
Università degli Studi di Padova

DEPARTMENT OF INFORMATION ENGINEERING

Ingegneria Elettronica

A novel framework for vehicle functions
identification by exploiting machine learning

techniques

Supervisor
Prof. Nicola Trivellin

Co-supervisor
Dr. Domenico Natella

Candidate
Leonardo Lecco

ID 1233999

Academic Year 2021/2022

Contents

Abstract 5

Introduction 7

1 Automotive control units integration 9
1.1 Automotive prototyping process 9

1.1.1 V-model . 9
1.1.2 Verification and validation processes 9
1.1.3 Maturity stages . 11

1.2 Network protocols . 12
1.2.1 Typologies of network protocols 12
1.2.2 Time-triggered and event-triggered protocols 14

1.3 In-vehicle communication systems 15
1.3.1 CAN network . 15
1.3.2 FlexRay network . 18
1.3.3 LIN network . 20
1.3.4 MOST network . 21

2 Machine Learning techniques 23
2.1 Machine learning introduction 23

2.1.1 Machine learning model 23
2.1.2 Underfitting and overfitting 25
2.1.3 ML model training . 26

2.2 Clustering . 27
2.2.1 Clustering types . 27
2.2.2 k -means algorithm . 28

2.3 Neural networks . 30
2.3.1 Neural networks structure 30
2.3.2 Neurons activation functions 31

3 Developed system 35
3.1 Data acquisition . 35

3.1.1 Networks analysis software 35
3.1.2 Vehicle hardware interface 37
3.1.3 Data processing software 39

3.2 CAN signals clustering . 39
3.2.1 System description . 39

3

3.2.2 Signals choice . 39
3.2.3 Signals acquisition . 41
3.2.4 Signals clustering . 42
3.2.5 Clusters validation . 44

3.3 ECU behavior simulation . 45
3.3.1 System description . 45
3.3.2 Neural network implementation 46
3.3.3 Model validation . 48

Conclusions 49

Abstract

Nowadays vehicles architectures exploit various automotive network protocols
that bring information between the implemented Electronic Central Units
(ECUs). Exchanged data are encoded and only Original Equipment Manu-
facturers (OEMs) and T1 (Tier One) producers know their meaning and how
decode them. A software model will be developed in order to detect vehicles
functions without having database files associated to network signals. Further-
more, the model will behave like an ECU by producing output signals related
to input ones. Machine Learning techniques will be exploited, in particular
Clustering task will be exploited to understand not a priori known vehicle
functions and a Neural Network will be implemented to emulate an ECU be-
havior. Signals will be grouped in five different types of vehicle functions and
the model will predict the ECU’s output data with high accuracy. Applica-
tions concerning the developed project are, in primis, to fix up possible vehicles
electronics faults. In addiction, vehicle predictive maintenance could be done.
Another application, could be to check by OEMs if T1 manufacturers comply
the required specification.

5

6

Introduction

Nowadays, in vehicles are increasingly implemented new Electronic Central
Units (ECUs) with new functions. The most popular automotive network
protocols are CAN, FlexRay, LIN and MOST. Messages exchanged by ECUs
have a different structure from a network protocol to another. In the chapter
1 will be explained in detail frame structures and operations of the above
mentioned protocols, starting from an overview of the automotive prototyping
process description.

Network messages are encoded. To decode them, the so called database files
are needed. Usually, only Original Equipment Manufacturers (OEMs) and T1
(Tier One) have the database files. It might be very useful to know messages
and signals meaning without owning database files in order to fix up possible
vehicles electronics faults. In addiction, vehicle predictive maintenance could
be done.

In chapter 3, a system able to decode network messages without database
files will be implemented. The system will firstly group messages read from a
set of CAN lines based on some intrinsic features of their frames. In particu-
lar, signals will be grouped in the five following membership categories: High
Voltage batteries and power electronics systems, suspensions and vehicle dy-
namic controls, dashboard and driver’s vehicle interface, driver’s comfort and
lighting system, and powertrain and engine controls. Then, the system will be
trained in order to detect the relationship between input and output signals
of a sample ECU. This task could be useful to understand an ECU behavior,
seen as a black box.

In order to implement the system, Machine Learning techniques described
in chapter 2 will be exploited. In particular, clustering task will be exploited
to understand not a priori known vehicle functions by implementing k -means
algorithm. For the task of emulating an ECU behavior, a classification neural
network will be implemented. For the neural network model choice, various
hyperparameters will be tried and the best training model will be chosen.

7

8

Chapter 1

Automotive control units
integration

The following chapter firstly describes the automotive prototyping process,
in order to understand in which phase automotive software applications are
developed and in which phase they are implemented in new vehicles. Then,
an overview of automotive network protocol typologies is given. It will focus
mostly on CAN and FlexRay protocols since they will be taken into account
in chapter 3.

1.1 Automotive prototyping process

1.1.1 V-model

Starting from the idea of a new vehicle, the model at the basis of the vehicle
realization is the V-model. The V-model is based on the association of a testing
phase for each corresponding development stage. This means that for every
single phase in the development cycle there is a directly associated testing
phase.

As shown in figure 1.1, the left side of the graph represents verification
processes while the right side represents validation processes. Each phase
belonging to the verification process has an associated phase in the validation
process.

1.1.2 Verification and validation processes

The PMBOK guide[1], also adopted by the IEEE as a standard (jointly main-
tained by INCOSE, the Systems engineering Research Council SERC, and
IEEE Computer Society) defines the verification process as:

The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition.

9

Figure 1.1: Graph of V-model phases

The different Verification phases in a V-Model are explained in detail below.

Requirement gathering This is the first phase in the development cy-
cle where the product requirements are understood from the customer’s per-
spective. This phase involves detailed communication with the customer to
understand his expectations and exact requirement. The acceptance test de-
sign planning is done at this stage as business requirements can be used as an
input for acceptance testing. At this stage will be defined the tasks that the
automotive functions and features will perform and how.

System analysis The next step is the actual design and development of
the function/feature for which the requirement was gathered in the first phase.
In the development phase, the functionalities are designed and tested using the
model-based development environment1. The function/functionality needs to
be tested as it is being developed, ensuring that bugs and errors are fixed early
on.

Software Design Architectural specifications are understood and designed
in this phase. Usually more than one technical approach is proposed and based
on the technical and financial feasibility the final decision is taken. The system
design is broken down further into modules taking up different functionality.
This is also referred to as High Level Design (HLD).

Module Design In this phase, the detailed internal design for all the
system modules is specified, referred to as Low Level Design (LLD). It is
important that the design is compatible with the other modules in the system
architecture and the other external systems. The unit tests are an essential
part of any development process and helps eliminate the maximum faults and

1In the model-based development environment, simulation tools can simulate real-world
scenarios. The potential bugs and errors are highlighted and rectified during this phase.
These tests are called Model in the Loop (MIL) since the testing is done in a controlled
environment using models. Once the development process and testing are complete and
the results are satisfactory, the model – a block diagram – is then sent to the software
development team.

10

errors at a very early stage. These unit tests can be designed at this stage
based on the internal module designs.

Coding The actual coding of the system modules designed in the design
phase is taken up in the Coding phase. The best suitable programming lan-
guage is decided based on the system and architectural requirements. The
coding is performed based on the coding guidelines and standards. The code
goes through numerous code reviews and is optimized for best performance
before the final build is checked into the repository.

The PMBOK guide[1], defines the validation process as:
The assurance that a product, service, or system meets the needs of the

customer and other identified stakeholders. It often involves acceptance and
suitability with external customers.

The different validation phases in a V-Model are explained in detail below.

Unit Testing Unit tests designed in the design phase module are executed
on the code during this validation phase. Unit testing is the testing at code
level and helps eliminate bugs at an early stage, though all defects cannot be
uncovered by unit testing.

Integration Testing Integration testing is associated with the architec-
tural design phase. Since there are different ECUs, during the software integra-
tion phase will be checked their correct behavior and the correct interaction
between them. The legacy code will be replaced with the proper software
version.

System Testing System testing is directly associated with the system
design phase. System tests check the entire system functionality and the com-
munication of the system under development with external systems. There
will also be checked that the newly integrated function won’t affects any other
modules’ functioning. The testing here is done in a physical environment i.e.,
in-vehicle test. The most important aspect is ensuring that the implementation
was correctly done without unwanted consequences.

Acceptance Testing Acceptance testing is associated with the business
requirement analysis phase and involves testing the product in user environ-
ment. Acceptance tests uncover the compatibility issues with the other systems
available in the user environment. It also discovers the non-functional issues
such as load and performance defects in the actual user environment.

1.1.3 Maturity stages

Maturity level assurance is a control method within project management, ini-
tiated by the customer[2]. By applying specified rules, both the suppliers of
products and the customer’s internal organization are involved jointly at an
early stage in the product creation process. Additional work and delays can
be avoided where the elements of maturity level assurance are consciously in-
tegrated at an early stage in project management.

11

The principal objective of the maturity level assurance method is to improve
the launch quality, delivery quality and field quality of the products supplied,
by harmonizing the contents and operations in the supply chain. By employing
a structured procedure which interrogates the status of defined measurement
criteria relating to the associated maturity levels, which in turn are oriented
to the milestones of the overall project plan established by the automobile
manufacturer, the agreed quality of the products to be supplied is assured.

Maturity levels are aligned both with the project schedule for the vehicle
(or the customer’s product) and the project-specific timings for the products
to be delivered. They can easily be integrated into the associated product
creation processes established by the OEMs or the suppliers.

The maturity of the hardware components increases during the pre-production
phase until the component reaches production quality (PPAP). The maturity
level is typically indicated on four different stages explained below.

Testing mules are functional vehicles that have the aim to illustrate basic
functions. They belong to the first stage of prototyping and they implement
only limited and very basic functions. The use on public roads is not permis-
sible in order to guarantee driving safety. Purpose of use is to do laboratory
tests, simulation, and to obtain confirm of the functional principles.

Prototypes are functional and drivable vehicles made with auxiliary tools
that provide sufficient operational safety for initial tests under driving condi-
tions inside the vehicle and on the test bench. Use on public roads is possible
with a special permit and once street clearance has been granted by the com-
petent authority. Purpose of use is to testing the prototype in order to verify
that product requirements have been met. Are also carried out durability tests
including detection and elimination of remaining vulnerabilities.

Zero series (0S) are components made with production tools, and no
technical restrictions that have an impact on driving safety are allowed. Use
on public roads is possible with a special permit and once street clearance
has been granted by the competent authority. Purpose of use is to testing for
achieving technical release.

Series Of Production (SOP) are produced entirely with production
tools and under full production conditions (parts made with production tools).
Samples with which the production process and product approval process is
carried out, with the aim of achieving a release for full production (PPA pro-
cess).

1.2 Network protocols

1.2.1 Typologies of network protocols

From firsts vehicle model, who were born on the last years of the 19th century,
to the 70s, main goal during years was to improve mechanical components.
Starting from 70s to nowadays, with the coming of the information age an

12

exponential increase in the number of electronic systems occurred in vehicles.
This intensive growing of electronic systems concerns ADAS, safety, infotain-
ment and mechanical replacement systems.

Regarding safety task, one of the main purposes of electronic systems is to
assist the driver to control the vehicle through functions related to the entire
vehicle systems. For example, regarding steering, traction (i.e., distribution
of the driving torque), braking systems, such as the ABS (Anti-lock Braking
System), ESP (Electronic Stability Program), EPS (Electric Power Steering),
active suspensions, ADAS, such as ACC (Adaptive Cruise Control), engine
control and so on. Another reason for using electronic systems is to control
devices in the body of a vehicle such as lights, wings, doors, windows and,
recently, entertainment and communication equipment (e.g., radio, dashboard
display, devices wireless connections, navigation systems, etc.).

In the early days of automotive electronics, each new function was im-
plemented as a stand-alone ECU. With the exponential growing of different
functions, this approach quickly proved to be insufficient. The main issue of
this approach is the high number of ECUs, which leads point-to-point links
between them. This high amount of connections implies too much weight,
cost, complexity and reliability of the wiring, since it requires a number of
wiring connections of the order of n squared2, where n is the number of ECUs.
These issues motivated the use of networks where the communications are mul-
tiplexed over a shared medium, which consequently required defining rules,
called protocols, for managing communications and, in particular, for granting
bus access.

In 1986, Robert Bosch GmbH introduced the Controller Area Network
(CAN) serial bus system at the Society of Automotive Engineers (SAE) congress
[3], which was integrated in vehicles starting from the 1990s. Today, the CAN
bus protocol has become the most widely used network in automotive sys-
tems. Since different needing of bandwidth, cost and dependability3, in 1994,
the Society for Automotive Engineers (SAE) defined a classification for auto-
motive communication protocols [5]. Four different classes subsist based on
data transmission speed and functions that are distributed over the network.

• Class A networks are used to transmit simple control data with low-cost
technology. They have a data rate lower than 10 Kbit/s.

• Class B networks are dedicated to supporting data exchanges between
ECUs in order to reduce the number of sensors by sharing information.
They operate from 10 Kbit/s to 125 Kbit/s.

• Class C networks are used for applications that need high speed real-
time communications. They operate from 125Kbit/s to 1Mbit/s.

2If each node is interconnected with all the others, the number of wiring links between
ECUs is

∑n
i=1 i = n(n + 1)/2 ∈ O(n2), which leads hundreds of millions connections by

considering that nowadays in an entire vehicle are implemented thousands of different func-
tions.

3The quality of being able to be trusted and being very likely to do what people expect
[4].

13

• Class D networks are used for applications that need ultra-high speed
real-time communications. They operate at a speed over 1Mbit/s.

Example of Class C network is high-speed CAN, used for powertrain and
for chassis domain, while an example of Class D networks is MOST, involved
on multimedia data, and FlexRay, for safety and critical applications.

1.2.2 Time-triggered and event-triggered protocols

One of the main objectives of the design step of an in-vehicle embedded system
is to ensure a proper execution of the vehicle functions, with a pre-defined level
of safety, both in the normal functioning mode and when some components fail
or when the environment of the vehicle creates perturbations. Networks play a
key role in maintaining the embedded systems in a safe state since most critical
functions are now distributed and need to communicate. Thus, the different
communication systems have to be examined for this objective. In particular,
messages transmitted on the bus must meet their real-time constraints, which
mainly consist on bounded jitters and bounded response times.

In automotive systems, there are two kind of communications: event-
triggered and time-triggered. Event-triggered means that messages are trans-
mitted in correspondence to the changing of a signal or a significant event. In
this type of communication, the system has permission to take into account,
as quickly as possible, any asynchronous events. An example could be to turn
on the inside light when a car door is opened. The communication protocol
must define a policy to grant access to the bus in order to avoid collisions. For
instance, the strategy used in CAN is to assign a priority to each frame and to
give the bus access to the highest priority frame. Event-triggered communica-
tion is very efficient in terms of bandwidth usage since only necessary messages
are transmitted. Furthermore, the evolution of the system without redesign-
ing existing nodes is generally possible which is important in the automotive
industry where incremental design is a usual practice.

In time-triggered communications, frames are transmitted at predetermined
time instants. This is well-suited for messages periodic transmission as it is
required in distributed control loops. Each frame is scheduled for transmission
at one pre-defined interval of time, usually termed a slot, and the schedule
repeats itself indefinitely. This medium access strategy is referred to as Time
Division Multiple Access (TDMA). A property of time-triggered protocols is
that missing messages are immediately identified. This is useful to detect, in
a short and bounded amount of time, nodes that are presumably no longer
operational. The first negative aspect is the inefficiency in terms of network
utilization and response times with regard to the transmission of aperiodic mes-
sages (i.e. messages that are not transmitted in a periodic manner). A second
drawback of time-triggered protocols is the lack of flexibility even if different
schedules (corresponding to different functioning modes of the application) can
be defined and switching from one mode to another is possible at run-time.
There exist also networks that support both event-triggered and time-triggered

14

types of communication, for example FlexRay, Time-Triggered Controller Area
Network (TT-CAN) and Flexible Time-Triggered on Controller Area Network
(FTT-CAN).

1.3 In-vehicle communication systems

In this section there will be shown the most important and diffused network
protocols. In particular there will be explained CAN bus, FlexRay, LIN and
MOST protocols. These kind of protocols differ to each other in the triggered
typology, in data rate and in cost. CAN and FlexRay are used predominantly
in driver assistance and functional safety applications because of their reliabil-
ity and robustness. MOST is used predominantly for infotainment applications
because of its high throughput.

1.3.1 CAN network

Nowadays, Controller Area Network (CAN) is the most diffused protocol for
in-vehicle communication. CAN is a priority based protocol implemented as a
SAE class C network for real-time control in chassis and powertrain domains
(at 250 or 500KBit/s), or as a SAE class B network for the electronics in the
body domain, usually at a data rate of 125Kbit/s. The priority based feature
leads to an event-triggered communication typology.

Figure 1.2: CAN protocol layers

In figure 1.2 is shown the layer structure of CAN bus. Regarding physical
layer, CAN bus consists on a pair of twisted wires, called CANL (CAN Low)
and CANH (CAN High). The electrical characteristics of the CAN bus cable
restrict the cable length according to the selected data rate. This kind of
cabling leads to the bus a greater robustness towards electric disturbances and
electromagnetic interference, therefore it is ideal for safety critical applications.

15

Table 1.1: CAN bit timing

Bit-Rate Bus length
1 Mbit/s 25 m

800 Kbit/s 50 m
500 Kbit/s 100 m
250 Kbit/s 250 m
125 Kbit/s 500 m
50 Kbit/s 1000 m
20 Kbit/s 2500 m
10 Kbit/s 5000 m

A typical cabling length related to data rate is reported in table 1.1. The
shorter the length, the greater the data rate. The signal must be able to prop-
agate to the most remote node and return back before the bit value is decided.
This requires the bit time to be at least twice as long as the propagation delay
which limits the data rate.

CAN bus must be terminated at both ends with 120Ω resistors matching
the impedance of the cable. Sometimes, the termination resistor is split in
two 60Ω resistors and an additional capacitor is connected to the ground. An
advantage of this bus configuration is that new subsystems can be added to
a system without modification of already existing system. This leads that
each subsystem can be upgraded with new hardware and software at any time,
encouraging the aftermarket purchase and installation of new subsystems.

To ensure the freshness of the exchanged data during the bus working, it
is important that the protocol can ensure bounded response times of frames.
For this reason, each message is assigned an identifier, unique to the whole
system. This leads two facts: giving priority for transmission and allowing
message filtering upon reception.

Since each frame corresponds to a message, each frame has a unique identi-
fier (ID) which are transmitted together. The priority of a message is given by
the numerical value of its identifier. The lower the numerical value of an ID,
the higher the priority. CAN messages are divided in two groups differing in
the size of the identifier. Standard CAN (or CAN 2.0A) has 11 bit identifiers,
which leads to 211 = 2048 different IDs. Extended CAN has 29 bit identifiers,
which leads to 229 different IDs. In-vehicle communications exploits standard
CAN since it provides a sufficient number of different identifiers, i.e., different
messages. Bit stuffing is an encoding method that enables resynchronization
when using Non-Return-to-Zero (NRZ) bit representation where the signal
level on the bus can remain constant over a longer period.

The mechanism by which is determined which peripheral will communicate
on the bus, is called bit-wise arbitration. The involved network participants
(nodes) observe the signal level bit by bit at the configured sample point.
Since the identifier is transmitted most significant bit first, the node with the
numerically lowest identifier numeric value will gain access to the bus. This

16

happens in accordance with the wired-and-mechanism, by which the dominant
state overwrites the recessive state. Nodes with recessive transmission and
dominant observation lose the competition for network access. All those losers
automatically become receivers of the currently transmitted CAN data frame,
with the highest priority. Nodes that have lost the arbitration will attempt to
re transmit their CAN data frame after the current transmission is finalized
and the network is available again[6].

CAN requires the physical layer to implement the logical and operator:
since lower identifiers have higher priority, a bit-per-bit logical and is applied
on different IDs in order to determine the bit-wise arbitration.

Figure 1.3: CAN arbitration example

An example of bit-wise arbitration is reported in figure 1.3. At bit 5th

comparison, Node-1 loses the arbitration. At bit 2nd comparison, Node-2 loses
and Node-3 wins the arbitration.

Figure 1.4: CAN frame structure

In figure 1.4 is shown the structure of a CAN data frame.

• SOF: Start of Frame bit marks start of message and it is used to syn-
chronize nodes on the bus.

• ID: identifier is a 11 bit (or 29 bit if CAN extended) field. It establishes
priority of messages.

• RTR: Remote Transmission Request bit is dominant if the frame is a
data frame (node requires information from another remote node) or
recessive if the frame is a remote frame (the node receives a request and
all the nodes receive reply).

17

• IDE: Identifier Extension bit indicates standard CAN frame is being
transmitted instead of an extended CAN frame.

• Reserved bit for possible use by future standard amendment.

• DLC: Data Length Code indicates number of bytes to be transmitted
over the CAN bus.

• Data: Contains up to 64 bits grouped in different bytes of transmitted
application data.

• CRC: Cyclic Redundancy Check, used for error detection. It holds
checksum for application data preceding to it.

• ACK: Acknowledgement field is grouped in 2 bits and contains first bit
as acknowledgement bit and second bit as delimiter. Each node uses
this field to show integrity of its data. Node receiving correct message
overwrites this bit in original received message with dominate bit as men-
tioned above to indicate error free message has been transmitted. The
node receiving erroneous message leaves this bit as recessive. Moreover it
discards the message and hence prompts the sending node to re-transmit
the message after re-arbitration process.

• EOF: End of Frame is a 7 bits size field that marks end of CAN frame
(or message).

• IFS: Interframe Space is a 7 bits size field that contains time required
by controller to move correctly received frame to its proper position in
message buffer area.

All nodes on the CAN bus must be synchronized to sample every bit on the
CAN bus at the same time. In order to adjust the on-chip bus clock, the CAN
controller may shorten or prolong the bit time period. The maximum value
of these bit time adjustments are termed the Synchronization Jump Width
(SJW). Types of synchronizations that take place during a communication
three. Hard synchronization occurs on the recessive-to-dominant transition
of the start bit after a period of bus idle. The bit time is restarted from
that edge. Resynchronization occurs when a bit edge doesn’t occur within
the synchronization segment in a message. One of the Phase Segments are
shortened or lengthened with an amount that depends on the phase error
in the signal; the maximum amount that may be used is determined by the
Synchronization Jump Width parameter. Adjustment occurs when a transition
does not take place at the exact time the controller expects it, the controller
adjust its nominal bit rate accordingly.

1.3.2 FlexRay network

The FlexRay Consortium, whose includes BMW, DaimlerChrysler, General
Motors, Motorola, Philips, and Bosch companies, developed FlexRay protocol.
The goal of this consortium was to develop an OEM-independent, deterministic

18

and fault tolerant FlexRay communication standard, which each member of
the consortium can use without having to pay licensing fees[7].

FlexRay communication protocol is a time-triggered protocol. Since in
time-triggered protocols activities are driven by the progress of time while
event-triggered activities are driven by the occurrence of events, in general,
dependability is much easier to ensure using a time-triggered bus. For this
reason, time-triggered communication systems are adopted for X-by-Wire ap-
plications.

In this category, multi-access protocols based on TDMA (Time Division
Multiple Access) are particularly well suited; they provide deterministic access
to the medium (the order of the transmissions is defined statically at the
design time), and thus bounded response times. The three principal TDMA
based networks that could act as gateways or for supporting safety critical
applications are FlexRay, TTCAN and TTP/C (although the last one is no
more used in vehicle applications).

The FlexRay network is very flexible with regard to topology and trans-
mission support redundancy4. FlexRay is a TDMA based networks, thus it
could behaves as gateway or it can support safety critical applications. At the
MAC level, FlexRay defines a communication cycle as the concatenation of a
time-triggered (or static) window and an event-triggered (or dynamic) window.

The time-triggered window uses a TDMA MAC protocol with the particu-
larity that might possess several slots, but the size of each slot is the same. Dur-
ing the event-triggered communication cycle, the protocol is FTDMA (Flexible
Time Division Multiple Access): the time is divided into so-called mini-slots.
Different nodes can send frames in the same slot but in different cycles, this
is called slot multiplexing. Each node possesses a given number of mini-slots
and it can start the transmission of a frame inside each of its own mini-slots.
A mini-slot remains idle if the node has nothing to transmit, that leads a loss
of bandwidth.

A FlexRay frame is composed by three parts: the header, the payload
segment and the CRC[8]. Header is 5 bytes (40 bits) long and includes the
following fields:

• Status Bits (5 bits)

• Frame ID (11 bits)

• Payload Length (7 bits)

• Header CRC (11 bits)

• Cycle Count (6 bits)

The Frame ID defines the slot in which the frame should be transmitted and
is used for prioritizing event-triggered frames. The Payload Length contains

4The definition of transmission redundancy given in the standard ISO26262 is: The
information is transferred several times in sequence. The repetition is effective only against
transient failures.

19

the number of words which are transferred in the frame. The Header CRC is
used to detect errors during the transfer. The Cycle Count contains the value
of a counter that advances incrementally each time a Communication Cycle
starts.

Payload contains the actual data transferred by the frame. The length of
the FlexRay payload or data frame is up to 127 words (254 bytes), which is
over 30 times greater compared to CAN. Trailer contains three 8-bit CRCs to
detect errors.

In the automotive context where critical and non-critical functions will
increasingly co-exist and inter operate, this flexibility can prove to be efficient
in terms of cost and re-use of existing components if missing fault-tolerance
features are provided in a middle ware layer.

1.3.3 LIN network

Local Interconnect Network (LIN) is a low cost serial communication system
used as SAE class A network. The low-cost objective is achieved not only
because of the simplicity of the communication controllers but also because
the requirements set on the micro-controllers driving the communication are
reduced (i.e., low computational power, low-cost electrical components, small
amount of memory). Typical applications involving these networks include
controlling doors (e.g., door locks, opening/closing windows) or controlling
seats (e.g., seat position motors, occupancy control). LIN is developed by a
set of major companies from the automotive industry (e.g., DaimlerChrysler,
Volkswagen, BMW and Volvo) and is already widely used in production cars.

A LIN cluster consists of one master node and several slave nodes connected
to a common bus. For achieving a low-cost implementation, the physical layer
is defined as a single wire with a data rate limited to 20Kbit/s due to EMI
(Electromagnetic Interference) limitations. The master node decides when and
which frame shall be transmitted according to the schedule table. The schedule
table is a key element in LIN. It contains the list of frames that are to be sent
and their associated frame-slots thus ensuring determinism in the transmission
order.

Figure 1.5: LIN frame structure

Any node interested can read a data frame transmitted on the bus. In
figure 1.5 is shown the structure of a LIN data frame.

20

• Break: Is composed by 13 dominant bits followed by a break delimiter
of one recessive bit. This serves as a start-of-frame notice to all nodes
on the bus.

• Sync: It allows slave devices that perform automatic baud rate detection
to measure the period of the baud rate and adjust their internal baud
rates to synchronize with the bus.

• ID: It provides identification for each message on the network and ul-
timately determines which nodes in the network receive or respond to
each transmission. All slave tasks continually listen for ID fields, verify
their parities, and determine if they are publishers or subscribers for this
particular identifier. The LIN bus provides a total of 64 IDs. IDs 0
to 59 are used for signal-carrying (data) frames, 60 and 61 are used to
carry diagnostic data, 62 is reserved for user-defined extensions, and 63
is reserved for future protocol enhancements.

• Data: Is transmitted by the slave task in the response. This field con-
tains from one to eight bytes of payload data bytes.

• Checksum: The LIN bus defines the use of one of two checksum al-
gorithms to calculate the value in the eight-bit checksum field. Classic
checksum is calculated by summing the data bytes alone, and enhanced
checksum is calculated by summing the data bytes and the protected ID.

LIN defines five different frame types: unconditional, event-triggered, spo-
radic, diagnostic and user-defined[9]. Unconditional frames are the usual type
of frames used in the master-slave dialog and are always sent in their frame
slots. Sporadic frames are frames sent by the master, only if at least one sig-
nal composing the frame has been updated. Usually, multiple sporadic frames
are assigned to the same frame-slot and the higher priority frame that has an
updated signal is transmitted. An event-triggered frame is used by the master
willing to obtain a list of several signals from different nodes. A slave will only
answer the master if the signals it produces have been updated, thus resulting
in bandwidth savings if updates do not take place very often. If more than
one slave answers, a collision will occur. The master resolves the collision by
requesting all signals in the list one by one. User-defined frames may carry
any type of information.

1.3.4 MOST network

MOST (Media Oriented System Transport) is a serial communication system
for transmitting audio, video and control data via fiber-optic cables[12]. It is a
high-speed multimedia network protocol optimized by the automotive industry,
used also in other applications. This technology was introduced in 1998 by the
MOST Cooperation[10], that was founded as a German civil law partnership
by BMW, Daimler Benz, Becker and OASIS Silicon System. Audi joined the
founding group after the foundation.

21

The MOST specification not only defines the Physical Layer and Data
Link Layer; it covers all seven layers of the ISO/OSI Reference Model for data
communication[12]. Uniform interfaces simplify implementation of the MOST
protocol in multimedia devices. A MOST network, usually laid out as a ring,
may include up to 64 MOST devices. Due to its plug&play functionality it
is not very difficult to either add or remove a MOST device. Given suitable
topological conditions stars may also be laid out - and double rings may be
used for safety critical applications.

A MOST frame consists of header, synchronous data channel, asynchronous
data channel, control frame, and trailer[11]. Header consists on the start of
frame. Synchronous channel is for transmission of synchronous data, sound
and movie data. Asynchronous channel is for transmission of asynchronous
data and internet packet data. Control data field is for hardware control data
and turn on or turn off the device in MOST network. Trailer is the end of
MOST frame and it has parity bits to check MOST frame.

22

Chapter 2

Machine Learning techniques

In this chapter will be explained needful Machine Learning (ML) techniques
to implement tasks on chapter 3. An overview on what is a machine learn-
ing model will be firstly explained, by focusing on how to design it starting
from the basis. Then, the clustering task will be explained by introducing
clustering typologies and by focusing on k -means algorithm. Finally, neural
networks will be treated by showing their structures and by describing their
main hyperparameters typologies.

2.1 Machine learning introduction

2.1.1 Machine learning model

Machine Learning is the subset of artificial intelligence1 (AI) that focuses on
building systems that learn or improve performance-based on the data they
consume[13].

Algorithms are the engines that power machine learning. In general, two
major types of machine learning algorithms are used today: supervised learning
and unsupervised learning. The difference between them is defined by how each
learns about data to make predictions.

Supervised learning
Supervised machine learning algorithms can apply what has been learned in the
past to new data using labeled examples to predict future events. Starting from
the analysis of a known training data set, the learning algorithm produces an
inferred function to make predictions about the output values. The system is
able to provide targets for any new input after sufficient training. The learning
algorithm can also compare its output with the correct, intended output and
find errors in order to modify the model accordingly[14].

Unsupervised learning
Unsupervised machine learning algorithms are used when the information used

1Artificial intelligence is a broad term that refers to systems or machines that emulate
human intelligence.

23

to train is neither classified nor labeled. Unsupervised learning studies how
systems can infer a function to describe a hidden structure from unlabeled
data. The system doesn’t figure out the right output, but it explores the data
and can draw inferences from data sets to describe hidden structures from
unlabeled data[14].

Machine learning algorithms has access to:
Domain set X Set of objects to make prediction about
Label set Y Set of possible labels
Training set S = X × Y Finite sequence of labeled domain points in X×Y

Prediction rule, or simply predictor, is the output of a machine learning
algorithm. It consists on the rule learned by the algorithm by which it assign
a label to an unlabeled object. It can be defined error of prediction rule the
probability of not predict the correct label on a random data point. Goal of
machine learning algorithms is to minimize the error of prediction rule.

A machine learning training model is a process in which a machine learn-
ing algorithm is fed with sufficient training data to learn from[15]. In the
following, most crucial steps involved in creating a machine learning model are
pointed[16].

1. Defining the problem: Defining the problem statement is the first step
towards identifying what an ML model should achieve. This step also
enables recognizing the appropriate inputs and their respective outputs.

2. Data collection: It is necessary to investigate and gather data that can
be used to feed the machine. This is an important stage in the process of
creating an ML model because the quantity and quality of the data used
will decide how effective the model is going to be. Data can be gathered
from pre-existing databases or can be built from the scratch.

3. Data preparation: The data preparation stage is when data is pro-
filed, formatted and structured as needed to make it ready for training
the model. This is the stage where the appropriate characteristics and
attributes of data are selected. This is also at the stage where data is
categorized into two groups - one for training the ML model and the
other for evaluating the model. Pre-processing of data by normalizing,
eliminating duplicates and making error corrections is also carried out
at this stage.

4. Assigning appropriate model: Picking and assigning a model or pro-
tocol has to be done according to the objective that the ML model aims
to achieve. The choice of models largely depends on the type of data
that is being used.

5. Model training: This is the stage where the ML algorithm is trained
by feeding datasets. This is the stage where the learning takes place.
Consistent training can significantly improve the prediction rate of the

24

ML model. The weights of the model must be initialized randomly. This
way the algorithm will learn to adjust the weights accordingly.

6. Evaluating and defining measure of success: The machine model
have now to be tested. This helps assess the accuracy of the model.
Identifying the measures of success based on what the model is intended
to achieve is critical for justifying correlation.

7. Parameter tuning: Selecting the correct parameter that will be mod-
ified to influence the ML model is key to attaining accurate correlation.
The set of parameters that are selected based on their influence on the
model architecture are called hyperparameters. The process of identifying
the hyperparameters by tuning the model is called parameter tuning.

2.1.2 Underfitting and overfitting

There are two situations of which the model’s performance might suffer from.
Overfitting and underfitting are the two biggest causes for poor performance
of machine learning algorithms.

Overfitting refers to a model that models the training data too well.
It happens when a model learns details and noise in the training data to
the extent that it negatively impacts the performance of the model on new
data. This means that the noise or random fluctuations in the training data
is picked up and learned as concepts by the model. The problem is that these
concepts do not apply to new data and negatively impact the models ability
to generalize. Overfitting is more likely with nonparametric and nonlinear
models that have more flexibility when learning a target function. As such,
many nonparametric machine learning algorithms also include parameters or
techniques to limit and constrain how much detail the model learns[17].

Underfitting refers to a model that can neither model the training data
nor generalize2 to new data. An underfit machine learning model is not a
suitable model and will be obvious as it will have poor performance on the
training data. Underfitting is often not discussed as it is easy to detect given
a good performance metric. The remedy is to move on and try alternate
machine learning algorithms. Nevertheless, it does provide a good contrast to
the problem of overfitting[17].

2Generalization is the model’s ability to give sensible outputs to sets of input that it has
never seen before[18].

25

(a) Underfitting (b) Good approximation (c) Overfitting

Figure 2.1: Example of curve underfitting, overfitting and a good fit

Figure 2.1a shows an example of underfit model: a too simply curve has
been predicted by the algorithm. It has poor performance on the training
data and poor generalization to other data. Figure 2.1c shows an example
of overfit model: data has been learned too much by the algorithm. It has
good performance on the training data, but poor generalization to other data.
Figure 2.1b represent the right balance between underfitting and overfitting
situations, that implies a good result.

2.1.3 ML model training

In order to fit as well the machine learning model, the entire dataset will be
split in three parts: training set, validation set and test set.

1. Training set
Training set is a data set of samples used during the learning process and it is
used to fit the model parameters. Usually, it is made up from the majority of
dataset samples.

2. Validation set
Validation set is the samples of data used to provide an unbiased evaluation of
a model fit on the training dataset while tuning model hyperparameters. The
evaluation becomes more biased as skill on the validation dataset is incorpo-
rated into the model configuration[19].

3. Test set
The sample of data used to provide an unbiased evaluation of a final model fit
on the training dataset.

Supervised learning algorithm can be divided in two main categories, based
on the type of prediction it want to be implemented. These two predictors are
called classification and regression tasks.

Classification is the process of predicting the class of given data points.
Classification predictive modeling is the task of approximating a mapping func-
tion from input variables to discrete output variables. Label set is a finite set
of discrete values. It could be divided in two typologies, binary classification
and multi-class classification. Binary classification refers to those tasks which
can give either of any two class labels as the output. Generally, one is con-
sidered as the normal state and the other is considered to be the abnormal

26

state[20]. The most common algorithms which are used for binary classifica-
tion are K-Nearest Neighbours, Logistic Regression, Support Vector Machine,
Decision Trees, Naive Bayes. Multi-class classification problems have no fixed
two labels but can have any number of labels. The most common algorithms
which are used for Multi-Class Classification are K-Nearest Neighbours, Naive
Bayes, Decision trees, Gradient Boosting, Random Forest.

Regression algorithms attempt to estimate the mapping function from the
input variables to numerical continuous output variables. Since output is a real
value, regression tasks are usually exploited to predict quantities or sizes. The
most common algorithms which are used for regression are linear regression,
decision tree, support vector regression, Lasso regression and random forest.

Unsupervised learning algorithms can be categorized into two types of prob-
lems - clustering and association.

Clustering is a method of grouping objects into clusters such that objects
with most similarities remains into a group and has less or no similarities with
the objects of another group. Cluster analysis finds the commonalities between
the data objects and categorizes them as per the presence and absence of those
commonalities[21].

Association rule is an unsupervised learning method used for finding the
relationships between variables in a large database. It determines the set of
items that occurs together in the dataset. Association rule makes marketing
strategy more effective. Such as people who buy an item (suppose pizza) are
also tend to purchase an associated item (for example, beer)[21].

2.2 Clustering

2.2.1 Clustering types

A particular focus will be done for clustering task since this technique will be
exploited in chapter 3.2. Clustering is an important concept when it comes
to unsupervised learning. As told before, clustering mainly deals with finding
a structure or pattern in a collection of uncategorized data. Unsupervised
learning clustering algorithms will process data and find natural clusters or
groups if they exist in the data set[22]. Several approaches to clustering exist.
Most important typologies are listed below.

• Centroid-based comprehends iterative clustering algorithms in which
the notion of similarity is derived by the closeness of a data point to
the centroid of the clusters. k -means clustering algorithm is a popular
algorithm that falls into this category. In these models, the number
of clusters required at the end have to be mentioned beforehand, which
makes it important to have prior knowledge of the dataset. These models
run iteratively to find the local optima[23].

27

• Density-based clustering connects areas of high example density into
clusters. This allows for arbitrary-shaped distributions as long as dense
areas can be connected. These algorithms have difficulty with data of
varying densities and high dimensions. Further, by design, these algo-
rithms do not assign outliers to clusters[24].

• Distribution-based clustering approach assumes data is composed of
distributions, such as Gaussian distributions. As distance from the dis-
tribution’s center increases, the probability that a point belongs to the
distribution decreases[24]. If data probability distribution is unknown,
this type of clustering is not recommended.

• Hierarchical clustering starts by treating each observation as a separate
cluster. Then, it repeatedly executes the following two steps: identify
the two clusters that are closest together and merge the two most similar
clusters. This iterative process continues until all the clusters are merged
together. The main output of hierarchical clustering is a dendrogram3,
which shows the hierarchical relationship between the clusters[25].

2.2.2 k-means algorithm

k -means algorithm, also known as Lloyd’s algorithm, clusters data by trying to
separate samples in k groups of equal variance, minimizing a criterion known
as the inertia or within-cluster sum-of-squares. This algorithm requires the
number of clusters to be specified. It scales well to large number of samples
and has been used across a large range of application areas in many different
fields. k -means algorithm divides a set of samples into disjoint clusters, each
described by the mean of the samples in the cluster. The means are commonly
called the cluster centroids. They are not, in general, points from, although
they live in the same space[27].

Given the following quantities
X ⊂ Rn Set of vectors to be clustered
x ∈ X Vector to be clustered
k Number of clusters
Ci, i ∈ [1, k] ⊂ N Clusters
µi, i ∈ [1, k] ⊂ N Centroids of the clusters

Task of k -means algorithm is to find cluster centers and allocations in
order to minimize the error made by approximating the points with the cluster
centers:

µi(C1) = argmin
µ

∑
x∈Ci

∥x− µ∥2

k -means algorithm is suitable to solve the previous task.
3A dendrogram is a type of tree diagram showing hierarchical relationships between

different sets of data. It maintains a memory of algorithm clusters during each iteration and
it stores them in the dendrogram[26].

28

Algorithm 1 k -means
Require: X , k
Ensure: xj ∈ Ci, ∀xj ∈ X , i = 1, ..., k

Select k random centroids
while algorithm converges do

Each point is associated to the closest centroid:

∀i : Ci = {x ∈ X : i = argmin
j

∥x− µ∥}

Compute new centroids as the barycentre of the associated points:

∀i : µi =

∑
x∈Ci

x

|Ci|

end while

Algorithm 1 represents k -means algorithm. In basic terms, the algorithm
has three steps. The first step chooses the initial centroids, with the most basic
method being to choose k samples from the dataset X . After initialization,
k -means consists of looping between the two other steps. The first step assigns
each sample to its nearest centroid. The second step creates new centroids by
taking the mean value of all of the samples assigned to each previous centroid.
The spatial difference between the new centroid and the previous one is com-
puted and the algorithm repeats these last two steps until this value become
less than a set threshold. In other words, it repeats until the centroids do not
move significantly[27] or until other convergence situations occur.

It convergence could be reached in different situations:

1. Centroids positions and allocations do not change any more.

2. Error improvement is below a fixed threshold between two consecutive
iterations.

3. A maximum number of iterations is reached.

4. Error reaches a target value.

By assuming a m-sized dataset in Rn divided into k clusters and t the
number of iteration before reaching the convergence condition, the algorithm
complexity is O(ktmn).

Advantages of k -means approach are:

• It is fast

• It is relatively simple

• It always converges (usually very fast)

Drawbacks of k -means approach are:

29

• It does not guarantee an optimal solution

• The solution depends on the initial centroids

• k must be known a priori

• Forces spherical symmetry of clusters (in the n dimensional space)

2.3 Neural networks

2.3.1 Neural networks structure

A neural network (also called an artificial neural network) is an adaptive system
that learns by using interconnected nodes or neurons in a layered structure
that resembles a human brain. A neural network can learn from data, so it can
be trained to recognize patterns, classify data, and forecast future events[28].

Neural networks were firstly proposed in 1940-50. Their first practical
applications become in the 80-90s, but their practical results were very low.
From 2010 on, deep architectures with impressive performances has been im-
plemented.

Figure 2.2: Graph of a Neural Network

Typical graph of a neural network is shown in figure 2.2. The Neural
Network is constructed from three type of layers:

1. Input layer: Initial data for the neural network. This layer will accept
the data and pass it to the rest of the network. Number of neurons
corresponds to number of inputs.

2. Hidden layers: Intermediate layers between input and output layer and
place where all the computation is done. Hidden layers are either one or
more in number for a neural network. In the above case, the number is 3.
Hidden layers are the ones that are actually responsible for the excellent
performance and complexity of neural networks. They perform multiple
functions at the same time.

30

3. Output layer: Holds the result or the output of the problem for given
inputs. Raw images get passed to the input layer and we receive output
in the output layer.

A neuron is the basic unit of a neural network. Neurons receive input
from an external source or other nodes. Each node is connected with another
node from the next layer, and each such connection (arrows in graph 2.2) has
a particular weight. Weights are assigned to a neuron based on its relative
importance against other inputs[29].

In a neural network, the flow of information through neurons can happen
in two different ways[30]:

• Feedforward Networks: In this model, signals travel only in one direction,
towards the output layer. Feedforward networks have an input layer and
a single output layer with zero or multiple hidden layers. They are widely
used in pattern recognition.

• Feedback Networks: In this model, the recurrent or interactive networks
use their internal state (memory) to process the sequence of inputs. In
them, signals can travel in both directions through the loops (hidden
layer/s) in the network. They are typically used in time-series and se-
quential tasks.

2.3.2 Neurons activation functions

When all the node values from the input layer are multiplied (along with their
weight) and summarized, it generates a value for the first hidden layer. Based
on the summarized value, the first layer has a predefined activation function
that determines whether or not this node will be activated and how active it
will be. More precisely, activation function decides, whether a neuron should
be activated or not by calculating weighted sum and further adding bias with
it[31]. The purpose of the activation function is to introduce non-linearity
into the output of a neuron. Thus, applying an activation function is needed
to make the network dynamic and add the ability to it to extract complex
and complicated information from data and represent non-linear convoluted
random functional mappings between input and output[32].

There exist several types of activation functions that determine neurons
activation. The most important activation functions are:

1. Binary Step function

f(x) =

{
1 if x ≥ 0

0 if x < 0

While creating a binary classifier binary activation function are generally
used, but binary step function cannot be used in case of multiclass classi-
fication in target carriable. Also, the gradient of the binary step function

31

is zero which may cause a hindrance in back propagation step. The main
drawback of the binary step function is that it had zero gradient because
there is no component of x.

2. Linear function

f(x) = αx

The linear activation function is directly proportional to the input. The
value of variable α can be any constant value chosen by the user. The
gradient is not zero, but a constant value which is independent of the
input value x. It can be noted that, if α is unitary, it is as no activation
function is being implemented. There isn’t much benefit of using linear
function because the neural network would not improve the error due to
the same value of gradient for every iteration. Furthermore, the network
will not be able to identify complex patterns from the data.

3. Sigmoid function

f(x) =
1

1 + e−x

Sigmoid is the most widely used activation function as it is a non-linear
function. Sigmoid function is continuously differentiable and it looks
like a smooth S-shaped function. It is centered in (0, 0.5) and it has
an horizontal asymptote towards 0 for x → −∞, and an horizontal
asymptote towards 1 for x → +∞. Furthermore, sigmoid function is not
symmetric about zero, which means that the signs of all output values of
neurons will be same. This issue can be improved by scaling the sigmoid
function.

4. Hyperbolic Tangent function

f(x) = tanh(x) = 2sigmoid(2x)− 1

Hyperbolic tangent function (tanh) function shape is similar to the sig-
moid function, but it is symmetric to around the origin. It is centered in
the origin and it has an horizontal asymptote towards -1 for x → −∞,
and an horizontal asymptote towards 1 for x → +∞. This results in
different signs of outputs from previous layers which will be fed as input
to the next layer. As compared to the sigmoid function, the gradient of
tanh function is more steep. Hyperbolic tangent is preferred over sigmoid
function as it has gradients which are not restricted to vary in a certain
direction and also, it is zero centered.

5. ReLU function

f(x) =

{
x if x ≥ 0

0 if x < 0

32

Rectified Linear Unit (ReLU) function is a non-linear activation function
which is widely used in neural networks. The upper hand of using ReLU
function is that all the neurons are not activated at the same time. This
implies that a neuron will be deactivated only when the output of lin-
ear transformation is zero. ReLU is more efficient than other functions
because as all the neurons are not activated at the same time, rather a
certain number of neurons are activated at a time.

6. Parametric ReLU function

f(x) =

{
x if x ≥ 0

αx if x < 0

Parametric ReLU is a variant of Rectified Linear Unit with better perfor-
mance and a slight variation. It resolves the problem of gradient of ReLU
becoming zero for negative values of x by introducing a new parameter of
the negative part of the function. If α is set to a small value (as 0.01), it
behaves as leaky ReLU function, but here a is also a trainable parameter.
For faster and optimum convergence, the network learns the value of α.

7. Softmax function

σ(x)j =
ezj∑K

k=1 e
zk

Softmax function is a combination of multiple sigmoid functions. It takes
as input a vector zi of K real numbers, and normalizes it into a proba-
bility distribution consisting of K probabilities proportional to the expo-
nentials of the input numbers. Since the sigmoid function returns values
in the range [0, 1], these can be treated as probabilities of a particu-
lar class data points. Softmax function unlike sigmoid functions, which
are used for binary classification, can be used for multiclass classifica-
tion problems.The function, for every data point of all the individual
classes, returns the probability. When a network or model for multiple
class classification is built, the output layer of the network will have the
same number of neurons as the number of classes in the target. Usually,
softmax function is applied at neurons of output layer.

It was seen that overfitting is one of the most issues during the train of
a neural network. Since it cannot be completely eliminated, there are many
methods to avoid, or significantly reduce, overfitting problem. These methods
are described below.

1. Dropout
At every iteration, it randomly selects some nodes and removes them
along with all of their incoming and outgoing connections. Thus, each
iteration has a different set of nodes and this results in a different set of
outputs. This leads to avoid that the output depends too much on single
neurons[33].

33

2. Regularization
Regularization is a technique which makes slight modifications to the
learning algorithm such that the model generalizes better. This in turn
improves the model’s performance on the unseen data as well. A reg-
ularization term is added to the loss function with the aim to penalize
big weights. Regularization parameter λ determines how much the reg-
ularization term affects the process. Regarding the λ parameter, if its
value is too low, the model will be more complex and risk of overfitting
situation might occur[34]. The model will learn too much about the par-
ticularities of the training data, and won’t be able to generalize to new
data. On the other hand, if lambda value is too high, the model will be
simple, but the risk of underfitting situation might occur. The model
won’t learn enough about the training data to make useful predictions.

3. Early stopping
Early stopping is a kind of cross-validation strategy in which a part of
the training set is kept as the validation set. When performance on
the validation set is getting worse, the training on the model will be
immediately stopped. Patience parameter denotes the number of epochs
with no further improvement after which the training will be stopped.

4. Data augmentation
A simple way to reduce overfitting is to increase the size of the training
data. Theoretically, it is not possible to increase the size of training data
as the labeled data was too costly. New numerically calculated samples
are added to the dataset in order to virtually increase the number of
training samples. Let’s consider, for example, the case in which it is dealt
with images. There are a few ways of increasing the size of the training
data by applying random transformations – rotating the image, flipping,
scaling, shifting, etc. This usually provides a big leap in improving the
accuracy of the model.

34

Chapter 3

Developed system

The following chapter describes the developed system in three different sec-
tions. First section shows how data have been acquired from vehicle networks
and which softwares have been used for different tasks, depending on the needs.
Second section describes the method implemented for the CAN signals cluster-
ing by exploiting machine learning clustering techniques and algorithms. The
third part concern task of prediction of an ECU output data by emulating the
ECU behavior via software. For this task will be implemented a classification
neural network in order to understand the input/output data relationship.

3.1 Data acquisition

3.1.1 Networks analysis software

In order to acquire data from various vehicle networks, CANoe software has
been used. CANoe is a software tool for development, test and analysis of
individual ECUs and entire ECU networks. It supports network designers,
development and test engineers throughout the entire development process –
from planning to system-level test. Versatile variants and functions provide
the appropriate project support. CANoe leads to have an interface with Eth-
ernet, MOST, FlexRay, LIN and CAN networks. Therefore, its versatile func-
tions and configuration options are used successfully by OEMs and suppliers
worldwide[35].

In CANoe software, it is possible to customize the main screen. For the
implemented task, it was set a configuration including Measurement setup,
Write, Trace and Simulation setup windows. In Write window, are printed
system errors, warnings and messages, so it is useful to recognise system and
hardware connection issues.

As shown in figure 3.1, from the Simulation setup section it is possible to
upload CAN and FlexRay databases. These databases are owned by vehicles
original equipment manufacturer (OEM) and they are different for every elec-
tronic vehicle architecture. Each CAN line has its own database, took with

35

Figure 3.1: CANoe Simulation setup window

.dbc file extension. FlexRay has its own database, took with .xml file exten-
sion. Simulation setup section also leads to associate a specific database to a
physical CAN or FlexRay channel line.

Figure 3.2, shows the Measurement setup window. Many blocks concern-
ing measurement tasks appears in the right side of the window. Each block
can be used by applying signals filters. Filters are useful to delete from mea-
surements useless signals that could create confusion. The CFB filter concern
CAN signals, while the FFB filter concern FlexRay signals. Each block links
to another measurement window. Graphics block links to a window that leads
to print signals graphs. It is useful in order to visualize signals shapes.

Figure 3.3: Graph of brake oil pressure signal

An example of a signal that was intentionally changed during an acquisition
is the oil pressure of the brake pedal, whose graph is reported in figure 3.3.
Logging block leads to insert a link of the folder in which save the acquisition.

36

Figure 3.2: CANoe Measurement setup window

In figure 3.2, that shows the Measurement setup window, there are two different
Logging blocks. In the first one were applied both CAN and FlexRay filters
in order to acquire only signals of interest. The second one has no filters in
order to acquire all signals possible. Then, it store them in case one of them
want to be analyzed in the future for any reason. Trace block is fundamental
because it links to a window in which are shown signal values, features and
descriptions.

In Trace window, shown in figure 3.4, some areas have been blurred in order
to comply corporate privacy. Numbers in the left side of the window, under
Time label, represent the current time. ID label indicates identifiers of CAN
messages and FlexRay PDUs. Name label indicates the message or PDU name.
Under Data label are reported entire messages/PDUs data, grouped in bytes.
Blurred areas next to symbols similar to a blue tilde, show all selected signal
names (left part), signal values (central part) and signal descriptions (right
part). In case no CAN or FlexRay database has been added to the System
setup section, only IDs and start bit values are shown instead of message and
signal names.

3.1.2 Vehicle hardware interface

Physical connection between vehicle networks and CANoe software occurs ex-
ploiting a Vector VN7640 device.

37

Figure 3.4: CANoe Trace window

Figure 3.5: Vector VN7640 device

Vector VN7640 is shown in figure 3.5. It is a network interface device with
USB interface for CAN FD, LIN, FlexRay, K-Line, J1708 and Ethernet. It
is well suited for this task because it interfaces vehicle networks with CANoe
software. It has four input channels. Three channels are dedicated to CAN
lines and one is dedicated to FlexRay bus. The amount of four input channels
leads to acquire a high quantity of different signals, depending on the needs.

38

3.1.3 Data processing software

As data processing software, it will be used Matlab by MathWorks. The choice
of Matlab was done because of the easily interface with CANoe software. From
CANoe it is possible to convert logging files from .blf to .mat format, both
file types readable by Matlab. Matlab is also well suited to processing vehi-
cle networks data because of its Vehicle Network and Statistics and Machine
Learning toolboxes, both exploited in this project. Vehicle Network Toolbox
contains many useful instruction for interface Matlab to CANoe that have
been exploited. One of these, is blfread instruction that leads to upload a .blf
format logging file to Matlab and associate a .dbc format CAN database to
it. Matlab was chosen also for machine learning applications because of the
simplicity to find documentation on the web.

3.2 CAN signals clustering

3.2.1 System description

As told in section 3.1.1, with CANoe software it is possible to read data from
vehicle networks. A CANoe user could know signals meaning by uploading
appropriate CAN and FlexRay databases. These databases associate each
message ID (in case of CAN protocol) or each PDU ID (in case of FlexRay
protocol) and each signal belonging to those IDs with a specific signal name
and description. Having these database files is fundamental in order to un-
derstand what kind of signals are exchanging ECUs through network buses.
Unfortunately, database files are owned by vehicles OEMs and they are dif-
ferent for every electronic vehicle architecture, so not always it is possible to
have them.

The aim of the developed system is to read data from vehicle network
and to detect their function without associating them a database. This task
might be useful in order to understand fault error messages in case OEMs
do not make databases available. Another advantage could be to understand
a specific vehicle architecture by doing reverse engineering. Since different
signals in network protocols are in the hundreds, it is unlikely to assign a
specific function to each read signal. It is more probable to assign them to
a macro category depending on what function they belongs. For example,
understand if signals belongs to engine functions, lighting system, and so on.

3.2.2 Signals choice

In order to group messages by their function, it is useful to find common and
similar features on different network messages. These similar features might be
found on frame data structure. Since different protocols have different frame

39

structure, for simplicity only one network protocol will be taken into account.
Since CAN protocol is the most diffused protocol in the automotive field, only
signals belonging to this protocol will be taken into account.

In order to find similarities on CAN data it is fundamental to understand
what kind of features are available on read data from CAN buses without
associating database files. Exploiting the blfread function in Matlab, a generic
uploaded logging file presents following features that are available from the
user:

• Time: Time instant of current sample.

• ID : CAN identifier of current sample.

• Extended : Tells if current sample has an extended ID or not.

• Name: Current sample message name associated at previous ID.

• Length: Length of current message expressed in number of bytes. It
varies from 1 to 8.

• Data: Array containing current sample data. It contains a number of
bytes given from Length field.

• Signals : Signal names belonging to the current message and their corre-
sponding values.

Without associate a CAN database to the logged file, only Time, ID, Ex-
tended and Length fields are available. In this application, extended ID mes-
sages corresponds to Bedien und Anzeigeprotokoll (BAP) signals, that is a
transport protocol developed and used only by Volkswagen Group, used for ex-
changing information between different devices on the car network[36]. Thus,
a first discard might be done for message whose ID is extended because it
cannot be generalized to other OEM vehicles.

A second discard might be done for signals that won’t vary their value
during an acquisition. Some signals may not be implemented in the network
because they are under development and they will be available in a second
release, or because they are obsolete and they won’t be used anymore. As
data set for the clustering task, it will be taken into account only signals that,
during an entire acquisition, will change their value at least once.

(a) Data field without database (b) Data field with database

Figure 3.6: CAN data field structure example

40

If database files were be used, the CAN frame data field could be divided
into different signals, as shown in the example in figure 3.6b. That informa-
tion might be very valuable, but since database files are not added for initial
specifications, data field will appear as shown in the example in figure 3.6a.
Ideally, would be an excellent solution consider features concerning different
signal lengths or start bits1, but due to the fact that signal division is not
known, the only way to emulate a signal division is to divide data for their
bytes. It could be a good compromise in order to find similarities between
different messages. Another feature by which grouping similar data might be
frame IDs. From now on, these ID’s bytes taken into account will be called
signal bytes.

3.2.3 Signals acquisition

As described before, not all signal bytes are implemented in a specific vehi-
cle network. To optimize the choice of signal bytes taken into account, the
approach used is to acquire the highest possible number of byte signals that
change during an acquisition. The fact that they vary implies that they are
currently implemented in the network and they are active signals. In order
to comply the previous consideration, an acquisition by changing the highest
possible number of driver’s interface commands inside the vehicle is done. In
particular, signals coming from four2 different CAN lines are acquired and
merged together. These four CAN lines were chosen by considering CAN lines
that carry messages with different functions because they are the most rep-
resentative of signals that have different functions. For simplicity, during the
acquisition only commands at driver’s interface that are easily accessible by
the driver without moving the vehicle have been made to vary. For an exam-
ple, have been made to vary commands such as internal and external lights,
windscreen wiper, radio volume, windows, air conditioner, brake pedal, doors
and so on. The aim is to vary the highest number possible of signals - both
similar signals in order to find similarities and different signals in order to de-
tect different clusters associated to different vehicle functions. Thus, no filter
has been applied to the logging file during the acquisition.

Once uploaded the logging file in Matlab, all signal bytes belonging to the
logging file were scanned. All signal bytes whose values don’t change during
the entire acquisition were discharged. Remaining values were merged in a
unique database whose entries are IDs and signal bytes.

A visual representation of the database is given in figure 3.7. It is recalled
that, since IDs are made up from 11 bits and data fields are made up from 8
bytes, sample ID values goes from 1 to 211 = 2048, while sample signal byte
values goes from 1 to 8.

1Start bit is the physical position of the first bit of a signal in the data field of its message.
Start bit could vary from 1 to 64 since there are 8 bytes

2Number of CAN lines by which signals have been acquired are limited by the number
of Vector VN7640 device inputs.

41

Figure 3.7: Database with IDs and signal bytes entries

3.2.4 Signals clustering

In order to group samples by their similarity, k -means algorithm described
in chapter 2.2.2 was implemented. k -means algorithm, requires a parameter
k that represents the number of clusters. The number of clusters has been
decided by taking into account database files. By analyzing them, it is possible
to detect five different macro categories of signal typologies. In the light of
these signal typologies, it has been set the parameter k = 5, i.e., five clusters
will be created by k -means algorithm. These five signals typologies are the
following:

1. HV batteries, DC-DC converter and power electronics systems

2. Suspensions and vehicle dynamic controls

3. Dashboard, displays and driver’s vehicle interface

4. Driver’s comfort and lighting system

5. Powertrain and engine controls

kmeans Matlab function has been exploited to create clusters. Before create
clusters, all signal features were normalized to one. This leads to have a squared
dataset, in which IDs and signal bytes have same relevance.

Centroid positions and number of samples belonging to each cluster are
reported in table 3.1.

Figure 3.8 gives an overview on how samples have been grouped in k = 5
clusters. In figure 3.8a are highlighted clusters centroids, wile in figure 3.8b is
highlighted clusters division in different areas.

42

Table 3.1: Cluster centroids features

Cluster’s number Centroid coordinates Samples number
1 1247.6, 6.3 87
2 1521.2, 2.3 79
3 308.2, 1.8 79
4 976.3, 2.3 86
5 282.2, 5.8 86

(a) Clusters centroids visualization

(b) Clusters areas visualization

Figure 3.8: Clustered samples

43

3.2.5 Clusters validation

Validation of obtained results was made by creating a validation data set and
assign each sample to clusters given by k -means algorithm. For the validation
set were chosen a set of known signals by examining database files. The choice
of signals belonging to the validation set was done by considering five sets of
signals with similar features. In particular, sixty six signals were taken into
account. For example, following signals belonging to the lighting system have
been chosen:

• Request for permanent switching on of the main beam headlights

• Left turn side light

• LED activation on the charging button

• The ABS safety warning lights have been turned on

• Reverse light indicator

• The left rear light defective

• Interior lights activation (footwell, doors, etc.)

Figure 3.9: Clustered validation set

Figure 3.9 shows the validation set clusterization. In the figure, each signal
function has been highlighted with a different sample shape. Most of valida-
tion samples with the same shape have been grouped in same clusters. More
precisely, sixty samples over sixty six were grouped in same clusters and only
six sample belongs to another cluster.

Since the dataset is unlabeled, it is not possible to assure that the all the
samples grouped together actually belong to the correct clusters. Thus, a new
definition of correctness will be established:

44

It is possible to assert that if almost all samples of a labeled sample data
set, each one with the same label, are grouped in the same cluster, they will be
clustered in a correct way with a very high probability.

By considering this last definition of correctness, since almost all of similar
samples have been grouped together, it is highly probable that they belong to
correct clusters. As a percentage, 90.9% samples belong to the correct cluster,
while 9.1% belong to a wrong cluster.

3.3 ECU behavior simulation

3.3.1 System description

The goal of the project is to understand the input/output signals relationship of
an ECU in order to emulate its behavior. Then, a Matlab model that behaves
like the ECU will be implemented and will be tested. The main purpose of the
project is to bypass an ECU in case of its fault. By knowing an ECU behavior
it is possible to substitute it with a device that hypothetically behaves like it.
Another purpose is to understand ECU behaviors and electrical architecture
of others vehicle OEMs. The technique adopted in this system is the so called
reverse engineering, that’s the process of studying a product to understand
how it is made.

Choice of the ECU was made by taking into account signals that are easily
accessible by the user by changing driver’s commands. One of most representa-
tive ECU that comply what has been said, is the ECU related to driving mode
features. Database files were exploited in order to understand which are input
and output signals functions. Since the driving mode ECU has lots of input
and output signals, to simplify the purpose, only one function representing the
task was taken into account. This chosen signal represents a set point to be
reached by the driving mode selector. As inputs, only accountable signals for
the chosen output signal were considered. They are six signals that could be
changed by varying following driver’s commands:

1. Soil typology:

• On-road

• Sport

• Race

• Off-road

• Sand

• Snow

2. Vehicle dynamic features:

• Four wheel drive activation

45

• Steering wheel maneuverability

• Suspension stiffness

In order to have the widest variety of input and output combinations, a
logging by varying all possible above reported user’s commands was made. It
is not superfluous to specify that input signals are exchanged by exploiting the
CAN bus, while the output signal belong to the FlexRay network. Since CAN
is an event-triggered protocol and FlexRay is a time-triggered protocol, a time
match is needed to match input signals with the corresponding output.

It might make little sense to set up a data set with all input signals time
steps because of the repetition of input values combinations during contiguous
time steps. As data set samples, it will be taken a numeric array representing
the value of all input signals every time one of them changes its value. Match
between input and output signals is done by taking the time steps of all data
set samples. It will be associate to them, as a label, the value of the output
signal corresponding to the first available time step after 50 milliseconds from
the input one. It was done in order to let the ECU elaborate input data and
to set its output after its own latency time. By approaching in this way, the
data set is made up by 123 samples.

3.3.2 Neural network implementation

By analyzing data set values, it is possible to note that both input and output
signals values are integer number. In particular, output values, corresponding
to the codomain, assume three possible different values. In the light of this,
a classification neural network will be implemented in order to detect the
input/output relationship.

Dataset, which consists on 123 samples, will be randomly split into training,
test and validation sets with percentages of 75%, 15% and 10% respectively. To
find the best neural network model, a set of hyperparameters will be changed
to evaluate the model with the lowest training error possible. In particular,
following hyperparameters will be taken into account.

Hidden layers number: [10], [20], [10 10], [10 10 10]
Regularization term λ: 0, 10−6, 10−4, 10−3

Activation function: ReLU, Hyperbolic tangent, Sigmoid
Hidden layers choice was made in order to let the neural network do the

training both over a single layer with much neurons and much layers with a
lowest number of neurons. Regarding the regularization term, it is know that
if λ value is too low, the model will be more complex and risk of overfitting
situation might occur. On the other hand, if lambda value is too high, risk
of underfitting situation might occur. For each combination of above hyper-
parameters, a different activation function of hidden layers neurons will be
tried.

46

Table 3.2: Training errors with ReLU activation function

Hidden layers VS λ 0 10−6 10−4 10−3

[10] 15.16 12.89 13.54 13.88
[20] 12.54 15.05 14.16 13.82
[10− 10] 14.22 15.62 15.99 12.86
[10− 10− 10] 12.98 13.81 12.97 13.42

Table 3.3: Training errors with Sigmoid activation function

Hidden layers VS λ 0 10−6 10−4 10−3

[10] 14.69 12.70 14.49 15.58
[20] 13.78 14.22 14.38 12.81
[10− 10] 15.12 12.73 14.20 14.50
[10− 10− 10] 15.36 16.13 14.51 14.70

Table 3.4: Training errors with Hyperbolic Tangent activation function

Hidden layers VS λ 0 10−6 10−4 10−3

[10] 13.99 14.38 13.46 13.83
[20] 14.66 15.73 14.76 14.52
[10− 10] 14.71 14.79 13.43 13.38
[10− 10− 10] 14.96 13.51 13.40 14.24

47

Table 3.2, table 3.3 and table 3.4 report training errors with ReLU, sigmoid
and hyperbolic tangent activation functions respectively. These training errors
have been computed by the varying of above reported hyperparameters. Each
error has been computed as the mean of 60 training for its hyperparameters
combination. In order to have more variety of training and validation samples,
for each training, dataset will be divided into training, validation and test sets
again. This leads to have a more precise and trusted value for the error.

It is possible to see that the lowest training error over the entire trainings,
occurs with hyperparameters combination of:

Activation function: ReLU; Hidden layers: [20]; Regularization term λ = 0

As described in chapter 2.3.2, Softmax activation function has been applied
at neurons of the output layer.

3.3.3 Model validation

In order to test the model, a second logging on vehicle ECU’s input and output
signal is done. The previously learned model is used to predict the second log-
ging output. Then, effective output values from the logging file are compared
with values predicted by the model.

Figure 3.10: Neural network predicted VS real values

Figure 3.10 shows the neural network predicted output values (in gray)
compared to the effective output values (in red). It is possible to observe
that the two signals are almost equals. More precisely, they differ to the 13%.
In other words, the match between the predicted output signal and the real
output signal is 87%. It is possible to ascertain that the implemented neural
network model works with a good prediction match.

48

Conclusions

The CAN signal clustering task, described in chapter 3.2, gives excellent re-
sults, however, it could be improved. At first, more significant signals might
be considered. Since all changing signals during the acquisition have been
considered, a more accurate way to choose significant signals is to take into
account only signals that change when the driver carry out an action doing a
time match between actions and signals. In this way some useless signals are
discharged, for example signals concerning CRC (Cyclic Redundancy Check)
transmissions. By analyzing data in a more accurate manner, a highest number
of clusters could be implemented by detecting more vehicle functions groups.
Another improvement might be to change data features weights. By giving
a different weights to IDs and/or to signal bytes, a different shaped clusters
could be implemented. Instead of circular clusters, elliptical clusters will oc-
curs. An upgrade of the system could be the extension of the model to FlexRay
and to other vehicle network protocols. Considering the FlexRay network, for
example, IDs and Payload field data might be used in order to cluster signals.

Regarding the second task, ECU’s behavior simulation, it has been ob-
served that the match between the predicted output signal and the real out-
put signal is 87%. Since it is a good result, it could be improved in various
ways. One way is to acquire more and different data in order to have a larger
dataset. The dataset size corresponds to 123 samples and for a neural network
it could be very small amount. Risk of this under-sized dataset is to fall in
underfitting problem. A way to confirm the underfitting problem occurs by
observing that, in tables 3.2, 3.3 and 3.4, the training error doesn’t vary too
much between different hyperparameters. Another improvement might be to
take into account some ECU’s output signals as model input signals. It might
be also considered all input ECU’s signals as model input signals in order to
detect if they are involved in output behavior. By considering a larger dataset
and by taking into account more input signals, test error may highly decrease
at the expense of neural network complexity and training times.

Since the model predicts the driving mode ECU behavior, a wrong data
prediction does not involve safety critical situations and it might be associated
to an Automotive Safety Integrity Level (ASIL) B. Possible consequences of a
wrong prediction could be to select an inappropriate driving mode while driving
on a critical soil. An example may be selecting a on-road mode while driving
on an icy soil. In general, selected driving mode is shown in the dashboard,
so, it might be checked by the driver the correctness of ECU prediction.

49

Potential applications concerning the developed project are, in primis, to
fix up possible vehicles electronics faults. By understanding vehicle functions
by exploiting the developed model might prove useful in case of absence of
database files, or in case database files are not updated or they are incomplete.
Despite it cannot be understood in a very precise manner a vehicle function,
it is possible to stem the fault to a restricted faults family. In addiction,
vehicle predictive maintenance could be done. Another application task could
be to check by OEMs if T1 (Tier One) manufacturers comply the required
specifications.

50

List of Figures

1.1 Graph of V-model phases . 10
1.2 CAN protocol layers . 15
1.3 CAN arbitration example . 17
1.4 CAN frame structure . 17
1.5 LIN frame structure . 20

2.1 Example of curve underfitting, overfitting and a good fit 26
2.2 Graph of a Neural Network . 30

3.1 CANoe Simulation setup window 36
3.3 ESP Bremsdruck . 36
3.2 CANoe Measurement setup window 37
3.4 CANoe Trace window . 38
3.5 Vector VN7640 device . 38
3.6 CAN data field structure example 40
3.7 Database with IDs and signal bytes entries 42
3.8 Clustered samples . 43
3.9 Clustered validation set . 44
3.10 Neural network predicted VS real values 48

51

52

List of Tables

1.1 CAN bit timing . 16

3.1 Cluster centroids features . 43
3.2 Training errors with ReLU activation function 47
3.3 Training errors with Sigmoid activation function 47
3.4 Training errors with Hyperbolic Tangent activation function . . 47

53

54

Bibliography

[1] IEEE Draft Guide: Adoption of the Project Management Institute (PMI)
Standard: A Guide to the Project Management Body of Knowledge (PM-
BOK Guide)-2008 (4th edition), in IEEE P1490/D1, May 2011 , vol.,
no., pp.1-505, 30 June 2011, doi: 10.1109/IEEESTD.2011.5937011

[2] Maturity level assurance for new parts, Methods, measurement criteria,
documentation. German Association of the Automotive Industry Quality
Management Center. 3rd revised edition, October 2021.

[3] Kiencke, U., Dais, S., and Litschel, M., Automotive Serial Controller
Area Network, SAE Technical Paper 860391, 1986

[4] https://dictionary.cambridge.org/it/dizionario/inglese/dependability

[5] Society of Automotive Engineers. J2056/1 class C application require-
ments classifications. In SAE Handbook, 1994

[6] https://www.can-cia.org/can-knowledge/can/classical-can/

[7] https://elearning.vector.com/mod/page/view.php?id=378

[8] https://www.ni.com/it-it/innovations/white-papers/06/flexray-
automotive-communication-bus-overview.html

[9] Nicolas Navet, Françoise Simonot-Lion. Trends in Automotive Commu-
nication Systems. Richard Zurawski. Embedded Systems Handbook: Net-
worked Embedded Systems - 2nd ed., Taylor and Francis / CRC Press,
pp.13.1-13.24, 2009, Industrial Information Technology Series, ISBN 978-
1-4398-0761-3.

[10] Andreas Grzemba, MOST - The Automotive Multimedia Network, from
MOST25 to MOST150, Franzis

[11] S. Lee, B. Cho, Y. Choi and K. Baek, Implementation of MOST/-
CAN network protocol, 2011 International Conference on Electrical
and Control Engineering, 2011, pp. 5974-5977, doi: 10.1109/ICE-
CENG.2011.6057339.

[12] https://www.vector.com/int/en/know-how/most/#c21358

55

[13] https://www.oracle.com/data-science/machine-learning/what-is-
machine-learning/

[14] https://www.expert.ai/blog/machine-learning-definition/

[15] https://oden.io/glossary/model-training/

[16] https://oden.io/glossary/model-training/

[17] https://machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/

[18] https://towardsdatascience.com/what-are-overfitting-and-underfitting-
in-machine-learning-a96b30864690

[19] https://machinelearningmastery.com/difference-test-validation-
datasets/

[20] https://www.analyticsvidhya.com/blog/2021/09/a-complete-guide-to-
understand-classification-in-machine-learning/

[21] https://www.javatpoint.com/unsupervised-machine-learning

[22] https://www.guru99.com/unsupervised-machine-learning.html

[23] https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-
clustering-and-different-methods-of-clustering/

[24] https://developers.google.com/machine-learning/clustering/clustering-
algorithms

[25] https://www.displayr.com/what-is-hierarchical-clustering/

[26] https://www.kdnuggets.com/2019/09/hierarchical-clustering.html

[27] https://scikit-learn.org/stable/modules/clustering.html

[28] https://www.mathworks.com/discovery/neural-network.html

[29] https://www.upgrad.com/blog/neural-network-architecture-
components-algorithms/

[30] https://www.upgrad.com/blog/neural-network-architecture-
components-algorithms/

[31] https://www.geeksforgeeks.org/activation-functions-neural-networks/

[32] Activation Functions in Neural Networks, in International Journal of
Engineering Applied Sciences and Technology, 2020. Vol. 4, Issue 12,
ISSN No. 2455-2143, Pages 310-316

[33] https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-
learning-regularization-techniques/

56

[34] https://developers.google.com/machine-learning/crash-
course/regularization-for-simplicity/lambda

[35] https://www.vector.com/int/en/products/products-a-
z/software/canoe/#

[36] https://www.protokollix.de/automotive.html

57

	Abstract
	Introduction
	Automotive control units integration
	Automotive prototyping process
	V-model
	Verification and validation processes
	Maturity stages

	Network protocols
	Typologies of network protocols
	Time-triggered and event-triggered protocols

	In-vehicle communication systems
	CAN network
	FlexRay network
	LIN network
	MOST network

	Machine Learning techniques
	Machine learning introduction
	Machine learning model
	Underfitting and overfitting
	ML model training

	Clustering
	Clustering types
	k-means algorithm

	Neural networks
	Neural networks structure
	Neurons activation functions

	Developed system
	Data acquisition
	Networks analysis software
	Vehicle hardware interface
	Data processing software

	CAN signals clustering
	System description
	Signals choice
	Signals acquisition
	Signals clustering
	Clusters validation

	ECU behavior simulation
	System description
	Neural network implementation
	Model validation

	Conclusions

