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Riassunto 
 

 

Negli ultimi decenni il progressivo esaurimento dei combustibili fossili e il loro impatto 

sull’ambiente, dato in particolare dalla produzione di gas, come la CO2, che contribuiscono al 

riscaldamento globale, ha fatto sì che l’attenzione mondiale si focalizzasse sullo studio e 

sull’utilizzo di biocarburanti e sull’analisi approfondita delle loro prestazioni (Amaro at al., 

2011). In particolare, ciò che attualmente suscita maggior interesse è il biodiesel di “terza 

generazione”, prodotto a partire dalle microalghe. Le microalghe sono organismi unicellulari 

fotosintetici,  la cui crescita, favorita da luce, una fonte di carbonio, come la CO2, e nutrienti 

(principalmente nitrati e fosfati), può essere notevolmente più rapida di quella delle piante 

terrestri. Alcune specie di microalghe sono in grado di accumulare grandi quantità di lipidi, 

che possono essere estratti ed utilizzati come oli vegetali per la produzione di biodiesel. I 

vantaggi dell’utilizzo delle microalghe sono legati al fatto che questi organismi, oltre a 

presentare elevate velocità di crescita, convertono l’energia solare con un’efficienza molto più 

alta delle piante terrestri, possono crescere in acque di scarico contribuendo al processo di 

depurazione, possono essere coltivate in territori non sfruttabili per l’agricoltura e sono in 

grado di fissare la CO2 proveniente dagli impianti industriali, contribuendo alla mitigazione 

dell’effetto serra (Martins et al., 2010). Tuttavia, la fattibilità tecnica ed economica su scala 

industriale del processo di produzione di olio da biomassa algale è ancora una questione 

aperta (Chisti, 2013).  

La luce è il fattore che influenza maggiormente la crescita fotosintetica delle microalghe. In 

particolare, quando non sussistono condizioni in cui l’apporto dei nutrienti è limitato, la 

crescita fotosintetica è legata unicamente alla disponibilità e penetrabilità della luce 

all’interno del fotobioreattore. Uno dei termini che limita l’efficienza di fotoconversione delle 

microalghe è il mantenimento, ovvero la parte di energia consumata per funzioni diverse da 

quelle legate alla produzione di nuovo materiale cellulare, quali il turnover di componenti 

cellulari nel normale metabolismo, il mantenimento di gradienti chimici attraverso le 

membrane, processi metabolici coinvolti nell’acclimatazione e riparazione cellulare in 

condizioni di stress (Pirt, 1965; Quigg & Beardall, 2003; van Bodegom, 2007). Inoltre il 

mantenimento risulta essere un parametro chiave nella maggior parte dei modelli cinetici di 

crescita microalgale (Bernardi et al., 2014; Wu & Merchuk, 2001), inclusi quelli utilizzati 

nella progettazione di fotobioreattori su scala industriale (Quinn et al., 2011).  

Lo scopo di questa Tesi è stato quello di verificare l’effetto della luce sul mantenimento nel 

caso di S. obliquus. Tale specie si adatta bene all’applicazione su scala industriale in quanto 

presenta un’elevata resistenza ai contaminanti ed è caratterizzata da un contenuto di lipidi di 

circa il 30%. Per fare ciò sono stati condotti degli esperimenti in continuo in un  
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fotobioreattore di tipo flat-plate, a diverse intensità e regimi di illuminazione. Per ciascuna 

condizione di luce sono stati utilizzati diversi tempi di permanenza, in modo da studiare 

diverse velocità di crescita. In condizioni di nutrienti (N e P) non limitanti, per ciascun tempo 

di residenza sono stati determinati il contenuto di lipidi e pigmenti, la densità cellulare media, 

l’efficienza fotosintetica e la resa di nutriente/biomassa. 

Su tali dati sperimentali sono stati applicati dei modelli volti a determinare la richiesta di 

energia per il mantenimento di S. obliquus. Tutti i modelli di letteratura sono storicamente 

basati sull’approccio di Pirt (Pirt, 1965) per organismi eterotrofi. Il modello di Pirt si basa 

sull’assunzione che una parte di substrato, inteso come fonte di energia, è utilizzato dalle 

cellule per crescere, mentre l’altra parte per i processi di mantenimento. 

In letteratura, solo in pochi hanno applicato gli stessi concetti agli organismi fotosintetici, 

considerando la luce come substrato limitante (Gons & Mur, 1980; Kliphuis et al., 2012). 

Entrambi gli approcci sono stati preliminarmente testati, ma il modello di Gons & Mur (1980) 

si è rivelato poco accurato in quanto basato su assunzioni che nel tempo sono state riviste e 

corrette. Il modello di Kliphuis et al. (2012), invece, ha permesso di derivare separatamente il 

coefficiente di mantenimento    e la resa di biomassa/luce    per S. obliquus, mettendo in 

evidenza l’effetto della luce che, alle alte intensità, provoca fenomeni di fotosaturazione e 

inibizione, con un conseguente aumento della richiesta energetica per il mantenimento e una 

minore resa di biomassa/luce. Il modello è comunque risultato incompleto perché non 

permette di misurare una velocità specifica di mantenimento   in termini di giorni
-1

. A tale 

scopo, dopo un’analisi di letteratura, i modelli per gli organismi eterotrofi sono stati 

modificati per essere applicati sui dati di questo lavoro. In particolare, seguendo l’approccio 

di Van Bodegom (2007), è stata determinata la   per S. obliquus che si è dimostrata più 

elevata a più alte velocità di crescita. Il fatto che il mantenimento aumenti alle elevate velocità 

di crescita è giustificabile da un turnover cellulare più elevato, dunque da una maggiore 

richiesta di energia per il mantenimento (Quigg & Beardall, 2003). Questo è stato 

ulteriormente confermato dai dati sperimentali per S. obliquus relativo al contenuto di lipidi e 

densità cellulare media che diminuiscono all’aumentare della velocità di crescita. All’aumento 

della velocità di crescita, quindi, le cellule non accumulano materiale di riserva, quali i lipidi, 

e mostrano dimensioni più piccole essendo in attiva fase di replicazione. 

Inoltre, la   è stata trovata più elevata ad alte irradianze. Il probabile significato biologico è 

che la  , nel caso degli organismi fotosintetici, include non solo i componenti di non crescita, 

citati prima, ma anche tutti i meccanismi di dissipazione dell’energia a livello dell’apparato 

fotosintetico. L’effetto saturante, ben evidente sulla resa di biomassa su luce     , che 

presenta al variare della velocità di crescita due andamenti ben distinti a basse ed elevate 

intensità di luce, è stato modellato come inibizione da substrato seguendo gli approcci 

proposti da Chen & Johns (1996) e Minkevich et al., (2000) per organismi eterotrofi. I 

modelli sono stati in grado di riprodurre con buona approssimazione i dati sperimentali. 
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L’aumento di mantenimento si riflette anche sull’uptake di nutrienti. Infatti valori differenti di 

consumo di nutrienti, espresso come resa di nutriente/biomassa, sono stati misurati al variare 

del tempo di residenza e dell’intensità di luce, suggerendo che tale parametro dipende dalla 

velocità di crescita ed è influenzato dalla richiesta di mantenimento. In conclusione,in questo 

lavoro di tesi è stata misurata quantitativamente la parte di dispendio energetico degli 

organismi fotosintetici al variare dell’intensità di luce. I parametri del mantenimento sono 

quindi stati descritti mediante relazioni matematiche che possono essere integrate nei modelli 

di crescita in funzione della luce.  

 





 
 

v 

Abstract 
Most relevant factors influencing microalgal growth are light availability and utilization. The 

concept of maintenance energy is essential to understand the energy requirements for cell 

growth and is also a key parameter of most mathematical growth models, including those 

used for large scale design. In this work continuous experiments were carried out in 

laboratory-scale flat-plate photobioreactors (PBRs), in order to investigate the effect of light 

intensity and irradiation regime on S.obliquus maintenance energy requirement Energy 

balances were applied to measure the maintenance term as a function of irradiation, under 

both continuous and simulated seasonal irradiation at middle-latitudes. It was found that light 

strongly influenced the maintenance, which resulted higher under higher irradiances as a 

result of photoinhibition effect, which was correlated to a substrate inhibition model.  In 

addition, at non limiting nutrient (N and P) conditions, for each resident time lipid and 

pigment content, photosynthetic efficiency and nutrient/biomass yields were measured. It was 

observed that these factors depended both on growth rate and irradiance. Particularly, it was 

found that the nutrient uptake was strongly linked to the energetic losses due to the 

maintenance. 
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Introduction 
Biofuels derived from microalgae via photosynthesis have been proposed as potentially 

superior to crop derived fuels and likely to become essential in order to supply the demand of 

liquid fuels which is expected to grow quite fast in the next few decades (Borowitzka & 

Moheimani, 2010; Chisti, 2013) On the other hand, whether they can be produced 

inexpensively in a sufficient quantity to significantly replace petroleum derived transport 

fuels, is still an open issue (Chisti, 2013). In fact, many factors still limit the feasibility of a 

competitive large-scale cultivation system: a low photosynthetic efficiency, a negative value 

of total energy balance and a lack of a strong experience in the field, as few pilot units are 

currently in operation throughout the world. In this context, a deeper knowledge of the energy 

balance of microalgal growth in a PBR plays a crucial role both to better understand the 

energetic constraints of photosynthesis and to optimize the efficiency of the production 

process. In fact, the factor with a seminal influence on productivity is light availability, 

because light energy fully supports autotrophic algal growth.  

One of the terms limiting photoconversion is the maintenance energy, which includes the 

additional energy needed to the turnover of cellular components in the normal metabolism, 

the maintenance of chemical gradients across membranes and metabolic processes involved in 

acclimation, as well as the cell repair under stress (Pirt, 1965; Quigg & Beardall, 2003; van 

Bodegom, 2007). It is essential to understand the energy requirements for cell growth because 

the maintenance term is also a key parameter of most mathematical growth models (Bernardi 

et al., 2014; Wu & Merchuk, 2001), including those used for large scale PBR design (Quinn 

et al., 2011). Several models were applied to measure and characterize the energy requirement 

of microbial growth as a function of substrate concentration (Minkevich et al., 2000; Pirt, 

1965 1965; van Bodegom, 2007). On the other hand, little is known about the experimental 

quantification of algal maintenance requirement. Only few authors tried to apply the same 

concepts to photosynthetic organisms, considering the light as a limiting substrate (Gons & 

Mur, 1980; Kliphuis et al., 2012; Zijffers et al., 2010). However, the effect of saturating light 

on energy parameters for photosynthetic organisms has not been investigated yet. Instead, this 

is fundamental in order to understand the possible energy loss in an actual outdoor PBR, 

where algae are inevitably exposed to variable incident light due to diurnal and seasonal 

differences in irradiation, which can strongly influence the efficiency of energetic pathways 

and, eventually, the overall biomass productivity.





 

 

Chapter 1 
 

 

Biofuels from microalgae:state of the art 
 

 

 

This chapter addresses the topic of the thesis and reviews the literature on algal biology and cultivation 

and PBR design. This chapter also reports advances achieved in the last years and the future trends in 

research and from an industrial perspective. 

 

 

1.1 Biofuels: an overview 
 

Global warming, as well as the recognition that fossil fuel supplies are finite and expected to 

decline over the next few decades, combined with an ever increasing global demand for 

energy, have led to substantial interest and research activity in developing renewable 

biologically produced fuels, especially ethanol and biodiesel (Borowitzka & Moheimani, 

2010). Liquid biofuels are classified into three generations based on  the substrate raw 

materials and the processing or production technology. First generation liquid biofuels were 

produced from food crops such as corn, sugarcane, wheat, maize and vegetable oils; because 

of the use of food crops for fuel production, first generation liquid biofuels were criticized for 

conflicting with the food supply and increasing the costs of food crops. It paved the way  for 

second generation liquid biofuels, which were manufactured using non-edible oils such as 

Jatropha curcas L. The advantages of using jatropha oil are that jatropha trees can grow 

easily on non-arable or wasteland and the existing biodiesel plants does not require major 

modification on the equipments and process flow, mainly because the oil has similar 

properties to edible oils. However, jatropha oil contains higher concentration of free fatty acid 

(FFA), that may require an additional pre-treatment step. In addition, the cultivation of that 

species requires regular irrigation, heavy fertilization and good management practices, which 

are necessary to ensure high oil yield (Lam & Lee, 2012). Due to these weakness, the research 

for a more sustainable biodiesel feedstock continues and now focuses on microalgae. 

Potentially, microalgae can provide fuels in several distinct forms: algal biomass for 

combustion, algal crude oil for direct combustion, or for use in production of other 

transportation fuels such as diesel, gasoline and jet fuel (kerosene), biogas via anaerobic 

digestion of the biomass,  biohydrogen,  bioethanol via fermentation of carbohydrates derived 
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from algae and biodiesel produced directly through algal photosynthesis. In Fig.1.1 the main 

microalgal biomass transformation processes for biofuel productions are summarized. 

Figura 1.1 - Principal microalgal biomass transformation processes for biofuel production (Abishek et al., 

2014). 

A significant number of startup companies are making attempts to  commercialize algal fuels. 

Table 1.1  shows a list of the companies which are actively participating in their development. 

 

Table 1.1 – List of startup companies attempting to commercialize algal fuels (Bahadar &  Khan, 2013). 

 

 

 

 

 

 

 

 

 

 

 
 

Most of these companies are focused on oils produced via the photosynthetic route (Chisti, 

2013). 
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1.2 Advantages of using microalgae for biodiesel production  

Many research reports and articles described advantages of using microalgae for biodiesel 

production in comparison with the other available feedstocks, previously mentioned. 

Microalgae can grow about 10–50 times faster than terrestrial plants, thus achieving a much 

higher CO2 fixation rate (Lam & Lee, 2012) and they require much less land area than other 

biodiesel feedstocks of agricultural origin, up to 49 or 132 times less when compared to 

rapeseed or soybean crops, for a 30% (w/w) of oil content in algae biomass (Chisti, 2007). 

Therefore, the competition for arable soil with other crops, in particular for human 

consumption, is greatly reduced. 

Besides, oil content of microalgae is on the average higher with respect to terrestrial plants 

used for the production of first and second generation biofuels (Table 1.2). 

 
Table 1.2 - Comparison of microalgae with other biodiesel feedstock (Martins et al., 2010). 

 

Additionally, different microalgae species can be adapted to live in a variety of environmental 

conditions. Thus, it is possible to find species best suited to local environments or specific 

growth characteristics. The same is not possible to do with other current biodiesel feedstocks 

(e.g. soybean, rapeseed, sunflower and palm oil) (Martins et al., 2010), which can be grown in 

areas unsuitable for agricultural purposes (e.g. arid areas where the annual insolation is high); 

in addition seawater or saline groundwater rather than freshwater can be used to cultivate 

algae reducing competition for a valuable limited resource such as freshwater (Borowitzka & 

Moheimani, 2010). 

Algae biodiesel contains no sulfur and performs as well as petroleum diesel, while reducing 

emissions of particulate matter, CO, hydrocarbons, and NOx (Martins et al., 2010). 

The utilization of microalgae for biofuels production can also serve other purposes. Some 

possibilities currently being considered are listed below: 

 Removal of CO2 from industrial flue gases by algae bio-fixation, reducing the GHG 

emissions of a company or process while producing biodiesel (Lam & Lee, 2012); 

 Wastewater treatment by removal of    
 ,    

 ,    
  ,making algae to grow using 

these water contaminants as nutrients (Lam & Lee, 2012); 
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 After oil extraction the resulting algae biomass can be processed into ethanol, 

methane, livestock feed, used as organic fertilizer due to its high N:P ratio, or simply 

burned for energy cogeneration (electricity and heat) (Martins et al., 2010). 

 

However, although fuels oils derived from microalgae via photosynthetis have been advanced 

as potentially superior to crop derived fuels, there is still a big question mark surrounding the 

sustainability of the industry for long term operation (Lam & Lee, 2012). Translating 

laboratory and pilot scale findings to full scale commercial application still appears to be a 

hurdle with few credible reports of success. Some of the imperatives that need to be optimised 

for large scale application include strain selection and seed culture preparation, biomass and 

lipid yield optimization, bioreactor configuration, physico-chemical parameters and, most 

important, harvesting and extraction of the lipid from the biomass (Rawat et al., 2013). 

 

1.3 Biodiesel production 

 

In the context of large scale microalgal cultivation, the process configuration is defined as the 

combination of economic viability, upstream processing and downstream processing (Rawat 

et al., 2013). Fig. 1.2 shows a schematic of the algal biodiesel value chain stages, starting with 

the selection of microalgae species depending on local specific conditions and the design and 

implementation of a cultivation system for microalgae growth. Then, it follows the biomass 

harvesting, processing and oil extraction to supply the biodiesel production unit.  

 

 
Figure 1.2 – Microalgae biodiesel value chain stages (Martins et al., 2010). 
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1.3.1 Microalgae cultivation 
 

Microalgae can be cultured using three metabolic pathways : 

1. phototrophic; 

2. heterotrophic; 

3. mixotrophic.  

Phototrophic utilizes light as energy source and CO2 as inorganic carbon source whereas 

heterotrophic is independent of light and uses organic substrate (e.g. glucose, acetate, 

glycerol) as both energy and carbon source. For mixotrophic culture, microalgae are able to 

grow either via phototrophic or heterotrophic pathway, depending on the concentration of 

organic carbon sources and light intensity. Of these, the most dominant method commonly 

used for microalgal cultivation is phototrophic  cultivation (Martins et al., 2010). 

A correct design of the culture system is fundamental for the overall process yield and 

sustainability, since it permits to maximize productivity and quality of microalgal biomass. 

An effective culture system should consist of the following criteria: (1) effective illumination 

area, (2) optimal gas–liquid transfer, (3) easy to operate, (4) low contamination probability, 

(5) low capital and production cost and (6) minimal land area requirement (Xu & Xiong, 

2009). 

Microalgae can be cultivated in different types of systems, mainly in open raceway ponds or 

in enclosed PBRs. Open cultures are usually located outdoors and rely on direct light, while 

closed PBRs can be either indoors or, preferably, outdoors to use free sunlight.  

Raceway ponds are the most common cultivation system used. They are made of a closed 

loop recirculation channel that is typically about 0.25 m wide and 0.4 m deep (Slade & 

Bauen, 2013) (Fig. 1.3). The channels are shallow to maximize light penetration and CO2  is 

sparged at the bottom of the raceway as carbon source. Paddlewheel guarantees mixing and 

circulation and avoids biomass sedimentation; flow is guided around bends by baffles placed 

in the flow channel. During daylight, the culture is fed continuously in front of the 

paddlewheel, where the flow begins. Broth is harvested behind the paddlewheel, on 

completion of the circulation loop (Chisti, 2007). 
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Figure 1.3- Schematics of a raceway pond (Bahadar & Bilal Khan, 2013). 

 

Although raceways are low-cost, they have a low biomass productivity compared with PBRs. 

In raceways, cooling is achieved by evaporation only and temperature fluctuates within a 

diurnal cycle and seasonally, leading to a significant evaporative water loss. Evaporative 

losses result in changes to ionic composition of the media and potentially detrimental effects 

on culture growth (Rawat et al., 2013). Raceways use CO2 less efficiently than PBRs and they 

can be easily contaminated by other microorganisms that can compete with the cultivated 

algal strain. The biomass concentration remains low because raceways are poorly mixed and 

cannot sustain an optically dark zone. Techniques to enhance CO2 absorption into the culture 

media such as aerators or bubbling may improve the overall biomass productivity. Improved 

mixing can minimize impacts of both CO2 and light limitation thus improving productivity 

(Rawat et al., 2013). Usage of marginal and non-arable land is a major advantage. 

Maintenance and cleaning of open systems is easier and less energy intensive than PBRs. In 

addition, raceways are perceived to be less expensive than closed systems, for both 

construction and operation.  

The limitations of open pond cultures have lead to much research into PBRs, as a method of 

primarily overcoming contamination and low productivity (Amaro et al., 2011).  They offer 

better control over culture conditions and growth parameters (pH, temperature, mixing, CO2 

and O2), prevent evaporation, reduce CO2 losses, allow to attain higher microalgae densities 

or cell (i.e. higher volumetric productivities) due to their high surface area to volume ratio, 

and offer a safer and more protected environment, preventing contamination or minimizing 

invasion by competing microorganisms (Martins et al., 2010). In addition, PBRs  are more 

versatile than open opens because they can use sunlight, artificial light and various 

combinations of light sources thus giving the potential to increase photoperiod and enhance 

low light intensities given by sunlight variation. The stability of light intensity and 

photoperiod provided by artificial light has potential to enhance yearly total oil yields by 25-
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42% (Amaro et al., 2011). PBRs can be designed as tubular or flat panel reactors that are 

usually made of plastic or glass (Fig. 1.4). In tubular PBRs the tube diameter is limited 

because light does not penetrate too deeply in the dense culture broth that is necessary for 

ensuring a high biomass productivity of the system. 

Despite their advantages, it is not clear if PBRs could have a significant impact in the near 

future on any product or process that can be attained in large outdoor raceway ponds. In fact, 

they suffer from several drawbacks that need to be considered and solved. Their main 

limitations include: overheating, bio-fouling, oxygen accumulation, difficulty in scaling up, 

high building and operating costs and cell damage by shear stress. 

 

  

Figure 1.4 - Schematic representation of (A) tubular horizontal and (B) flat-panel PBR (Jorquera et al., 

2010). 

Considering  the advantages and drawbacks of raceways and PBRs, the logical step in cost 

effective biomass production could be a combination of the technologies (Rawat et al., 2013). 

Hybrid systems for biofuels production utilizes a large scale PBR and open pond sequentially. 

The first stage of growth is undertaken within a bioreactor to maintain culture purity and 

achieve high biomass concentrations, while the second stage is undertaken in a raceway pond 

as this is ideal for nutrient stress (Amaro et al., 2011). 

1.3.2 Downstream processes 

 

The downstream processes for biodiesel production commences with microalgal biomass 

harvesting and dewatering, oil extraction and subsequently transesterification of the lipids into 

biodiesel. The first step is to separate the microalgae from water and to recover their biomass 

for downstream processing. Currently, there are several methods to harvest microalgae: (1) 

bulk harvesting – to separate microalgae from suspension, such as natural gravity 

sedimentation, flocculation and floatation, and (2)  thickening  – to concentrate the 

microalgae slurry after bulk harvesting, such as centrifugation and filtration (Lam & Lee, 

A B 
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2012). In Table 1.3 the pros and cons of conventional techniques that are currently used for 

harvesting microalgae are summarized. 

 

Table 1.3 - Summary of pros and cons of techniques that are used for harvesting microalgal biomass (Rawat et 

al., 2013). 

Dewatered algae is then dried, milled into fine powder, and pretreated by bead milling, 

microwaving, chemical lysis, or high-pressure homogenization to increase the mass transfer 

of lipids during extraction. Pretreatment greatly improves the extraction efficiency by 

disrupting the cellular structure, releasing lipids into the solvent mixture, and enhancing 

overall yield (Bahadar & Khan, 2013). Solar drying is assumed to be the best method to dry 

wet microalgae paste after the harvesting process (Lam & Lee, 2012).  However, it  is not 

feasible in temperate countries due to limited sunlight at certain times of the year, so heat 

generated from fossil fuels is required to dry microalgae biomass continuously to ensure 

optimum biomass production for each cycle of culture. However, heavy dependency on fossil 

fuels to dry microalgae biomass will seriously jeopardize commercial viability of microalgae 

biofuels and thus, new technologies or approaches (e.g. development of efficient dryers) are 

urgently needed to ensure the sustainability of microalgae biofuel industry (Lam & Lee, 

2012). 

Lipids can be extracted from the dried algal biomass using different chemical and physical 

means. Chemical extraction uses organic solvents like hexane or methanol. Other techniques 

include expeller presses, electromagnetic methods, direct liquefaction, Soxhlet extraction, 

supercritical fluids (CO2), ultrasonic waves, and microwave-assisted organic solvent 

extraction (Halim et al., 2012). In organic solvent extraction, water and solvent are removed 

using liquid–liquid separation methods, such as evaporation, vacuum distillation, or solvent 
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adsorption; in supercritical fluid extraction, the mixture is pressure decomposed, converting 

the solvent and possibly residual water into gases and precipitating the lipids (Bahadar & 

Khan, 2013). 

Extracted lipids are then transesterified into biodiesel. The lipid feedstocks are composed by 

90–98% (weight) of triglycerides and small amounts of mono and diglycerides, FFA (1–5%), 

residual amounts of phospholipids, phosphatides, carotenes, tocopherols, sulphur compounds, 

and traces of water (Martins et al., 2010). Transesterification is a multiple step reaction, in 

which tryglicerides are reacted with short chain alcohol (e.g. methanol or ethanol) in the 

presence of catalyst as shown in Fig. 1.5. Homogeneous base catalyst (e.g. KOH and NaOH) 

is usually used to accelerate the reaction. 

 

Figure 1.5 - Transesterification of triglycerides (overall reaction) (Lam & Lee, 2012). 

 

Conventional method to produce biodiesel mainly consists of two separate steps: extraction 

followed by transesterification. In contrast, in-situ transesterification simplifies the process by 

allowing extraction and transesterification to occur in one single step, in which oil/lipid-

bearing biomass is directly contacted with chemical solvent in the presence of the catalyst 

(Lam & Lee, 2012). Chemical solvent plays two significant roles in this process: (1) as 

solvent to extract oil/lipid out from biomass and (2) as a reactant to perform 

transesterification. In-situ transesterification offers several advantages over conventional 

biodiesel production method such as minimizing the solvent separation step, reducing the 

processing time and consequently, cutting down the overall biodiesel production cost (Rawat 

et al., 2013). 

 

1.4 Impediments to commercialization and LCA study 
 

Algae have a significant potential compared to other biomass feedstocks to supplement or 

even replace current transportation fossil fuels use. A life cycle analysis (LCA) on algae 

production is an effective tool to determine the acceptability of algal biodiesel as replacement  
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for petroleum and to depict the actual problems and issues facing the microalgae biofuels 

industry (Dassey et al., 2014). 

In general, LCA can guide and give a clear idea to researchers and policy makers on revealing 

the real potential of a particular product that is being evaluated. It can also be used to indicate 

if the production of a particular product can lead to negative environmental phenomena such 

as eutrophication, global warming, ozone depletion, human and marine toxicity, land 

competition, photochemical oxidation, etc; so precautionary steps can be suggested to reduce 

the negative impacts. In addition, energy balance can be calculated to determine and justify 

the energy hotspot of all stages within the system boundary of the LCA  (Lam & Lee, 2012). 

Apparently, there are only a few LCA studies performed on microalgae biofuels due to 

limited comprehensive data. Therefore, parameters related to microalgae biofuel production 

such as biomass productivity, lipid content and downstream energy efficiency (harvesting, 

drying and transesterification) are generally obtained based purely on lab scale experimental 

data (Lam & Lee, 2012). 

Recently, a LCA with parameters of aerial productivity, culturing, CO2 mitigation, water use, 

nutrient loading, biomass harvesting, lipid extraction, and energy conversion was explored on 

algae production in Louisiana (Dassey et al., 2014). A 1 acre pond growing algae at a 

conservative rate of 15 g m
-2

 d
-1

 with 20% lipids was considered and pumping and shipping 

were omitted from the analysis because they had minimal impact on the overall cost at all 

levels. In addition, the authors compared their results with the high and low estimates made 

by other authors. They found that the energy consumed on a daily basis always exceeded the 

energy extracted from biodiesel and the major costs were due to nutrients, harvesting and 

lipid extraction. Results are shown in Fig. 1.6. The graph also shows that, of the five major 

energy consumers, CO2  was the least influential on total energy consumption. 
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Figure 1.6 - Comparison of high, low, and current energy estimates for algal biodiesel production and the e 

energy extracted as biodiesel  (Dassey et al., 2014). 

 

1.4.1 Availability of CO2 

 

Carbon dioxide is essential for growing algae. Production of each ton of algal biomass 

requires at least 1.83 ton of CO2 (Chisti, 2007). The availability of point sources of CO2  is a 

major impediment to the production of algal fuel oils at a meaningful scale. Concentrated 

sources of CO2 are mainly the flue gases produced during power generation from combustion 

of coal; the cement industry is another source of concentrated CO2 emissions (Chisti, 2013). 

Additionally, combustion products such as NOx or SOx can be used as nutrients for 

microalgae, simplifying flue gas scrubbing for combustion systems. A good alternative could 

be the exploitation of CO2 from the atmosphere, which contains around 0.039 % of CO2 by 

volume, because there would be no need for point CO2 sources and the carbon footprint of 

algal fuels would be reduced. However, because of its low concentration, atmospheric CO2 is 

not sufficient to support the high microalgal growth rates and productivities needed for full-

scale biofuel production (Chisti, 2013). 

Many algae and cyanobacteria possess mechanisms for concentrating CO2 from the culture 

medium into cell, but CO2 absorption from the standard atmosphere into the culture medium 

is not sufficiently fast to grow a large concentration of algae. Therefore, low-energy physical-

chemical strategies are needed to cheaply capture and concentrate the CO2 that is already in 

the atmosphere, for use in algal culture (Chisti, 2013). 

For algae that can be grown in highly alkaline conditions, CO2 may be supplied in the form of 

bicarbonate, helping to reduce the cost of supplying CO2, but it may be not applicable for 

culturing marine algae as sea salts tend to precipitate once the pH exceeds about 8 (Chisti, 

2013). 
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1.4.2 Supply of N and P nutrients 

 

In addition to CO2, algal growth requires nitrogen (N) and phosphorous (P) as main nutrients. 

In order to achieve maximum growth, these elements need to be supplied in sufficient 

quantity so as not to become limiting. The nutrients are normally from chemical or inorganic 

fertilizers. Producing 82 million tons of algal biomass will consume 5.4 and 1.1 million tons 

of N and P, respectively (Chisti, 2013). Lam & Lee  (2012) found that culturing  of 

microalgae consumes more chemical fertilizers than all other oil-bearing crops. In Table 1.4 

the N-fertilizer consumption for various energy crops and microalgae is shown. 

 
Table 1.4 - N-fertilizer consumption for various energy crops and microalgae (Lam & Lee, 2012). 

 

Existing supply of N and P fertilizers for agriculture is insufficient to provide for any 

significant scale production of algal biomass for oil extractions (Chisti, 2013). In addition, the 

production of fertilizers uses much energy and generates considerable GHG emissions in the 

form of CO2, nitrous oxide (N2O) and methane. Therefore, producing more fertilizer through 

conventional technology for use in algal culture may be counterproductive (Chisti, 2013). 

Hence, recycling and reusing the excess nutrients in the culture medium should be encouraged 

to improve the life cycle energy balance of microalgae biofuels (Lam & Lee, 2012). The only 

available technology for nutrient recovery appears to be anaerobic digestion of the spent 

biomass (Chisti, 2008). In addition, the biogas produced from the anaerobic digestion process 

can be used to generate onsite electrical power or thermal heat to offset biomass processing 

and extraction processes. 

Due to the severe impact of chemical fertilizers towards the overall energy balance in 

microalgae cultivation, there is an urgent need to search for alternative and low cost nutrient 

sources to ensure long-term sustainability (Lam & Lee, 2012). In this case, using wastewater 

to culture microalgae appears as an attractive and economical alternative. Normally, 

secondary and tertiary wastewaters contain significant amounts of nitrate and ortho-phosphate 
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which are not removed during primary treatment. These nutrients can be used to culture 

microalgae and at the same time, microalgae play an important role as reagent to purify the 

wastewater. Dassey et al. (2014) showed that the energy imbalance could be improved using 

an algal system to treat wastewater for total N and P (Figure 1.7 left) . They also found that a 

further improvement could be obtained by combining nutrient supply through wastewater 

treatment with the use of residual biomass for methane production (Fig. 1.7 right). 

 

 

 
 

 

 

 

Figure 1.7 - Comparison of high, low, and current energy estimates for algal biodiesel production and the 

energy extracted as biodiesel plus supplemental value for wastewater treatment (left) or plus supplemental 

values for wastewater treatment and anaerobic digestion (right) (Dassey et al., 2014). 

 

1.4.3 Harvesting of microalgal biomass 

 

The energy consumed in harvesting and drying of microalgae biomass should not be ignored 

as it may bring significant adverse effect towards the overall energy balance in producing 

microalgae biofuels (Lam & Lee, 2012). An efficient algal harvesting process should be 

applicable for all kinds of algal species, yield a product with a high dry weight percentage, 

and require minimum investment, energy, and maintenance (Dassey et al., 2014). 

Up to now, centrifugation and filtration are still not energy-feasible methods to harvest 

microalgae in commercial scale; in fact these methods involve extensive energy consumption, 

and high capital and maintenance costs resulting to unsustainable practice for long-term 

operation (Lam & Lee, 2012).  On the other hand, flocculation offers a relatively low energy 

way to harvest microalgae. However, conventional flocculation method is also characterized 

by several disadvantages: (1) high dosage of multivalent salt is required to achieve 

satisfactory result, (2) it produces large quantity of sludge that increases the difficulty to 

dehydrate the biomass , (3) flocculation efficiency is highly dependent on pH level, (4) 

flocculant toxicity should not be ignored especially if health related products are to be 
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extracted out from microalgae biomass before being used for subsequent biofuel production 

(Lam & Lee, 2012). 

A suitable harvesting strategy may involve one or more steps and be achieved in several 

physical, chemical, or biological ways, in order to perform the desired solid-liquid separation 

(Martins et al., 2010). Most harvesting systems will employ a 2-stage dewatering process, 

where stage 1 increases the algae concentration from 0.01-0.1% mass to 1–2% mass and stage 

2 increases the final concentration to ~20% biomass (Dassey et al., 2014) (Table 1.5). 

 

Table 1.5 - A comparison of potential harvesting techniques and costs for algal biomass (DAF stands for 

dissolved air flotation) (Dassey et al., 2014). 

 

In parallel, membrane filtration (e.g., microfiltration (MF) and ultrafiltration (UF)) has 

received increased attention due to its high separation efficiency and easy operation (Zhang et 

al., 2010). Zhang et al. (2010) used a UF process to harvest and dewater algal cells, where 

cross-flow filtration and air-assisted backwash were used to maintain a high water flux. 

Unfortunately, these pressure-driven MF and UF membrane processes are prone to fouling 

and are relatively energy intensive (Zou et al., 2011). Recently, forward osmosis (FO) has 

emerged as a promising alternative separation technology. FO membranes could provide an 

initial dewatering step for harvesting microalgae (Buckwalter et al., 2013). Driving by the 

concentration difference across a solute-rejecting dense membrane, FO does not require an 

external applied pressure. A pure water flux is established spontaneously across the FO 

membrane from a low concentration feed water to a high concentration draw solution under 

the chemical potential gradient. Compared to pressure-driven MF and UF processes, FO 

offers many advantages including (1) better separation efficiency thanks to its nonporous 

rejection layer and (2) potentially lower power consumption (e.g., in the case where a high 

osmotic pressure, such as seawater, is naturally available) (Zou et al., 2011). 
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1.4.4 Lipid extraction  

 

Lipid extraction from microalgal biomass has not received sufficient attention and represents 

one of the many bottlenecks hindering economic industrial-scale production of microalgal 

biodiesel (Halim et al., 2011). An ideal lipid extraction technology for microalgal biodiesel 

production should be lipid specific, in order to minimize the co-extraction of non-lipid 

contaminants (such as protein and carbohydrates), efficient (both in terms of time and 

energy), non reactive with the lipids, relatively cheap (both in terms of capital cost and 

operating cost) and safe (Halim et al., 2011). 

Each current technology has its merits and limitations. Despite having low reactivity with 

lipids and being directly applicable to relatively wet feedstock, organic solvent extraction is 

slow and uses a large amount of expensive/toxic solvents. On the other hand, supercritical 

carbon dioxide extraction is a promising green technology that can potentially be used for 

large-scale microalgal lipid extraction. It is rapid, non-toxic, has high selectivity towards 

acylglycerols, and produces solvent-free lipids; however, Its main disadvantages are 

associated with the high capital cost and the high energy requirement for supercritical fluid 

compression. 

As previously mentioned, dewatering the microalgal biomass can be energetically prohibitive; 

for this reason, it would be economically beneficial if the selected lipid extraction technology 

can be directly applied to relatively wet feedstock (Halim et al., 2011). However he showed 

that the extraction from wet paste resulted in decreasing lipid yields. 

 

1.5 Light supply 

 

Microalgae can absorb only a portion of the total radiation coming from the sun, and this part 

corresponds to the kind of photons photosynthesis can use. It is represented by the solar 

spectrum limited by wavelength of 400 and 700 nm. Photosynthetically active radiation 

(PAR) represents 46% of total irradiance. 

Light spectrum and intensity are factors that directly affect the performance of phototrophic 

microalgal growth, both indoors and outdoors. In outdoors cultures, sunlight is the major 

energy source, whereas innovations in artificial lighting, such as light-emitting diodes (LED) 

and optical fibers, are interesting for indoor cultivation systems. In this case, the big challenge 

is the high cost of artificial lighting (Amaro et al., 2011).  

The light provides all the energy required to support algal metabolism, but, if present in 

excess, it can damage cells, leading to oxidative stress and photoinhibition and thus lower 

photosynthetic efficiency (Gris et al., 2014).  

In PBRs, algal cultures reach high optical densities, which cause inhomogeneity in light 

distribution. Consequentially , the cells on the surface, directly exposed to light, absorb most 
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of the available radiation, but must also activate mechanisms of energy dissipation, to avoid 

oxidative damage (Gris et al., 2014). Instead, the cells in the dark zone of the PBR receive 

only a small part of the radiation, which is limiting for their growth. The consequence of the 

light distribution is a reduced efficiency in using available energy along the depth of PBR. A 

reduction of light path could be beneficial, but thin reactors are unlikely to be economically 

sustainable on a large-scale. In addition, in thin reactors, problems of photosaturation and 

inhibition are enhanced. 

A further source for complexity to be considered is that in PBRs  cells are actively mixed and 

move between the dark and light regions. Such dark/light cycles have been suggested to 

increase the photosynthetic efficiency in several cases (Grobbelaar, 2010; Kimbet et al., 2006; 

Nedbal et al., 1996). 

In the work of Gris et al. (2014) the effect of different illumination on S. obliquus was 

investigated in a flate plate PBR. They found that at low light intensities, ranging from 10 to 

150 μmol m
−2

 s
−1

, the specific growth rate and cell concentration increased linearly with light 

intensity, with a peak at 150 μmol m
−2

 s
−1

 , and showed that, in this range, light is limiting for 

cell growth. Over this limit, the increase of light intensity did not result in any enhancement 

of the growth rate nor increased final cell concentration, suggesting that the saturation point 

of photosynthesis was reached (Figs. 1.6 (a), (b) and (c)). It is also worth mentioning that 

other species grown in thin flat panels similarly showed photosaturation at irradiances over 

150 μmol photons m
−2

 s
−1

 (E. Sforza et al., 2012). 
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Figure 1.6 – (a) Cellular concentration of algae exposed to low light intensities ranging from 10 to 150 μmol 

m
−2

 s
−1

, (b) cellular concentrations at high light intensities, ranging from 200 to 1000 μmol m
−2

 s
−1

, (c) growth 

parameters determined from curves reported in (a) and (b), specific growth rate (squares) and biomass 

concentration (rhombus) (Gris et al., 2014). 

1.5.1 Growth modeling as a function of light 

In literature several models of photosynthetic biomass growth have been developed.  They 

can be divided in two main groups, that is static and dynamic models (Luo et al., 2004). Static 

models are the simplest and the most used for photobioreactor performance determination and 

reactor design; they are based on empirical or semi-empirical data but they lack generality, 

ignoring the dynamic nature of represented phenomena. Dynamic models attempt to describe 

physiological phenomena such as photoinibition and photolimitation and the relation between 

growth rate and irradiance is based on cell physiology and not on experimental data. These 

models are extremely complex, detailed and involve a large amount of variables and 

parameters.  

Cornet model (Cornet et al., 1995) and generalized by Pruvost (Pruvost et al., 2011) belongs 

to the first category and in literature it was frequently used to model photosynthetic growth. 

Cornet model refers to an isotropic radiative field  and the scattered part of light is considered 

to be parallel to the main radiation direction (Cornet et al., 1995). The method refers to 

artificial light but it was expanded in order to consider the dynamic nature of solar radiation, 
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such as incident angle variation and the daily direct or diffuse light distribution (Pruvost et al., 

2011). The model provides a formulation for the biomass duplication rate as a function of 

irradiance at each point of the reactor depth: 

 

         
 

      
                        (1.1) 

 

where      is the biomass duplication rate at distance z from the panel (kg m
-3

 s
-1

),    the 

maximum energetic yield for photon conversion (-),   the half saturation constant for 

photosynthetis (μmol photons m
-2

 s
-1

),   the mass quantum yield for Z-scheme of 

photosynthetis (kg μmol photons
-1

) and    the maintenance term, including both respiration 

and death of cells (s
-1

). 

In Eq. 1.1  the contributions of both biomass growth and maintenance due to the cells 

respiration and death are considered.  

Particularly, in the work of Domenicali (2013) a sensitivity analysis was performed in order 

to understand the influence of    on the Cornet model. Results in Fig. X. show that the steady 

state biomass concentration is strongly influenced by the maintenance parameter . The same 

results were found for the biomass productivity.  

 

 
Figure 1.7 - Trends of the stationary biomass concentration  by varying   (Domenicali, 2013). 

 

It can be concluded that    is the parameter to tune in order to reproduce well the 

experimental results, as also found in the work of Bertucco et al. (2014). The maintenance is a 

key parameter of most mathematical growth models (Bernardi et al., 2014; Wu & Merchuk, 

2001), including those used for large scale PBR design (Quinn et al., 2011). 
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1.5.2 Energy requirements for photoautotrophic growth and maintenance 

 

As previously mentioned, the maintenance process has to be taken into account when 

quantifying a kinetic growth, because it limits somehow the duplication rate, diverting part of 

light energy from production of new cell material to cell physiological functions, which 

include (van Bodegom, 2007): 

1. shifts in metabolic pathways; 

2. energy spilling reactions 

3. cell motility; 

4. changes in stored polymeric carbon; 

5. osmoregulation; 

6. extracellular losses of compounds not involved in osmoregulation; 

7. proofreading, synthesis and turnover of enzymes and other macromolecular 

compounds such as enzymes and RNA; 

8. defencence against O2 stress. 

However, its quantification is a subject of continuous debate, which is caused by the 

existence of partly overlapping concepts and the evolution of the variables describing the 

maintenance. 

Several models were applied to measure and characterize the energy requirement of 

microbial growth as a function of substrate concentration (Minkevich et al., 2000; Pirt, 1965; 

van Bodegom, 2007). Particularly Minkevich et al. (Minkevich et al., 2000) found that, in the 

case of inhibiting substrate, inhibition may result in increased maintenance energy demand, 

so showing how growth rate and yield depend on growth conditions.  

On the other hand, little is known about the experimental quantification of algal maintenance 

requirement. Only few authors tried to apply the same concepts to the photosynthetic 

organisms, considering the light as a limiting substrate (Gons & Mur, 1980; Kliphuis et al., 

2012). However, the effect of saturating light on energy parameters for photosynthetic 

organisms has not been investigated yet. Instead, this is fundamental in order to understand 

the possible energy loss in an actual outdoor PBR, where algae are inevitably exposed to 

variable incident light due to diurnal and seasonal differences in irradiation, which can 

strongly influence the efficiency of energetic pathways and, eventually, the overall biomass 

productivity. 

 

1.6 Aim of the thesis 

 

In this work, the effect of light intensity and irradiation regime on maintenance rate was 

assessed, by growing S.obliquus in a continuous laboratory-scale flat-plate PBR at different 

residence times, thus studying different growth rates. Particularly, the maintenance 
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parameters were calculated according the approach of Pirt (1965) and van Bodegom (2007).  

In addition, at non limiting nutrients (N and P) conditions, the effect of different light 

intensity and irradiation regimes on microalgae growth, photosynthetic efficiency, lipid and 

pigment content and nutrient uptake was investigated. 

  



 

 
 

Chapter 2 
 

 

Maintenance: an overview on its 

quantification 
 

 

 

2.1 Material balance of a continuous system 

 

The PBR can be modeled as a continuous stirred tank reactor (CSTR) for the particular 

mixing, as demonstrated by tracer experiments carried out previously by Facca (2013). So the 

material balance with respect to the biomass, with the assumption of a constant volumetric 

flow rate     is expressed by: 

 
     

  
                                                                                                                      (2.1) 

 

where      is the reactor volume (L),       and       the biomass concentrations in and out of 

the reactor (gx L
-1

),    the constant volumetric flow rate (L d
-1

) and      the biomass production 

rate, defined as          (g L
-1

 d
-1

). Particularly,   is the specific growth rate (d
-1

). If it is 

assumed that only nutrients (i.e. no microalgae) are fed to the reactor, at steady state 

conditions Eq. 2.1 is reduced to: 

 

                                                                                                                                   (2.2) 

 

From which the following can be derived: 

 

   
 

 
     (2.3) 

 

where τ is the residence time in the reactor (d) defined as: 

 

  
    

  
   (2.4) 

 

and   is the dilution rate (d
-1

). 

Thus, according to Eq. 2.3, it results that the growth rate at steady state is equal to the dilution 

rate D. Consequently,  by setting different dilution rates, different growth rates can be studied. 

Moreover, the volumetric biomass productivity of the PBR (  , g L
-1

d
-1

), defined as the rate of 

change of biomass density, is equal to the biomass production rate: 
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         (2.5) 

 

On the other hand, the areal biomass productivity of the PBR (   , g d-1m-2), defined as the 

biomass productivity per unit irradiated area, can be expressed as: 

 

    
          

    
                                                                                                                                           (2.6) 

 

where      is the illuminated surface of the PBR (m
2
). 

 

2.2 Microbial model for maintenance 
 

Microbial maintenance is defined as “the energy consumed for functions other than 

productions of new cell material” (Pirt, 1965). In the past several authors tried to measure the 

maintenance energy requirements of heterotrophic microorganisms and most of the proposed 

models are based on the work of Pirt. 

 

2.2.1 Pirt model 
 

Pirt (1965) stated that the decreasing growth yields at decreasing growth rate should be 

explained by a requirement of energy for cell maintenance. Accordingly, a model was 

proposed to correlate the maintenance requirement, the growth yield and the growth rate. 

Other authors optimized the model of Pirt by adding terms accounting for more complex 

phenomena, such as  the effect of inhibiting substrate on cell maintenance (Chenl & Johns, 

1996; Minkevich et al., 2000) 

The main parameters used to describe microbial maintenance and correlate it to growth, are 

the yield coefficient and the maintenance coefficient.  

Based on studies on continuous flow cultures, Herbert (1956) was the earliest microbiologist 

to consider the maintenance requirement as a negative growth or “endogenous metabolism”, 

later termed “specific maintenance rate” by Pirt (1965), to account for yield variation with 

growth rates. Accordingly, the following equation was proposed: 
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where    is the microbial biomass (gx m
-3

),   the true specific growth rate (d
-1

) and   the 

specific maintenance rate (d
-1

). The death term is not considered in this equation, because it is 

referred to exponential phase of growth. 

On the other hand, Schulze & Lipe (Schulze & Lipe, 1964) formulated the maintenance 

energy in terms of the substrate energy  consumed to maintain cells, later termed 

“maintenance coefficient” by Pirt (1965). Eventually, Pirt proposed a relationship between the 

maintenance coefficient and the growth rate, according to: 

 

    
 

 
 
   
  

    
 

  
                                                                                                                      

 

 
   
  

       
   
  

                                                                                                                                                

 

where   is the specific substrate consumption rate (gs gx
-1 

d
-1

) used for growth and 

maintenance,    the maintenance coefficient (gs gx
-1 

d
-1

),    the concentration of the energy 

supplying substrate (gs L),    the “true” growth yield coefficient (gx gs
-1

) and      the apparent 

or observed yield coefficient (gx gs
-1

). 

As defined by Pirt (1965),      considered that, in the production of a certain amount of 

biomass, a portion of energy substrate was consumed in new cell synthesis, another part in 

maintenance of the cells, while    included consumption of substrate only for net growth 

purposes. 

From Eq. (2.8) it follows that, if     and    are both constant, a linear relationship between   

and   should be obtained. The slope of the curve will be the inverse of    and the intercept on 

the Y-axis will be     

Moreover, Pirt derived a relation between    and   , according to: 

 

   
 

   
                                                                                                                                                    

 

2.2.2 Relation between Y and m: Van Bodegom Model 

 

Van Bodegom (van Bodegom, 2007) revised the work of Pirt to calculate a, in contrast with 

the relationship found by Pirt (1965), i.e. Eq. (2.10), that considered   as constant for all 

growth rates. From Eq. (2.8), in combination with the definitions of    and     , the author 

found that: 
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                                                                                                                                    ) 

 

Similarly to Eq. (2.8), if    and    are both constant, the plot of        against     should 

be a straight line with slope    and intercept on the ordinate       

From the Eqs. (2.7) and (2.9), in combination with the definitions of    and     , it followed 

that: 

 
 

    
  

 

   
 
 

  
                                                                                                                                         

 

By substituting         in either Eqs. (2.11) and (2.12), he derived that: 

  

   
 

    
                                                                                                                                                 

 

which is equal to Pirt equation only  if           . 

So, according to Van Bodegom’s approach, there isn’t a constant relationship between 

   and a, because the apparent growth yield depends on   if maintenance occurs. In addition, 

the difference between Eq. (2.13) and Eq. (2.10) could be substantial if maintenance is  large, 

as can be seen in Fig. 2.1. 

 

 
Figure 2.2 - Comparison between Van Bodegom (Eq. 2.13) and Pirt model (Eq. 2.10) for various   values 

with        gx  gs
-1

 (van Bodegom, 2007). 
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2.3 Effect of inhibiting substrate on maintenance in heterotrophic 

culture 

 

As reviewed by Van Bodegom (2007),    and    are constant and can be applied to calculate 

the basal maintenance. On the other hand, for heterotrophic microorganisms, it was 

demonstrated that      and   could be represented by the Pirt model (Eqs. 2.8 and 2.11) with 

a constant value of   , only when no substrate inhibition of cell growth was observed.  

Particularly, Chen & Johns (1996) investigated the relationship between substrate inhibition 

and maintenance energy of Chlamydomonas reinhardtii, grown heterotrophically on acetate. 

They demonstrated that substrate inhibition may result in increased maintenance demand. In 

fact, for chemostat cultures, it was shown that a linear relationship between         and   

    was possible only for low acetate concentrations. On the opposite, when the acetate 

concentration in the culture broth was greater, inhibition on cell growth occurred and a linear 

relationship between         and       could not be attained (Fig. 2.2). So it resulted that   , 

depends on the substrate concentration and increases at higher inhibition. 

 
Figure 2.2 - Relationship between         and       of C. reinhardtii grown heterotrophically at various 

initial acetate concentrations (Chenl & Johns, 1996). 

 

The same trend was observed also by Minkevich et al. (2000), who studied the effect on the 

specific growth rate and cell biomass yield of ethanol and zinc, during cultivation of the yeast 

Candida valida. He found two different relations between      and   in the case of low 

substrate concentration and inhibiting substrate concentration, respectively (Fig. 2.3). In the 

region at low concentration of substrate, the author found that the maintenance coefficient is 

close to the constant term    and can be expressed as:  
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On the other hand, at higher substrate concentration, a different dependence of      on   was 

obtained, due to the increased maintenance resulting in a general lower      than under non 

inhibiting conditions. 

 
Figure 2.3 - The biomass yield of C. valida from ethanol  vs  the specific growth rate in the experiments with 

ethanol concentration varied. Closed symbols: ethanol limited growth ; Open symbols: ethanol inhibited 

growth (Minkevich et al., 2000). 

 

The relation under inhibiting condition was expressed by (Chen & Johns, 1994b) (Fig. 2.4), 

which  proposed a simple mathematical model based on a mass balance on cell growth, to 

predict the actual maintenance energy coefficient and to account for the loss of biomass in the 

inhibited cultures: 

 

                                                                                                                                                 

 

where μ represents the “true” specific rate substrate utilization and α and β are fitting 

constants. 
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Figure 2.4 - Comparison of the inhibition model (Eq. 2.15) with the Pirt model (Chenl & Johns, 1996). 

 

2.4 Application of  microbial models to photosynthetic organisms 

 

Little is known about the energy requirement for maintenance in photosynthetic organisms, 

where the energy for all metabolic pathways is provided by light. Thus, its quantification for 

these kind of organisms is more complex than for heterotrophic ones, due to the complex 

relation between light availability, light excess and uptake system on growth. 

 

2.4.1 Gons & Mur model 

 

Gons & Mur (1980) stated that, for algae, as well as for heterotrophic microorganisms in 

energy-limiting conditions, growth yields decreased at low growth rates as a result of a 

requirement of energy for maintenance. So they demonstrated that the Pirt model (Pirt, 1965) 

could be applied to light-limited cultures, where light energy is considered as a limiting 

substrate. Based on the energy balance around the reactor, the growth rate resulted 

proportional to the energy absorbed, except for the energy required for maintenance:  

 

   
  

  
 
 

 
                                                                                                                                       

 

where       is the light uptake rate (J d-1) of the energy   (J) stored in the culture biomass, 

  is the “true” efficiency of light energy conversion into the chemical energy that is stored in 

biomass (dimensionless) and    is the specific maintenance rate constant (d-1). 

The term       represents the energy part used in biomass synthesis and        the energy 

part diverted from growth, as a result of maintenance processes. 
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The specific light uptake rate           (d
-1

), that is the amount of energy consumed per 

unit of biomass over time, was calculated as: 

 
  

  
 
 

 
 
                
             

                                                                                                              

 

where        is the light absorbed by the culture (mmol photons m
-2

 d
-1

),    the energy of 

photons (kJ mmol photons 
-1

)     is the low heat value of biomass (kJ g
-1

). 

Gons & Mur (1980) applied the model to the light-limited growth of Scenedesmus 

protuberans, in continuous cultures growing with light-dark cycles of 16 and 8 h and  

temperatures of 20 °C and 28 °C.  All experiments were carried out with cultures of 1 L in 

standard, pyrex glass, double walled cylindrical vessels, illuminated by one or three circular 

white fluorescent lamps, corresponding to an average value of incident light of 12 and 38 W 

m
-2

, respectively.        was calculated by photodiode measurements of the light 

distribution in culture suspensions. 

According to the approach proposed by the authors, μ is proportional to           (Fig. 

2.5). By the linearization of   as function of              the negative intercept with the 

ordinate represents   , while   is the slope of the line. 

 

 
Figura 3.5 - The relationship between specific growth rate and specific light uptake rate at 20 °C (1 lamp; 

triangles, and 3 lamps; dots) and at 28 °C (3 lamps; circles) (Gons & Mur, 1980). 
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The obtained values of   and   are shown in Table 2.1. Gons and Mur concluded that    

wasn’t affected by used irradiances, but only by temperature; on the contrary   depended on 

incident light, but did not change with temperature. 

 

Table 2.1 -    and   values determined by Gons and Mur (Gons & Mur, 1980). 

    (d
-1

)   (-) 

 Irradiance  Irradiance  

 12 W m
-2

 38 W m
-2

 12 (W m
-2

) 38 (W m
-2

) 

Temperature 20 °C 0.14-0.19 0.14-0.19 0.14-0.16 0.11-0.13 

Temperature 28 °C - 0.3-0.4 - 0.11-0.13 

 

2.4.2. Kliphuis et al. model 

 

Kliphuis et al. (2012) recently applied the continuous PBR approach to measure the energy 

requirements for maintenance and biomass formation in C.reinhardtii, under an average 

irradiance lower than 100 μmol photons m
-2

 s
-1

. Experiments were carried out in a continuous 

pre-sterilized flat panel PBR at different dilution rates ranging between 0.018 and 0.064 h
-1

. 

The system consisted of two transparent polycarbonate sheets, held together by stainless steel 

frame, and was characterized by a working volume of 0.4 L, a light path of 25 mm and an 

illuminated area of 195 cm
2
 (10 x 19.5 cm) (Fig. 2.6). Temperature was maintained at 25 °C 

by an external water bath and the continuous illumination was provided by a red LED panel 

of 20 x20 cm placed on one side of the PBR.  

 
Figure 2.6 - Schematic front and side view of the PBR setup used by Kliphuis et al. (2012) for the continuous 

experiments. MFC: mass flow controller for both air and CO2, WB: water bath, F: air filter. 
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The relationship proposed to describe the correlation between the specific light supply     

(mmol photons g
-1

 d
-1

) and   (d
-1

) was based on the model of Pirt (1965), as previously 

proposed by Zijffers et al. (2010): 

 

     
 

  
                                                                                                                                            

 

where,  

 

     
            

         
                                                                                                                                  ) 

 

       was found by subtracting the light falling through the culture at steady state from the 

amount of light falling through the reactor filled with medium only, according to: 

 

                                                                                                                                          
 

where     is the incident light (mmol photons m
-2

 d
-1

),    the back irradiance (mmol photons 

m
-2

 d
-1

)  and    the light absorbed by the sole medium and panel (mmol photons m
-2

 d
-1

).  

In addition, the calculated light supply rate was corrected to account for the inefficiency of 

light use: 

 

                                                                                                                                                 
 

Where       is the specific light utilization rate (mmol photons g
-1

 d
-1

) and      the 

maximum photochemical quantum yield (dimensionless), assumed to be equal to 0.8. 

The values of    and       , found for each steady state by Kliphuis et al., are summarized 

in Table 2.2., as a function of the growth rate. 

 
Table 2.2 -            and   determined for each chemostat experiment (Kliphuis et al., 2012). 
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A plot of these points (Fig. 2.7) shows that the amount of light used by the algae increased 

proportionally to the growth rate while a fixed amount of maintenance light energy was 

necessary to keep the algae in a healthy state. By the linearization of     as function of    the 

positive intercept on Y-axis and the inverse of the slope give a value of    and    of 5.63 

mmol photons g
-1

 h
-1 

 and  1.26 g mol photons
-1

, respectively. 

 

 

Figure 2.7 - Relationship between     and  , obtained plotting Kliphuis data. 

They observed that the value of   was high compared to biomass yields found for other green 

microalgae. In fact, several authors obtained yields ranging from 0.5 to 1 g mol photons
-1

 for 

other green microalgae, but at high irradiances of 1000 μmol photons m
-2

 s
-1

 or more (Table 

2.3). They concluded that the differences between the yields at high and low irradiances 

reflected the fact that a large part of the light was “wasted” at higher irradiances, because in 

these conditions the antenna complexes in the algal photosystems became saturated and the 

remainder of the absorbed light was dissipated as heat and fluorescence.  
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Table 2.3 – Comparison of biomass yields on light energy and the used irradiances for different microalgae 

from literature (Kliphuis et al., 2012). 

 

 

 

 

 

 

 

 

Finally, even if these authors measured experimentally the maintenance coefficient and yield, 

they did not calculate the specific maintenance rate. In addition, no data are available about 

the influence of light intensity and regime on both maintenance coefficients and rate. 

 

2.5 Intensity and biomass yield  
 

The biomass yield on light energy of green algae was recently investigated by Zijffers et al. 

(2010) at saturating light intensities. Particularly, the objective of the work was to determine 

the effect of biomass density and light path on the biomass yield of Dunaliella tertiolecta and 

Chlorella sorokiniana at constant photon flux density of about 930  μmol photons m
-2

 s
-1

. 

Experiments were carried out in a continuous flat panel PBR, composed of transparent 

polycarbonate sheets held together in a frame similar to the system used by Barbosa et al. 

(2005) and characterized by a width of 20 cm, a height of 60 cm, and a light path of 1,25 or 

2,15 cm (Fig. 2.8). The temperature was maintained at 30 °C  and 37 °C  for D. tertiolecta and 

C. sorokiniana, respectively, and the system was illuminated on one side using ten compact 

fluorescent tubes. 
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 Figure 2.8 - Schematic front and side view of the flat panel PBR used by Zijffers et al. (2010). 

 

The algae were cultivated using the D-stat method as described by Paalme et al. (1995) and 

later applied by Barbosa et al. (2005). In general, the dilution rate was changed applying a 

constant deceleration rate according to: 

 

                                                                                                                                                 

 

where D0 is the dilution rate at which the D-stat method starts (h
-1

), d the deceleration rate (h
-

2
) and t the time (h). 

In this way, the microalgae productivity can be determined for a wide range of dilution rates 

in less time compared to performing a number of chemostat cultivations. However, the 

continuous rate of change of the dilution rate have to be chosen such that microalgae are able 

to acclimate to the continuously changing conditions in the PBR (Paalme et al., 1995). 

Fig. (2.9) shows the dilution rate changes during the D-stat cultivations, applied to the two 

algae. 
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Figure 2.9 - Dilution rate profiles obtained by Zijffers et al. (2010) during the D-stat cultivations of D. 

tertiolecta (left) and for C. sorokiniana (right) cultivations (Zijffers et al., 2010). 

 

They plotted YAPP , calculated according to Eq. 2.23, as a function of       (Fig.2.10): 

 

      
              
             

                                                                                                                         

 

They observed that at higher photon flux densities, a relatively constant yield between 0.6 and 

0.8 g mol photons
-1

 was obtained, while at lower photon flux densities, i.e., at higher biomass 

concentrations, the yield dropped considerably. 

 
Figure 2.10 - Observed biomass yield on light energy during the D.tertiolecta (left) and C.sorokiniana (right) 

cultivations, obtained by Zijffers et al. (2010). 

 

Moreover, to demonstrate that maintenance requirements was the reason for the reduction of 

the observed yield at lower light supply rates, they fitted their data through the model of Pirt 

(Eq.2.8) and Kliphuis (Eq.2.18), for both C. sorokiniana and D. tertiolecta. So      was 

plotted  
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as a function of   (Fig. 2.11). Particularly, a “true” growth yield of 0.782 and 0.751 g mol 

photons
-1

 was found for D. tertiolecta and C. sorokiniana, respectively.  

 

 
Figure 2.11 – Specific light supply rate as a function of μ for D. tertiolecta (left) and C.sorokiniana (right), obtained by 

Zijffers et al. (2010). 

 

The authors concluded that the constant value of    shows that the steep decrease in the 

observed biomass yield at high biomass concentration might not to be caused by a decrease in 

efficiency of light use, but by an increase in maintenance energy requirement because of the 

increase in biomass concentration.





 

 
 

Chapter 3 
 

 

Materials and methods 
 

 

 

3.1 Microalga and medium composition 

 

S.obliquus 276-7 from SAG (Culture Collection of Algae at the University of Göttingen, 

Germany)  is the green microalga used during the laboratory activity. This is one of the most 

promising species as feedstock for biodiesel production, since it presents several advantages 

such as a fast growth, efficient CO2 fixation, the ability to grow in wastewaters and 

accumulate lipids (Gris et al., 2014). S. obliquus is a common green alga, often occurring as 

almost a pure culture in fresh water plankton. Usual habitates are water like clean ponds, 

lakes and rivers, mainly in Asia and Europe. Cells are commonly occurring in colonies as 

multiple of two, with four or eight cells being most common. The morphology of the colony 

can be varied considerably by varying the medium in which the cells are growing. In a 

medium with low phosphorous or salt concentration, it is induced to grow unicellular, 

forming around 10 μm long elliptical cells. Fig. 3.1 shows an optical microscope image of 

S.obliquus cells. 

 
Figure 3.1 – Cells of S. obliquus under light microscope (http://www.uni-koeln.de) 

  

http://www.uni-koeln.de/
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The microalga was maintained and cultured in BG11 medium, whose composition is reported 

in Table 3.1. The medium was sterilized in an autoclave for 20 min at 121°C in order to 

prevent any contamination. During continuous experiments, the composition of BG11-

medium was modified by adding higher concentrations of NaNO3 and K2HPO4  (3 g L
-1

 and 

500 mg L
-1

, respectively)  to ensure that N and P were not limiting. 

 

Table 3.1 – BG11 composition. 

Component Concentration Unit of measure 

Na2MG EDTA 1E-03 g/L 

Ferric ammonium citrate 6E-03 g/L 

Citric acid . 1H2O 6E-03 g/L 

CaCl2 . 2H2O 36E-03 g/L 

MgSO4 . 7H2O 75E-03 g/L 

K2HPO4  30.5E-03 g/L 

H3BO3 2.86E-03 g/L 

MnCl2 . 4H2O 1.81E-03 g/L 

ZnSO4 . 7H2O 0.222E-03 g/L 

CuSO4 . 5H2O 0.079E-03 g/L 

COCl2 . 6H2O 0.050E-03 g/L 

NaMoO4 . 2H2O 0.391E-03 g/L 

Na2CO3 20E-03 g/L 

NaNO3 1.5 g/L 

Hepes 1M pH 8 10E-03 mM/L 

 

3.2 Reactor setup 
 

Pre-cultures for the inoculum were grown in 250 mL glass bottles under a continuous 

enriched CO2 feed flow and constant light intensity of 150 μmol photons m
-2

 s
-1

. Continuous 

experiments were carried out in a vertical flat panel PBR (Fig. 3.2), with a working value of 

250 ml and sterilized in autoclave. S.obliquus was inoculated into the reactor with culture 

medium. In order to prevent the occurring of washout, the reactor operation was first started 

in a batch mode. The depth of the reactor (1,2 cm) is shallow in order to reduce the cells self-

shading and to allow a maximum utilization of light. The surface exposed to light is 208 cm
2

.  

Previous studies (M. Facca, 2013) permitted to assess that this reactor can be considered a  
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CSTR type with a good approximation, in fact the dead volume was estimated to be 10% of 

the total volume. The reactor is made of two transparent polycarbonate sheets glued to an “U” 

support. The support thickness affects the system volume and the light path length. The 

mixing in the culture was ensured by a magnetic micro-stirrer and a CO2–air (5% v/v) flow, 

fed through a sieved silicone tube placed at the reactor bottom. The gas flow also supply a 

non limiting CO2 content to the culture. The total gas flow rate was 1 L h
-1

 and the air 

entering the reactor was regulated using suitable valves and flowmeters. The fresh medium 

was fed at a constant rate by a peristaltic pump (Watson-Marlow sci400, flow rate range: 25-

250 mL d
-1

), and a mixture of medium and cells was withdrawn from the PBR at the same 

rate by an overflow tube. The outlet biomass was collected in a sterilized tank. So, the 

residence time in the reactor was directly controlled by the peristaltic pump, according to Eq. 

2.4. Several flow rates were used, thus leading to different residence times and growth rates. 

The systems were placed inside an incubator (Frigomeccanica Andreaus) whose temperature 

was maintained constant at 23°C (±1°C), on the basis of previous studies (B. Gris, 2012).  

 

 
 Figure 3.2 - Sketch of the continuous lab-scale reactor set up.  
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3.3 Lamps as energy source 

 

Light was provided  by a LED lamp (Photon System Instruments, SN-SL 3500-22) both for 

continuous  and alternated day-night cycles. The photon flux density (PFD) was measured 

using a photoradiometer (HD 2101.1 from Delta OHM), which quantifies the PAR in the 

range 400-700 nm. The measurements of the PAR photon flux density were realized on 6 

points of the surface of the reactor and then averaged in order to obtain the value of irradiance 

needed, e.g. 150 and 650 μmol photons m
-2

 s
-1

 for the experiments at constant intensities. The 

same measurements were collected on 6 points of the back of reactor, when the steady state 

conditions were reached. The average of these value allowed to obtain the back irradiance for 

each residence time. It is clear that an higher concentration of biomass in the reactor causes an 

higher turbidity effect and the irradiance measured behind the reactor will be lower. 

For experiments under day/night light conditions, the light intensity as a function of time was 

simulated so that to provide the PBRs with the same PAR amount of energy received under 

natural conditions at the selected latitude. PVGIS Solar Irradiation Data 

(http://re.jrc.ec.europa.eu/pvgis/) is an online available database of typical day evolution of 

irradiation on a given surface for any location and time of year. This software was used as the 

source of irradiation data for the location of Padova, Italy. An incident angle of 35° was 

applied, as the default setting of the database, in order to exploit the maximum solar energy. 

Two months were selected as representatives of each season: January for Winter and July for 

Summer. So the LED lamp linked to a digital controller was programmed in order to simulate 

the irradiation profiles from PVGIS database. Measurements of PAR photon flux density 

were performed to verify the correspondence between experimental and simulated day-night 

irradiation curves (Fig. 3.3). 

  

http://re.jrc.ec.europa.eu/pvgis/
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Figure 3.3 - Irradiation profiles (lines) from PVGIS database and measures of light impinging experimental 

PBR of the two representative months: January data for Winter (rhombus), July for Summer (triangles). 

A typical Winter day in Padova is characterized by 9 h of light and 12 h of darkness and the 

incident light reaches a maximum value of about 730 µmol photons m
-2

 s
-1

 at midday. On the 

other hand, the Summer irradiation curve is characterized by a light period of 15 hours and a 

dark period of 9 hours and the maximum value at midday is about 1700 µmol photons m
-2

 s
-1

. 

The average value of the global daily irradiation (GI) supplied to the culture in the Summer 

and Winter regime was calculated as: 

 

    
                     
  

 

        
  

       
  

 

        
  
 

  
                                                                  

 

The values of GI obtained for the Summer and the Winter regime were 548.69 and  149.08 

µmol photons m
-2

 s
-1

, respectively. 

At least 5 residence time were set for each light condition. After each change of residence 

time, a transient period of operation was observed and the steady state operation  was reached 

and maintained at least for 5 days.  

 

3.4 Analytical Methods 
 

In this section the standardized procedures used to measure the biomass concentration, N and 

P concentration and the lipid and pigment content are described. 
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3.4.1 Measurements of biomass concentration 
 

Microalgal concentration was monitored by three different procedures:  

1. optical density (OD) or absorbance;  

2. cell concentration;  

3. dry weight (DW).  

Usually, cells concentration and OD measures were performed on the same sample, with 

different dilution factors.  

 

3.4.1.1 Optical Density  
 

OD, measured in a spectrophotometer, was determined daily according to the following 

standardized procedure: 

 

1. a sample (1.5-2 ml) of microalgal solution is taken using BD Falcon™ Express™ 

Pipet-Aid®;  

2. the absorbance of the sample at   = 750 nm, placed in a cuvette with       , is 

measured using Spectronic Unicam  UV-500 UV-visible double beam 

spectrophotometer. At this wavelength chlorophyll does not absorb photons and light 

attenuation is uniquely due to scattering phenomena, i.e., to cells and suspended solids 

concentration. As this equipment works in the absorbance range of 0.1 - 1, the sample 

is diluted with the culture medium when the upper limit is exceeded.  

 

Single beam and double beam are the two major classes of spectrophotometers. The first uses 

a reference standard to standardize or blank the instrument before taking measurements and  

the second splits the beam of light into two different paths, one of which passes through the 

sample while the other passes through a reference standard. Double beam spectrophotometers 

measure the ratio of light intensities and, therefore, are not as sensitive to fluctuations in the 

light source or detector.  

 

3.4.1.2 Cell concentration  

 

Cell concentration was measured using a Bürker Counting Chamber (HBG, Germany) (Fig. 

3.4 left). It is a glass slide 7.5x3.5 cm wide and 4 mm deep. The chamber is composed of two 

areas of 0.1 mm of depth, each of them contains a network of 9 large squares of 1mm side and 

divided by a triple line. Each large square represents a volume of 0.1 μL and contains 16 

smaller squares, divided by double lines (Figure 3.4 right). 
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Figure 3.4 – Burker Counting Chamber (left); Burker Counting Chamber network (right). 

 

Cell count was determined daily using a standardized procedure: 

1. the culture sample is diluted with distilled water with a dilution factor ranging from 20 

to 200, depending on concentration;  

2. once fixed the cover slip to the chamber, both chambers are loaded with the diluted 

cell  suspension using a micropipette and tip; the space is filled by capillary action. 

Approximately 20 μL are  required per side; 

3. cell counting is performed by a microscope; only 3 of the 9 squares are counted, and 

then an average value was calculated.  

The total cell number was calculated as follows:  

 

     

  
  

                           

 
                                                                

 

where 10
4
 is the volume factor; in fact, as previously mentioned each large square is 

characterized by a volume of 0.1 μL, that equates to 1/0.0001 mL (10
4
). 

 

3.4.1.3 Dry weight 

 

The DW of microalgal biomass represents the amount of dried microalgae per unit of volume 

and it was determined daily only when the steady state conditions were reached. A 

standardized procedure was followed: 

1. a sample of 5 ml of microalgal suspension is collected using BD Falcon™ Express™ 

Pipet-Aid®;  

2. a biomass filter (Sartorius Stedim Biotech cellulose nitrate filter pore size 0,2 μm)  is 

placed in the oven at 80 °C for 10 minutes to remove the absorbed humidity and then 

weighted with Atilon Acculab Sartorius Group microbalance with instrument 

sensitivity of 10
-4

 g. This value represents the tare;  
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3. the biomass filter is placed in a apposite filtering vacuum flask and the known volume 

of sample is spilled on the filter. The liquid fraction flows through while microalgal 

biomass is retained;  

4. the filter is placed in the oven at 80° C for 2-4 hours to remove inter- and intra- 

cellular water;  

5. the filter is weighted. This value represents the gross weight. 

The dry weight was calculated according to: 

 

   
                 

             
  
 

 
                                                                                                         

 

As previously mentioned at least 5 dilution rates were studied for each light condition. For 

each resident time, steady state operation was confirmed by checking constant OD750, cell 

concentration and DW for at least 3-5 days. So steady state concentrations were averaged on 

three to five points and the residence time was changed. Thus for each dilution rate it was 

possible to calculate the average cell density and the photosynthetic efficiency (%PAR), 

according to Eqs. 3.4 and 3.5, respectively: 

 

                     
  

        
                                                                                                    

 

     
         

              
                                                                                                                 

 

3.4.2 Measurements of  nutrients concentration 

The nutrients analyzed were nitrates (N-NO3) and phosphates (P-PO4), assessed at least twice 

at each steady state, in order to verify the hypothesis of non-limiting nutrients operating 

conditions. Samples of culture were filtered  through a 0.2 μm filter in order to measure only 

dissolved nutrients. Nutrient concentration were measured at the inlet and outlet reactor and 

the nutrient/biomass yields were calculated as: 

 

  
  
  

            
  

                                                                                                                                

 

where the subscript i indicates N or P;      and         are the concentration of i at inlet and 

outlet of the reactor, respectively (   ) and   
  

is the Nitrogen (or Phosphorous)-Biomass 

yield (       
  ). 
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3.4.2.1 Nitrates 

 

N-NO3 concentration was measured by an analytical test kit provided by St. Carlo Erba 

Reagenti, Italy (code 0800.05482). The assay is based on reduction of nitrates to nitrites that 

react with sulfanilic acid producing diazonium ion. By the reaction with gentisc acid (2,5 

dihydroxibenzonic acid) a dying molecule is produced and detected spectrophotometrically at 

        . The calibration line (Figure 3.5) was evaluated by means of known nitrate 

concentration standard solutions prepared with sodium nitrate (NaNO3). Equation associated 

to calibration line is: 

 

                                                                                                                       

 
 

Figure 3.5  - Nitrates kit calibration curve. 

 

3.4.2.2 Ortophosphates 
 

P-PO4 concentration was measured by a modified analytical method described in APHA-

AWWA-WEF, 1992. The mixed reagent was prepared immediately before the analysis (since 

it become unstable in 3-4 hours), mixing predetermined quantities of stock solutions and 

ascorbic acid solution. The latter must be prepared the same day of the analysis, as it become 

unstable in 24 hours, while stock solutions can be stored for months. The composition of each 

solution is: 

 sulphuric acid 5N: prepared diluting 35 ml of 96%p/p of sulphuric acid in 250 ml of 

milliQ water;  
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 potassium antimonyl tartrate: 0.34 g of potassium antimonyl tartrate was dissolved in 

250 ml of milliQ water;  

 ammonium molybdate: 7.5 g of ammonium molybdate tetrahydrate was dissolved in 

250 ml of milliQ water;  

 ascorbic acid: 1.35 g of ascorbic acid was dissolved in 25 ml of milliQ water.  

The final composition of the mixed reagent is reported in Table 3.2. 

 

Table 3.2 - Mixed reagent final composition. 

Solution Volume (mL) 

Sulphuric acid 5N 25 

Potassium antimonyl tartrate 5 

Ammonium molybdate 10 

Ascorbic acid 10 

 

250 μl of this mixture were used for 2,5 ml of sample. The absorbance of the sample due to 

the colorimetric reaction  was measured spectrophotometrically after 5 minutes at   

        The calibration line was evaluated by means of known orthophosphates standard 

solutions prepared with potassium dihydrogen phosphate (KH2PO4) (Fig. 3.6). Equation 

associated to calibration line is: 

 

                                                                                                                      

 
Figure 3.6 - Phosphates calibration curve. 
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3.4.3 Soxhlet extraction of total lipids 

 

Total lipids were extracted from dried cells using methanol-chloroform (2:1 vol/vol) as 

solvent mixture in a Soxhlet apparatus (Fig. 3.7) 

The algal culture is centrifuged at 5000 rpm for 10 minutes, at room temperature. After 

centrifugation the supernatant is discarded and the biomass is dried and ground into a fine 

powder in a mortar pestle. Before Soxhlet extraction, the powder is placed in the oven for 2 

hours at 80 °C to remove residual humidity and then weighted. The powder is then placed 

inside a thimble made of filter paper (0.22 μm of porosity), which is loaded into the main 

chamber of the Soxhlet extractor. The Soxhlet extractor is placed onto a flask containing the 

extraction solvent. The solvent is heated, so that the solvent vapour travels up a distillation 

arm, and floods into the chamber housing the thimble of dried biomass. A condenser ensures 

that solvent vapour turns into liquid and drips back down into the chamber housing the solid 

material. The chamber containing the biomass is slowly filled with warm solvent. Total lipids 

will then dissolve in the warm solvent. When the Soxhlet chamber is almost full, it is 

automatically emptied by a siphon side arm, with the solvent running back down to the 

distillation flask. This solvent recirculation was repeated for about 24 hours.  During each 

cycle, a portion of the non-volatile compound dissolves in the solvent. After many cycles the 

desired compound is concentrated in the distillation flask. The advantage of this system is that 

instead of many portions of warm solvent being passed through the sample, just one batch of 

solvent is recycled.  After extraction the solvent is removed, by a rotary evaporator, yielding 

the extracted compounds.  
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Figure 3.7 - Soxhlet apparatus scheme: 1) Stirrer bar; 2) Still pot; 3) Distillation path; 4) Thimble; 

5) Solid; 6) Siphon top; 7) Siphon exit; 8) Expansion adapter; 9) Condenser; 10) Cooling water in; 

11) Cooling water out (http://it.wikipedia.org). 

 

The main components of a rotary evaporator are: 

 A motor unit that rotates the evaporation flask or vial containing the user's sample; 

 A vapor duct that is the axis for sample rotation, and is a vacuum-tight conduit for the 

vapor being drawn off of the sample; 

 A vacuum system, to substantially reduce the pressure within the evaporator system; 

 A heated fluid bath (generally water) to heat the sample; 

 A condenser with a coil through which coolant passes; 

 A condensate-collecting flask at the bottom of the condenser, to catch the condensed 

solvent; 

 A mechanical or motorized mechanism to quickly lift the evaporation flask from the 

heating bath. 

The solvent is heated via the heating bath. A thin film of solvent forms on the inner surface of 

the rotating evaporating flask, resulting in a higher rate of evaporation. Rotation ensures 

homogenous mixing of the sample and prevents overheating inside the flask. The solvent 

vapor flows at high speed into the condensation part of the system. At this point the energy 

inside the solvent vapor is transferred to the cooling medium and the solvent condenses. The 

condensed solvent flows by force of gravity into the receiving flask. Vacuum is used to lower 

the boiling temperature and hence raise the efficiency of the distillation process. The 
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temperature of the heating bath depends on the type of solvent used ; in our case 

environmental temperature was used.  

The lipid content was calculated by this formula: 

 

          
                                                      

              
      

       

        
              

 

3.4.4 Pigments extraction 
 

Pigment content determination was performed according to the procedure optimized in a 

previous work (B. Gris, 2012). The extraction was generally realized on a fresh pelleted 

sample of microalgal culture containing 10*10
6
 cells and the entire process was repeated until 

the extraction was complete. After centrifugation the supernatant was discharged and a 

spatula tip of quartz powder was added in the sample. The powder, through a micro pestle, 

allows the breaking of the cells and then the solubilization of pigments. The solvent used for 

pigments extraction was dimethyl sulfoxide (DMSO) (generally 500 μL for each extraction 

cycle). The pestle action was always realized with 100 μL of solvent. Subsequently the other 

400 μL of DMSO were added and the sample was incubated at 60 °C for 15 min. After 

incubation, the sample was centrifuged at maximum speed for 10 minutes and the solvent 

containing the pigments was recovered. Then the color of cellular pellet was observed in 

order to evaluate if the extraction was complete. However, this evaluation does not allow to 

determine with certainty whether the extraction has been completed. After solvent addition 

it’s important to work in the dark to avoid the degradation of extracted pigments. The 

quantification was performed spectrophotometrically by analyzing the spectrum from 350 to 

750 nm (bandwidth 1 nm) and using quartz cuvettes. As this device works in the absorbance 

range of 0.1 - 1, the sample was diluted with DMSO when the upper limit is exceeded. The 

solvent was used as blank along the entire wavelength range. The software Vision 32 software 

allows to collect and save data in .txt files. Therefore pigment concentration is measured by 

applying the Lambert-Beer law:   

                                                                                                                                                        

where     (dimensionless) is the sample absorbance at wavelength    (nm),   is the path length 

(cm),   is the extinction coefficient (mL cell
-1

 cm
-1

) and   is the analyte concentration (cell 

mL
-1

) . 

The relation between A and the transmittance T (dimensionless), which is a measure of the 

fraction of light that passes through the sample, is:  
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where    is the intensity of light which strikes the sample and I is the intensity of light after 

passing through the sample. 

The equation to determine concentrations of chlorophyll a (Chl a) and b (Chl b) as well as 

total caretenoids (Carot) in μg mL
-1

 in the solvent were taken from the work of Wellburn 

(1994): 

 

                                                                                                                                   

 

                                                                                                                                   

 

                                                                                                    (3.14) 

 

Subsequently, taking into account the cell number of the culture sample it’s possible to 

determine the pigment content in terms of pg cell
-1

. 

 

3.5 Error propagation  
 

For sums, differences, products, and quotients, propagation of errors was calculated as follows 

(http://www.astro.unipd.it/ciroi/spfis1/sperI_cap9.pdf): 

1. Sum and difference: when two quantities A and B are added (or subtracted), their 

determinate errors add (or subtract). 

 

                                                                                                                           (3.15) 

 

                                                                                                                           (3.16) 

 

 where    and    represent the errors in A and B respectively, while    is the error in R; 

2. Product or division: when two quantities A and B are multiplied or divided, their 

relative determinate errors add. 

 

         
 

 
   
  

 
 
  

 
 
  

 
                                                                                                       

 

where      and        are the relative errors in A and B respectively, while R is the  relative 

error in R; 

 

http://www.astro.unipd.it/ciroi/spfis1/sperI_cap9.pdf


 

 
 

Chapter 4 
 

 

Continuous flow experiments 
 

 

 

During the experimental activity several continuous-flow experiments were carried out in the 

flat plate PBR, described in section 3.2, at two constant intensities (150 and 650 μmol photons 

m
-2

 s
-1

 ) and  two seasonal irradiation regimes, representing the Winter and Summer in 

Padova. Light was provided by the LED lamp, described in section 3.3, both for continuous 

and alternated day-night cycles. 

At least 5 dilution rates were studied for each light condition.  Two panels were used for each 

experiment, working simultaneously at different residence times.  After every step change of 

either conditions (residence time or irradiation mode) a transient was observed, whose 

duration depended on the condition. Steady state operation was confirmed by checking 

constant OD750, cell concentration and biomass concentration for at least 3-5 days.  

Moreover, for each steady state the N and P consumption was measured, in order to verify the 

hypothesis of non-limiting nutrients operating conditions. 

 

 

4.1 Constant light intensity 

In this section, results of continuous light irradiation are reported: two different light 

intensities were chosen, based on the work of Gris et al. (2014). 150 μmol photons m
-2

 s
-1

  is 

the optimum light for S. obliquus growth in batch runs, while 650 μmol photons m
-2

 s
-1

  is 

over the photosaturation limit. Accordingly, in this thesis, cell growth was studied both under 

limiting and saturating condition. 

 

4.1.1 150 µmol photons m-2 s- 

In the first experiment, the PBRs were exposed to a constant illumination of 150 μmol 

photons m
-2

 s
-1

, setting dilution rates in a range of 0.187 to 0.99 d
-1

 were used. At the 

beginning of each run, the systems were operated  in a batch mode, in order to achieve higher 

cell concentrations from an initial diluted cultures. On the 6
th 

day, the peristaltic pump was 

turned on and the flow rates were set to 115.15 ml d
-1

 for the first panel and 62.08 ml d
-1

 for 

the second one, resulting in residence times of 2.17 d and 4.027 d, respectively. In both PBRs, 

after 10 days of transient operation, a steady state was eventually reached. Subsequently, 

other residence times were investigated by changing the peristaltic pump speed and, 



Continuous flow experiments _________________________________________________________________ 

 

54 

consequently, the flow rates. In this case, the steady state conditions were achieved in few 

days, suggesting that cell have been acclimated to the light condition, and need less time to 

reach a constant concentration. 

The data collected from both panels are shown in Figs. 4.1 and 4.2 in terms of cell 

concentration and, in Figs. 4.3 and 4.4, in terms of DW.  

The biomass concentration profile was calculated  by the experimental correlation between 

dry weight and cell concentration, obtained by correlating the daily cellular counts and the dry 

weights measured occasionally and always at steady state. This correlation line change for 

each experimental run, due to a different cell size at different light condition, as already 

reported by Gris et al., (2014). Thus, the correlation was determined for  each of them.  

 

 
Figure 4.1 – Cell concentration of S. obliquus during the continuous experiment at constant light intensity of 

150 μmol photons m
-2

 s
-1

. Solid lines indicate the average value of stationary cell concentration for each 

residence time. 
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Figure 4.2 – Cell concentration of S. obliquus during the continuous experiment at constant light intensity of 

150 μmol photons m
-2

 s
-1

. Solid lines indicate the average value of stationary cell concentration for each 

residence time. 

 
 

 
Figure 4.3 – DW of S. obliquus during the continuous experiment at constant light intensity of 150 μmol 

photons m
-2

 s
-1

. Solid lines indicate the average value of stationary DW for each residence time. 
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Figure 4.4 – DW of S. obliquus during the continuous experiment at constant light intensity of 150 μmol 

photons m
-2

 s
-1

. Solid lines indicate the average value of stationary DW for each residence time. 

 

Operating variables and results for each residence time are summarized in Table 4.1.  

The steady state values of DW and cell concentration were calculated as an average of daily 

measures at steady state operation. So the volumetric and areal productivity were calculated 

for each residence time, according to Eqs. (2.5) and (2.6). 

 

Table 4.1 - Operating variables and results related to the continuous experiments at constant illumination of 

150 μmol photons m
-2

 s
-1

. 

Residence 

time 

(d) 

Specific 

growth 

rate 

(d
-1

) 

Inlet 

flowrate 

(ml d
-1

) 

Stationary 

biomass 

concentration 

(g L
-1

) 

Stationary 

cell 

concentration 

(*10
6
 cell mL

-

1
) 

Volumetric 

biomass  

productivity 

(g L
-1

 d
-1

) 

Areal biomass 

productivity 

(g m
-2

 d
-1

) 

2.17 0.461 115.21 4.14 ± 0,29 153 ± 9.84 1.91 ± 0.14 22.93 ± 1.62 

4.03 0.248 62.08 5.29 ± 0.22 198.28 ± 5.71 1.31 ± 0.05 15.79 ± 0.66 

5.34 0.187 46.82 5.30 ± 0,15 220.38 ± 5.94 0.99 ± 0.03 11.93 ± 0,33 

1.01 0.990 247.52 1.94 ± 0,03 86.12 ± 4.62 1.92 ± 0.03 23.09 ± 0.37 

1.43 0.699 174.82 2.55 ± 0,21 113.8 ± 9.11 1.78 ± 0.03 21.43 ± 1,805 
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4.1.2 650 µmol photons m-2 s-1 

 

The second experiment  was carried out under a constant saturating intensity of 650 μmol 

photons m
-2

 s
-1

. Dilution rates in a range of 0.187 to 1.282 d
-1

 were investigated. Moreover. 

the second experiment started from the previous one. instead of interrupting operation and 

restarting from a batch mode. So only the value of light intensity was changed. A longer 

transient was observed. as a consequence of the need of the cells to acclimate to the new light 

condition. In the subsequent changes of residence times. only few days were needed to reach 

the new steady state concentration. confirming that cells were adapted to the saturating light. 

The data collected for each residence time are shown in Figs. 4.5 and 4.6 in terms of cell 

concentration and 4.7 and 4.8 in terms of DW.  

 

 
Figure 4.5 – Cell concentration of S. obliquus during the continuous experiment at constant light intensity of 

650 μmol photons m
-2

 s
-1

. Solid lines indicate the average value of stationary cell concentration for each 

residence time. 
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Figure 4.6 – Cell concentration of S. obliquus during the continuous experiment at constant light intensity of 

650 μmol photons m
-2

 s
-1

. Solid lines indicate the average value of stationary cell concentration for each 

residence time. 

 

 

 

Figure 4.7 - DW of S. obliquus during the continuous experiment at constant light intensity of 650 μmol 

photons m
-2

 s
-1

. Solid lines indicate the average value of stationary DW for each residence time. 
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Figure 4.8 - DW of S. obliquus during the continuous experiment at constant light intensity of 650 μmol 

photons m
-2

 s
-1

. Solid lines indicate the average value of  stationary DW  for each residence time 

 

Operating variables and results for each residence time are summarized in Table 4.2. 

Stationary values  and volumetric and areal productivity were calculated similarly to the first 

experiment.  

 

Table 4.2 - Operating variables and results related to the continuous experiments at constant illumination of 

650 μmol photons m
-2

 s
-1

. 

Reside

nce 

time 

(d) 

Specifi

c 

growth 

rate 

(d
-1

) 

Inlet 

flowrat

e 

(ml d
-1

) 

Stationary 

biomass 

concentration 

(g L
-1

) 

Stationary cell 

concentration 

(*10
6
 cell mL

-1
) 

Volumetric 

biomass  

productivity 

(g L
-1

 d
-1

) 

Areal biomass 

productivity 

(g d
-1

 m
-2

) 

5.34 0.187 46.82 6.88 ± 0.25 265.21 ± 14.01 1.29 ± 0.05 15.49 ± 0.57 

1.66 0.602 150.60 4.25  ± 0.22 199 ± 29.44 2.56 ± 0.13 30.77 ± 1.62 

2.5 0.400 100 5.90 ± 0.66 207.90 ± 18.37 2.36 ± 0.26 28.36 ± 3.16 

0.78 1.282 320.51 2.75 ± 0.3 258 ± 26.60 3.53± 0.38 42.45 ± 4.62 

1.17 0.857 214.22 3.53 ± 0.27 407.83 ± 4.01 3.02 ± 0.23 36.32 ± 2.81 

 

4.2 Day/Night light conditions 
 

In this section, results related to the two seasonal irradiation regimes are reported. Day/night 

light conditions were tested in order to investigate S.obliquus behavior in a more realistic 

environment. Reactor samples were always collected at 9 am with respect to the simulated 

day/night cycle. 
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4.2.1 Summer: July 
 

In this third experiment the PBRs were exposed to an irradiation regime typical of the 

Summer season in Padova, as explained in section 3.3. Dilution rates were set between of 

0.197 and 1.563  d
-1

 . 

For the lowest residence time (τ = 0.78 d) the experiment  started from the steady-state of the 

previous one, so there was no initial batch phase (Figs 4.9 and 4.10). Afterwards, it was 

always necessary to restart from a batch mode, at a constant light intensity of 150 μmol 

photons m
-2 

s
-1

 because of the excessive reactor fouling. The data collected for the other 

residence times are shown in Figs. 4.11 and 4.12, in terms of cell concentration, and 4.13 and 

4.14 in terms of DW. 

 

Figure 4.9 - Cell concentration of S. obliquus during the continuous experiment and under the Summer 

irradiation regime. Solid line indicate the average value of stationary cell concentration for τ = 0.78 d. 
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Figure 4.10 - DW of S. obliquus during the continuous experiment and under the Summer irradiation regime. 

Solid line indicate the average value of stationary DW  for τ = 0.78 d 

 

Figure 4.11 - Cell concentration of S.obliquus during the continuous experiment and under the Summer 

irradiation regime. Solid lines indicate the average value of stationary cell concentration for each residence 

time. 
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Figure 4.12 - Cell concentration of S.obliquus during the continuous experiment and under the Summer 

irradiation regime. Solid lines indicate the average value of stationary cell concentration for each residence 

time. 
 

 

 

Figure 4.13 - DW of S.obliquus during the continuous experiment and under the Summer irradiation regime. 

Solid lines indicate the average value of stationary DW for each residence time. 
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Figure 4.14 - DW of S. obliquus during the continuous experiment and under the Summer irradiation regime. 

Solid lines indicate the average value of stationary DW for each residence time. 

 

Operating variables and results for each residence time are summarized in Table 4.3.  Steady 

state values and volumetric and areal productivity were calculated similarly to the previous 

experiments. 

 

Table 4.3 - Operating variables and results related to the continuous experiments under the Summer 

irradiation regime. 

Residence 

time 

(d) 

 

 

Specific 

growth 

rate 

(d
-1

) 

Inlet 

flowrate 

(ml d
-1

) 

Stationary 

biomass 

concentration 

(g L
-1

) 

Stationary cell 

concentration 

(*10
6
 cell mL

-

1
) 

Volumetric 

biomass  

productivity 

(g L
-1

 d
-1

) 

Areal 

biomass 

productivity 

(g d
-1

 m
-2

) 

0.779 1.282 320.51 2.33 ± 2.05E-01 221.60 ± 2.68 2.99 ± 0.26 35.90 ± 3.16 

2.76 0.362 90.58 3.99 ± 9.89E-02 249.50 ± 2.12 1.45 ± 0.04 17.38 ± 0.44 

0.639 1.563 390.63 2.15 ± 0.19 112.53 ± 19.02 3.36 ± 0.31 40.38 ± 3.76 

1.66 0.602 150.60 3.34 ± 0.14 173.55 ± 16.57 2.05 ± 0.08 24.62 ± 1.01 

1.01 0.990 247.52 2.67 ± 4.05E-01 134.33 ± 3.51 2.64 ± 0.40 31.77 ± 4.76 

5.08 0.197 49.19 5.77 ± 0.26 317.27 ± 5.52 1.14 ± 0.05 13.66 ± 0.61 

 

4.2.2 Winter: January 
 

In the fourth experiment the PBRs were exposed to an irradiation regime typical of the Winter 

season in Padova, as explained in section 3.3. Dilution rates in the range between of 0.197 to 

1.283 d
-1

 were set. The experiments  started from the steady-state of the previous ones, so 

there was no a batch phase for both panels. Cell concentration and DW profiles for each 

residence time are shown in Figs. 4.15. 4.16. 4.17. 4.18. It can be observed that at residence 

time of 0.78 d washout occurred. 
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In the fourth experiment the PBRs were exposed to an irradiation regime typical of the Winter 

season in Padova, as explained in section 3.3 . Dilution rates in the range between of 0.197 to 

1.283  d
-1

 were set. The experiments  started from the steady-state of the previous ones, so 

there was no a batch phase for both panels. Cell concentration and DW profiles for each 

residence time are shown in Figs. 4.15. 4.16. 4.17. 4.18. It can be observed that at residence 

time of 0.78 d  washout occurred. 

 

 

Figure 4.15 – Cell concentration of S. obliquus during the continuous experiment under the Winter 

irradiation regime. Solid line indicate the average value of stationary cell concentration for τ = 2.9 d. 

 

 

Figure 4.16 – Cell concentration of S. obliquus during the continuous experiment under the Winter 

irradiation regime. Solid line indicate the average value of stationary cell concentration for each residence 

time. 
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Figure 4.17 - DW of  S.obliquus during the continuous experiment under the Winter irradiation 

regime. Solid line indicate the average value of stationary DW for τ = 2.9 d. 

 

 

 

Figure 4.18 - DW of S. obliquus during the continuous experiment  under the Winter irradiation regime. 

Solid line indicate the average value of stationary DW for each residence time. 

 

Operating variables and results for each residence time are summarized in Table 4.4. Steady 

state values and volumetric and areal productivity were calculated similarly to the previous 

experiments. 
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Table 4.4 - Operating variables and results related to the continuous experiments under the Winter 

irradiation regime. 

Residence 

time 

(days) 

Specific 

growth 

rate 

(d
-1

) 

Inlet 

flowrate 

(ml d
-1

) 

Stationary 

biomass 

concentration 

(g L
-1

) 

Stationary 

cell 

concentration 

(*10
6
 cell mL

-

1
) 

Volumetric 

biomass  

productivity 

(g L
-1

 d
-1

) 

Areal biomass 

productivity 

(g d
-1

 m
-2

) 

5.08 0.197 49.21 4.1 ± 0.24 182.80 ± 8.70 0.81 ± 0.05 9.70 ± 0.57 

2.89 0.345 132.76 3.47 ± 0.42 141.16 ± 5.03 1.20 ± 0.14 22.15 ± 2.68 

1.05 0.952 238.10 1.25 ± 0.02 62.67 ± 8.50 1.19 ± 0.02 14.31 ± 0,23 

1.35 0.741 185.19 1.97 ± 0.03 114.79 ± 9.38 1.46 ± 0.02 17.54 ± 0.27 

 
4.3 Results and discussion 
 

Continuous flow experiments with a vertical flat panel PBR were performed both at constant 

illumination (150 μmol photons m
-2

 s
-1

 and 650 μmol photons m
-2

 s
-1

) and under simulated 

day/night cycles (Summer and Winter irradiation regime). At least 5 dilution rates were set 

for each light condition. So the influence of light intensity on the growth of S.obliquus was 

analyzed at different rates of dilution, under limited as well as saturating intensities of 

illumination. For each steady state it was found that nutrients (N and P) were not limiting. 

Stationary data were elaborated in order to study the effect of different light conditions on 

microalgae growth, photosynthetic efficiency, lipid and pigment content and nutrient uptake. 

Data related to the residence time τ = 1.76 were taken from a previous work (Bertucco et al., 

2014). The obtained results are presented and discussed in this section. 

 

4.3.1 Biomass concentration 
 

The steady state biomass concentrations under the four different illumination conditions as a 

function of residence time are represented in Fig. 4.19. The general trend showed a biomass 

concentration increase with the residence time. as already reported by Martinez et al. (1999) 

for S. obliquus, Barbosa et al. (2005), Zijffers et al. (2010) and Tercero et al. (2013)  for other 

species. 
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Figure 4.19 - Data of biomass concentration against residence time at different light conditions (square for 

150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for 

Winter). Solid lines are eye guides only. 

 

The slope of the curve decreases at higher residence times, as a result of the self-shading 

effect, which becomes relevant even if the depth of the reactor is small. The highest biomass 

concentration was found under 650 µmol photons m
-2

 s
-1

 of continuous irradiation, while 

generally the day-night regime corresponded to lower concentration, obviously due to the 

biomass removal from the reactor during the night. A similar effect of light irradiation was 

observed on biomass productivity (Fig. 4.13), which was higher for higher constant 

irradiations and decreased under day-night conditions. 

 

4.3.2 Biomass productivity 

The results obtained in this work suggest that biomass productivity is inversely related to the 

residence time, except in the case of Winter season (Fig. 4.20).  
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Figure 4.20 - Data of biomass productivity against residence time at different light conditions (square for 

150 µmol photons m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for 

Winter). Solid lines are eye guides only. 

 

The decrease with residence time, in the case of 150, 650 µmol photons m
-2

 s
-1

 and Summer, 

can be explained by looking at the Fig. 4.21, where data of energy conversion for each 

experiment are reported. For all these conditions, a decrease of efficiency can be observed 

with the increase of residence time, suggesting that, when biomass concentration increased, 

the actual light available for cell growth diminished as a result of self-shading effect. 

A different trend in biomass productivity was observed in the case of the Winter season, 

where a maximum was found, as already reported by Martinez et al. (1999) and Ruiz et al. 

(2013), that reported a decreased productivity at residence times lower than a threshold value 

which is species dependent. This is probably due to the values of residence time that are 

closer to the wash out condition. 

In our experiments we observed a maximum at 1.35 d under Winter condition only, because 

at residence time of 0.78 d the washout occurred. In this case, it is interesting to apply the 

washout model to estimate the maximum specific growth rate (Molin, 1983) which can be 

calculated between 0.952 and 1.2 d
-1

 as result of the inverse of residence times 1.05 and 0.78 

d, according to Eq. 2.3. 

Ruiz et al. (2013) proposed a model, based on the work of Verhulst, for the determination of 

the maximum productivity   , which gives: 
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In our experiments, by considering a maximum specific growth rate for Winter season 

between 0.952 and 1.2 d
-1

, a maximum of productivity of 1.6-2.10 d is calculated by applying 

the eq. 4.1, which is consistent to the data reported in Fig. 4.20. 

In the other cases of irradiation considered, no maximum in productivity was  observed. Thus 

it is possible to only state that the maximum specific growth rate is higher than Winter season, 

according to the availability of light and its effect on growth rate. 

 

4.3.3 Energy conversion 

The calculated photosynthetic efficiencies, from Eq. 3.5, for the experiments performed are 

depicted in Fig 4.21. The theoretical limit is represented by the horizontal dashed line. A high 

energy conversion efficiency in both Winter regime and constant irradiation of 150 µmol m
-2

 

s
-1

 was observed, especially with the lower residence times which are close to the maximum 

theoretical photosynthetic efficiency. On the other hand, under Summer irradiation regime 

and constant irradiation 650 µmol m
-2

 s
-1

, cultures resulted strongly photo-inhibited with 

reduced photoconversion efficiencies.  

 

 

Figure 4.21 - Data of photo-conversion (%PAR) against residence time at different light conditions (square 

for 150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for 

Winter). Solid lines are eye guides only. 
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4.3.4 Nutrient yields 
 

As stated previously, the N and P concentrations were measured during each stationary phase 

in order to ascertain the hypothesis of non limiting nutrient conditions. By plotting the 

nutrient/biomass yield, calculated according to Eq. 3.6, as function of the residence time, a 

similar trend was observed for both N and P (Fig. 4.22 A and B).  

Figure 4.22 – Nitrogen (A) and phosphorous (B) / biomass yields as a function of residence time at different 

irradiations (square for 150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer 

and rhombus for Winter). 
 

The nutrient consumption under day-night cycle can be described as quite complex, because a 

part of the nutrients is removed from reactor at night while some accumulation occurs within 

microalgal cells under dark, that can then be exploited under light period. Therefore, only data 

under continuous irradiation were considered (Fig. 4.23 A and B).  

Martinez et al., (1999) observed for S.obliquus an increased P ratio on biomass at higher 

growth rates, suggesting an higher internal P content as a result of  increasing cellular nucleic 

acids and compounds of high energy content under high-growth-rate conditions. This is in 

agreement with our data reported in Fig. 4.23 B. where a linear correlation was highlighted 

between       and    The same trend was found also in the case of      (Fig. 4.23 A). 

suggesting that there is an accumulation of N at higher growth rates. This is in agreement with 

data reported by Quigg & Beardall (2003). In fact. for D. tertiolecta they found an increase of 

protein turnover and pool at higher growth rates, which is associated to the raise of respiration 

rate and maintenance requirement.  
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More complex is the effect of high light on nutrient/biomass yields, which were found 

generally lower for both N and P. Even if there is not a deep knowledge of the relation 

between light and nutrient uptake, some authors suggest that light inhibition can affect the 

elemental composition of microalgae. For example Quigg & Beardall (2003) reported a 

relation between the reduction of cellular N quote (in terms of pg cell
-1

) with the increase of 

photon flux. 

 

 

Fig. 4.23 – Nitrogen (A) and phosphorous (B) / biomass yields as function μ at different irradiations (square 

for 150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

). 

 

 

4.3.5 Average cell density 
 

A different cell size was observed at the optical microscope, suggesting that it is affected by 

residence time and light. Accordingly, the average cell density was calculated and the data 

were plotted as a function of growth rate (Fig. 4.24). Results suggest that the average cell 

density, calculated by using Eq. 3.4. decreases at higher growth rates, corresponding to lower 

biomass concentrations. This is probably due to a faster cellular division under high-growth 

rates conditions. 
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Figure 4.24 - Data of the average cell density against growth rate at  different light conditions (square for 150 

µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for Winter). 

Solid lines are eye guides only. 

 

 

4.3.5 Lipids 

Fig. 4.25 shows that the lipid percentage in biomass. calculated by using Eq. 3.9, decreases at 

increasing growth rates. Martinez et al. (1999) reported higher content of  P in the biomass at 

higher dilution rates, as a result of  increasing cellular nucleic acids and compounds of high 

energy content in these conditions. On the other hand, Quigg & Beardall (2003) found an 

increase of protein turnover and pool at higher growth rates, which is associated to higher 

maintenance metabolic costs. These results suggest that high-growth-rates conditions can 

result in a lower lipid fraction in the cells. 

  

A 
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Figure 4.25 - Data of lipids percentage in biomass against growth rate at different light conditions (square for 

150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for 

Winter). 

 

4.3.6 Pigments 

 

Data represented in Fig. 4.26 (A) show that the pigment content, expressed as the sum of Chl 

a and Chl b and calculated as described in section 3.4.4, decreased at increasing growth rates. 

This effect can be explained by the fact that the amount of light per cell increases at 

decreasing residence times, because the culture becomes more diluted, as also found by 

Kliphuis et al. (2012). It can be observed that the pigment content was higher at lower 

irradiances. suggesting that in these conditions photoinhibition occurs. In fact in high light 

conditions, S.obliquus, similar to other photosynthetic organisms, shows an acclimation 

response by decreasing the chlorophyll content to reduce light-harvesting ability and 

accumulating carotenoids which have an antioxidant activity (Gris et al., 2014). Fig 4.26 (B) 

shows the results obtained in the work of Gris et al. (2014), where the effect of different light 

intensities on S.obliquus growth and biochemical composition were investigated in batch 

reactors. Also in this case a decrease of chlorophyll concentration at higher light intensity was 

observed. 
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Figure 4.26 – (A) Data of lipids content, expressed as the sum of  Chl a and Chl b, against residence time 

at different light conditions (square for 150 µmol photons  m
-2

 s
-1

, circles for 650 µmol photons m
-2

 s
-1

, 

triangles for Summer and rhombus for Winter); (B) Chl a content (circles) and carotenoids/Chl ratio 

(squares) at various light intensities (Gris et al., 2014). 

 

A 
B 



 

 
 

CHAPTER 5 
 

 

Interpreting results by physical models 
 

 

 

5.1 Effect of light intensity on maintenance 

 

Data of steady state under different irradiations were elaborated to calculate the maintenance 

energy requirement for S. obliquus growth, following the approach of Gons & Mur (1980) 

and Kliphuis et al. (2012), as described previously in sections 2.4.1 and 2.4.2. 

 

5.1.1 Gons and Mur model 

 

In this section results related to the application of Gons and Mur model (Eq. 2.16) to our 

experimental data are represented in Fig.5.1. Two different series can be observed, 

corresponding to low (150 µmol photons m
-2

 s
-1

 and Winter regime) on the one side and high 

irradiances (650 µmol photons m
-2

 s
-1

  and Summer regime) on the other hand. 

 
Figure 5.1- Linearization of specific growth rate as function of specific light uptake rate, according to Eq. 

2.16 ( Gons and Mur approach), at different light conditions (square for 150 µmol photons m
-2

 s
-1

, circles for 

650 µmol photons m
-2

 s
-1

,  triangles for Summer and rhombus for Winter). 

  



Interpreting results by physical models __________________________________________________________ 

 

76 

 

By the linearization of   as a function of             the values of    and   were obtained 

for the four different illumination conditions.    is the negative intercept on Y-axis and   is 

the slope of the straight line. Their values are summarized in Table 5.1. 

  

Table 5.1 –  Parameters of linearization of data reported in Fig.5.1, according to Eq. 2.16. 

Light regime 

(µmol photons m
-2

 s
-1

) 

  
(-) 

    

(d
-1

) 
R

2
 

150 0.231 0.181 0.98 

650 0.178 0.185 0.99 

Winter (149.08) 0.119 0.517 0.95 

Summer (548.69) 0.104 0.673 0.97 

 

These results suggest that the maintenance requirement strongly depends on the light intensity 

hitting the panel. In the case of 150  μmol photons m
-2

 s
-1

 and Winter regime, a close 

relationship was observed producing similar values of the maintenance term (around 0.18 d
-1

). 

This result is comparable to that achieved by Gons & Mur (1980) for light-limited cultures  

(Table 2.1). On the other hand, the value of   obtained by Gons and Mur was in the range of 

0.11-0.13, while we obtained values of 0.231 for the continuous intensity 150 μmol photons 

m
-2

 s
-1

 and 0.119 for Winter regime, suggesting that our experimental system allowed a more 

efficient conversion of light in biomass, as a result of the thin depth of the reactor, leading to a 

better exploitation of light.  

On the opposite, under higher irradiances, i.e. 650 µmol photons m
-2

 s
-1

 and Summer regime, 

the maintenance term was much higher, resulting in values of 0.517 d
-1

 and 0.673 d
-1 

respectively. Therefore, it suggests that in these conditions photosaturation and 

photoinhibition occured and the energy diverted from growth to cell repair is higher than 

under non saturating irradiances. Accordingly, lower c values were calculated, ranging from 

0.178 to 0.104, which corresponds to a lower conversion efficiency of light. 

Gons & Mur (1980)  found that    was not affected by used irradiances, while it appeared that 

c depended on incident light. On the contrary our results suggest that irradiation affects both 

   and  . This can be explained by considering that Gons & Mur worked in all cases at 

irradiances below the inhibiting value.  

In addition, it is quite surprising that no difference in Winter regime and 150 µmol photons m
-

2
 s

-1
 were detected, even if under Winter condition cells are exposed to  light/ dark cycles.  

In summary, by applying this approach, it is possible to observe the overall effect of light 

intensity on the maintenance rate, which is strongly increased under inhibiting irradiation.  

Nonetheless, this approach based on Pirt model (Pirt, 1965), considers a constant 

biomass/light yield (  ), while Van Bodegom (2007) demonstrated that a      can be 

calculated, which is function of growth rate, as reported in section 2.2.2. Thus, the approach 
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of Kliphuis et al. (2012), who derived separately    and the    parameters, appears more 

accurate.  

 

5.1.2 Kliphuis approach 
 

The maintenance energy requirement for S.obliquus at different irradiations was found also 

by elaborating steady state data following Kliphuis model (Eq. 2.18). The results of the 

application of such a method are reported in Fig. 5.2 and Table 5.2. By the linearization of 

     as function of μ, it was possible to find  the values of    and    for the four different 

illumination conditions. In fact,     is the positive intercept on X-axis and     represents the 

inverse of the slope.  

 

 
Figure 5.2: Linearization of specific light supply rate as function of specific growth rate. according to 

Kliphuis approach (Eq. 2.18). at different light conditions (square for 150 µmol photons m
-2

 s
-1

, circles for 

650 µmol photons m
-2

 s
-1

, triangles for Summer and rhombus for Winter). 

 

Table 5.2 –  Parameters of linearization of data reported in Fig. 5.2. according to eq. 2.18. 

Light regime 

(µmol photons m
-2

 

s
-1

) 

   

(mmol photons g
-1

 

d
-1

) 

   

(g mmol 

photons
-1

) 

R
2
 

150 7.81E+01 2.52E-03 0.98 

650 4.71E+02 1.13E-03 0.99 

Winter (149.08) 1.11E+02 2.00E-03 0.95 

Summer (548.69) 5.43E+02 1.32E-03 0.97 
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Data show a    which is higher for day-night regimes (111 mmol photons g
-1

 d
-1

 for Winter 

and 543 mmol photons g
-1

 d
-1 

 for Summer) and for higher irradiances (471 mmol photons g
-1

 

d
-1

 for 650 μmol photons m
-2

 s
-1

), while    is similar between irradiations at similar values of 

overall intensity (2.00E-03 and 2.52E-03 g mmol photons
-1

 for Winter and 150 μmol photons 

m
-2

 ; 1.32E-03 and 1.13E-03 mmol photons
-1

 for Summer and 650 μmol photons m
-2

). Thus, 

higher irradiances corresponded to an increased    and lower biomass/light yield.   

Data shown a    which is higher for day-night regimes (111 mmol photons g
-1

 d
-1

 for winter 

and 543 for Summer) and for higher irradiances (543 mmol photons g
-1

 d
-1

 for 650 μmol 

photons m
-2

 s
-1

), while the    is similar between irradiations at similar values of overall 

intensity. Thus, higher irradiances corresponded to an increased    and lower biomass/light 

yields. While no information are available on the effect of light on   , the effect on    was 

observed also by Kliphuis et al. (2012), who obtained a value of    of 1.26 g mol photons
-1

, 

higher than those measured for other green microalgae by Cuaresma et al. (2009) and Zijffers 

et al. (2010), as previously mentioned in section 2.4.2. In fact. they found yields ranging from 

0.5 to 1.0 g mol photons
-1

, but working at very high irradiances of 1000 μmol photons m
-2

s
-1

).  

In conclusion the approach of Kliphuis allows to clearly show the difference between the 

effect of light on    and   , but no information are available to estimate the specific 

maintenance rate. 

 

5.3 Van Bodegom model 

 

As reported in section 2.2.2, Van Bodegom (2007) stated that the calculation of the specific 

maintenance rate   is more complex than the approach proposed by Pirt (Eq. 2.10). He 

showed that the relation between a and mE was not constant, because the observed 

biomass/light yield      depends on   (Eqs. 2.11 and 2.13). 

Thus, by applying Eq.2.13,   was calculated for each   value. Results are depicted in Fig. 5.3, 

suggesting that a increases with μ, as recently reported also by other authors (Michels et al., 

2014), who stated that higher maintenance costs can be associated with higher growth rates. 

On the other hand, by considering the trend of   at 650 μmol photons m
-2

 and Summer, it’s 

clear the effect of saturating light on maintenance requirements, which is higher at higher 

irradiances. 
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Figure 5.3 - Trends of specific maintenance rate as a function of µ, calculated according to Eq. 2.13. at 

different irradiances (square for 150 µmol m
-2

 s
-1

, circles for 650 µmol m
-2

 s
-1

,  triangles for Summer and 

rhombus for Winter). 

 

By comparing the specific maintenance rates calculated following Pirt and Van Bodegom 

models, it seems that the last one is more accurate. In fact Pirt approach considers the specific 

maintenance rate as constant for all growth rates. Thus, Pirt values of maintenance rate are 

quite high, in particular at low growth rates. 

In the case of photosynthetic organisms   includes not only the non growth components, such 

as  turnover of cellular components in the normal metabolism, chemical gradients across 

membranes, metabolic processes involved in acclimation and the cell repair under stress, but 

also light dissipation 

 

5.4  Excess of light as inhibiting  substrate 
 

As shown in the previous section, the maintenance parameter values are higher under higher 

irradiances, probably due to the cell repair needed as a consequence of photoinhibition and 

saturation. Thus, by using a similar approach to that used for heterotrophic organisms, we 

tried to represent the photo-inhibition with a substrate inhibition model. 

As reported in section 2.3, Minkevich et al. (2000) and Chen & Johns (1996) demonstrated 

that, under inhibiting concentration,       as  function of    departs from the prediction of the 

Pirt model, which investigated lower substrate concentrations only. 
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In Fig. 5.4 YAPP, calculated according to Eq. 2.23, was plotted as a function of μ, for each 

illumination condition. Two different trends for 150 μmol m
-2

 s
-1 

and the Winter regime, with 

respect  to 650 μmol m
-2

 s
-1 

and the Summer regime can be observed.  

By applying Eq. 2.14 with the    and the    values found for 150 μmol m
-2

 s
-1

, a curve of 

     was calculated (reported as a line in the graph), which well reproduces the trend of 

experimental data.  Similar results were obtained by comparing the      under Winter season 

with the trend calculated by applying Eq. 2.14 on Winter maintenance parameters. This can 

be probably explained by the presence of a dark cycle in the Winter season, which is hard to 

be modeled from a yield point of view. On the other hand, under saturating light conditions, a 

linear relation was found, according to Eq. 2.15. Thus, the substrate inhibition hypothesis can 

be applied also for photosynthetic organisms. From eq. 2.15., the α and β parameters resulted 

4.39E-04 (g d mol
-1

) and 2.84E-04 (g mol
-1

) for 650 μmol m
-2

 s
-1

 and 4.98E-04 (g d mol
-1

) and 

2.54E-04 (g mol
-1

) for Summer condition. No data are available in the literature concerning 

these parameters, to which compare our results. Nonetheless, it is clearly shown that the 

hypothesis of photoinhibition is well represented in the case of 650 μmol m
-2

 s
-1

 and Summer 

regime, where the light intensity reach up to 1700 µmol photons m
-2

 s
-1

. and for the most of 

time the light supply is higher than 400 μmol m
-2

 s
-1

. 

 

Figure 5.4 - Light biomass yields values as function of µ at different irradiations (square for 150 µmol m
-2

 s
-1

, 

circles for 650 µmol m
-2

 s
-1

, triangles for Summer and rhombus for Winter). 

  



 ________________________________________________________________________________ Chapter 5 

81 

5.5 Nutrient yields 

N and P concentrations were measured during each stationary phase in order to ascertain the 

hypothesis of non limiting nutrient conditions. By plotting the nutrient/biomass yield, 

calculated according to Eq. 3.6, as function of the residence time, a similar trend was 

observed for both N and P (Fig. 4.23 A and B). However, as previously mentioned, the 

nutrient consumption under day-night cycle is quite complex to explain, so only data under 

continuous irradiation were considered. In Fig. 5.5 the nutrient/biomass yields , as function of 

the ratio between growth rate and maintenance rate, are reported. By normalizing the growth 

rate on maintenance rate, a linear relation was found for the nutrient/biomass yields, 

suggesting that part of energy wasted under saturating condition has a key role in the actual 

growth rate and nutrient uptake measured. This trend was never observed in the literature and 

the biological explanation seems quite complex. 

 

 

 

Figure 5.5 - N (fig 5.6A) and P (5.6B) yields as function of the ratio between growth rate and maintenance 

rate at different irradiations (square for 150 µmol m
-2

 s
-1

. circles for 650 µmol m
-2

 s
-1

). 

  

A B 





 

 
 

Conclusions 
The aim of this work was to assess the effect of light intensity and irradiation regime on 

maintenance, by growing S.obliquus in a continuous laboratory-scale flate plate PBR at 

different residence times, thus studying different growth rates. The maintenance parameters 

were derived according to the models of Gons & Mur (1980) and Kliphuis et al. (2012) . 

Gons & Mur directly calculated a constant value of maintenance rate, according to Pirt model 

(1965), while Kliphuis derived separately    and   . By applying these models it was found 

that the light influenced the maintenance, which resulted higher under higher irradiances 

suggesting that photosaturation and photoinhibition occurred. Kliphuis approach appeared 

more accurate because it clearly shows the difference between the effect of light on    and 

  , however no information are available to estimate the specific maintenance rate  . Van 

Bodegom (2007)stated that the calculation of   from parameters    and    was more 

complex than the approach proposed by Pirt (1965) and he correlated a to the apparent growth 

yield     , which depends on μ, instead of   ,which is constant. Particularly by applying Van 

Bodegom’s approach on S.obliquus, it was found that a increased with the specific growth 

rate, as recently observed also by other authors (Michels et al., 2014), who stated that higher 

maintenance costs can be associated with higher growth rates. In addition      resulted 

strongly affected by higher irradiances. In the case of photosynthetic organisms   includes not 

only the non growth components, such as  turnover of cellular components in the normal 

metabolism, chemical gradients across membranes, metabolic processes involved in 

acclimation and the cell repair under stress, but also light dissipation. In addition, by applying 

the same approaches proposed for heterotrophic organisms (Chenl & Johns, 1996; Minkevich 

et al., 2000), the effect of saturating light on light biomass yield was modeled as a case of 

substrate inhibition. By applying these models it was found that the curves obtained well 

reproduced the trend of experimental data of      as a function of irradiation and growth rate. 

It was found that the lipid and pigment content and the average cell density depend both on 

growth rate and irradiance, as well as the nutrient uptake. Particularly, it was found that the 

nutrient uptake was strongly linked to the energetic losses due to the maintenance.  

Our results are interesting to better understand the energy requirements for cell growth 

because the maintenance term is also a key parameter of most mathematical growth models 

(Bernardi et al., 2014; Wu et al., 2001), including those used for large scale PBR design 

(Quinn et al., 2011). 





 

 
 

Bibliography 

Abishek, M. P., Patel, J., & Rajan, A. P. (2014). Algae Oil : A Sustainable Renewable Fuel of 

Future, 2014. 

Amaro, H. M., Guedes, a. C., & Malcata, F. X. (2011). Advances and perspectives in using 

microalgae to produce biodiesel. Applied Energy, 88(10), 3402–3410. 

doi:10.1016/j.apenergy.2010.12.014 

Bahadar, A., & Bilal Khan, M. (2013). Progress in energy from microalgae: A review. 

Renewable and Sustainable Energy Reviews, 27, 128–148. 

doi:10.1016/j.rser.2013.06.029 

Barbosa, M. J., Zijffers, J. W., Nisworo, A., Vaes, W., van Schoonhoven, J., & Wijffels, R. H. 

(2005). Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-

panel reactor using the A-stat technique. Biotechnology and Bioengineering, 89(2), 233–

42. doi:10.1002/bit.20346 

Bernardi, A., Perin, G., Sforza, E., Galvanin, F., Morosinotto, T., & Bezzo, F. (2014). An 

Identi fi able State Model To Describe Light Intensity In fl uence on Microalgae Growth. 

Bertucco, A., Beraldi, M., & Sforza, E. (2014). Continuous microalgal cultivation in a 

laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and 

simulation. Bioprocess and Biosystems Engineering, pp. 1–8. doi:10.1007/s00449-014-

1125-5 

Borowitzka, M. A., & Moheimani, N. R. (2010). Sustainable biofuels from algae. Mitigation 

and Adaptation Strategies for Global Change, 18(1), 13–25. doi:10.1007/s11027-010-

9271-9 

Buckwalter, P., Embaye, T., Gormly, S., & Trent, J. D. (2013). Dewatering microalgae by 

forward osmosis. Desalination, 312, 19–22. doi:10.1016/j.desal.2012.12.015 

Chen, F., & Johns, M. R. (1994). Substrate inhibition of Chlamydomonas reinhardtii by 

acetate in heterotrophic culture. Process Biochemistry. doi:10.1016/0032-

9592(94)80064-2 

Chenl, F., & Johns, M. R. (1996). Relationship between substrate inhibition and maintenance 

energy of Chlamydomonas reinhardtii in heterotrophic culture, (1982), 15–19. 

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. 

doi:10.1016/j.biotechadv.2007.02.001 

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 

126–131. doi:10.1016/j.tibtech.2007.12.002 



Bibliography _______________________________________________________________________________ 

 

86 

Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology, 

167(3), 201–14. doi:10.1016/j.jbiotec.2013.07.020 

Cuaresma, M., Janssen, M., Vilchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella 

sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. 

Biotechnology and Bioengineering, 104, 352–359. doi:10.1002/bit.22394 

Dassey, A. J., Hall, S. G., & Theegala, C. S. (2014). An analysis of energy consumption for 

algal biodiesel production: Comparing the literature with current estimates. Algal 

Research, 4, 89–95. doi:10.1016/j.algal.2013.12.006 

Elken, R., Vanatalu, K., & Tiisma, K. (1995). ofMicrobiological Methods The computer-

controlled continuous culture of Escherichia coli with smooth change of dilution rate ( 

A-stat ), 24, 145–153. 

Gons, H. J., & Mur, L. R. (1980). Nicroliology, 7. 

Gris, B., Morosinotto, T., Giacometti, G. M., Bertucco, A., & Sforza, E. (2014). Cultivation 

of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark 

cycles on growth, productivity, and biochemical composition. Applied Biochemistry and 

Biotechnology, 172(5), 2377–89. doi:10.1007/s12010-013-0679-z 

Grobbelaar, J. U. (2010). Microalgal biomass production: challenges and realities. 

Photosynthesis Research, 106, 135–144. doi:10.1007/s11120-010-9573-5 

Halim, R., Danquah, M. K., & Webley, P. a. (2012). Extraction of oil from microalgae for 

biodiesel production: A review. Biotechnology Advances, 30(3), 709–32. 

doi:10.1016/j.biotechadv.2012.01.001 

Halim, R., Gladman, B., Danquah, M. K., & Webley, P. a. (2011). Oil extraction from 

microalgae for biodiesel production. Bioresource Technology, 102(1), 178–85. 

doi:10.1016/j.biortech.2010.06.136 

HERBERT, D., ELSWORTH, R., & TELLING, R. C. (1956). The continuous culture of 

bacteria; a theoretical and experimental study. Journal of General Microbiology, 14, 

601–622. doi:10.1099/00221287-14-3-601 

Jorquera, O., Kiperstok, A., Sales, E. A., Embiruçu, M., & Ghirardi, M. L. (2010). 

Bioresource Technology Comparative energy life-cycle analyses of microalgal biomass 

production in open ponds and photobioreactors. Bioresource Technology, 101(4), 1406–

1413. doi:10.1016/j.biortech.2009.09.038 

Kim, Z. H., Kim, S. H., Lee, H. S., & Lee, C. G. (2006). Enhanced production of astaxanthin 

by flashing light using Haematococcus pluvialis. Enzyme and Microbial Technology, 39, 

414–419. doi:10.1016/j.enzmictec.2005.11.041 

Kliphuis, A. M. J., Klok, A. J., Martens, D. E., Lamers, P. P., Janssen, M., & Wijffels, R. H. 

(2012). Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for 



 ______________________________________________________________________________ Bibliography 

87 

photoautotrophic growth and maintenance. Journal of Applied Phycology, 24(2), 253–

266. doi:10.1007/s10811-011-9674-3 

Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels : A critical review of issues , problems 

and the way forward. Biotechnology Advances, 30(3), 673–690. 

doi:10.1016/j.biotechadv.2011.11.008 

Martinez, M. E., Jimnez, J. M., & Yousfi, F. E. (1999). blOi BOUI ( I Kll LOOY Influence of 

phosphorus concentration and temperature on growth and phosphorus uptake by the 

microalga Scenedesmus obliquus, 67, 233–240. 

Martins, A., Caetano, N. S., & Mata, T. M. (2010). Microalgae for biodiesel production and 

other applications : A review, 14, 217–232. doi:10.1016/j.rser.2009.07.020 

Michels, M. H. a., Slegers, P. M., Vermuë, M. H., & Wijffels, R. H. (2014). Effect of biomass 

concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular 

photobioreactor using natural sunlight. Algal Research, 4, 12–18. 

doi:10.1016/j.algal.2013.11.011 

Minkevich, I. G., Andreyev, S. V, & Eroshin, V. K. (2000). The effect of two inhibiting 

substrates on growth kinetics and cell maintenance of the yeast Candida 6 alida, 36, 209–

217. 

Molin, G. (1983). Applied Microbiology and Biotechnology Measurement of the Maximum 

Specific Growth Rate in Chemostat of Pseudomonas spp . with Different Abilities for 

Biofilm Formation, 303–307. 

Nedbal, L., Tichý, V., Xiong, F., & Grobbelaar, J. U. (1996). Microscopic green algae and 

cyanobacteria in high-frequency intermittent light. Journal of Applied Phycology. 

doi:10.1007/BF02178575 

Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. 

Quigg, A., & Beardall, J. (2003). Protein turnover in relation to maintenance metabolism at 

low photon flux in two marine microalgae, (1994), 693–703. 

Quinn, J., de Winter, L., & Bradley, T. (2011). Microalgae bulk growth model with 

application to industrial scale systems. Bioresource Technology, 102(8), 5083–92. 

doi:10.1016/j.biortech.2011.01.019 

Ramos Tercero, E. A., Sforza, E., Morandini, M., & Bertucco, A. (2014). Cultivation of 

Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass 

productivity and nutrient removal. Applied Biochemistry and Biotechnology, 172, 1470–

1485. doi:10.1007/s12010-013-0629-9 

Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A 

critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–

467. doi:10.1016/j.apenergy.2012.10.004 



Bibliography _______________________________________________________________________________ 

 

88 

\Ruiz, J., Álvarez-Díaz, P. D., Arbib, Z., Garrido-Pérez, C., Barragán, J., & Perales, J. a. 

(2013). Performance of a flat panel reactor in the continuous culture of microalgae in 

urban wastewater: prediction from a batch experiment. Bioresource Technology, 127, 

456–63. doi:10.1016/j.biortech.2012.09.103 

Schulze, K. L., & Lipe, R. S. (1964). Relationship between substrate concentration, growth 

rate, and respiration rate of Escherichia coli in continuous culture. Archiv Fuer 

Mikrobiologie, 48, 1–20. doi:10.1007/BF00406595 

Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, 

environmental impacts and future prospects. Biomass and Bioenergy, 53(0), 29–38. 

doi:10.1016/j.biombioe.2012.12.019 

Van Bodegom, P. (2007). Microbial maintenance: a critical review on its quantification. 

Microbial Ecology, 53(4), 513–23. doi:10.1007/s00248-006-9049-5 

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, carotenoids, 

using various solvents with spectrophotometers of different resolution. Journal of Plant 

Physiology, 144, 307–313. doi:http://dx.doi.org/10.1016/S0176-1617(11)81192-2 

Wu, X., & Merchuk, J. C. (2001). A model integrating uid dynamics in photosynthesis and 

photoinhibition processes, 56, 3527–3538. 

Xu, L., & Xiong, X. (2009). Microalgal bioreactors : Challenges and opportunities, (3), 178–

189. doi:10.1002/elsc.200800111 

Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal 

biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101, 

5297–5304. doi:10.1016/j.biortech.2010.02.007 

Zijffers, J.-W. F., Schippers, K. J., Zheng, K., Janssen, M., Tramper, J., & Wijffels, R. H. 

(2010). Maximum photosynthetic yield of green microalgae in photobioreactors. Marine 

Biotechnology (New York, N.Y.), 12(6), 708–18. doi:10.1007/s10126-010-9258-2 

Zou, S., Gu, Y., Xiao, D., & Tang, C. Y. (2011). The role of physical and chemical 

parameters on forward osmosis membrane fouling during algae separation. Journal of 

Membrane Science, 366(1-2), 356–362. doi:10.1016/j.memsci.2010.10.030 

 

 

 

 

 

 


