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Abstract 

 
The tertiary pegmatite field of the Central Alps extends for about 100 km in an 

E–W direction from the Bergell pluton (to the east) to the Ossola valley (to the 
west). It intrudes the steepened roots of the Alpine nappes (Souther Steep Belt) 
north of the Periadriatic Fault and gradually fades within 15 km toward north. The 
pegmatite field geographically overlaps (1) the highest temperature domain of the 
Lepontine Barrovian metamorphic dome and (2) the zone of Alpine 
migmatization. In this thesis is attempted a first multisciplinary study on these 
pegmatites over a limited surface of the whole extension of the pegmatite field. 
Pegmatites were studied in two different areas: (1) the Codera area, located on the 
western border of the Bergell Pluton, and (2) the Bodengo area, located between 
the Mera and the Mesolcina valleys. Results show that Codera and Bodengo 
pegmatites differ under many aspects including structural, geochemical and 
radiometric data. The main set of pegmatite dikes of Codera area is steeply 
dipping and strikes WSW-ENE. Crosscutting relationships suggest the presence 
of at least two generations. All dikes were involved in ductile deformation and in 
some cases localize mylonitic shear zones. Codera pegmatites were emplaced at 
relatively high temperature of at least 500°C, which is constrained by the mineral 
assemblage along the mylonites and the strong CPO of recrystallized quartz (with 
c-axis maximum in the direction of the Y kinematic axis of the mylonite). The 
main set of pegmatites of Bodengo area trends approximately N-S to NNE-SSW 
and crosscuts the ductile deformation structures of the SSB. Most of these dikes 
are undeformed but some show ductile reactivation at the borders. Bodengo area 
also includes an earlier generation of boudinaged and folded pegmatite dikes 
oriented at a small angle to the host rock foliation. Miarolitic pockets are 
contained only in some undeformed dikes of Bodengo area. The mineralogical 
content of pegmatites of the two areas does not differ substantially. Most 
pegmatites have a simple mineral assemblage consisting of K-feldspar, quartz, 
and muscovite ± biotite, and only a minor percentage of the dikes contain rare 
accessories including almandine-spessartine garnet, pale blue beryl and schorl 
tourmaline. On the other hand chemical analyses on minerals, especially on 
garnets, allow distinguishing further the two selected areas. Codera garnets are 
systematically richer in spessartine than Bodengo ones and some Codera 
tourmalines show higher degrees of evolution (toward elbaite compositions) than 
Bodengo schorls. Radiometric data of monazite crystals yielded different 
208Pb/232Th ages for Codera and Bodengo pegmatites, which do not overlap and 
are respectively older and younger than 24 Ma. We concluded that pegmatites of 
Codera area and Bodengo area belong to different intrusion events. 
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1. Introduction 

 

The Central Alps host the largest field of Oligocene-Miocene pegmatite dikes, 

which intrude the stack of the Alpine nappes (Guastoni et al., 2014). Previous 

studies on pegmatites have mainly dealt with specific characteristics of pegmatite 

dikes, e.g. their mineralogy and geochronology (e.g. Guastoni, 2012; Romer et al., 

1996; Rubatto et al., 2009) but a comprehensive multidisciplinary study 

integrating the mineralogical, petrographic, structural and geological data is still 

missing. This multidisciplinary study is attempted in the current thesis for two 

selected areas in the central part of the Tertiary pegmatite field: namely the 

Codera area and the Bodengo area. The first area is located at the western contact 

between the Bergell intrusion and the Gruf complex migmatitic host rock, and 

includes two main study localities in the upper Codera Valley (COD) and in the 

Rossaccio (ROS) alp (fig. 1). The second area extends over a wider region 

between the Mera and the Mesolcina valleys within the heterogeneous 

metamorphic rocks of the southern Adula nappe. It includes the upper portions of 

several valleys: Garzelli valley (VG), Leggia valley (VLG), Del Dosso valley 

(VDD) and Darengo valley (VLD). As will be shown in this thesis, these two 

areas are dominated by different sets of pegmatites that record two main distinct 

phases of pegmatite intrusion in the Central Alps. Localities are reported with 

their codes in fig. 1. 

 

2. Overview on the Central Alps in the area of study 

 

2.1. Tectono-metamorphic history of the Central Alps 

 

Central Alps are a subject that boasts of many years of study, which led to the 

formulation of a complex polyphasic tectono-metamorphic history. For this brief 

summary I manly refer to recent works of several authors that provided nice  
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Figure 1  (a) Simplified structural map of the Central Alps with the field of the 

Alpine (Oligocene–Miocene?) pegmatites as reported by Wenk (1970) and Burri et al. 

(2005) outlined by dashed and dotted lines, respectively. The map also shows the two major 

Tertiary batholiths of Adamello (Ada) and Bergell (Br), in grey, and the smaller and 

younger Novate stockwork intrusion, in black. The thick black lines represent the 

Periadriatic Fault (PF), the Giudicarie Fault (GF), and the Engadine Fault (EF). The light 

grey areas represent quaternary deposits along major valleys. (b) Structural map of the 

Bergell batholith and the region on the west showing the locations of the Codera and the 

Bodengo areas. The Codera area includes the upper Codera valley (COD) and the 

Rossaccio locality (ROS) indicated with black stars. The Bodengo area includes the Garzelli 

valley (VG), the Darengo valley (VLD), the Del Dosso valley (VDD), and the Leggia valley 

(VLG) indicated by empty stars. The map also shows the main boundaries (thin black lines) 

of the Penninic tectonic units: Lv = Leventina; Sm = Simano; Ad = Adula; Ta = Tambò; 

Su = Suretta; Av = Avers; BD = Bellinzona-Dascio; MF = Malenco-Forno. The thick 

black line labeled FF is the Forcola Fault. Figure by Guastoni et al. (2014). 
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reviews concerning our area of interest (see Nagel, 2008; Beltrando et al., 2010; 

Galli et al., 2013).  

 

The building of the Alpine orogen starts with the closure of the Piedmont-

Ligurian and Valais oceanic basins due to the convergence between the Europe 

and the Adria microplate paleo-margins (Schmid et al., 1996). During this phase, 

south-dipping consumption by subduction of the oceanic lithosphere beneath the 

Adriatic margin induced an early staking of the Alpine nappes in an accretionary 

wedge and finally led to continent-continent collision.  

The Central Alps mainly expose tectonic units referred to the lower Penninic 

domain which includes: (1) the Middle Penninic Zone (composed of the Maggia, 

Tambo, Suretta and Schams nappes), (2) the Lower Penninic Zone (Antigorio, 

Lebendun, Monte Leone and Adula nappes) and (3) the Sub-Penninic Zone 

(Lucomagno, Leventina and Simano nappes) (fig. 1). The Middle Penninic Zone 

has been interpreted as a domain restored in the Jurassic paleogeography between 

the Valais and the Piedmont oceans. During subduction, the nappe stacking within 

the accretion wedge occurred under high to ultra-high pressure (3 GPa in the 

southern part of Adula nappe) metamorphic conditions. This stage has been dated 

between 38 and 34 Ma. The age of the high-P metamorphism becomes 

progressively younger from top to the base of the nappe pile suggesting a 

sequential accretion during the closure of the ocean (Beltrando et al., 2010). 

According to Nagel et al. (2002) and Nagel (2008) in the the Adula nappe the 

oldest pervasive D1 deformation phase of the Central Alps postdates the eclogitic 

event and is referred as the local Zapport phase (<40Ma). The main foliation S1 is 

associated to top to N shearing and isoclinal folding. During D1 phase the Adula 

nappe was thrusted onto the Simano nappe with a substantial exhumation from 

eclogite to amphibolite facies conditions. 

The D2 phase (local Claro for the Adula nappe and Niemet Beverin for the 

Tambo and Suretta nappes) followed D1 phase with a brief episode of E-W 

extension between 34 and 30 Ma. Top to SE shearing and folding developed a 

foliation parallel to the orientation of the fold axes. Extension may have been 
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achieved in different ways: passive re-equilibration after slab breakoff (45 Ma 

according to Von Blanckenburg and Davies, 1995) or episodic retreat of the 

subduction zone hinge by slab rollback (Beltrando et al., 2010). According to 

Beltrando et al. (2010) D2 deformation of the Central Alps, which formed during 

E-W extension, is well explained by the rollback of one of the oceanic slabs 

located west or south-west of the Alps. The collapse of the orogen led to rapid 

exhumation of the nappes and episodic magmatism such as the Bergell intrusion 

(Beltrando et al., 2010). The instauration of a medium-P and high-T Barrovian 

metamorphism in the Central Alps is coeval with the D2 ductile deformation 

phase (i.e. the Lepontine Dome). Peak conditions of 720–740 °C at 6.5–7.5 kbar 

produced sapphirine-bearing granulites in the Gruf Complex (Galli et al. 2011). 

The dominant phase of the associated migmatisation in the Gruf Complex 

occurred between 34 and 29 Ma with the highest grade at about 32.7 Ma (Liati 

and Gebauer, 2003). According to Galli et al. (2012), the intrusion of the Bergell 

pluton is coupled with the ductile deformation of the migmatitic Gruf Complex 

(see also Davidson et al. 1996 and Berger et al. 1996) and their contemporaneous 

emplacement at higher structural levels was promoted by isostatic uplift due to 

slab breakoff. 

The re-instauration of shortening and crustal thickening took place while the 

Bergell granodiorite was not completely crystallized (Davidson et al., 1996). D3 

ductile deformation phase (local Cressim, 30-25 Ma) is associated to dextral 

backthrusting and backfolding by up to 20 km relative vertical displacement along 

the Insubric mylonites (Rosenberg et al. 1995, Schmid et al. 1996). It led to the 

formation of large antiforms, like the Cressim antiform (which folded the base of 

the Bergell pluton) and the Paglia antiform, and the formation of the Southern 

Steep Belt (SSB) in the south. The SSB developed high-temperature mylonites 

(~700°C and 6-7 kbar, Burri et al., 2005) with subvertical stretching lineations 

and common migmatisation due to white-mica breakdown (water-assisted Alpine 

migmatisation continued up to 22 Ma, Burri et al. 2005). Some authors (Nagel et 

al. 2002, Maxelon & Mancktelow 2005) suggest that the SSB might be an older 

south-dipping shear zone with normal sense related to the Claro phase and 
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refolded during the Cressim phase. First Alpine pegmatite and aplite dikes are 

dated by Romer et al. (1996) who individuated two generations of pegmatites 

intruding the Symplon ductile shear zone between 29 and 26 Ma. The former is 

slightly deformed thus concordant to the syn-kinematic emplacement while the 

latter is undeformed. According to Romer et al. (1996) this would provide a 

minimum age to the backthrusting along the Simplon shear zone (see also 

Gebauer, 1996).  

The D4 deformation phase is related to late continental collision and associated 

magmatism. Dextral backthrusting was replaced by a pure dextral strike-slip 

regime. Sin-collisional orogen-parallel extension at the Forcola mylonites drove 

the emplacement of the Novate granite (~24.2 Ma, Liati et al. 2000), which 

intrudes discordantly the D3-related structures as well as the associated 

leucocratic dikes (Ciancaleoni and Marquer 2006). Maxelon and Mancktelow 

(2005) individuated a late stage of ductile deformation that produced similar 

structures to those of D3, but prominent only in the Northern and Southern Steep 

Belts. These folds deep toward the NNW with fold axes oriented (E)NE-(W)SW. 

Chevron type and kink folds are the most common geometries.  

 

2.2. Pegmatites of the Central Alps 

 

The Tertiary pegmatite field of the Central Alps extends in an E-W direction for 

about 100 km from the Bergell (East) pluton to the Ossola valley (West) and for 

about 15 km north of the Periadriatic Fault. Pegmatites are abundant in the 

steepened roots of the Alpine nappes (Southern Steep Belt) and progressively 

decrease in number towards north, where the nappes are flat-lying (Burri et al., 

2005). The area, mapped by Wenk (1970), Burri et al. (2005) and Ghizzoni and 

Mazzoleni (2005), geographically coincides with the domain of the highest 

metamorphic grade of the Alpine metamorphism (the Lepontine Barrovian 

metamorphic dome) and with the zone of Alpine migmatization (Guastoni et al., 

2014). Burri et al. (2005) observed that only a minor part of the pegmatite dikes 

developed rare accessory minerals such as beryl and tourmaline. Given the low 
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degree of differentiation of the pegmatites and their depletion in RRE-elements, 

Von Blanckenburg (1992) referred the pegmatites of the Central Alps to partial 

melting of the host rocks. However, pegmatites commonly cut and are therefore 

younger than the hosting migmatites (Wenk, 1973). Radiometric dating of 

pegmatites by several authors indicate a protracted time of intrusion. These 

geochronological data also indicate the occurrence of pre-alpine leucocratic dikes 

within the Central Alps (Romer et al. 1996, Galli et al. 2012, 2013).  U-Pb dating 

of xenotime and monazite from pegmatites intruding the SSB at Malesco indicates 

the presence of two distinct generations of dikes with ages ranging from 29.2±0.2 

and 25.5-±0.2 Ma (Romer et al., 1996). An exception is the aplite dike at 

Lavertezzo yielding an age of ~ 20 Ma. The oldest dikes are deformed and are 

characterized by high initial 87Sr/86Sr ratio (>0.71); the geochemistry suggests an 

origin by melting of old crustal rocks. The youngest dikes are mainly undeformed 

and have lower initial 87Sr/86Sr ratio (<0.71) suggesting a derivation from melting 

of a depleted crust. Despite the overlapping of ages of pegmatites from the two 

sets, in the field there is a clear overprinting relationship with the younger dikes 

always crosscutting the older. The youngest dike at Malesco has a consistent age 

to the one (25.1 ± 0.6 Ma) dated by Gebauer et al. (1996) north of San Vittore in 

the SSB, which is more than 50 km far away. Liati et al. (2000) highlighted the 

similar age of intrusion of leucocratic dikes and the Novate granite as well as the 

similarity in the geochemical signature. 

 

2.3. The Lepontine Dome  

 

Wenk (1970) gave the name of “Lepontine Dome” to the area of the Central Alps 

affected by the Tertiary Barrovian metamorphism (fig. 2). The metamorphic 

conditions within the Lepontine Dome range from greenschist to the upper 

amphibolite facies. The dome is asymmetric and extends from the Simplon Line 

in the west to the Bergell area in the east, confined between the Northern Steep 

Belt (south of the Gotthard massif) and the Southern Steep Belt, where it is 

truncated by the Insubric Line. The mineral isograds indicate an increase in  
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temperature from north to south with a peak of 675°C near Bellinzona (fig. 2,  

Todd and Engi, 1997). Temperature and pressure isograds indicate the maximum 

metamorphic conditions experienced during the whole tectonometamorphic 

history of the Central Alps, which means that contour patterns represent a 

diachronous field (also note the absence of the peak metamorphism recorded in 

Figure 2  (a) Map of the isotherms (values in °C) of the Lepontine Dome confronted 

with the distribution of pegmatites reported by Burri et al. (2005) and Ghizzoni and Mazzoleni 

(2005), the black and the white stars indicate the approximate position of respectively the 

Codera and the Bodengo areas, the thick dashed line indicates the limit of the amphibolite 

grade metamorphism overprint. On figure 2 (b) and (c) are confronted the distribution of 

isobars (values in kbar) and isotherms (°C), which peaks do not regionally overlap. Peak 

temperature and pressure data were contoured for an elevation of 1000m and are 

diachronous. Note that the Gruf complex seems to have no influence on the contouring: no 

samples used for this study come from the Gruf complex. Redrawn after Todd and Engi (1997).  

	  

b	   c	  

a
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the Gruf complex due to lack of data). Todd and Engi (1997) observed that 

pressure and temperature maximum do not geographically overlap (fig. 2 a and b). 

This is in contrast with a single event of crustal thickening and thermal relaxation 

and request at least two major events: the first affecting the northern part and the 

second affecting only the south-eastern part, at lower pressure conditions. A 

support to this interpretation is given by the radiometric ages that suggest 

differential uplift rates i.e. different peak metamorphism ages.  

Several authors speculated about the origin of the high temperature Barrovian 

metamorphism of the Lepontine Dome. Hypothesis range from the classical 

radiogenic heating in thickened lithospheric crust to the more recent models of 

tectonic accretion channel (Engi et al., 2001) or viscous shear heating (Burg et al., 

2005). According to Beltrando et al. (2010) the models that involve continuous 

shortening and lithospheric thickening are incompatible with the Central Alps 

scenario. Well-documented extension along regional scale shear zones with 

generalized E-W stretching is consistent with the fast nappe exhumation and 

lithospheric thinning. Consequent relaxation of isotherms produced steep 

geothermal gradients resulted in Barrovian metamorphism and migmatisation 

while the short-lived generation of mantle melts is related to the rapid advection 

of mantle material to shallower levels. 

 

2.4. Adula and Simano nappes 

 

Adula and Simano nappes belong to the lower Penninic units of the Central 

Alps. These rocks represent the distal portion of the European continental margin 

subducted beneath the Adria microplate between Palaeogene and late Eocene 

(Schmid et al., 1996). 

The Adula nappe, in contrast with the other Pennic basement nappes, is generally 

referred to as a lithospheric melange, formed within a tectonic accretion channel 

(Engi et al. 2001), consisting of Varisican metagranitoids and paragneisses, and 

Mesozoic sediments. Small to large (up to 2 km of the Arami body) ultramafic 

bodies are scattered within the nappe. In contrast to the Adula nappe, the Simano 
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nappe is a rather coherent thrust sheet, mainly composed by pre-Alpine 

metagranitoids. 

Nagel et al. (2002) distinguished two main metamorphic events during the 

Alpine metamorphism of the Adula nappe: (1) an early stage of eclogite facies 

metamorphism during the nappe stacking, and (2) a later Barrovian overprint 

coeval with the D2 deformation and with the backfolding stage. More or less 

retrocessed eclogites are found mainly in boudins within metapelitic rocks and 

yielded peak conditions of 12 kbar (and 500–600°C) in the north and 25–30 kbar 

(and 750–850°C) in the south. Adula recorded decompression to amphibolite 

facies conditions during top-to-N thrusting on the lower units (D1 phase), which 

consequently yield younger ages for the H-P peak. The high-T event reaches in 

the southwestern part the peak of 10 kbar/700-650°C. The D3 phase of 

backfolding, well developed in the southern part of Adula nappe, is associated to 

the high-T thermal event and migmatisation. 

 

2.5. Gruf complex 

 

The Gruf complex is a composite unit mainly represented by amphibolite facies 

ortho-gneisses and migmatitic metasediments (Galli et al., 2012), which are 

isoclinally folded. Metagranitoids have Permian age (290-260 Ma) and formed 

during post-Variscan extension and break-up of Pangea. This complex also 

contains Permian granulite-charnockite rocks (Galli et al. 2013) and ultramafics 

similar to the ophiolites of the Chiavenna unit and Bellinzona-Dascio zone. 

Though several authors referred the Gruf complex to the SE continuation of the 

Adula nappe, Galli et al. (2013) pointed out important differences. High-pressure 

metamorphism, typical of the Adula nappe, is not found in the Gruf complex and 

the granulite-charnockite associations of the Gruf complex are not present in the 

Adula nappe. These characteristics, along with other structural and lithological 

evidences (Berger et al. 1996; Davidson et al. 1996; Schmid et al. 1996), 

distinguish the Gruf complex from the other Penninic units. 
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Metamorphic peak conditions in the Gruf Complex are referable to two main 

events: (1) an ultrahigh-temperature Permian event (282-260 Ma, Galli et al., 

2012) and (2) the Alpine Barrovian metamorphism of the Lepontine Dome. 

Charnockitic magmatism and sapphirine-bearing granulites are the product of the 

former event. Metamorphic conditions in excess of 900 °C and pressures of 8.5– 

9.5 kbar were estimated for the Permian event. Due to the extremely refractory 

bulk-rock composition of the Gruf granulites, the Alpine upper-amphibolite facies 

re-equilibration (720–740°C and 7– 7.5 kbar) was only partial (Galli et al., 2011). 

Oligocene Barrovian metamorphism produced widespread migmatisation (the 

dominant phase was between 34 and 29 Ma) with production of a 10-30% volume 

of anatectic melt.  

 

2.6. The Bergell Pluton 

 

The Bergell pluton is one of the most studied among the Tertiary Periadriatic 

intrusions. The Bergell intrusive rocks belong to a calc-alcaline suite and mainly 

include (1) tonalite forming the  outer rim of the pluton (“Serizzo” Auct.) and the 

“root zone” (“Iorio tonalite”), and (2) granodiorite (“Ghiandone”), forming the 

main body of the batholith, characterized by pluricentimetric megacrysts of K-

feldspar. The shape of the pluton resembles that of a nappe (Wenk, 1973). The 

main body of the batholith is emplaced at the same structural level of the Suretta 

and Tambo nappes (Rosenberg et al. 1995, Davidson et al. 1996, Schmid et al. 

1996) and extends into an elongated and relatively thin “root” concordant in the 

main foliation of the SSB mylonites. North of the SSB the Bergell pluton overlap 

the Gruf complex and the Adula nappe, divided by the remnant of the “North-

Penninic suture zone”, strictly related to the Misox zone, the Chiavenna ophiolite 

and the Bellinzona-Däscio zone (Davidson et al., 1996). In an E-W profile the 

Bergell pluton is assumed to expose a fossil crustal section of approximately 20 

km of thickness from the deepest portions deformed ductilely (to the west and 

along the root zone) to the shallowest portions intruded into the brittle crust.  



	   11	  

The calc-alcaline rocks of the bergell are referred to low degrees of partial 

melting of the continental lithosphere, caused by astenospheric counterflow (Von 

Blanckenburg and Davies, 1995; Beltrando et al., 2010). The Bergell tonalite and 

granodiorite have been dated at 31.88 ± 0.09 Ma and 30.03 ± 0.17, respectivly 

(Von Blanckenburg et al. 1992). The emplacement of the Bergell pluton took 

place between the final stages of the mesoalpine tectonic extension at the end of 

the Niemet Beverin deformation phase of Berger et al. (1996) and the initial 

stages of backthrusting. The N-S shortening during the Cressim (D3) phase 

produced synmagmatic folding at the base of the intrusion (Rosenberg et al., 

1994; Davidson et al., 1996). According to Rosenberg et al. (1994, 1995) the 

shortening along the feeder root zone is responsible for the upward extrusion and 

final emplacement of the Bergell pluton. This induced ballooning in the country 

rocks along the eastern border. In the east, the intrusion of tonalite produced a 

contact metamorphic aureole, within country rocks originally at a temperature 

350°C. The temperature rise due to contact metamorphism was in the order of 

450°C after 0.5 Ma from tonalite emplacement (Trommsdorff and Connolly, 

1996). The Bergell pluton intruded at a considerable depth with respect to other 

Periadriatic intrusions (Adaamello, Biella and Traversella). Emplacement 

pressures of 6-7 kbar have been estimated for the main body (hornblende 

geobarometry on samples from Val Dei Ratti and upper Codera valley). Davidson 

et al. (1996) suggested that the intrusion and cooling of the tonalite occurred at 

about the same depth of 22-26 km. The pressure increase from northeast to 

southwest suggests a regional tilting due to differential uplift during backthrusting 

along the Insubric Line (Davidson et al. 1996). Assuming a simple model with a 

N-S axis perpendicular to the SSB mylonites, the estimated tilt angle of the pluton 

is between 7° (root zone) and 11° (main body). The real total tilt angle is more 

likely to be of about 20° considering that part of the rotation was accomplished 

before the complete solidification of the pluton (Davidson et al. 1996). 
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2.7. The Novate granite 

 

The Novate granite (San Fedelino) is a S-type leucocratic two-mica and locally 

garnet-bearing granite. The Novate intrusion intrudes discordantly the base of the 

Bergell batholith (Wenk 1973, Von Blanckenburg et al. 1992, Liati et al. 2000). 

Geochemical data indicate that the Novate and the Bergell batholith are not co-

genetic.  The Novate granite is exposed at the Monte Peschiera in the western side 

of the lower Val Mera where it intrudes the D3 structures of the Cressim antiform 

(Berger et al., 1996, and references therein). Ciancaleoni and Marquer (2006) 

proposed that the emplacement of the Novate granite occurred during syn-

collisional extension along the Forcola shear zone. Space for magma ascent was 

provided by opening of an extensional jog along the shear zone. Host rock 

structures are essentially not deflected by the intrusion and local stoping occurrs 

at the southern intrusive contact (Ciancaleoni and Marquer, 2006). U-Pb dating of 

magmatic zircons form the Novate yielded an age of 24.0 ± 1.2 Ma (Liati et al., 

2000). Syn-intrusive fast isobaric cooling occurred at the host rock conditions of 

0.2 GPa and 400 °C (Ciancaleoni and Marquer, 2006). A stockwork of leucocratic 

dikes (microgranites, pegmatites and aplites) radiate from and cut through the 

intrusion. Liati et al. (2000) suggested that these dikes may be genetically related 

to the Novate granite and possibly to other non-outcropping associated intrusive 

bodies. This conclusion is supported by the 25.1 ± 0.6 Ma age obtained for 

pegmatites of the SSB (Gebauer, 1996). Both the Novate intrusion and the 

pegmatites also share a similar geochemistry with a strongly depleted RRE-

pattern and a large Eu anomaly with respect to the Bergell tonalites (Von 

Blanckenburg et al., 1992).  
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3. Field Data 

 

3.1. Areas and localities 

 

The Codera domain is located at the eastern contact of the Bergell pluton. Two 

areas from this domain were studied: the Upper Codera valley (COD) and the 

Rossaccio (ROS) (fig. 1). The COD area is located in the eastern side of the upper 

part of the Codera valley at about 2500-2700 m. The area extends between the 

Pedroni Dal Prà hut and the crest (named “Altare”) at the Italian–Switzerland 

border, and includes the glacial cirque south of Pizzo Trubinasca. The outcrops 

include the contact between the intrusives of the Bergell batholith (including the  

“Ghiandone” granodiorite and the peripheral “Serizzo” tonalite) and the host rock 

migmatites of the Gruf Complex. The ROS area is located west of the Cima 

Codera, east of the Aurosina valley and northeast of the Val Piana line. This 

locality is a few kilometers west from the COD area  and is within the Gruf unit.  

The Bodengo area extends over a wide region between the Mesolcina (in the 

west) and the Mera (in the east) valleys. The sudy of this area was conducted in 

different localities in the upper parts of the valleys cutting through the region: 

Garzelli valley (VG), Leggia valley (VLG), Del Dosso valley (VDD) and 

Darengo valley (VLD) (fig. 1).  

 

3.2. Codera area 

 

Leucocratic dikes and quartz veins are abundant in the Codera area. The dikes 

are present within both the Gruf migmatites and the Bergell pluton crosscutting 

the intrusive contact. Within the Bergell, the pegmatites intrude both the tonalite 

rim (which in the study area is up to 200 m in width) and the granodiorite core 

(fig. 3 and 4a). The leucocratic dikes include pegmatites (barren-type or 

differentiated dikes with garnet, beryl and tourmaline), aplites and microgranitic 

dikes. The latter are lithologically very similar to the Novate microgranites. 
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These dikes are generally up to 1 m thick with the noteworthy exception one of 

the large dike outcropping just north of the Pedroni Dal Prà hut (fig. 4f). This dike 

reaches 6-7 m in width and consists of a dominant microgranite at the dike core, 

rimmed by selvages of pegmatite. The microgranite contains scattered 

phoenocrystals of K-feldspar. This dike outcrops for several hundred meters, 

cutting across the contact between the Gruf and the Bergell pluton.  

The microgranitic dikes cut and locally even exploit the main set of pegmatite 

dikes intruding their cores or salbands and achieving the pegmatite orientation 

(fig. 4c and 7a). The large dike described in upper Codera valley is a striking 

example. In fig. 4g large K-feldspar crystals and fragments of graphic texture are 

deflected by the ascent of microgranite intruding the core of a pegmatite. The 

main set of pegmatite dikes has an average strike of 70°N and dips steeply (75° 

mean) both toward north and south (as visible in the upper Codera valley 

structural map, Fig. 3, and stereoplots on figure 8). From the orientation it is 

Fig. 3 Structural map of the upper Codera valley. Markers indicate the dip 

direction and strike of pegmatite dikes, which are also reported in the attached 

steroplot. The dark grey and light grey areas indicate respectively the 

outcropping tonalite and granodiorite rocks of the Bergell intrusion. The dashed 

line indicates the geographical boundary between Italy and Switzerland. 
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possible to distinguish two different sets: (1) a set (less common) striking E-W, 

and (2) a set striking ENE-WSW. Pegmatites locally show crosscutting 

relationships (fig. 4b) suggesting poliphasic intrusion. Most pegmatites are less 

than a meter in thickness and are barren (for a definition see the “Pegmatites” 

chapter) while only a minor number of dikes show a more “evolved” mineralogy 

with abundant local garnet, tourmaline and beryl. Although dikes commonly 

preserve their pristine texture (including graphic K-feldspar and quartz 

intergrowth and comb texture) it is present an incipient ductile overprint locally 

evidenced by microboudinage of tourmalines and beryl or healed bent crystals. A 

weak tilting of feldspar comb texture also locally indicate a shear overprint. 

Locally the ductile deformation becomes pervasive even in pegmatite dikes and 

localizes in discrete shear zones (fig. 4d and 11e). In the Bergell intrusive rocks, 

ductile shear zones exploited high-temperature joints and compositional 

boundaries including pegmatite dikes (fig. 4d). Some dikes were simply dragged 

along crosscutting shear zones but more commonly leucocratic dikes localize 

deformation and develop mylonites at their boundaries or internally (especially 

the quartz-rich cores) with transpressive kinematic. Ductile deformation is also 

pervasive in the quartz veins oriented parallel to the main set of pegmatites. A 

strong mylonitic overprint is also observed in the pegmatite dikes within the Gruf 

units of the Rossaccio locality (fig. 4e). 

 

3.3. Bodengo area 

 

The country rocks of this area are the high-grade heterogeneous and migmatitic 

rocks of the Adula and Simano nappes. These units host an extensive swarm of 

sub-parallel pegmatite dikes, spaced on the order of tens of meters. These dikes 

generally do not reach one meter in thickness. As in the case of the Codera area, 

most dikes are barren and consist basically of quartz, feldspar and muscovite 

(with minor biotite). The dominant set of pegmatites intrudes discordantly the D3 

structures and the steepened regional foliation of the SSB and are basically 

undeformed. 
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In rare cases sheared boundaries of the dikes (with strike-slip kinematic) were 

observed with the development of S-C foliations delineated by white mica 

(Garzelli valley, fig. 6e and 11d). In the Garzelli valley some deformed dikes of 

the main set show a sharp internal plane at the dike centre (roughly parallel to the 

C-planes), which appear to have been formed by reactivation of the dike under 

brittle conditions. This plane is in some cases weakly reactivated under brittle 

conditions, allowing late hydrotermal quartz to crystallize within small opened 

fractures. Pegmatites dip mainly toward W or WNW with an average inclination 

of 45°-50° (fig. 4 and 7). In Garzelli valley they are steeper with an average dip of 

70°. This main set of pegmatite crosscuts an earlier one striking NW-SE (fig. 6b), 

which is sub parallel to the host-rock foliation (but still discordant). These earlier 

dikes show are boudinaged, buckled and sheared (fig. 6c and d). They steeply dip 

toward NE with a mean orientation of 44°N/68°. Most pegmatites exposed in the 

eastern flank of Garzelli valley belong to this older set. 

Except for the degree of ductile overprint the pegmatites of the Bodengo area 

have the same mineralogy and textures of those of Codera area. 

Figure 4   Outcropping dikes of the Codera area. (a) Pegmatite dikes cutting 

discordantly the transition zone (swarm of mafic inclusions) between the tonalite and the 

granodiorite of the Bergell pluton south of Pizzo Trubinasca. (b) Crosscutting pegmatites in 

the Bergell granodiorite. The younger dike is oriented at higher angle than the older to the 

foliation of the granodiorite, which is marked by isoorientation of large K-feldspar 

phoenocrystals. Upper Codera valley. (c) Leucocratic microgranite dike crosscutting and 

exploiting precursor pegmatite dikes. Pencil (14.5 cm) for scale, upper Codera valley. (d) 

Pegmatite dike exploited by a mylonitic shear zone at the core and one flank. The original 

texture of the dike (on the right) is lost where the mylonite enters the core (on the centre and 

left). 1 euro for scale, upper Codera valley. (e) Deformed pegmatite dike producing drag 

folding of the host rock foliation with dextral sense of shear. Pencil (14.5 cm), Rossaccio 

locality. (f) Large microgranite dike outcropping in the upper Codera valley. G. Pennacchioni 

as scale. (g) Close up of the pegmatite dike outcropping on the right of the large microgranite 

in figure 4 e. The pegmatite is exploited by the microgranitic rock at its core and shows bended 

texture in the direction of the flow, which is suggested by the large fragments of K-feldspar 

pointing to the right. Pencil (14.5 cm) for scale. 
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Locally dikes developed a layered structure that can be symmetric (most 

common) or asymmetric (with a fine-grained layer at the bottom wall zone). Rare 

miarolitic cavities (fig 6g) occur in the upper part of the core zone as isolated 

large pockets (up to 1m in size) or smaller pockets (pluridecimetric). Usually they 

contain brownish to smoky vitreous quartz, aquamarine beryl, schorl tourmaline, 

garnet and rare accessories. Miarolitic dikes do not develop comb textures.  

In Garzelli valley a large pull-apart structure filled with foliated aplite was 

found. Foliation, which is marked by thin trails of garnet (up to 10 cm in length, 

fig. 10f) developed parallel to the feeders, which are roughly parallel to the 

foliation of the host rock. Aplite texture and foliation is probably genetically 

linked to the syn-intrusion opening of the pull-apart structure.  

Quartz veins discordant to the main set of pegmatites are also common in the 

area. Most of these veins predate the pegmatite intrusion and are affected by the 

D3 deformation event. However, some undeformed quartz veins are oriented 

parallel to the pegmatite dikes and could belong to the same event of intrusion. 

The largest undeformed quartz vein (up to a few meters thick) was found in the 

Del Dosso valley. 

Figure 5  Structural map of the upper Garzelli valley. Markers indicate 

the dip direction and strike of pegmatite dikes, which are also reported in the 

attached steroplot.  
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Figure 6  (Page 19) Outcropping dikes of the Bodengo area. (a) Gorge set on a NW-SE 

striking subvertical pegmatite dike on the eastern flank of upper Garzelli valley.  (b) Block of 

migmatitic gneisses intruded by two pegmatite dikes showing crosscutting relationship. The 

older dike (horizontal one in the photo) is sub-parallel to the host rock foliation and cuts a 

discordant dike (vertical) showing a more preserved internal texture. Codera valley.  (c) 
Pegmatite dike displaced left-laterally and thinned along a crosscutting ductile shear zone 

discordant to the foliation. Pencil (14.5 cm) for scale. (d) Pinch-and-swell boudinage of a 

pegmatite oriented at a small angle to the main foliation of the SSB. Del Dosso valley, 1 euro 

for scale. (e) Ductilely deformed dike of the younger set showing internal S-C foliation. 

Garzelli valley, 50 euro cent for scale (24.25 mm). (f) Foliated aplite dike intruding a pull 

apart structure and oriented at a small angle to the host rock foliation. The dike is cut by a 

younger set of pegmatite dikes. Garzelli valley, G. Caviola for scale. (g) Miarolitic cavity in a 

pegmatite dike. The presence of the cavity is associated with a swelling of the pegmatite dike. 

Leggia valley; camera lens cap (6 cm in diameter) for scale. 

Figure 7  (Page 21) Photomosaics assembled by photogrammetry of glacier- polished 

outcrops in the upper Codera valley (a) and the Garzelli valley (b).  

(a) Codera photomosaic shows a set of pegmatite dikes (p) and a younger set of microgranite 

dikes (g) within the Bergell granitoids. The microgranite dikes crosscut, and locally exploit, 

the pegmatite dikes.  

(b) Garzelli photomosaic shows two intersecting sets of pegmatites with the older thin dikes 

(p1) deformed along ductile shear bands (indicated by black arrows in the lower left part of 

the outcrop); the younger dikes (p2) crosscut at a high angle the host- rock foliation and 

appear mainly undeformed except for showing locally a ductile overprint (as indicated by the 

white arrow in the upper right part of the outcrop). 
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Figure 8  Stereographic plots (lower hemisphere, equal area) of the orientations of 

pegmatite dikes from different localities (see fig. 1 for location) of the upper eastern Codera 

and Bodengo area. On Codera valley – A stereoplot are plotted the orientations of pegmatite 

dikes. On Codera valley – B stereoplot are plotted the orientations of deformed dikes and veins 

where the thin lines represent pegmatites, thick lines are leucocratic (microgranite) dikes, and 

dashed lines indicate quartz veins. 
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4. Pegmatites 

 

4.1. General appearance of pegmatites 

 

Most pegmatites occur as dikes that to a first approximation have a tabular shape. 

In some cases the pegmatite terminations pinch out in the host rock and make 

transition to quartz veins (as observed in Upper Codera and Rossaccio, see also 

Ghizzoni and Mazzoleni, 2005). In both the Codera and Bodengo areas the 

pegmatites generally are less than 1 metre thick with a few exceptions of dikes of 

as much as a few metre thick. Thin dikes commonly thicken at pull-apart 

structure, at the intersection with other dikes or where miarolitic pockets are 

developed. Most pegmatites preserve the pristine structure, which include comb 

structures (fig. 9b and c) of K-feldspar, graphic intergrowth between quartz and 

feldspar or graphic garnet and tourmaline intergrown with quartz (fig. 9 fand g). 

However, to a close inspection the dyke can show a weak ductile overprint and in 

the Codera area many dikes are clearly mylonitized (fig. 4d and e). The pegmatite 

structure and mineralogy can abruptly change along strike. According to the 

nomenclature adopted by London (2008), the following structures can be 

recognized in the layered pegmatites of the study areas: (1) border zone with fine-

grained to aplitic texture; (2) wall zone with centimetric K-feldspar, albite, 

muscovite or biotite and quartz, often with longated crystals arranged in comb 

structures (fig. 9b and c); (3) intermediate zone with coarser (a few cm to dm) 

graphic quartz and K-feldspar intergrowth, albite, muscovite and local accessory 

minerals (mm-sized garnets, graphic black schorl and pale blue beryl, fig. 9g); (4) 

core zone developing giant texture (up to metric perthitic K-feldspar) and 

eventually grey quartz masses; (5) miarolitic cavities in the core zone  (only in 

Bodengo, fig. 6g). 
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4.2. General mineralogy of pegmatites 

 

Most pegmatites have a simple mineral assemblage consisting in K-feldspar, 

albite, quartz and biotite and/or muscovite (barren pegmatite). A very minor 

number of dikes locally contain accessory minerals that include: Sn-Nb-Ta-Y-

REE-U oxides, Y-REE phosphates, Mn-Fe-phosphates, Ti-Zr-silicates, Be-Y-

REE-U-silicates and oxide minerals (beryl, chrysoberyl, bertrandite, bavenite, and 

milarite), garnet (almandine-spessartine), tourmaline (schorl to rare elbaite), 

bismutinite, magnetite, and rarely dumortierite and helvite (Guastoni et al., 2014). 

 
 

 

 

 

Figure 9  (a) Thin barren pegmatite dike displaying simple mineralogy (K-feldspar, 

quartz and biotite flakes). Pluricentimetric K-eldspar crystals point toward the core of the dike 

and in this rare case achieved a pinkish colour. The colour is probably due to the interaction 

with the more mafic tonalite host rock. Upper Codera valley, 1 euro for scale. (b) Exposed 

comb texture on a broken opened barren pegmatite. On the broken surface are visible the K-

feldspar crystals and the biotite flakes pointing outward. Upper Codera valley, 1 euro for 

scale. (c) Pegmatite of the main set of dikes crosscutting the main foliation of the country 

leucocratic gneisses (lower part of the photograph) showing elongated K-feldspar crystals 

oriented approximately orthogonal to the dike boundary (comb structure). Garzelli valley; 

compass for scale. (d) Section of the upper half of an evolved pegmatite dike showing biotite 

and K-feldspar comb texture, decimetric K-feldspar crystals and an inner zone containing 

graphic garnets characterised by a finer grained texture and ductile deformation. Rossaccio 

locality, 1 euro for scale. (e) Large flake of muscovite in the evolved Codera Phosphate dike 

(CODp). 1 euro for scale. (f) Non-graphic garnet surrounded by graphic intergrowth of garnet 

and quartz. Upper Codera valley, 2 euros for scale (25,75 mm). (g) Characteristic paragenesis 

of evolved pockets in pegmatite dikes of the Codera area: graphic black schorl tourmaline, 

graphic and non-graphic garnet and elongated bent crystals of pale blue beryl. Upper Codera 

valley, 1 euro for scale. (h) Mn-Fluorelbaite broken crystals of the CODp dike. 1 euro for 

scale. 
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Accessories normally are found only in discrete portions of a pegmatite dike and 

“mineralized” portion commonly make transition to barren portions. The 

occurrence of rare accessories is commonly localized to pockets, thin local layers, 

thickened portions or convergence of multiple dikes. It is possible to correlate the 

presence of evolved paragenesis to the type of host rock to: for example, in the 

upper Codera valley, dikes containing garnet, beryl and tourmaline that intrude 

the Gruf units and the bergell intrusive close to the contact turn to barren types 

more inside the pluton. For the classification of Codera and Bodengo pegmatites 

we remand to the work of Guastoni et al. (2014). 

4.3. Sampled dikes 

 

Pegmatites are heterogeneous rocks both chemically and texturally. Since grain 

size can exceed the meter and the chemical behaviour can vary substantially in all 

directions, representative bulk geochemical analyses are difficult to obtain. 

Geochemical characterization of pegmatites is based on the study of single 

mineral phases and fine-grained portions (London, 2008), whose composition can 

be used as a proxy for the pegmatite changing chemistry during crystallisation and 

for pegmatite classification. Minerals of several evolved dikes were sampled for 

chemical and isotopical analysis. A brief description of each sampled dike is 

reported below in the text. Most information comes from the valuable knowledge 

of the areas and hosted pegmatites of A. Guastoni (2012 and personal 

communications).  

Since rare accessory minerals of pegmatites may occur only as rare scattered 

occurrences, rarely we can offer a list that includes the whole paragenesis. 

Nevertheless a list of recognized phases is reported. 

CODs zircon sample and VCA monazite and zircon samples were provided by 

A. Guastoni. CODs (Silvana dike of upper Codera valley) and VCA (dike of 

Cama valley, ehich is near Leggia valley) dikes will not be described in this 

section. For information regarding CODs we remand to De Michele and Zezza 

(1979). 
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4.3.1. Codera garnet dike – CODg 

 

This dike outcrops for more than 30m in length in the glacial circle of the upper 

Codera valley. It reaches up to 3m in width in the lower portion where it merges 

to another pegmatite dike. It is discordant with the foliation of both Bergell 

tonalite and granodiorite. Ductile deformation of the dike is observed at the dike 

boundaries where it shows incipient boudinage. The dike is symmetrically layered 

and includes: (i) border zone of dm-sized K-feldspar, quartz and biotite  (arranged 

in a comb texture); (ii) intermediate zone of K-feldspar; graphic K-feldspar and 

quartz including layers of millimetric red garnet; (iii) core zone with vitreous 

smoky quartz and decimetric perthitic K-feldspar. Gemmy aquamarine beryl and 

trapezohedral red garnet are relatively common. Other subordinate minerals are: 

schorl tourmaline; rare crystals of columbite-(Fe), euxenite-(Y), monazite-(Ce), 

xenotime-(Y), uraninite, zircon, magnetite. Monazite crystals were found in the 

intermediate zone together with garnet. The dike was classified as Rare Elements 

Pegmatite and belongs to the mixed LCT-NYF family (Guastoni, 2012).  

 

4.3.2. Codera phosphate-bearing dike – CODp 

 

This phosphate-bearing dike outcrops 100 m east of the CODg dike in the upper 

Codera valley. It cuts discordantly through the foliation and shows a complex 

internal structure. It is the most evolved dike found in the area as reflected by its 

peculiar mineralogy. It belongs to the LCT family, rare elements-Li (REL-Li) 

subclass (Guastoni, 2012). CODp extends for more than for 30 meters in length 

and reaches up 3 meters in width. As well as the other Codera dikes is deformed 

and shows lobated boundaries. The sample 12-CODp1 from the dike shows the 

effect of solid-state ductile deformation at the dike boundary. The dike is 

texturally and mineralogically zoned and includes: (i) a border zone (30 cm wide) 

composed by pluricentimetric quartz and albite and containing Mn-rich dark 

greenish fluorelbaite (fig 9 h), black centimetric masses of end-member F-rich 

triplite, Mn-hydroxides and pale pink prismatic beryl; (ii) a wall zone of medium-
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coarse grained (up to decimetric) assemblage of graphic K-feldspar and quartz, 

black schorl and red to orange garnet, triplite masses and colorless to pale pink 

beryl; (iii) an intermediate zone of medium-coarse grained graphic intergrowth of 

quartz and K-feldspar, white to yellowish and pale green perthitic Cs-rich K-

feldspar, colourless to brownish quartz, large muscovite and biotite flakes. The 

upper end of the dike developed fine-grained bands of graphic intergrowth of 

quartz and K-feldspar associated with muscovite flakes. These bands are bordered 

by a coarse-grained zone (pluridecimetric) of K-feldspar, albite, quartz and 

muscovite flakes, probably related to the coalescence with a lateral pegmatite dike 

(Guastoni, 2012). 

 

4.3.3. Codera Mary dike - CODm 

 

This dike occurs within the Gruf migmatites in the eastern flank of the upper 

Codera valley under the Pizzo Porcellizzo peak. The dike, which reaches 150 cm 

in thickness, is discordant to the foliation and has similar zoning as the CODg 

dike including: (i) top wall-border zone with poorly-developed comb texture K-

feldspar and muscovite, (ii) intermediate zone with graphic intergrowth of K-

feldspar and quartz, biotite and muscovite flakes, (iii) core zone with giant 

perthitic K-feldspar and smoky masses of quartz at the core. Garnet crystals larger 

than 1 cm in diameter occur between the graphic layer and the core zone. The 

presence of pale blue beryl has been reported from this dike. 

 

4.3.4. Codera Trubinasca dike- CODt 

 

The dike outcrops on the north-western flank of the glacial circus under the 

Pizzo Trubinasca in the upper Codera valley. It is hosted within the Bergell 

intrusives and cuts discordantly the solid-state foliation. The symmetric zoning of 

the dike includes: (i) a border zone composed of  K-feldspar, quartz and biotite 

developing minor comb textures; (ii) an intermediate zone with abundant graphic 

K-feldspar and quartz, and a narrower core of K-feldspar and quartz (which 
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locally occurs as smoky masses). Accessories minerals are garnet, beryl, 

tourmaline, greenish U-rich monazite-(Ce), zircon and uraninite. 

 

4.3.5. Rossaccio Garnet dike - ROSg 

 

This dike outcrops near the Bocchetta Teggiola within the foliated Gruf 

mylonitic migmatites. This dike is similar to the CODg dike both  texturally and 

mineralogically. The dike thickness is of as much as 5 m with strong variations 

along strike. Most segments of the dike are of a barren type, but locally it 

develops pokets with large garnets (up to 3 cm). At one end this dike transforms 

makes transition to a massive quartz vein. The dike boundaries are sheared with a 

mylonitic fabric. 

 

4.3.6. Rossaccio Beryl dike - ROSb 

 

ROSb has a thickness of 2-3 m and outcrops for several tens of meters though 

partially covered by debris. The internal structure is locally complicated by a 

strong ductile overprint. The wall zone consists of a medium-grained (up to 

decimetric) assemblage of K-feldspar, quartz and biotite crystals with a comb 

texture. The intermediate zone shows a graphic texture of K-feldspar and quartz 

and contains muscovite and rare zircon. The core zone has pluridecimetric grain 

size of perthitic K-feldspar, quartz and contain pale blue deformed beryl and 

graphic to large prismatic (up to 20 cm in lenght) crystals of shorl tourmaline. 

 

4.3.7. Val Garzelli Lower dike - VGb 

 

This dike outcrops in the western side of the upper Garzelli valley near the Alpe 

Campo, within migmatitic paragneisses. The dike is up to 50 cm in thickness, and 

cut discordantly across the host rock foliation without showing any deformation 

structures. It has a simple zoning: (i) medium-fine grained border zone composed 

of K-feldspar and muscovite; (ii) intermediate zone with graphic intergrowth of 
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K-feldspar and quartz, muscovite and nice trapezohedral red garnets up to 1-2 cm 

in diameter; (iii) core zone of coarser perthitic K-feldspar and local masses of 

dark quartz. 

 

4.3.8. Val Garzelli Upper dike - VGa 

 

VGa is from the same location as VGb but outcrops slightly to the west. The 

dike is up to 2 m in thickness and has up to decimetric grain size. The border zone 

is composed by large K-feldspar and muscovite crystals; the intermediate zone 

has graphic intergrowth of K-feldspar and quartz, muscovite and red garnet 

crystals with euhedral trapezohedral habit of as much as 1-2 cm in size; the core 

zone has decimetric perthitic K-feldspar crystals and quartz masses. 

 

4.3.9. Val Del Dosso dike - VDD 

 

This is a quite huge dike (reaching up to 4-5 m in thickness) from the upper part 

of the Del Dosso valley. VDD has an asymmetric texture including: (i) border 

zone with giant (up to 50 cm) biotite crystals and K-feldspar forming a comb 

texture; (ii) intermediate zone with a finer grainsize of K-feldspar, quartz and 

muscovite; (iii) a layer of garnets (crystals of as much as 2-3 cm in diameter); (iv) 

core zone with giant (pluridecimetric) texture of K-feldspar, quartz and large 

silvery mica flakes containing centimetric euhedral garnets. The dike makes 

transition at the termination to a thick (up to 50 cm) layer of massive quartz of a 

smoky variety in the core. The dike is intruded by schorl tourmaline-bearing 

injections that form large hollow pockets within the pegmatite. The dike contains 

aquamarine, schorl and garnet. 

 

4.3.10. Upper Val Leggia dike  - VLGa 

 

This dike extends for a length of ca. 20 m in the upper Leggia valley. It is hosted 

within the amphibolites and migmatitic gneisses of the Bellinzona-Dascio zone of 



	   31	  

the SSB, and is concordant to the foliation in its lower end. The dike reaches up to 

3-4 m in thickness at this termination where it coalescence with a lateral 

pegmatite dike. The border zone is coarse-grained (decimetric), composed of 

idiomorphic white perthitic K-feldspar, albite, large aggregates of muscovite and 

subordinate brownish-vitreous quartz masses. The intermediate zone contains 

decimetric euhedral K-feldspar crystals, quartz, albite, black shorl and centimetric 

trapezohedral crystals of red garnet. The dike contains zircon. 

 

4.3.11. Medium Val Leggia dike - VLGm. 

 

This discordant dike is hosted within the migmatite gneiss of the Southern Steep 

in the upper Leggia valley. It outcrops for a length of 15 meters and is up to 1.5m 

in width. The zoned structure is asymmetric including: (i) border zone in the 

lower part showing a fine-grained layering of K-feldspar, albite, quartz and 

muscovite; (ii) border zone in the upper part composed of medium coarse grained 

K-feldspar, albite, quartz and abundant flakes of muscovite; (iii) wall zone 

composed of centimetric white perthite K-feldspar, albite, flakes of muscovite and 

quartz; (iv) intermediate with medium to coarse grained texture (pluricentimetric) 

composed of graphic K-feldspar and quartz, albite, muscovite, red millimetric 

garnets, centimetric prisms of pale blue beryl and graphic black schorl; core zone 

developing miarolitic pockets. 

One of these pockets reaches one meter in width and hosts brownish-smoky 

quartz crystals (also with sceptre terminations) up to 15cm in length aquamarine 

beryl, pluridecimetric idiomorphic white perthite K-feldspars, laminar albite var. 

clevelandite, rare black schorl and lithiowodginite (Guastoni, 2012). Within the 

smoky quartz were found several millimetric crystals of yellow subhedral 

monazite. 
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4.3.12. Lower Val Leggia (Colonnello) dike - VLGb 

 

VLGb cuts discordantly across the foliation of the migmatitic gneisses of the 

SSB in the lower part of the Leggia valley. It extends for 15 m in length and 

reaches up to 1,5m in width. The dike is zoned and includes: (i) a fine-grained 

lower boundary composed of K-feldspar, albite, quartz and muscovite; (ii) a wall 

zone of medium grained (centimetric) assemblage of perthitic K-feldspar, albite, 

muscovite flakes, quartz and millimetric red garnets, centimetric prisms of pale 

blue beryl and graphic black schorl; (iii) a core zone of coarse grained K-feldspar 

and quartz with local miarolitic pockets. A large pocket (1 x 0.6 x 0.5 m) provided 

(Guastoni, 2012): large brownish-smoky quartz crystals (also with sceptre 

terminations) up to 15 centimeters in length, beryl aquamarine up to 9 x 4 x 4 

centimeters, pluridecimetric idiomorphic white perthite K-feldspars, albite var. 

clevelandite as laminar centimetric crystals, rare black schorl prism up to 5-6 

centimeters and lithiowodginite crystals up to 1.6 centimeters in length. 

 

5. Deformation 

 

5.1. Macroscopic evidence of deformation on hand specimens 

 

As described in the chapter 3, pegmatites were locally exploited by ductile 

deformation especially in the Codera area. Ductile deformation is particularly 

evident in the quartz veins, associated with the pegmatite swarm, and within the 

quartz-rich portions of the pegmatite. However, to a close investigation the whole 

fabric of the pegmatite has been commonly affected even in the case where the 

pristine pegmatite structure is well preserved (fig. 9d and fig. 10a). Evidence of 

this deformation overprint are: (i) the presence of trails of fragmented garnet (see 

thin section 13-VG-Grt-1 description); (ii) microboudinage and bending of 

tourmaline and beryl (fig. 10c and d). The relatively high temperature condition of 

the deformation overprint is suggested by the common healing of the fragmented 

crystals (fig. 10e and fig. 11f).  



	   33	  

Garnets have cubic habit and behave differently from elongated crystals. 

Euhedral garnets of Codera area commonly show a pervasive net of fractures (fig. 

13a and b, fig. 14e), which in most case have a preferential trend of sub-parallel 

planes defining a deformation direction. Although the 12-CODp001 thin section 

did not intercept garnet crystals, an euhedral one is present on the hand sample 

surface and displays a short tail of fine-grained garnet (fig. 11b).  

 

5.2. Evidence of deformation in thin sections 

 

This session reports the microstructural observations made under the optical 

microscope of thin sections that include solid-state ductile fabrics of pegmatites. 

The code of the thin section is reported before each description. 

 

(1) 12-177: (fig. 11a) Mylonites of Codera area affect the tonalites and the 

pegmatites. The tonalite mylonites contain as a synkinematic assemblage: quartz, 

biotite, plagioclase (oligoclase), epidote, ±K-feldspar. Quartz and biotite 

underwent dynamic recrystallization. The recrystallized biotite in the mylonitic 

foliation is lighter coloured than the magmatic biotite, reflecting the decrease in Ti 

of this relatively lower temperature biotite. K-feldspar is replaced along the 

boundaries by myrmekites that recrystallized along the foliation to fine (a few 

microns in size) polygonal aggregates of quartz-oligoclase. Plagioclase and K-

feldspar persist up to the mylonitic stage as rounded porphyroclasts immersed in 

the matrix locally forming d- and s-shaped porphyroclasts systems. These 

microstructures are similar to those described in granitoid plutons deformed 

during postmagmatic cooling (Pennacchioni, 2005; Pennacchioni and Zucchi, 

2012). 

(2) 12-144: (fig. 11b) Codera quartz mylonites consist of recrystallized 

aggregates of small quartz grains (<50µm) of equant or slightly elongated shape, 

which define a shape preferred orientation oblique to the main foliation. 
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Under crossed polars light the recrystallized aggregates have a dominant dark 

color or show an extinction banding. The insertion of the gypsum plate under 

crossed polars indicate a strong crystallographic preferred orientation (CPO) of 

the recrystallized quartz. The dark overall colour of the recrystallized quartz 

aggregate under crossed polars suggests a CPO characterized by a c-axis 

maximum in the direction of the Y kinematic axis of the mylonite (i.e. parallel to 

the foliation and orthogonal to the lineation). This CPO has been confirmed by x-

ray texture goniometry (Guastoni et al., 2014)(fig. 12).  
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(3) 12-CODp001: (fig. 11c) This sample of CODp dike dike was taken from an 

internal mylonititized portion. On hand sample the graphic texture of K-feldspar 

and quartz is gradually deformed toward a discrete surface decorated by white 

mica and bearing a well-developed lineation. The ductile shearing likely exploited 

the planar border of graphic schorl. The deformed tourmaline has the c-axis 

oriented roughly orthogonal to the lineation. Thin section was cut parallel to the 

lineation of mica and perpendicularly to the shear zone plane. The mono-

crystalline quartz of the graphic texture has recrystallized to aggregates of  

<100µm grainsize by subgrain rotation and high temperature grain boundary 

migration. K-feldspar crystals are microboudinaged and show elongated optical 

subgrain with fan-like extinction. The boudin gaps of the K-feldspar are filled 

with quartz and locally white mica. White mica is dragged in the shear zones 

eventually producing nice mica-fishes (group-1 mica fish). Maximum reduction 

of grainsize is achieved near the surface with the graphic schorl, in 

correspondence of a layer of equant grains of albite and the local complete 

destruction of the large K-feldspar crystals. Under crossed polars the high strained 

Figure 10  (a) Large perthitic K-feldspar and smoky quartz in paragenesis with pale 

blue beryl and boudinaged black schorl tourmaline. The surface of the K-feldspar is decorated 

with white mica and shows a well developed lineation, which is perpendicular to the beryl 

prism. The beryl hosts a broken zircon crystal, which caused a yellowish aureola in the beryl. 

This sample comes from the ROSb dike. (b) Handsample of the internal mylonitized zone of 

CODp dike. From left to right (toward the graphic tourmaline) the graphic structure is 

gradually obliterated. Are also visible broken pale blue beryl crystal and a small garnet with a 

recrystallized tail. (c) Boudinaged black (schorl) tourmaline within quartz; fractures are 

sealed with quartz. Rossaccio locality. (d) Microboudinaged beryl with the necks filled with 

quartz. Rossaccio locality. (e) Bent crystal of beryl (with small zircon on one prism) showing 

different deformed areas. The central part seems less pervasively deformed and is more 

transparent. The sample was found in the CODb dike. (f) Thin trails of fine grained garnet in 

the aplite intruding the pull-apart structure in the western flank of Garzelli valley. 1 euro for 

scale. 
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zone is dark colored suggesting isoorientation of the quartz with the c-axis 

perpendicular to the thin section plane (i.e. with a strong Y-maximum of c-axis as 

described above for the quartz-mylonites). Noteworthy is the orientation of schorl 

tourmaline whose c-axis is parallel to that of quartz. Fast grain boundary 

migration and the hypothetical CPO of quartz suggest ductile deformation under 

high temperature and wet conditions (Vernon, 2004).  

(4) GAR-1: (fig. 11d) Deformed pegmatites of Garzelli valley display locally a 

S-C foliation delineated by white mica. Rock in thin section was sampled near the 

contact with the host rock of a muscovite-rich pegmatite. Deformation mechanism 

in quartz includes grain boundary migration recrystallization.  

(5) 13-VG-Grt-1: (fig. 11e) The aplite intruding a pull-apart structure in Garzelli 

valley was sampled for the study of the garnet trails. The rock is a fine-grained 

aplite made essentially by equant grains of dominant albite and K-feldspar. 

Garnets occur as aggregates of rounded (small ones) to angular crystals (large 

ones) reaching 1-2 mm in size, locally growing close to or in contact with dark 

brown pleochroic biotite. Aggregates are arranged along parallel trails defining a 

foliation and, locally, trails seem asymmetrically folded. Despite this the rock  

 

 

Figure 11 Thin sections of deformed rocks. (a) 12-177: Ultramylonite in tonalite 

flanking the border of a pegmatite dike of upper Codera valley. Sense of shear is dextral. 

Plane polarized light. (b) 12-144: Dynamically recrystallized aggregate in a quartz mylonite 

showing extinction banding under crossed polars. Shear sense is dextral. (c) 12-CODp001: 

Trail of small garnet crystal (<2 mm and possibly recrystallized) with pleochroic biotite in 

aplite matrix. The trail seems asymmetrically folded. Plane polarized light. (d) GAR-1: S-C 

foliation decorated by white mica. The shear sense is dextral. Crossed polars. (e) 12-

CODp001: Mylonitic shear zone of CODp dike. Well visible the boudinage (vertical cracks) 

and extinction pattern on K-feldspar. Graphic intergrowth of K-feldspar and quartz is 

gradually obliterated toward the top of the section where it is the strongest reduction of 

grainsize of quartz (dark band on the top right). Crossed polars on a thicker thin section 

(>30µm). (f) 13-ROSb001: Different extinction patterns in a bended crystal of beryl under 

crossed polars. Fragments are partially sutured showing indentation of lobes and cusps 

boundaries. 
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seems to preserve the pristine magmatic texture, with well-defined grain 

boundaries and no evidence of ductile deformation. Trails of garnet may be 

generated during syn-intrusion opening of the dextral pull-apart structure. The 

mechanism of formation however is not yet clear. EMPA analysis might be useful 

for the study of an eventual compositional zoning developed during growth.  

(6) 13-ROSb001: (fig. 11f) The pale blue, elongated beryl crystal of fig. 10e 

comes from the ROSb dike of the Rossaccio locality. In the hand specimen the 

beryl prism is deformed to a faint S-shape with the transparent central part and an 

“iced” turbid aspect towards the tips. The crystal was cut parallel to the bending 

plane. Under crossed polars it reveals an internal subtle polygonized extinction 

pattern, possibly indicating subgrains. The contact between bended fragments of 

the beryl is sutured (boundaries show indentation of lobes and cusps geometries). 

The beryl contains widespread healed cracks, decorated by fluid inclusions and 

forming different sets.  

 

 

The microstructural observations in the pegmatites and associated mylonites 

indicate that the dikes were affected by ductile deformation. The mineral 

assemblage along the mylonites, the type of CPO of recrystallized quartz and the 

quartz recrystallization mechanisms by subgrain rotation ans GBM are all 

consistent with deformation temperatures in the order of ≥ 500°C. Similar 

microstructures are typically developed during postmagmatic cooling of granitoid 

pluton as described, for example in the Adamello periadriatic pluton 

(Pennacchioni, 2005).  
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Figure 12 Plots (upper hemisphere, equal area) of (001) (c axis), (110) (<a> axis), 

(112), and (201) axes of quartz mylonites of the Codera area determined by texture 

goniometry. The plots are cumulative and the total investigated area in each sample is 2cm. 

Samples are described by Guastoni et al. (2014). 
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6. Mineral samples 

 

6.1. Samples and codes 

 

Minerals sampled for chemical 

analysis are garnet, tourmaline, 

monazite and zircon. Main 

accidental findings include Sn-Nb-

Ta-Y-REE-U oxides, xenotime, 

thorite, REE-bearing epidote and 

apatite. However significant and 

systematic analysis made so far, 

which are presented in this thesis, 

are limited to garnet, tourmaline 

and monazite. Anyway zircons were sampled for further future characterizations 

and here are only described. 

In the tab. 1 are reported the codes of samples for each dike. The identification 

code is composed by the dike code (“a” field) followed by the mineral code (“b” 

field with g=garnet, gg=graphic garnet, t=tourmaline, gt=graphic tourmaline, 

m=monazite, z=zircon, th=thorite) and a number. This number (“c” field) is used 

to indicate the group of crystals (minimum 1) of the same phase extracted from 

the same handsample. Single handsamples commonly provided more than one 

crystal (see monazites and zircons). If there is more than a crystal in a group or 

the crystal was fragmented for analysis, an additional number (“e” field) is added 

after a dash to identify the single crystals or fragments. Monazite and zircon codes 

may contain the “P” letter (“d” field, eventually followed by a letter in case of 

multiple samples). These “P” samples are representative (selected mainly for the 

shape) crystals photographed and used for accurate description. The “f” field is 

used to indicate an analysis point or a profile (e.g. 1-xxx), it is separated from the 

sample code by an underscore. 

 

	  
	  

a. Dike	  code	  
b. Mineral	  code	  
c. Handsample	  number	  
d. Photographed	  sample	  
e. Crystal	  or	  fragment	  number	  
f. Analysis	  point	  

Example	  of	  complete	  code.	  The	  first	  number	  of	  
“f”	  field	  indicate	  a	  line	  of	  points.	  This	  number,	  
“d”	  and	  “e”	  fields	  are	  optional.	  
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6.2. Samples description 

 

For each dike here are reported the descriptions of sampled crystals. Note that 

the accurate identification of the phase for garnets and tourmaline is omitted since 

it will be discussed in the following chapter. Dimensions of single crystals are 

attached to the photographic tables. 

 

 

 
6.2.1. Garnets 

 

Garnets of pegmatite dikes of the Central Alps are already described by 

Guastoni (2012) as solid solutions of almandine-spessartine. Samples collected 

display the same described morphology with dominant {211} trapezohedron (fig. 

14e, g and h). Crystals with dominant romb-dodecahedron {110} faces (fig. 14f 

and i) are far subordinate. Crystals with different habit can be found in the same 

dike as well as graphical intergrowth of garnet and quartz (fig. 14a). Garnets are 

commonly broken by brittle deformation and Codera area ones seem to develop a 

preferential set of sub-parallel cracks (fig.13 a and b). Following descriptions 

refer to fig. 14. 

Table 1  Handsample codes 
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(CODp, CODg) Sampled garnets from both dikes of Codera area are anhedral to 

subhedral, also with graphic texture, embedded in white perthitic and graphic K-

feldspar along with muscovite flakes. Although nice trapezohedral, centimetric 

dark red garnets in CODg dike are not rare. Euhedral ones are up to 2-3 cm large 

while graphic aggregates reach several centimetres in width. Generally garnets are 

dark red coloured and non-graphic ones are opaque. An exception are the 

CODp(g)2 crystals, which have a light red to orange colour and are translucent. 

Commonly garnet crystals are found with a hybrid habit, composed by a single 

anhedral large crystal surrounded by graphic intergrowth with quartz. All garnet 

crystals from COD dikes are pervasively fractured with a distinguishable 

dominant set of subparallel fractures (fig. 13a and b). 

(ROSg) Similarly to CODg, the Rossaccio garnet dike provided nice euhedral 

garnet crystals of up to 2-3 cm. They have trapezohedral habit and a dark red 

colour, poorly translucent.  It is pervasively fractured and displays a dominant set 

of parallel fractures. Fine-grained white mica grows within the gaps. Crystals are 

embedded within perthitic white K-feldspar. 

(ROSb) Garnets of this dike are less developed and do not reach 1 cm in width. 

Sampled ones exhibit euhedral romb-dodecahedron habit and are dark red 

coloured. Crystals are embedded in white perthitic K-feldspar. 

(VGa, VGb) Both dikes of Garzelli valley provided nice centimetric euhedral 

granets, which have trapezohedral habit, bright to dark red colour and are 

translucent. Best crystals for shape, which reach 1-2 cm in width, are found 

embedded within large muscovite flakes and quartz. 

(VDD) This dike provided two types of garnet that come respectively from the 

giant-textured core (VDD(g)1 and 2) and from the miarolitic pockets (VDD(g)3). 

Crystals of the first type grow with large flakes of muscovite and quartz. They 

exhibit euhedral trapezohedral habit and a bright red to dark red translucent 

colour. VDD(g)1 hosts a zircon crystal visible in thin section (fig. 13c). Volume 

expansion of zircon caused radial cracks in the garnet (fig. 13d). The second type 
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of garnet grows on the free surface of K-feldspar crystals. They are bright red and 

gemmy, with a good trapezohedral habit. 

(VLGa) These garnets are found growing with muscovite on large prisms of 

black schorl. The habit is euhedral trapezohedral and partially rounded. The 

colour is dark opaque red. 

(VLGm) The crystal sampled in this dike differs substantially from the other 

ones described so far. It has a dark red colour, almost black, and shows locally 

pristine faces interrupted by irregular areas. Since it is possible to recognize 

discrete faces in those parts, it reasonable to impute the garnet shape to 

competitive growth against other crystals, maybe complicated by a latter stage of 

corrosion (rough and rounded surfaces).  

 

 

 

Figure 13 Garnet sections. (a) CODp(g)1: Non-graphic garnet surrounded by a 

graphic aggregate (gg). The crystal shows a set of vertical fractures. (b) CODg(gg)1: Graphic 

garnet with a pervasive set of subparallel fractures trending NW-SE in the photo. (c) 

VDD(g)1: Zoned garnet with lighter thin rim (r) and included zircon. (d) Zircon crystal 

included in VDD(g)1 that caused radial cracks in the host due to volume expansion. 
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Despite this it is possible to determine the habit by the visible faces that are the 

rombododecahedron, which is dominant, and the trapezohedron. Note that almost 

all Bodengo area garnets show a dominant trapezohedral habit. 

 

6.2.2. Tourmalines 

 

All tourmalines are black schorl with very rare exceptions. They occur as 

elongated prisms with common parallel growth. Tourmalines of deformed dikes 

show pervasive microboudinage perpendicular to the c-axis and some are bended. 

Greenish Mn-rich fluorelbaite with schorl core is described by Guastoni (2012) in 

the CODp dike (fig. 9 h).  

 

Figure	  14	   Analysed	   garnets.	   (a)	   CODg(gg)1.	   (b)	   CODp(g)2.	   (c)	   CODg(g)2.	   (d)	  

CODp(g)1.	  (e)	  ROSg(g)1.	  (f)	  ROSb(g)1.	  (g)	  VGa(g)1.	  (h)	  VGb(g)1.	  (i)	  VDD(g)1.	  (j)	  VDD(g)2.	  

(k)	  VDD(g)3.	  (l)	  VLGm(g)1.	  
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(CODp) Graphic tourmalines are typical evolved parts of Codera pegmatites and 

commonly occur with beryl. The black schorl tourmaline sampled in the CODp 

dike is a composite one, made of an inner prismatic crystal surrounded by a 

graphic intergrowth with mainly quartz. The aggregate is 4 cm in width. 

(ROSb) 5 cm long, black prismatic schorl tourmaline found in an aggregate of 

deformed quartz. As for the other tourmalines from the Codera area, the crystal 

was extracted broken, without termination, and showed an evident 

microboudinage with cracks perpendicular to the c-axis. These planes act as a 

pseudo-cleavage since microboudinaged crystals are easily broken into small 

slices. Some fragments are dislocated and separated by the same recrystallized 

quartz matrix.  

(VDD) 3 cm, black prismatic schorl crystal grown with K-feldspar, muscovite 

and quartz. 

(VLGa) Black prismatic schorl crystal of 2 cm in width and 6 cm in length 

associated to red garnet crystals, which grew on the prismatic faces, muscovite, 

K-feldspar and quartz. 

(VLGb) Small prismatic, terminated crystals of dark olive green tourmaline up 

to 6 mm in width. These crystals were found within a miarolitic pocket, growing 

with large quartz crystals, albite var. clevelandite and K-feldspar perthitic crystals. 

 

6.2.3. Monazites 

 

Monazite crystals were sampled in three different dikes of Codera area (CODg, 

CODt and CODm) and two different dikes of Bodengo area (VLGm and VCA). 

Morphology of sampled crystals reflects that described by Catlos (2013) for Th-

rich monazites: most crystals are flattened on {100} and show small or absent 

{101} faces. Most crystals are stubby while elongation occur commonly on the c-

direction, with the exception of CODm(m) samples that is probably strongly 

elongated on the b-direction (fig. 15j). The non-conventional habit of CODg(m)3  

might be an example of competitive growth in pegmatites that imposed the form 
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of adjacent  growing crystals (fig 16d and 16b). Following descriptions mainly 

refer to samples in fig. 15 and 16. 

 

 
 

(CODg) Yellow prismatic crystals found in paragenesis with K-feldspar, quartz 

and Nb-Ta-REE oxides. Most of them are translucent but appear turbid under the 

stereoscope. Crystals are elongated on the c-direction with a euhedral to subhedral 

shape. Prismatic and pinacoidal faces are well developed and some crystals are 

twinned. Some of these crystals are the largest found among sampled monazites, 

exceeding 5 mm in length (CODg(m)3P, fig. 15d and 16d). Each crystal shows a 

well-developed parting on {001}. CODg(m)1 hosted at its nucleus small green 

prismatic crystals of thorite (fig. 15a), surrounded by black lamellar Nb-Ta-U 

elements-oxide. This crystal contains numerous small inclusions of monazite 

(<10µm, fig. 18i). 

(CODm) These crystals are the clearest monazites among all samples. Crystals 

are gemmy, euhedral and strongly elongated, showing well developed sharp faces. 

They reach several millimetres in length and less than 1 mm in width. Parting on 

{001} is not macroscopically visible, though BSE imaging shows sector zoning 

parallel to elongation that suggests b-direction elongation. These monazite 

crystals are hosted in massive white cloudy quartz, in association with black 

euhedral crystals of euxenite. 

(CODt) Single crystal of green monazite. This specimen was found at the core of 

a deformed (microboudinaged) and recrystallized yellow beryl embedded in 

quartz. On the same sample two crystals of pale brown zircon and one crystal of 

Table 2 Analysed monazites. 

 

Tot. indicates the number of 

extracted crystals and fragments. 

P crystals are the codes of 

samples that were photographed 

and described. 
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black uraninite are growing in contact with the beryl. Beryl colour is commonly 

turned to yellow by the local presence of metamictic minerals, which sometimes 

are hosted or grow in contact with the former. In this case the whole crystal 

achieved a uniform bright yellow colour. The green monazite crystal was pre-

fractured and post-extraction was impossible to determine the habit. Anyway the 

crystal appear euhedral and with no appreciable elongation. C. M. Gramaccioli 

(1986) reports the finding of green U-rich monazites in the Piona pegmatites of 

the Como Lake.  

(VLGm) Clear, yellow, millimetric crystals of monazite hosted in smoky quartz. 

This samples come from the central large pocket of the VLGm dyke. VLGm(m)1 

crystals are scattered on a clear surface of a fragment of quartz, probably a face, 

with small red crystals of garnet (fig. 15k). VLGm(m)2 appear as a group of 

broken orange-yellow crystals in association with flat wodginite crystals, hosted 

in massive quartz (fig. 15l).  

Figure 15 (Pages 48 and 49) Monazite and zircon hand samples. (a) CODg(m)1: Close 

up of the monazite crystal (yellow) hosting black lamellar Nb-Ta-REE oxides and a prismatic 

bottle-green crystal of thorite. (b) CODg(m)2: Yellow geminated crystals of monazite with 

black Nb-Ta-REE oxides hosted  in K-feldspar. (c) CODg(z)1: Crystals of zircon hosted in K-

feldspar displaying a pink aureole. The particular habit may be interpreted as a consequence 

of competitive growth. (d) CODg(m)3: The largest monazite crystal among sampled ones. It is 

hosted in a greyish quartz mass. (e) CODt(z)1: Bipiramidal crystal of zircon growing on 

yellow beryl. (f) CODt(z)2: Zircon hoste in yellow beryl, which displays radial cracking. (g) 

CODt(m)1: Green U-rich monazite (m) hosted in recrystallized yellow beryl with three light 

brown zircons (z) and a black crystal of uraninite (u). (h) CODt(z)4: Zircon with light brown 

rim and black vitrified core hosted in quartz. (i) CODs(z)1: Light brown zircon with particular 

shape included in a yellow beryl.. (j) CODm(m)1: Gemmy euhedral crystal of monazite 

strongly elongated on the b-direction, growing with Nb-Ta-REE oxides o quartz. (k) 

VLGm(m)1: Clear miarolitic monazites growing on quartz. (l) VLGm(m)2: Yellow-orange 

monazite and Nb-Ta-REE oxides growing on quartz from a miarolitic pocket. (m) VCA(m)1: 

Rounded crystal of greenish and pink monazite growing on muscovite. 
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(VCA) This specimen was a large flake of silvery muscovite hosting several 

crystals of greenish monazites and a group of twinned zircons. The latter have 

rounded anhedral shape with a greenish core and a partial brown to pinkish 

coating with cribrous aspect. These crystals are composed by a green monazite 

core and a rim of riprecipitated poikilitic monazite, which contains small 

uraninites (fig. 18e), or xenotime (containing also zircon crystals, fig. 18f) on 

VCA(m)1Pa and VCA(m)1Pb, respectively.  

 

6.2.4. Zircons 

 

All zircons sampled display the same morphology of those described by Corfu et 

al. (2003) from pegmatite rocks and compared on the “Pupin diagram”. Dominant 

faces are the {110} prism and the {101} tetragonal bipiramid. Some samples 

developed flattening and curious pseudo-symmetries probably due to competitive 

growth in pegmatite. 

 

(CODg) Zircons found are CODg(z)1 and CODg(z)2. The latter is a subhedral 

partially altered crystal, little elongated on c-direction. The color varies from light 

brown to greenish where it is compenetrated by black lamellae of Nb-Ta-U 

oxides. CODg(z)1 is composed by two flat, light brown coloured, crystals 

elongated on the c-direction. The hypothetical prism face displays a peculiar, flat 

pyramidal shape, with concentric stripes (we remand to the CODs(z) for an 

hypothesis). Crystals produced pink halo in the hosting feldspar. 

 (CODs) These two crystals are the largest and most intriguing samples among 

zircons. Both were found within a parallel growth of light blue beryl. The small 

one CODs(z)1Pb is flat with a hexagonal shape. It displays a curious pseudo-

hexagonal (six faces) symmetry on one side (fig. 16n) and a pseudo-ternary (three 

faces) symmetry on the other side (fig. 16o). The large one CODs(z)1Pa, which is 

5,2 mm in length, has a deformed euhedral prismatic habit with one nice 

termination (four bipyramid faces) and the other pinching out as a wedge. It also 

displays the pseudo-exagonal symmetry, but less evident, on both two of opposite 
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hypothetical faces of the prism, which are inclined at a small angle. The other two 

hypothetical prisms have a little pronounced wedge shape. Each irregular face has 

a sort of resonant striped texture, which is concentric on the pseudo-hexagonal 

side. Since all these crystals were found growing at the interface between the 

beryl prisms, an explanation for the strange habit may come from the competitive 

growth between the beryl crystal and the zircon crystal. Commonly in pegmatites 

crystals grow against each other competing for space (London 2008), an example 

is the graphic intergrowth of quartz and K-feldspar. London (2008) reported the 

image of a columbite-tantalite that competed successfully against another crystal. 

Accessories that compete for space are forced to assume a particular shape 

depending on the surrounding crystals (see also the description of monazite 

CODg(m)3). If we assume that zircon nucleated on the prism of one beryl crystal, 

the successive steps of growth may have forced the crystal to assume a complex 

habit related to the geometry of beryl. A hint comes from the evidence of steps on 

such surfaces, which represent discrete phases of growth (grow-steps are evident 

in quartz, feldspars, beryl and in some cases other minerals in pegmatites; London 

2008). The free surface pointing out of the beryl was allowed to develop the real 

habit of zircon (see the termination with bipyramid faces on CODs(z)1Pa). In the 

case of CODs(z)1Pb, the free surface might be the pseudo-trigonal one. Assuming 

that the crystal nucleated with the c-axis emerging at a small angle to the beryl c-

axis and one prism of the zircon facing the beryl, the pseudo-trigonal arrangement 

may be the area of the confluence of two bipyramids and a prism (for example 

(101), (010) and (110)). The crystallographical angles on the faces of bipyramid-

prism-bipyramid and prism-bipiramid-bipiramid are respectively 95,63° and 

116,80°. Accurate measuring on the existing sample is yet to be done but this 

hypothesis seems reasonable. CODs(z)1Pa crystal has two opposite surfaces 

displaying pseudo-hexagonal symmetry and has one regular termination with the 

{101} bipyramids (fig. 16p). This may be explained with the growth against two 

flanked beryl crystals. Further analysis are needed to confirm this hypothesis.  

CODs(z)1Pa after cutting revealed a dominant black core surrounded by a thin 

light brown rim (fig. 16w), which gives the exterior aspect of the crystal. The rim 
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shows radial cracks suggesting a major content in radioactive elements of the 

internal one that caused differential volume expansion (Corfu et al., 2003). The 

black core seems vitrified and shows (1) an internal oblique band (which follows 

probably a crack) of a feather-shaped recrystallized phase, similar to the rim one, 

and (2) needle-like light-coloured longitudinal bands. It is likely that CODs(z)1Pb 

posses the same core-rim structure. 

(CODt) Four different samples come from the Trubinasca Codera dike: 

CODt(z)1, 2, 3 and 4. CODt(z)1 includes many little, light brown crystals  (up to 

640 µm) growing on a yellow altered beryl crystal. They developed a bipyramidal 

habit with no prism faces. CODt(z)2 is an altered subhedral crystal with colours 

ranging from bluish to greenish and brown, grown within a beryl crystal. The 

habit is complex and it is probably twinned. It is associated to a dark crystal of 

probably a Nb-Ta-REE oxide. The beryl crystal colour is altered to yellow and 

show radial cracks surrounding the zircon (fig. 15f). CODt(z)3 crystals are 

euhedral light brown colored. They grew at the contact of a yellow beril (see 

CODt monazite description) with uraninite and monazite. CODt(z)4 zircons are 

light brown, perfectly euhedral, prismatic and with c-elongation. They grew both 

in contact with yellow beryl and quartz. The CODt(z)Pb broken crystal displays a 

black dominant core with conchoidal fracture (fig. 16t). 

(ROSb) Several samples were collected from this dike within the intermediate 

and core zones of the dike. ROSb(z)1 zircons found on muscovite are light brown 

coloured and developed faces only on the side not in contact with muscovite 

ROSb(z)2 is a single subhedral, light brown elongated crystal. It grew on a 

muscovite flake within K-feldspar, which developed a pink halo surrounding the 

zircon.  ROSb(z)3 is an aggregate of several twinned crystals surrounding a black 

uraninite core. Differently from all other specimens these are translucent and dark 

orange coloured (fig. 16u). Although they seem perfectly euhedral is not easy to 

recognize a definite habit due to the intergrowth of several individuals. ROSb(z)4 

is an euhedral, light brown crystal grown within quartz and K-feldspar. It is 

flattened perpendicularly to two of the prisms. ROSb(z)5 was lost during 

extraction.  
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Figure 16 (Pages 54-57) Monazite, thorite and zircon crystals.  

 

Monazite crystals description: 

 (a) CODg(m)1P: Stubby prismatic sub-euhedral crystal of honey yellow monazite. Figure was 

taken with the crystal c-axis oriented N-S and the binary axis of monocline symmetry E-W. 

Parting on {001} is visible on the E-W direction.  (b) CODg(m)2Pa: Prismatic euhedral 

crystal of monazite. It displays c-direction elongation and flattening on {100}. Other smaller 

crystals grow at the contact with the matrix. Visible the parting {001}, the prism {110} and the 

pinacoid {100}. The termination faces are not well preserved but is is possible to recognise the 

small (10-1) pinacoidal face. See fig. 17a. (c) CODg(m)2Pb: Stubby prismatic, euhedral 

crystal of monazite. Traces of parting and cleavage are clearly visible on the fractured 

surfaces. (d) CODg(m)3P: Euhedral prismatic crystal of clear yellow monazite. The habit is 

curious since it developed large faces apparently corresponding to the {100}, {010} and {001} 

pinacoids (see model). This may be imputed to competitive growth against other crystals, 

which impose the shape. Parting {001} parallel to the termination face and the cleavage {100} 

are clearly visible. See fig. 17b. (e) CODm(m)1P: Fragment of monazite showing conchoidal 

fracture. The colour is clear yellow with local orange inclusions. (f) CODt(m)1P: Largest 

fragment of the green U-rich monazite crystal of CODt dike. Parting and faces are not easily 

distinguishable so the habit couldn’t be described. (g) VLGm(m)1P: Elongated (c-direction) 

crystal of clear yellow monazite. Parting {100} is visible on the prism face along the N-S 

direction of the picture. (h) VLGm(m)2P: Fragment of euhedral prismatic crystal of clear 

yellow monazite. The parting is clear and faces of the crystal resembles those of CODg(m)3P. 

(i) VCA(m)1Pa: Rounded subhedral crystal of greenish and pinkish monazite. A tentative to 

recognise some faces is made with the drawing (fig. 17c). This seem to find some resemblance 

with the model Monazite no.1 by Goldschmid (1913-1926) of fig. 17d (source: 

www.mindat.org). (j) VCA(m)1Pb: Large anhedral complex crystal of greenish monazite and 

pinkish xenotime growing with REE-bearing epidote and prismatic apatite. 

 

Thorite and Zircon crystals (single zircon crystals are already described in the text): 

(k) CODg(th)1P: Fragment of prismatic euhedral crystal of dark green thorite. It is twinned 

with another smaller crystal on a prism face. (l) CODg(z)1P. (m) CODg(z)2P. (n and o) 

CODs(z)2Pb both sides. (p) CODs(z)1Pa. (q) CODt(z)2. (r) CODt(z)3P. (s) CODt(z)4Pa. (t) 

CODt(z)4Pb. (u) ROSb(z)3P. (v) ROSb(z)6P. 

 

Polished sections of zircons: 

(w) Polished section of CODs(z)1Pa. (x) Polished section of ROSb(z)6P. 
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ROSb(z)6 is an aggregate of small zircons and a large one (420 µm) growing on 

feldspar. These crystals are dark coloured displaying an altered surface, the habit 

is prismatic euhedral but complicated by the coalescence. The internal structure of 

the largest one (ROSb(z)6P) is complex, composed by a thin outer rim and a large 

complex core (fig. 16x). It resembles that of CODs(z)1Pa and is composed by a 

glassy internal mass, which in this case is dark green, fractured and pervasively 

replaced by vermicular riprecipited rusty to light-coloured zircon. Another feature 

of the core is the presence of a (scheletal?) swarm of small isooriented 

bipyramidal crystals. It was proofed that all these phases are zircon with some 

rapid EMP analysis not reported in this thesis.  

 

 

 

 
 

 

Figure 17 Graphic study on monazite crystals:  

Recognizable faces are confronted with Goldschmidt models (1913-1926) and indicized. (a) 

Drawing of sample CODg(m)2Pa. (b) Drawing of sample CODg(m)3P. (c) Drawing of sample 

VCA(m)1Pa and (d) model no.1 by Goldschmid (1913-1926) confronted (source: 

www.mindat.org). 
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(VCA) As described for the monazite samples, this pale brown zircon was found 

within a large flake of muscovite. It is a spray-like aggregate of twinned 

individuals, which have euhedral prismatic habit. The whole aggregate measures 

1,4 mm in length. 

 

6.2.5. Thorite 

 

Dark green thorite crystals (fig. 15a and 16k) were found at the core of one 

monazite crystal of the CODg(m)1 sample, embedded in lamellar Nb-Ta-REE 

oxides. The crystals have elongated prismatic habit with flat pinacoidal 

termination and some are twinned. The largest one reaches 1,5 mm in length. 

 

7. Chemical Analyses  

 

7.1. SEM BSE imaging 

 

Backscattered electrons (BSE) images of polished monazite, xenotime and 

thorite were taken in order to have a qualitative control on internal chemical 

variation. These images were useful to plan the successive EMPA and LA-ICP-

MS analyses. Since dating was planned for monazite samples it was of primary 

importance to discriminate different chemical internal domains: growth and sector 

zoning, riprecipited or different phases like inclusions and alteration. Rapid 

qualitative analyses on chemistry allowed a first qualitative identification of the 

included phases. Images were acquired with the scanning electron microscope 

(SEM) at the SEM laboratory of Dipartimento di Geoscienze of Padova. Analytic 

conditions and further information are reported in the appendix I.A. 

Most of sampled monazites are chemically quite homogeneous and only highly 

contrasted BSE images help to recognize the faint primary zoning. Among zoned 

fragments of sampled monazites two types of zoning are recognisable: primary 

zoning and secondary zoning. Primary sector zoning is imputed to: (1) selective 

adsorption on the crystal surface, or (2) different attachment kinetics on different 
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facets (Catlos, 2013, and references therein). It can be distinguished from 

secondary zoning by the regular geometries of the chemical variations, which 

follow precise crystallographic directions. The spectacular concentric zoning on 

CODg(m)3 (fig. 18b) clearly highlights the growth steps of the crystal.  
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Figure 18  Higly contrasted BSE images of monazits, xenotime and thorite:  

(a) CODg(m)1P: Large unzoned crystal with cribriform (c) areas. Bright spots are small 

uraninite grains. (b) CODg(m)3P: Spectatular concentric zoning showing asymmetrical 

growth of the crystal (c=core of the crystal). (c) VLGm(m)2-8: Fragment displaying primary 

sector zoning (p) parallel to the parting and secondary less brighter patchy zoning (s) at the 

border. (d) CODm(m)1-5: Fragment showing secondary brighter vein zoning (v). (e) 

VCA(m)1Pa: This monazite crystal is composed by a cribrous, poikiloblastic phase and a 

omogeneous one (bottom left). The cribrous phase is probably reprecipited. (f) VCA(m)1Pb-3: 

Cribrous xenotime including zircon crystals. (g) CODg(th)1-2: Thorite fragment displaying the 

pervasive alteration to thorogummite and numerous inclusions. (h) Close up of the white frame 

of fig. 18g. Crystals growing in contact with thorite (t), which is partially altered to 

thorogummite (tg), are: xenotime (x), REE-epidote (e) and Nb-Ta-REE oxides, probably 

euxenite (o). (i) Close up of monazites (m), allotriomorphic phosphates (dark areas signed with 

p) and REE-epidote (e) included in CODg(th)1. The alteration to thorogummite is signed with 

tg. 
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As it is evident in the image, the monazite nucleated against another crystal since 

zoning is strongly asymmetrical. On VLGm(m)2-8 it is visible another type of 

sector zoning, probably oscillatory zoning, consisting in bands with different 

brightness parallel to the parting (fig. 18c). Secondary, irregular zoning includes 

patchy (regions marked by smaller, irregular regions of different brightness and 

composition) (fig. 18c, signed with s) and vein (differences in composition or 

brightness near cracks or veins) zoning (fig. 18d). Secondary zoning is common in 

sampled crystals and in most cases develops in correspondence of cracks or other 

discontinuities. Most secondary chemical variations in monazites occur with 

reduction of brightness in BSE images, which suggests depletion in heavy 

elements. An exception is CODm(m)1 samples that are locally penetrated by 

brighter thin veins with cloudy aspect (fig. 18d). CODg(m)1 samples don’t show 

primary zoning but have broad volumes with cribriform aspect (fig. 18a). Polished 

areas show swarms of small irregular holes (most are less than 10 µm in length) 

gathered especially near the borders. Those are filled with allotriomorphic 

phosphates (including REE-phosphates and apatite), quartz and commonly 

contain rounded grains of xenotime, uraninite, REE-bearing epidote and Nb-Ta-

REE oxides. Less bright patchy zoning is visible in these areas.  

VCA(m)1Pa and Pb polished crystals confirm their complexity with BSE 

imaging. VCA(m)1Pa is composed of two different monazite phases: one is clear 

and homogeneous, the other is cribriform and hosts numerous grains (cribriform 

themselves) of REE-phosphates and uraninite. VCA(m)1Pb monazite is similar to 

the clear one of VCA(m)1Pa, but it is intergrown with a large crystal of xenotime 

and spongiform crystals of zircon. Xenotime locally displays cribriform zones. 

Areas not affected by cribriform zones display sector zoning (following 

crystallographical directions) and altered areas with irregular borders. Cribriform 

areas in xenotime and zircons show patchy zoning suggesting pervasive alteration. 

The irregular cavities contain the same phases seen in VCA(m)1Pa. Cribriform 

aspect of inclusions-rich monazite are associated to mottled zoning (Catlos, 2013, 

and reference therein), which is typical of dissolution and riprecipitation processes 
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on monazite. Similar processes are likely to have been affecting xenotime and 

zircon crystals too. 

CODg(th) thorite samples display a pervasive internal alteration to 

thorogummite (fig. 8g). It appear as less bright vermicular to dendritic volumes 

that follow major fractures and penetrate in the crystal. Thorite contains numerous 

inclusions: rounded monazite and REE-rich epidote grains, xenotime and Nb-Ta-

REE oxides (fig. 18h and i). Fractures and related alteration commonly exploit 

grain boundaries of inclusions like monazites. Dark phases filling the fractures are 

mainly REE-phosphates and apatite. 

 

7.2. EMP analysis 

 

Electron-microprobe analysis (EMPA) was performed on garnet, tourmaline, 

monazite, thorite and xenotime samples (also for some inclusions) at the 

laboratory of microanalysis of the Istituto di Geoscienze e Georisorse - CNR 

(Padova). Complete tables with chemical analysis results are attached in the 

appendix II, including those of thorite, thorogummite, xenotime and inclusions. 

Since analysis on inclusions are insufficient for a complete characterization and 

EMP- was calibrated only for elements expected in monazites, they won’t be 

discussed in this thesis.  Analytic conditions and further information are reported 

in the appendix I.A. 

 

7.2.1. Garnet  

 

Garnet is used as a useful indicator of fractionation trends in pegmatites 

(London, 2008). Core-rim or rim-rim chemical profiles were provided with 

punctual measures, separated by 50 to 200 µm steps depending on chemical 

variation and size of the crystal, on each garnet. Spessartine (mole %) vs distance 

(core = 0 µm) profiles of representative samples are reported in fig. 19. Crystal 

Sps-content profiles of each garnet were plotted on the same diagram and showed 

that samples separate in two different groups with strong concordance of core 
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composition and few exceptions. Representative garnets profiles are plotted in fig. 

19.  

The first group includes all garnets characterised by dominant spessartine 

content at the core with values ranging between Sps61 and Sps65. CODp(g)1 garnet 

is fairly homogeneous with compositions ranging from Alm32Sps64Pyr2 (core) to 

Alm36Sps61Pyr2 (rim). CODp dike also hosts nearly pure spessartine garnet with 

composition Alm7–17Sps92–82Pyr05–0.3 (CODp(g)2). CODg(g)1 is moderately zoned 

with core composition similar to CODp(g)1 and Alm44Sps53Pyr2 rim. ROSg(g)1 

has a well-developed bell-shaped zoning with core overlapping COD 

compositions (Alm31Sps64Pyr3) and minimum Alm53Sps39Pyr6 rim. ROSb(g)1, 

which has rhomb-dodecahedron habit, has slightly lesser spessartine component 

Alm40Sps56Pyr3 at the rim, Alm46Sps49Pyr3 in the inner rim and a thin outer rim of 

Alm39Sps59Pyr2.  

 

 

Table 3  Garnet from the Codera area. 

Renamed after Guastoni et al. (2014). Structural formula based on 12 

oxygen atoms. * (Fe3+/Fe2+) calculated (Droop 1987). 
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Codera graphic garnets, even if the core of the intergrowth is individuated, are 

unzoned and have group-1 core composition. VLGm(g)1 garnet is the only one 

from Bodengo area whose core composition overlaps those of Codera. It has 

Alm29Sps65Pyr4 core and Alm40Sps51Pyr5 rim, but has higher TiO2 values. It 

should be noted that unlike other Bodengo area garnets it has an extremely dark 

red colour and rhomb-dodecahedron habit.  

Group-two includes all other garnets, which are exclusively from Bodengo area 

and all display a well-developed bell-shaped zoning. With the exception of 

VGa(g)1 and VGb(g)1,  all group-two garnets have rather coherent core 

composition of medium Alm57Sps41Pyr1 (within the range of Sps39-42). VGb(g)1 is 

richer in Alm with Alm64Sps34Pyr2 core and Alm73Sps23Pyr3 rim while VGa(g)1 

has higher Sps with Alm48Sps47Pyr4 core and Alm59Sps32Pyr7 rim. Since VGb(g)1 

core composition is lower in Sps but overlaps the compositions range of other 

Bodengo garnets, the difference can be imputed to different time of nucleation 

during pegmatite liquid evolution. On the other hand VLGa(g)1 higher Sps core  

 

Table 4  Garnet from the Bodengo area. 

Renamed after Guastoni et al. (2014). Structural formula based on 12 

oxygen atoms. * (Fe3+/Fe2+) calculated (Droop 1987). 
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values exceed the mean value of group-2 (Bodengo) core compositions and 

represents an exception. 

Results show that Codera and Bodengo garnets (with the exception of 

VLGm(g)1) form two separate groups with different Sps content. However all 

non-graphic garnets show the same trend of inverse zoning with Sps-rich core and 

Alm-rich rim. Pyr (Mg end member) component generally is less than 3 mol % 

but dark red VLGm(g)1, VGa(g)1 and ROSg(g)1 garnets exceed Pyr6 values at 

the rim. Grossular, andradite, and uvarovite components sumalways less than 5 

mol.%. Despite the relative variance in Sps content, all non-graphic samples 

display the same trend, more or less pronounced, of depletion in spessartine (Sps) 

component toward the rim and coupled enrichment in almandine (Alm). 

 

 

Figure	  19	   Zoning	   patterns	   of	   Sps	   content	   in	   selected	   garnets	   from	   Codera	   and	  

Bodengo	  areas.	  Renamed	  after	  Guastoni	  et	  al.	  (2014).	  
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7.2.2. Tourmaline  

 

Like garnets, tourmalines are important minerals for the mineral-based 

classification and study fractionation trend of pegmatites. All analysed 

tourmalines are prismatic and were cut perpendicular to the c-axis. On most 

crystals composition was measured along core-rim profiles.  

All Bodengo tourmalines are schorl with rather low variation in Li content and 

2Li/(2Li+Mg+Fe2+) ratio ranging between 0.05 and 0.25 (fig. 20c). The most 

homogeneous one is the miarolitic VLGb(t)1 tourmaline, which, despite the 

greenish colour, is a schorl and has the lowest Mg number (Mg/(Mg+Fe2+)<0.1). 

Other Bodengo tourmalines show rim-core variations in Mg content. VDD(t)1 

miarolitic tourmaline has similar Mg number (~0.1) to VLGb(t)1 but has a thin 

rim (60µm) showing enrichment in Mg (up to 0.25). VLGa(t)1 shows internal 

zoning with (1) a foititic (vacant X site >0.5) core with rather constant Mg 

number of 0.21, (2) a thin transition non-foititic zone with lower Mg number and 

(3) a non-foititic thicker rim with gradual increase in Mg number (up to 0.35). 

Both VLGa and VDD dikes intrude amphibolites, which may explain the 

relatively higher Mg number of hosted tourmalines (Guastoni et al. 2014).  

Most Codera tourmalines are prismatic and graphic schorls with composition 

similar to the cores of Bodengo ones. They don’t show comparable Mg-number 

variations but some have higher grade of evolution with local enrichment in Li 

(fig 20 a). The most fractionated dike of Codera CODp hosts tourmaline crystals 

with yellow-green Mn-rich fluorelbaite rim (CODp Elb. in fig. 20a, Guastoni, 

2012, and references therein). CODp(gt)1 portion of graphic tourmaline has thin 

rims evolving toward elbaite. Guastoni et al. (2014) report the composition of a 

tourmaline grown in the host rock gneiss of a pegmatite (sample PP), which is 

identical to that of tourmaline from the VLGb sample.  

 

 

Table 5  Tourmaline from the Codera area (a) and from the Bodengo area (b). 

Renamed after Guastoni et al. (2014). Structural formula based on 31 anions (O, OH, F), 

calculated using the program by Julie Selway (Ontario Geological Survey). 
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a	  

b	  
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7.2.3. Monazite 

 

Monazites were preliminary chemically analysed before LA-ICP-MS U-Th–Pb 

dating. The composition is typical of pegmatitic Th-rich monazite-(Ce), with an 

average Ce2O3 of 27.5 mol. %  for Codera crystals and 25 mol. % for Bodengo 

ones. Monazites have medium-high ThO2 content (6-7 mol. %), which is coherent 

with the habit of most crystals (Catlos, 2013), and subordinate UO2 (<1 mol.%). 

Other components (REE elements oxides) exceeding the 1 mol. % are (with 

decreasing relevance) Nd2O3, La2O3, Pr2O3, Sm2O3 and Y2O3, which sum up to

 

 

Figure 20 Classification diagram of tourmaline from the Codera (a) and the Bodengo 

(c) areas. The complete classification scheme is reported in the inset (b). The compositional 

profile of a zoned tourmaline crystal from the VLGa dike is shown in (d). Renamed after 

Guastoni et al. (2014).  
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an average of 30.5 mol. %. Exceptions are the green monazites from both Codera 

and Bodengo areas. One is a dark green monazite from CODt dyke of the upper 

Codera valley that has lower Ce2O3 (~22.7 mol. %) and very high UO2 (~10.5 

mol. %). VCA(m)1 greenish monazites have higher ThO2 (10-11 mol. %), slightly 

higher UO2 (1-2 mol. %) and lower Ce2O3 (~25 mol. %), Pr2O3 and Nd2O3. 

Greenish U-rich monazites have higher CaO content. CaO values of 3.5 and 2.1 

mol. % are measured respectively on CODt(m)1 and VCA(m)1.   

VLGm(m) monazites have higher Nd2O3 (as much as 17.5 mol. %), Sm2O3 (as 

much as 11 mol. %) and lower Y2O3 (<2 mol. %). 

Primary zoning of monazites reflect low oscillation of mainly U, Th and Ce 

content. Secondary zoning occurs generally as darker irregular zones depleted in 

Th, Pb and U (fig. 18c). In these areas the UO2 value is more than halved. Vein 

zoning found in CODm(m) samples has higher content in REE and appear as 

brighter veins in BSE images (fig. 18d). Veins are filled by a secondary monazite 

phase with higher Ce2O3 (as much as 30 mol. %), high ThO2 (as much as 11 mol. 

%) and low UO2 (<0.2 mol. %). The high Th phase seems more suitable with 

chemical instability during magmatism since hydrothermal monazite commonly 

has lower Th content than magmatic monazite (Catlos, 2013).  

Monazites included in the CODg(th)1 thorite crystal are similar to Codera ones 

but have higher Ce2O3 (30 mol. %) and slightly lower ThO2 (5.5 mol. %). 

 

7.3. LA-ICP-MS U-Th–Pb Monazite dating 

 

Isotopic analyses on monazite were obtained with the Laser Ablation and 

Induced Coupled Plasma Mass Spectrometry (LA-ICP-MS) technique performed 

at the Istituto di Geoscienze e Georisorse (IGG) of CNR (Pavia). Technique 

description and analytical conditions are reported in the appendix I.A.  

Ages are obtained from monazite samples from three dikes of Codera area 

(CODg, CODt  CODm) and two dikes of Bodengo area (VLGm, VCA). Virtually 

the three obtained isotope ratios (206Pb/238U, 207Pb/235U and 208Pb/232Th) would 
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yield the same age if the crystal system is considered close. However analysis 

results show a drastic systematic difference in age between the Pb/U ratios and the 

Pb/Th ratio. This can be explained by the decoupling of the systems caused by 

alteration. It is noteworthy that monazites sampled show both altered and 

riprecipited areas. Major age discordance between Pb/U and Pb/Th ratios are 

found in the analysis spots of monazites from the VLGm dike of Bodengo area: 

VLGm(m)1-12_036, VLGm(m)2-4_014, VLGm(m)2-8_019, VLGm(m)2-12_027 

and _030 (see age table for correct spots). Each of these analyses comes from 

darker areas (on SEM BSE images) with irregular borders (e.g. fig. 18c). 

Correspondent EMPA analyses highlight that those areas are depleted in Th, Pb 

and U. However ages obtained with the 208Pb/232Th ratio on the same crystal are 

comparable both in the altered volume and in the pristine one. Therefore, as for 

the work of Bosse et al. (2009), accepted ages are those of the 208Pb/232Th ratio 

since: 

• Monazites contain more Th than U thus the signal of 208Pb/232Th is 

better in accuracy. 

• 208Pb originating from common Pb is negligible thanks to the 

abundance of Th. 

• Ages obtained with the Pb/U ratios for Codera samples yielded 

unrealistic older ages than those of emplacement of the Bergell tonalite. 

• Altered areas show a strong decrease in U and lesser for Th 

suggesting circulation of U-aggressive fluids. Loss of U results in age 

sovrastimation (M. Tiepolo personal communication). 
 

208Pb/232Th ages yielded by monazites show significant variations even in the 

same crystal (>2 Ma on different analysis spots). Since dating work is yet 

preliminary and lacks of more accurate data discussion it won’t be examined in 

depth in this thesis and only rough data are presented. Even though dating of dikes 

actually wouldn’t provide a representative mean age, ages of Codera and Bodengo 

dikes plot in two rather distinguishable groups of points (including the 2σ error 

bars, fig. 21). 
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Codera monazites yielded ages ranging from 28 and 25 Ma. Bodengo monazites 

are younger and ages range from 23 and 19 Ma. Even if the higher and lower ages 

of each group are included, pegmatites from Codera area are all older than 24 Ma 

and vice versa for the Bodengo pegmatites. 

Only one fragment included in the VLGm(m) samples yielded discordant age of 

~26 Ma. EMP analysis on this fragment plot on those of CODm(m)1, whose 

fragments also share similar appearance and age. Since it is reasonable to consider 

this as a case of contamination, it was renamed temporarily CODm(m)1-C and 

added to Codera monazites but not included in the plot.  

The same dating was carried on the thorite sample CODg(th) and the xenotime 

intergrown with VCAm(m)1Pb monazite. Thorite ages are concordant for each 

ratio but are 5 to 6 Ma older than those of hosting monazite. On the other hand 
206Pb/238U and 207Pb/235U ages of xenotime are only 2 and 1 Ma respectively older 

of the intergrown monazite VCA(m)1Pb ages. 

The two age groups of Codera and Bodengo pegmatites are respectively older 

and younger than 24 Ma. According to Liati et al. (2000) who dated the Novate 

granite at 24.0 ± 1.2 Ma, the Codera monazite ages of pegmatites would be 

consistent with the field evidence of younger microgranite dikes crosscutting the 

main set of pegmatite dikes in the upper Codera valley. Codera pegmatite 

Figure 21 Plot of ages obtained from analysis spots on the Codera (a) and the Bodengo 

(b) monazites. Box heights are 2σ. 
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intrusion would be coeval with the late D3 (Cressim) ductile deformation stage, 

which is consistent with the higher degree of deformation of dikes than the 

Bodengo ones. On the other hand Bodengo deformed pegmatites would be 

emplaced during the waning stage of ductile deformation in the southern Adula 

nappe.  

 

8. Discussion and Conclusions 

 

In this work only a minor portion of the large Tertiary pegmatitic field of the 

Central Alps was investigated in Codera and Bodengo areas. Pegmatites of both 

areas seem comparable by the similar grade of evolution, since evolved dikes 

display more or less the same mineralogy. On the other hand structural, textural, 

chemical and radiometric results tell a more complicated story that allows 

individuating at least two different intrusion events. 

 

8.1. Stuctural data 

 

Codera pegmatites occur with two main groups with different orientations. The 

main set strikes WSW-ENE, other dikes are oriented E-W. Crosscutting 

relationships suggest the existence of at least two different generations. 

 Pegmatites clearly postdate the emplacement of the Bergell pluton since they 

cut discordantly (1) the base of the intrusion and (2) its parallel pervasive solid-

state foliation, and (3) the main fabric of the Gruf complex. Dikes crosscut 

migmatitic structures thus syn-intrusion peak conditions of 720–740°C and 6–7 

kbar (Galli et al., 2011) clearly exceed those of emplacement of pegmatites. 

 Microgranitic dikes related to the intrusion of the Novate granite (24.0 ± 1.2 

Ma, Liati et al., 2000) seem to postdate pegmatites by crosscutting relationships 

and radiometric results on monazites. Therefore assumed country rock conditions 

of 0.2 GPa and 400 °C (Ciancaleoni and Marquer, 2006) represent the lower limit. 

 All pegmatites from Codera area show solid-state deformation and locally 

localize well-developed mylonites with transpressive kinematics. On two of the 
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sampled quartz-mylonites (nucleated at the wall of deformed pegmatites) the 

measured crystallographic preferred orientation shows a strong, single c-axis 

maximum parallel to the Y-axis of the mylonite (perpendicular to the lineation 

and parallel to the foliation). This quartz CPO pattern suggest syn-deformation 

temperatures of ~500°C and is similar to those studied in Adamello quartz-

mylonites (Pennacchioni et al., 2010; Guastoni et al., 2014 and references 

therein). Temperature is consistent with recrystallized stable biotite and k-feldspar 

in the foliation.  

D3 peak conditions of migmatisation in southern Adula nappe (650–750 °C and 

0.4–0.6 GPa, Nagel et al., 2002) are similar to those of Codera and can be used as 

upper limit to the pegmatite intrusion in the Bodengo area. The main set of 

Bodengo pegmatites is generally undeformed and cuts discordantly the D3 

structures. However some dikes show ductile deformation on boundaries (with an 

annealed quartz fabric typical of a temperature >500 °C) with strike-slip 

kinematic.  Also in Bodengo area there is evidence of at least two generations of 

pegmatites: the main set dips toward W and NW and crosscuts a former set of 

strongly deformed pegmatites striking NW-SE. These may represent the ductile 

deformed set with Codera affinity that predate the main set. 

 

8.2. Chemical data 

 

Pegmatites of Codera and Bodengo areas show a similar grade of evolution and 

mineralogy. On the other hand some minerals show a chemical signature that is 

typical of all crystals of the same phase of the same area.   

Garnet is the most evident one with Codera ones displaying Sps-rich cores and 

Bodengo ones Alm-rich cores. With few exceptions all garnet cores of the same 

area plot coherently on the same Sps content.  

Chemical signature of tourmalines are less evident but Codera ones show the 

highest grade in fractionation, reaching F-elbaite compositions in the Phosphate 

dike in the Upper val Codera. Bodengo schorls display minor fractionation but 
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higher grade of variance in Mg content. This is probably due to interaction with 

the host rock (Guastoni et al. 2014).  

Monazite samples of Codera area display an higher content in Ce (27.5 mol. %) 

than those of Bodengo (25 mol. %). However this last datum is based only on two 

dikes from Bodengo area and should be treated critically. 

 

8.3. Radiometric data 

 

As Guastoni et al. (2014) assumed, Pb/Th dating on monazite yielded two 

different age groups for pegmatite dikes of the two different areas. Codera 

pegmatites are older than 24 Ma, with monazite 208Pb/232Th ages ranging from 28 

to 25 Ma, and Bodengo ones are younger with monazite 208Pb/232Th ages ranging 

from 23 and 19 Ma. Error bars (2σ) of single age measures of monazites from the 

same area do not overlap sufficiently to give an acceptable average age. On the 

other hand, the virtual medium age of 20,69±0.24 Ma (2σ) for Bodengo 

pegmatites is coherent with observation of some authors that pegmatite 

emplacement was associated with a protracted magmatic activity over a time 

range from 32 to 20 Ma (Romer et al. 1996, Schärer et al. 1996, Rubatto et al. 

2009).  

 

8.4. Conclusions 

 

• Codera and Bodengo areas represent two small portions of the large 

tertiary pegmatite field of the Central Alps. Despite a similar grade of evolution of 

the dikes and mineralogy, these two areas show systematic differences after 

structural, chemical and radiometric study.  

Codera pegmatites are older than 24 Ma (monazite ages) and locally show the 

major grade of evolution among all sampled dikes (e.g. CODp dike). The main set 

trends WSW-ENE and is affected by solid-state pervasive deformation, which 

locally produces high-temperature mylonites, developed under transpressive 

conditions. Bodengo Pegmatites are younger than 24 Ma and thus than Codera 
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ones. The main set is oriented N-S and dikes are mainly undeformed but locally 

show ductile reactivation of borders with strike slip kinematic. Codera garnets are 

richer in spessartine than Bodengo ones and Codera schorl tourmalines show 

locally highest grade of evolution. 

Since pegmatites of the two areas have (i) different orientations, (ii) different 

grade of deformation and (iii) different chemical signature of minerals it is 

reasonable to individuate two separate intrusion events. This is supported by 

radiometric dating on monazite, which shows no overlap between the Codera and 

Bodengo pegmatite ages. 

 

• Pegmatites of Codera area emplaced the host rock at a temperature of at 

least 500°C, which is constrained by the presence of high-temperature quartz 

mylonites at their boundaries. Dating of pegmatites well concords with the 

progressive younging of the radiometric ages of peak metamorphism from E to W 

along the SSB (Todd and Engi, 1997). It is reasonable that Bodengo pegmatites 

occurred later at similar T conditions during differential uplift rates along the 

SSB. The time span of emplacement of pegmatites also overlaps the protracted 

stage of fluid-assisted migmatisation in the SSB, which occurred up to 20 Ma  

(Romer et al. 1996, Schärer et al. 1996, Rubatto et al. 2009). However pegmatites 

and migmatites seem genetically unrelated since pegmatite intrusion always 

postdates the local leucosomes. 

 

• Many authors individuated different pegmatite generations in the Central 

Alps with young pegmatites treated as post-kinematic intrusions (e.g. Romer et al. 

1996). However monazite ages of pegmatite dikes of Bodengo area, which show 

sometimes ductile reactivation of the margins, indicate that ductile deformation 

was still active in the southern Adula nappe after 24 Ma and possibly even up to 

~20 Ma if the average age is considered. Waning of such conditions is witnessed 

by the elder set of Bodengo, which is strongly deformed than the crosscutting 

younger ones. 
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APPENDICES 

 

I. Analytical methods 

 

8.5. Scanning Electron Microscope Backscattered Electrons imaging 

 

The electronic microscope used for BSE imaging is the CamScan MX3000 at 

the SEM laboratory of the Dipartimento di Geoscienze of Padova. The electron 

beam source is a LaB6 crystal working at standard conditions of 15-20 kV and a 

current of ~1 nA on the sample. It is equipped with a solid-state semiconductor 

BSE detector which has 4 indipendent sectors. At optimum working conditions 

(10 mm working distance) the resolution is better than 50 nm for silicates.  

8.6. Electron Microprobe Analysis (EMPA) 

 

Electron-microprobe analyses were performed on garnet, tourmaline, monazite, 

thorite and xenotime samples (also for some inclusions) at the laboratory of 

microanalysis of the Istituto di Geoscienze e Georisorse (IGG) of CNR (Padova).  

The instrument used is a CAMECA SX-50 electron microprobe, equipped with 

four Wavelength Dispersive Spectrometers (WDS) and one Energy Dispersive 

Spectrometer (EDS). The operating conditions were 20 kV accelerating voltage 

and 20 nA beam current. Counting times were 10 s at the peak and 5 s at the 

background for major elements and 20 to 100 s at peak and background for minor 

elements. X-ray counts were converted into oxide weight percentages using the 

PAP correction program. Analyses are precise to within 1% for major elements 

and 3–5% for minor elements. Calibration was carried using natural and synthetic 

international standards in part supplied by Cameca and in part kindly provided by 

the Smithsonian National Museum of Natural History (Smithsonian Microbeam 

Standards). 

 



	  84	  

8.7. Laser Ablation and Induced Coupled Plasma Mass Spectrometry (LA-ICP-

MS) 

 

Isotopic analyses on monazite were obtained with the LA-ICP-MS technique at 

the Istituto di Geoscienze e Georisorse (IGG) of CNR (Pavia).  The instrument 

consists in a laser apparatus coupled with a mass spectrometer. The former is the 

commercial GeoLas102 from MicroLas (Göttingen, Germany), which works with 

a wavelength of 193 nm and a maximum output energy of 200 mJ per pulse. Spot 

size depends on focusing and can be varied from 5 to 120 µm. For monazite 

samples the spot size choice depends on the concentration of U and Th. In order 

to increase the signal vs. background ratio in high-U/Th monazites a small spot 

size is recommended. Highly focused beam can be even used to resolve age 

domains in zoned crystals. The mass spectrometer consists in a single collector 

double-focusing sector field ICPMS with reverse geometry (type Element I from 

ThermoFinnigan, Bremen, Germany).  

Isotope dating of monazite with laser ablation ICPMS is operated with an 

analytical method basically similar to that developed for zircon (Paquette and 

Tiepolo, 2007). The signal of 202Hg, 204(Pb+Hg), 206Pb, 207Pb, 208Pb, 232Th and 
238U masses are acquired, where 202Hg is used to correct the isobaric interference 

of 204Hg on 204Pb by peak stripping. This allows to monitor the presence of 

common Pb in the sample. The 235U signal is calculated from 238U on the basis of 

the ratio 238U/235U = 137.88. The high sensitivity and low background allows 

extremely low limits of detection (down to the ppb level) for the heaviest 

elements, and between 10 and 100 ppb for the lighter masses. Precision and 

accuracy in age determinations to better than ~2% were attained on the zircon 

standard 91500 (Paquette and Tiepolo 2007). Analytical conditions used for 

monazites are the same reported by Paquette and Tiepolo (2007). Thanks to the 

large size and quality of monazites a 10 µm spot size was used to get more 

accurate data. The standard used for monazite dating is the Moacir sample 

described by Paquette and Tiepolo (2007). 
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II. EMP and LA-ICP-MS analyses results 

 

Following tables include all EMP and LA-ICP-MS results for each analysis spot 

(An. Pt.) on sampled crystals. The positions of the spots are reported on 

photographic tables in the attached CD. 

 

• Pages 86-94  Garnet EMPA 

• Pages 95-99 Tourmaline EMPA 

• Page 99 Inclusions EMPA 

• Pages 100-101 Monazite EMPA 

• Page 102 Monazite, Thorite and Xenotime LA-ICP-MS 
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Inclusions EMPA 
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