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Abstract

In recent years, a variety of deep learning techniques have been applied to natu-
ral language processing (NLP), the branch of artificial intelligence that focuses
on the machine’s ability to handle, understand and derive meaning from hu-
man languages. In most of cases, in order to create high performance models, a
large amount of data and a lot of computational power is needed. Recent pow-
erful hardware and new techniques for learning language from large datasets,
such as transfer learning, allowed to increasingly apply natural language pro-
cessing methods in different new tasks and domains. These new generation
models are capable of creating effective word numerical representations that
can be effective in tackling many NLP tasks.

Despite these improvements, it is still difficult to produce high-level repre-
sentations of sentences in a text. A recent research program, started at the
University of Padova and called dialogical science, proposes a novel method-
ology for analyze texts. Its aim is to examine a text focusing on how natural
language has been used to communicate a concept and the future impacts and
reactions it may generate. The study of a text using dialogical science is per-
formed through the detection of 24 text units, called discursive repertoires,
which provide a high-level analysis of text.

The main objective of this thesis is explore how dialogical science could
be used provide meaningful sentence-level representations for NLP tasks.. In
order to reach the goal, the thesis proposes a deep learning pipeline to predict
discursive repertoires from online texts and use them as features for down-
stream NLP tasks. It is empirically shown the effectiveness of this approach
on subjectivity classification, polarity classification and irony detection. The
state of the art on irony detection is outperformed using only this novel rep-
resentation.
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Chapter 1

Introduction

The idea of having machines capable of understanding human language has
always fascinated scientists. The set of techniques that focus on the machine’s
ability to understand, interpret and generate human language is called natural
language processing (NLP). After a first period in which NLP was dominated
by rule-based approaches, the breakthrough came with the application of new
machine learning techniques, a class of algorithms that allows to learn from
experience. In modern days, the high production of textual data from the
Internet has increased the effectiveness of machine learning approaches and
NLP applications became increasingly widespread. For example, some of its
applications are voice assistants, automated translators, and text classifiers.

Like other artificial intelligence fields, NLP has obtained a significant per-
formance improvement with the use of neural networks and deep learning tech-
niques. The standard approach for supervised machine learning tasks was to
train a neural network directly on the training set for the downstream task. As
opposed to the standard training step, a more recent approach, called transfer
learning, has divided the training phase into two steps. In the first step, the
model is trained on a large corpus, in order to learn effective word represen-
tations from text. Then, the pretrained model is fine-tuned on the smaller
training set for solving the supervised learning task. Numerous works have
shown that this technique is effective on downstream NLP tasks because the
statistical properties learned from a large dataset allow to produce useful vec-
torial representations at word level, i.e. word embeddings. Most advanced
representations also take context into account.

The text representation problem is one of the most important in the NLP
field, because it has to deal with ambiguity of language and many other prob-
lems. Ambiguity is present at word-level, such as cases of polisemy, that is,
multiple meanings for a single word. In that case, pretrained models seem
to offer an effective solution to overcome this class of problems. However,
ambiguity is present also at sentence-level and more in general, high-level rep-
resentations are more difficult to be generated. Some sentences do not have
clear interpretations, for humans as well. Examples of sentence-level ambigu-
ities are syntactic and semantic ambiguity. Semantic ambiguity is related to
the context and interpretation of a sentence. For instance, ironic sentences can
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be ambiguous because they present a figurative language, not easy to interpret
for a machine. Despite large improvements in NLP downstream tasks due to
the use of large pretrained models, these models seem to be not so effective in
cases in which is important to detect properties at an higher-level than words.
This is due to the fact that good sentence-level representations would need
pretrained models trained on order of magnitude more data.

From a linguistic point of view, there are many ways to perform high-level
text analysis and extract linguistic properties from a sentence. In most of
cases it is performed a content analysis, focusing on the meaning of a text. A
research program born at the University of Padova, called dialogical science,
proposes a different approach, focusing on other features of the text, confining
the meaning to a secondary role, and extracting clear and easy to interpret
properties from text. The main goal of dialogical science is to analyze the
method in which the content of a text is conveyed, detecting its capacity to
produce new different impacts and interactions with the other speakers. For
instance, if we analyze from this point of view the sentence “All politicians
are evil!”, we can predict with a certain degree of accuracy that probably this
person is not open to a discussion about his opinion, so we can exclude future
interactions regarding a change of his position. Instead, a soft approach such as
“We need a better political class” indicates an inclination toward collaborative
approaches regarding the topic of the text. Hence, in the dialogical science,
the analysis of a text focuses not on the meaning, which is pretty similar in the
two sentences, but on the way a concept is expressed, to predict and anticipate
future and possible impacts as answer to the way a concept is conveyed.

To apply this approach, simple text units are detected during the analysis,
called discursive repertoires. The detection of discursive repertoires is the main
task in performing this kind of analysis. Discursive repertoires are 24 different
classes in which a piece of text can be categorized. So, during the process, the
text is partitioned into different spans with an assigned class. Although each
class presents some technical features, not easy to understand and interpret
without a deep knowledge of dialogical science, these classes and their names
are representative of the way a concept is expressed. Some examples are the
class “opinion” related to subjective declarations, or “Non answer” indicating
a lack of interest or thoughts about a topic. This explicit set of categories
makes it easier to interpret which properties are useful in solving a problem
independently of the context and the topic. In fact, numerous projects focused
on this methodology are born to help people in different areas, independently
from the context. During COVID-19, dialogical science has been used to study
reactions of a community about the evolution of the ongoing pandemic and
estimate its level of cohesion to fight the emergency. Moreover, a similar
approach is applied to provide psychological support to cancer patients, during
the postoperative period. These are only two examples that show a variety of
application of the dialogical science.

The flexibility and generalization ability of this methodology could help to
overcome the problem of high-level representations of texts. An automated
detection of discursive repertoires in texts that come from other NLP tasks
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can provide high-level properties useful to solve that downstream task. On the
other hand, from the dialogical science researcher’s point of view, a machine
learning approach can automate a time-consuming task, allowing to analyze a
large quantity of texts and finding new interesting applications of this theory
to help people.

1.1 Goal and contributions

In this scenario, the main goal of this thesis is to investigate possible positive
impacts of dialogical science when used in the context of NLP tasks. The
contributions of this thesis to the pursuit of the main goal are the following:

• Problem modeling: This thesis proposes an effective deep learning ap-
proach to solve the discursive repertoires prediction task. The problem
is divided into two subtasks and solved independently. The first one deals
with the detection of spans delimiting each repertoire. This is a sequence
tagging task. The second one is a multi-class classification task. Given
a span of text, the goal is to identify the repertoire in it;

• Model evaluation: This thesis proposes a critical analysis of metrics use-
ful to evaluate the performance of the described approach. The analysis
focuses on the independent evaluation of the two tasks, and on a global
evaluation of the entire pipeline. For all the evaluations, it is shown their
drawback for the task;

• Demonstration of effectiveness on downstream tasks: This thesis covers
an analysis of the use of discursive repertoires as features to improve
performance in more common NLP tasks. To verify the effectiveness,
it is proposed a model that takes in input different representations of
discursive repertoires as alternative to the raw text, to solve a task. Three
tasks are considered: subjectivity classification, polarity classification
and irony detection.

In order to describe in details the contributions of this document, its struc-
ture is organized as follows. Chapter 2 provides the necessary background on
dialogical science, machine learning and NLP. The focus is on the deep learn-
ing technique used in the main models. Chapter 3 covers the implementation
and experiments about the model for discursive repertoires prediction, and a
presentation of the Hyperion dataset used to train models. Chapter 4 presents
the text segmentation task as a subroutine of the dialogical science method.
Chapter 5 is focused on the evaluation of the entire pipeline for the detection
of discursive repertoires. Chapter 6 applies the previous work to a series of
downstream NLP tasks and compares the performance of this approach with
those already published. To conclude, chapter 7 covers the discussion about
results obtained in relation to the goal and the contributions, and then a brief
presentation of the future work to expand the project.

CHAPTER 1. INTRODUCTION 3
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Chapter 2

Background

This chapter aims to provide an overview of the technical knowledge necessary
to understand the techniques and the experiments that will be described in the
next chapters. The first section is a brief presentation of dialogical science, fo-
cusing on its main features and methodologies to analyze interactions between
humans through natural language. The chapter then focuses on natural lan-
guage processing and the application of machine learning techniques to process
and extract meaningful features from written texts.

2.1 Dialogical science

Human language in all its forms, written and spoken, is a fundamental part
of human interactions. Linguistics is defined as the scientific study of human
language. It has many practical applications that allow us to study human
social behavior. Like other academic disciplines, linguistics is divided into
different subfields that focus on different layers that compose our language:
some of them focus more on the internal structure of signs used in a language,
such as morphology and syntax, while others focus on the meaning of these
signs, such as semantics and content analysis.

During an interaction between two human beings, the use of natural lan-
guage allows one to describe reality in a certain way and can generate different
impacts for the other person. For example, the sentence “I think that the
COVID-19 pandemic is not a serious problem” will generate future interac-
tions about this opinion. Instead, the sentence “COVID-19 pandemic is fake!”
does not expect a generation of future interactions with the aim of demon-
strating falsity of this statement, because of the speaker attitude. Therefore,
these interactions can be analyzed not only in terms of the meaning of words
in a text or in a verbal communication, but also in terms of possible following
states of a discourse, called discursive configurations, which can be generated
starting from the previous interaction.

Dialogical science, a research program born in Padova, is a discipline that
deals with the creation of tools and methodologies to analyze and study dis-
cursive configurations generated by human interactions through natural (or
ordinary) languages. Hence, its object of investigation is natural language as

5
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a tool for generating new reality configurations, in the sense that reality is
what we can describe through language, and its aim is to analyze and measure
uncertainty on the configurations generated. All the rules and methodologies
used by a researcher to analyze a text according to dialogical science are en-
closed in the M.A.D.I.T methodology [18] Methodology of Textual Computer
Data Analysis).

Research about dialogical science has detected 24 text units that can be
used to create a configuration, called discurisive repertories and described in
section 2.1.1. Therefore, the M.A.D.I.T methodology is a procedure of logical
rules focused on the detection of these units in a text, taking as a starting
point what has generated the text, that is the question. This element plays an
important role in the discursive configuration and can influence which reper-
toires will be detected. This method allows the analysis and prediction of
positions, thoughts and reactions that a person can assume in the near future
about a particular topic and situation. The procedure is performed manu-
ally by the researchers, so it is a time-consuming task due to the strict rules
for the identification of discursive repertoires. One of the objectives of this
thesis is to automatically detect discursive repertoires through machine learn-
ing techniques to allow to use them for solving downstream natural language
processing tasks.

2.1.1 Discursive repertoires

As stated before, the M.A.D.I.T methodology focuses on the identification of
24 text units that can be combined to change, generate or maintain discursive
configurations. These text units are called discursive repertoires. From the text
data that describe the discursive configuration, the main task is to partition
the text into a sequence of discursive repertoires. The finite set of discursive
repertoires forms and describes all the rules of natural language use adopted by
the speaker, combining them with each other and defining the configuration.
The discursive repertoires are grouped into three different categories related
to the capacity to generate new discursive configurations:

• Mantainance repertories: set of rules of use of the language capable of
preserving the current discursive configuration;

• Generative repertoires: set of rules of use of the natural language ca-
pable of generating new discursive configurations or reconfiguration of
previously available configurations;

• Hybrid repertoires: set of rules of use of the language with mixed capac-
ity. They can be used both for maintaining or generate new configura-
tions.

These three categories and all the repertoires that belong to them are presented
and described in the semiradial table, shown in figure 2.1.

Each discursive repertoire has features that make it different from the oth-
ers:

6 CHAPTER 2. BACKGROUND
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Figure 2.1: Table of discursive repertoires

• Processual properties: properties of a discursive repertoire. Each reper-
toire is made up of a different set of properties. A single property can
belong to multiple repertoires, but a single set specifically belongs to a
repertoire. All the processual properties are in relationship parent-child
to some others, starting from primordial properties at the first level.
Repertories at higher levels are composed of properties already available
at the previous levels;

• Dialogical weight: It is a value assigned that means how much a repertoire
is capable of constructing or generating a new discursive configurations.
The higher the value, the higher its generation capacity.

In table 2.1, all the discursive repertoires and the correspondent category are
shown.
There are some implications from the differences between repertoires shown

in figure 2.1. Some repertoires are similar to others and quite different from
another set. This is due to the category, the level and the dialogical weight.
Hence, during a text analysis, the misclassification of a repertoire could be a
minor or serious error depending on the mislead repertoires.

2.1.2 Practical applications

M.A.D.I.T methodology has been applied in different projects in the field of
psychology and behavioral science with the aim of monitoring, analyzing the
behavior of a community, and help members. Some examples are listed below:

CHAPTER 2. BACKGROUND 7
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Table 2.1: Discursive repertoires

Name Category
Anticipation Generative

Cause of action Mantainance
Certify reality Mantainance
Comment Mantainance

Confirmation Hybrid
Consideration Generative
Contraposition Mantainance
Description Generative

Declaration of aim Hybrid
Evaluation Hybrid

Exemption from responsibility Mantainance
Generalization Mantainance
Judgment Mantainance

Justification Mantainance
Implication Hybrid
Non answer Mantainance
Opinion Mantainance
Possibility Hybrid
Prediction Mantainance
Prescription Hybrid
Proposal Generative
Reshaping Hybrid
Specification Hybrid
Targeting Generative

• Hyperion observatory [38]: During the COVID-19 pandemic, this project
aimed to analyze through M.A.D.I.T methodology text written by citi-
zens, journals, and institutions about the ongoing pandemic. Dialogical
science is used to measure interactions between community members (cit-
izens of Veneto, Italy) and to create an index that quantifies the cohesion
of the community;

• Persuasion index for fake news detection [27]: The aim is to apply
M.A.D.I.T methodology through machine learning techniques for fake
news detection task;

• Management of postoperative course in patients with cancer [29]: This
project aims to provide support during the postoperative period in can-
cer patients, improving the patient’s competence in the management of
postoperative daily life. The M.A.D.I.T methodology is applied by using
questionnaires about quality of life;
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2.2 Machine learning

Artificial intelligence is a large field with many practical applications and
active research topics. This term refers to the computer science subfield that
focuses on methodologies and algorithms capable of simulating characteristics
of human intelligence, such as learning, perception and reasoning.

Machine learning is the artificial intelligence subfield that explores the
ability of a human being to learn from experience. To solve a practical problem
with machine learning, we need three main components:

• Dataset: a collection of examples that represents prior knowledge about
the problem;

• Model: a statistical model able to recognize patterns on data and give
predictions on new data unseen previously;

• Learning algorithm: a computational strategy to build the model ex-
ploiting the dataset. The core problem of machine learning is to train a
model with a learning algorithm to solve a specific task.

A crucial element of the learning phase is feedback. Based on the feedback re-
ceived during learning that is influenced by the different types of data available,
we have four different learning strategies:

• Supervised learning: the dataset is a collection of labeled examples {(xi, yi)}Ni=1.
in which each vector xi is called feature vector and yi is the label. A fea-
ture vector is a vector in which each dimension j = 1, . . . , D contains a
value that describes the example somehow. Each variable can be either
categorical or numerical. The label yi can represent different types of
data. It can belong to a finite set of classes {1, 2, 3 . . . , C}, so in this
case it refers to a categorical variable, or it can be simply a real num-
ber. A supervised learning algorithm exploits labels during training to
produce a model capable of predicting labels taking new unseen feature
vectors in input.

• Unsupervised learning: the dataset is a collection of unlabeled examples
{xi}Ni=1. In that case, we do not receive any feedback during the learning
phase, due to unlabelled data.
The goal of an unsupervised learning algorithm is to create a model that
takes a feature vector x as input and either transforms it into another
vector or a value that can be used to solve a practical problem. Ex-
amples of unsupervised learning tasks are clustering and dimensionality
reduction.

• Semi-supervised learning: the dataset is mixed. It contains labeled and
unlabeled data. A larger dataset represents better the probability dis-
tribution the data came from, so it is possible to help the model during
the training phase adding unlabeled data to solve a supervised task.
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• Reinforcement learning: in that case there is no dataset but an agent is
trained exploiting its interactions with an environment. The idea is to
learn a policy, a function that takes in input a feature vector and returns
the optimal action the agent can do. To learn a policy, the agent receives
a reward each time it performs an action and interacts with the environ-
ment. Examples of reinforcement learning are robot decision making and
game-playing simulation, in which we have to compute sequential action
predictions.

This work focuses on supervised learning applied on text, especially in classi-
fication problems.

2.2.1 Classification problems

A classification problem focuses on predicting the correct label of an unlabeled
example. All tasks described in the following chapters are classification prob-
lems. Given a dataset {(xi, yi)}Ni=1 composed of labeled examples, the main
goal is to generate a model capable of approximate as best as possible an un-
known function f ∗, which for a classifier y = f ∗(x) that maps a D-dimensional
vector x to a label y from a finite set of possible labels. In most of cases the
function f ∗ is not strictly deterministic, but represents a stochastic process,
and the machine learning algorithm is used to learn the conditional probability
distribution P (y|x).

When we select a machine learning model, for example Neural Networks
described in section 2.4 or Support Vector Machines reported in section 2.6,
and then we train it, we select a function h that is the outcome of a search
through a learning algorithm in a hypothesis space H, the set of all possible
functions the model selected can represent. In other terms, the goal is to
define a mapping y = f(x; θ) and choose the best set of parameters θ through
a learning algorithm.

The simplest model implementable is a linear one:

fw,b(x) = wx+ b (2.1)

where w is a vector of weights and b is the bias term. Through a learning
algorithm, the goal is to find the optimal set of parameters θ = (w∗, b∗).

The function 2.1 returns output values in the range [−∞,+∞]. In order
to perform a classification, we may need to normalize the output in a specific
range, for example applying an activation function. In case of binary classi-
fication problems, a possibility is to use the sigmoid function (a.k.a. logistic
function) that returns values in the range (0, 1):

σ(x) =
1

1 + e−x
(2.2)

The final model, known as Logistic regression, looks like this:

fw,b(x)
def
=

1

1 + e−(wx+b)
(2.3)
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Given a threshold t equal to 0.5 the class is positive if fw,b(x) > t otherwise
the class would be negative.

Generally, in case of Multiclass classification a model concludes with a
softmax function:

softmax(xi) =
exi∑︁K
j=1 e

xj

(2.4)

where K is the number of classes. In the multiclass case, the output of the
model will be a vector of probabilities that sums to 1.

This kind of algorithms can be considered shallow, in the sense that they
can learn directly from the input features. The section 2.4 describes why neural
networks allow the implementation of deep models, formed by many layers that
take in input the output of preceding layers, and why this approach can be so
powerful.

2.3 Natural language processing

Natural language processing is a branch of artificial intelligence and linguistics
that focuses on the machine’s ability to handle, understand and derive mean-
ing from human languages in all their forms, both spoken and written. NLP
tasks include low level ones, such as text tokenization and sentence boundary
detection, as well as higher level ones, such as speech recognition, text summa-
rization, name entity recognition, sentiment analysis and question answering

In recent years NLP has become crucial due to the enormous amount of
text data produced every day through social networks, message apps, and in
general all web platforms. These data cannot be analyzed by humans only,
therefore we need to create pipelines able to automatically process text. The
next sections will focus on how to process and represent text in a way that
allows the machine to extract relevant information starting from raw data.

2.3.1 Text processing

Commonly, before tackling higher-level tasks, a set of low-level operations,
which we refer to as text preprocessing pipeline, is first performed. The aim
of a text preprocessing pipeline is to clean and highlight relevant information
from raw and noisy data.

After a basic text cleaning, generally the first important step of a prepro-
cessing pipeline is tokenization. The aim is to reduce unstructured text data to
a sequence of meaningful elements, called tokens. Based on different tokeniza-
tion techniques, a token could correspond to a character, a word as shown in
figure 2.2, or more complex structures such as subword elements. The set of all
tokens generated from the text forms a vocabulary. This phase is crucial not
only for breaking unstructured text data but also for transforming them into
fragments of information that can be considered as discrete elements. After
obtaining a set of different symbols, it could be useful to reduce the number of
possible tokens in the vocabulary. At this point, it is possible to apply basic
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Figure 2.2: Example of tokenization at word level

techniques such as lowercasing all tokens, removing stopwords and normaliz-
ing symbols and numbers. Other possible approaches are to process the tokens
sequence with more powerful techniques, such as stemming or lemmatization.

2.3.2 Text representation

Raw text is composed of a set of symbols without a meaning for the machine.
To build machine learning models capable of working with text data, we need
first to create a representation of the text that contains its features. The
techniques for creating a text representation can roughly be divided into two
categories:

• Sparse representations : given a vocabulary, the text is represented as a
vector with the same length as the vocabulary in which each element
represents a feature related to a token. We can represent a text as a
sequence of tokens using a One hot enconding as shown in figure 2.3,
that is a vector set to 0 for all elements except the one representing the
correspondent token, which is equal to 1. Alternatively, it is possible to
represent the entire text as a single feature vector. Some examples are
Bag of words and TF/IDF.

Taking as reference the one-hot encoding, the main problem of this repre-
sentation is that the vectors are sparse and each representation is equally
dissimilar from the other, so this representation is unable to capture se-
mantic similarities between tokens;

• Dense representations : they are a learned representation of all the to-
kens in the vocabulary through machine learning models such as neural
networks. Generally, this kind of representation is referred to as Word
embeddings. Word embeddings are dense fixed-size vectors of real values
that can represent similarities between tokens. We expect words that are
used in similar ways to result in having similar representations, naturally
capturing their meaning. This is the key benefit in respect to feature-
based representation such as Bag-of-words. Moreover, due to their dense
representation, word embeddings have a low dimensionality that can help
to solve common NLP tasks more easily. Famous neural-based represen-
tations are models Continuous Bag of Words (CBOW) and Skip-gram
shown in figure 2.4.

The main weakness of the two methods cited above is that they represent
a word independently of context. We can think of a context-independent
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word embedding as a combination of all the senses that a specifc word
can have, so this models cannot handle the word polisemy problem. Suc-
cessive works explorate the possibility to solve this problem introducing
contextualized word embeddings. Famous examples are ElMO [28] and
BERT [12] models. Generally contextualized embeddings are produced
with deep learning techniques that are covered in section 2.4.

Figure 2.3: Example of One-hot encodings

Figure 2.4: CBOW vs Skip-gram [24]

Currently, machine learning approaches are the state of the art in most
of natural language processing tasks not only for text representation but also
for classification and generation. Sections 2.4 and 2.5 cover the key points of
recent techniques based on deep learning.
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2.4 Neural networks and deep learning

In recent years, neural networks and deep learning have become hot topics,
due to the ability to outperform many of the general machine learning models,
especially when handling unstructured data such as text, audio and images.

A neural network is a mathematical function y = fNN(x) and in its shallow
version for a classification problem is identical to the logistic regression model.
However the typical neural network has a more complex structure, composed
of nested functions:

fNN = f3(f2(f1(x))) (2.5)

Each of the nested vector functions are called layers and the last function f3
is the output layer.
A single layer can be represented as this:

f l = gl(W lx+ bl) (2.6)

Each function composing the vector is a linear combination between the pa-
rameters and the input that is passed to an activation function gl. Generally
gl is a non-linear function chosen based on the task. If we select a sigmoid, the
model is identical to a logistic regression described in section 2.2.1. As stated
before, generally neural networks are configured in a multi-layer structure, in
which every layer takes as input the output of the previous layer. This archi-
tecture is called feed-forward neural network and can be represented organized
in layers and units as shown in figure 2.5.

In 1987 it was shown that all continuous multivariate functions can be
learned using a three-layer neural network [14]. In recent years, researchers
explored different architectures composed of more than two hidden layers, and
the term Deep learning refers to these approaches. The first question could
be why prefer a deep network to a shallow one after results just described.
Both shallow and deep model can approximate every continuous function but
many empirical demonstrations have shown that a deeper model can achieve
the same performance in terms of approximation accuracy of the shallower in
a more efficient way. (i.e. using less units) [22].

In natural language processing, different deep architectures were proposed
and outperformed other machine learning models. Deep neural networks reached
the state of the art in almost any core NLP task, starting from language mod-
eling, to word embeddings extraction, text classification and text generation.

2.4.1 Learning algorithms for neural networks

After building a neural network architecture, it is necessary to train the model
using a learning algorithm. This section covers the key points about the train-
ing process. In section 2.2.1 it is claimed we want to find the set of parameters
θ that best approximate a target function f ∗. First of all, a loss function is
needed to measure the performance of the neural network.
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Figure 2.5: Example of multilayer neural network from [8]

An example of loss function for binary classification problems is Binary Cross-
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Entropy:

BCE = − 1

N

N∑︂
i=1

yi · log yî + (1− yi) · log(1− yî) (2.7)

where yi is the i-th prediction, yî is the correct label and N is the the number
of samples considered. Since the loss function computes the error rate of the

Figure 2.6: Gradient descent visualization

model, we select the parameters that minimize the loss function. To achieve
this goal, the common strategy is gradient descent, an iterative optimization
algorithm to find a local minimum of the function. Starting from a random
weights initialization we compute gradients of the loss function to update the
parameters proportionally to the negative of the gradient, doing a step towards
the local minimum. This step is controlled by the learning rate, an hyperpa-
rameter that deals with the size of the update. A visualization of this idea is
shown in figure 2.6.

Differently from evaluation metrics that are used to evaluate a model for a
specific task after the training process, the loss function must be differentiable
to compute gradients. Gradient-based learning can be applied to different
machine learning models both linear and nonlinear, such as the case of neural
networks. The main difference of using first-order methods such as gradient
descent in neural networks is that nonlinearity causes loss functions to be
probably non-convex, so there is no guarantee of convergence to the minimum.
In addition, random initialization of weights can have a big impact on the
training process. However, second-order methods for function optimization
are not feasible in the case of neural networks, due to the large number of
parameters.
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In section 2.4 is stated that a neural network is a composition of nested
functions, so the loss function becomes itself a nested function dependent on
many parameters. A naive direct computation of all gradients would be very
costly in computational terms, but in neural networks it is possible to apply
backpropagation algorithm [36] for an efficient computation. After the for-
ward propagation that allows to compute the output of a neural network, the
backpropagation allows the information from the loss function to then flow
backwards and propagating the error through the network, in order to com-
pute the gradient. This operation is carried out efficiently using chain rule of
calculus that allows to compute derivatives of compositions of functions.

Let x and y be the inputs of each layer of a neural network, let f1 : Rm →
Rn, f2 : Rn → R be functions representing layers such that y = f1(x) ,
z = f2(y), so the chain rule application looks like this:

∂z

∂xi

=
∑︂
j

∂z

∂yj

∂yj
∂xi

(2.8)

Hence, if the neural network is composed of differentiable functions with known
derivatives, it is possible to apply the chain rule and compute all the partial
derivatives through the backpropagation algorithm and update the weights
according to the loss function and perform gradient descent.

2.4.2 Recurrent neural networks

One of the most famous architectures used in NLP are Recurrent neural net-
works (RNN), a family of architectures capable of processing sequential data
of variable length through recurrent layers. This feature is very important in
common NLP task, either language modelling and sequence-to-sequence prob-
lems such as machine translation.
The main component of an RNN is the hidden unit h. As shown in Figure

Figure 2.7: An unfolded view of the computationl graph of an RNN from [13]

2.7, h is defined as a function that combines at each step t the current input
token xt and the previous hidden state ht−1:

ht = f(ht−1,x; θ) (2.9)
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This formulation allows to combine contextual information to each token,
maintaining always the same input size regardless of the sequence length. An-
other great advantage is the sharing of the set of parameters θ that belongs to
f , in fact, the applied function is always the same at each step t. This implies
a reduction of parameter with respect to a feed-forward neural network. Ad-
vanced implementations of RNNs such as LSTM-RNN [15] and GRU-RNN [9]
have reached the state of the art in different NLP tasks.
This family of neural networks has remarkable advantages in handling se-
quences, but we have to manage some disadvantages due to their architectures:

• Vanishing of gradients: It occurs when the backpropagation algorithm
moves back to compute gradients and update all parameters. Applying
the chain rule to sequences with long dependencies, the gradients tend
to “vanish” due to the multiplication of many gradients between 0 and 1.
During backpropagation, the weights receive an update proportional to
the gradient, so in that case the weight will not update significantly. An
architectural strategy to solve this problem is to substitute activation
functions with low derivatives such as the sigmoid function expressed
in 2.2, using a different function with higher derivative such as ReLU
(Rectifier Linear Unit):

f(x) = max(0, x) (2.10)

• Exploding gradients: It refers to the opposite problem, always due to the
multiplicative nature of the backpropagation algorithm. Gradients can
become too large, so the weights update could skip a local minimum.
This case is easier to handle, simply using a threshold and clipping gra-
dients to an acceptable value;

• Computational efficiency: Working with long sequences and large vo-
cabularies precludes parallelization and adds memory management prob-
lems. NLP tasks have many advantages from a very large training set
and in that case learning from a large corpus can be very slow due to
sequential computations.

Most of successive works on architectures for NLP tasks tried to solve the RNN
problems described above.

2.5 BERT

In recent years RNN implementations such as LSTM and and GRU reached the
state of the art in language modeling and sequence-to-sequence problems such
as machine translation. In 2017 a research team proposed the Transformer
[39], a not recurrent sequence-to-sequence model based on attention mecha-
nism. Similarly to RNNs for language modelling the Transformer is composed
of an enconder-decoder architecture as shown in figure 2.8. This new model
allowed for a step up in terms of performance in different NLP tasks.
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Figure 2.8: Encoder-Decoder architecture of the Transformer from [39]

During the following years, many research teams proposed their transformer-
based architecture using the original model as a starting point. Table 2.2 shows
the most important transformer-based architectures. In this work, BERT is
widely used in the discursive repertoire prediction pipeline, both in text seg-
mentation and in text classification. BERT stands for Bidirectional Encoder
Representations from Transformers and presents some clever ideas regarding
the learning process and architecture to produce contextualized embeddings
and solve many NLP tasks.

2.5.1 Learning

The framework used by BERT to learn how to solve a specific task is called
transfer learning and divides training into two steps. The idea is to train the
model to solve different general tasks that enable to recognize patterns and
features of the language. Then we can use this pre-trained model to initialize
a new version of BERT that will be fine-tuned to make it capable of solving
a downstream task, for example, text classification. Basically, the first step
allows us to start from a good initialization of weights instead of using a
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Table 2.2: Transformer architectures timeline

Name Year Description
Transformer [39] 2017 Encoder-Decoder model that leverages atten-

tion mechanism to produce better embed-
dings.

GPT [33] 2018 Stack of decoders from Transformer with un-
supervised pre-training

BERT [12] 2018 Stack of encoders from Transformer with
bidirectional attention

GPT-2 [34] 2019 Bigger and improved version of GPT
ROBERTA [19] 2019 Variant of BERT with different pre-training

approach
GPT-3 [7] 2020 Bigger and improved version of GPT-2

Data2Vec [2] 2022 Multimodality Transformer-based architec-
ture for language, speech and vision

random initialization.

Moving into the details, the pre-training step is made through self-supervised
learning, a technique to train a model in a supervised task that does not need a
human-labeled dataset. This technique allows to construct massive datasets to
train the model because it does not need human help. BERT was specifically
trained with the English Wikipedia dataset (about 2.5B words) and Google
BooksCorpus (around 800M words). In the case of BERT, the pre-training
process is composed of two tasks:

• Masked language modeling: The 15% of the input tokens are randomly
masked with [MASK] special token and the model has to predict those
hidden tokens;

• Next sentence prediction: It is a binary classifcation task in which a pair
of sentences is provided to BERT. 50% pairs are made up of a sentence
and the following. The other 50% the second sentence is randomly chosen
from the corpus. This pre-training task allows to improve performances
in tasks in which correlation between two sentences is important such as
question Answering.

2.5.2 Model input

To allow the possibility of training BERT for solving different tasks, an input
sequence for BERT can represent both one or two sentences, with a maximum
length of 512 tokens. First of all, as described in Section 2.3.1 we need to
tokenize the text in multiple tokens. The technique implemented in BERT is
WordPiece [41], a tokenization algorithm that produces tokens at the subword
level. The vocabulary has length l equal to around 30000 words with the
addiction of some special tokens:
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• word : It represents an entire word or punctuation or the first token of a
word split in more than one token;

• ##subword : It represents the following tokens of a word split in more
than one token;

• [CLS] : Classification special token. It is added as the first token of
the input sequence. In sequence classification tasks, its hidden state
represents the aggregate result of classification;

• [SEP] : Separator token. It is added between the first and the second
sentence;

• [PAD] : Padding token. Its utility is to fix the size of the sequence;

• [MASK] : Token used to mask other tokens in the Masked language mod-
eling pre-training task;

• [UNK] : Token that substitutes a tokenized word not present in the vo-
cabulary.

Figure 2.9: BERT input representation. The input embeddings are the sum
of the token embeddings, the segmentation embeddings and the position em-
beddings. From [12]

After the tokenization process BERT need to receive in input a numerical form
of the token. As shown in figure 2.9 the input representation for each token is
the sum of three different vectors with dimension d:

• Token embeddings: They are fixed-size learned vectors that represent
tokens. Similarly to Word2vec algorithms discussed in 2.3.2 this repre-
sentation is not able to distinguish polisemy cases and the context, but
in this case is only a starting point. The BERT embeddings layer with
the aim of assigning the vector to a specific token can be represented as a
lookup matrix with shape (l, d) randomly initialized and trained jointly
to the model during the pre-training process;

• Segment embeddings: They are binary vectors to distinguish in which of
the two input sentences the token is. Each vector contains zeros if the
token belongs to the first sentence and ones otherwise;
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• Position embeddings: Vectors representing the position of the tokens.
Unlike RNNs that inherit the position information directly by processing
recursively a sequence, BERT has no information about the position of
a token. Transformer-based architectures need this information to be
explicitly expressed in the input. In the original Transformer, position
encodings are d-dimensional vectors generated through a fixed function.
Instead, in BERT they are learned as well, so each of the 512 possible
positions is a learned vector representation.

These three vectors are summed together and given as input to BERT.

2.5.3 Model architecture

Bert architecture is based on Encoder blocks of the original Transformer. Re-
searchers proposed two different Bert models, a base and a large version.
Let L be the number of encoder blocks, H be the hidden states size and A be
the number of self-atteention heads:

• BERTBASE: L = 12, H = 768, A = 12, Total parameters = 110M ;

• BERTLARGE: L = 24, H = 1024, A = 16, Total parameters = 340M .

Due to limitations related to models pre-trained for the Italian language de-
scribed in 2.5.7, this work is based on BERTBASE. As shown in figure 2.10,

Figure 2.10: BERT encoder architecture

each encoder in BERT has the same structure as the encoder part of the Trans-
former. Starting from the first block, the sum of the three inputs flows and
each encoder block is structured as follows:

• Multi-Head Attention: This is the most important layer of the model. It
applies the attention mechanism to capture the context and relationships
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between tokens. It’s called multi-head due to the fact that attention
mechanism is applied multiple times in parallel. This particular process
is described in Section 2.5.5;

• Residual connections: Each of the two sub-layers has a residual connec-
tion, that is a sum between the input and the output of a sublayer. Let
sublayer(x) be the output of each sublayer, so the input to the layer nor-
malization will be x+ sublayer(x). Residual connections allow us to not
lose input information in deep networks, such as the position encodings
in the BERT case;

• Layer normalization [1]: It is a technique applied to normalize the dis-
tributions of intermediate layers. As opposite of batch normalization, it
computes mean and variance to normalize across the features. The claim
of authors is a better performance when dealing with sequences;

• Feed-forward layer: Normal fully connected layer to apply trainable
weights and nonlinearity to the input.

2.5.4 Model output

The model output differs depending on the task in which BERT is applied.
The standard version returns the hidden state vector in output from the last
encoder, corresponding to each token in the input sequence.
These hidden states of the last layer of the BERT are then used for various
NLP tasks. The common strategy is to add a new layer on top of BERT
architecture to learn the specific task. In case of sequence classification tasks,
the [CLS] token plays an important role, because its hidden state is the input
of the classification layer.

In next sentence prediction the classifier layer performs a binary classifi-
cation in the hidden state that corresponds to the [CLS] token, as shown in
figure 2.11. Instead in masked LM a classifier with a softmax function returns
a vector of probabilities with the length l of the vocabulary, to predict masked
words.

2.5.5 Attention

Similarly to the cognitive process of attention, attention mechanism allows the
network to focus on few relevant things and ignore things that are not relevant.
In neural networks for NLP this technique allows to focus on tokens with
some kind of relationship with others, capturing global dependencies inside
the sequence. The first relevant model with attention was a recurrent neural
network for machine translation [3], but this technique became a breakthrough
with Transformer-based architectures.

Since BERT is composed of original Transformer encoders, it applies the
same attention mechanism, called self-attention, because it is applied directly
to the input, to choose which tokens to pay attention to. Self-attention is
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Figure 2.11: Next sentence prediction as a binary classification task with BERT
model

defined as a function of query, key, value multiple vectors packed in three
matrices. Let Q,K, V be the three matrices and dk the dimensionality of k,
the function is defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.11)

In self-attention, all three matrices Q,K, V correspond to the input. The ma-
trices Q and K are multiplied, then scaled to the value 1√

dk
and at the end

multiplied with the values to obtain the output.
Figure 2.12 shows a visualization of the operations applied. The mask opera-
tion is not used in Transformer encoder, so neither in BERT. Before applying
attention, Q,K, V (i.e. the input) are linearly combined with learned weights
matrices WQ,WK ,W V , creating three different representations of the input
for each head. BERT implements a multi-head attention, in the sense that
these operations are applied multiple times in parallel. After that, the output
of each head is concatenated and multiplied by a learned weights matrix WO.

The entire process is defined as the following function:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.12)

where headi is:

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.13)

Although the attention mechanism seems complex, for each token, the output
is a weighted sum of all the tokens. The weight assigned to each token is the
output of the softmax function. As shown in figure 2.13, attention forces the
model to focus on relationships between tokens.
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Figure 2.12: At the left, the specific self-attention mechanism applied by Trans-
former encoder architectures such as BERT, called Scaled Dot-Product Atten-
tion. On the right, a virtualization of the multi-head attention, a concatenation
of multiple attention blocks

Figure 2.13: BERT self-attention heads visualization with BertViz [40]. The
darker the connection the higher the softmax output

2.5.6 Contextualized embeddings extraction

The common approach to the BERT model is to fine-tune the model for a
specific task. In that way, the model is able to produce contextualized embed-
dings that are the input for an added classification layer on top of BERT. This
layer is randomly initialized and then is trained jointly with all the other layers
during the fine-tuning process. In this section, another possible approach is
discussed, called feature-based approach. As discussed, the BERT base model
uses 12 layers of Transformer encoders, and each output per token from each
layer of these can be used as contextualized embeddings.

One of the main advantages is the possibility of pre-computing the embed-
dings, so it is possible to use a more complex classifier instead of a single layer
and not be forced to maintain the specific BERT architecture. The original
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authors proposed different methods to combine the encoders output, as out-
lined in Figure 2.14. The Chapter 6 describes the best techniques in terms of

Figure 2.14: Techniques for contextualized embeddings extraction and results
for name entity recognition task COLL-2003 NER

performance used in this work.

2.5.7 BERT for the Italian language

The original BERT model reached the state-of-the-art for many English tasks
when it was released. The same authors released a multilingual version of
BERT (M-BERT) trained on a large Wikipedia corpora in 104 different lan-
guages. Numerous studies demonstrate that M-BERT can perform quite well
on cross-lingual tasks [30], and, more generally, this model can be a good
baseline for tasks in a specific language different from English. Although these
results, the original documentation of M-BERT showed that the performance
in English tasks of M-BERT is worse in respect of the single language BERT,
but can be very difficult to train and maintain a model for each language.

Successively, a lot of different teams around the world trained their single
language BERT for many different languages. This happened also in Italy,
mainly with two models used in this work:

• AlBERTo [31]: BERT version trained from scratch on TWITA [5], a
collection of italian messages written on Twitter social network. This
model is specifically trained with social network messages, and is able to
handle typical symbols such as hashtags and emojis;

• DBMDZ BERT[37]: BERT version trained on OPUS corpora collection
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(Wikipedia dump) and the Italian part of OSCAR corpus. This is a more
generic Italian language model.

All these two model were tested during the experiments.

2.6 Support vector machines

Support vector machine is a linear model for both classification and regression.
In a classification problem, given a dataset with dimension d, the idea behind
SVM is to see data as a point on a d-dimensional space and draw a hyperplane,
that is a d − 1-dimensional object that separates the space in two parts, one
with positive samples and one with negatives. The following equation represent
the hyperplane:

wx− b = 0 (2.14)

and a support vector machine for a classification task is defined as follows:

f(x) = sign(w∗x− b∗) (2.15)

where w∗ and b∗ are the optimal parameters and the sign function returns the
predicted label (1 for positive, -1 for negative) and it is defined as follows:

sign(x) =

{︃
1 if x >= 0

−1 if < 0
(2.16)

The core problem of this algorithm is to compute the optimal parameters
w∗ and b∗ to find the hyperplane that correctly separates the samples in the
dataset, so w and b must be chosen with respect to the following constraints:

wxi − b ≥ +1 if yi = +1
wxi − b ≤ −1 if yi = −1

(2.17)

To improve generalization performance, we do not look for any hyperplane
respecting this constraint, but we choose the one that maximizes margin from
the classes, that is, the distance between the hyperplane and the closest ex-
ample for each class.

As shown in figure 2.15 the distance between the two hyperplaneswxi−b =
+1 and wxi − b = −1 is given by 2

∥w∥ where ∥w∥ is the Euclidean norm of

w, so to maximize the margin we need to minimize ∥w∥. For computational
reasons, it is preferable minimize 1

2
∥w∥2.

Hence the quadratic optimization problem to solve looks like this:

min
w,b

1

2
∥w∥2

s.t. yi(wxi − b) ≥ 1 ∀{xi, yi} ∈ D
(2.18)

This formulation is called hard-margin SVM, because the idea is to look for
a hyperplane that perfectly separates the two classes. However, in most cases,
this is not possible because the data are not linearly separable because of noise
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Figure 2.15: Support vector machine example. The closest samples to the
hyperplane are called support vectors.

or because a nonlinear model is needed. A solution to increase model capability
is to add the Hinge loss function as a term of the function to optimize. The
Hinge loss in the context of SVMs is defined as follow:

hinge(xi, yi) = max(0, yi(wxi − b)) (2.19)

So, the soft-margin support vector machine looks like this:

min
w,b

C∥w∥2 + 1

N

N∑︂
i=1

max(0, yi(wxi − b))

s.t. yi(wxi − b) ≥ 1 ∀{xi, yi} ∈ D

(2.20)

where C is an hyperparameter that specifies the tradeoff between maximizing
the margin and minimizing mistakes in classification of training data.
To manage with non-linearly separable data it is possible to use the kernel

trick. The idea is to transform data into higher-dimensional samples to make
them linearly separable, as shown in figure 2.16, using a function ϕ : x → ϕ(x).

In order to train a SVM capable of separating data in a higher-dimensional
space, we need to compute many scalar products between features in the trans-
formed feature space of ϕ. These operations lead the problem to impractical
computational costs. To overcome this limitation, the function ϕ is not directly
used, but it is defined a kernel function capable of computing the dot product
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Figure 2.16: Kernel trick applied on bidimensional data [35]

between two higher-dimensionality vectors:

k(x,x′) = ϕ(x)ϕ(x′) (2.21)

In this way, it is not needed to manually compute the dot product, so the
computation will be more efficient.

An example of a kernel function is radial basis function (RBF):

k(x,x′) = exp(−∥x − x′∥2

2σ2
) (2.22)

where σ is an hyperparameter.
An alternative can be the polynomial kernel:

k(x,x′) = (xTx′ + c)d (2.23)
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Chapter 3

Discursive repertoires prediction

This chapter describes the deep learning approach used to predict a discursive
repertoire starting from a text span. Before the task definition, the dataset used
for the experiments (Hyperion) is introduced. Then, after the formalization
of the task covered in section 3.2, section 3.3 and 3.3 focus on the machine
learning techniques to solve the problem and on a critical discussion on the
most effective metrics to evaluate it. The last part is related to a presentation
of the experiments performed and the analysis of results.

3.1 Hyperion dataset

All the experiments described in chapters 3 and 4 are based on the Hype-
rion dataset, a human-annotated dataset created for the project “Hyperion
observatory” described in section 2.1.2. In that project, 15,332 texts written
by citizens, journals, and institutions about the ongoing COVID-19 pandemic,
were analyzed to create a social cohesion index for the emergency management

As stated in section 2.1, the outcome of a text analysis through the M.A.D.I.T
methodology is influenced by the question, so the distribution of discursive
repertoires is strictly related to this element. In the Hyperion dataset the an-
alyst classified the texts using only one question, the following:
What is the purpose of this text for the pursuit of the common goal of reducing
the spread of the infection?
Hence, the analyzed text indicates how a person is willing to maintain a be-
havior useful to fight the pandemic.
Due to the context of project that has generated data, all the 15,332 texts are
in Italian language and referred to a common topic, that is COVID-19 and
related political strategies. Some of these key topics are shown in figure 3.1.

The texts belong to two different sources:

• Twitter messages: This type of text is short and presents special char-
acters and words such as emojis and abbreviations;

• Newspaper articles: Long texts with correct and standard Italian gram-
mar.
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Figure 3.1: Word cloud of Hyperion dataset

Looking for hashtags # and short texts in the dataset it’s been possible to
estimate that tweets are about 95% of dataset, although the actual source was
lost during data collection.

Texts in the dataset are composed as shown in table 3.1. Each text is
partitioned into a sequence of spans, and then a discursive repertoire is assigned
to each span. So when researchers apply the M.A.D.I.T methodology to a text,
they extract a sequence of discursive repertoires. An exploratory analysis of
the Hyperion dataset, described in table 3.2, allowed to show some features to
take into account during the experiments. Regarding the number of spans, it
follows that each text has good probabilities of not being divided into multiple
spans, each referring to a different repertoire. This is due to the nature of the
dataset mainly composed of short Twitter messages. The experiments made
in chapter 4 take into account this particular feature.

The following analysis showed that it is necessary to deal with two main
problems when experimenting with this dataset:

• Noise: It is expected that the set of span forms a partition of the text.
Unfortunately, this is not the case, so to in a significant number of texts.
To address this problem, the dataset is cleaned by reconstructing some
texts as a concatenation of all spans that belong to the text.
Moreover, there are frequent cases of wrong and double punctuation and
cases of grammatical or general errors, so it is fairly common to produce
tokens from the text that do not belong to the vocabulary. In this case
also, the preprocessing phase has deleted some noise;

• Unbalanced repertories: As shown in figure 3.2, the dataset is pretty
unbalanced. Anticipation repertoire is the least frequent with only 53
samples. Instead, the most frequent is certify reality with 5,627 samples.
Furthermore, a repertoire is not present. There are some techniques
that can be used to deal with this problem, such as oversampling and
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Table 3.1: Hyperion dataset

Text Span Repertoire
Dunque vediamo se ho capito:
Conte le canta a Salvini e alla
Meloni, questi reagiscono e le
cantano a loro volta a Conte,
Mentana si smarca da Conte
e finisce con foto celebrativa
nelle pagine social della Bes-
tia. Siamo tornati per un at-
timo alla normalità: meraviglia
assoluta!

Dunque vediamo se ho capito: Declaration of
aim

Conte le canta a Salvini e alla
Meloni

Certify reality

questi reagiscono e le cantano a
loro volta a Conte

Justification

Mentana si smarca da Conte e
finisce con foto celebrativa nelle
pagine social della Bestia.

Certify reality

Siamo tornati per un attimo
alla normalità:

Comment

meraviglia assoluta! Judgement

Table 3.2: Hyperion dataset statistics

Feature Result
Number of texts 15332
Number of spans 35148
Number of repertoires 23
Spans average for each text 2.3
Percentage of single span texts 63%
Words average in a span 34

undersampling. In this work, a different approach has been used by
customising the loss function used in the training phase. This solution
is described in the following sections.

3.2 Task definition

When a researcher applies the M.A.D.I.T methodology starts from an entire
text and looks for a sequence of repertoires. To do this, the text is divided
into spans. The span can be defined as the text piece in which the repertoire
does not change, so the text segmentation is performed at the same time as
the repertoires detection. In this work, to replicate the researcher’s analysis,
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Figure 3.2: Discursive repertoires distribution

the problem is modelled as a pipeline of two subtasks. The first part is a text
segmentation task and is covered in chapter 4. The second and main part is
the prediction of the discursive repertoire for a single text span. The decision
to split the task into two different subtasks rather than classifying the text
directly in a sequence of repertoires must be considered a design choice. This
choice is justified by the presence in the dataset of the annotations of the two
subtasks. Dividing the task, it is possible to have two problems simpler than
the original.

Prediction of the discursive repertoire is formalised as a text classification
task. Given the Hyperion dataset, the main goal is to create a model capable
of predicting a label from a finite set (i.e. the discursive repertoire) taking as
input a span from the optimal division of the text. Formally, given a dataset
{(xi, yi)}Ni=1 where xi is a sequence of tokens and yi is an integer number
{0, . . . , 22} representing a label assigned to each discursive repertoire in the
dataset, the goal is to create a model y = f(x) mapping the vector represen-
tation of the text span x to a label y.

3.3 Machine learning pipeline

This section covers the entire pipeline to solve the problem starting from raw
text. The core model is BERT described in section 2.5, so the preprocessing
step and training protocols must be adapted to this architecture.
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3.3.1 Preprocessing

In section 2.3.1 different preprocessing techniques are introduced. For this task,
the preprocessing phase is quite simple, and it is composed of the following
steps:

• Tokenization: Due to the BERT architecture, the tokenization process is
performed using the WordPiece algorithm, a subword tokenizer described
in section 2.5;

• Lowercasing: All uppercase characters are converted to lowercase;

• Truncation and padding: Texts with length greater than 512 tokens are
truncated and shorter texts are padded with the special token [PAD] ;

• Hashtag unpacking: In some experiments, hashtags are unpacked to im-
prove model performance. For example, the hashtag “#PresidenteDel-
Consiglio” is converted to “Presidente Del Consiglio”;

• Normalization: URLs, numbers, hours and dates, and other special sym-
bols are converted to special tokens;

Hashtag unpacking and Normalization are not applied to all the experiments.

3.3.2 Architectures

As stated above, the core model tested for this task is BERT. The entire
architecture is shown in figure 3.3. After the preprocessing step, the model
is composed of a pretrained version of BERT and a classification layer added
on top, composed of a fully connected linear layer randomly initialised and a
softmax function to produce the output probabilities. The final output is the
vector of probabilities related to the [CLS] token and the class with the highest
probability is chosen to label the example.

Taking into account that the Hyperion dataset is in Italian, three different
versions of BERT are tested:

• Multilingual BERT;

• AlBERTo;

• DBMDZ BERT.

These architectures are described in section 2.5.7. The model structure is
the same for all three models, so we can consider them as different weights
initialisation for the same model.
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Figure 3.3: pipeline for discursive repertoires classification

Figure 3.4: From the original dataset to train, validation and test sets

3.3.3 Train, validation and test split

In order to train and evaluate the model, the dataset is split into two parts.
80% as a training set and 20% as a test set, for performance and error anal-
ysis. From the training set, another 20% is extracted as a validation set for
the selection of hyperparameters, as shown in figure 3.4. Due to the unbal-
ance of classes within the Hyperion dataset, the subset percentage is extracted
from each class, in order to obtain the same repertories distribution in train,
validation and test set.
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3.3.4 Training

As described in section 2.5.1, BERT exploits transfer learning, so its training
phase is split into two parts. The pretraining of BERT is very intensive in
computation terms, so this work has deepened only the fine-tuning step. After
the initialisation of BERT with a pretrained version and a random initialisation
of the classifier, the entire model is trained with a standard approach based
on the optimization of a loss function.
The loss function chosen is a weighted categorical cross-entropy, defined as
follows:

Loss = − 1

N

N∑︂
i

C∑︂
c

wcy
(c)
i log ŷ

(c)
i (3.1)

where ŷi is the model output of i-th sample, yi is the target and wc is a weight
assigned to the class to handle the unbalanced dataset. The weights vectorw is
considered an hyperparameter. Different strategies are tested in the validation
test, starting from simply calculating the weight of a class with respect to the
others and then rescaling all the values in different ranges. Other techniques
are tested, such as the heuristic applied to a logistic regression model described
in [16].

The second fundamental component for learning is an optimizer. Accord-
ing to most published works on Tranformer-based architectures, the choice is
AdamW optimizer [21]. This algorithm is based on adaptive learning rate and
weight decay regularization. During training, the following hyperparameters
has been optimized on the validation set:

• Learning rate;

• Batch size;

• Epochs;

• Class weights strategy.

All models have been trained applying the mixed precision technique [23].
Mixed precision allows faster training exploiting a combination of single and
half-precision floating point representations, obtaining with high probabilities
neither a loss of accuracy nor different hyperparameters selection from stan-
dard training. The biggest advantage of this technique is a significant reduction
in training time and GPU memory. To use this technique, it is necessary to
use loss scaling. Loss scaling means multiplying the output of the loss function
by some scalar number before performing backpropagation. In this way, it is
possible to avoid vanishing of gradients due to truncation in half-precision of
them. All models are trained on a single recent GPU and this technique has
allowed halving the training time.
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3.4 Evaluation

The standard classification metrics are calculated for each tested model, but
only some of them are taken as a reference to evaluate performance and select
the best model.

• Accuracy: It is defined as the number of correctly classified examples
divided by the total number of examples.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Accuracy is a useful metric when classes are balanced in the dataset.
This is not the case, so the metric is computed, but it is not used to
select the best model and analyze the performance.

• Precision: It is defined as the ratio of correct positive predictions to
overall positive predictions.

Precision =
TP

TP + FP
(3.3)

Higher precision for a class means that when a model outputs a prediction
of that specific class, probably the example really belongs to that class.
For instance, in a classification task of spam/not spam emails, we will
look for a model with high precision because we want to avoid the case
in which a model predicts a not spam email as a spam and the person
does not read the useful email;

• Recall: It is defined as the ratio of correct positive predictions over the
overall number of positive examples.

Recall =
TP

TP + FN
(3.4)

Higher recall for a class means that many examples that really belong
to that specific class, probably they will be predicted correctly by the
model. For instance, in a classification task of people with cancer/not
cancer we will look for a model with high recall because we want to avoid
the case in which a person with cancer is classified wrongly, so he will
not look for a medical examination.

• F1 score: It is defined as the harmonic mean of precision and recall.

F1-score = 2 · Precision ·Recall

Precision+Recall
(3.5)

This metric is useful when we care about both precision and recall. The
F1 score is a specific instance of Fβ score where the parameter β = 1, so
precision and recall impact the metric equally. Higher values of β mean
more importance to recall with respect to precision.
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Precision, recall and F1 return a numerical value between 0 and 1 to evaluate
performances of the model for each class. In order to obtain an evaluation of
performances in the entire multiclass problem, it is necessary to calculate the
average of all the classes evaluation. There are three common strategies to
compute the average:

• Macro average: It is the arithmetical mean of a metric computed for each
class. This strategy considers each class equally important for the final
computation. In the case of the Hyperion dataset it is useful because it
allows to evaluate the performances of less frequent classes, since they
are weighted equally to highly frequent ones;

• Micro average: The metric is computed as an aggregation of terms for
each class, so the true positives are the sum of true positives of all classes.
Other terms composing the formulas are computed equally. In this case
all the examples contribute equally to the final metric, so classes con-
taining more examples are more important. The main problem of micro
average in multiclass problems is that micro F1 = micro precision =
micro recall = accuracy, so the metrics are less meaningful;

• Weighted average: It is calculated applying weights for each class during
the average computation. Like the micro average, all examples contribute
equally, but in this case, disadvantages of micro average are avoided. In
the experiments this metrics is used to provide an overall evaluation of
the models, since it weights classes according to their distribution in the
dataset.

3.5 Experiments

All the three pretrained versions of BERT architecture described in section
3.3.2 are tested during experiments. In order to improve performances, different
inputs are tested, such as providing BERT a pair of sentences containing the
spans and its context. The context of a span is defined as a triplet composed of
the left adjacent, the current, and the right adjacent span. This strategy has
not improved the performance of the model, so each of the following results is
obtained providing only the text span as input.

The table 3.3 shows the main aggregate metrics computed on the test set
for the three models with the hyperparameters optimized on the validation set.
The most important metrics chosen to evaluate these models are the weighed
F1 score and the macro F1 score. DBMDZ-BERT seems to perform better in
both, and this is a quite surprising result, due to the nature of AlBERTo that
is pretrained on a dataset retrieved on Twitter, so more similar to Hyperion
dataset.

Weighted F1 score returns an overall evaluation of all classes, so DBMDZ-
BERT obtains better performances in relation to the unbalance of the dataset.
Instead if we want to evaluate performances of less frequent classes, macro
F1 score is a good indicator due to the fact that less frequent classes weight
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Table 3.3: Performance of BERT classifiers for discursive repertoires prediction
on the test set

M-BERT DBMDZ-BERT AlBERTo
Weighted F1 0.33 0.36 0.35
Macro F1 0.23 0.27 0.26
Accuracy 0.33 0.37 0.34

Weighted Precision 0.35 0.37 0.38
Weighted recall 0.32 0.37 0.35

equally of most frequent. Only taking into account the weighted precision,
AlBERTo performs better than DBMDZ-BERT.

Figure 3.5 and 3.6 show how the loss function and the weighted F1 score
of DBMDZ-BERT vary during training. After 3 epochs, the model tends to
overfit and both loss and metric diverge on the validation set with a longer
training phase. Regarding how the DBMDZ-BERT performs on single classes,

Figure 3.5: Loss function plot for 15 epochs training. Model selected is trained
3 epochs

it is possible to see that there are some repertories with more than 0.6 in pre-
diction accuracy, such as Description and Prescription. Instead, as expected,
less frequent classes, such as Anticipation, Confirmation, and Generalization,
show poor performance, although weighted loss.

Another problem of the model that is visible in both table 3.4 and figure
3.7 is that DBMDZ-BERT is overpredicting the Certify reality class. This is
the most frequent class in the dataset, so to deal with this problem a weighted
loss is used, but for this specific repertoire the problem persists. In conclusion,
DBMDZ-BERT is chosen as a model for repertoire prediction for downstream
tasks described in chapter 6.
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Figure 3.6: Weighted F1 score variations plot for 15 epochs training. Model
selected is trained 3 epochs
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Figure 3.7: Confusion matrix of discursive repertoires predictions
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Table 3.4: Most frequent errors in in discursive repertoire prediction with
DBMDZ-BERT

Repertoire Accuracy Most frequent error Error frequency
Anticipation 0 Prediction 0.36
Cause of action 0.26 Justification 0.16
Certify reality 0.36 Description 0.1
Comment 0.3 Judgment 0.11
Confirmation 0.08 Certify reality 0.18
Consideration 0.18 Description 0.26
Contraposition 0.26 Certify reality 0.17
Declaration of
aim

0.42 Prescription 0.13

Description 0.68 Certify reality 0.09
Evaluation 0.11 Certify reality 0.12
Exemption from
responsibility

0.2 Prescription 0.2

Generalization 0.02 Certify reality 0.20
Judgment 0.34 Comment 0.16
Justification 0.12 Certify reality 0.15
Implication 0.27 Prediction 0.16
Non answer 0.12 Comment 0.26
Opinion 0.3 Certify reality 0.18
Possibility 0.46 Proposal 0.06
Prediction 0.58 Implication 0.08
Prescription 0.68 Certify reality 0.07
Proposal 0.35 Prescription 0.2
Reshaping 0.31 Certify reality 0.13
Specification 0.43 Description 0.1
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Chapter 4

Text segmentation

In the previous chapter it is used the optimal division of text spans to perform
the classification in discursive repertoires.
This chapter covers a deep learning approach to partition a text in a set of
text spans. After a brief presentation of the task, the focus will be on how
to evaluate this task and compare deep learning models to other approaches
provided by famous NLP libraries.

4.1 Task definition

Text segmentation (a.k.a Boundary detection) is the task of splitting text into
meaningful segments. Each segment can be split following different rules. We
can perform word segmentation, sentence segmentation, or more complex tasks
such as topic segmentation in which each span corresponds to a different topic.
Division of a text into multiple parts generally is a fairly common task in NLP,
because of the need to transform data from raw long text to useful data as
input for solving another task. For example, topic segmentation can be useful
to perform a text summarization task.

The dialogical science approach starts from raw text and partitions it into
spans corresponding to a sequence of repertoires. In this work this task is
designed as a pipeline of two subtasks, text segmentation and then span clas-
sification, described in chapter 3. It follows that a procedure is necessary to
split text into multiple spans.

During years, different techniques are released to solve the text segmenta-
tion task:

• Rules-based approaches:

– Regular expressions;

– Lexycal rules;

– Heuristic approaches.

• Machine learning approaches:

– Unsupervised;
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– Supervised.

In this chapter, a supervised machine learning approach based on the BERT
architecture is described. Formally, given a text defined as a sequence of tokens
x = (x1, . . . , xn), the goal is to assign a label l = {0, 1} to each token, where
the value 1 corresponds to a span boundary and 0 otherwise. The result is a
sequence of labels y = (y1, . . . , yn).

As stated above, a text span in the context of dialogical science is defined
as a piece of text in which the repertoire does not change. So, the main idea
is to train a supervised model on Hyperion dataset capable of detecting the
boundaries between two spans that represent a change of discursive repertoire.
Although the contextual definition of span, empirically it is possible to de-
termine that usually a span corresponds to a sentence or a part of sentence
and often the boundaries correspond to punctuation, so the task can be inter-
preted as a variation of sentence segmentation. Hence, the personal machine
learning approach is compared with other approaches that solve the sentence
segmentation task, such as:

• NLTK sentence tokenizer: Unsupervised algorithm to perform sentence
segmentation [17];

• Trankit: Multilingual toolkit based on the XLM-Roberta transformer
architectureLARGE [26]. This model has a shared body with different
layers on top, each of them trained to solve a different problem.

4.2 Machine learning pipeline

This section describes the entire pipeline, based on BERT, to solve the text
segmentation task, starting from raw text. In this case, the preprocessing
phase also needs to be adapted to the architecture.

4.2.1 Preprocessing

The following preprocessing techniques are applied to the text:

• Tokenization: Due to the BERT architecture, the tokenizaztion process is
performed using the WordPiece algorithm, a subword tokenizer described
in section 2.5. Punctuation, that is really important for this task has a
correspondent token for each symbol;

• Lowercasing: All the uppercase characters are converted to lowercase;

• Double punctuation removal: Multiple punctuation tokens are removed
before providing the sequence as input. For example (“no”, “!”,“!”,“!”)
becomes (“no”, “!”);

• Padding: Sequences of tokens are padded to obtain an equal lenght;

46 CHAPTER 4. TEXT SEGMENTATION



Master thesis Michele Bortone

• Sequence split: Instead of truncation, long sequences ares split and fed
to the model in more than one step.

Hyperion dataset is composed of a text and a set of spans, so it is necessary
to compute the sequence of labels. Starting from the set of optimal spans,
in order to create a sequence of labels independent from the architecture, the
boundaries are represented at word level. So the ground truth is a sequence
y = (y1, . . . , yn) where each label l = {0, 1} is equal to 1 if it is the last word
of the span and 0 otherwise. Then, due to the tokenizer used by BERT, labels
are converted to match the subword tokenization.
In some cases, there were examples not correctly annotated, with the ground
truth spans that were not a partition of the text. These examples are cleaned
reconstructing the text as a union of all optimal spans.

4.2.2 Architecture

The BERT-based architecture is similar to the one for discursive repertoire
prediction described in section 3.3.2. The only difference is on the top layer.
As shown in figure 4.1, the classification layer is applied on all the tokens and
not only to the [CLS] token. Hence, the output of the model is a sequence of
labels.
Once the output is returned, the labels are propagated from subword level to

Figure 4.1: Bert architecture for token classification to perform text segmen-
tation

word level, shifting the labels that represent a boundary to the last subword
token of a word. For example, if the sequence of tokens is (“basta”,“con”,
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“questo”, “corona”, “##virus”) and the prediction is (00010) will be converted
to (00001), since the double hashtag indicates a subword token.

4.2.3 Training

The starting point is a pretrained version of BERT. All the three architectures
described in 2.5.7 are tested. Similarly to BERT for the prediction of discursive
repertoires, the classifier on top of BERT is randomly initialized. In this
case we perform a binary classification task so the loss function is the binary
simplified definition of cross-entropy, but it is used in its weighted version,
defined as follows:

Loss = − 1

N

N∑︂
i

w1(yi log ŷi) + ((1− yi) log(1− ŷi)) (4.1)

where ŷi is the model output of i-th sample, yi is the target, and w1 is the
weight assigned to the positive class (the boundary) to handle the imbalance
between the tokens that are boundaries and normal ones. The weight w1 is
considered a hyperparameter. During the computation of loss functions, all
special tokens are masked and the cross-entropy is not computed on these.
Also in this case the optimizer remains AdamW and the training phase is
computed with the mixed precision approach.

4.2.4 Postprocessing

To compute the segmentation, we divide the text assuming that after this
operation the spans will be classified into discursive repertoires. From the
theory, each span is defined as a piece of text in which the repertoire does not
change. Hence, after the segmentation it is possible to exploit the classification
labels to join adjacent segments with the same discursive repertoire, as shown
in figure 4.2. This postprocessing step and its performance improvements are
analyzed in section 4.4.

Figure 4.2: Example of spans joined together
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It must be noted that the effectiveness of this procedure is strictly depen-
dent on performance of the discursive repertoire classifier. To analyze how
much can powerful this procedure can be, some experiments are done also
with the gold labels.

4.2.5 Train, validation and test split

Similarly to what described in section 3.3.3, the dataset is split in two parts.
80% as a training set and 20% as a test set, for performance and error analysis.
From the training set, another 20% is extracted as a validation set for the
selection of hyperparameters.

Due to the low mean number of spans for text (2.3) and the high percentage
of non-split texts (63%) in Hyperion dataset, validation set and test set are
created in two different versions. The first is full, instead the second is a subset
containing only texts split in more than one span. The subsets allows to bypass
some problems during the validation phase, described below in section 4.4.

4.3 Evaluation

Although this is a classification task, it is possible to show that the common
metrics used to evaluate classification tasks are not effective in this case. Let
y = (00010001) be the optimal division of a text, this means that a text
is composed of two spans four words long. Let ŷ1 = (00001001) and ŷ2 =
(00000001) two possible predictions of the model. Clearly ŷ1 is a better solution
with respect to ŷ2 because the division in two spans is detected but on a wrong
token. This kind of error is considered a partial error, instead not detecting a
boundary in considered a serious error.

Common classification metrics evaluation are based on the number of cor-
rect labels, so precision, recall, and F1 score return higher values on ŷ2 with
respect to ŷ1. With this metrics is impossible to detect partial errors, moreover
they are evaluated worse than serious errors. For this reasons it is necessary
to look for metrics capable of distinguishing between these two types of errors.

In this work, two metrics are chosen for the text segmentation evaluation:

• Intersection over union: It is defined as the intersection of two spans
divided by the union of the two spans:

IoU =
Sequence of Overlap

Sequence of Union
(4.2)

This metric is derived from Object detection task in computer vision,
where the IoU is applied on matrices representing the position of a spe-
cific object inside an image. In this case, it can be interpreted as a varia-
tion in which intersection and union are computed on a one-dimensional
vector of tokens, as shown i figure 4.3.
The metric is computed between a predicted span and the best match
from the ground truth;
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Figure 4.3: Example of intersection over union applied on the first predicted
span

• Generalized Hamming distance [6]: It is a metric that extends the concept
of traditional Hamming distance to give partial credit for near misses.
Hamming distance measures the minimum number of symbols to change
to transform a string in the other one. In this case, the two strings are
the sequences of binary labels.

To evaluate partial errors, this metric introduces another operation, the
shift, which allows to swap two adjacent labels and has a lower penalty
than insertion and deletion. For example, if a substitution is evaluated
with a coefficient equal to 1, and shift is equal to 0.5, a two-position
shift has a lower cost. Therefore, in a case similar to the one described
above, the partial correct prediction ŷ1 will be better evaluated than
the completely wrong prediction ŷ2. A variation of the shift coefficient
can make this operation more or less cheaper than substitution, so it is
possible to change the size of what we consider a partial error. In this
work, the cost of substitution operation is set to the mean length of a
span and the cost of shift is set to 1.

One of the main differences between the two metrics is that the generalized
Hamming distance evaluates the segmentation of a text, instead intersection
over union evaluates a single span. Hence, in IoU, it is necessary to compute
the average to obtain an evaluation of how well a text is segmented.

4.4 Experiments

All experiments are divided into two categories. The first includes all the
experiments done with ready-to-use toolkits and libraries, such as NLTK and
Trankit described in section 4.1. These two approaches are mixed with the
use of regular expressions and the performances of both of them are evaluated.
For clarity of writing, only the best result obtained with this approach is
described, which consists of the NLTK sentence tokenizer without using regular
expressions.

The second category regards the personal approaches based on BERT. In
this task, the initialization of BERT with one of the three pretrained versions
covered in section 2.5.7 is considered a hyperparameter selection, so the chosen
version is the one with the highest performance in the validation set. Therefore,
when referring to a general BERT, a model initalized with DBMDZ-BERT is
intended, which is the one with the best performance in the validation set.

During the experiments a key problem is encountered for BERT fine-tuning.
The selection of hyperparameters, especially the selection of loss weights, is
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affected by the high percentage of single-span texts, that is, 63%. In section
4.2.5 is stated that two versions of validation set are generated. The second
is a subset of the validation set containing only texts split in more than one
span. Table 4.1,shows the main problem, that is a bad selection of the loss
weight w1 corresponding to the boundary label. A selection of low values for w1

implies bad learning, because the model is not punished enough when misleads
a boundary and it is basically a model that prefers not to split the text. The
output of this model will almost always be a single span. In fact, on the full
validation set, there are 2400 examples that in the best model are divided into
2570 spans, while the optimal division is a total of 5770 spans. Of course,
this selection is strictly influenced by the high number of single-text span in
Hyperion dataset, so as a conclusion, it is not useful to select hyperparameters
on this validation set.

Table 4.1: Performances of BERT model for segmentation for different weights
of the loss function tested in the validation set

Weight Segments IoU GHD
20 7986 0.44 82
10 6064 0.53 65
5 4783 0.59 51
3 2801 0.73 39
1 2570 0.76 25

To solve this problem, the weight is selected using a subset of the validation
set composed of only texts split in more than one span. As shown in table 4.2,
now the model with the best performance in terms of metrics has selected the
weight w1 = 5. In addition, the number of predicted spans is more similar to
the ground truth in this subset of the validation set, meaning that the model
is splitting the text. How good the split is is evaluated by the two metrics.

Table 4.2: Performances of BERT model for segmentation for different weights
of the loss function tested in the subset of texts split in more than one span

Weight Segments IoU GHD
20 7986 0.48 58
10 6064 0.54 49
5 4783 0.60 45
3 2801 0.63 49
1 2570 0.56 60

After optimization of the BERT architecture, its performance is compared
to the approach based on NLTK sentence tokenizer and the naive approach to
directly not splitting the text. Moreover, the postprocessing technique based
on joining adjacent spans with the same assigned repertoire is evaluated. Table
4.3 shows the final results considering three postprocessing modalities:

• No postprocessing;
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• Postprocessing using labels predicted by the model for discursive reper-
toire prediction;

• Postprocessing using ground truth labels.

In this way, it is possible to evaluate if the postprocessing phase is useful and
how it is influenced by the performance of the model. The results in table 4.3

Table 4.3: Performances of segmentation models in the full test set with and
without postprocessing

Model Postprocessing IoU GHD
FULL TEXT - 0.83 29

NLTK - 0.38 67
NLTK BERT 0.41 59
NLTK GT 0.87 27

BERT - 0.42 55
BERT BERT 0.47 46
BERT GT 0.91 11

show that the BERT approach improves performance with respect to NLTK.
Also, the postprocessing step guarantees a performance improvement, but it
is strictly dependent from the classifier performance. Ideally, with an optimal
classifier, it is possible to maximize the metrics. However, the classifier trained
and described in the previous chapter causes a slight improvement of general
performances.

Once again it is necessary to take into account the high percentage of single-
span texts. The computation of metrics without splitting the text allows them
to be maximized, obtaining IoU = 0.83, but this result is clearly influenced by
the features of the Hyperion dataset. So in order to evaluate these approaches
and obtain more general results, models are evaluated on a subset as well
containing non-single-span texts.

Table 4.4 shows the results on the subset of test set composed only of
non-single-span texts.

Table 4.4: Performances of segmentation models in the non-single-span subset
of test set, with and without postprocessing

Model Postprocessing IoU GHD
FULL TEXT - 0.23 82

NLTK - 0.50 69
NLTK BERT 0.53 56
NLTK GT 0.88 27

BERT - 0.65 41
BERT BERT 0.67 40
BERT GT 0.84 31
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In both test sets, it is possible to notice that BERT outperforms NLTK,
with or without the union as a postprocessing step. In the subset, the spread
between BERT and NLTK increases, so BERT performs far better than NLTK
in non-single-span texts. Analyzing the differences between the two metrics, it
seems that the spread between NLTK and BERT is wider considering GHD,
especially in table 4.3. This fact is interpreted by taking into account the co-
efficients assigned to operations in GHD. Recalling that the shift operation is
penalized 20 times less with respect to insertion and elimination, this metric
tends to punish a lot the cases in which the model prediction contains a differ-
ent number of spans from the ground truth. Otherwise, if the number of spans
is correct, the metric is lower because the algorithm simply shifts a character
rather than a substitution.

As a conclusion, BERT is chosen as a segmentation model for future work
described in the next chapters, but the NLTK sentence tokenizer performances
are not so distant from a fine-tuned model, so in relation to the effort of usage
and the great advantage in terms of computational speed must be taken into
consideration.
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Chapter 5

Pipeline evaluation

This chapter focuses on the evaluation of the entire pipeline for discursive
repertoires prediction. Starting from raw text, the aim is to construct a pipeline
composed of the two models described in chapters 3 and 4 and to evaluate them
to solve the overall problem. In the first section, methods and metrics for the
evaluation are covered. The chapter then focuses on the final results obtained
and the analysis of the importance of each step that makes up the pipeline.

5.1 Evaluation metrics

The whole problem seen as a unique task is defined as the prediction of a
sequence of discursive repertoires, starting from a text. Formally, given a
text representation x = (x1, . . . , xn) the model y = f(x) returns a sequence of
labels y = (y1, . . . , ym) where yi = {0, . . . , 22}. This task has many similarities
with the more famous sequence labeling ones, such as named entity recognition.
One of the main differences is that labels form a partition of the text. In
fact, each word belongs to a repertoire and cannot be outside, so there is no
“outside” label.

The main goal of this evaluation is to measure the impact of both the
segmentation step and the classification step. The general idea is to evaluate
the classification taking into account how good the segmentation is, assigning
partial values to correctly classified repertoires that do not fully match the gold
annotation span. Researchers have already published work on similar tasks,
such as [25] for the named entity recognition task and [10] for fine-grained
analysis of propaganda. In the second work, a variation of precision, recall
and F1 score is defined to handle partial overlaps.

Let s be a classified span and t be a span in the gold annotation. The
following function returns an evaluation of these two elements:

C(s, t, h) =
|(s ∩ t)|

h
δ(l(s), l(t)) (5.1)

where h is a normalization factor and δ is the evaluation function of the clas-
sification in discursive repertoires. In this case, all repertoires are considered
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equally distant from the others, so δ(l(s), l(t)) = 1 if l(s) = l(t) and 0 other-
wise. Future implementations of the repertoires classifier could be evaluated in
a different way, such as taking into account the dialogical weight. Therefore,
the function δ could be converted to a distance function between classes that
evaluates how dissimilar the two repertoires are, as suggested by the table of
repertoires in figure 2.1.

The function C is then used to define the three metrics as follow:

P (S, T ) =
1

|S|
∑︂
s∈S
t∈T

C(s, t, |s|) (5.2)

R(S, T ) =
1

|T |
∑︂
s∈S
t∈T

C(s, t, |t|) (5.3)

where S is the predicted text partition in spans and T is the optimal division.
The precision and recall defined above can be used to compute the F1 score
with its common formula.

The term |S| in 5.4 and |T | in 5.3 have the task of penalizing the evaluation
when the segmentation step produces too or few spans. However, due to the
nature of the task that implies a partition of the text, there are some edge
cases that are not well evaluated by these metrics. In figure 5.1 is shown an
example of two possible predictions, S and S ′ and the ground truth T . The
colour indicates a different class. In this case, S has precision P = 0.5 and
recall R = 0.54. Instead S ′ has P = 0.33 and R = 0.54. Clearly S ′ is a better

Figure 5.1: Two examples of different predictions.

solution, but it is evaluated worse than S in both precision and F1 score,
maintaining the same recall. The example just described is the case when the
postprocessing step joins spans with the same predicted repertoire.

In this thesis, a slight variation of these metrics is introduced to overcome
the problem covered above and handle tasks in which text is partitioned:

IoU(S, T ) =
1

|S|
∑︂
s∈S
t∈T

C(s, t, |(s ∪ t)|) (5.4)

It is defined equally with respect to precision, but the normalization factor
h is equal to the length of the union between s and t. The metric is called
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Intersection over Union because the function C literally becomes the IoU mul-
tiplied by the function δ, which is the result of classification. Returning to the
previous example S has IoU = 0.13, instead S ′ has IoU = 18.

5.2 Experiments

In order to evaluate the pipeline on unseen data, Hyperion dataset is split into
a training set composed of 80% and a test set with the remaining 20%. The
training set is used to retrain models described in chapters 3 and 4. Hence,
the next results are reported by computing metrics on a 20% of data not seen
in all the models used. To show a general view of the performances of this
pipeline, different combinations of models are analyzed. The segmentation
step is processed in the following three ways:

• NLTK sentence tokenizer;

• BERT for text segmentation;

• Optimal segmentation.

Optimal segmentation is added to experiments in order to establish an upper
bound on the influence of text segmentation step.

The classification in discursive repertories is handled with the following
classifiers:

• BERT for discursive repertoire classification;

• Random classifier;

• Optimal classifier.

In addition to BERT, the pipeline is evaluated with a random classifier to
set the lower bound and analyze how much the second step can influence
the metrics and the pipeline performances. For the same reason, an optimal
classifier is tested, returning labels from the ground truth.

In table 5.1 the results of all experiments are reported. Excluding optimal
and random models, the best pipeline is composed of two BERT and the post-
processing step is applied. This is an expected result, since it is a composition
of the best approaches when analyzed independently from the others.

The segmentation phase influences the pipeline evaluation, in fact, it is
possible to pass from IoU equal to 0.21 to 0.27 with BERT and postprocessing.
Its effectiveness is demonstrated by the optimal segmentation, in fact, with
the same repertoires classifier it is possible to arrive at 0.42 of IoU, optimizing
the segmentation process. Another confirmed result is that the classification
step is the most important. With the random classifier, on 23 categories the
metrics are close to 0, and with the optimal one, precision, recall and F1 score
are close to 1. The spread is so large because of the definition of δ term
in the metrics functions, that returns 1 when the prediction is correct and
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Table 5.1: Pipeline evaluation results

Pipeline Postprocessing Precision Recall F1 IoU
NLTK + BERT - 0.30 0.30 0.29 0.21
NLTK + BERT

√
0.29 0.30 0.28 0.24

BERT + BERT - 0.32 0.30 0.30 0.25
BERT + BERT

√
0.31 0.30 0.30 0.27

OPT SEG + BERT - 0.42 0.42 0.42 0.42
OPT SEG + BERT

√
0.42 0.42 0.42 0.42

NLTK + CLS - 0.95 0.88 0.90 0.62
NLTK + OPT CLS

√
0.94 0.88 0.90 0.94

BERT + OPT CLS - 0.95 0.87 0.89 0.67
BERT + OPT CLS

√
0.95 0.87 0.89 0.93

NLTK + RAND CLS - 0.04 0.04 0.04 0.03
NLTK + RAND CLS

√
0.04 0.04 0.04 0.03

BERT + RAND CLS - 0.04 0.04 0.04 0.03
BERT + RAND CLS

√
0.04 0.04 0.04 0.03

0 otherwise. Probably, an implementation of a distance metric to evaluate
predicted repertoires would reduce the spread between the random and the
optimal classifier and would reduce the impact of this step with respect to the
entire pipeline.

With the optimal classifier and without postprocessing IoU is not much
higher than the results obtained with BERT. The reason is the definition of
this metric that has the normalization factor h = |s ∪ t|, so it is the most
sensitive metric to the segmentation step. Good results for IoU can only be
achieved with good segmentation.

As shown in the example in section 5.1, precision recall and F1 score are not
able to deal with the union of segments, in fact, a general loss of performance
is noticeable when the postprocessing is applied. Regarding postprocessing, as
already stated in chapter 4, it is strictly dependent on the classifier. As shown
by IoU values, better performance has the classifier and greater will be the
increment using postprocessing.
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Chapter 6

Downstream NLP tasks

This chapter covers the use of discursive repertoires as features for solving com-
mon NLP tasks. In particular, the focus is on the Evalita 2016 SENTIPOLC
competition, which is composed of three different tasks: subjectivity classifica-
tion, polarity classification and irony detection. The first section covers the
competition and a brief analysis of the dataset. Then, the focus is on the three
tasks and the machine learning approach based on the prediction of discursive
repertoires through the models previously described.

6.1 SENTIPOLC dataset

SENTIment POLarity Classification Task [4], is a challenge proposed in 2014
and then in 2016 based on a dataset composed of Twitter messages in Italian
language. As shown in figure 6.1, the dataset set includes 7410 tweets with
different annotations:

• Subjectivity (subj): Binary label indicating whether a message is subjec-
tive or objective;

• Overall positive (opos): Binary label indicating the overall positive sen-
timent;

• Overall negative (oneg): Binary label indicating the overall negative sen-
timent;

• Literal positive (lpos): Binary label indicating a literal positive senti-
ment;

• Literal negative (lneg): Binary label indicating a literal positive senti-
ment;

• Ironic: Binary label indicating the presence of irony.

The literal sentiment is available as additional information for the tasks. It pro-
vides the real sentiment ignoring the figurative usage of the language. Hence
some tweets can have an inversion of polarity between literal and overall sen-
timent. This is the case of ironic tweets.
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Figure 6.1: SENTIPOLC dataset

One of the key features of this dataset is that labels and tasks depend
on the others. For example, a tweet is considered objective if and only if
opos = oneg = lpos = lneg = iro = 0. Another example is the irony class
that must be subjective and have the inversion of polarity described above.
For this dependency between labels, some published approaches use multi-task
learning.

The competition is evaluated on a hidden test set that includes 2000 Twit-
ter messages.

6.2 Tasks

The approach based on discursive repertoires is tested in all three tasks of the
original 2016 competition. In order to make a comparison between the already
published technique and the one discussed in this thesis, all models are tested
with the metrics chosen by the organizers on the original test set.
Task and metrics used are the following:

• Subjectivity Classification: Given a text, a model must predict whether
the text is subjective or not. This is a binary classification task, and it is
evaluated on precision, recall and F1 score. The reference metric is the
macro average of the F1 score.

• Polarity classification: Given a text, a model must predict whether a text
has neutral, positive, negative or mixed sentiment. This task is composed
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of four different labels, which are all the combinations of the binary
labels describing the overall sentiment. According to the competition
rules, overall positive and overall negative labels are predicted by two
independent models. Hence, this task is divided into two different binary
classification tasks.

Metrics for evaluation are precision recall and f1 score. Then, the final
evaluation is the mean of the two macro averaged F1 scores:

F pos =
(F pos

0 + F pos
1 )

2

F neg =
(F neg

0 + F neg
1 )

2

F =
(F neg + F neg)

2

(6.1)

• Irony detection: Given a text, a model must predict whether a text
is ironic or not. Similarly to subjectivity classification, it is a binary
classification task evaluated on a macro-averaged F1 score.

6.3 Machine learning pipeline

The main goal of these experiments is to understand whether it is possible
to extract useful information from discursive repertoires. The SENTIPOLC
dataset includes Twitter messages and three different problems to be solved.
The pipeline presented in this section is the same for all three tasks.

The figure 6.2, shows the steps applied to solve the tasks. The main com-
ponent is a support vector machine, described in section 2.6, with the purpose
of taking input information received by the discursive repertoire prediction.

Starting from the raw text, the first step is to predict the repertoires that
belong to the text. To do this, the approach is to follow the steps of the best
pipeline chosen in chapter 5. Hence, the raw text is preprocessed with the
same techniques used for the text segmentation task and then the text is split
by the already trained BERT. From the text segmentation step, multiple spans
can be returned in output. Then, each span is fed as input to the classifier.

At this point, multiple strategies for feature extraction are tested. The first
group of strategies is to simply extract discursive repertories and construct a
23-dimensional vector based on their frequencies, in two modalities:

• Absolute frequencies: Each scalar in the vector represents the count of a
repertoire;

• Relative frequencies: Each scalar represents the count of a repertoire
divided by the number of spans. The vector sum is 1.

This simple strategy allows us to create low-dimensional vectors, but due to the
short length of Twitter texts, vectors are sparse and not very full of information
about the input example. For this reason, more complex techniques are tested,
based on the extraction of BERT embeddings covered in Section 2.5.6
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Figure 6.2: Pipeline for SENTIPOLC tasks based on discursive repertoires

• BERT last layer embeddings: The output of the last BERT enconder (last
layer) is extracted. It is a matrix with dimensions equal to the number of
tokens and the size of the hidden states. So, in BERTBASE is (512,768).
Then these embeddings are averaged to return a 768-dimensional vector

• BERT last four layers embeddings concatenation: based on the test by
the original BERT authors. This is the best way to perform the contex-
tual embeddings extraction. The output of the last four BERT encoders
is concatenated, returning a matrix of dimension (512, 3072). Then, all
the tokens are averaged, and the final vector is 3072-dimensional.

• BERT last layer [CLS] token embedding: As stated in section 2.5, the
[CLS] special token is added and then used to generate the label of a
sequence classification problem. During training, the BERT attention
mechanism applied to this token focuses on highlighting the most impor-
tant relations to solve the task. Then the embedding of this token is the
input for the final layer that classifies the sequence. Hence, this token is
interpreted similarly to a learned sentence embedding without the need
to average or somehow combine token embeddings.

To handle the possibility of multiple spans in output from the segmentation
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step, BERT embeddings are extracted for each span and then averaged.
After the extraction step, a support vector machine is trained. The training

set is divided into 5 folds. Hyperparameters are selected using a grid search,
so each combination of hyperparameters is tested using cross-validation and
taking the F1 score as a reference to select the best model. Then, the model is
retrained on the entire training set using the best hyperparameters selection.

6.4 Experiments

Similar experiments are carried out for the three tasks. The main goals of
these experiments are:

• Find which repertoires allow to distinguish example of the classes;

• Find the best strategy to provide information about discursive repertoires
to a machine learning model;

• Check performances of this pipeline with respect to the already published
results.

The next section provides an overview of results obtained for every single task
in the SENTIPOLC challenge.

6.4.1 Subjectivity Classification

Subjectivity classification is defined as a binary classification task in which
a model must predict whether a tweet is subjective or not. In SENTIPOLC
training set 5098 examples are annotated as subjective and 2312 are objective.
The first step is to predict the discursive repertoires in the training set. In
figure 6.3 the predictions are grouped by class and normalized.

An exploratory analysis shows that some repertoires appear to be cor-
related with subjective class, such as “Comment”, “Judgment”, “Opinion”
and “Prediction”. Instead, “Description”, “Exemption from responsibility”,
“Non answer”, “Reshaping” and “Certify Reality” are correlated with objec-
tive class.

Then, all the strategies described are tested to solve the task. In Table 6.1
it is possible to see all results. The selected strategy is the hidden state of

Table 6.1: Performance of SVM for subjectivity classification with all the
feature extraction strategies

F1 subj F1 obj F1 Macro
Absolute fr 0.60 0.62 0.61
Relative fr 0.61 0.60 0.60
Last layer 0.83 0.58 0.71

4 last layers concat 0.80 0.72 0.76
[CLS] last layer 0.80 0.72 0.76
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Figure 6.3: Discursive repertoires distribution grouped by subjective and ob-
jective classes

the last layer on [CLS] token, The 4 layers concatenation strategy has similar
performance but the vector representation is bigger so the other is preferred.
As expected, it is possible to notice a performance difference between the
embedding strategy and methods based on frequencies of discursive repertoires.
However, these techniques are interesting because they do not provide any
information on the text, but only on discursive repertoires.

The table 6.2 shows the best selected model, called DR-SVM, compared
to the work already published in 2016 during the competition and the best
model published in the following years. The SVM approach based on discursive

Table 6.2: Ranking on subjectivity classification task

F1 subj F1 obj F1 Macro
AlBERTo [31] 0.84 0.75 0.79

DR-SVM 0.80 0.72 0.76
Unitor.1.u 0.81 0.68 0.74
Unitor.2.u 0.80 0.67 0.74

samskara.1.c 0.78 0.66 0.72

repertoires is close to AlBERTo, the version trained on Italian tweets described
in section 2.5.7. The information extracted by the repertoires allows to do
reach the second best score. In this case, AlBERTo fine-tuned on the task still
outperforms our approach based on discursive repertoires.
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6.4.2 Polarity classification

As described above, the polarity classification task is defined as a set of two
independent tasks and then their metrics are averaged together to obtain a
unique performance evaluation.

In the SENTIPOLC dataset there are 2051 overall positive tweets and 5359
overall non positive tweets. Regarding negative sentiment, 2983 messages are
overall negatives and 4427 are overall not negatives.
As described above, labels are dependent, indeed we can consider the objective
class equal to the class of neutral (i.e opos = 0 and oneg = 0) tweets. So,
the plot in figure 6.3 can also be interpreted as the repertoires grouped by
polarizing tweets and neutral ones.

The same features extraction techniques are tested for this task, with results
in table 6.3, taking into account the two independent tasks. Hence, the macro
average for the positive classification, the macro average for the negative and
their average are shown.

Table 6.3: Performance of SVM for polarity classification with all the feature
extraction strategies

F1 Pos F1 Neg F1 Avg
Absolute fr 0.55 0.68 0.62
Relative fr 0.54 0.67 0.61
Last layer 0.72 0.76 0.74

4 last layers concat 0.72 0.76 0.74
[CLS] last layer 0.71 0.77 0.74

The results show that all feature extraction techniques based on BERT
hidden states perform quite similarly. Also in this case, the simplest technique
is chosen, so the input of the SVM is the hidden state of [CLS] token. Table 6.4
shows the ranking for the polarity classification task. In this specific task many
studies on different architectures have been published after the competition.

Table 6.4: Ranking of polarity classification task

F1 Pos F1 Neg F1 Avg
BERT-Twitter-pp [32] 0.74 0.76 0.75

DR-SVM 0.71 0.77 0.74
AlBERTo [31] 0.72 0.73 0.72
LSTM [20] 0.66 0.74 0.69
CNN [11] 0.65 0.71 0.68
UniPI.2.c 0.68 0.64 0.66

The SVM approach based on discursive repertoires performs appreciably
well with the first place on the negative tweets classification, but a work with
BERT and a specific preprocessing pipeline for Twitter messages remains the
state of the art for this task. Both BERT-Twitter-pp and AlBERTo present
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a preprocessing pipeline specifically developed for tweets, instead the pipeline
described in this thesis uses a quite general preprocessing phase. Based on
these studies, future work could implement similar preprocessing steps to im-
prove performance.

6.4.3 Irony detection

In irony detection, the goal is to predict whether a Twitter message is ironic
or not. The SENTIPOLC dataset for irony detection is very unbalanced, in
fact, there are only 868 tweets labeled as ironic. The other class is composed
of 6542 examples.

Due to dependency between labels, ironic tweets are a subset of subjec-
tive ones with an inversion of polarity from literal to overall polarity. The
dependencies can be observed in figure 6.4, that shows a similar plot to the
one in subjectivity classification task, with some differences. Less repertoires
appear to be useful to distinguish the two classes, such as “Comment”, “Judg-
ment” and “Prediction”, which are correlated with the ironic class. Instead,
“Description”, “Non answer” and “Reshaping” are correlated with non-ironic
class.

Figure 6.4: Discursive repertoires distribution grouped by ironic and not ironic
classes

To select the best feature extraction procedure, once again an SVM with
cross-validation and grid search is trained. The table 6.5 shows all the results
obtained.

According to F1 score of both classes, the embedding of the [CLS] token is
the best input for the SVM. It is also possible to notice that this task appears
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Table 6.5: Performance of SVM for irony detection with all the feature extrac-
tion strategies

F1 Iro F1 Non-iro F1 Macro
Absolute fr 0.29 0.88 0.58
Relative fr 0.27 0.87 0.56
Last layer 0.41 0.92 0.66

4 last layers concat 040 0.91 0.65
[CLS] last layer 0.42 0.93 0.67

as the most difficult task with respect to the other two already covered. The
table 6.6 shows the final ranking for this task and all the models have lower
performances compare to subjectivity classification and polarity classification.

Table 6.6: Ranking of Irony detection task

F1 Iro F1 Non-iro F1 Macro
DR-SVM 0.42 0.93 0.67
LSTM [20] - - 0.62

AlBERTo [31] 0.28 0.94 0.61
CNN [11] - - 0.54

tweet2check16.c 0.17 0.91 0.54

The approach based on discursive repertoires increases significantly the
performance of irony detection task, obtaining the state of the art for this
sub-task. The highest performance spread is in the ironic class, with a 0.14
improvement in the f1 score compared to the AlBERTo model. Furthermore,
the input based on repertoire frequencies performs better than the models
presented at the challenge in 2016, despite its sparse representation and low
dimensionality.

In conclusion, discursive repertoires appear quite effective in detecting
irony. As shown above, some repertoires are very frequent on ironic tweets,
but this result can be influenced by the performance of the classifier for the
discursive repertoires prediction described above. Hence, a future improve-
ment of BERT-based model can make more clear the usefulness of discursive
repertoires in natural language processing tasks.
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Chapter 7

Conclusions

The main goal of this thesis was to explore the applications of dialogical science
and its theory in NLP tasks. In order to reach the goal, the first step is an
automated detection of the discursive repertoires.

One of the contributions is a critical analysis of the metrics for evaluating
the subtasks and the entire pipeline. The aim was to find a suitable metric
that would correctly evaluate partial errors. It is shown that current metrics
do not effective return a sensible evaluation in a number of specific cases and
it is proposed a novel formulation able to also handle those.

Then, with the aim to automate the dialogical science methodology, it is
proposed an approach based on deep learning techniques, designed as a pipeline
composed of two subtasks to solve, that is, the text segmentation and the
successive prediction of discursive repertoires. The evaluation of the pipeline
shows that this subtask is the most important and although the absence of
a baseline, we can consider the results obtained as significant. In fact, 23
classes are not easily handled by a machine learning model, especially when
the dataset is strongly unbalanced. The most frequent repertoires are detected
correctly with more than 60% of accuracy, maintaining the capacity to detect
the others sufficiently high in most of cases.

The text segmentation step is a standard task for NLP, so the expectation
was a similar performance of the already trained tools for text segmentation.
However, the direct and supervised approach of fine-tuning BERT on Hyperion
dataset brought about 24% of improvements with respect to the best ready-
to-use tool. Furthermore, experiments on the postprocessing phase showed
relevant results considering that it is strictly dependent on the classifier per-
formance.

The last contribution is a demonstration of the effectiveness of discursive
repertoires applied to downstream tasks. The main idea was to compare an
approach based on discursive repertoires to the state of the art techniques. In
order to make this comparison, the SENTIPOLC challenge is chosen, because
it offers a good variety of tasks and during the years many different approaches
to compare have been published. Experiments with discursive repertoires as
features for downstream tasks in this challenge are positive, especially consid-
ering the fact that the performance of the repertoire classifier could, in some
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cases, introduce noise in the modelling of the downstream task.

Two representations are tested, a simple one based on the frequencies of the
repertoires and one based on the latest layers of the deep network used to iden-
tify the repertoires. The inputs based on repertoires frequencies showed that
they contain useful information for solving the three tasks we experimented on.
Moreover, this approach is easy to interpret, providing the list of repertoires
able to discriminate the classes of the downstream task. The representation
based on the network layers has been used as input to a Support Vector Ma-
chine outperforming the state of the art on the irony detection task. This
approach has increased the average F1 score of 0.05 and has increased of 50%
the F1 score in the single ironic class with respect to a fine-tuned AlBERTo.
In polarity detection, the approach described has obtained second place in the
rankings showing performances lower than only 0.01 on the average F1 score
with respect to BERT with the application of a complex preprocessing pipeline
implemented for this task. In subjectivity classification, the SVM model has
reached second place, but with a larger distance from the state of the art. An
interesting approach for future work could be a combination between feature
of discursive repertoires and feature from a fine-tuned model directly on the
downstream task.

Returning to the main goal written in the introduction, this thesis provided
empirical evidence that the dialogical science and discursive repertoires extract
useful information for tackling NLP tasks. In addition, the pipeline enables
to speed up the work of the linguists that manually analyze texts with the
dialogical science.

7.1 Future work

The nature of this project is experimental and exploratory, so it provides the
first results about this topic and there are many ways to continue the project
development. While experiments were carried out, new alternative approaches
and future expansions to the current work emerged:

• English language extension: Due to the dataset available, this work is
based on Italian language. A future work could explore dialogical science
applications for English language, in order to verify its effectiveness on
a large number of tasks and datasets. Moreover, more recent pretrained
models published only for English language could be used to implement
the pipeline;

• Distance metric between repertoires: In this thesis, discursive repertoires
are treated as independent and equally distant classes, but we know from
the theory that there are repertoires more similar to some and different
from others. Hence, future work could explore this part of theory, exploit
that when training the models by weighting the errors according to the
distance between the repertoires;
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• Generalized model for repertoires prediction: It is possible to work on a
generalized model for discursive repertoires prediction, joining different
datasets already existent to Hyperion dataset. The main advantages is
the possibility to exploit other parts of the theory, such as the ques-
tion, that can cause a different classification for the same text. It is not
already implemented due to the presence of only one question in Hyper-
ion dataset. Another advantage is to handle the imbalance of Hyperion
dataset adding more examples.

• Different task definition: The task of predicting repertoires can be re-
formulated in a different way. For instance, it can be interpreted as a
unique task without splitting it in two subtasks;

• Different models for downstream tasks: The SVMs implemented for down-
stream tasks have produced good performances, but this thesis does not
cover alternatives to this model. A future work can focus on the imple-
mentation of a neural network for tackling downstream tasks;

• Combined inputs for downstream tasks: This thesis is focused on the use
of discursive repertoires as main input for solving downstream tasks. An
alternative approach is to use them as additional features combined with
some others. An idea is to concatenate extracted vectors of BERT for
repertoires prediction with a Tranformer-based architecture fine-tuned
directly for the downstream task, such as AlBERTo. In this way, it is
possible to verify whether information relative to discursive repertoires
is complementary to the one retrieved by a fine-tuned tranformer archi-
tecture.

This list is not exhaustive, but it can represent a valid starting point for future
research.
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