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"The secret of life, though, is to fall seven times and to get up eight times."

The Alchemist, Paulo Coelho
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Abstract

Seismic noise interferometry is a geophysical technique that transforms passive noise

from sources such as human activities, sea waves, wind, and earthquakes into a signal

that can be studied to obtain information about the Earth’s subsurface. This method in-

volves performing cross-correlation of seismic noise to evaluate surface wave dispersion

passively, without the need of active sources.

Cross-correlation of seismic noise recordings can infer the impulse response between two

points when the noise correlation function (NCF) converges to the impulse response be-

tween two receivers, filtered by the noise spectrum’s bandwidth.

In this study, we computed the NCF between two sensors located in the Venice Lagoon,

Italy, in San Sèrvolo and Lido islands. The aim was to obtain the first deep velocity model

of the Venice lagoon from passive noise, since in this environment traditional controlled

source seismic surveys are particularly challenging.

The dispersion curve of the fundamental mode for Rayleigh waves was extracted from

the NCF using the Frequency-Time Analysis (FTAN) method. The non-linear inversion

of dispersion data, in terms of one-dimensional Vs and Vp distribution versus depth, is

consistent with the geological subsoil conditions and it represents the first deep velocity

profile of this area of the Venetian lagoon, interesting for shaking models that could af-

fect the historic center of Venice, which is of enormous value in terms of exposure and

vulnerability.
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Riassunto

L’interferometria del rumore sismico è una tecnica geofisica che trasforma il rumore pas-

sivo generato da fonti come attività umane, onde marine, vento e terremoti, in un segnale

che può essere studiato per ottenere informazioni sul sottosuolo terrestre. Questo metodo

prevede l’esecuzione della correlazione incrociata del rumore per valutare la dispersione

delle onde di superficie in modo passivo, senza l’utilizzo di sorgenti attive.

La correlazione incrociata del rumore sismico può inferire la risposta all’impulso tra

due punti quando la funzione di correlazione del rumore (NCF) converge alla risposta

all’impulso tra due ricevitori, filtrata dalla larghezza di banda dello spettro del rumore.

In questo studio, è stata calcolata la NCF tra due sensori situati nella Laguna di Venezia,

Italia, rispettivamente nelle isole di San Sèrvolo e Lido. L’obiettivo era ricavare il primo

modello profondo di velocità della laguna veneziana utilizzando il rumore passivo, poiché

in questo ambiente i sondaggi sismici tradizionali con sorgenti controllate sono partico-

larmente difficili da eseguire.

La curva di dispersione del modo fondamentale delle onde di Rayleigh è stata quindi es-

tratta dalla NCF utilizzando il metodo FTAN (Frequency-Time Analysis). L’inversione

non lineare dei dati di dispersione, in termini di distribuzione unidimensionale delle Vs e

Vp rispetto alla profondità, è coerente con le condizioni geologiche del sottosuolo e rapp-

resenta il primo modello di velocità profondo di quest’area, di particolare interesse per i

modelli di scuotimento che potrebbero interessare il centro storico di Venezia, il quale ha

un enorme valore in termini di esposizione e vulnerabilità.
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1. Introduction

This chapter will describe in detail what is meant by seismic noise, its main characteristics

and the sources that generate it, both natural and anthropogenic. It will also define the

fundamental concepts of seismic noise interferometry, a geophysical method used to study

the Earth’s subsurface structure. Finally, it will be introduced the cross-correlation of

seismic signals, which allows to extract the impulsive response of a medium between two

receivers.

1.1 Seismic noise interferometry

Unlike the distinct and high-energy waves produced by earthquakes or explosions, seis-

mic noise is typically a background hum that persists continuously. It refers to the con-

tinuous, low-amplitude vibrations of the Earth’s surface generated by a variety of natural

and anthropogenic sources, detectable as a superposition of body waves, surface waves,

microseisms, and microtremors. Especially when it includes low-frequency components,

seismic noise can provide valuable information about the subsurface, since it continu-

ously propagates through the Earth and can be recorded over long periods, capturing

signals from various depths and directions.

Despite its low energy, ambient noise contains valuable information about the subsurface,

because it is generated across a wide range of frequencies and it is ubiquitous. The fre-

quency of the ambient noise’s wavefield ranges between 1 mHz and 100 Hz (Nishida,

2017). High-frequency noise (f > 1 Hz) is generally due to human activities, such as

traffic, industrial operations, machinery, construction. The energy of these type of signals

varies with time, since it is correlated with human life rhythms, characterized by daily and

weekly periodicity (Campillo and Roux, 2015). On the other hand, low-frequency noise

(f < 1 Hz), is associated with the interaction of the oceanic swell, wind waves and ocean

infragravity waves with the solid Earth. According to the frequencies of these wavefields,

they are categorized into seismic hum (1–20 mHz), and microseisms (0.02-1 Hz), which

can be distinguished into primary, with frequencies ranging between 0.02 and 0.1 Hz, and

secondary, between 0.1 and 0.5 Hz (Nishida, 2017).
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Figure 1: Example of ambient noise recorded in Venice Lido on July 8th, 2023. Each

of the high amplitude peaks indicates an increase in seismic motion, and they generally

concentrate between 5 a.m. and 10 p.m., when human activity is greater.

Surface waves, especially Rayleigh waves, represent the dominant part in low-frequency

seismic noise, making it a valuable resource for seismic investigations aimed at exploring

the Earth’s subsurface. An example is seismic noise interferometry: without the need

for active sources, this method involves the cross-correlation of diffuse seismic noise

wavefield, passively and continuously recorded at different receiver locations, in order to

estimate inter-receiver wave signals, as if one of the receivers were located at a virtual

source. Ambient noise signals recorded at different stations are considered to be uncorre-

lated, since they result from variable interferences, and cross-correlation methods aim at

extracting the coherent part of the signals that contains deterministic information on wave

propagation between the two receivers (Campillo and Roux, 2015).

Given the extensive applications of surface waves in subsurface investigations, this thesis

specifically focuses on surface-wave transmission responses, which provide critical in-

sights into the medium’s properties. In dealing with a diffuse wavefield, all wave modes

are present, and their amplitudes are uncorrelated but still have equal expected energies

(Wapenaar et al., 2010). Experimental and theoretical studies have demonstrated that

the time-averaged cross-correlation of an isotropic random wavefield, computed between

two receivers, known as the noise correlation function (NCF), converges into the intersta-

tion Green’s function, which is the impulsive response of the medium between the two

receivers, filtered by the bandwidth of the noise spectrum. In order to derive the NCF

from seismic noise, data need to be standardized before performing the cross-correlation.

Various data processing strategies, i.e., attenuating amplitudes above a certain threshold
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(Bensen et al., 2007), are employed to improve the signal-to-noise ratio. After homoge-

nizing the traces, cross-correlation is performed for multiple time windows, and the results

are stacked to enhance the Green’s function between the stations.

1.1.1 Cross correlation and Green’s function

In signal processing, correlation can be done with only one signal (autocorrelation), or

between two different signals (cross-correlation). Autocorrelation measures the distribu-

tion of the energy within a signal, given by the amplitude of a peak at zero lag. Instead,

cross-correlation measures the similarity between two series, as function of the displace-

ment of one signal relative to the other, estimating the degree of correlation between them.

Cross-correlation is similar in nature to convolution; however, unlike convolution, which

involves the time reversal of one signal before shifting and multiplying it with the other,

cross-correlation involves only the shift and the product.

Cross-correlation is an integral part of seismic noise interferometry, and it is used to an-

alyze the similarity of noise signals recorded by different receivers. Since the distance

between recording stations prevents the waves from reaching each receiver at the same

time, the cross-correlation will be very important in delivering the time delay between

arrivals of seismic waves at different seismometers. This time delay gives very important

information on the propagation of seismic waves and geological structure of the subsur-

face of the area between the seismic stations.

The cross-correlation of signals recorded at two receiver locations (i.e., xA and xB) can

estimate the Green’s function between them, as if a virtual source was, for instance, at po-

sition xA. The time-averaged cross-correlation function of the wavefield at the two points,

xA and xB, can be mathematically expressed as:

CAB(τ) =
1
T

∫ T

0
ïv(xA, t + τ)v(xB, t)ðdt (1.1)

In the equation above, T is the time period, τ is the lag time used for the correlation,

v(xA, t) and v(xB, t) relate to the data continuously recorded at station positions (Snieder

and Wapenaar, 2010).

It has been shown that, if noise sources are properly distributed in space and uncorre-

lated, their average cross-correlation function will return the superposition of the Green’s

function and its time-reversed counterpart (Snieder and Wapenaar, 2010):

[G(xA,xB,τ)+G(xA,xB,−τ)]∗Ss(τ) =CAB(τ) (1.2)
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In the equation above, G(xA,xB,τ) and G(xA,xB,−τ) are the empirical Green’s functions

(EGF) of the wavefield generated by xA and received at xB, and the one generated by xB

and received at xA after time reversal, respectively; Ss is the autocorrelation of the source

wavelet.

The positive and negative parts of the NCF represent the two opposite directions of wave

propagation: the positive part is the noise traveling from xA to xB, while the negative part

the noise traveling from xB to xA. When dealing with diffuse noise, the signal in both parts

of the NCF should be identical, indicating that noise travels in all directions. However, in

real world, this not always happens and sometimes symmetry needs to be achieved. This

approach not only improves the signal-to-noise ratio (SNR), but it also ensures a more

uniform source distribution, enhancing the overall quality of the seismic data (Boaga et

al., 2007). Some researchers, leveraging the spatial reciprocity of the Green’s functions

(i.e. Bensen et al., 2007), average the positive and negative parts of the NCF, thereby

imposing symmetry, enhancing the SNR and effectively combining signals from opposite

directions, resulting in a more homogenized source distribution.
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1.2 Seismic waves

Seismic noise mainly includes two types of seismic waves: body waves and surface

waves. Body waves, which travel through the Earth’s interior, can either be longitudi-

nal, known as P-waves (P, primary), or transverse, known as S-waves (S, secondary).

Surface waves, which generally represent the predominant component of low-frequency

seismic noise, travel along the Earth’s surface and can be distinguished into Rayleigh (R)

and Love (L) waves .

1.2.1 Body waves

Body waves propagate through the Earth’s interior, transmitting energy from a seismic

event, such as an earthquake, an explosion, or a mechanical disturbance, through the sub-

surface. They can be distinguished into P-waves and S-waves, depending on the direction

of particle motion relative to the direction of wave propagation.

P-waves (P, primary) are compressional (longitudinal) waves, and involve alternating

compressions and dilations that move in the direction of wave propagation, which is per-

pendicular to the wavefront (Figure 2). P-waves are the fastest ones, making them the

first-arriving energy on a seismogram (Figure 4), and they can travel through solids, liq-

uids and gases.

S-waves (S, secondary) are shear (transverse) waves, in which the particles move per-

pendicular to the direction of wave propagation (Figure 3). Their motion is often po-

larized, such that particle movement occurs in vertical (SV-waves) or horizontal planes

(SH-waves). Unlike P-waves, they cannot travel through fluids and have a lower velocity,

which is why they appear as secondary arrivals on a seismogram (Figure 4).

Figure 2: Particle motion in P-waves - modified from Shearer (2009).
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Figure 3: Particle motion in S-waves - modified from Shearer (2009).

The propagation velocity of body waves is governed by the density (ρ) of the material they

propagate through and its elastic properties, described by its Lamé constants. The first

Lamé constant, λ , is related to the material’s resistance to uniform compression, while

the second parameter, µ , known as the shear modulus, describes the material’s resistance

to shear deformation, therefore its rigidity. The velocity of compressional waves (Vp)

depends on λ , µ and ρ , making it sensitive to both the material’s compressibility and

rigidity. In contrast, the velocity of shear waves (Vs) only depends on µ and ρ . Fluids

have zero shear modulus, this is why shear waves cannot propagate through them.

Compressional and shear wave velocities can be defined by the following equations:







vp =
√

λ+2µ
ρ

vs =
√

µ
ρ

(1.3)

The ratio between P-wave and S-wave velocities can be approximated to
√

3 for a specific

material known as a Poisson solid, which is characterized by a Poisson’s ratio (ν) of 0.25.

The Poisson’s ratio is a measure of a material’s elasticity and defines the ratio of trans-

verse contraction (or expansion) strain to longitudinal extension strain in the direction of

the stretching force. For a Poisson solid, the value of ν is 0.25, which implies that the first

Lamé constant (λ ) is equal to the shear modulus (µ). Substituting this relationship into

the equations for Vp and Vs, the ratio Vp

Vs
becomes equal to

√
3. For most rocks, the Pois-

son’s ratio usually ranges between 0.05 and 0.50, depending on their mineral composition,

porosity, confining pressure, temperature, state of fracturing, and fluid saturation.
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1.2.2 Surface waves

Surface waves are primarily generated when vertically-polarized S-waves and P-waves

reach the surface, but they are generally characterized by longer wavelengths and lower

frequencies compared to body waves.

Unlike body waves, which travel through the Earth’s interior (in three dimensions), sur-

face waves propagate along its surface (in two dimensions), therefore they experience less

energy attenuation and maintain their amplitude over longer distances, making them eas-

ier to detect in noise records compared to body waves, primarily due to the geometrical

effect of wave spreading. Also, in seismic records of distant earthquakes (teleseisms), the

waves with the greatest amplitudes are in fact surface waves (Figure 4). An exception

to this is seen in seismograms of deep-focus earthquakes, where body waves are more

prominent.

Figure 4: Example of a seismogram highlighting distinguished arrival times for different

types of seismic waves - from www.geological-digressions.com.

Since the energy of a surface wave is mostly concentrated near the surface, its displace-

ment field decreases exponentially in the direction orthogonal to that of propagation (Foti

et al., 2014). Moreover, most of the strain energy carried by surface waves is limited

within a depth of about one wavelength from the surface (Achenbach, 2012). This is

why surface waves with long wavelengths can reach greater depths. Since the wavelength

is proportional to the inverse of frequency in harmonic waves, it can be said that high-

frequency waves are limited to shallow depths, while low-frequency ones can penetrate

deeper (Foti et al., 2014).

Another characteristic of surface waves is that, in vertically heterogeneous media, they are

dispersive, meaning their phase velocities are frequency-dependent. Dispersion causes
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different frequency components of a wave packet to travel at different velocities, resulting

in a group velocity, the speed of the energy carried by the wave packet (or envelope), that

differs from the phase velocity. Group velocities are more affected by depth, and mea-

surements errors are usually a bit larger than those of phase velocities. However, source

effects on group velocities are smaller, and therefore usually ignored. The main advantage

is that details on earthquake source processes do not have to be known to measure group

velocities (Laske, G., Widmer-Schnidrig, R., 2015).

Depending on their particle motion, surface waves can be distinguished into Love and

Rayleigh waves. Love waves (Figure 5) move parallel to the Earth’s surface and perpen-

dicular to the direction of propagation, while Rayleigh waves (Figure 6) are a somehow

more complex, since they induce an elliptical retrograde motion, as a result of the super-

position of vertical and horizontal (radial) components. Most of the shaking felt from an

earthquake is due to Rayleigh waves, which can be much larger than that caused by other

waves. Like Love waves, the amplitude of these waves decreases dramatically with depth.

Figure 5: Particle motion in Love waves - modified from Shearer (2009).
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Figure 6: Particle motion in Rayleigh waves - modified from Shearer (2009).

In this work, all surface waves components were initially cross-correlated: vertical (Z),

radial (R), and transverse (T). This includes all their combinations: ZZ (vertical-vertical),

RR (radial-radial), TT (transverse-transverse), ZR (vertical-radial), ZT (vertical-transverse)

and RT (radial-transverse). Each component can provide specific information about dif-

ferent types of seismic waves. For example, TT and RR components are often associated

with Love waves, while ZZ and ZR components to Rayleigh waves. Therefore, since the

aim was to estimate the fundamental mode for Rayleigh waves, this thesis focused on pro-

cessing and analyzing only the ZZ component. By studying the dispersion of Rayleigh

waves, it was possible to indirectly retrieve a shear wave velocity profile of the subsurface

(from which also the compressional wave velocities distribution could be derived).
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1.3 Objectives of the thesis

The primary objective of this thesis was to process passively recorded seismic noise to

infer the first deep shear wave velocity profile in the challenging environment of the la-

goon between San Sèrvolo and Lido islands, interesting for shaking models that could

affect the historic center of Venice, which is of enormous value in terms of exposure and

vulnerability.

The secondary objective was to study the behavior of the signal-to-noise ratio (SNR)

based on the number of weeks of data stacked, verifying how stacking over progressively

longer periods tends to enhance the quality of the signal, already demonstrated by Bensen

et al., 2007. Moreover, the SNR was measured before and after the application of a spec-

tral whitening, to verify for its effectiveness.
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2. Study Area

In this chapter the geological context of the study area will be examined. The main

geological elements that characterize the Venice lagoon will be described, including its

stratigraphy and the geological processes that have shaped the landscape over time. Fi-

nally, the geographical locations of the seismic stations used for noise recording will be

given, along with details on the types of instruments employed.

2.1 Geological settings

The Venice Lagoon, the largest in the Mediterranean, is approximately 50 km long, with

an average width of 8–15 km (Frascari, 2014). It is situated at the center of the Neogene-

Quaternary foreland basin, between the northeast-verging Northern Apennines chain and

the southeast-verging Eastern Southern Alps. In a broader regional context, it lies at the

northeastern edge of the Adriatic microplate, where the subsurface of the circum-Venetian

region and its offshore areas have recorded a long history of sedimentary, magmatic,

and tectonic events (Tosi L. et al., 2007). According to the depositional system frame-

work of the Veneto-Friulian Plain, this area is positioned between coastal and deltaic

systems, characterized by shallow marine and lagoonal environments, where predomi-

nantly medium to fine sediments (sands, silts, and clays) emerge, related to the distal part

of the Holocene Brenta megafan. The lagoon morphology includes shallows, tidal flats,

salt marshes, islands, and a network of channels. Its boundaries also include fishponds,

reclaimed areas, and the coast, which is interrupted by three inlets—Lido, Malamocco,

and Chioggia—that allow water exchange with the sea (Brambati et al., 2003).

The geological structure of the Venetian Plain, down to a depth of 5,000 meters, con-

sists of Pre-Pliocene, Pliocene, and Quaternary deposits. The thickness of Quaternary

sediments varies significantly, from about 3,000 meters in the southern region to a few

hundred meters in the northern region. These sediments are mainly composed of sandy

and silty-clayey layers formed through alluvial and marine processes (Brambati et al.,

2003).
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In 1971, in response to the alarm about the accelerated subsidence of Venice in the 1960s,

the biostratigraphic and chronostratigraphic knowledge of the deep deposits in the Vene-

tian area was expanded through the drilling of two deep boreholes, VE-1 (949.7 m) and

VE-1bis (120.3 m), conducted by the Consiglio Nazionale delle Ricerche (CNR) of Italy

in Isola Nuova del Tronchetto (inner lagoon). More recently, the Pleistocene stratigraphic

sequence has been updated by Kent et al. (2002) and Massari et al. (2004).

Core samples from VE-1 and VE-1bis (Figure 7) revealed an alternation of gravel, sandy

gravel, sand, interlaminated silt/fine sand, clay, marine marl and mudstone with occa-

sional bioturbation and sapropel layers, especially around 785 m. At 815 m, after the

sapropel bundles, the shelf to shoreface succession begins, with thicker layers of shelly

sand, marine marl and mudstone, with no more presence of finely interlaminated silt/fine

sand/clay (Figure 8). Moreover, there is a particular concentration of turbidites around

800 m, while layers of gravel and sandy gravel mainly concentrate in the first 300 m.

Figure 7: Map of Venice lagoon and location of the CNR cores Venice 1 and Venice 1bis

(Massari et al., 2004).
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Figure 8: Stratigraphy of the succession recovered by VE-1 and VE-1bis cores (Massari

et al., 2004).
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The Holocene-Pleistocene limit is marked by a compacted clay layer known as "caranto"

(Figure 9), which formed due to the dry climate during the final phase of the low sea

level stand. The caranto layer tends to emerge on the mainland, varying between –5 and

–23 meters in depth and gradually deepening towards the coast (Brambati et al., 2003).

Early Holocene sediments are characterized by a discontinuous layer of silt and sand, of-

ten with a chaotic structure, mixed with shelly marine-lagoon sands. The middle-upper

sections of this sedimentary sequence typically alternate between marine-lagoon deposits

and floodplain sediments. During the subsequent high-stand sea level, alluvial sedimenta-

tion resumed along the outer northern and southern belts, corresponding to fluvial mouths.

Additionally, some areas experienced episodes of emersion and submersion due to fluctu-

ations in climate, changes in sediment sources, variations in subsidence rates, and human

activities (Brambati et al., 2003).

Figure 9: Holocene-Pleistocene stratigraphical sequence across the central lagoon of

Venice (Gatto and Previatello, 1974).

A phenomenon that has particularly affected the Venice lagoon is subsidence, accelerated

by intensive groundwater extraction in the 1950s and 1960s.

The term subsidence refers to any downward movement of the Earth’s surface, regard-

less of the cause, the area affected, the rate of occurrence, the temporal evolution, or the

resulting environmental changes. Subsidence is the final stage and the surface manifesta-

tion of a series of processes that occur underground and are, in some way, related to the

geological or geomechanical structure of the area. Specific characteristics of the soil can

either promote, accelerate, or inhibit these processes (Carbognin et al., 2011).

Subsidence occurs due to both natural and anthropogenic causes, which sometimes com-

bine to produce the overall effect. Human activities often act as a "catalyst", signifi-

cantly influencing the phenomenon, or as a "trigger," initiating it (Carbognin et al., 2011).

The main causes of natural subsidence can be attributed to deep tectonic processes (such

14



as orogenetic movements, volcanic activity, and seismic activity), the lowering of the

Pliocene substratum due to geostatic load (the weight of overlying sediments), chemical-

physical transformations (diagenesis) of sediments due to lithostatic pressure, the natural

compaction of unconsolidated sediments deposited on the Pliocene layer, and isostatic

movements. Other minor and/or concurrent causes can include changes in the physical

state, such as the natural drying of lake or lagoon basins, which leads to compaction and

oxidation of organic materials. The most widespread form of anthropogenic subsidence,

both in terms of extent and magnitude, is that induced by soil compaction resulting from

the excessive extraction of underground fluids (Carbognin et al., 2011).

The subsidence caused by groundwater extraction in the lagoon area began around 1930,

coinciding with the first settlements in Porto Marghera and the industrial exploitation of

artesian aquifers. Initially, the use of these water resources was relatively modest, and

the piezometric decline occurred slowly across the area until the late 1940s. However,

with the post-war industrial boom in the 1950s and 1960s, the exploitation of the aquifer

system became increasingly intense, affecting the six artesian aquifers that extend to a

depth of 320 meters (Carbognin et al., 1998). Estimates of natural subsidence rates were

derived from analyses of the VE-1 core, along with radiocarbon dating of late Pleistocene

and Holocene sediments collected in the lagoon and coastal areas (Bortolami et al., 1986).

Historically, human activities—from the diversion of tributaries to more recent excessive

groundwater extraction—have reversed the natural evolutionary trend of the Venice la-

goon, leading to its deepening and significantly altering its morphology. According to

Brambati et al. (2003) and Kent et al. (2002), natural subsidence during the Quaternary

period ranged between 0.5 and 1.3 mm/year, and 1950 and 1970 human-induced activi-

ties significantly increased this rate. Overall, there has been a relative elevation loss of

23 cm over the past century due to land subsidence (12 cm, of which 3 cm due to natural

subsidence and 9 cm to anthropogenic subsidence) and rise in sea level (11 cm).
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2.2 Seismic stations

Ambient noise was continuously recorded by two three-component receivers, respectively

located on San Sèrvolo (Figure 10: Station A; 45°25’10.3"N 12°21’21.9"E) and Lido

(Figure 10: Station B; 45°25’12.0"N 12°22’48.0"E) islands.

Figure 10: Location of station A (San Sèrvolo) and station B (Lido). - Image from Google

Earth.

The receiver in San Sèrvolo, installed by the University of Padova, is a short band seis-

mometer (Tellus-5s), with an acquisition frequency range of 0.2-100 Hz, a transduction

factor of 400 V/m/s for the single ended version (S) and 800 V/m/s for the differential

output (D), and a dynamic range > 140 dB. The receiver in Lido, which belongs to the

INGV Seismic Network 2Y (AdriaArray Temporary Network: Italy – northeast, station

code A303A), is a symmetric triaxial Trillium 120 PH (posthole) seismometer, with an

acquisition frequency range of 120 s - 150 Hz, a nominal sensitivity of 1200 V-s/m and a

dynamic range of 168 dB at 1 Hz. The inter-stations distance was approximately 1870 m.

The recording started on July 8th, 2023, and ended on October 28th, 2023.
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3. Data Processing

The noise data processing divided into three main phases. The first phase was the cross-

correlation of ZZ components with temporal stacking, and the measurement of the signal-

to-noise ratio. The second phase focused on the measurement of the dispersion curve

using the frequency–time analysis (FTAN). Finally, the third phase was the inversion of

the dispersion curve to obtain the Vs and Vp ground profiles.

3.1 Cross-correlation

In the first phase of data processing, cross-correlation between the two stations was per-

formed, obtaining a series of NCFs, one for each recording day, from July 8th, 2023 to

October 28th, 2023. Cross-correlating long ambient noise sequences offered several ad-

vantages in terms of quality and reliability of the results. Firstly, it was expected that

longer sequences would improve the signal-to-noise ratio (Bensen et al., 2007), increas-

ing resolution and making coherent signals, like surface waves, more evident and easier

to detect. Furthermore, it was expected that stacking more days of data would contribute

also to increasing the reliability of the cross-correlation function (Bensen et al., 2007).

The whole process was done through a Python script, that included, prior to cross-correlation

itself, the azimuth and distance calculation between the two seismic stations, respectively

located in San Servolo (45.419521, 12.356072) and Lido (45.42, 12.38). This was done

with gps2dist_azimuth function from obspy.geodetics library, which returns the dis-

tance between the stations and the azimuth, both needed to rotate the NE horizontal com-

ponents into radial (R) and transverse (T) components.

The first parameter to be defined was the bandpass filter, which would allow frequencies

within a specific range to pass through, while attenuating frequencies outside that range.

Different frequency intervals were chosen between 0.1 Hz and 9 Hz, in order to evaluate

which range would be the most representative of ambient noise in this case. After many

tries, the optimal frequency range was found to be 0.1-5 Hz, where the significant ampli-

tudes of the signal concentrated. A sliding time window of 3600 seconds (one hour) was
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then defined to segment the data before performing the cross-correlation. Subsequently,

all the seismic traces were transformed from time domain to frequency domain using the

Fast Fourier Transform (FFT) before applying a spectral whitening, used to improve the

resolution and the appearance of seismic data by correcting for frequency attenuation.

The seismic traces were sampled at a frequency of 20 Hz and, given the considerable

duration of the seismic traces (each lasting 24 hours), they were shortened and defined

within a time interval between -20 and +20 seconds, relative to the central time of the

cross-correlation window, to focus on the most relevant portion of the signal.

Since the focus of this work was on Rayleigh waves, cross-correlation between the sta-

tions was finally performed, in the frequency domain, only considering the ZZ compo-

nent of the traces. This process created a total of 111 noise correlation functions (NCFs),

which were finally transformed back to the time domain through the Inverse Fast Fourier

Transform (IFFT).

3.1.1 Temporal stacking

After the daily cross-correlations were returned to the time domain, they were added

together (or ‘stacked’) using another Python code, representing in this way with a sin-

gle function the entire recording period and improving the accuracy of the final cross-

correlation function. In the NCF, the frequency range of the coherent noise and the length

of the acquisition both depend on the distance between the receivers and on the frequency

characteristics of the noise sources involved, like sea waves, shallow lagoon waves, traf-

fic noise, wind, etc. (Boaga et al., 2010). The resulting correlation function computed

between the stations (Figure 11) has a positive part and a negative part. The positive part

refers to noise travelling from station A to station B, while the negative part from B to A.

In the field of diffuse noise, the signal in both parts of the NCF is the same, causing the

noise to travel in all directions (Boaga et al., 2010). When working with seismic traces

with no preferred orientation and with low frequency seismic noise, like in this case, the

same signal in both parts of NCF (symmetry conditions) assures that the inter-stations

distance is appropriate (Boaga et al., 2007).
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Figure 11: Result of the cross-correlation between the two stations, ZZ component. Two

parts can be identified: the positive part, which represents the noise propagating from

station A to station B (with A considered as the "master"), and the negative part, which

represents the noise traveling from B to A (again with A as the reference).

Many authors, using the spatial reciprocity of the Green’s function, average the positive

and the negative parts of NCF, thereby imposing symmetry (i.e. Bensen et al., 2007).

This procedure was followed also in this case: after the first stack, another one was done

between the positive and the negative parts of the signal (Figure 12). Averaging them

helped to reduce incoherent noise that may have affected one side of the correlation more

than the other, since it constructively combined the information from both directions,

reinforcing the coherent signal and better homogenizing the source distribution.
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Figure 12: NCF after the final stack. The positive and negative parts were averaged,

resulting in a single trace travelling in the positive direction.

3.1.2 Signal-to-noise ratio measurement

After the final stack (Figure 12), it was possible to measure the signal-to-noise ratio, de-

fined as the ratio between the average signal amplitude and the average noise amplitude.

The signal-to-noise ratio (SNR) indicates the quality of a signal with respect to the back-

ground noise. In other words, SNR quantifies how strong the signal is compared to the

unwanted noise. In seismic data analysis, SNR is a critical parameter for determining the

reliability and quality of the data.

Figure 13 shows the time windows used to measure the SNR: the interval representing

the signal goes from 0 s to 10 s (blue lines), while the chosen interval associated with the

background noise goes from 11 s to 20 s (red lines). Since the signal-to-noise ratio is able

to indicate the quality of the overall signal, it was measured repeatedly to verify its gen-

eral increase with progressively longer stacking periods, already demonstrated by Bensen

et al. (2007). Moreover, the SNR was also measured before and after the application of

the spectral whitening, in order to verify its effectiveness.
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Figure 13: Example of how SNR measurements were obtained on the final 111-day cross-

correlation, equivalent to approximately 16 weeks. Blue lines delineate the signal win-

dow, while red lines the noise window. SNR value is indicated at right-hand side of the

image.

3.2 Frequency-Time Analysis

Surface waves are challenging to study, since they don’t behave like regular harmonic

waves. Their main characteristic, dispersion, can be described by a function rather than a

single value, making them difficult to analyze in either time or spectral domain alone. To

solve this, the final correlation function was processed using the Frequency-Time Analysis

(FTAN), which separates signals based on their dispersion curve. This method employs a

system of narrow-band Gaussian filters, with varying central frequency, that do not intro-

duce phase distortion and give a good resolution in the time-frequency domain (Ndikum

et al., 2014).

Imagine having a signal in the time domain, W (t), and its corresponding Fourier transform

in the frequency domain, K(ω). If the signal is passed through a series of narrow-band

filters, with varying central frequency ωH , the result will be a complex function of two

variables (Romanelli, n.d.):

S
(

ωH
, t
)

=
∫ +∞

−∞

H
(

ω −ωH
)

K(ω)eiωtdω (3.1)

The function S(ωH , t) is not only determined by the original signal, but it involves also

the filter characteristics. The choice of the filter H(ω −ωH) depends on the properties of

the signal to be processed. When the shape of H(ω −ωH) is known, the functions W (t)
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or K(ω) can be recovered (Romanelli, n.d.). K(ω) can be obtained from infinitesimally

small filters (δ (ω −ωH)), while W (t) from infinitely broad filters ( 1√
2π

). For surface

waves, the filter must not introduce phase distortion (H has to be real-valued) and it should

give the best resolution. For these reasons, the optimal choice is a Gaussian filter (a filter

whose impulse response is a Gaussian function), described by the central frequency ωH

and the width of the frequency band σ (Romanelli n.d.):

G(ω) =
1√

2πσ
e
−ω2

2σ2 (3.2)

Therefore, the result is a complex-valued function (Romanelli, n.d.):

S
(

ωH
, t
)

=
1√

2πσ (ωH)

∫ +∞

−∞

e
− (ω−ωH )2

2σ2(ωH ) K(ω)e(iωt)dω (3.3)

Its graphical representation is the image of a matrix whose columns are the energy values

at a certain period, and the rows are the energy values at constant group velocity (Ndikum

et al., 2014). Converting the frequency to period and, given the epicentral distance, con-

verting arrival times of energy packets to group velocity, the FTAN map of a signal is

obtained (Figure 14), which is a contour map of |S(ωH , t)|. Finally, the dispersion curve

of the signal, τ(ω), is known approximately from FTAN results (Romanelli, n.d.).

Before running the Python code to perform the FTAN, different parameters had to be

chosen. The inter-station distance needed to be specified (1870 m); the sampling interval

(SI), considering a sampling frequency of 20 Hz, was set at 0.05 s, and the frequency and

velocity intervals for the analysis were respectively set at 0.1-5 Hz and 80-2500 m/s. Fi-

nally, the alpha value, which governs the aperture of the Gaussian filter (the higher alpha,

the narrower the bandpass), was chosen to be 10.

Firstly, the Python code computed the spectrum of the analytical signal by multiplying

the signal spectrum by a Heaviside step function, to retain only the positive frequen-

cies. Subsequently, the analytical signal was transformed into the frequency domain using

the Fourier transform and the Gaussian filter was applied to isolate the spectral compo-

nents within different frequency bands. At the end, an interactive colorimetric velocity-

frequency graph, the FTAN map, was generated, where the dispersion curve could be

manually or automatically picked (Figure 14).

22



Figure 14: FTAN map and manual picking. The green-yellow "ridge", along which the

picking of the Rayleigh wave fundamental mode dispersion curve was done, distributes

along the frequencies where the energy is at its maximum.

In this work, the picking on the largest amplitudes was done manually, along the yellow-

green "ridge" (Romanelli, n.d.), in order to extract the Rayleigh wave fundamental mode

dispersion curve, around which the signal’s energy focused.

After picking the dispersion curve, its points were extracted as a two-column matrix,

containing the frequencies and the group velocities, respectively.

3.3 Inversion

Surface-wave inversion techniques allow to retrieve a layered velocity model of the sub-

surface from a dispersion curve. In this case, inversion was performed by using the “Sur-

face Wave Inversion” environment in Dinver, a Geopsy tool, which performs a non-linear

inversion with a Monte Carlo technique.

Firstly, the Rayleigh wave fundamental mode dispersion curve’s parameters were im-

ported as frequency (Hz) and group velocity values (m/s), previously retrieved through

the FTAN, and the initial curve was displayed (Figure 15).
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Figure 15: Dispersion curve obtained through the picking done through the FTAN.

In this inversion process, the unknown subsoil model was parametrized as a discrete func-

tion of depth, reaching 1500 m. In this approximation, the ground structure was modelled

as a stack of five homogeneous isotropic layers – which should usually be limited to a

maximum number of ten to keep the inversion computationally feasible –, each defined

by five parameters: Vp, Vs, density, thickness and Poisson’s ratio. Parameters were de-

fined by a range of values or a fixed number, and were set to be either independent or

dependent. In this case, S-wave velocities and thicknesses were chosen as independent

parameters, while P-wave velocities, Poisson’s ratios and densities were set as dependent

on the previous two parameters, maintaining a fixed relationship with them.

For the first four layers, it was necessary to specify an estimated depth, assuming that

their thickness increased going downwards. While, for the last layer, the software did not

require setting a fixed depth. The reason is that the last layer is considered as a semi-

infinite medium or an open boundary, whose thickness does not have an a priori defined

limit. Through the inversion process, the software could then freely adapt the depth of the

fifth layer depending on the observed data.
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Finally, the S-wave velocity range values of each layer were chosen to be similar to the

group velocities retrieved from the dispersion curve; the P-wave velocities were initially

derived considering the relationship Vp ≈
√

3Vs, demonstrated in the first chapter, and,

subsequently, they were significantly broadened, in order to ensure that the profile with

the minimum misfit was both centered and consistent with the shear velocity model.

Table 1 below shows the initial parameters set for the inversion.

Table 1: Initial parameters used for the inversion.

The inversion was then initiated, generating a large number of models around the param-

eter space. For each model, a forward calculation was performed to produce a theoretical

group velocity dispersion curve, which was compared with the observed curve. A misfit

function then quantified the difference between the two, and models with an acceptable

fit were retained. Each model had a specific misfit value, ranging between 0.13 and 0.53

(Figure 16). The misfit is a quantitative measure of how well a proposed model matches

the observed data. It essentially represents the difference between the observed data (i.e.,

the measured dispersion curve) and the data predicted by a model. The lower the misfit

value, the better the model fits the observed data.
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Figure 16: Dispersion curves generated around the initial model (black curve). Each

color represents a different misfit value, ranging between 0.13 (dark red) and 0.53 (dark

blue).

Together with the dispersion curves, the corresponding ground profiles for both Vs and

Vp were finally generated (Figure 17). This type of inversion process helped explore the

non-uniqueness of the solution by identifying multiple models that fitted the observed

data. However, this method is computationally intensive, so it was crucial to balance the

range of possible parameter values with practical constraints. Simplifying the model by

reducing the number of layers or narrowing parameter ranges could make the process

more efficient, but it had to be done carefully, since overly restricting the search may

lead to missing viable solutions. Therefore, choosing the correct input parameters was

indeed the most time-consuming part of the process, since the objective was to ensure

that the theoretical curve and its respective initial subsoil profile were as representative

and centered as possible compared to the models generated by the software.
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Figure 17: Vp and Vs profiles generated by the inversion. Each color represents a different

misfit value, ranging between 0.13 (dark red) and 0.53 (dark blue).

At the end of the inversion process, all Vp and Vs profiles generated were exported as a

.report file. The final compressional and shear velocity models were then obtained by

extracting, through Windows PowerShell, the best profile, represented by the minimum

misfit value.
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4. Results

This chapter will present the final results, obtained through the extraction of the minimum

misfit ground profile generated by the inversion. Moreover, it will discuss the outcomes

derived from signal-to-noise ratio measurements.

4.1 Velocity models

The final deep velocity profiles were obtained by extracting the minimum misfit models

through Windows PowerShell; subsequently they were imported and plotted in a .XLSX

file. The results are shown in Figure 18: the minimum misfit models chosen can be

identified in Figure 17 among the dark red profiles. The error ranges were not inserted in

the final plots, but they can be identified in Figure 17.

(a) (b)

Figure 18: Final deep compressional (a) and shear (b) wave velocity models chosen.
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The velocity models obtained for the area between San Sèrvolo and Lido islands in the

Venice lagoon show a stratified structure with five distinct layers, reaching a maximum

depth visually limited in the final plots at 1500 meters.

The first layer, which is approximately 30 meters thick, is characterized by relatively

low compressional and shear wave velocities (Vp of 461 m/s and Vs of 222 m/s), likely

associated with unconsolidated surface sediments typical of the lagoon environment. The

second layer, which extends down to approximately 148 meters, is characterized by higher

velocities (Vp of 645 m/s and Vs of 394 m/s), indicative of greater sediment compaction.

The third layer goes from 148 to 508 meters, with Vp and Vs velocities reaching 2377 and

719 m/s respectively, suggesting the presence of older, more compact geological units,

possibly associated with cemented sand and gravel deposits or consolidated sedimentary

rocks. The fourth layer extends from 508 to 1377 meters, with a Vp of 3731 m/s and a Vs of

1069 m/s. At approximately 1377 meters in depth, where the fifth layer begins, the shear

velocity profile exhibits an abrupt increase, reaching 2080 m/s, while the compressional

one shows a slower increase, up to 4784 m/s. This significant jump in velocities suggests

the beginning of a much more rigid geological layer, with a quite different Poisson’s ratio.

Table 2 below sums up the parameters characterizing each layer of the final model.

Table 2: Parameters and layers in the final ground profiles.

Consulting the table of ground types classified based on their Vs in EN 1998-1:2004 (Eu-

rocode 8), the first layer corresponds to a ground type C, characterized by an average shear

wave velocity between 180 and 360 m/s, defined as ’deep deposits of dense or medium-

dense sand, gravel or stiff clay (...).’ The intermediate layers can be classified as type B,

with an average Vs ranging between 360 m/s and 800 m/s, characterized by ’deposits of

very dense sand, gravel, or very stiff clay, at least several tens of meters in thickness, with

a gradual increase of mechanical properties with depth.’ Finally, the last two layers are

characterized by a Vs greater than 800 m/s, corresponding to a ground type A, which, in

Italian and European seismic codes, is identified as the engineering bedrock.
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4.2 Signal-to-noise ratio

The observations made by Bensen et al. (2007) regarding the improvement of the signal-

to-noise ratio with increasing stacking periods were further validated by the results ob-

tained in this work. Figure 19 below shows the trend of the SNR measured on noise

correlation functions obtained from progressively longer stacking periods. The most sig-

nificant value is observed after stacking 10 weeks of data, where it reaches a peak of 22.8.

After this, the SNR values fluctuate slightly between 22.0 and 22.8, reaching a value of

22.1 on the final NCF used to retrieve the dispersion curve (corresponding to 16 weeks

of data). Additionally, the signal-to-noise ratio measured before applying the spectral

whitening was at 16.5, lower if compared to 22.1 after spectral whitening.

These results confirm that stacking longer noise sequences and applying a spectral whiten-

ing effectively enhance the quality of the final correlation functions, as demonstrated by

more stable and higher SNR values.

Figure 19: Signal-to-noise ratio measured for different stacking periods. The last value

(22.1) was measured after a stack of 111 days of data (about 16 weeks), so it represents

the SNR measured on final NCF. The shape of the curve shows how the SNR generally

increases with progressively longer stacking periods.
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5. Discussion

This chapter presents the results of this thesis, providing an interpretation and comparing

them with existing studies conducted in similar geological settings to demonstrate their

reliability.

In order to give an initial interpretation of the final velocity models, it is essential to con-

sider the expected geology of the study area. So far, some information about the area’s

possible stratigraphy can be derived from the VE-1 and VE-1bis cores, previously dis-

cussed in the second chapter. Approximately at 4-5 km from the study area, the cores

suggest that the stratigraphy in Tronchetto island presents some similarities with that ex-

pected in San Sèrvolo and Lido islands. Considering Figure 8, the layers seem to align

with the velocity profiles, particularly at shallower depths. In the first 148 m, shear ve-

locities range between 222 and 394 m/s, potentially representing the thin layers of sand,

clay, silt, gravel, sandy gravel, and mudstone, stratigraphically identified in the top 160

m. As depth increases, between 148 m and 508 m, shear velocities are approximately 720

m/s, possibly due to the thickening of these layers and the presence, especially between

200-450 m, of mudstone and marine marl, whose Vs values can vary between 400 and

1000 m/s, depending on the marl’s limestone/clay ratio. The same reasoning can be ap-

plied between 508 m and 1377 m, where the stratigraphy, especially after 815 m, shows

thicker layers of marine marl, mudstone, and shelly sands. What needs to be noticed is

that velocity profiles show a significant increase in seismic velocities after 1377 m, with

a Vs slighltly overcoming 2000 m/s. Although sands, marls, and mudstones usually have

lower shear velocities, they may be characterized by much higher velocities at greater

depths, especially if they underwent lithification or significant porosity reduction.

To further assess the reliability of these velocity models, they were compared with find-

ings from previous studies conducted in similar geological contexts.

A recent work by Boaga et al. (2010) used cross-correlation of seismic noise —sea noise

and anthropic noise from an airport— to infer a 200 meters deep Vs structural model of

the Venice Plain. After that, Mascandola et al. (2019) successfully reconstructed the Vs

structure down to 1700 meters in Castelleone area (Cremona, Lombardy), aiming to map
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the seismic bedrock in the Po Plain, a region with geological features similar to those of

the Venice lagoon. More recently, Cascone et al. (2022) provided a detailed, shallow (30

meters) Vs structural model for two areas in the Po Plain, while deeper structures (up to

800 meters) were extrapolated using theoretical non-linear gradients from literature on

deep alluvial basins. One of the investigated sites, located in the southern Po Plain, shares

some geological features with Venice area, extending from gravel deposits to the Adri-

atic coast, with subsoil predominantly composed of silt and clay layers interspersed with

sandy layers.

Comparing the results of this work with those of Boaga et al. (2010), several similarities

in the Vs structural profiles emerge, despite some differences in the subdivision of the

layers. Both studies report a Vs value of approximately 700 m/s at a depth of 200 meters.

Additionally, at approximately 80-100 m, both studies show shear velocities oscillating

around 400 m/s (Figure 20).

(a) (b)

Figure 20: Comparison between (a) the shear wave velocity profile obtained in this work

and (b) the one obtained by Boaga et al. (2010).
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The obtained velocity models can also be compared with those of Mascandola et al.

(2019). Both studies identify, around 150-170 m in depth, a shear velocity increase,

reaching 800-950 m/s in Mascandola et al.’s article, and 719 m/s in this study. Also, sim-

ilar Vs values can still be found around 500 m in depth. Finally, an important increase

in shear velocity is observed in both cases and at almost the same depths, around 1300

m. Depite the geographical distance between the considered locations, which are approx-

imately 200 km apart, the profiles seem to align.

(a) (b)

Figure 21: Comparison between (a) the shear wave velocity profile obtained in this work

and (b) the one obtained by Mascandola et al. (2019).

The results of this thesis also align with those by Cascone et al. (2022), particularly con-

sidering the similar sedimentary layers expected in Venice area. Cascone et al. identified

a shear velocity of approximately 800 m/s at a depth of 400 meters (Figure 22), which is

consistent with both the values obtained in this study and the ones identified by Mascan-

dola et al (2019), at the same depth.
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(a) (b)

Figure 22: Comparison between (a) the shear wave velocity profile obtained in this work

and (b) the one obtained by Cascone et al. (2022).

Consulting the table of ground types classified by Vs values in EN 1998-1:2004 (Eurocode

8), the depth of 508 m —in this work— and 400 m —in Cascone et al. (2022)— can be

therefore confirmed as the beginning of the engineering bedrock, defined by a ’rock or

rock-like geological formation (...)’, crucial to know for best assessing a site’s seismic

response and designing structures that can withstand seismic events.
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6. Conclusions

This final chapter will draw the conclusions of this work, which aimed to determine the

first deep shear wave model of the Venice lagoon using seismic noise interferometry.

The velocity models obtained in this study showed good consistency with the expected

stratigraphy obtained from VE-1 and VE-1bis cores, especially within the first 148 me-

ters, where they accurately reflect the presence of the thin layers of sand, clay, silt, gravel,

and mudstone. At greater depths, below 1377 meters, the shear and compressional wave

velocities overcome 2000 m/s and 4000 m/s respectively, suggesting that the mudstones,

shelly sands and marine marls may have undergone lithification or porosity reduction,

becoming more compact.

Comparing the obtained Vs models with those of other authors who investigated areas

geologically similar to that of Venice, many similarities emerged. There is an alignment

in the general trends and key depth intervals, such as the Vs values overcoming 800 m/s

at about 400-508 meters, depths around which in this study, Cascone et al. (2022), and

Mascandola et al. (2019) was identified the onset of the engineering bedrock.

Overall, the deep velocity models obtained are complessively consistent with the stratig-

raphy of the area —although further investigations may be necessary to delve deeper into

the lithological characteristics at greater depths—, and they are also compatible with those

obtained by Boaga et al. (2010), Mascandola et al. (2019) and Cascone et al. (2022),

found in similar geological contexts. Therefore, the reliability of the deep velocity mod-

els obtained can be confirmed.

The results of the signal-to-noise ratio measurements confirmed what Bensen et al. (2007)

had already demonstrated: stacking over increasingly long time-series generally improves

the SNR ratio. In this study, it was also confirmed the effectiveness of the spectral whiten-

ing, which was able to improve the quality of the traces by enhancing the signal-to-noise

ratio and balancing the frequency spectrum.

The deep shear wave velocity model obtained for the Venice lagoon will be of great impor-
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tance for developing seismic shaking models, i.e. simulations of how seismic waves could

propagate and influence the soil and structures in the historic center area. This is partic-

ularly relevant, because the historic center of Venice is an area of priceless cultural and

architectural value, therefore characterized by high exposure and vulnerability to seismic

events. Knowing the response of the ground to seismic activity allows to better predict

the potential impact of an earthquake, and therefore to adopt more effective prevention

measures, such as the seismic retrofitting or reinforcement of historic buildings.
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Appendix: codes

The following Python code was used to apply the bandpass filter and the spectral whiten-
ing, perform the cross-correlation and do the stack of all the traces to obtain the noise
correlation function between the stations. Written by Piero Poli and Ilaria Barone; modi-
fied by Silvia De Marchi.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 30 14:10:04 2023

@author: pieropoli, Ilaria

"""

import glob

import matplotlib.pyplot as plt

from obspy import read, read_inventory

import numpy as np

from datetime import datetime, timedelta

from pipy import xcorr

from obspy.geodetics import gps2dist_azimuth

import os

from noise import noisecorr

dd = gps2dist_azimuth(45.42,12.38,45.419521,12.356072)

# paramters

outdir = ’C:\\Users\\HUAWEI\\Desktop\\Università\\tesi\\corr_fb\\’

fb1=0.1

fb2=5

win=3600

outdir = outdir + ’corr_fb’ + str(fb1) + str(fb2)

if os.path.exists(outdir) == False:

os.mkdir(outdir)

# Specify the start and end dates
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start_date = datetime(2023, 7, 8)

end_date = datetime(2023, 10, 28)

# Initialize an empty list to store the formatted strings

date_strings = []

# Generate strings in the specified format and append to the list

current_date = start_date

while current_date <= end_date:

formatted_date = current_date.strftime(’%Y-%m-%dT%H%M%S.000000Z’)

date_strings.append(formatted_date)

current_date += timedelta(days=1)

XCORR_ALL = []

for ist in date_strings:

folder = ’Dati_Venezia_SanServolo_20Hz/*’ + ist[0:10] + ’*.mseed’

files = glob.glob(folder)

folder2 = ’Dati_Venezia_lido_20Hz/*’ + ist[0:10] + ’*.mseed’

files2 = glob.glob(folder2)

if len(files) == 3 and len(files2) == 3:

st_igor=read(folder)

st_igor.filter(’bandpass’,freqmin=fb1,freqmax=fb2)

st_igor.rotate(method=’NE->RT’,back_azimuth=dd[1])

st_lido=read(folder2)

st_lido.filter(’bandpass’,freqmin=fb1,freqmax=fb2)

st_lido.rotate(method=’NE->RT’,back_azimuth=dd[1])

t = st_igor[0].times(’timestamp’)

fs=st_igor[0].stats.sampling_rate

t0=st_igor[0].stats.starttime

print(t0)

# Use noisecorr for cross-correlation in the frequency domain

_, SUMCORR = noisecorr(st_igor[2], st_lido[2], window_length=win)

XCORR = np.fft.fftshift(np.fft.irfft(SUMCORR))

SI = 1 / fs

time = np.arange(0, len(XCORR) * SI, SI) - (len(XCORR) * SI / 2)
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ft = np.where((time>-20) & (time<20))[0]

tcorr = time[ft]

XCORR2 = XCORR[ft]

#plt.figure()

#plt.plot(tcorr,XCORR2)

XCORR_ALL.append(XCORR2)

# I save the daily cross-correlations

nameout = os.path.join(outdir, ’dailycorr_fb’ + str(fb1) +

’_’ + str(fb2) + ’_zz.npz’)

np.savez(nameout,c=XCORR_ALL,fs=fs,tcorr=tcorr)

print(’save corr for ’ + str(t0))

# Stack of all days

XCORR_STACK = np.sum(np.array(XCORR_ALL),0)

plt.figure()

plt.plot(tcorr,XCORR_STACK, color=’black’)

plt.xlabel(’Time (s)’, fontsize=18)

plt.ylabel(’Amplitude’, fontsize=18)

plt.title(’ZZ’, fontsize=18)

plt.gca().tick_params(axis=’x’, labelsize=18)

plt.gca().tick_params(axis=’y’, labelsize=18)

# I save the stack of all daily cross-correlations

nameout = os.path.join(outdir, ’stackcorr_fb’ + str(fb1) +

’_’ + str(fb2) + ’_zz.npz’)

np.savez(nameout,c=XCORR_STACK,fs=fs,tcorr=tcorr)

The following Python code was used to do the average of the negative and positive parts
of the correlation function. Written by Silvia De Marchi.

# -*- coding: utf-8 -*-

"""

Created on Wed Jun 5 15:30:00 2024

@author: Silvia

"""

import os

import numpy as np

import matplotlib.pyplot as plt

# Define the path to the stacked correlation file
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stacked_corr_file = ’C:\\Users\\HUAWEI\\Desktop\\Università\\tesi

\\stackcorr_fb0.1_5.0_zz.npz’

# Load the stacked correlation data

data = np.load(stacked_corr_file)

XCORR_STACK = data[’c’]

tcorr = data[’tcorr’]

fs = data[’fs’]

# Process the trace to have only positive times

# Separate positive and negative times

positive_indices = tcorr >= 0

negative_indices = tcorr < 0

# Flip the negative part to make it positive

flipped_negative_trace = np.flip(XCORR_STACK[negative_indices])

# Ensure the positive trace and flipped negative trace have the same length

min_length = min(len(flipped_negative_trace), len(XCORR_STACK[positive_indices]))

positive_trace = XCORR_STACK[positive_indices][:min_length]

flipped_negative_trace = flipped_negative_trace[:min_length]

# Compute the average of the positive and flipped negative traces

averaged_trace = (positive_trace + flipped_negative_trace) / 2

# Save the processed trace to a new .npz file

output_directory = ’C:\\Users\\HUAWEI\\Desktop\\Università\\tesi\\0.1_5_zz’

os.makedirs(output_directory, exist_ok=True)

averaged_filename = os.path.join(output_directory,

’averaged_stackcorr_fb0.1_5.0_zz.npz’)

np.savez(averaged_filename, averaged_trace=averaged_trace,

tcorr=tcorr[positive_indices][:min_length], fs=fs)

print(f’Saved averaged correlation as {averaged_filename}’)

# Plot the averaged trace

plt.figure()

plt.plot(tcorr[positive_indices][:min_length], averaged_trace, color=’black’)

plt.xlabel(’Time (s)’, fontsize=18)

plt.ylabel(’Amplitude’, fontsize=18)

plt.title(’Averaged Component: zz’, fontsize=18)

plt.gca().tick_params(axis=’x’, labelsize=18)

plt.gca().tick_params(axis=’y’, labelsize=18)

plt.xlim(np.min(tcorr[positive_indices][:min_length]),

np.max(tcorr[positive_indices][:min_length]))

plt.show()
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The following Python code was used to measure the signal-to-noise ratio. Written by
Silvia De Marchi.

# -*- coding: utf-8 -*-

"""

Created on Mon Oct 30 14:10:04 2023

@author: Silvia

"""

import numpy as np

# Define the path

npz_file_path = ’C:\\Users\\HUAWEI\\Desktop\\Università\\tesi\\

averaged_stackcorr_fb0.1_5.0_zz.npz’

# Upload file

data = np.load(npz_file_path)

# Extract trace (stackcorr) and sampling frequency (fs)

trace = data[’averaged_trace’].flatten()

fs = data[’fs’]

tcorr = data[’tcorr’]

# Define time intervals for signal and noise (in seconds)

signal_interval = (0, 10)

noise_interval = (11, 20)

# Find the corresponding time intervals of signal and noise

signal_indices = np.where((tcorr >= signal_interval[0]) &

(tcorr <= signal_interval[1]))[0]

noise_indices = np.where((tcorr >= noise_interval[0]) &

(tcorr <= noise_interval[1]))[0]

if len(signal_indices) == 0 or len(noise_indices) == 0:

print("Signal or noise range not found.")

else:

# Extract the signal and noise portions of the track

signal = trace[signal_indices]

noise = trace[noise_indices]

# Measures the amplitude of the signal and noise in the specified range

signal_amplitude = np.max(signal) - np.min(signal)

noise_amplitude = np.max(noise) - np.min(noise)
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# Measure the signal-to-noise ratio (SNR)

snr = signal_amplitude / noise_amplitude

print("Signal Amplitude:", signal_amplitude)

print("Noise Amplitude:", noise_amplitude)

print("Signal-to-noise Ratio:", snr)

The following Python code was used for the Frequency-Time Analysis. Written by Ilaria
Barone, modified by Silvia De Marchi.

# -*- coding: utf-8 -*-

"""

Created on Fri Sep 22 13:53:50 2023

@author: Ilaria

"""

import numpy as np

import matplotlib.pyplot as plt

# Load the trace from the .npz file

file_path = ’C:\\Users\\HUAWEI\\Desktop\\Università\\tesi\\

averaged_stackcorr_fb0.1_5.0_zz.npz’

data = np.load(file_path)

trace = data[’averaged_trace’]

def FTAN(trace, SI, dist, alpha, fix, fmin, fmax, vmin, vmax):

"""

Function to perform the frequency-time analysis for a

single trace, producing a velocity/frequency plot

"""

# 1) Compute spectrum of analytical signal.

L = len(trace)

time = np.arange(0, SI * len(trace), SI)

NFFT = 2 ** int(np.ceil(np.log2(L)))

S = np.fft.fftshift(np.fft.fft(trace, NFFT))

SR = 1/SI

freq = np.linspace(-SR / 2, SR / 2 - SR / NFFT, NFFT)

Sa = S * (2 * (freq >= 0)) # Apply Heaviside step

function to keep the positive frequencies
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# 2) Loop on frequency and FT spectrum computation

(as in Bensen et al., 2007)

freqs_FT = np.linspace(fmin, fmax, 100)

if fix == 0:

alpha = alpha*(dist/1000)

FTSpec = np.empty((L, len(freqs_FT)))

for f in range(len(freqs_FT)):

G = np.exp(-alpha * ((freq - freqs_FT[f]) / freqs_FT[f]) ** 2)

Sa_filt = Sa * G

trace_f = np.fft.ifft(np.fft.fftshift(Sa_filt), NFFT)

FTSpec[:, f] = np.abs(trace_f[:L])

vel = dist / time

F, V = np.meshgrid(freqs_FT, vel[1:])

plt.figure()

plt.pcolormesh(F, V, FTSpec[1:,:])

plt.colorbar()

plt.xlabel(’Frequency [Hz]’)

plt.ylabel(’Velocity [m/s]’)

plt.ylim(vmin, vmax)

#plt.xscale(’log’)

plt.show()

# 3) Picking of dispersion curve

# press ENTER when finish picking

print("Click on the max amplitudes {}:")

c_max = plt.ginput(-1, timeout=0)

c_max = np.array(c_max)

return FTSpec,F,V,c_max

# Parameters for the FTAN function call

SI = 0.05 # Sampling interval [s] , having a sampling frequency of 20 Hz

dist = 1870 # Distance [m]

alpha = 10

fix = 1 # Fixed alpha

fmin = 0.1 # Minimum frequency [Hz]

fmax = 5 # Maximum frequency [Hz]

vmin = 80 # Minimum velocity [m/s]

vmax = 2500 #Maximum velocity [m/s]

# Run the FTAN function

FTSpec, F, V, c_max = FTAN(trace, SI, dist, alpha, fix, fmin, fmax, vmin, vmax)
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