
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