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Abstract

La presente tesi si pone l’obiettivo di fornire una descrizione coesa, per
quanto limitata a poche pagine e agli aspetti ritenuti essenziali dell’argomen-
to, delle applicazioni della teoria del trasporto ottimale di massa, svilup-
pate negli scorsi decenni, al problema della ricostruzione della dinamica
dell’Universo primordiale (EUR).

L’intuizione che fa da perno alla trattazione consiste nell’impiego dell’e-
quazione di Monge-Ampère, la quale nella sua prima formulazione risale al
1781, per la costruzione di algoritmi efficaci per la computazione di soluzioni
uniche del problema di Ricostruzione.

Oltre ad una breve contestualizzazione di carattere storico si è ritenuto
opportuno richiamare alcuni risultati strettamente matematici per i quali si
fa riferimento a [8]. Le sezioni centrali sono dedicate ad una breve discus-
sione del modello di Monge-Ampère-Kantorovich (MAK) e del modello grav-
itazionale di Monge-Ampère (MAG). Quest’ultimo, proposto dal matematico
Yann Brenier [9], sfrutta il principio di minima azione e la teoria del flusso di
gradiente con potenziali convessi per realizzare un algoritmo uni-dimensio-
nale e discreto, atto a ricostruire le soluzioni cercate.
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1 Introduction

Are we able to successfully rewind the dynamical history of the Universe we
observe today and deterministically reconstruct the evolution, starting from
its very early stages, of Universe’s mass distribution at present time?

Cosmological reconstruction can be approached directly by assuming a
certain model about primordial fluctuations, then compare the statistical
properties expected for the present Universe with the observations.

On the other hand, reconstruction can be formulated as an inverse prob-
lem: reproduce and model as much as possible of the past dynamical history
starting exactly where we are, from a sufficiently detailed map of the mass
distribution we are able to observe today.

Over the past decades several great cosmologists and mathematicians
have been addressing the issue in many different ways, in an effort to unravel
this hidden mistery of our physical world.

It was first P.J.E. Peebles in July 1989 [1] to pave the way for this fascinat-
ing challenge of modern cosmology.

As he opens the introduction to his paper:

"In the gravitational instability picture, the clumpy
galaxy distribution grew by gravity out of smoother

initial conditions. We can test this by comparing the
motions needed to produce the clustering with

observations of nearby galaxies, [...] I present a method
of predicting velocities given present positions by

adjusting trial orbits to minimize the action. As the
action usually is applied the orbits have fixed initial

and final positions, but the true orbits also minimize
the action if the initial velocity vanishes."

The major intuition in his words is that, assuming that galaxies trace the
mass distribution, the latter depending on minor departures from primor-
dial homogeneity, then galaxy orbits can be successfully estimated by ad-
justing them to make the action stationary. 1

The action considered by Peebles is expressed for the i -th particle in co-
moving coordinates xi (t ) as

S =
∫t0

0

d t
[∑ mi a2

2

(dxi

d t

)2
+ G

a

∑
i ̸= j

mi m j

|xi −x j |
+ 2

3
πGρb a2

∑
mi x2

i

]
1In the standard cosmological paradigm, the present distribution of galaxies and their pecu-

liar motions result from gravitational amplification of small fluctuations in the initial density
field.
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The boundary conditions2

δxi = 0 at t = t0 a2 dxi

d t
→ 0 at a→ 0

are to satisfy by a least action solution in order to minimize S.
Feedbacks were seeked experimentally in the studying of the peculiar ve-

locities of the dwarf members of the Local Group. The group was assumed to
be grown out of accretion of originally pressureless and smoothly distributed
matter into seed masses at the Milky Way and Andromeda Nebula.

The following plot is displayed in Peebles’ publication from 1990[2]:

Since Peebles’ first papers many others have made the attempt to for-
mulate effective methods for action minimization. As a matter of fact, most
of the promising approaches to the problem are based on the least action
principle.

In 1999 A. Nusser and E. Branchini [3] proposed a model named FAM,
which stands for Fast Action Minimization, based on the use of the conjugate
gradient method in order to locate the extremum of the action.

FAM is able to reconstruct the flow field down to cluster scales3 and thus
recover both the present peculiar velocities of mass particles and the initial
fluctuations field.

2a(t ) is the expansion parameter and its present value is a0 = a(t0) = 1.
3At those scales deviations from the Zel’dovich solution become significant.
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The N-body simulation using FAM successfully retraces the orbits of a
limited distribution of particles in real space, lessening the effects of the so-
called multivalued zones, redshift distortions coming from galaxy surveys.

In the early 2000’ a Monge-Ampère-Kantorovich4 (MAK) kind of recon-
struction was introduced [6], taking a new direction: the model re-established
the problem as an assignment problem in optimization theory.

4The reason behind the name will be more clear in the next sections.
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MAK is built starting from mass conservation, under the following as-
sumptions:

(i) the final positions of the particles are known;
(ii) the initial distribution is homogeneous;
(iii) the Lagrangian map (q → x) is the gradient of a convex potential5.
These assumptions imply that the inverse map also has a convex poten-

tial representation, related to the previous one by the corresponding Legendre-
Fenchel transform.

By combining the expression for the inverse map with mass conservation
one would obtain the Monge-Ampère equation (see section 2.4).

The solution to this well-known equation provides a unique solution to
an optimization probem: while previous approaches rendered non-unique
solutions MAK shows that the initial positions of dark matter fluid elements,
under the hypothesis that their displacement is the gradient of a convex po-
tential, can be reconstructed uniquely.

In the following work an attempt will be made to provide an insight into
the problem of the Reconstruction of the early Universe dynamics (EUR).

Section 2 will be spent to deliver some of the main mathematical results
that contribute to the abstract framework describing the EUR problem in a
rather rigorous way.

Section 3 will be an overview of the Monge-Ampère gravitational model,
mainly developed by the french mathematician Yann Brenier, aiming, once
again, to answer to the great question this introduction was opened with.

2 the Reconstruction problem

The evolution of the present non-uniform distribution of mass in the Uni-
verse can be traced back to minor primordial fluctuations6 and successfully
modelled as the motion of a self-gravitating continuum of cold dark matter
described by the Euler-Poisson system.

5The convexity condition guarantees that there is no multistreaming and will be further dis-
cussed in the next sections.

6It is widely accepted that the primeval perturbations originated at the inflationary stage.
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In its non relativistic form:

∂tρ+∇x · (ρv) = 0

∂t (ρv)+∇· (ρv⊗v) =−ρ∇φg (1)

∇2
xφg = ρ

where v = v(t ,x) ∈ R3 indicates the velocity vector-field, ρ indicates the
density field and φg =φg (t ,x) is the gravitational scalar-potential.

The product ρv will be later defined as the flux of matter.
Performing the correct adjustments in order to take into account the ex-

panding motion for the Einstein-De Sitter Universe, system (1) can be ex-
pressed in the appropriate co-moving coordinates, as it follows:

∂τρ+∇x · (ρv) = 0

∂τv+v ·∇xv =−
( 3

2τ

)
(v+∇xφg ) (2)

∇2
xφg = ρ−1

τ

The Poisson equation is formulated in accordance with the condition of
normalization given by ∫

Td

ρ(., x)d x = 1

calculated for simplicity over the flat torus Td =Rd /Zd .
The assumption of a particular constraint, named slaving, seems to be

not only necessary in an effort to remove the singularity at τ −→ 0 but also
sufficient to render the problem well-posed:

vi n(x)+∇xφ
i n
g = 0 ρi n = 1

meaning that the reconstructed solution of the Euler-Poisson system has an
initial velocity field equal to the gradient of the initial gravitational potential,
while the initial density field must be rigorously uniform.

Under the hypothesis of collisionless matter, slaving also ensures that
no multistreaming occurs, furtherly justifying the use of the Euler-Poisson
equations.7

7Otherwise the dynamics would be better described by the Vlasov-Poisson system.
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As mentioned in [5], the slaving condition suggests the absence of de-
caying mode, as opposite to growing mode, which is assumed instead, since
the time variable used in the previous and following equations is actually the
amplitude factor τ 8 of the growing mode.

The Reconstruction problem of the early dynamics of the Universe de-
fined in (2) is now presented as the challenge of reconstructing a unique so-
lution to this Hamiltonian system and, as a consequence, can be addressed
with variational techniques.

Solutions to Hamiltonian systems are critical points for the action of the
Lagrangian function

I = 1

2

∫
[0,T ]

d t
∫

D
ρ(t ,d x)|v(t , x)|2 +|∇φg (t , x)|2d x (3)

Since the action is a convex functional in the variables (ρ,ρv,φg ) the crit-
ical point needs to be specifically a minimizer.

By performing the minimization of the action one will thus be able to
find a solution in terms of an optimal transportation problem.

2.1 General formulation

Some crucial results, proved and widely discussed by G. Loeper [8], con-
tributed to shaping the EUR problem within the Euler-Poisson dynamical
frame into a mathematically rigorous one.

By introducing the domain D = [0,T ]×Td , given J = ρv ∈Rd and ρ ∈R+,
the functional I can be written as

Ĩ (ρ, J ,φ) = sup
c+|m|2/2≤0

{∫
D

c(t , x)dρ(t , x)+m(t , x) ·d J (t , x)
}
+

+1

2

∫
D
|∇φ(t , x)|2d td x (4)

where the supremum is taken over all (c,m) ∈C (D)× (C (D))d with c ∈ R
and m ∈ Rd . One can prove that (3) and (4) are the same functionals over
]−∞,+∞], with ρ being a measure on D, v being a dρ measurable vector
field and φ a proper dρ measurable function.

8τ is proportional to t 2/3 in the Einstein-de Sitter universe.
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It is possible to provide a variational formulation9 of the EUR problem
by combining the Euler-Poisson system defined in (2) and equation (4):

Minimize the action

I = 1

2

∫T

0

∫
Td

τ3/2
(
|v(τ, x)|2dρ(τ, x)+|∇φ(τ, x)|2d xdτ

)
among all triples (ρ, J ,φ) that satisfy ρ ∈C ([0,T ];P (Td )−w∗),
J ∈ (M (D))d and ∇φ ∈ L2(D), under the constraints

ρ(τ= 0) = 1 ρ(τ= T ) = ρT

and those given by (2).

P (T(D)) is the set of probability measures on T(D) and M (D) indicates
the set of bounded measures on the prescribed domain.

In addition to an existence and uniqueness theorem, as reported below, a
regularity result was accomplished for the minimizer of the action Ĩ in (4).

Theorem 1 Existence & uniqueness

Let ρ0 and ρT be two probability measures in L
2d

d+2 (Td ).
There exists a unique triple (ρ,ρv,φ) ∈ (M (D)) × (M (D))d ×
L2([0,T ]; H 1(T))), with ∆φ = ρ − 1, that minimizes the E-P
problem.
(ρ,v,φ) is then a weak solution a of the Euler Poisson system
and it is unique. Moreover

1. there exists ψ ∈ L2
l oc (]0,T [; H 1(Td ))

⋂
L∞

loc (]0,T [×Td )
such that v =∇ψdρ.

2. any such extension satisfies∫
Td

∫T−τ

τ

|v(t , x + y)−v(t , x)|2dρ(t , x) ≤Cτ|y |2

for all τ ∈]0,T /2] and y ∈Rd .

3. ρ belongs to L2
l oc (]0,T [×Td )

⋂
C (]0,T [;Lp ) for any p ∈

[1,3/2].

aSee Appendix.

9It will be referred to as the E-P problem from now on.
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Theorem 2 Regularity

If ρ0 and ρT are in L
2d

d+2 , the unique solution (ρ, J ,φ) of the E-P
problem has the following regularity properties:

1. The density ρ is in L∞
loc

(
]0,T [×Td )⋂

C
(
]0,T [;Lk (Td )

)
for every 1≦ k <∞.

For every τ ∈ ]
0,T /2[ there exists Cτ such that for every

t ∈ [τ,T −τ]

∥ρ(t , ·)∥L∞(Td ) ≦Cτ

and C such that

−C
(
1+ 1

t

)
≦

d

d t
log

(∥ρ(t , ·)∥Lk (Td )

)
≦C

(
1+ 1

T − t

)
Note that constants Cτ and C do not depend on the
choice one would make for ρ0 and ρT .

2. The velocity v =∇ψ can be taken in L∞
l oc

(
]0,T [×Td )

and
it is again not dependent on the choice one would make
for ρ0 and ρT .

3. The functions∫
Td

[ρ]k (t , x)d x k ≧ 1

∫
Td

[ρ logρ](t , x)d x

are convex with respect to the time variable.

4. The velocity potential ψ can be taken in
W 1,∞

l oc

(
]0,T [×Td )

to be a viscosity solution of equa-
tion

∂tψ+ 1

2
|∇ψ|2 +φ= 0

on every [s, t ] ⊂]0,T [.

5. If ρT is in Lp (Td ), p > d , then the previous condition can
be extended up to t = T .
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6. One can take ψ such that (ξ,q)(t ,x) = (−ψ,φ)(T − t ,x) is
a viscosity solution of equation

∂tξ+ 1

2
|∇ξ|2 +q = 0

on every [s, t ] ⊂]0,T [.
7. For each t ∈]0,T [ there exists a closed set St of full mea-

sure for ρ(t ) such that ψ(t ) is differentiable with respect
to the space variable at every point of St .
For all t ∈ [τ,T −τ],τ> 0, and all (x, y) ∈ St with |x−y |≦ 1

2

|∇ψ(t , x)−∇ψ(t , y)|≦C (τ)|x − y | log
( 1

|x − y |
)
.

Both existence and uniqueness of a minimizer of the action are so for-
mulated, as a proposition, under the above mentioned constraints of the
E-P problem.

Proposition Under the assumption that ρ0 and ρT are in L
2d

d+2 ,
there exists a unique minimizer (ρ, J ,∇φ) ∈ C ([0,T ];P (Td )−
w∗)×L2(D) for the E-P problem.

The proof of this result leads into mass transport theory, with the imple-
mentation of Kantorovich duality.

2.2 Mass transport theory

2.2.1 To the origins of the problem

The mass transportation problem, first formulated by Gaspard Monge in
1781 in a paper entitled Théorie des déblais et des remblais, is to search the
optimal way, as the one that minimizes the cost, to move one given distribu-
tion of mass in the Euclidean space R3 into a target distribution.

Monge’s original criterion to do so as efficiently as possible was to mini-
mize the average distance of transportation.
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What is the optimal way of moving soil into building a fortress?

The elementary work to move a mass molecule x into T (x) is given by
|x −T (x)|, so that the total work is∫

débl ai s

|x −T (x)|d x

Monge’s query is then to find the minimum work over an admissible
transport map T , i.e. a map that maps déblais into remblais.

It is convenient to consider the topic within the framework of metric
spaces:

• (X ,d) is a metric space;

• f +, f − are two probabilities on X, corresponding respectively to déblais
and remblais;

• T is an admissible transport map if T # f + = f −.

Consequently, Monge’s problem takes the form

min
{∫

X
d(x,T (x))d x, T admissable

}
and does not admit a solution in general when f +, f − are singular, since

in that case the class of admissible transport maps could be empty.
In 1942 the mathematician and economist Leonid Kantorovich provided

a generalization of the problem, actually solvable in more than one dimen-
sion, by allowing the mass distribution to split in the product space, where
more than one position in the fills -remblais- could be associated with a po-
sition in the cuts -dèblais-10.

Kantorovich developed the groundbreaking techniques of duality in op-
timization theory and linear programming, which were successfully employed
in the resolution of this relaxed version of the problem.

10In other words, he allowed multistreaming.
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In the 90’s mass transportation theory was eventually brought together
with the Monge-Ampére equation when the french mathematician Yann Bre-
nier formally proved that the optimization problem, assuming quadratic cost11,
amounts to an elliptic Monge-Ampère equation.

As extensively discussed in [11], Brenier considers the case in wich
T :Rn →Rn and the cost would be c(x, y) = |x−y |2/2, proving the follow-

ing theorem.

Let µ and ν be two compactly supported probability mea-
sures on Rn . If µ is absolutely continuous with respect to the
Lebesgue measure, then

1. there exists a unique solution T to the optimal transport
problem with cost c(x, y) = |x − y |2/2;

2. there exists a convex function u : Rn → R such that the
optimal map T is given by T (x) =∇u(x) forµ−a.e. x ∈Rn

Furthermore, if µ(d x) = f (x)d x and ν(d y) = g (y)d y , then T is
differentiable µ−a.e. and

|det(∇T (x))| = f (x)

g (T (x))
for µ−a.e. x ∈Rn

For a broad discussion of the regularity results of optimal transport maps
deriving from this theorem refer to [11].

2.3 Zel’dovich approximation

In the early 70’s the astronomer Yakov B. Zel’dovich published his work on
gravitational instability introducing a simplification of the problem known
as the Zel’dovich approximation. Assuming the Zel’dovich approximation,
the pursuit of a solution for the reconstruction problem doesn’t rely on the
mathematically rigorous framework considered in the previous section. Con-
sider equation

D2
τx =− 3

2τ
(Dτx+∇xφg )

in place of the Poisson equation. Here x(q,τ) is the Lagrangian map, crucially
assumed to be equal to the gradient of a convex potential, as mentioned
before.

At τ = 0 the Hubble drag term and the gravitational force cancel exactly
and still do so to leading order in any dimension for small τ12.

11In the previous works on the topic the cost was assumed to be linear, i.e. directly propor-
tional to the distance.

12Consequence of the slaving condition.
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The Zel’dovich approximation removes any restriction in time: the accel-
eration D2

τx just vanishes for all τ.
The spatial structure of the initial perturbations is described by the po-

tential vector field, the same convex potential that satisfies x = ∇qΦ takes
the form

Φ(q,τ) ≡ |q|2
2

−τφi n
g (q) (5)

As long as the potential Φ is convex, the map x(q,τ) is essentially invert-
ible. From the physical point of view, the same assumption corresponds to
the absence of multistreaming13 To be more precise, the Zel’dovich approxi-
mation itself is not enough to completely rule out multistreaming: a variant,
known as adhesion model, was introduced by S.N. Gurbatov and A.I. Saichev
in 1984, that makes use of a multidimensional Burger’s equation

∂τv+ (v ·∇x )v = ν∇2
x v (6)

in the inviscid limit in which viscosity ν tends to zero14.
Zel’dovich approximation had the potential of predicting how the first

structures are formed but it does not tell us what happens after the forma-
tion of the first shocks. The viscosity term introduced on the right side of
equation (6) would prevent particle orbit crossing, thus preserving shocks
after they form. This allows us to track the unfolding of the cosmic web to
much later times than Zel’dovich approximation is capable of.

If considering the Lagrangian formulation given above, adhesion model
is obtained by replacingΦ(q,τ) by its convex hull15 in the variable q.

Even though the adhesion model appears to be defective when it comes
to conservation of momentum in more than one dimension, it is still, as the
N-body simulations show, in a better agreement with observations than the
Zel’dovich approximate model.

2.4 The Monge-Ampère equation

The assumption that the Lagrangian map is derived from a convex potential
leads to a pair of Monge–Ampère equations, one for this very potential and
another for its Legendre transform.

13Having more than one velocity at a given point.
14Note that it’s ν→ 0 and not ν = 0 for which it would simply go back to Zel’dovich approxi-

mation.
15See Appendix.
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Starting from a general definition, the Monge–Ampère equation in its
classical form is given by a nonlinear second-order partial differential equa-
tion

[detu]2 = f (x,u,∇u) inΩ,

where Ω ⊂ Rn is some open set, u : Ω→ R is a convex function, and f :
Ω×R×Rn → R+ is given. As a result, the equation prescribes the product
of the eigenvalues of the Hessian matrix of u, the convexity of which is a
necessary condition to make the equation degenerate elliptic and achieve
the regularity results mentioned in the previous subsection.

Going back to the EUR frame, since in the adopted notation the ini-
tial quasi-uniform mass distribution has unit density, mass conservation in-
evitably implies that, for a prescribed density field ρ0(x)

ρ0(x)d 3x = d 3q

In terms of the Jacobian matrix ∇qx

det∇qx = 1

ρ0(x(q)

Under assumption (5) over the potential, one will get to the final form

det(∇xi ∇x jΘ(x)) = ρ0(x)

The function Θ(x) = max
q

x ·q−Φ(q) is the Legendre transform of the po-

tentialΦ and subsequently the convex potential of the inverse map.
Mass conservation can be thus rewritten as

det(∇xi ∇x jΘ(x)) = ρ0(x) (7)

i.e. the much-awaited elliptic Monge-Ampère equation16.

2.4.1 Weak formulation

When dealing with actual mass concentration in the present distribution of
matter, the density field at the right member of equation (7) acquires a sin-
gular component and smoothness of the potentialΘ is in jeopardy.

Nonetheless, by requiring mass conservation in its integrated form∫
DE

ρ0(x)d 3x =
∫
∇xΘ(DE )

d 3q

16Monge-Ampère equation for self-gravitating matter may be viewed as a non-linear gener-
alization of a Poisson equation, to which it reduces if the fluctuations from initial position are
very small.
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with DE being the arbitrary domain of variable x in the Eulerian space
and q(DE ) its image in the Lagrangian space, a weak formulation of the
Monge-Ampère equation is provided.

Smoothness and uniqueness of the solution are guaranteed in this form,
as long as the mass distributions themselves are smooth and occupy bounded
and convex domains.

2.5 MAK

Piecing together the notions that have been introduced, the Monge-Ampère-
Kantorovich method developed [4] and in [5], makes use of a variational re-
formulation of (7).

When the cost to mass transportation problem is a quadratic function of
the distance, the purpose of finding a potential Lagrangian map with pre-
scribed initial and present mass density fields reduces to finding the mini-
mizer to the functional

I =
∫

Di n

|x(q)−q|2
2

d 3q =
∫

D0

|x−q(x)|2
2

ρ0(x)d 3x

Solution q → x(q =∇Θ(q) must satisfy condition (7).
A variational proof of the equivalence is given in [5].

2.5.1 the Assignment problem

Once the mass distribution is converted into an ensemble of N particles,
cost minimization becomes what is known as an assignment problem in op-
timization theory: find the unique one-to-one pairing of a set of N initial
points qi and N final points xi that provides minimization of the descrete
action

Idi scr =
N∑

i=1
|xi −q j (i )|2

Taking this further step, complexity of the algorithms used for N -body
simulations is close to N 3 for arbitrary cost functions and notably reduced if
cost is assumed to be quadratic.

3 the Monge-Ampère gravitational model

The Monge-Ampère gravitational model presented by Y. Brenier in [9] con-
sists of a modified Euler-Poisson system, in which the linear Poisson equa-
tion is substituted by the fully non-linear Monge-Ampère equation.

14



Remarkably enough, the resulting model allows exact solutions for the
Zel’dovich approximation. It is noted that the way the problem has been
addressed by G. Loeper provides only solutions to the Euler-Poisson system
without concentrations, a restraint that Brenier is able to overcome, modi-
fying the action in order to obtain minimizers that would not be necessarily
concentration free. Brenier employs the theory of self-dual lagrangians de-
veloped by N. Ghoussoub, whose work on Self-dual Partial Differential Sys-
tems is cited among the references in [9].

3.1 MAG

The definition of the MAG model is given by taking the Hilbert space

H = L2(D,Rd )

of all Lebesgue square-integrable maps from D to Rd . The subset of all
the Lebesgue measure-preserving maps s of D will be

S =
{

s ∈ H ,

∫
D

f (s(a))d a =
∫

D
f (a)d a, ∀ f ∈C (Rd )

}
The dynamical system

β−2 d

d t

(
α2(t )

d x

d t

)
= (∇HΦ

)
[x] = x −π[x]

displays the scaling parameters α(t ) = t
3
4 and β(t ) = t−

1
4
p

3/2 from the the-
ory of General Relativity, as required by the physical context. The other no-
table variables are the given potential Φ and π[x], the latter defined as the
closest point to x on S. The potential is assumed to be defined in the form

Φ[x̃] = inf
{ ||x̃ − s||2

2
; s ∈ S

}
For the extensive discussion of the abstact framework see [9].
In order to formulate the MAG model in Eulerian coordinates one can

introduce, given a solution t → x(t ), the following measures

ρ(t ,d x) =
∫

D

δ(x − x̃(t , a))d a

v(t , x)ρ(t ,d x) =
∫

D

∂t x(t , a)δ(a − x̃(t , a))d a
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respectively valued in R and Rd .
By using optimal transportation theory one will get to the following set

of partial differential equations

∂tρ+∇· (ρv) = 0

∂t (α2ρv)+∇· (α2ρv⊗ v) =−β2ρ∇φg (8)

ρ = det(I +D2
xφg )

where (ρ,v,φ)(t ,x) ∈R+×RD ×R, (t ,x) ∈R×Rd

The fully non-linear Monge-Ampère equation, the third equation in sys-
tem (8), if used to replace the linear Poisson equation encountered above
provides a model that is corrispondingly a non-linear correction of the orig-
inal E-P classical model.

Note that, in one dimension, the two perfectly overlap.

3.2 Modified action

By exploring the self-dual form of the action, it becomes clear that any solu-
tion of the gradient flow equation

d X

d t
= (∇HΦ)[X ] = X −(∇HΠ)[X ] (9)

always represents a minimizer of the action. Each solution X (t ) to (9) in
the Hilbert space is a Lipschitz continuous function of t and right-differentiable
∀t . The self-dual formulation17 of a modified action is set to be

Â[t0,t1][X ] =
∫t1

t0

1

2
∥d X

d t
−X +d 0Π[X ]∥2d t

For the EUR problem, it can be rewritten as

A =
∫t1

t0

α(t )2∥d X

d t
∥2 +β(t )2∥∇HΦ[X (t )]∥2d t

By performing integration by part under the assumption that

d

d t
(α(t )β(t )) =λβ(t )2

17d0Π[X ] is uniquely defined and denotes the element of ∂Π[x] with minimal norm.
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the same action can be expressed as

A = BT +
∫t1

t0

∥α(t )
d X

d t
−µβ(t )∇HΦ[X (t )]∥2d t

with BT being a boundary term depending only on X (t1) and X (t0), µ taken
such that µ2 +µλ+1 = 1.

The gradient flow equation that allows concentrations is

t
d X (t +0)

d t
= X (t )−d 0Π[X (t )] (10)

Equation (10) also implies the biggest dissipation of kinetic energy dur-
ing the concentration process18. The ultimate expression that is suggested
for the EUR problem according to MAG model is eventually given by

Â =
∫t1

t0

t−
1
2 ∥t

d X

d t
−X +d 0Π[X ]∥2d t

3.2.1 ZA solutions

Brenier extends the discussion to those solutions to the gradient flow equa-
tion (10) that coincide in fact with the approximate Zel’dovich formula

X (q,τ) = q −τ∇φi n
g (q) (11)

where q is the material coordinate that labels the mass particle at time τ
and φi n

g regards the behaviour of the density field at early stages.
These special solutions come from the fact that any map X ∈ H has a

unique rearrangement X ∗ ∈ K , with K ⊂ H being the set of all points X that
admit I as a closest point on S.

It can be mathematically formulated as∫
D

δ(x −X ∗(q))d q =
∫

D

δ(x −X (q))d q

For the seeked solutions (10) reduces to a linear ODE

∇HΦ[X (t )] = X (t )− I
18This specific aspect could be matter of discussion from a physical point of view.
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leading explicitly to

X (q, t ) = q+ t

t0
(∇φ(t0, q)−q) = q+ t

t0
(X (t0, q)−q) (12)

given the fact that if X belongs to K then X (t , q) =∇ψ(t , q), with ψ(t , q)
convex in q . Equation (12) coincides with equation (11), providing an indi-
rect validation of the model.

3.3 Discretization

Following the ideas discussed above, a one-dimensional algorithm is de-
signed and acts as a link between the mathematical model and the N -body
numerical simulations.

The modified action that has been introduced is now taken in a time-
descrete version, starting from the gradient flow equation (10).

One would naturally choose

Xn+1 = Xn(1+θn)−∇HΠ[Xn]θn +ηn

where Xn is an approximation of X (t ) at the nth time-step Tn , n = 0, ...N ,
T0 = t0, TN = t1 and

Θn =
[Tn+1

Tn
−1

]
→ 0.

The last term ηn represents an arbitrary small perturbation that guaran-
tees that Xn is a point of differentiability ofΠ, ∀n.

From such time-descrete scheme a time-descrete version of the modi-
fied action is defined as well

N−1∑
n=0

rn ||Xn+1 −Xn(1+θn)+π[Xn]θn ||2 rn = T 3/2
n

Tn+1 −Tn

Nevertheless, the original EUR problem does not involve the Xn vari-
ables, but rather the corresponding probability measures.

In order to address the loss of information that would be caused, X0 and
XN are rearranged with convex potentials X #

0 and X #
N .

If Xn = Yn ◦ sn , Yn = X #
n ∈ K , sn =π[Xn] ∈ S is the closest point in S to Xn .

The time-discrete version of the gradient flow naturally turns into

Yn+1 ◦ sn+1 = (Yn(1+Θn)−Θn I)◦ sn

18



As a consequence, the time-discrete EUR problem within the MAG frame
is now an issue of minimization of

N−1∑
n=0

rn∥Yn+1 ◦ sn+1 − (Yn(1+θn)−θn I)◦ sn∥2

By introducing the quadratic Wasserstein distance 19 the problem once
again takes new form, as the minimization in Yn ∈ K of∑

n=0
dW (Yn+1,Yn(1+θn)−θn I)

2

3.3.1 Fully discrete LAP

The Least Action Principle (LAP) comes in a scheme in which not only the
time variable but also the space variable is discrete. The continuous domain
D is replaced with L disjoints subdomains Di of Lebesgue measure 1/L, with
i = 1, ...L.

H is consequently taken as the euclidean space (Rd )L provided with a
euclidean norm ∥.∥. S contains all permutations s of the L first integers and
satisfies the group property of invariance for the norm.

The minimization problem is furtherly reduced to the minimization of
the following

N−1∑
n=0

rn∥Yn+1 − (Yn(1+θn)−θn I d)◦σn+1∥2

as Y0 and YN are fixed in K , the latter corresponding to the cone of all
sequences Yi such that ∑

i
Yi · (ai −asi ) ≥ 0

Solution to the minimization problem is shown in [9], making use of
Gauss-Seidel type iterations.

In order to validate the model, the time-discrete scheme is then success-
fully employed by Y. Brenier to solve the initial value problem (IVP), in one
and multi-dimensions, alongside with the time-discrete least action princi-
ple.

19See Appendix.
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4 Numerical applications

4.1 Testing MAK

Taking up on the Monge-Ampère-Kantorovich (MAK) gravitational model,
that was briefly discussed in section 2.5, the following images show the N -
body simulation output used for testing the MAK reconstruction method.

The distribution of dark matter is taken as a descrete ensemble of N par-
ticles of identical mass. The reconstruction reduces to evaluating the actual
pairing between initial and final positions of these particles, according to
Newtonian gravitational dynamics20.

On the left is the projection on the x-y plane of a 10% amount of about
200h−1Mpc, where all highlitghted points refer to Reconstruction failing by
more than 6.25h−1Mpc21.

On the right is the projection of the same simulation box tested specif-
ically with a redshift-space variant of MAK reconstruction. A comparison
between the two shows that MAK is reliable with respect of redshift system-
atic errors.

4.2 Testing MAG

Following the descretization of the algorithm a few numerical simulations
are performed, visually presented and discussed in section 6 of [9].

The considered time interval is divided into 60 equal steps, during wich
the trajectories of 51 particles are followed and reconstructed, resulting into
an almost perfect matching between the reconstructed solution and the IVP
problem for the MAG equations.

20Assuming periodic boundary conditions.
21That would happen more frequently in high density regions.
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5 Conclusions

In these few pages, certainly a lot fewer than those needed to fully explore
the issue we’re addressing, the attempt is to give a glimpse, a rather general
overview of the ideas that were conceived in order to find a solution to the
Early Universe Reconstruction (EUR) problem.

The apparatus and tools of optimal transport theory and the Monge-
Ampère equation, in some way rediscovered for this purpose, end up having
crucial roles in the hunt for an answer.

From the historical contextualization that has been made it becomes
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clear that the issue has caught the attention of both cosmologists and math-
ematicians, whose efforts and research would converge right into building
an efficient model, an algorithm capable of tracing and piecing together the
path on which matter has been moving through billions of years.

Among the best developed models in the field the Monge-Ampère-Kanto-
rovich (MAK) model [5] stands out, as it is the first one that engages with the
EUR problem as a well-posed problem having a unique solution.

We’ve been then mainly focusing on Yann Brenier’s formulation of the
Monge-Ampère Gravitational (MAG) model, that makes use of the least ac-
tion principle to design a one-dimensional algorithm, in which mass con-
centrations are included by employing gradient flow theory.

The efficiency of the algorithm is proved by the Zel’dovich solutions on
one side and by the numerical simulations on the other.

It is worthy to mention, among the most recent publications around the
MAK method, the work of B. Levy, R. Mohayaee and S. von Hausegger [13],
as they were able to efficiently run N-body simulations with a semidescrete
optimal transport algorithm (SDMAK) over a continuous density field, par-
titioned into Laguerre cells22. The SDMAK successfully reconstructs the ini-
tial positions of up to O (107) particles in a matter of hours, recovering subtle
features of the initial power spectrum, such as the baryonic acoustic oscilla-
tions.

It is great indeed to watch this major topic regarding our cosmos, along
with its many facets, slowly clear up in front of us, as we move forward to-
wards future goals.

Large 3D surveys will make increasingly detailed reconstruction of early
density fluctuations possible, giving some solid base to verify important as-
sumptions that has been made about them.

On a theoretical level, researchers will probably commit to developing
a viable multi-dimensional algorithm, as well as investigating the relative
accuracy of Newtonian and Monge-Ampère gravitational models in relation
to General Relativity.

Besides, there are many unexpected and significant applications of both
optimal transport theory and the Monge-Ampère-Kantorovich problem, ap-
plications that completely depart from the cosmological frame of work.

As it is deftly presented in [12], the version of Monge’s optimal transport
problem later reproposed by L. Kantorovich opened the way to an appropri-
ate variational theory that applies to living systems, able to prescribe the op-
timal stationary distribution of metabolites throughout the arterial network.
The reconstruction of the whole dynamic is well-crafted and its efficiency is

22An individual region in a Laguerre diagram.
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confirmed by Kleiber’s phenomenological law23.
The same mathematical machinery can be used to describe the way trees

get their nutrition through their roots, in an optimal way.
It is not hard to imagine how all the research that still has to come around

the subject might open doors on even more fascinating worlds, revealing a
fil rouge that connects, behind the scenes, the structure and the history of
our Universe to the simplest breathing entity that is part of it.

6 Appendix

• weak solution A triple (ρ, v,φ) is a weak solution for the E-P problem
if

1. ρ ∈ L2([0,T ]; H−1(Td ))
⋂

C ([0,T ];P (Td )−w∗), v ∈ L2(D,dρ),

2. for any ψ= (ψ j ) j∈[1..d ] ∈
(
C∞

c (]0,T [×Td )
)d , we have∫

[0,T ]×Td

∂tψ · vdρ+Dφ : v ⊗ vdρ−ψ ·∇φ+Dψ :

∇φ⊗∇φ− 1
2 (∇·ψ)|∇φ|2 = 0

3. for any ψ ∈C∞([0,T ]×Td )∫
[0,T ]×Td

∂tψdρ+∇ψ · vdρ =
∫
Td

ρTψ|t=T −
∫
Td

ρ0ψt=0∫
[0,T ]×Td

(dρ−1)ψ+∇φ ·∇ψ= 0

• convex hull The convex hull of the function Φ(q), the latter being the
velocity potential in the Zel’dovich approximation, is defined as the largest
convex function for which the graph lies below that ofΦ(q).

• Wasserstein distance The Wasserstein (or Monge-Ampère) quadratic
distance on H is defined as

dW (X , X̃ ) = inf
{||X ◦ s − X̃ ◦ s̃||, s, s̃ ∈ S

}
23Kleiber’s law states that B ∝ M

3
4 , B being the basal metabolic rate in mammals, M the

metabolite.
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