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Abstract

This master’s thesis has the purpose of illustrating the work done on a
1-year-long experience at Electrolux Italia S.p.A. The aim was to find and
implement a mathematical tool to extract information on the emissions of
inverter refrigerators in order to automatically recognize soft anomalies and
prevent hard faults. Such information had to be derived by sets of measures
of current, sensed by a single on-board chip.

Therefore, starting from the most famous method of spectral analysis, i.e.
the Fourier’s transform, an alternative was found in the Wavelet Transform.
Exploiting the Multi-Resolution in time and frequency provided by this kind
of analysis, a new modality of looking at signals was achieved, allowing a much
more concise view of their spectrum along time. An energy map was then created
from such transform and was used as a set of features to be recognized by an
algorithm of classification in the future.

The evolution of knowledge eventually led to a minimal experimental setup
that was composed by the real-application motherboard with an on-board
current sensor, through which the current supplying the inverter flew. Measures
of current were acquired with the internal Analog-to-Digital Converter of the
microcontroller unit of the board, and the following analysis and classification
made online.

Together with a case study as a successful example of this method, also the
limitations of the state of things are presented.
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Chapter 1

Introduction

This thesis has been elaborated during a 1-year-long period of internship (6th
March 2017 – 5 March 2018) at the Research & Development (R&D) department
of Electrolux Italia S.p.A., a multinational manufacturer of home appliances. In
particular, the workplace has been the plant of Susegana (TV), Italy, where the
assembly lines for built-in refrigerators are located, producing for the European
market. Consequently, the work of the electronic team - to which the author
was assigned - is focused on this particular family of products.

1.1 The context

In the context of refrigeration industry, like in any other field of mass production,
the minimization of the costs is one of the major factors that lead to the economic
success of a product. Although the electronics embedded in a fridge has a
small impact on the final price of the appliance for the customer, the designers
must utilize the most suited state-of-the-art techniques for the projects, both
to increase the profit margins and to reduce the number of burdensome repair
calls. This latter issue, free of charge for the end-user during the warranty
period, is exclusively upon the manufacturer and, the more a non-optimized
strategy of intervention is employed, the higher is the amount of wasteful costs.
Since the Customer Service Technicians (CSTs) often do not have the time or
the skills to spot what the real problem of a Printed Circuit Board (PCB) is,
they generally end up with substituting the whole board, which is the most
expensive choice they could take in terms of material resources. That is why a
more focused intervention of the Customer Service (CS) can become a precious
source of savings.

1.2 The problem

The focus of this thesis is giving the basis to an automated firmware of fault
recognition that, taking advantage of the possibilities of the Wi-Fi connectivity
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of the new generation household appliances, allows the maintainer to know the
cause of a potential malfunction in advance and, therefore, to provide the best
solution in terms of resources, times and costs.

Most of the benefits from such a diagnostic system would hopefully apply
to the CS. The CSTs often opt for the replacement of the whole PCB when a
problem takes place, since that is the most time-saving solution. By the way, it
is the most costly one, too. Giving the technicians an instrument to spot the
specific problem, which might have a very cheap solution, is the aim of this work.

Specifically, the application of interest is the creation of a fault diagnosis

technique to implement on the MKE04Z128 Microcontroller Unit (MCU)
(ARM family, Cortex-M0) using the measurements from the Allegro’s ACS718
Current Sensor, which is located between the grid and all the loads on the
glsPCB.

1.3 The exit strategy

To overcome the inefficiencies cited in 1.1 and 1.2, an automatic recognition
pattern algorithm has been elaborated. Such a sequence of actions can be
summarized in the following steps: after acquiring a measurement of the current
absorbed by the system, a series of mathematical operations is performed on this
sampled signal in order to identify a set of values (the smallest possible) which
characterizes it. A classification rule is then applied on this values to assign a
known class to this signal within a pletora of previously identified possibilities.
Such a kind of method is usually referred to as a supervised learning algorithm.

In this way, a current signal from the Allegro’s ACS718 (cf. Sec.1.2) during
a specific interval of time can thus be classified as an ordinary behavior of
the system or, on the contrary, as some type of predetermined fault and,
consequently, notified to the CS. The CSTs would then be prepared for the
specific situation before getting to the customer’s place, ready to perform a
targeted intervention.

The purpose of this work is showing off the results achieved with this
strategy, the limitations encountered and the systematic approach for the
identification and the measurement of each fault condition.

The first step (Chap.2) is identifying a way to treat the raw acquired signal
in order to see its content from the most favorable point of view. Secondly, the
aim will be to extract the most useful information, for the pattern recognition,
so that some tools for the analysis are presented together with their possible
applications in a classification algorithm (Chap.3). The results of the application
of the theoretical considerations of Part I will be presented in Part II, where some
of the experimental results are illustrated. In Part III complete lists of references
are offered.

The bet of this work is achieving a complex problem like fault recognition
by means of a single current sensor.



Part I

Theoretical basis





Chapter 2

The Wavelet Transform Theory

Generally, time-domain signals are difficult to interpret: to overcome this
difficulty, mathematical transforms were invented. The aim of transforms is
to extract some information that is not readily available in the raw signal [25].

In engineering applications, a “concealed” aspect of major importance is
the frequency spectrum of a signal. The most popular mathematical tool to
extract that kind of information from the time-amplitude representation of the
signal is the Fourier Transform (FT). As this chapter will demonstrate, the FT is
neither the unique nor the most appropriate tool available to analyze the hidden
aspects of a signal. The purpose of this chapter, though, is not to furnish an
exhaustive explanation of the underneath mathematics (for that, see [3] and [15],
for example), but rather to give an intuitive approach.

2.1 Overtaking Fourier

In this section, starting from a description of the Fourier Transform, with
its benefits and shortcomings, the Wavelet Transform will be defined and an
explanation of when and why it is a better instrument than the FT will be
provided.

2.1.1 Fourier Transform

The Fourier Transform, published by J. Fourier in Paris in the Twenties of
the nineteenth century, has become the most utilized mathematical process
to extract the frequency spectrum of signals. It translates a signal from its
time-amplitude representation to a frequency-amplitude one. The FT achieves
this result by computing the coefficients to assign to a new basis of complex
exponential orthogonal functions (see Eq.2.1), i.e. giving the magnitude of each
spectral component of the signal, in order to change the “point of view”. With
the convention of naming ĝ the FT of an integrable function in the time-domain
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g : R → C, the formula that defines it is:

ĝ(f) =

∫ +∞

−∞

g(t)e−j2πftdt (2.1)

for every frequency f ∈ R.
Although being extremely useful for characterizing the majority of

components and equipment, this kind of transform has a substantial deficiency
when dealing with a generic signal: its basis functions are periodic and infinite.
This implies that also the signal being processed should have such characteristics
to be perfectly represented. Assuming that a real-world signal has these
peculiarities, while it does not, inevitably leads to some error. For a generic
unknown compact-support signal, for instance, such assumptions cannot be made
at all.

Citing Strang’s musical metaphor in [28], performing the FT of a symphony
(a non-stationary acoustic signal) is like assuming an infinite orchestra in which
every instrument plays a single steady note. “Conductor not needed, musicians
totally bored”.

In this work, indeed, no a priori assumption about the periodicity and
duration of the potential fault signals in exam could be made: therefore, a
better instrument to describe generic signals should be sought. In short, there
is the need of overcoming the global point of view of the FT and explore new
methods of looking locally at signals to find out their spectral changes along
their duration.

2.1.2 The Short-Time Fourier Transform

At first sight, actually, the FT could still be considered a valid
instrument for the description of the local spectrum: it can be applied
on short intervals of time T and not on the interval (−∞,+∞) anymore
(Short-Time Fourier Transform (STFT)). In other words, the signal is
windowed with a function w(t) that gets shifted in time by τ . (Eq.2.2) shows
this off:

ĝw(t, f) =

∫ t+T

t

(
g(t) · w(t− τ)

)
e−j2πftdt (2.2)

where the parameters t and f provide time and frequency, respectively. This
formulation is called STFT.

In each segment, the signal gets split into harmonics again, but with different
magnitudes for every interval of time covered by the window. In such a way,
always with respect to the metaphor in [28], “The musicians still play one note
each, but they change amplitude in each segment”. Nonetheless, there are several
disadvantages: for instance, the discontinuities between the segments. Sudden
breaks are not avoidable with the STFT and this is one of its troublesome
limitations. Moreover, as pointed out in [30], this windowed version of the
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FT leads to aliasing phenomena affecting accuracy and efficiency, especially in
discrete time: since the FT is performed on a sliding segment of length T on
a time series of time step dt (for a total length of Mdt), the range of returned
frequencies spans in f ∈ [1/T, 1/2dt] at each time step. Consequently, aliasing
arises for components out of that interval. If one or more dominant components
are out of that range, the result gets inconsistent. This dependency on the
“response interval” ought to be avoided.

2.1.3 The Wavelet Transform

As demonstrated in this section, a more appropriate tool for analyzing an
unknown and possibly time-variant (i.e. non-stationary) signal is the family of
the Wavelet Transforms. Unlike Fourier decomposition, this transform does not
rely on bases of periodic functions: instead, a wavelet (that is a compact-support
function, a “little wave”) gets scaled in frequency and translated in time, giving
a basis of compact-support functions. The possibility of having a local insight of
the spectrum, is just one of the major benefits of the Wavelet Transform (WT).
Another advantage is the availability of many trade-offs in the resolution in
time and frequency in order to adjust the focus on the aspects of interest.
Historically, the formalization of such capability of resolution on multiple
dimensions was introduced by S. Mallat and Y. Meyer in 1989 with the name of
Multi-Resolution Analysis (MRA).

Referring again to Strang’s metaphor in [28], the WT reflects a logic similar
to the composer’s writing down the symphony. In fact, the sub-band subdivision
of the WT could be symbolized by an orchestra in which the basses play a passage
with the lowest tune, then, for instance, twice as many cellos (which have a higher
tune) play the same passage at a doubled frequency, but each starts shifted in
time to cover the same time interval as basses (thus with a halved time separation
than in-between the basses). Then twice as many violas will in turn speed up
by a further factor of two, starting at new time locations, separated by a half of
the time step of the cellos. And so on for violins, etc.. All of them overlap to
compose a fragment of the symphony.

Each instrument is then characterized by two parameters: its tune (related to
the fact that it is a bass, cello, viola, violin, etc.), interlaced with the speed, i.e.
the frequency, and the time it starts playing the passage during the whole time
interval. Paraphrasing this metaphor, each instrument is like a basis function
and the amplitude of the sound of each of them playing the passage is like
the series of coefficients that the computation of the WT assigns to each basis
function.

To sum up, each musician playing an instrument (frequency, in terms of
tone or speed) is told the intensity (coefficients) and the instant (time) to start
playing the passage (wavelet). All this local information superposed returns the
symphony (signal).

Briefly, this is the underlying concept of the WT: a “mother” wavelet is scaled
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in frequency and translated in time so that the sum of all these dilated and shifted
version (each given certain amplitude coefficients) is the original signal.

2.1.4 Comparing Fourier and Wavelet Transform

For both the FT and the WT, the mathematical process aims to decompose

the signal into a sum of basis functions multiplying some amplitude coefficients.
A further similarity consists in the orthogonality amongst the functions of the
basis. Although in the FT such a fact is strictly connected to the complex
exponential functions constituting the basis, in the WT this characteristic is not
really needed to form a valid base. Nevertheless, this property is usually granted
in the construction of the most used wavelets (like, for example, the Daubechies
family).

On the contrary, the fundamental difference between these two kinds of
transforms resides in the support1 of the basis functions. Whereas the FT takes
into account infinite complex sinusoidal functions, thus providing a global vision
of the signal, all of the WTs are based on a set of finite-support functions,
therefore returning a local point of view. Looking at the example in Fig.2.1
from [29], the drawback of the global view of the FT becomes glaring: if a signal
like a human voice got decomposed using FT, no time localization would be
possible. Which frequencies are present would be known, but no clue about the
time they appear and their duration would be obtained. On the contrary, the
wavelet decomposition, providing local information both on frequency and time,
allows to know the extent and the location in time of each note (thus letting us
write it correctly on the pentagram).

This difference gets critical when considering finite non-stationary signals:
as a matter of fact, the FT can do nothing but committing errors trying to force
infinite functions to approximate finite signals, whereas the WT adapts much
better to the shape of the original wave, modulating the amplitude of every
scaled and shifted version of the mother wavelet constituting the basis.

Another particularly intuitive way of realizing the differences between these
two types of decomposition is looking at the so-called “Heisenberg boxes” in the
Phase Plane, Fig.2.2. The purpose of these boxes is to illustrate uncertainty

principle that rules the MRA, according to which the frequency and time of a
signal at a specific instant cannot be exactly known. Instead, there is a trade-off
between the resolution in time and in frequency, resulting in an area of ambiguity
on a time-frequency graph. On the so-called Phase Plane, indeed, time is located
on the horizontal axis, whereas frequency is posed on the vertical axis. As Fig.2.2
shows, the extreme cases in which we completely lose the resolution either in time
or frequency domain are: (i) a pure standard-basis time acquisition — like in
Fig.2.2a — where we have no clue of the frequency content; (ii) the FT of the

1The support of a real-valued function f(x) is a subset of the domain D containing the
elements that are not mapped to zero, i.e. supp (f(x)) = {x ∈ D|f(x) 6= 0}.
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Figure 2.1: Fundamental difference between the signal decomposition by FT
and WT: the transcription of a song (signal f(t)) can be achieved by wavelet
decomposition thanks to its time-frequency localization, but would fail with
Fourier decomposition [29].
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signal, which loses every information about the time, as in Fig.2.2b. In all the
other cases, there is a trade-off between time and frequency resolution.

In the STFT, the parameter that lets us vary the resolution is the length of
the window: as it is evident in Fig.2.2c and Fig.2.2d, a narrow window privileges
time resolution, whereas a wide one allows a finer resolution in frequency, losing
some accuracy on the time axis. In both these cases, a homogeneous subdivision
of the Phase Plane is obtained, i.e. all the frequency intervals have the same
sub-band width and all time intervals have the same duration. Nevertheless, as
already stated in Sec.2.1.2, aliasing and inaccuracy problems make of the STFT
a poorly desirable tool for the purposes of this work.

Differently, the (“classic”) WT in Fig.2.2e provides a sort of “gradient” in
time and frequency resolution: while low frequencies are well differentiated
(small heights of the boxes), but blurry in terms of time location (wide boxes),
higher frequencies are less distinguishable (higher boxes), but are much better
located in time (narrow boxes). Since the content of a signal is often mainly
in the low-frequency part of such a Phase Plain (which is due to the choice of
an adequately high sampling frequency, not to lose information on the useful
part of the signal), the flexibility of this last decomposition appears as a major
benefit. With the WT the Phase Plane can be divided along such octave band

subdivision , providing adjustable compromises in resolution for the analysis of
a signal.

2.2 The Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) was developed as an improvement
of the STFT to overcome its resolution problem [25]. In that sense, they are
similar, because the signal is multiplied for a function (cf. a window in the
STFT, a wavelet in the CWT) and the transform is computed separately for
different segments of the time-domain signal. The main aspect differentiating
them is that the width of the “mother” wavelet is changed as the transform is
being computed.

The CWT Φψ
f (s, τ) of a function f(t), using the mother wavelet ψ (which is

a sort of prototype of a “window”), is described by the parameters s of scaling
and τ of shifting. It can be expressed by the hermitian inner product2 in Eq.2.3:

Φψ
f (s, τ) = 〈f(t), ψs,τ 〉

=

∫ +∞

−∞

f(t)ψs,τdt

=

∫ +∞

−∞

f(t)
1√
s
ψ

(
t− τ

s

)
dt

(2.3)

2For clarifications about the inner hermitian product see Sec.2.2.1.
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(a) Standard basis (No trasform). (b) Fourier basis (FT).

(c) Narrow windows STFT. (d) Wide windows STFT.

(e) Wavelet basis (WT).

Figure 2.2: These Heiseberg boxes let intuitively sense the different uncertainty
in time and frequency domains according to several kinds of decomposition [32].
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This equation is known as the analysis function3.

The use of the time translation term τ is similar to that in the STFT: it
describes the position of the wavelet as it is shifted through the signal. This
parameter thus corresponds to the time information in the transform domain
[25].

However, rather than a frequency parameter as in the STFT, in the CWT
there is a scale parameter, defined as s = 1/f . The scale parameter denotes
a concept similar to the scale used in maps [25]. As high scales correspond to
a global non-detailed view and low ones to a detailed one in maps, in terms
of frequency, so low frequencies (i.e. high scales) correspond to a a global
information and high frequencies (i.e. low scales) correspond to a detailed
information. In this way, the original one-dimensional signal f(t) is mapped
to a two-dimensional Φψ

f (s, τ) one, thus obtaining multi-resolution observability.

Scaling, mathematically, is an operation that either dilates or compresses a
signal. Larger scales correspond to a dilated (or stretched) version of a signal,
smaller scales to compressed ones. Indeed, if a generic function g(t) gets scaled
by s > 0 giving g(t/s), s > 1 dilates the signal, whereas s < 1 compresses it.

Computing the transform with a small scale — and, thus, a “compressed”
wavelet (starting from s = 1, for convenience [25]) — allows to highlight high
frequencies and locate them in time, since the multiplication between the signal
and a narrow window gives relatively high values for high frequencies where
they exist. Similarly, large scales — and, thus, stretched wavelets — extract low
frequencies, since the multiplication of the signal by a dilated window returns
relatively high values for low frequencies.

The largeness (i.e. the scale) of the wavelets directly affects the resolution:
narrow wavelets provides a finer scale resolution since their narrow support makes
less ambiguous to identify the exact value of the scale, which corresponds to a
poorer resolution for high frequencies. On the contrary, large wavelets provide a
poorer identification of the precise scale, which corresponds to a finer resolution
for low frequencies. Anyway, the exact value of a point in the time-frequency
plane cannot be known according to Heisenberg uncertainty principle: as visible
in Fig.2.2e, each box has a non-zero area and all the points falling into a box
are represented by one value of the WT. Note that every box has the same
area, since there is just a change in the proportions between the heights and the
widths of the boxes: at low frequencies, the heights are smaller (that means less
ambiguity in frequency), but widths are larger (i.e. more ambiguity), while at
high frequencies, heights are greater and widths smaller.

To sum up, the CWT coefficients are a measure of the closeness of the signal
to the wavelet at the current scale in terms of frequency content.

3The multiplication by 1√
s

after the integration is an energy normalization factor assuring

that the signal will have the same energy at every scale [25] [13].
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2.2.1 Orthonormality of the CWT

To comprehend some interesting properties of the CWT, there is the need of
some reminders. In first place, the notion of inner product must be clarified:

Definition 2.2.1 The hermitian inner product (extension of the dot product)
between two complex vectors v and w is defined as:

〈v,w〉 =
∑

i

viwi (2.4)

where wi is the complex conjugate of the i-th element of vector w.

This notion in Def.2.2.1 can be generalized to complex functions:

Definition 2.2.2 The inner product between two complex functions f(t) and
g(t) in the interval [a, b] is defined as:

〈f(t), g(t)〉 =
∫ b

a
f(t)g(t)dt (2.5)

where g(t) is the complex conjugate of g(t).

The orthogonality is verified when the inner product of two functions (or two
vectors) is zero:

〈f(t), g(t)〉 = 0 (2.6)

In second place, we can extend the binary relation of orthogonality to sets
of n vectors (e.g. a basis) {v1,v2, . . . ,vn}. Besides, when they are pairwise
orthogonal and their norm is unit, they are orthonormal sets. This is expressed
mathematically by the Kronecker delta δ in Eq.2.7:

〈i, j〉 = δi,j =

{
1, if i = j

0, if i 6= j
(2.7)

Generalizing to a set of r functions {φ1(t), φ2(t), . . . , φr(t)}, such set is
orthonormal when:

〈φk(t), φl(t)〉 = δk,l (2.8)

where δk,l is the Kronecker delta in k, l = 1, 2, . . . , r, and so, equivalently:
∫ b
a φk(t)φl(t)dt = 0 if k 6= l∫ b

a |φk(t)|2dt = 1
(2.9)

As stated above, the bases for the WT need not be orthonormal, but those
bases that have such a property allow computation of the coefficients in a much
simpler way than the others. As a matter of fact, for an orthonormal basis, the
coefficients µk of the CWT are computable as:

µk = 〈f(t), φk(t)〉 =
∫

f(t)φk(t)dt (2.10)
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2.2.2 Reversibility of CWT

Referring to the notation of Eq.2.3, the reconstruction formula of the CWT is:

f(t) =
1

c2ψ

∫

s

∫

τ
Φψ
t (s, τ)

1

s2
ψ

(
t− τ

s

)
dτds (2.11)

where cψ is called admissibility constant. This equation constitutes the synthesis
function. Actually, the CWT is a reversible transform provided that Eq.2.12 is
satisfied.

Theorem 2.2.1 For the success of the reconstruction in Eq.2.11 the
admissibility constant cψ must satisfy the condition:

cψ =

√
2π

∫ +∞

−∞

|ψ̂(ω)|2
|ω| dω < ∞ (2.12)

where ψ̂(ω) is the FT of ψ(t). This implies that ψ̂(0) = 0, i.e. the continuous
component must be null: ∫

ψ(t)dt = 0 (2.13)

In other words, the function ψ(t) must be oscillatory.

That is not a very restrictive condition: in fact, there are also non-orthogonal
basis functions that satisfy it. Moreover, as far as the solely analysis is concerned,
the reversibility of the CWT may seem not needed. It clearly becomes a
restriction in the case of the reconstruction of the signal, instead, which is not
one of the specific purposes of this work. Nevertheless, since computers need a
digitized algorithm, a discretization must be performed: in that case, the original
continuous-time signal ought to be reconstructed by its discrete samples to be
considered trustworthy. With Eq.2.11, the wavelet grants the reconstruction of
the signal from a continuous transform, as a matter of fact.

2.2.3 Discretization of CWT

The CWT cannot be exactly computed automatically since the calculus in a
continuous domain is a purely theoretical tool of the analysis. A digitization of
the procedure can be executed in order to attain a good approximation of the
theory using a computer.

Like it has historically been done for the discretization of the FT and the
STFT, the most intuitive way of accomplishing this result is sampling the
time-frequency plane with a uniform step. Nevertheless, the scale changes along
the decomposition can be used to reduce the sampling rate. At higher scales (low
frequencies), the sampling rate (fs) can be decreased: indeed, if the time-scale
plane need to be sampled at a sampling rate fs,1 at a scale s1, the same plane
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can be sampled at a rate fs,2 where s1 < s2 and fs,2 < fs,1, according to Nyquist
theorem. The actual relation is:

fs,2 =
s1
s2

fs,1 =
f2
f1

fs,1 (2.14)

This means that at lower frequencies the sampling rate can be decreased,
saving a large amount of computational time. With these arrangements, it
is possible to define a sort of discretized version of the CWT, called the
Wavelet Series Transform (WST).

In the first place, then, the scale parameter s is discretized according to
a logarithmic grid. Then, the time (or, better, the translation) parameter is
discretized with respect to the scale parameter, i.e. a dyadic sampling scheme
is used. The base of the logarithmic grid generally depends on the user, but
it usually is s0 = 2. Therefore, if the scale increases by a factor of 2, the
sampling rate reduces by the same factor at every step, according to Eq.2.14.
In mathematical terms, expressing the scale discretization as s = sj0 and the
translation discretization as τ = ksj0τ0, where s0 > 1 and τ0 > 0, the continuous
wavelet function:

ψs,τ =
1√
s
ψ

(
t− τ

s

)
(2.15)

becomes:
ψj,k = s

−j/2
0 ψ(s−j

0 t− kτ0) (2.16)

where j, k ∈ Z. Typical values are s0 = 2 and τ0 = 1.
In case all of the ψj,k form an orthonormal basis, the WST becomes:

Φ
ψj,k

t =

∫
f(t)ψj,k(t)dt (2.17)

or:
f(t) = cψ

∑

j

∑

k

Φ
ψj,k

t ψj,k(t)dt (2.18)

Anyway, even though this discretized CWT can be computed automatically,
it implies a huge computational burden that can lead to unacceptable time losses
not allowing real-time. Therefore a much faster algorithm was optimized to
obtain a WT on computers: the Discrete Wavelet Transform.

.

2.3 The Discrete Wavelet Transform

Although the WST enables the computation of an approximation of the
CWT by computers, it is not a truly discrete transform, it is just
a sampled version. It is redundant in information (as for a possible
reconstruction) and expensive in terms of computational time and resources.
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The Discrete Wavelet Transform (DWT), instead, provides only the sufficient
information both for analysis and synthesis, with a significant reduction in
computational time.

As in the CWT, the purpose is to provide a time-scale representation of the
signal. Whereas in the CWT the analysis formula was achieved by changing the
scale of the window, shifting it, multiplying it by the signal and then integrating,
in the DWT the signal is passed through a series of high-pass and low-pass digital
filters to analyze separately high and low frequencies. This technique is called
sub-band coding .

The resolution of the signal is changed by filtering operations, whereas the
scale is modified by down-sampling (or sub-sampling) operations. The DWT
coefficients could be seen as samples from the CWT, taken following a dyadic
scheme with s0 = 2 and τ0 = 1, and so s = 2j and τ = k2j , according to the
notation of Sec.2.2.3.

2.3.1 Definition of discrete wavelet

A formal re-definition of a wavelet function from continuous to discrete time can
be made in three ways [2]:

Definition 2.3.1 A wavelet is a function ψ(t) of L2(R)4 whose Fourier
transform ψ̂(ω) satisfies the condition (continuous sense):

∫ +∞

0
|ψ̂(ωt)|2 dt

t
= 1 (2.19)

Definition 2.3.2 A wavelet is a function ψ(t) of L2(R) whose Fourier transform
ψ̂(ω) satisfies the condition (discrete sense):

+∞∑

−∞

|ψ̂(2jω)|2 = 1 (2.20)

Definition 2.3.3 A wavelet is a function ψ(t) of L2(R) such that

ψj,k = 2−j/2ψ(2−jt− k) (2.21)

is an orthonormal basis for L2(R).

From Def.2.3.2 and Def.2.3.3, each subspace is in fact defined by an integer
power of two. The resulting sequence of nested subspaces of L2(R) is known as
a multi-resolution approximation or (analysis).

4L2(R) is the set of square integrable functions in a measure space X.
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2.3.2 Multiresolution Approximation

The effectiveness of the multiresolution analysis consists in splitting the space
L2(R) into a sequence of subspaces Vj , where j ∈ Z each spanned by a an
orthonormal basis of translates of a single function φ(t), described by the
expression:

φj,k(t) = 2j/2φ(2jt− k) (2.22)

where k ∈ Z. These subspaces must satisfy the following properties:

Property 2.3.1 The j-th subspace of the sequence is nested into the (j+1)-th
subspace:

Vj ∈ Vj+1 ∀j ∈ Z

Property 2.3.2 The union of all the subspaces is dense5 in L2(R), whereas
their intersection is the empty set:

+∞⋃
j=−∞

Vj = L2(R)

+∞⋂
j=−∞

Vj = {∅}

Property 2.3.3

f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 ∀j ∈ Z

Property 2.3.4 V0 has an orthogonal basis of translates φ(t− k), ∀k ∈ Z

If all properties hold, the approximation of a function f(t) ∈ L2(R) at the
resolution 2j is the orthogonal projection of f(t) onto Vj

6. The construction of
the orthogonal projection starts by finding a unique function φ(t) ∈ L2(R). A
wavelet basis, related to φ(t), evolves from the additional information carried
by an approximation of resolution 2j+1 compared with the resolution 2j : this
extra information resides in the projection Wj of the orthogonal complement
of Vj in Vj+1; i.e. Vj+1 = Vj ⊕ Wj . This space Wj will be spanned by the
wavelet orthonormal basis defined in Def.2.3.3. The relation among the resulting
subspaces is, then:

Vj+1 = Vj ⊕Wj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj (2.23)
5A subset A of a topological space X is dense in X if and only if the only closed subset of

X containing A is X itself.
6It is an orthogonal projection because each basis function of the approximation is

orthogonal to the others.
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2.3.3 The construction

The construction of the functions needed for the decomposition starts with the
solution φ(t) of the dilation equation , also known as scaling function or
father wave :

φ(t) =
∑

k

ckφ(2t− k) (2.24)

where the ck constitute a set of coefficients. Imposing some requirements, those
coefficient ck get some restraints that will lead to some useful properties of the
functions to obtain.

The first requirement is the normalization:
∫
φ(t)dt = 1. Multiplying by 2

and integrating Eq.2.24 brings the first condition on ck:

2

∫
φ(t)dt =

∑

k

ck

∫
φ(2t− k) d(2t− k)

which yields: ∑

k

ck = 2 (2.25)

A further condition comes from the degree of accuracy p− 1 with which the
polynomials are meant to be reproduced exactly by the approximating functions
(thus presenting an error of order hp). As found by Daubechies and recalled by
Strang in [27], this is related to the vanishing moments of the FT of φ. In [27]
the condition on the ck is referred to as “Condition A” and yields:

∑
(−1)kkmck = 0 m = 0, 1, . . . , p− 1 (2.26)

Another condition, always in [27], is called “Condition O” and is related to the
orthogonality of the scaling function with any of its shifts by an even number of
coefficients: ∑

ckck−2m = 2δ0,m (2.27)

where δ0,m is the Kronecker Delta in Eq.2.7.
The corresponding wavelet or mother wave is then defined as:

ψ(t) =
∑

k

(−1)kc1−k φ(2t− k) (2.28)

Satisfying all of these conditions leads to families of orthonormal wavelets like
the ones that will be used in this work.

2.3.4 Wavelet and scaling function coefficients

Let the attention be focused on the coefficients of the scaling function and the
wavelet in order to find the relation between them. Let the recursive definition of
the scaling function from Eq.2.22 be applied onto its other definition in Eq.2.24,
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declining it in the case of the first stage of the transform. In such a way, a new
set of coefficients hk can be spotted:

φ(t) =
√
2

+∞∑

k=−∞

hkφ(2t− k) t ∈ R (2.29)

and so:
+∞∑

k=−∞

ck =
√
2

+∞∑

k=−∞

hk (2.30)

Imposing the normalization of the scaling function in the form of Eq.2.29, like
in Sec.2.3.3, a condition on the coefficients hk is then obtained:

+∞∑

k=−∞

hk =
√
2 (2.31)

Likewise, ψ(t) can be re-written as:

ψ(t) =
√
2

+∞∑

k=−∞

gk φ(2t− k) (2.32)

with coefficients gk that must satisfy the condition 〈h,g〉 = 07 in order for ψ(t)
to be orthogonal to φ(t). This means that:

gk = (−1)k h1−k (2.33)

Besides, since the wavelet zero moment must vanish (or, equivalently, its
mean is null, its nature is oscillatory) as seen in Thm.2.2.1, the condition∫ +∞

−∞
ψ(t)dt = 0 leads to:

+∞∑

k=−∞

gk = 0 (2.34)

In discrete time, {hk} and {gk} constitute the filter bank that will achieve the
decomposition of the signal. Actually, these filters are of finite length L and
their construction formulas will be adapted consequently (see Sec.2.3.6).

To sum up, starting from continuous time wavelet transform with its father
and mother wave, a re-definition has been operated in order to finally find a
truly Discrete Wavelet Transform of practical implementation.

7h and g are the column vectors of the hk and gk coefficients, respectively.



20 The Wavelet Transform Theory

2.3.5 The DWT algorithm

Once the signal is sampled, the domain becomes discrete and, then, the terms
function and sequence can be used interchangeably for f(n), where n ∈ Z.

As anticipated, the procedure is also made of discrete filtering operations.
The mathematical formula describing the action of a filter is the discrete
convolution, defined as in Def.2.3.4.

Definition 2.3.4 The convolution operation between the discrete-time sequences
x(n) and y(n) is defined as:

x(n) ∗ y(n) =
+∞∑

k=−∞

x(k) · y(n− k) (2.35)

This operation in the time domain is expressed in the frequency domain by
Propty.2.3.5.

Property 2.3.5 If a convolution in the time domain (Eq.2.35) between two
sequences x(n) and y(n) gives the sequence w(n), this corresponds to a
multiplication of the FTs of those sequences, such that:

w(n) = x(n) ∗ y(n) → ŵ(ω) = x̂(ω) · ŷ(ω) (2.36)

The DWT algorithm combines this filtering with a down-sampling at each
step of decomposition. To clarify the consequences of these operations, let us
consider the first level of decomposition, i.e. the application of the first pair
of filters, in particular the low-pass one. If a sequence f(n) is sampled with a
rate fs, the maximum observable frequency component is fmax = fnyq = fs/2.
Passing the signal through a low-pass filter halves such maximum frequency8.
According to Nyquist rule, since the signal now has a highest frequency of π/2,
a half of the samples can be discarded because redundant, i.e. the signal can be
sub-sampled.

The resolution, which is related to the quantity of information in the signal,
is affected only by the filtering: removing half the frequencies generally means
discarding a half of the information (i.e. a half of the resolution). Anyway,
removing a half of the spectral components by down-sampling a filtered signal
in which a half of the samples is redundant, therefore means getting no loss of

8Recall that, talking about discrete time, the proper unit of frequency is the radian. The
rule for conversion from a continuous-time frequency f to discrete-time radial frequency ω
is: ω = 2πfts, where ts is the sampling time. Accordingly, the sampling rate is equal to 2π
radians in terms of radial frequency and Nyquist rate is π radians (considering f = fs = 1/ts).
Nonetheless, common use and readability allow to talk about frequency in terms of hertz when
preferred.
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information. The down-sampling, instead, doubles the scale, letting the process
of decomposition proceed similarly to the CWT. Note that the sub-sampling
after filtering does not affect the resolution.

To sum up: (i) the filtering halves the resolution, but leaves the scale
unchanged; (ii) the down-sampling by 2 doubles the scale, but does not affect
the resolution.

The procedure of the DWT consists of repetitions of the same filtering
operations followed by a sub-sampling by a factor of 2. This results in several
levels of decomposition. At the first stage, the low-pass filtering through h(n)
provides the coarse approximation of f(n) (a(k), Eq.2.37), which is associated
to a set of scaling functions. The high-pass filtering through g(n), instead,
returns its detail (d(k), Eq.2.38) and is associated to a set of wavelet functions.
In mathematical terms, according to the definitions of convolution in Def.2.3.4
and of down-sampling by 2 (see Def.2.4.1, in Sec.2.4.4), this first step of the
algorithm is:

a(k) =
∑

n

f(n) · h(2k − n) (2.37)

d(k) =
∑

n

f(n) · g(2k − n) (2.38)

This operations can be applied recursively on each level of approximation aj .
Therefore, Eq.2.37 and Eq.2.38 can be generalized:

aj+1(k) =
∑

n

aj(n) · h(2k − n) (2.39)

dj+1(k) =
∑

n

aj(n) · g(2k − n) (2.40)

Iterating this “filtering & down-sampling” scheme as in Fig.2.3, a finer
resolution in frequency is obtained increasing the level of decomposition since
the sub-bands get narrower. On the contrary, time resolution worsens because
at each level the signal is described with a half of the samples of the previous
level. Summarizing, this so-called sub-band algorithm, schematized in Fig.2.3
offers this benefits:

• good time resolution at high frequencies;

• good frequency resolution at low frequency.

The spectral components that are most prominent in the original signal will
appear with the highest magnitudes (coefficients of the transform) in the
sub-band containing them.

The signal can then be reconstructed with the inverse process: the
decomposed signal gets up-sampled by two, passed through the synthesis filters
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Figure 2.3: The sub-band coding algorithm generates an octave band
subdivision of the spectrum by successive filtering and down-sampling by 2 the
approximation and keeping the detail.
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h′(n) = h(−n) and g′(n) = g(−n) and then added:

f(n) =
+∞∑

k=−∞

(d(k) · g(−n+ 2k)) + (a(k) · h(−n+ 2k)) (2.41)

Except for a time reversal, the synthesis and analysis filters are equal.

2.3.6 Adaptation to finite-length signal

Practical signals (like acquisitions of tension, current, etc.) are discrete-time
datasets of finite length N coming from measures of continuous signals passed
through an Analog-to-Digital Converter (ADC) during an interval of time
∆T = N ts, where ts is the sampling period. There are some constraints on
the length of such signals, as treated in Sec.2.3.7. A possible adaptation of the
signal due to these conditions will return a new sequence of length M equal
to the closest power of two respect to N . The filters, too (better analyzed in
Sec.2.3.8), will be finite sequences of even length 2L. Therefore, the formulas
found since now cannot be directly applied to a actual case as they are, they
must be adapted. The algorithm will then be expressed by modified versions of
Eq.2.39 and Eq.2.40:

aj+1(k) =
M−1∑

n=0

aj(n) · h(2k − n) (2.42)

dj+1(k) =
M−1∑

n=0

aj(n) · g(2k − n) (2.43)

where h(n) and g(n) are visited in a circular way, i.e. if m ∈ [0; 2L], g(−m) =
g(2L−m).

2.3.7 The number of samples

Considering the generic sequence of length N as the function to decompose,
there is no assurance that a signal of such length can be properly handled.
Actually, the choice of the factor 2 in Sec.2.3 has a huge impact on the number
of samples that can be taken into account. Since the number of samples at each
level is a half with respect to the previous level, there is a logarithmic decrease
through the levels. In order not to lose information and consistency for the
algorithm, the only samples discarded must be due only to the sub-sampling
because redundant and not due to a disarrangement in the number of samples.
Therefore, the number of samples taken into account must be a power of 2, e.g.
M = 2lmax , where lmax ∈ N is, therefore, the maximum level of decomposition.

If M 6= N , the original sequence of N samples must be adapted to the closest
power-of-two number of samples M in one of the following methods:
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Cancellation (N > M) Portions of the signal are canceled because of an
exceeding number of samples. Roughly, the datasets that can be discarded
are chosen among three main options: (i) the first |N−M | samples; (ii) the
last |N −M | samples; (iii) the first n1 and the last n2 samples, such that
n1+n2 = |N−M |. Note that, in order not to alter the spectral content, the
samples deleted must all be consecutive (considering the sequence stored
in a circular array). Discarding some random values, instead, would alter
the spectrum. A decimation in order to reduce the number of samples now
would have the same effect and is, thus, an option to be avoided.

Zero-Padding (N < M) A |N − M | number of zeros is put either (i) at the
rear; (ii) at the front; (iii) somehow distributed between the rear and the
front. No zeros ought to be put within the signal, otherwise altering it.
With this method, the signal is like a sudden manifestation of an event,
ending in turn in a sudden way.

Periodization (N < M) The signal is considered as if it was periodic. Then,
three possibility are to take into account: (i) the last |N −M | samples are
repeated at the beginning of the signal; (ii) the first |N −M | samples are
repeated at the end of the signal; (iii) the first n1 samples are repeated at
the end of the original signal and the last n2 samples are repeated at the
beginning, such that n1 + n2 = |N −M |.

Before the transform, the (somehow obtained) M samples describe the signal
in the time domain, whereas, after a complete decomposition (i.e. up to a level
lmax = log2M), the resulting M samples describe the signal components with
a specific resolutions in time and frequency, according to the level attained.
Indeed, the best frequency resolution is related to the highest possible level, i.e.
π/2lmax , among the (lmax + 1) available sub-bands (lmax of detail and one of
coarsest approximation).

2.3.8 The DWT filters

The low-pass (h(n)) and high-pass (g(n)) filters used in the DWT are commonly
known as Quadrature Mirror Filters and correspond to the scaling and wavelet
functions of the DWT. They are defined as in Def.2.3.5 [33]:

Definition 2.3.5 In discrete signal processing, a Quadrature Mirror Filter pair
is a set of two filters (h0(n), h1(n)) whose magnitude responses (H0(z), H1(z))
are the mirror image around π/2 of one another, i.e. they satisfy Eq.2.44 and
Eq.2.45:

H1(z) = H0(−z) (2.44)

|H1(e
jΩ)| = |H0(e

j(π−Ω))| (2.45)

where the frequency is Ω = π/2.
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For orthogonal wavelets, a further property is added to the analysis filters in
order not to alter the distribution of the energy of the signal:

Property 2.3.6 The power complementarity property of a filter bank imposes
that the power sum of the filters is the unit, i.e.:

|H0(e
jΩ)|2 + |H1(e

jΩ)|2 = 1 (2.46)

where the sampling rate is normalized to 2π [33].

Let us consider the filter pair h(n) and g(n) of the analysis
functions in Eq.2.37 and Eq.2.38. For orthogonal wavelets they are
Finite Impulse Response (FIR) of length 2L in number of points so that they
can be called Conjugate Mirror Filters as recalled in [15]. Their expression in
discrete time can be seen in Eq.2.47 [25]:

g(n) = (−1)n h(2L− 1− n) (2.47)

Note that they are the odd index alternated reversed version of one another.
The conversion from low-pass to high-pass is provided by the factor (−1)n.

2.4 The Wavelet Packet Transform

The “classic” DWT, as described in Sec.2.3, chooses a particular basis for the
decomposition, that is the coarsest level of approximation and all the details
at every other level. This approach can be abridging for the analysis of the
characteristics of a generic unknown signal: actually, no assumption can be
made a priori on the spectrum of the signal and the frequency or time resolution
needed for each part of it. There is no certainty that high frequency resolution
is needed only at low frequency, for instance.

A more flexible and reliable method for signal analysis is a modification of
the DWT algorithm, obtained performing the sub-band coding not only on the
approximation aj , but also on the detail dj of every level j of decomposition.
This adjustment of the DWT is called Wavelet Packet Transform (WPT) [32].
The same limitations on the number of samples of Sec.2.3.7 are still effective.
The WPT provides a sort of transition from a view of the signal purely in the
time domain to multiple views of it with an increasing resolution in frequency
up to π/2l, where l is the level chosen to stop the decomposition (the finest
uncertainty available is still of π/2lmax with a complete decomposition). Even if
the information may be redundant, this kind of decomposition provides several
possible trade-offs between the resolutions in time and frequency in every part
of the spectrum.

To provide a graphical interpretation of peculiarities of the DWT and the
WPT, a representation of the history of the coefficients of every level along the
decomposition was made in Fig.2.4a, Fig.2.5a and Fig.2.6a of Ex.2.4.1.
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Another intuitive representation of the WPT algorithm is the so-called
Wavelet Packet Tree (WP Tree): this is a binary tree that describes the splitting
of the spectral and time content of the WPT throughout the levels of
decomposition. Starting from the root (i.e. the top node in Fig.2.4b, Fig.2.5b
and Fig.2.6b of Ex.2.4.1), where the original signal resides, each node gives
birth to two other nodes representing its low-pass (left child) and high-pass
(right child) filtered versions, (down-sampled by a factor of two, according to
the sub-band coding algorithm). Consequently, the number of nodes within a
level j of decomposition is 2j . The number of samples λj contained in each node
of level j, accordingly, is equal to:

λj = M/2j = 2l−j = 2η (2.48)

where M = 2lmax is the total amount of samples and η ∈ N. Each node spans a
range of frequencies that can be calculated as:

[
p
π

2j
; (p+ 1)

π

2j

]
(2.49)

where j is the level of decomposition and p the progressive number of the node
within that level (cf. Sec.2.4.1. For attaining a more intuitive formula to
understand, the discrete frequency in radians can be rewritten in hertz (though
improperly), so that the intervals spanned by each node are9:

[
p

fs
2j+1

; (p+ 1)
fs
2j+1

]
(2.50)

Each level, thus, provides an equal-width sub-band division of the spectral
content, furnishing a finest resolution of fs/2

l+1 at the highest level chosen.
Nevertheless, as will be examined in Sec.2.4.4, such sub-bands do not respect a
pleasingly intuitive frequency order like the STFT, due to the effect of aliasing.
Before adjusting the tree order, though, its notation (Sec.2.4.1), internal relations
(Sec.2.4.2) and peculiarities Sec.2.4.2) must be analyzed in depth.

2.4.1 The notation of the WPT

The nodes of the WP Tree are named after their level j and their progressive
number p in the level, thus being described by a couple (j, pj), where j =
0, 1, . . . , l (with lmax = log2M) and pj = 0, 1, . . . , (2j−1). Though the number pj
has a maximum value depending on the level in exam, for the sake of readability,
it will be denoted just by the notation p. This notation can be substituted by a
serial numbering m = m(j, p), where m(0, 0) = 1 is the root. Given the notation
of the node by its couple (j, p), indeed, the serial number of the node can be
obtained by Eq.2.51:

m(j, p) = 2j + (p+ 1) (2.51)

9Recall that 2π[rad] → fs[Hz].



2.4 The Wavelet Packet Transform 27

Inversely, given the serial number m of a node, it is always possible to get its
level and progressive number within that level. Let the discrete Heaviside step
function be adapted to this case as:

Θ(m, 2i) =

{
1, if m ≥ 2i

0, if m < 2i
(2.52)

where m ∈ N0 : m = 1, . . . , (2l − 1) and i ∈ N : i = 0, . . . , l. The level j of a
node given in the serial notation m can be found as:

j(m) = jm =
l∑

i=1

Θ(m, 2i) (2.53)

and the progressive number in that level jm is:

p(jm) = m− 2jm (2.54)

where p ∈ N : p = 0, . . . , (2jm − 1).

2.4.2 The Parent-Child Relations in the WP Tree

According to the notation (j, p) introduced in Sec.2.4.1, it is possible to relate
each node of the WP Tree with its parent and its children. The relations that
can be achieved constitute two useful instruments for an easier interpretation of
the spectral distribution along the tree. The following properties (Propty.2.4.1
and Propty.2.4.2) clarify these interconnections:

Property 2.4.1 Let the a node be denoted by a couple (j, p), where j ∈ N : j =
0, . . . , (lmax − 1) 10 and p ∈ N : p = 0, . . . , (2j − 1). Its children nodes can be
computed as:

(j, p) →
{
(j + 1, 2p)

(j + 1, 2p+ 1)
(2.55)

Property 2.4.2 Let the a node be (j, p), where j ∈ N : j = 1, . . . , lmax
11 and

p ∈ N : p = 0, . . . , (2j − 1). Its parent can be computed as:

(j, p) →
(
j − 1,

⌊p
2

⌋)
(2.56)

This knowledge is useful while performing search methods on the tree, like
in Sec.2.4.6.

10Note that the excluded level lmax cannot have children.
11Note that the excluded level 0 cannot have a parent.
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2.4.3 The differences between DWT and WPT

To explain the benefits of using a more computationally expensive method like
the WPT instead of the classic DWT, let an example with a simple generic signal
f(n) be considered, Ex.2.4.1.

Example 2.4.1 Let us consider the simple case of an acquisition of a continuous
wave f(t) at the sampling frequency fs = 1/ts. Let the signal in exam be a
sequence f(n) = f(nts) with a number of samples N = 8, so that, for the sake
of simplicity, n ∈ N : n = 0, 1, . . . , 7. According to Sec.2.3.7, being N a power
of two, no adaptation of the number of samples is needed, thus the number of
considered samples is M = N = 8 = 23.

The signal is then a discrete function f(n) = {f0, f1, . . . , f7}. Referring to
the results of Sec.2.3.6 for the DWT, passing the sequence aj at a certain level
j of decomposition (where a0(n) = f(n)) through the low-pass filter h(n) gives
an approximation aj+1(n), whereas passing it through the high-pass filter g(n)
returns the detail dj+1. As stated in Sec.2.4, in the WPT the sub-band coding is
not applied solely on the approximation, but also on the detail, with a consequent
proliferation of the nodes of the WP Tree. Therefore, the notation has to become
slightly more articulated. In order to give a track of the history of each node,
every time a portion of the signal passes through the low-pass filter, an “a” is
placed before its current name, whereas a “d” is put if it passes through the
high-pass filter ( cf. Fig.2.4a, Fig.2.5a and Fig.2.6b, for instance).

According to Sec.2.4, the WPT gives a full decomposition of the signal up to
a maximum level lmax = log2M = 3, as shown in Fig.2.4a. At level l = lmax, the
time resolution in lost, but the uncertainty in frequency is the smallest obtainable
∆ω = π/2lmax = π/8 (or equivalently ∆f = fnyq/8 = fs/16). One of the
major benefits of the WPT in comparison to the DWT is that the finest frequency
resolution is available all through the spectrum of the signal, not only at low
frequencies. Reciprocally, a fine time resolution is possibly disposable also for
low frequencies.

As can be seen in Fig.2.5a, the classic wavelet basis of the
DWT itself can be extracted as a particular selection from the
Wavelet Packet Decomposition (WPD). The orthogonality of this basis can
intuitively be spotted thanks to the absence of “vertical superposition” for the
selected coefficients, which means there is no redundancy and the basis spans the
whole space R8.

From the WPT, many other orthogonal basis can be extracted according to
the necessities of each single case. An example can be seen in Fig.2.5, called
“sub-band basis” in [32]. The chosen nodes are all at the same level, so that the
result is similar to what we could obtain from STFT, with fixed-duration interval
of time on which the transform is performed. In this case, the advantage is
that each level presents a different trade-off between the resolutions in time and
frequency: the choice is up to the user.
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(a) WPT full decomposition. No particular basis is selected.

(b) Full WP Tree. No particular basis is selected.

Figure 2.4: The WPT provides a full decomposition of every part of the signal,
not only of the approximation.
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(a) The DWT basis as a particular case of WPD.

(b) Particularization of the WP Tree with the classic DWT basis.

Figure 2.5: The WPT provides a full decomposition of every part of the signal.
The choice of a particular basis is up to the user. The classic DWT is just a
possible choice.
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(a) A possible choice of orthogonal basis.

(b) WP Tree of a generic orthogonal basis.

Figure 2.6: The WPT provides a full decomposition of every part of the signal.
Many bases can be chosen, some of them orthogonal. This is just an example.
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Moreover, many combination of nodes forming an orthogonal basis are
possible performing the WPD. In Fig.2.6 there is an example. There must not
be redundancy, i.e. if a child node is chosen, its parent must not be picked.

2.4.4 The effects of aliasing

As seen in Sec.2.4, the WPT follows the sub-band coding algorithm passing the
signal through discrete-time filters, which are then down-sampled by a factor
of 2. A well-known collateral effect provoked by this chain of actions is the
phenomenon of aliasing .

The aliasing is a distortion that causes different signals to become
indistinguishable (or “alias” of one another) due to a “slow” sampling rate.
Filtering itself does not cause aliasing, since the filters h(n) and g(n) are designed
to split the spectral content of the signal exactly in two parts without side-effects.
Down-sampling the high-passed signal, instead, may cause undesired effects. To
explain this by-product of the WPT, first of all, down-sampling itself must be
defined:

Definition 2.4.1 Down-sampling a sequence x(n) by a factor α means
generating a sequence y(n) such that [4]:

y(n) = x(αn) (2.57)

In the frequency domain, this means:

ŷ(z) =
1

α

α−1∑

m=0

x̂(e−j 2π
α
mz

1

α ) (2.58)

where α ∈ N.

To better understand what this means, two properties of the Z-Transform
must be recalled [31]:

Property 2.4.3 Time scaling for a signal x(n) by a factor α ∈ N:

Z[x(αn)] = x̂(z
1

α ) (2.59)

Property 2.4.4 Time shifting for a signal x(n) by a quantity n0 ∈ Z:

Z[x(n− n0)] = z−n0 x̂(z) (2.60)
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Figure 2.7: Let x̂(z) be the spectrum of a discrete signal x(n) and its maximum
amplitude be XM . Down-sampling by 2, which means scaling by a factor 2
and shifting by π, according to Eq.2.61, causes the summation of the stretched
version x̂(z1/2) and x̂(e−jπz1/2) of the original spectrum, normalized by a factor
1
2 . Note that shifting the dilated signal by π is equivalent to a translation of 2π on
the ω-axis of the original signal (this is indicated by means of the parentheses).

In the case of the sub-band coding algorithm, according to the notation of
Def.2.4.1, the under-sampling factor is α = 2.

As already recalled, at each step of the decomposition, the sequences in
the nodes of the WP Tree pass through a low-pass filter h(n) and a high-pass
g(n) filter. Then, let us refer to the filtered versions of a sequence at node
(j, p), ϕ(j,p)(n), as ϕh and ϕg, respectively (where ϕ(j,p)(n) can either be the
approximation a(j,p)(n) or the detail d(j,p)(n) in a generic node (j, p)). In
particular, let the high-passed signal ϕg(n) be taken into account. Then let
it go through the down-sampling stage, so that its detail d(j+1,p′)(n) = d(n)
is extracted (with p′ = 2p + 1, as seen in Sec.2.4.2), purged of redundant
information. Mathematically, it means that d(n) = ϕg(2n). In the frequency
domain, this implies that:

d̂(z) =
1

2

[
ϕ̂g(e

−j 2π
2
·0z

1

2 ) + ϕ̂g(e
−j 2π

2
·1z

1

2 )
]

=
1

2

[
ϕ̂g(z

1

2 ) + ϕ̂g(e
−jπz

1

2 )
] (2.61)

Therefore, the meaning of Eq.2.61 is that the down-sampling causes the
stretching and the superposition of two copies of the signal (the factor 1

2 is
a normalization coefficient), thus provoking aliasing. In Fig.2.7 there is a simple
example of this phenomenon.

To comprehend the side effects of the down-sampling along the
decomposition, Ex.2.4.2 is provided. Such example visually shows how aliasing
affects the WPT in Fig.2.812 [10]: not causing a loss of information due to

12Note that these figures do not take into account the normalization factor 1/2, since their
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indistinguishable signals, but rather the inversion of the sequentiality of the
spectral content spanned by some sibling nodes.

Example 2.4.2 Let the spectrum obtained by the FT of the original signal
f(n) be f̂(ω) (Fig.2.8a). Passing it once through the high-pass filter returns its
high-frequency half, f̂g(ω) (Fig.2.8b). Then, the down-sampling changes the scale
of the ω-axis by a factor of 2, getting a sequence whose spectrum will be referred
as d̂(ω) (Fig.2.8c). The result of this down-sampling is the reversed version
of the high-pass signal [10]. Going on with the decomposition, therefore, the
spectrum of the low-passed sequence d̂h(ω) (Fig.2.8d) and, as a consequence, of

its decimated version âd(ω) (Fig.2.8e) is of higher frequency than the high-passed

sequence d̂g(ω) (Fig.2.8f) and, thus, its down-sampled version d̂d(ω)) (Fig.2.8g).

This inversion must be corrected to give a proper description of the frequency
content of the signal.

2.4.5 The sequency order

As seen in Ex.2.4.2, not all of the nodes of the WP Tree are ordered according
to frequency: the disposal they get after the WPT is called “natural” or Paley’s
order. By either slightly modifying the algorithm of the WPT or re-ordering the
tree later, a more pleasingly intuitive frequency or “sequency” order can be
achieved, so that the inversions seen in Sec.2.4.4 are adjusted. For the purposes
of this work, frequency ordering must always be achieved .

The reversals in the sequentiality of sub-bands occur when filtering and
down-sampling specific nodes, according to a precise scheme. To identify where
the corrections must be brought, first of all it is necessary to define what the
“sequency” of a node is.

Definition 2.4.2 The sequency of a node is the progressive number associated
to its position on its level j of the WP Tree13, starting from the (even) sequency
0 at the leftmost node, up to the (odd) sequency (2j − 1) at the rightmost node,
where j ∈ N : j = 0, . . . , l.

It can be proved that the children of the odd-sequency nodes have to be
switched to obtain the frequency ordering of the tree, like in Fig.2.914. As a

aim is rather to show the effect of inversion of the order of the frequencies spanned by the
nodes.

13It corresponds to p using the notation in Sec.2.4.1.
14As a matter of fact, in Ex.2.4.2, the problematic node was that referred to as d(n), in

position (1, 1), which has the odd sequency 1. Its children (occupying the positions (2, 2) and
(2, 3)) must be swapped with respect to the natural ordering. Besides, also the children of the
node of coordinates (2, 3) will have to be switched, since its sequency (3) is odd.



2.4 The Wavelet Packet Transform 35

(a) Let the original spectrum f̂(ω) of the signal be split in four portions,
labeled from 1 to 4 in ascending order according to the their frequency span
position on the ω-axis.

(b) The high-pass filtering itself does not cause any side effect on the
ordering of the nodes: just portions 3 and 4 are selected since they are
of higher frequency than portions 1 and 2.

(c) The scaling and shifting effects in the spectrum of the high-pass filtered
signal due to the down-sampling provoke the overturning and the expansion
of f̂g(ω). Now, portion 4 is located at lower frequencies than portion 3.
This commonly known as aliasing.

Figure 2.8: (This example continues with figures Fig.2.8d, Fig.2.8e)



36 The Wavelet Transform Theory

(d) Applying the low-pass filtering on the detail node d̂(ω) of the first level
of decomposition, selects portion 4, which should instead be extracted by
a high-pass filter, since it is of higher frequency according to the original
spectrum.

(e) Down-sampling d̂h(ω) gives the node containing âd(ω).

Figure 2.8: (This example continues with figures Fig.2.8f, Fig.2.8g)

rule of thumb, given a node (j, p), p can be seen as the sequency of the node.
Therefore, the procedure of reordering can be synthesized as:

if p is

{
even then low-pass on the left, high-pass on the right

odd then high-pass on the left, low-pass on the right
(2.62)

This can either be done while calculating the WPT in order to optimize the
computational time or after computing the Paley ordered tree, if that form could
possibly be of any interest, too.

2.4.6 The Best Basis Decomposition

As mentioned in Sec.2.4.3, once performed a full WPD, the choice of the basis
is purely discretionary. By choosing a particular criterion, anyway, the choice
of the basis can be optimized for selecting the nodes that best represent the
signal according to such a criterion. In this way, a best basis decomposition

is performed to highlight certain characteristics of the signal.
The instrument for the choice is a cost function that maps each node to a

real value calculated from the elements x of the node itself by a specific law.
Such map functions are defined as [32]:
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(f) Applying the high-pass filtering on the detail node d̂(ω) of the first level
of decomposition, selects portion 3, which should instead be extracted by
a low-pass filter, since it is of lower frequency according to the original
spectrum.

(g) Down-sampling d̂g(ω) gives the node containing âd(ω).

Figure 2.8: The effect of aliasing is an inversion in the spectral sequentiality due
to high-pass filtering and down-sampling. Portion 3 of the original spectrum
of f̂(ω) spans a lower-frequency range of the ω-axis than portion 4 does.
Nonetheless, passing f̂(ω) through filtering and down-sampling up to the second
level of decomposition, portion 3 gets extracted by the high-pass filter, so
appearing to be of higher frequency, instead. This is why the “natural” order of
the WPD must be adjusted.
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Figure 2.9: The children of the odd-sequency nodes must be swapped
with respect to the natural order of the Wavelet Packet tree, due to the
effects of aliasing. The left child, then, will be the high-pass-filtered and
down-sampled version of their own coefficients, whereas the right child will be
the low-passed-filtered and down-sampled version, inversely with respect to Paley
ordering.

Definition 2.4.3 A map M from sequences x = {xn} to R15, is called an
additive information cost function if:

{
M(0) = 0

M(x) =
∑

nM(xn)
(2.63)

The typical functions used to find out the orthogonal basis that best describes
a particular aspect of a signal f(n) are entropy functions [18][32]:

Shannon Entropy The (non-normalized16) Shannon Entropy for a single

15In the WPT, n ∈ N : n = 0, . . . , (λj − 1), where λj = M

2j
is the length of the sequence of a

node at level j.
16The normalized Shannon-Weaver Entropy for a single element is defined as

Mshan−weav(xn) = ρ2n log ρ2n, where ρ = |xn|2
‖x‖2 , and, thus, for a sequence, it is

Mshan−weav(x) = −
∑

n
ρ2n log ρ2n. Even if it is set that 0 log 0 = 0, this is a non additive

cost function. That is why the non-normalized version is necessary.
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element is defined as:

Mshannon(xn) = x2n log x
2
n (2.64)

so that, set 0 log 0 = 0, for a sequence x it is:

Mshannon(x) = −
∑

n

x2n log x
2
n (2.65)

As a matter of fact, exp (Mshannon(x)) is related to the number of
coefficients needed to represent the signal.

Logarithm of energy The so-called “log energy” entropy for a single element
is defined as:

Mlog en(xn) = log x2n (2.66)

so that, set log 0 = 0, for a sequence x it is17:

Mlog en(x) = −
∑

n

log x2n (2.67)

Concentration in lp norm The concentration in lp norm entropy, chosen
p ∈ R : p ∈ [1, 2[, for a single element is defined as:

Mnorm(xn) = |xn|p (2.68)

so that, for a sequence x it is:

Mnorm(x) =
∑

n

|xn|p = ‖x‖p (2.69)

The smaller is the lp norm of a function of unit energy, the more
concentrated it is into a few coefficients.

Number above a threshold The threshold entropy, chosen an arbitrary
threshold ǫ ∈ R : ǫ > 0, for a single element is defined as:

Mthresh(xn) = 1−Θ(xn, ǫ) =

{
1 if |xn| > ǫ

0 if |xn| ≤ ǫ
(2.70)

where the auxiliary step function Θ(xn, ǫ) is similar to Eq.2.52. In this
way, for a sequence x it is:

Mthresh(x) =
∑

n

(1−Θ(xn, ǫ)) (2.71)

This entropy gives the number of coefficients needed to transmit the signal
with precision ǫ.

17Minimizing this function finds the best apporoximation of the Karhunen Loeve basis for
the process, which attains the global minimum for Mlog en over the whole orthogonal group
[32].
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Sure entropy The sure entropy [18], chosen an arbitrary threshold ǫ ∈ R : ǫ >
0 and introduced the same auxiliary function Θ(xn, ǫ) of Eq.2.70, for a
sequence x of length λ ∈ N0 is defined as:

Msure(x) = λ−
∑

n

Θ(xn, ǫ) +
∑

n

min(x2n, ǫ
2) (2.72)

Chosen one of this functions, it can be used all through the sequency ordered
WP Tree to compute the entropy of each node. Then, by the Best Basis

Algorithm , some nodes are marked. Then the closest to the root constituting
the Best Basis are extracted in order to minimize the total entropy. The steps
of this procedure are shown in Alg.2.4.1 [32].

Algorithm 2.4.1 The Best Basis Algorithm states that whenever a parent is of
lower information cost than the children, the parent is marked. If the children
have lower information cost, the parent is not marked, instead the (lower) total
information cost of the children is assigned to the parent.

Once marked the nodes18, starting from the terminals (l, 0) and (l, 1) and
their parent, a Depth First Search is performed to extract the marked nodes
closest to the root from left to right, which form the Best Basis.

Since the tree has been sequency ordered, the concatenation of the sub-bands
spanned by each node leads to no corruption of the sequentiality of the spectrum.
Eventually, the signal is described with a different resolution in time and
frequency (i.e. different Heisenberg boxes in the Phase Plane), according to
the level of decomposition of each node selected.

The number of chosen nodes is not predictable and varies from signal to
signal. Therefore, such Best Basis procedure can be fruitfully exploited for
analysis purposes, on one hand, but, on the other hand, it is unlikely to use
it in a classification strategy: in such a case, in fact, a fixed base is preferable in
order to suitably compare some signals.

18The marking process can be done at the same time as the coefficients in the nodes are
computed, as noted in [32].



Chapter 3

The Classification

The WPT is able to provide a wide range of possible ways of looking at
the information contained in a signal both in time and frequency. It can
be considered one of the most powerful tools from the MRA. Anyway, there
could be little point in just obtaining the coefficients of each node: some
elaboration of the data should be performed to create an efficient instrument
of analysis and classification. In fact, there are a few particularly useful
approaches to treat the decomposed signals on the nodes of the tree: the
Wavelet Packet Spectrum (WPS) and the Energy Map.

The purpose of the classification is to extract the most reduced feature set
of data that allows the recognition of a pattern with an acceptable percentage
of error. In the case of the WP Tree, the features are the energies of some
particularly relevant nodes.

3.1 Tools for Signal Analysis from the WPT

The WPS is the most handy and flexible tool to analyze a signal spectrum along
the time axis: basically, it lets visualize the amplitude of the coefficients of some
selected nodes, properly coloring the Heiseberg Boxes they represent of the Phase
Plane (supposing a sequency ordered WP Tree). The Energy Map, instead, gives
a focus, level by level, on the concentration of energy in the spectrum of the
signal. It is particularly useful for extracting a reduced set of representative
information for classification purposes.

3.1.1 The Wavelet Packet Spectrum

The Wavelet Packet Spectrum (WPS) is the representation of the information
contained in each node on the Phase Plane, with time t on the horizontal axis
and frequency f on the vertical axis. This plane is partitioned in rectangular
patches of size ∆t-by-∆f , called Heisenberg boxes in honor of the uncertainty
principle [32], as anticipated since Sec.2.1.4. These boxes are disposed according
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Figure 3.1: This is an example of color palette with 64 shades. In particular,
this is a so-called flipped gray palette, associating the highest value to black and
the lowest to white.

to a grid where the rows represent the nodes of the basis, so that the leftmost
node on the tree at a specified level corresponds to the lowest row (low frequency)
and the rightmost node is the top row (high frequency).

The information considered is in the form of the amplitude of the coefficients
|xn| of the nodes of the chosen basis. The color palette used to assign the
corresponding tonality to the amplitude of a coefficient is built so that the
minimum value assumed by the coefficients of the nodes corresponds to the
bottom of such a palette and the maximum value corresponds to the top of it.
Between the intermediate shades and amplitudes there is a quasi-linear relation,
except for some quantization in the color-map. An example can be seen in
Fig.3.1.

The most direct way of using the WPS is to select all and only the nodes
of a certain level j of decomposition of a sequency ordered WP Tree. In such a
way, an orthogonal basis is taken into account and there is a uniform partition
of the Phase Plane: the number of coefficients per node (λ = M/2j), the time
resolution (∆t = ∆T/2j) and span (∆ω = π/2j or equivalently ∆f = fs/2

j+1) of
every chosen node are the same, since the level is identical. Therefore, the WPS
is made of a grid of 2j × λ rectangular patches all of the same size ∆t-by-∆f .

If another basis is selected, including nodes from several levels, the size of
the boxes of each row generally differs from that of another one. For instance,
the Alg.2.4.1 generally leads to this latter kind of basis, leading to non-uniform
boxes. An example is shown in Fig.3.2.

Though the WPD deals with a huge amount of scattered data and, therefore,
is not suitable to a fast real-time method of classification, it is essential for a
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Time-domain signal

(a) Example of a non stationary signal made of a sinusoid at 50Hz, with a
second harmonic superposed at 150Hz (a half of the amplitude) in the first
trait and another harmonic at 350Hz (a quarter of the amplitude) added
in the second trait. In the middle of the acquisition there is a section of
constant null signal separating the two traits. The sampling frequency is
1 kHz. The number of samples is N = M = 1024 = 210, thus covering an
interval ∆T = 1.024 s.

Figure 3.2

0 50 100 150 200 250 300 350 400 450 500

[Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
m

pl
itu

de

Fast Fourier Transform

(b) The Fast Fourier Transform performed by Matlab highlights the
presence of the three harmonics, but does not give any information about
their duration and the instant when they appear. Besides, this fact distorts
the real amplitude of those component: the spectral component in the FFT
is then proportional to the real amplitude of the signal component, but also
to its duration. Analyzing non stationary signals with this tool is not wise.

Figure 3.2
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Wavelet packet decomposition
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(c) WPS of the signal in Fig.3.2a with a level of decomposition 4. Here
only the equal-width sub-bands of the fourth level are chosen.

Wavelet packet decomposition
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(d) WPS of the signal in Fig.3.2a with a level of decomposition 4 using
the Best Basis from Alg.2.4.1 with the non-normalized Shannon Entropy
(Eq.2.65). The sub-bands spanned by the nodes selected are not equal.

Figure 3.2: Example of a non-stationary signal Fig.3.2a decomposed to a level
l = 4 by the WPT, whose WPS is shown using an equal-width sub-band
representation in Fig.3.2c and a Best Basis Tree selection in Fig.3.2d.
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preliminary analysis of the kind of signals that are to be taken into account.
For instance, it could be useful to know whether a spectral component is always
present during the acquisition of a generic non-stationary signal, or if it appears
only during some transients. This could be extremely hard or ambiguous to spot
in the standard basis (i.e. the time domain) and surely cannot be done by the
FT, which gives a global view on the whole ∆T . Only the STFT could give some
hints, but with all the limitations cited in Sec.2.1.2.

3.1.2 The Energy Map

The Energy Map [10] of a WPD is a grid containing the average energy em
of every node vector of coefficients xm = {xm,0, xm,1, . . . , xm,(λj−1)} of level j,
serial number m (see Sec.2.4.1) and length λj = 2η (cf. Eq.2.48), so that:

em =
1

λj

λj−1∑

n=0

[xm,n]
2 (3.1)

The choice of the average energy as the representative parameter is due
to the intention of spotting the parts of the spectrum containing the highest
concentration of information during the time interval of observation ∆T .

Each row of the Energy Map represents a level of decomposition and each
box represents a node. On a row, then, there are 2j boxes, where the original
signal is located at j = 0, represented by the top row. The order in which the
energies of the nodes are presented is the same of the sequency-ordered WP Tree,
as a convention.

The main advantage of this mode of visualization of the signal decomposition
is the reduction of the terms that describe the signal. For instance, the acquired
signal can have a large amount of samples N . Its adapted version (in order to
fit the requirements of the Wavelet Transform, see Sec.2.3.7) has a number of
samples M which is the power-of-two number closest to N . The information is
scattered all through the WP Tree and possibly involves a lot data. The Energy
Map, instead, has as many terms as the total number of nodes in the tree, that is
Pl =

∑l
j=0 2

j . Therefore, if the chosen decomposition level is not too high, P is
“small”1. The major reasons why the level of decomposition l is limited are the
computational time and memory needed for the WPT and also the progressive
larger uncertainty in time.
The computation of the average energy of a whole node can encounter some
difficulties in the repeatability of the measurement, since it is subjected to a
strong dependence on the trigger instant: if the trigger is not properly chosen, a
time shift between two measures of the same phenomenon causes a discrepancy
in the distributions of the coefficients of the nodes between their trees. To stem

1Common values for l can be in the interval between 4 and 8 (thus leading at a maximum
of P8 =

∑
8

j=0
2j = 511 values of energy).
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(a) This is the Energy Map of the signal in Fig.3.2a up the fourth level
of decomposition. The darkest boxes represent the nodes with the highest
energy. On the top row there is only the average energy of the node (0, 0)
(level 0 of the WP Tree), whereas going down to the bottom row the average
energies of the nodes of the various levels appear.

Figure 3.3

Logarithmic Energy Map
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(a) This is the same Energy Map of Fig.3.3a, but seen in a logarithmic
scale log. This point of view may let some possibly relevant nodes emerge,
since in the linear scale the different orders of magnitude among the energies
could have hidden them (i.e. they may have remained white in the case of
this flipped gray color-map). This is particularly useful when comparing
several Energy Maps to try to spot some changes among possible different
classes.

Figure 3.4:
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this incompatibility, it is possible to use a window [10] in order to calculate the
average energy on several portions of the coefficient vectors of the nodes, so that
the dependency on the trigger instant is diminished, being the energy distributed
among many near elements.

Let Wj be the window length for level j, with Wj+1 = 1
2Wj and i ∈ N : i =

0, . . . ,
(

λj

Wj
− 1

)
the generic index of the resulting energies for a node with serial

number m. The length of the window Wj should be a power-of-two fraction of
the node vector length, so that an integer number of windows per node λj

Wj
≥ 1

is applied. The i-th energy ewm,i calculated on the node m, using a window which

extracts a fraction Wj

λj
of the samples of a sequence on level j, would then be:

em,i =
1

Wj

i·Wj+Wj−1∑

n=i·Wj

[xm,n]
2 (3.2)

In Eq.3.2 it is supposed that the windows are applied in series through the
coefficients of a node. Nevertheless, it is also possible to employ them with
overlapping. Set γ ∈ Q : γ > 1 as the inverse of the dimensionless fraction of
Wj giving the distance between two consecutive windows (e.g. if there is a shift
of 1

2Wj between two consecutive overlapping windows, then γ = 2), accordingly
modifying Eq.3.2 gives that:

e
1/γ
m,i =

1

Wj

i·Wj/γ+Wj−1∑

n=i·Wj/γ

[xm,n]
2 (3.3)

Here, i ∈ N : i = 0, . . . , γ
(

λj

Wj
− 1

)
.

Nevertheless, even if computing such kinds of windowed energies can possibly
loosen the dependency on time shifts, a sensible proliferation of the terms that
are used to describe the signal is caused. In fact, applying adjacent windows
like in Eq.3.2 provokes an increase of the Energy Map size from Pl =

∑l
j=0 2

j

to P ′

l = Pl
λj

Wj
. Employing overlapping windows even leads to a size P ′′

l =

Pl

(
γ

λj

Wj
− (γ − 1)

)
, where Pl < P ′

l < P ′′

L.

A proliferation of the terms is counter-productive if the main purpose is to
extract some concise information to feed the classification algorithm with. This
is why a simple average on the whole node vector is preferred for the feature
extraction (Sec.3.2) and the following classification algorithm (Sec.3.3). On the
other end, greater effort must be made to trigger the signal as repeatably as
possible.
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3.2 Feature extraction

Let a single acquisition be taken into account for now. Let it be characterized
by a sample rate fs and a duration ∆T , thus giving N = ∆T · fs samples.

Performing the WPT with a level of decomposition l on an adapted signal of
length M according to Sec.2.3.7 and, then, calculating the Energy Map of the
sequency ordered WP Tree, returns a collection of scalar energies em, where m ∈
N : m = 1, . . . , Pl is the serial number of a node (according to Sec.2.4.1). For a
matter of practicality, those energies can be put in a vector e = {e1, e2, . . . , ePl

}2.
Let a whole campaign of K1 acquisitions of the same phenomenon be

considered. If the procedure of decomposition and extraction of the Energy Map
is performed with the same parameters, an energy vector ek1

can be computed
for every acquisition, where k ∈ N : k1 = 1, . . . ,K1. Knowing a priori that these
measurement are about the same type of event, a class C1 can be assigned to
this set of energy vectors.

In such a set of vectors, there should be some particularly relevant coefficients
in some fixed position3 that seems able to characterize the class.

Taking further campaigns in a similar way highlights other classes Cc of
finite length Kc (where c is the generic index of a class) and other possible sets
of “characterizing” coefficients for these new classes. If the trigger was properly
set, those coefficients should be in some fixed positions within their own energy
vectors ec,kc

(of class c and number of acquisition kc within the campaign, in
the following it will be k = kc for the sake of readability).

As a consequence, a reduction of the nodes (i.e. of the dimensionality of the
energy vector) is prospected. A set of features can be built, as an example of a
general case, from the union of the positions of the “characterizing” coefficients
identified. Extracting the energies in such positions from all of the energy vectors
generates a Train Set , that is a stack of reduced-dimensionality classified energy
vectors (considered as row vectors), so that:

TrainSet =




e1,1 C1

e1,2 C1
...

...
ec,k Cc

...
...




(3.4)

This Train Set is the knowledge on which the classification algorithm will decide
the class of a new acquisition. Assuming that a brand new set of unclassified
energy vectors, called Test Set , is taken so that: (i) fs and ∆T are the same

2Let it be recalled that Pl =
∑l

j=0
2j , i.e. each term of e is the average energy of a node

of the frequency ordered WP Tree, where the root has m = 1 and the others are numbered
left-to-right, from the lowest to the highest level of decomposition.

3If the trigger was properly set, the pattern of energy distribution along the nodes should
not be shifted between the various acquisition of the same event.
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of the acquisitions of the vectors of the Train Set (ii) its events can be classified
like those of the Train Set., So, it is possible to assign each vector of the Test
Set to one of the known classes of then Train Set, according to its “closeness”. If
κ is the generic index for an acquisition of the Test Set, then it can be seen as:

Test Set =




e1
e2
...
eκ
...




(3.5)

3.3 Classification algorithm

Once provided a Train Set, it is possible to operate the classification of the
vectors of the Test Set eκ on the basis of the computation of the their distance
from each classified vector ec,k of the Train Set itself.

Taking into account that the final application of this algorithm is on a MCU,
the computational burden of the classification must be restrained. That is one
of the reasons why the algorithm chosen is the Nearest Neighbor Rule (NN rule,
Sec.3.3.1): an unclassified feature vector can be associated to a class on the
basis of the majority of vectors of a specific class among its nearest K ones (i.e.
K-NN rule). A preeminent role is thus played by the chosen distance function

(Sec.3.3.2).

3.3.1 Nearest Neighbor Algorithm

The K Nearest Neighbor Rule (K-NN rule) is a supervised learning

algorithm that provides the classification of the feature vectors of a Test Set
according to the prevalence of those of a specific class among the nearest K ≥ 1
ones. The steps of the algorithm are listed in Alg.3.3.1:

Algorithm 3.3.1 The stages of the K Nearest Neighbor Algorithm (K-NN) are:

i) arranging a Train Set of classified feature vectors according to Eq.3.4;

ii) arranging the Test Set so that it is made of the feature vectors representing
the same nodes of the WPT as the ones of the Train Set;

iii) computing the distances between each vector of the Test Set eκ and all the
vectors of the Train Set e1,1, . . . , ec,k, . . . ;

iv) for each vector of the Test Set, searching the K closest vectors of the Train
Set, i.e. those with the smallest distance (see Sec.3.3.2);

v) each vector of the Test Set is finally assigned to the class which the majority
of its K nearest neighbors of stage iv) is associated to.
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The simplest application of this algorithm consists in setting K = 1, i.e. the
class of a vector of the Test Set is decided upon its closest vector of the Train
Set. This implementation is summarized in Fig.3.5.

The determiner of the success of the algorithm is choice of the distance
function: a simple euclidean distance might not be the cleverest option. The
success of the algorithm must be tested choosing, as members of the Test Set,
some feature vectors that are actually known to belong to some specific class of
the Train Set. The percentage of error on this known entries will give reliable
indications on the goodness of the application of the algorithm in the particular
case.

3.3.2 Distance Functions

The distance functions that may be taken into account to quantify the nearness
of two feature vector are several, each one with peculiar characteristics that may
facilitate or not the success of the classification according to the specific case.
In the following, a series of functions of distance is presented [6]. Though these
ones are computed all along the experiments of Part II, the whole Sec.3.3.2.1 is
dedicated to the χ2 distance, considered the most reliable one.

To describe the different kinds of distance, let two sample units i and h
of the same length p be considered as row vectors, where the j-th element of
the sample unit i is described by aij and the j-th element of h by ahj , where
j ∈ N : j = 1, . . . , p 4 [20]:

i : [ai1 . . . aip]
h : [ah1 . . . ahp]

(3.6)

According to this notation, the following distance functions dih are:

Euclidean The normalized Euclidean distance between two sample units i and
h is:

d eucl
ih =

√∑p
j=1(aij − ahj)2

p
(3.7)

Cosine similarity The cosine similarity between two sample units i and h is:

d sim
ih =

ai · ah
‖ai‖ ‖ah‖

(3.8)

Minkowsky The Minkowsky similarity between two sample units i and h,
chosen a value r > 1, is:

d sim
ih =




p∑

j=1

|aij − ahj |r



1/r

(3.9)

4Here the numeration of the elements of the vectors starts from 1 rather than 0 merely for
the sake of clarity utilizing the subscripts.
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Figure 3.5: This is a schematic representation of the Nearest Neighbor Rule with
a number of closest vectors K = 1 to choose from. To sum up, it consists of
computing all the distances from each feature vector of the Test Set to all of the
vectors of the Train Set and, then, finding the minimum distance for each case.
The class of the vector of the Train Set having the minimum distance from a
particular test vector will also be the class of this latter one.
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Correlation The correlation between two sample units i and h, computed the
averages µi =

1
p

∑p
j=1 aij and µh = 1

p

∑p
j=1 ahj , is:

d corr
ih =

∑p
j=1(aij − µi)(ahj − µh)√∑p

j=1(aij − µi)2
∑p

j=1(ahj − µh)2
(3.10)

3.3.2.1 Chi-Square Distance (χ2)

Maintaining the conventions of Sec.3.3.2, some preliminary definitions need to
be made before properly giving the formulation of Chi-Square Distance between
two sample units i and h (χ2

ih).
First of all, let the Train Set be a matrix of finite size q × p, where the rows

are the sample units (i.e. the feature vectors) and the columns are the species
(i.e. the values computed for each feature from the various acquisitions) [20].
Then, let the total for sample unit i (ai+ ∈ R) and the total for sample unit h
(ah+ ∈ R) be:

ai+ =

p∑

j=1

aij (3.11)

ah+ =

p∑

j=1

ahj (3.12)

Let also the total for species j along the training set be a+j ∈ R:

a+j =

q∑

k=1

akj (3.13)

The χ2 distance between two sample units i and h can then be defined as:

χ2
ih =

√√√√
p∑

j=1

1

a+j

(
ahj
ah+

− aij
ai+

)2

(3.14)

This distance is similar to the basic Euclidean one in Eq.3.7, but it is weighted
by the inverse of the species total and each values of a sample unit is weighted by
its own total. Such a fact uniforms the orders of magnitude, letting differences
on very different scales be comparable and with similar importance in the final
computation of the distance.

According to [6], this kind of distance has proven to be the most reliable
one in the classification of either numerical, categorical and mixed datasets. In
addition to the satisfying percentage of success of a few experiments conducted,
that is a valid reason why the results from the χ2 distance are considered the
most significant.



Part II

Experimental results





Chapter 4

The experimental setup

During the one-year-long time of this work, various setups had been taken into
account. In the next sections some steps of the evolution of the setup are
presented to show how to apply the previous concepts on home appliances.
The presumption of enforceability of the outcome is obtained starting from a
wide-range spectral analysis using high-end equipment and then narrowing the
range and lowering the budget up to the utilization of the cheap Allegro’s ACS718
on-board current sensor.

All through the work, the system considered was not the complete refrigerator
as the ones that can be seen in stores, but rather a much simplified version of it.
Especially in the first phase, the mere couple of the inverter and the compressor
was considered as the system. With increasing knowledge of the phenomena
involved, then, also the motherboard on which the current sensor was welded
was considered as part of the system.

Therefore, in Sec.4.1 the principal parts of the system will be described, so
that the evolution of the setup will be shown in Sec.4.2.

4.1 The system

Starting from the notions of the refrigeration cycle, the inverters and the
compressors will be generally described, together with the instruments to manage
and control them.

4.1.1 The refrigeration cycle

The refrigeration cycle is the mathematical model for the functioning of the
refrigerators. What the machine performing such a cycle does is extracting
heat from a cooler heat source to move it to a warmer heat sink. Declined
in the case of refrigerators, this cycles accomplishes the extraction of heat
from the cool inside where the food is stored, to expel it to the warmer
room-temperature environment. Since, for the second law of thermodynamics,
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Figure 4.1: The forceful variations in pressure and phase of the working fluid
allow the transportation of heat from the inside of the machine towards the
outside. In this p-h plane, the cycle assumes a rather simple shape.

heat cannot spontaneously flow from a location at a lower temperature to another
at a higher one, some mechanical work must be made to achieve the refrigeration
cycle. Such a mechanical work, in the case of refrigerators, is given by a
compressor. In a thermodynamic circuit, such compressor thrusts a working
fluid through a condenser, a lamination valve and an evaporator (Fig.4.1).

In the case of the specific refrigerators under investigation, the working fluid
or “coolant” is a hydrocarbon called isobutane R600a.

The refrigeration cycle can be represented on a pressure-vs-enthalpy plane,
like in Fig.4.2. With reference to this figure, the steps are:

1-2 the compressor sucks the fluid in a superheated steam state, taking it from
a low suction pressure to a high discharge pressure;

2-3 the fluid passes through the condenser and releases heat to the outside,
becoming at first liquid (following an isotherm) and, then, subcooled liquid,
while keeping the same pressure;

3-4 the subcooled liquid is expanded by a lamination valve that brings the
fluid back to the low suction pressure so that it partially vaporizes;

4-1 the biphase fluid flows through the evaporator and receives heat from
the outside, becoming at first steam (following an isotherm) and then
superheated steam, while keeping the same pressure (the cycle starts again
from here).

Now that the components of the cycle are identified, the focus will be put on
the compressor and its role as provider of mechanical work: in Sec.4.1.2 a general
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Figure 4.2: The components necessary to the refrigeration cycle are visible here:
compressor, condenser, valve and evaporator. Temperature and pressure levels
are highlighted in the proper area of the circuit.

overview on the compressors and the way they are supplied and controlled will
be given.

4.1.2 Compressors and inverters

The energy to let the compressor do its mechanical work is provided by an
electric power supply, usually the grid (230V). Actually, the compressor is
an electric motor moving a piston, which pushes the fluid in the circuit. The
electric energy is not plugged directly into the compressor: instead, it is regulated
by an inverter, i.e. a power converter that will provide the compressor with a
three-phase voltage able to move the internal rotor according to the control logic,
thus providing the proper mechanical work. As it can be seen in Fig.4.3, the
power source is plugged into the inverter and a low-voltage square-wave signal
is used as the input to the modulation of the three-phase voltage of the stator.

The main advantage of modern inverter refrigerators on the old on-off ones
is that a smooth regulation can now be performed, with a dramatic increase in
efficiency. For the sake of simplicity, the characteristic bounding the frequency of
the 12V Pulsed Width Modulation (PWM) control signal and the speed of the
rotor has been constructed to be linear (Fig.4.4). The PWM signal can be sent
either by the motherboard (in the ordinary operation), or by a wave generator
in the laboratory. The modulation is provided by a symmetric bus-clamped
Space Vector Modulation (SVM).
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Figure 4.3: On the top-left corner, the black and red wires of the
frequency-control signal can be seen. On the top-right corner, the single-phase
power supply is plugged, while, on the bottom-left corner, the connector for the
three-phase supply of the compressor is ready to be plugged.

Figure 4.4: The characteristic between speed and frequency of the 12V PWM
is designed to be linear for the most part of couples inverter-compressor. In this
example, the minimum speed of 1400 rpm corresponds to a PWM at 50Hz, while
the maximum speed of 4000 rpm to a PWM at 150Hz. The constant slope is
therefore of 27 rpm/Hz. This is the case of all the couples inverter-compressors
examined.
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4.1.3 The probes and the oscilloscope

The high-end equipment consisted of:

• Teledyne LeCroy Motor Drive Analyzer (MDA810A), 2.5 GS/s, 12 bit,
1 GHz (also referred to Digital Storage Oscilloscope or DSO);

• Teledyne LeCroy High-Voltage Differential Probe HDV3206, 2000 V,
120 MHz;

• Teledyne LeCroy Current Probe CP030A, 30 A, 50 MHz;

• EMtest NetWave Test Supply (for certified tests).

The elevated accuracies, sampling rates and bandwidths of these tools allow
much more in-depth analyses then those that can be performed with the
Allegro Current Sensor ACS718-10B (ACS718). The purpose of using them
beforehand was to observe the system on the widest spectrum possible before
acting on the motherboard. Gradually narrowing the spectrum taken into
account, we made sure to still see what we needed.

4.1.4 The Microcontroller Unit and the Motherboard

The MCU considered is the Kinetis MKE04Z128VLK4 ARM Cortex-M0+[23],
which is mounted on the new generation of refrigerators’ motherboards. It is
a 32-bit MCU core with a 48 MHz CPU frequency, with memories of up to
64128 KB of flash memory and 16 KB of SRAM. For the purposes of this work,
other interesting characteristics of this controller are those of its ADC: a 12-bit
converter with up to 16 channels.

The motherboard on which the the MCU is inserted is the ERF2600 by
Electrolux, designed for the control of the whole refrigerator system.

4.1.5 The Allegro’s ACS718 Current Sensor

The High Isolation Linear Current Sensor IC with 850µΩ Current Conductor[1]
is a low-offset linear Hall-Effect sensor providing an output voltage proportional
to the current that flows through a proper copper path located near the surface
of the die. The connections of this chip can be seen in Fig.4.4.

The working principle is that the current flowing on the copper path (getting
into pins 1—4 and out from 5—8) generates a magnetic field which is sensed by
a Hall Integrated Circuit (IC), which in turn provides a proportional output
voltage. This version of the ACS718 (10B) has a current sensing range of ±10A
and a sensitivity of 200 mV/A, with a zero-current offset equal to half of the
continuous supply voltage VCC , i.e. 0.5× VCC = 2.5V . The zero-current offset
is due to the fact that the measure of current is bidirectional. So, given these
specifications, the reliable range of output voltage is between 0.5 and 4.5 V,
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(a) The connections for the pins of the ACS718.

(b) The pinout diagram and terminal list table.

(c) The functional block diagram.

Figure 4.4: Description of the pins of ACS718[1].
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spanning the range ±10A. The noise density is low, with a peak of 70mArms at
the maximum bandwidth of 40 kHz.

4.2 The construction of the setup

For the initial part of the laboratory activities, the setup comprehended some
high-end equipment that allowed to look deep in the nature of the electrical
signals of the system. The quality of the instruments in Sec.4.1.3 presented
low levels of noise and elevated bandwidths. While gradually ensuring that
those high-end characteristics were not strictly necessary, the performances of
the equipment were progressively lowered down to the “real application” setup,
suitable for mass production. The familiarity with the instruments and with the
characteristics of the system was acquired hand to hand; likewise, the ability of
extracting useful acquisition was gradually gained.

4.2.1 The first setup

The first type of setup was meant to investigate the nature of electrical signals
(i.e. voltage and current) on various refrigerator sub-system, composed by
couples of inverters and compressors. Since every numerical elaboration on the
data acquired had to be made offline and outside the experimental setup (on
Matlab or in C language, see Sec.5.1.1 and Sec.5.1.2), the approach was a sort
of external observation.

Fig.4.4 illustrates the setup: an arbitrary wave generator gives a 12 V PWM
command modulating its frequency in a proper range. The inverter responds to
that command regulating the voltage of the stator, thus provoking the movement
of rotor of the compressor at a corresponding speed. The current probe is
clamped on the line cable supplying the inverter, so that the current absorbed
by the load is measured and stored on the Motor Drive Analyzer. Also the line
voltage is monitored.

Using this setup, many records of voltage and current of several couples of
inverter and compressor were taken. Iin this phase, the purpose was to test
the wavelet decomposition software and spot as many peculiarities as possible,
in order to refine a classification method to differentiate the couples from one
another.

4.2.2 Setup with DAQ module

On a second stage, the elaboration of the data was still offline and outside
the setup. An important difference, though, was the decrease in bandwidth
introduced making the current pass through the ACS718 and measuring it
with a Data AcQuisition (DAQ) module (Fig.4.4). The National Instruments’
DAQ NI-9205, supplied by the cDAQ NI-9174 chassis, allowed to sample the
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(a) The current and voltage probes are connected to the Motor Drive
Analyzer MDA810A to provide measures of the line voltage and current
absorbed from the load.

(b) An ad hoc box was designed to let the access to line and three-phase more simple.

Figure 4.4: Diagram of the first experimental setup.
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differential signal VIOUT–GND at an assigned rate and write the data on a file,
by means of a LabView program.

The elaboration of new data was still the same as in Sec.5.1.1 and Sec.5.1.2,
but the approach was slightly different, since a new part of the real setup was
introduced, even though as a passive component. The main difference from the
setup in Sec.4.2.1 is that the bandwidth of the current signal was limited by the
ACS718. To accomplish this, the current sensor, welded on the motherboard,
needed to be powered: before the PCB, an AC/DC converter was placed to
provide the board with a 12 V DC supply. On the board, there also was a DC/DC
converter in turn providing a 5 V DC power supply necessary to the ACS718.
In this way, when the current absorbed by the load flew through the sensor, it
responded with a proportional voltage that could be measured with the DAQ
between the test-point S163 and the ground reference. To avoid disturbance
from the grid in the measure of the current, the 230 V power supply was taken
from the EMtest NetWave Test Supply.

The purpose of the analysis with this setup was again to differentiate couples
of inverter and compressor from one another, but also to find peculiarities in the
current signals of faulted inverter: those faults were voluntarily activated with
manual buttons (like in Fig.4.4b).

4.2.3 Setup with MCU

The last stage was performing an online in-the-loop acquisition and classification
of the current measures: the current passed through the ACS718 and its measures
were acquired using the ADC of the MCU (Fig.4.4).

This last setup is the simplest from the point of view of the hardware, since
every signal is managed internally: once the motherboard is supplied, it supplies
in turn the ACS718, which responds to the passage of the load current with a
proportional voltage. This voltage is then sampled by the internal ADC of the
MCU, which then stores and analyzes the data.

In this last phase, the main purpose was to acquire samples of faulted
inverters (faults that could be activate with a button, as it can be seen in
Fig.4.4b) and to identify them online immediately.
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(a) Block diagram reporting the logic of the setup.

(b) More advanced setup with DAQ. S163 and S45 are the testpoints on the motherboard.

Figure 4.4: Setup with NI DAQ 9205.
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(a) Diagram of the final setup.

(b) Example of prototype inverter with button to activate the fault.

Figure 4.4: Final setup without any external instrument or acquisition board.
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(a) Initial setup. The differential voltage and current probes connected to
the Motor Drive Analyzer can be spotted (Sec.4.2.1).

(b) Setup with DAQ (Sec.4.2.2).
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(c) Final setup (see Sec.4.2.3).

Figure 4.3: Photos of the evolution of the setup.
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Chapter 5

The code

A large portion of time has been dedicated to coding, mainly in two languages:
Matlab and C.

5.1 The logic of the code

The exploration of the subject has been made exploiting Matlab libraries and
documentation, especially in the first phase of the work. Since such functions
were not fully open-source, personal C functions were wrote with a further effort
so that the results were the same as Matlab. The purpose of the coding work
was providing the company with a fully original code that would have enabled
the Wavelet Packet Analysis and the Classification on the final application. A
further reason why original C code had to be written was that the program
running on the MCU was already written in that language and the new one
had to be integrated. In the following, no piece of code will be displayed in
order to maintain reserved what was developed for Electrolux S.p.A., but rather
the approach and the obstacles encountered during the development will be
described.

5.1.1 Coding on MATLAB

Especially for the initial part of the research, Matlab’s library and
documentation were useful to understand the nature of the wavelet
decomposition and to explore and experiment various alternatives in a protected
simulation environment. The software was always running offline on a local
machine where the files of the acquisitions were imported.

No real-time deadline was required and the focus was on the research of new
competences and strategies to come up with a possible resolution of the problem.
At first, not much attention was paid either to the computational limits of the
final MCU or the limitations of the C language (such as the disconvenience of
operating with matrixes). The approach was to exploit all the resources that the
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Matlab environment offered in order to solve the problem and then adapt the
code to a C version.

Finally, a simulation environment where the user can create a Train Set
and compare it with a Test Set of coefficients extracted from the wavelet
decomposition has been developed. The psudocode summarizing the algorithm
created on Matlab can be seen in Psd.5.1.1.

Pseudocode 5.1.1 ⊲ Script 1
for all acquisitions wanted do

⊲ Data should be on two columns (time, signal)
import data from .DAT file
save as variables in .MAT files

end for

⊲ Script 2
for all .MAT files do

load the variables
adapt the length of the variables
perform the Wavelet Packet Tree
compute the proper Energy Map
save the Energy Map as a vector ⊲ Draw graphs if you want

end for

⊲ Script 3
for similar Energy Maps do

create sets denoting classes
end for

⊲ Script 4
choose a type of distance for the classification
choose a Train Set and a Test Set
classify the Energy Maps of the Test Set according to the Train Set

5.1.2 Coding in C language on a PC

Parallelly to new achievements with the code in Matlab, the needed functions
were created in C language, adapting the structures and ways of thinking of
C language to the math of wavelet analysis. Translating the theory and the
matrix mathematics of Matlab into a lower-level language has lead to some
convoluted bunches of structures and pointers. By the time, anyway, C skills
were developed so that the code was simplified to run on a much less powerful
CPU like the MCU.

Practically, the code was developed on a Linux Virtual Machine (on the
distribution Ubuntu 16.04), even employing Eclipse GUI to manage the project.
The solely purpose was to imitate the parallel Matlab software, but it turned
out to be a precious way to better understand the problem and the computation
underneath. As a consequence, the code follows the trace of Psd.5.1.1.
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5.1.3 Coding in C language on a MCU

In the final part of the work, the code was further simplified and some particular
adjustments were made to save memory and computational time (e.g. allocating
no more than the necessary space for the variables, with particular attention to
the type). The program was developed on Windows 7 (on Atom GUI), since
the compilation and documentation algorithm of Electrolux R&D required the
compilation via batch files.

In this phase, the purpose was to run the program online on a prototype
motherboard using the ACS718 to obtain bunches of measures, decompose them
with the Wavelet Transform and classify them. Investigations on the behavior
of the system and automatic recognition of abnormalities were carried out. The
final code was able to collect Train Sets (if needed) and compare each new
acquisition with a provided database of known cases. The pseudocode describing
the operation on the MCU is given in Psd.5.1.2. A variant of the code has
a predetermined Train Set to which compare the Energy Maps from the new
acquisitions.

Pseudocode 5.1.2 ⊲ In main.c
// Initialization of the system
while TRUE do

// Periodic functions of the system
if a proper number of samples has been collected then

Compute the WPD and the Energy Map of the current bunch of data
⊲ relocate the memory as soon as you can

if the Train Set is not full then ⊲ Collect the Train Set
Save the current Energy Map as part of the Train Set

else if the last energy map filled the Train Set then

Setup the classification
else

Launch the classification of the current Energy Map
end if

Reset the counter of the acquired samples.
end if

end while

5.2 The possibilities of the current code, critical issues

and future perspectives

What has been achieve is a graphic environment in Matlab to perform
simulations and tests offline, and an integrated part of code that performs online
pattern recognition on the MCU. Anyway, there are some critical aspects that
will have to be solved in the perspective of mass production:
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• the supervised learning algorithm needs a lot of tests on voluntarily faulted
components in order to collect consistent train sets, with ad hoc setups,
implying some costs;

• the ADC conversions, the decomposition and the classification occupy some
computational resources on the single core of the MCU and are racing with
the other processes to be scheduled. This provokes delays that alter the
sampling frequency on the real application and this preempts the frequency
analysis.

• the result of the classification is related to some choices: the type of
decomposition (the filter banks), the set of features and the type of distance
considered in the classification algorithm, for instance. An optimized
choice sould be made to allow the recognition of most of the cases.

What can be done in the future could be a smart selection of the faults that
could be useful and economically convenient to investigate, in order to sacrifice
the fewest amount of components during testing and learning. The identification
of specific faults to place in the Train Set could also help choose the optimized
type of decomposition, which features to consider and what kind of distance opt
to, restricting the variability.

Moreover, there should be a dedicated CPU core to collect the data with a
precise sampling rate, avoiding the ongoing race condition that causes delays.
However, this would imply a complication in the design of the PCB of the
motherboard and a rise of the costs. Nevertheless, the most convenient solution
would probably be to create a concurrent program on a multi-core platform.
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Case study and Conclusions

6.1 Case study

A case study to show an example of application of what was described so far is
presented in this small chapter. The approach to this case has been replied on
the investigation of several other voluntarily activated faults.

6.1.1 The problem

In the laboratory, a compressor was found to “knock” when turning off (and
sometimes turning on), i.e. emitting an audible brief sound due to a mechanical
impact inside the case. Such impacts, repeated in time, could lead to premature
usury of the components. Such compressor was then investigated not from the
point of view of its mechanical parts, but from the electrical standpoint. From
the MRA of the current signal, some interesting features were detected.

6.1.2 The approach

Since the discover was made while the setup evolution was still in the first phase,
the setup was the one described in Sec.4.2.1. The line cable supplying the inverter
was clamped with the current probe CP030A, connected to the MDA810A. At
first, various acquisitions on switch on/off cycles were conducted starting with a
large bandwidth (sampling rate at 1 GHz) and then, progressively, the sampling
rate was restricted since no particular component was spotted at high frequency
(using the Fast Fourier Transform (FFT) of the MDA810A).

6.1.3 The results

Lowering the sampling rate enables to focus on narrower bandwidth according to
the Nyquist’s Rule: that is why, once an abnormal peak in the FFT was spotted
at about 23 kHz (Fig.6.1), the sampling frequency fs was set to 50 kS/s, i.e. the
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maximum frequency that could be seen was fnyq=25 kHz. This was the most
appropriate bandwidth to inspect on that peculiar peak.

After taking various acquisitions on that setup, the MRA with the Wavelet
Packet Decomposition was performed so that the moment when the suspected
spectral component was manifesting could be accurately spotted. As a matter
of fact, the FFT that helped to find the unusual component was just giving a
global vision of the signal, thus not providing any information about the nature
of that component. The FFT just told that a part of the energy of the signal
was some-when located at that frequency. With the wavelet analysis, instead,
the location and intensity of such component could be highlighted according to
the time-frequency resolution trade-off presented in Sec.2.1.

As it can be seen in Fig.6.3, that component turn out to be periodic and
always present during the on-time of the system. By the way, if it had been
impulsive, sporadic or even random, that fact could have been proved only by
the WPD.

Computing the Energy Map of the wavelet decomposition of such signal
returns a relatively high energy on the node comprising the energy of the unusual
components, with respect to all the other non-faulty compressors (see Fig.6.2).

That is why, with a restricted set of energies as feature vectors, this
compressor could easily be spotted among the others and marked as faulted. One
could remonstrate that this classification could have been performed successfully
also with a FFT and, for this particular case, that would have been true, since
the distinctive component was periodic. However, the nature of faults cannot
be foreseen on complex systems, so the WPD must be recognized as a tool that
provides better diagnostic, furnishing more information than Fourier’s analysis
at the cost of a lower frequency resolution.
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Figure 6.1: The FFT spots an abnormal concentration of energy at about 23 kHz.

Figure 6.2: This logarithmic-scaled energy map highlights a suspect
concentration of energy on the nodes at the highest frequencies.
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Figure 6.3: This Wavelet Packet Spectrum highlights a suspect persistent
presence of energy on the nodes at the highest frequencies of the visible spectrum
(maybe it is a bit hard to notice without zoom).
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6.2 Conclusions

As it has been illustrated during this work, starting from the most used method
of spectral analysis of signals, i.e. the Fourier’s decomposition, a mathematical
alternative was proposed with the wavelet decomposition. Exploiting the
Multi-Resolution provided by this kind of analysis, an energy map of the signal
both in time and frequency could be created. Using that map or parts of it as
a feature set representing the signal, an algorithm of classification (in this case,
following the Nearest-Neighbor rule) could recognize future acquisitions of the
same signal among different sets representing other signals.

The experimental setup evolved from the minimal system made of the
inverter and the compressor, whose absorbed current was measured with a
high-end current probe. Then, proceeding with and intermediate in-the-loop
acquisition device, the final setup was finalized with the real-application
motherboard, with a cheap on-board current sensor. Eventually, these measures
were acquired with an internal ADC of the MCU and the following wavelet
decomposition, calculation of the energy map and classification were performed
online by the MCU.

In Sec.6.1 an example of application of the wavelet analysis was presented.
Some time-frequency features extracted from the MRA were shown to be useful
in the following classification of the signal in exam. Nevertheless, as spotted in
Sec.5.2, there were some limitations on the applicability of the method and more
experimentation was to do before taking the procedure to mass production.
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