
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI MATEMATICA

“TULLIO LEVI-CIVITA”

Corso di Laurea Magistrale in Matematica

Collecting Operational Abstract Interpreters

Relatore:
Prof. Francesco Ranzato

Laureando:
Dott. Enrico Gallana
Matricola: 1206960

11 Dicembre 2020
Anno Accademico 2020/2021

Contents
1 Introduction 3

2 Background 6
2.1 Order theory . 6
2.2 Fixpoints . 7
2.3 Abstract Domains . 8

2.3.1 Interval Abstract Domain . 9

3 Language 11
3.0.1 Remarks . 14

3.1 Small Step Operational Semantics . 15
3.1.1 Expressions . 15
3.1.2 Program Semantics . 16

3.2 Traces and Invariants . 16
3.3 Safety Verification Problem and Hoare Triples . 17

4 Small Step Collecting Interpreter 19
4.1 The sequential collecting interpreter . 21
4.2 Proof . 23
4.3 More on Invariants . 32

5 Small Step Abstract Interpreter 34
5.1 Parallel Abstract Interpreter . 35
5.2 Examples . 36
5.3 Abstract Traces . 39
5.4 Soundness and Completeness . 40
5.5 Safety Verification . 50
5.6 Nondeterministic Interpreter . 51

6 An equivalence result 54

7 Conclusions and further work 64

2

1 Introduction

The theory of abstract interpretation, introduced by Cousot and Cousot in 1977, is a general theory of
the approximation of formal program semantics.
It is a useful tool to prove the accuracy of static analysis and permits to express mathematically the
link between the output of practical, approximate analysis and the original uncomputable program
semantics.
Given a programming language, abstract interpretation consists of giving several semantics linked
by a relation of abstraction; a semantics is intended to be the mathematical characterization of a
program’s possible behavior.

There are several approaches to semantics each one focused on different properties of a given
program. For instance, operational semantics focuses on how to execute a program, and in particular,
structural operational semantics deals with how the single step of the computation takes place. On the
other hand, the denotational approach is merely interested in the effect of the program’s computation,
i.e., to find a relationship between input and output data passing through mathematical structures. It is
clear that, since these two approaches are different, the final results must be coherent with each other,
and this induces to speculate they may be considered equivalent in a suitable sense.

Thanks to its streamlined notions and proofs, the denotational approach to abstract interpretation
has already been studied many times, and many properties have been developed and well formalized.
Instead, the operational correspondent versions have rarely been strictly formalized and proved, even
if intuitively accepted as true. The main purpose of this work is to fill this gap: to study in detail the
operational approach to abstract interpretation and to formalize in this particular setting some of the
well-known denotational properties, providing mathematical proofs.

In practice, using a standard WHILE programming language, we define several operational inter-
preters, i.e., theoretical models that rule the correspondent transition relations between computational
states of a given program. We start with the concrete operational interpreter, which models the com-
putation of a program on precise input data through transitions between computational states, which
are two-entries tuples: on the first entry, it records the remaining instructions to be executed, and on
the second, the current store properties of the variables.

We then move towards a ‘collecting’ view: the single input data is replaced with a set of values,
and we analyze the propagation of information to the different computational states. In this perspec-
tive, we define the parallel collecting interpreter and the sequential collecting interpreter, which differ
in the modeling of the conditional construct if-then-else; in case of termination, the two modes turn
out to be equivalent (Theorem 4.3).
The transitions between computational states occur through the so-called transfer functions: functions
that modify the numerical properties stored in the variables following the execution of the commands.
For instance consider the command x := x+ 1;. We write

〈x := x+ 1; , x/5〉 → 〈ε, x/6〉,

3

where ε denotes the empty string of commands, and {x/6} = Jx := x+ 1; K{x/5} is the image of
{x/5} through the transfer function for assignments.
If we replace the singleton {x/5} with P = {x/0, x/5, x/6},

〈ε, x := x+ 1; ,P〉 →pc 〈ε, ε, {x/1, x/6, x/7}〉,

where→pc denotes the transition relation of parallel collecting interpreter and
{x/1, x/6, x/7} = Jx := x+ 1; K P . The first entry of the tuples is used for Stack: it records variable
properties in particular situations, e.g. loops.

The main objects we deal with are the so-called invariants: sets whose elements are all the pos-
sible taken values by a certain variable at a precise program point. Invariants include even the most
improbable values that, in the worst case, a variable might take.

A crucial part of this work is the computation analysis on a generic abstract domain, a lattice with par-
ticular correspondence properties with the set of variables values. Soundness denotes over-approximation
rather than under-approximation.
We define the abstract correspondent of the parallel collecting interpreter and observe that the ab-
stract transfer functions are the abstraction of the concrete ones. Hence, their definition determines
the accuracy of the variable properties approximation: in Theorems 5.8 and 5.15 we establish the
relationship between concrete and abstract invariants at each program point.

In the end, we compare the operational approach to computation modeling with the standard de-
notational one of static analysis. Although, operational collecting interpreters are not convergent
machines, since they follow step-by-step the program’s computation. The static analysis denotational
approach, on the other hand, forces, through tools like widening, the identification of fixed points and
hence of invariants.
This issue is overcome with the definition of a further operational interpreter, which opens a non-
deterministic branch whenever it exhausts the instructions contained in a loop body. In this way, it
is possible to determine invariants at each program point even with the operational approach. Not
only: in the last chapter, we show the equivalence between the standard denotational static analysis
approach and the operational non-deterministic collecting approach we have carried out.

In most of the proofs, we use a specific proof technique called structural induction. We believe it
is necessary to explain how it works here. All references will be adequately clarified below.
Structural induction exploits the compositional definitions of language syntax, i.e., the distinction
between basis elements and composite elements.
In practice, it consists of proving the thesis firstly for basis elements and at a second time for com-
posite elements, assuming it true for their immediate constituents (inductive hypothesis).
We define WHILE-language syntax in continuation-style; that is why proofs may usually consist of
two nested structural induction algorithms: the outermost running on Stm (Statements) and the inner-
most on Cmd (Commands). Stm has basis element ε, and cS, c ∈ Cmd as composite one. Hence, the

4

inductive hypothesis consists of assuming the thesis true for S ∈ Stm, and prove it for cS, c ∈ Cmd:
here it starts structural induction on Cmd. It has the skip-command and the assignments as basis
elements, and the if-then-else and while-do constructs as composite ones.

The rest of the thesis is organized as follows:

• Section 2 contains necessary mathematical backgrounds; it is introduced and explained the
notion of soundness, and the abstract interpretation elements we are working with;

• Section 3 contains the definition of WHILE-language, the concrete interpreter, the transition
relation, and transfer functions of semantics;

• Section 4 contains definitions and properties of the collecting interpreters; it is also introduced
the notion of invariant in two versions, which are proved to be equivalent;

• Section 5 contains the definition of the abstract interpreter and the main theorems as the Sound-
ness theorem, the Completeness theorem, and the non-deterministic version of Soundness theo-
rem;

• Section 6 contains the proof of the equivalence between operational and denotational approaches.

5

2 Background
We now proceed with a review of the mathematical foundations of abstract interpretation. We intro-
duce notations, definitions, key theorems we are using in the rest of the thesis.

2.1 Order theory
The main structure we require is a partially ordered set, where:

Definition 2.1. A partial order ‘≤’ on a set X is a binary relation ≤ ⊆ X ×X that is:

• reflexive: ∀x ∈ X . x ≤ x ;

• anti-symmetric: ∀x, y ∈ X . x ≤ y ∧ y ≤ x ⇒ x = y;

• transitive: ∀x, y, z ∈ X . x ≤ y ∧ y ≤ z ⇒ x ≤ z.

We denote with (X,≤) the set X equipped with the partial order ≤ and we call this pair a poset.
A partial order is total when for every x, y ∈ X either x ≤ y or y ≤ x holds.

In Abstract Interpretation partial orders are used to model different concepts: the idea of approxi-
mation, soundness and iterations.

Let now introduce the notions of lower and upper bounds.
Let X be a poset and consider two elements x, y ∈ X . An upper bound of x and y is an element
z ∈ X such that x ≤ z ∧ y ≤ z. It is the least upper bound (lub) if for any other upper bound w ∈ X
it holds z ≤ w, i.e. z is the smallest element greater than both x and y.
Likewise, it is possible to define the notions of lower bound and of greater lower bound (glb).
We denote rispectively with> (called top) and⊥ (called bottom) the greatest and least element of the
poset, if they exist.

Some useful definitions:

• A chain in a poset (X,≤) is a subset C of X that is totally ordered, i.e.

∀x, y ∈ C . x ≤ y ∨ y ≤ x.

• A complete partial order (CPO) is a poset in which every chian admits the lub.
Notice that ∅ is supposed to be a chain, and by convention we set ∨∅ = >.

• A lattice (X,≤,∨,∧) is a poset such that ∀x, y ∈ X . x ∨ y and x ∧ y exist.

• A complete lattice (X,≤,∨,∧,>,⊥) is a poset such that:

– ∀A ⊆ X.
∨
A exists;

6

– ∀A ⊆ X .
∧
A exists;

– X has a greatest element >;

– X has a least element ⊥.

Notice that a complete lattice is both a lattice and a poset.

2.2 Fixpoints
Definition 2.2. Let (X,≤) a poset and f : X → X a function. x ∈ X is a fixed point for f if
f(x) = x.
We define the set

fp(f) , {x ∈ X | f(x) = x}.

If such a set has a minimum, it is called least fixed point (lfp) of f.
Dually, it is possible to define the notions of greatest fixed point (gfp).

Obviously, fixpoints don’t neccessarily exist. To ensure their existence we need some extra hy-
pothesis on the function f.

Definition 2.3. A function between two posets f : (X1,≤1)→ (X2,≤2) is monotonic if

∀x, y ∈ X1 . x ≤1 y ⇒ f(x) ≤2 f(y).

A function between two CPOs f : (X1,≤1,∨1) → (X2,≤2,∨2) is continuos if for every chain
C ⊆ X1 then f(C) = {f(c) | c ∈ C} ⊆ X2 is also a chain, and the limits coincide, namely:

f(∨1C) = ∨2 f(C).

Observe that continuity implies monotonicity: assume x, y ∈ X1 such that x ≤1 y. The set {x, y}
is a chain, hence, by continuity of f . f({x, y}) = {f(x), f(y)} is a chain. Moreover

f(y) = f(∨1{x, y}) = ∨2f({x, y}) = ∨2{f(x), f(y)}.

Hence f(x) ≤2 f(y).
Let us recall a very significant theorem; the proof is omitted.

Theorem 2.4. (Knaster-Tarski) Let f : X → X be a continuos function on a CPO (X,≤,∨,>) with
least element ⊥.
Then lfp f does exist. Moreover

lfp f =
∨
i≥0

f i(⊥).

7

2.3 Abstract Domains
Partially ordered sets are used to model an amount of information. Thus, we assume (C,≤) and
(A,v) be two posets. We refer to them respectively as concrete and abstract domain.
The minimum connection between these two is a concretization function, usually denoted as γ.

Definition 2.5. A concretization function γ : A → C is a monotonic poset function assigning a
concrete meaning, in C, to each abstract element of A.

It is now possible to formalize what a sound abstraction means.
Given c ∈ C, a ∈ A is a sound abstraction of c if and only if c ≤ γ(a). It is moreover an exact
abstraction if c = γ(a).

There are more complex structures specifically made to design sound and accurate analyses.
Firstely, we assume the existence of a monotonic abstraction function α : C → A. The resulting
structure is called Galois connection:

Definition 2.6. Given two posets (C,≤) and (A,v), the pair (α : C → A , γ : A→ C) is a Galois
connection if

∀a ∈ A, c ∈ C, c ≤ γ(a)⇐⇒ α(c) v a

which is denoted as (C,A, γ, α).
Moreover, α and γ are said to be adjoint functions.

The characterizing property of the Galois connection provides a very strong connection between
concrete and abstract domains. Here is an equivalent characterization:

Theorem 2.7. (C,A, γ, α) is a Galois connection if and only if the function pair (α, γ) satisfies the
following properties:

• γ is monotonic;

• α is monotonic;

• γ ◦ α is extensive, i.e. ∀c ∈ C . c ≤ γ ◦ α(c);

• α ◦ γ is reductive, i.e. ∀a ∈ A . α ◦ γ(a) v a.

Extensivity of γ ◦ α denotes a loss of accuracy by giving the concrete representation of the ab-
straction of a concrete element. The loss is effective when a concrete element has no exact abstract
representation.

If we require α ◦ γ to be the identity, we obtain a Galois insertion (GI).

Definition 2.8. A Galois connection (C,A, γ, α) is a Galois insertion if any of the following, equiv-
alent properties hold:

• α is surjective: ∀a ∈ A ∃c ∈ C . α(c) = a;

8

• γ is injective: ∀a, a′ ∈ A γ(a) = γ(a′)⇒ a = a′;

• α ◦ γ = id.

The first and second properties state that no elements of A are superfluous. Third property allows
us to view the abstract domain A as isomorphic to a subset of the concrete domain C.
Notice that it is always possible to derive a Galois insertion from a Galois connection, simply restrict-
ing A to α(C).

Let us now state how to obtain the abstract approximation of a poset function f : C → C.

Definition 2.9. With the usual notations, let γ : A→ C, f : C → C and g : A→ A:

• g is a sound abstraction of f if ∀a ∈ A . f(γ(a)) ≤ γ(g(a));

• g is an exact abstraction of f if f ◦ γ = γ ◦ g.

Notice that an exact abstraction is always sound.
If we have a Galois connection, we can talk about best abstraction of functions:

Definition 2.10. Given a Galois connection (C,A, γ, α) and a function f : C → C, the best correct
approximation (bca) of f is given by α ◦ f ◦ γ.
In particular, every sound abstraction of f is always greater than α ◦ f ◦ γ.

Next, we want to describe one of the most popular abstract domains: the Interval domain.

2.3.1 Interval Abstract Domain

The interval domain is based on interval arithmetic and adapted to static analysis by Cousot and
Cousot. It is simple and inexpensive, and yet it can express and infer valuable properties for program
verification.
For these reasons, we are using it in all further examples.

The interval domain abstracts the set of possible values of a variable as an interval. The abstract
values are either non-empty intervals with finite or infinite bounds, or ⊥Int :

Int = {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b} ∪ {⊥Int}

Obviously, the greatest element >Int is given by [−∞,+∞].
We have a Galois insertion:

• the partial order is defined as follows.

[a, b] vInt [c, d]⇐⇒ (a ≥ c) ∧ (b ≤ d)

[a, b] ∨Int [c, d] = [min(a, c), max(b, d)]

[a, b] ∧Int [c, d] =

{
[max(a, c), min(b, d)] if max(a, c) ≤ min(b, d)

⊥Int otherwise

9

• Concretization function γ : Int→ ℘(Z) acts as follows:

γ(⊥Int) = ∅
γ([a, b]) = {x ∈ Z | a ≤ x ≤ b}

• Abstraction function α : ℘(Z)→ Int:

α(X) =

{
⊥Int if X = ∅
[min X, max X] otherwise

• The condition of Definition 2.6 is satisfied: fix X ∈ ℘(Z) and [a, b] ∈ Int.
Observe

X ⊆ γ([a, b])⇔ X ⊆ {x | a ≤ x ≤ b} ⇔ α(X) v [a, b]

• α is surjective: fix [a, b] ∈ Int and consider X = {a, b} ∈ ℘(Z). Then α(X) = [a, b].

10

3 Language
We define a standard WHILE-language whose continuation-style syntax and small-step operational
semantics are inspired by [7] and precisely defined in [5].

Int 3 v Vars 3 x
Aexp 3 E ::= v | x | E1 opE2

Bexp 3 B ::= tt | ff | E1 ≤ E2 | ¬B | B1 ∧B2

Cmd 3 c ::= skip; | x := E; | if B then S1 else S2 | while B do S
Stm 3 S ::= ε | cS

where ε stands for the empty string. Thus, any statement S ∈ Stm is a possibly empty sequence
of commands cn, with n ≥ 0. An empty body in some if-then-else or while command will be
semantically equivalent to have a no-op skip body. We follow [5] in making an abuse in program
syntax by assuming that if S1, S2 ∈ Stm then S1S2 ∈ Stm, where S1S2 denotes a simple string
concatenation of S1 and S2.

Let Stm∗ denotes the set whose elements are finite, eventually empty, ordered sequences of state-
ments where the empty sequence is denoted by []. Moreover let ◦ : Stm∗× Stm∗ → Stm∗ be the lists
concatenation.
The continuation function C : Stm→ Stm∗, is recursively defined by the following clauses:

C(ε) , [ε]

C(skip;K) , [skip;K] ◦ C(K)

C(x := E;K) , [x := E;K] ◦ C(K)

C((if B then S1 else S2)K) , [(if B then S1 else S2)K] ◦ (C(S1) ? K) ◦ (C(S2) ? K) ◦ C(K)

C((while B do S)K) , [(while B do S)K] ◦ (C(S) ? ((while B do S)K)) ◦ C(K)

where the binary operation ? : Stm∗× Stm→ Stm∗ is defined by

[] ? K = []

[ε] ? K = []

[A1, ..., An] ? K = [A1;K , ..., An;K] ∀A1, ..., An, K ∈ Stm .

Pay attention that whenever there is a branching whose boolean guard is B ∈ Bexp, the function C
analyzes the true-branch first.
Thus, C(S) contains all the possible continuations for the program S and the order of appearance
provides a total order relation on C(S).

11

Let us point out that C(S) also includes unreachable continuations, and that we can have continu-
ations with multiplicity greater than 1, for example

C((if B then (x := 1; y := 1;) else y := 1;) skip;) =

[(if B then (x := 1; y := 1;) else y := 1;) skip;] ◦ (([x := 1; y := 1;] ◦ [y := 1;] ◦ [ε]) ? (skip;))◦
(([y := 1;] ◦ [ε]) ? (skip;)) ◦ ([skip;] ◦ [ε]) =

[(if B then (x := 1; y := 1;) else y := 1;) skip;] ◦ [x := 1; y := 1; skip; , y := 1; skip;]◦
[y := 1; skip;] ◦ [skip; , ε] =

[(if B then (x := 1; y := 1;) else y := 1;) skip; , x := 1; y := 1; skip; ,

y := 1; skip; , y := 1; skip; , skip; , ε].

C(S) provides an alternative representation for the program points of S. In fact, an injective labelling
function ` : C(S) → Label for all the possible continuations of a program S allows us to define a
control flow graph (CFG) for S, where the set of nodes is {`(K) | K ∈ C(S)}, and transitions are
labelled with skip, assignments and Boolean tests as follows:

`(skip;K)
skip−−→ `(K)

`(x := E;K)
x:=E−−−→ `(K)

`((if B then S1 else S2)K)
B−→ `(S1K)

`((if B then S1 else S2)K)
¬B−−→ `(S2K)

`((while B do S)K)
B−→ `(S(while B do S)K)

`((while B do S)K)
¬B−−→ `(K)

Moreover, it is possible to provide the set {`(K) | K ∈ C(S)} with a total order relation, which
follows from the order of appearance in C(S).

As a first example, consider the program P ≡ (if B then (x := 1; y := 1;) else (y := 1;))skip;.
We have previously seen that

C(P) = [(if B then (x := 1; y := 1;) else y := 1;)skip; , x := 1; y := 1; skip; ,

y := 1; skip; , y := 1; skip; , skip; , ε].

The set of Labels is given by {`1, `2, `3, `4, `5, `6} where

`1 = `((if B then (x := 1; y := 1;) else y := 1;)skip;)

`2 = `(x := 1; y := 1; skip;)

`3 = `(y := 1; skip;)

`4 = `(y := 1; skip;)

`5 = `(skip;)

`6 = `(ε)

12

and the resulting CFG is

`1

`2

`3

`4

`5

`6

B

x:=1

y:=1

¬B

y:=1

skip

As a second example, consider the program Q ≡ x := 5; while x > 0 do x := x− 2;.

C(Q) = [x := 5; while x > 0 do x := x− 2;] ◦ ([while x > 0 do x := x− 2;]◦
(([x := x− 2;] ◦ [ε]) ? (while x > 0 do x := x− 2;)) ◦ [ε]) =

[x := 5; while x > 0 do x := x− 2;] ◦
[while x > 0 do x := x− 2;] ◦ [x := 2; while x > 0 do x := x− 2;] ◦ [ε] =

[x := 5; while x > 0 do x := x− 2; , while x > 0 do x := x− 2; ,

x := x− 2; while x > 0 do x := x− 2; , ε].

It is represented by the following CFG:

`1

`2

`3 `4

x:=5

x>0 ¬(x>0)x:=x−2

where:

`1 , `(x := 5; while x > 0 do x := x− 2;) `2 , `(while x > 0 do x := x− 2;)

`3 , `(x := x− 2; while x > 0 do x := x− 2;) `4 , `(ε)

13

3.0.1 Remarks

Let us point out that if K ∈ C(S) then `(S) ≤ `(K), while it is generally not true that C(K) ⊆ C(S).
For example, consider the program Q above and K ≡ x := x− 2; while x > 0 do x := x− 2;.
Let us compute C(K).

C(K) = [x := x− 2; while x > 0 do x := x− 2;] ◦ [while x > 0 do x := x− 2;]◦
([x := x− 2; , ε] ? (while x > 0 do x := x− 2;)) ◦ [ε] =

[x := x− 2; while x > 0 do x := x− 2; ,while x > 0 do x := x− 2; , x := x− 2;

while x > 0 do x := x− 2; , ε].

Notice that K ∈ C(Q) but C(K) 6⊆ C(Q), since Stm∗ is the set whose elements are finite ordered
sequences of statements, and the inclusion ‘⊆’ has to consider the order.
This fact is actually counterintuitive, but the requirement to operate in Stm∗ is due to the fact that it
may present the case in which a continuation has molteplicity greater than one (as in the program P
of the example above).
Although, this case does no longer exist if the else-branch of the conditional construct is removed, as
in [3, Section 10].

Reasoning in the same way, let us consider the set of commands C̃md whose syntax is obtained
from Cmd replacing the command if B then S1 else S2 ∈ Cmd with

if B then S ∈ C̃md

i.e., removing the symmetric conditional branching. The set S̃tm of possibly empty sequences of ele-
ments of C̃md gives rise to a Turing complete language and it is easily possible to define a translating
function φ : Stm→ S̃tm. The command if B then S1 else S2 is mapped to the construct:

Baux = tt;
if B then{

S1

Baux = ff; }
if Baux then S2

where the new variable Baux is necessary to avoid the possible side-effect issue of S1 on B.
We want to highlight that, in such a setting, it is possible to define the continuation function

C̃ : S̃tm → ℘(S̃tm), without dealing with the set of ordered lists S̃tm
∗
, recursively defined by the

14

clauses:

C̃(ε) , {ε}
C̃(skip;K) , {skip;K} ∪ C̃(K)

C̃(x := E;K) , {x := E;K} ∪ C̃(K)

C̃((if B then S)K) , {(if B then S)K} ∪ C̃(S K) ∪ C̃(K)

C̃((while B do S)K) , {(while B do S)K} ∪ C̃(S(while B do S)K) ∪ C̃(K).

Observe that if S ∈ S̃tm and K ∈ C̃(S) then C̃(K) ⊆ C̃(S) where the relation ‘⊆’ is the standard set
inclusion.
As an example, consider the program Q ≡ x := 5; while x > 0 do x := x− 2;. Then

C̃(Q) = {x := 5; while x > 0 do x := x− 2; } ∪ {while x > 0 do x := x− 2; }∪
{x := x− 2; while x > 0 do x := x− 2; } ∪ C̃(while x > 0 do x := x− 2;) ∪ {ε} =

{x := 5; while x > 0 do x := x− 2; , while x > 0 do x := x− 2; ,

x := x− 2; while x > 0 do x := x− 2; , ε}

where the last equality is derived since C̃(while x > 0 do x := x− 2;) is already contained in
{while x > 0 do x := x− 2; } ∪ {x := x− 2; while x > 0 do x := x− 2; } ∪ {ε}.

Now take K ≡ x := x− 2; while x > 0 do x := x− 2;. Then

C̃(K) = {x := x− 2; while x > 0 do x := x− 2; , while x > 0 do x := x− 2; , ε}

and it holds C̃(K) ⊆ C̃(S).

3.1 Small Step Operational Semantics
3.1.1 Expressions

Variables are assumed to have integer type and, therefore, they store integer values ranging in Z. A
store ρ ∈ Store , Vars ↪→ Z is a partial map from variables to integer values, where |ρ| , | dom(ρ)|
denotes its size of definition.

The semantics of arithmetic and Boolean expressions is defined by the following denotational
partial semantic functions:

EJEK : Store ↪→ Z BJBK : Store ↪→ {false, true}

where undefinedness models an evaluation error, e.g. we have that EJx/yK{x/1, y/0} = undef and
BJx/(y − 1) < xK{x/1, y/1} = undef.
We also use the following notation: JBK , {ρ ∈ Store | BJBKρ = true}.

15

We denote by Jx := EK and JBK the so-called transfer functions for assignments and Boolean
tests, which are defined in their collecting versions on sets of stores as usual:

Jx := EK, JBK : ℘(Store)→ ℘(Store)

Jx := EKX , {ρ[x 7→ v] | ρ ∈ X, v = EJEKρ}
JBKX , {ρ ∈ X | BJBKρ = true} = JBK ∩X

Hence, JBK is defined as the selector of stores making the expression B true.

3.1.2 Program Semantics

A program state for a continuation-based operational semantics is a pair consisting of the program
left to evaluate and the current store, namely State , Stm× Store. The small-step transition relation
→⊆ State× State is given in standard continuation-style by the following rules, where K ∈ Stm:

〈skip;K, ρ〉 → 〈K, ρ〉
EJEKρ ∈ Store

〈x := E;K, ρ〉 → 〈K, ρ[x 7→ EJEKρ]〉

BJBKρ = true
〈(if B then S1 else S2)K, ρ〉 → 〈S1K, ρ〉

BJBKρ = false
〈(if B then S1 else S2)K, ρ〉 → 〈S2K, ρ〉

BJBKρ = false
〈(while B do S)K, ρ〉 → 〈K, ρ〉

BJBKρ = true
〈(while B do S)K, ρ〉 → 〈S(while B do S)K, ρ〉

Of course, the operational semantics→ is deterministic.

3.2 Traces and Invariants
Let State∞ , State+ ∪ Stateω be the set of nonempty infinitary (i.e., finite and infinite) sequences
of states.

A partial trace is any nonempty possibly infinite sequence (indexed by N) of program states which
are related by the transition relation →. Hence, the set Trace∞ of (finite and infinite, partial and
maximal) traces is defined as follows:

Trace∞ , {τ ∈ State∞ | ∀i ∈ [1, |τ |). τi−1 → τi}.

The trace semantics of a program S is in turn defined as follows:

Trace[S] , {τ ∈ Trace∞ | ∃ρ ∈ Store . τ0 = 〈S, ρ〉}

and the traces for S with initial store ρ ∈ Store are given by:

Trace[S, ρ] , {τ ∈ Trace[S] | τ0 = 〈S, ρ〉}

16

while if In ∈ ℘(Store) then
Trace[S, In] ,

⋃
ρ∈In

Trace[S, ρ]

Given a trace τ ∈ Trace[S], we define the function Inv[τ] : C(S) → ℘(Store), which, for any
continuation K ∈ C(S), returns the strongest invariant property for K along the trace τ :

Inv[τ](K) , {ρ ∈ Store | ∃i ∈ N. τi = 〈K, ρ〉}.

In particular, if K does not occur in τ then Inv[τ](K) = ∅. Also, the function
Inv[S, In] : C(S) → ℘(Store), for any continuation K ∈ C(S), returns the strongest invariant prop-
erties for K along any trace in Trace[S, In], namely:

Inv[S, In](K) ,
⋃

τ∈Trace[S,In]

Inv[τ](K).

Hence, a continuation K ∈ C(S) is unreachable from In if and only if Inv[S, In](K) = ∅.
The execution of a program S from an initial store ρ correctly terminates when 〈S, ρ〉 →∗ 〈ε, ρ′〉,

and, in this case, the store ρ′ will be the result of the evaluation. Pairs 〈ε, ρ〉 ∈ State are therefore
called final states (notice that 〈ε, ρ〉 6→).
On the other hand, 〈S, ρ〉 ∈ State is called an error state when S 6≡ ε and 〈S, ρ〉 6→. For instance, if
EJEKρ is not defined then 〈x := E;K, ρ〉 is an error state. Analogously, if BJBKρ is not defined then
〈(if B then S1 else S2)K, ρ〉 and 〈(while B do S)K, ρ〉 are error states.

The evaluation of S from ρ terminates with an error when 〈S, ρ〉 →∗ 〈S ′, ρ′〉 and 〈S ′, ρ′〉 is
an error state. On the other hand, the evaluation of S from ρ does not terminate when Trace[S, ρ]
contains an infinite trace. Let us observe that 〈while tt do ε, ρ〉 → 〈while tt do ε, ρ〉, thus leading to
nontermination.

3.3 Safety Verification Problem and Hoare Triples
The reachable states collecting semantics of a program S ∈ Stm is a function

Post∗[S] : ℘(Store)→ ℘(State),

which provides the set of states Post∗[S]P which are reachable by S from a given set P ∈ ℘(Store)
of initial stores, i.e.,

Post∗[S]P , {〈S ′, ρ′〉 ∈ State | ∃ρ ∈ P . 〈S, ρ〉 →∗ 〈S ′, ρ′〉}

The safety verification problem for S ∈ Stm and In ∈ ℘(Store) consists in effectively computing
a machine representable program invariant I : C(S) → ℘(State) such that, for any K ∈ C(S),
Inv[S, In](K) ⊆ I(K) holds, or, equivalently, 〈K, ρ〉 ∈ Post∗[S]In ⇒ ρ ∈ I(K).

17

If S ∈ Stm and P ∈ ℘(Store), the strongest postcondition holding after executing S in a state
belonging to P is

sp(S,P) , {ρ′ ∈ Store | 〈ε, ρ′〉 ∈ Post∗[S]P}

Also, if Q ∈ ℘(Store) then {P}S{Q} is a valid Hoare triple if

sp(S,P) ⊆ Q

18

4 Small Step Collecting Interpreter
The small step parallel collecting interpreter relies on an evaluation stack Stack whose records r are
defined as follows, where P ∈ ℘(Store) is any store property:

Stack 3 r ::=[S]t | [S]e | [(while B do S)K,P]w

The informal meaning of Stack goes as follows:

– if [K]t or [K]e happens to be at the top of the stack then the interpreter is currently evaluating
in parallel the ‘then’ and ‘else’ branches of some if B then S1 else S2 command, whose con-
tinuation is K. Once the parallel evaluation of both branches successful terminates with Pthen
and Pelse, the interpreter goes on with the evaluation of K from the store property Pthen ∪ Pelse.

– if [(while B do S)K,P]w is at the top of the stack then the interpreter is currently evaluating
the while-command while B do S whose continuation is K and whose current loop invariant
property is P .

If Σ ∈ Stack∗ is an evaluation stack then Cont(Σ) ∈ Stm denotes the corresponding whole
continuation:

Cont(Σ) ,


ε if Σ ≡ ε

K Cont(Σ′) if Σ ≡ [K]t · Σ′ or Σ ≡ [K]e · Σ′

(while B do S)K Cont(Σ′) if Σ ≡ [(while B do S)K,P]w · Σ′

A sequential state in SState�pc of the small step parallel collecting interpreter is therefore defined as
a triple whose first component is an evaluation stack in Stack∗:

〈Σ, S,P〉 ∈ SState�pc , Stack∗× Stm× ℘(Store)

Moreover, due to the evaluation of if-then-else commands, the interpreter may be in a parallel state
C1 ‖ C2, so that the possibly parallel states C of the parallel interpreter are defined as follows:

State�pc 3 C ::= 〈Σ, S,P〉 | C1 ‖ C2

The collecting transition relation →pc is nondeterministic due to the parallel evaluation of the two
branches of an if-then-else, meaning that the following standard rules for parallelism are used:

C1 →pc C
′
1

C1 ‖ C2 →pc C
′
1 ‖ C2

C2 →pc C
′
2

C1 ‖ C2 →pc C1 ‖ C ′2
The transition relation→pc⊆ State�pc × State�pc of the small step parallel collecting interpreter

is defined by the rules in Figure 1 . Obviously, the nondeterministic choices in a parallel evaluation
of C1 ‖ C2 does not affect the termination of the collecting interpreter and, in case of termination,
the output values. However, in case of nontermination, the nondeterministic choices between the two
branches of a if-then-else command may also be unfair.

It turns out that this small step collecting interpreter, when it terminates, outputs the strongest
postcondition.

19

Theorem 4.1. For any program S ∈ Stm:

(1) 〈S, ρ〉 →∗ 〈ε, ρ′〉 iff 〈ε, S, {ρ}〉 →∗pc 〈ε, ε, {ρ′}〉.

(2) 〈ε, S,P〉 →∗pc 〈ε, ε,Q〉 ⇒ sp(S,P) = Q.

Of course, the converse of Theorem 4.1 (2) does not hold, meaning that the collecting interpreter is
not complete for strongest postconditions. Obviously, this is due to nontermination. However, observe
that the simplest nonterminating program S ≡ while tt do skip; does not yield a counterexample,
since for any P we have that sp(S,P) = ∅ and

〈ε, S,P〉 →pc 〈[S,P]w, skip; ,P〉 →pc 〈[S,P]w, ε,P〉 →pc 〈ε, ε, J¬ tt KP = ∅〉

A counterexample to the converse of Theorem 4.1 (2) is the following.

Example 4.2. Consider the following program S ≡ while x 6= 0 do x := x− 2; and
P = {x/2, x/3} ∈ ℘(Store). We have that sp(S,P) = {x/0} while the evaluation of 〈ε, S,P〉 does
not terminate, since the collecting interpreter generates the following infinite trace:

〈ε, S,P〉 →∗pc 〈[S, {x/2, x/3}]w, ε, {x/0, x/1}〉 →∗pc

〈[S, {x/0, x/1, x/2, x/3}]w, ε, {x/-1, x/0, x/1}〉 →∗pc

〈[S, {x/-1, x/0, x/1, x/2, x/3}]w, ε, {x/-3, x/-1, x/0, x/1}〉 →∗pc · · ·

so that 〈ε, S,P〉 6→∗pc〈ε, ε, sp(S,P)〉.

20

〈Σ, skip;K,P〉 →pc 〈Σ,K,P〉

〈Σ, x := E;K,P〉 →pc 〈Σ,K, Jx := EKP〉

〈Σ, (if B then S1 else S2)K,P〉 →pc 〈[K]t · Σ, S1, JBKP〉 ‖ 〈[K]e · Σ, S2, J¬BKP〉

〈[K]t · Σ, ε,Pthen〉 ‖ 〈[K]e · Σ, ε,Pelse〉 →pc 〈Σ,K,Pthen ∪ Pelse〉

〈Σ, (while B do S)K,P〉 →pc 〈[(while B do S)K,P]w · Σ, S, JBKP〉

P 6⊆ Pwhile
〈[(while B do S)K,Pwhile]w · Σ, ε,P〉 →pc 〈[(while B do S)K,Pwhile ∪ P]w · Σ, S, JBK(Pwhile ∪ P)〉

P ⊆ Pwhile
〈[(while B do S)K,Pwhile]w · Σ, ε,P〉 →pc 〈Σ,K, J¬BKPwhile〉

Figure 1: The (forward and parallel) small step collecting interpreter.

4.1 The sequential collecting interpreter
The interleaved parallel evaluation of branches of conditional commands can be easily replaced by
a sequential evaluation strategy, where, e.g., the then-branch is evaluated first. Here, the evaluation
stack is defined by:

Stacksc 3 r ::=[(if B then S1 else S2)K,P]t | [(if B then S1 else S2)K,P]e | [(while B do S)K,P]w

and the meaning of the records [·]t and [·]e is the following:

– when [(if B then S1 else S2)K,P]t happens to be at the top of the interpreter stack, the
evaluation is currently inside the then-branch of the if B then S1 else S2 command, whose
overall continuation is K, while the component P records the initial store property for the
successive evaluation of the body S2 of the else-branch.

– when [(if B then S1 else S2)K,P]e happens to be at the top of the stack, we have that the
evaluation is currently inside the else-branch of the if B then S1 else S2 command, whose
overall continuation isK, while the componentP records the final store property of the previous
evaluation of the body S1 of the then-branch.

Also, states of this sequential interpreter are simply given by:

〈Σ, S,P〉 ∈ State�sc , Stack∗sc× Stm× ℘(Store)

21

〈Σ, (if B then S1 else S2)K,P〉 →sc 〈[(if B then S1 else S2)K, J¬BKP]t · Σ, S1, JBKP〉

〈[(if B then S1 else S2)K,Pelse]t · Σ, ε,P〉 →sc 〈[(if B then S1 else S2)K,P]e · Σ, S2,Pelse〉

〈[(if B then S1 else S2)K,Pthen]e · Σ, ε,P〉 →sc 〈Σ,K,Pthen ∪ P〉

Figure 2: The sequential small step collecting interpreter.

The transition relation →sc⊆ State�sc × State�sc is defined by the rules in Figure 2 for if-then-else
commands which replace the corresponding rules in Figure 1, while the remaining rules are un-
changed.

The parallel and sequential collecting interpreters are equivalent for terminating evaluations.
To show this, we need some preliminary notations. If C ∈ State�pc , we write 〈Σ, S,P〉 ∈ C to

mean that 〈Σ, S,P〉 occurs in the state C. If 〈Σ, S,P〉 and 〈Σ′, S ′,P ′〉 are sequential states, then we
abuse notation by writing 〈Σ, S,P〉 →∗pc 〈Σ′, S ′,P ′〉 to mean that there exists some C ′ ∈ State�pc

such that 〈Σ′, S ′,P ′〉 ∈ C ′ and 〈Σ, S,P〉 →∗pc C
′.

Theorem 4.3.

(1) 〈ε, S,P〉 →∗sc 〈ε, ε,Q〉 if and only if 〈ε, S,P〉 →∗pc 〈ε, ε,Q〉

(2) If the (parallel or sequential) evaluation of 〈ε, S,P〉 terminates then 〈ε, S,P〉 →∗sc 〈Σs, S
′,P ′〉

iff 〈ε, S,P〉 →∗pc 〈Σp, S
′,P ′〉.

As a consequence, we obtain that

〈S, ρ〉 →∗ 〈ε, ρ′〉 ⇔ 〈ε, S, {ρ}〉 →∗sc 〈ε, ε, {ρ′}〉 〈ε, S,P〉 →∗sc 〈ε, ε,Q〉 ⇒ sp(S,P) = Q

Instead, in case of nontermination sequential and parallel collecting interpreters obviously may
behave differently, as in following example.

Example 4.4. Consider the program

x := 5;

while x > 1 do
if x mod 2 = 0 then

while tt do x := x+ 1;

else x := x− 1;

22

The parallel interpreter acts as follows:

〈ε, x := 5;K,℘(Store)〉 →pc 〈ε,while x > 1 do T, {x/5}〉 →pc

〈[while x > 1 do T, {x/5}]w, if x mod 2 = 0 then S1 else S2, {x/5}〉 →pc

〈[W, {x/5}]w,while tt do x := x+ 1; , ∅〉 ‖ 〈[W, {x/5}]w, x := x− 1; , {x/5}〉 →∗pc

〈[while x > 1 do T, {x/5, x/4}]w, if x mod 2 = 0 then S1 else S2, {x/5, x/4}〉 →pc

〈[while x > 1 do T, {x/5, x/4}]w,while tt do x := x+ 1; , {x/4}〉 ‖
〈[while x > 1 do T, {x/5, x/4}]w, x := x− 1; , {x/5}〉 →pc

〈[while tt do x := x+ 1; , {x/4}]w · [while x > 1 do T, {x/5, x/4}]w, x := x+ 1; , {x/4}〉 ‖
〈[while x > 1 do T, {x/5, x/4}]w, ε, {x/4}〉 →∗pc ...

and the first branch never ends because the loop invariant does not get to a fixed point:

{x/5, x/6, , ..., x/n+ 1} 6⊆ {x/4, x/5, ..., x/n}.

Although, we can write that

〈ε, S, {x/5}〉 →∗pc 〈[while x > 1 do T, {x/5, x/4}]w, ε, {x/4}〉.

This is not true for the sequential interpreter: at the second iteration of the external loop, it gets stuck
in the true-branch of the if-then-else and never reaches the else-branch, meaning

〈ε, x := 5;K,℘(Store)〉 →∗sc
〈[while x > 1 do T, {x/5, x/4}]w, if x mod 2 = 0 then S1 else S2, {x/5, x/4}〉 →sc

〈[if x mod 2 = 0 then S1 else S2, {x/5}]t · [W, {x/5, x/4}]w,while tt do x := x+ 1, {x/4}〉 →sc

〈[while tt do x := x+ 1, {x/4}]w · [if , {x/5}]t · [W, {x/5, x/4}]w, x := x+ 1, {x/4}〉 →sc

〈[while tt do x := x+ 1, {x/4}]w · [if , {x/5}]t · [W, {x/5, x/4}]w, ε, {x/5}〉 →∗sc
〈[while tt do x := x+ 1, {x/4, x/5}]w · [if , {x/5}]t · [W, {x/5, x/4}]w, ε, {x/5, x/6}〉 →∗sc ...

4.2 Proof
Before staring with proving the theorems of the previous section, it may be useful to recall two
classical lemmas of small step semantics of programs. The proofs are omitted.

Lemma 4.5. (Decomposition Lemma) If 〈S1S2, ρ〉 →(n) 〈ε, ρ′〉 then there exist a ρ′′ ∈ Store and
natural numbers k1, k2 such that

〈S1S2, ρ〉 →(k1) 〈S2, ρ
′′〉 and 〈S2, ρ

′′〉 →(k2) 〈ε, ρ′〉.

Moreover k1 + k2 = n.

23

Lemma 4.6. (Termination lemma) If 〈(while B do T)K, ρ〉 →∗ 〈K, ρ′〉 then BJBKρ = false.

Let us introduce an order relation on Stm: we write S ⊆ T ⇔ S ∈ C(T). This relation can be
extended to SState�pc :

〈Σ1, S1,P1〉 ⊆ 〈Σ2, S2,P2〉 if and only if

{
S1 Cont(Σ1) ⊆ S2 Cont(Σ2)

P1 ⊆ P2

Moreover we say 〈Σ1, S1,P1〉 ≡ 〈Σ2, S2,P2〉 if and only if both 〈Σ1, S1,P1〉 ⊆ 〈Σ2, S2,P2〉 and
〈Σ2, S2,P2〉 ⊆ 〈Σ1, S1,P1〉 hold.

The following technical lemma contextualizes such a relation.

Lemma 4.7. Suppose 〈Σ1, S1,P1〉, 〈Σ2, S2,P2〉 ∈ SState�pc with 〈Σ1, S1,P1〉 ≡ 〈Σ2, S2,P2〉.
Let S ′ ∈ Stm and Σ′ ∈ Stack∗. If S ′Cont(Σ′) ⊆ Cont(Σ1) and S ′Cont(Σ′) ⊆ Cont(Σ2) then

〈Σ1, S1,P1〉 →∗pc 〈Σ′, S ′,P ′〉 ⇐⇒ 〈Σ2, S2,P2〉 →∗pc 〈Σ′, S ′,P ′〉.

Proof. It is enough to show

〈Σ, S,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈ε, S Cont(Σ),P〉 →∗pc 〈Σ′, S ′,P ′〉

with S ′Cont(Σ′) ⊆ Cont(Σ).
In fact, by hypothesis {

S1 Cont(Σ1) = S2 Cont(Σ2)

P1 = P2

hence

〈Σ1, S1,P1〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈ε, S1 Cont(Σ1),P1〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈ε, S2 Cont(Σ2),P2〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈Σ2, S2,P2〉 →∗pc 〈Σ′, S ′,P ′〉.

By structural induction on Σ ∈ Stack∗ .

• Σ ≡ ε; trivial because Cont(ε) = ε.

• Σ ≡ [K] · Σ′′; then Cont(Σ) = K Cont(Σ′′). Observe that by inductive hypothesis it holds

〈ε, SK Cont(Σ′′),P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈Σ′′, SK,P〉 →∗pc 〈Σ′, S ′,P ′〉.

Let us argue by structural induction on S ∈ Stm .
If S ≡ ε then

〈Σ, ε,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈[K] · Σ′′, ε,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔

〈Σ′′, K,P〉 →∗pc 〈Σ′, S ′,P ′〉
induction⇔ 〈ε,K Cont(Σ′′),P〉 →∗pc 〈Σ′, S ′,P ′〉.

24

If S ≡ cK ′ then consider c ∈ Cmd .
c ≡ x := E; . Then

〈Σ, x := E;K ′,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔ 〈[K] · Σ′′, x := E;K ′,P〉 →pc 〈Σ′, S ′,P ′〉 ⇔

〈[K] · Σ′′, K ′, Jx := EKP〉 →pc 〈Σ′, S ′,P ′〉
induction on K’⇔ 〈Σ′′, K ′K, Jx := EKP〉 →∗pc 〈Σ′, S ′,P ′〉

induction⇔ 〈ε,K ′K Cont(Σ′′), Jx := EKP〉 →∗pc 〈Σ′, S ′,P ′〉.

On the other hand

〈ε, x := E;K ′K Cont(Σ′′),P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈ε,K ′K Cont(Σ′′), Jx := EKP〉 →∗pc 〈Σ′, S ′,P ′〉

hence the ‘if and only if’ holds.

The case c ≡ skip; is analoguos.

If c ≡ if B then S1 else S2 then observe that

〈Σ, (if B then S1 else S2)K ′,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈[K] · Σ′′, (if B then S1 else S2)K ′,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔

〈[K ′]t · [K] · Σ′′, S1, JBKP〉 ‖ 〈[K ′]e · [K] · Σ′′, S2, J¬BKP〉 →∗pc 〈Σ′, S ′,P ′〉
S′ Cont(Σ′)⊆Cont(Σ)⇔

〈[K] · Σ′′, K ′,Pt ∪ Pe〉 →∗pc 〈Σ′, S ′,P ′〉
induction⇔

〈Σ′′, K ′K,Pt ∪ Pe〉 →∗pc 〈Σ′, S ′,P ′〉
induction⇔

〈ε,K ′K Cont(Σ′′),Pt ∪ Pe〉 →∗pc 〈Σ′, S ′,P ′〉.

On the other hand

〈ε, (if B then S1 else S2)K ′K Cont(Σ′′),P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈[K ′]t · [K] · Σ′′, S1, JBKP〉 ‖ 〈[K ′]e · [K] · Σ′′, S2, J¬BKP〉 →∗pc 〈Σ′, S ′.P ′〉 ⇔
〈ε,K ′K Cont(Σ′′),Pt ∪ Pe〉 →∗pc 〈Σ′, S ′,P ′〉

hence the double implication holds.
If c ≡ while B do T then observe that

〈[K] · Σ′′, (while B do T)K ′,P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔

〈[(while B do T)K ′,P]w · [K] · Σ′′, T, JBKP〉 →∗pc 〈Σ′, S ′,P ′〉
S′ Cont(Σ′)⊆Cont(Σ)⇔

〈[K] · Σ′′, K ′,Pw〉 →∗pc 〈Σ′, S ′,P ′〉
induction⇔ 〈Σ′′, K ′K,Pw〉 →∗pc 〈Σ′, S ′,P ′〉

induction⇔
〈ε,K ′K Cont(Σ′′),Pw〉 →∗pc 〈Σ′, S ′,P ′〉

25

and on the other hand

〈ε, (while B do T)K ′K Cont(Σ′′),P〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈[(while B do T)K ′K Cont(Σ′′),P]w, T, JBKP〉 →∗pc 〈Σ′, S ′,P ′〉 ⇔
〈ε,K ′K Cont(Σ′′),Pw〉 →∗pc 〈Σ′, S ′,P ′〉

and the ‘if and only if’ holds.

• The case Σ ≡ [(while B do S)K,P]w · Σ′ follows in the same way.

The proof of Theorem 4.1 exploits the following preliminary result:

Lemma 4.8. For any program S ∈ Stm:

(1) 〈cK, ρ〉 →∗ 〈K, ρ′〉 if and only if ∀ Σ ∈ Stack∗ . 〈Σ, cK, {ρ}〉 →∗pc 〈Σ, K, {ρ′}〉.

(2) If 〈S, ρ〉 →∗ 〈S ′, ρ′〉 then there exists Q ∈ ℘(Store), Σ ∈ Stack∗, S ′′ ∈ Stm such that
ρ′ ∈ Q, S ′′Cont(Σ) ≡ S ′ and 〈ε, S, {ρ}〉 →∗pc 〈Σ, S ′′,Q〉.

(3) If 〈ε, S, {ρ}〉 →∗pc 〈Σ, S ′,Q〉 then for any ρ′ ∈ Q , 〈S, ρ〉 →∗ 〈S ′Cont(Σ), ρ′〉.

Proof. (1). By structural induction on c ∈ Cmd.

• c ≡ skip;. We have 〈skip;K, ρ〉 → 〈K, ρ〉 and 〈Σ, skip;K, {ρ}〉 →pc 〈Σ, K, {ρ}〉.

• c ≡ x := E; . Assume ρ ∈ dom(EJEK).

〈x := E;K, ρ〉 → 〈K, ρ[x 7→ EJEKρ]〉 and
〈Σ, x := E;K, {ρ}〉 →pc 〈Σ, K, Jx := EK{ρ}〉 ≡ 〈Σ, K, {ρ[x 7→ EJEKρ]}〉.

• c ≡ if B then S1 else S2. Assume BJBKρ = tt.

〈(if B then S1 else S2)K, ρ〉 → 〈S1K, ρ〉 →∗ 〈K, ρ′〉.

Then

〈Σ, (if B then S1 else S2)K, {ρ}〉 →pc

〈[K]t · Σ, S1, JBK{ρ}〉 ‖ 〈[K]e · Σ, S2, J¬BK{ρ}〉 ≡ 〈Σ, S1K, {ρ}〉 ‖ 〈Σ, S2K, ∅〉 →∗pc

〈Σ, K, {ρ′}〉

by inductive hypothesis.

26

Conversely, we have

〈Σ, (ifB then S1 else S2)K, {ρ}〉 →pc 〈[K]t·Σ, S1, JBK{ρ}〉 ‖ 〈[K]e·Σ, S2, ∅〉 →∗pc 〈Σ, K, {ρ′}〉.

Hence
〈(if B then S1 else S2)K, ρ〉 → 〈S1K, ρ〉 →∗ 〈K, ρ′〉

by inductive hypothesis.

The case BJBKρ = ff is analoguos.

• c ≡ while B do S. Assume 〈(while B do S)K, ρ〉 →∗ 〈K, ρ′〉. By Termination Lemma 4.6
BJBKρ′ = ff. We can moreover assume {ρ, ρ1, ..., ρn} are n+ 1 distinct elements of Store such
that

BJBKρi = tt, 〈S, ρi〉 →∗ 〈ε, ρi+1〉 for i = 0, ..., n− 1 and 〈S, ρn〉 →∗ 〈ε, ρ′〉.

Hence

〈Σ, (while B do S)K, {ρ}〉 →pc 〈[(while B do S)K, {ρ}]w · Σ, S, JBK{ρ}〉 →∗pc

〈[(while B do S)K, {ρ}]w · Σ, ε, {ρ1}〉 →∗pc

〈[(while B do S)K, {ρ, ρ1}]w · Σ, S, JBK{ρ, ρ1}〉 →∗pc

〈[(while B do S)K, {ρ, ρ1}]w · Σ, ε, {ρ1, ρ2}〉 →∗pc ...→∗pc

〈[(while B do S)K, {ρ, ρ1, ..., ρ′}]w · Σ, ε, {ρ1, ρ2, ..., ρ′}〉 →pc

〈Σ, K, J¬BK{ρ, ρ1, ..., ρ′}〉 ≡ 〈Σ, K, {ρ′}〉

where all the transitions

〈[(while B do S)K, {ρ, ρ1, ..., ρi}]w · Σ, S, JBK{ρ, ..., ρi}〉 →∗pc

〈[(while B do S)K, {ρ, ρ1, ..., ρi}]w · Σ, ε, {ρ1, ..., ρi+1}〉

are infered by structural induction.

Conversely assume

〈Σ, (while B do S)K, {ρ}〉 →∗pc 〈Σ, K, {ρ′}〉.

We can deduce that {ρ′} = J¬BKPw where Pw = {ρ, ρ1, ..., ρn, ρ′} ⊆ Store, BJBKρi = tt for
all i = 0, 1, ..., n and 〈S, ρi〉 →∗ 〈ε, ρi+1〉.
Hence

〈(while B do S)K, ρ〉 → 〈S(while B do S)K, ρ〉 →∗ 〈(while B do S)K, ρ1〉 →∗

〈(while B do S)K, ρ′〉 → 〈K, ρ′〉

where all the transitions

〈S(while B do S)K, ρi〉 →∗ 〈(while B do S)K, ρi+1〉

are infered by structural induction.

27

(2). By structural induction on S ∈ Stm.
S ≡ ε.

We have 〈ε, ρ〉 6→ because this is a terminal state, hence the thesis is vacuosly true.
Assume it is true for S ∈ Stm and prove for cS,by structural induction on c ∈ Cmd .

• c ≡ skip.
We have 〈skip;S, ρ〉 → 〈S, ρ〉 →∗ 〈S ′, ρ′〉.
Now

〈ε, skip;S, {ρ}〉 →pc 〈ε, S, {ρ}〉.

Moreover the inductive hypothesis implies the existence of a Q ∈ ℘(Store) such that

〈ε, S, {ρ}〉 →∗pc 〈Σ, S ′′,Q〉.

The conclusion follows composing the transitions.

• c ≡ x := E.
〈x := E;S, ρ〉 → 〈S, ρ[x 7→ EJEKρ]〉 →∗ 〈S ′, ρ′〉.
Thus

〈ε, x := E;S, {ρ}〉 →pc 〈ε, S, {ρ[x 7→ EJEKρ]}〉 →∗pc 〈Σ, S ′′,Q〉

where the existence of such a Q ∈ ℘(Store) and the fact that S ′′Cont(Σ) ≡ S ′ are ensured by
inductive hypothesis, as in the previous case.

• c ≡ if B then S1 else S2.
Assume 〈(if B then S1 else S2)S, ρ〉 →∗ 〈S ′, ρ′〉.
If S ′ ∈ C(S) then

〈ε, (if B then S1 else S2)S, {ρ}〉 →∗pc 〈ε, S, {ρ′′}〉 →∗pc 〈Σ, S ′′,Q〉

by inductive hypothesis, for a suitable ρ′′ ∈ Store.

If S ′ ∈ C(S1) ? S and BJBKρ = ff then the thesis is vacuosly true because Q = ∅.
If S ′ ∈ C(S1) ? S and BJBKρ = tt then 〈S1S, ρ〉 →∗ 〈S ′, ρ′〉 hence, by inductive hypothesis

〈ε, S1S, {ρ}〉 →∗pc 〈Σ, S ′′,Q〉 with S ′′Cont(Σ) ≡ S ′.

Now observe that

〈ε, (if B then S1 else S2)S, {ρ}〉 →∗pc 〈[S], S1, {ρ}〉 ‖ 〈[S], S2, ∅〉 ≡ 〈ε, S1S, {ρ}〉

• c ≡ while B do T .
Assume 〈(while B do T)S, ρ〉 →∗ 〈S ′, ρ′〉.
If S ′ ∈ C(S) then conclude by induction as in the previous case.

28

Let S ′ ∈ C((while B do T)S). Recall that

C((while B do T)S) = [(while B do T)S] ◦ (C(T) ? ((while B do T)S)) ◦ C(S).

The only relevant case is S ′ ∈ C(T) ? ((while B do T)S).
We have 〈T (while B do T)S, ρ〉 →∗ 〈S ′, ρ′〉.
Following the definition of the function C it turns out that

S ′ ≡ P (while B do T)S, with P ∈ C(T).

By Decomposition Lemma 4.5 〈T, ρ〉 →∗ 〈P, ρ′〉 and by inductive hypothesis

〈ε, T, {ρ}〉 →∗pc 〈Σ′, S ′′,Q′〉 where ρ′ ∈ Q′, S ′′Cont(Σ′) ≡ P.

Hence

〈ε, (while B do T)S, {ρ}〉 →pc

〈[(while B do T)S, {ρ}]w, T, {ρ}〉 ≡ 〈ε, T (while B do T)S, {ρ}〉 →∗pc

〈Σ′ · [(while B do T)S, {ρ}]w, S ′′,Q′〉 and
S ′′Cont(Σ′ · [(while B do T)S, {ρ}]w) ≡ P Cont([(while B do T)S, {ρ}]w) ≡
P (while B do T)S ≡ S ′.

(3). By structural induction on S ∈ Stm.
If S ≡ ε the thesis is vacuosly true.
Assume it true for S and prove it for cS, by structural induction on c ∈ Cmd.

• c ≡ skip; , c ≡ x := E; are easily obtained by induction.

• c ≡ if B then S1 else S2.
Assume 〈ε, (if B then S1 else S2)S, {ρ}〉 →∗pc 〈Σ, S ′,Q〉.
If S ′ ∈ C(S) then conclude by induction.

If S ′ ∈ C(S1) and JBK{ρ} = ∅ then the thesis is vacuosly true.
If S ′ ∈ C(S1) and JBK{ρ} = {ρ} then

〈ε, (if B then S1 else S2)S, {ρ}〉 →pc

〈[S]t, S1, JBK{ρ}〉 ‖ 〈[S]e, S2, J¬BK{ρ}〉 ≡ 〈[S]t, S1, {ρ}〉 ‖ 〈[S]e, S2, ∅〉 ≡ 〈[S]t, S1, {ρ}〉 and
〈[S]t, S1, {ρ}〉 →∗pc 〈Σ, S ′, {ρ′}〉.

Hence by structural induction

〈(if B then S1 else S2)S, ρ〉 →∗ 〈S1, ρ〉 →∗ 〈S ′, ρ′〉.

29

• c ≡ while B do T .
S ′Cont(Σ) ∈ C((while B do T)S).
As before, the only relevant case is S ′Cont(Σ) ∈ C(T) ? ((while B do T)S).
By definition of C it turns out that S ′Cont(Σ) = P (while B do T)S with P ∈ C(T).
Hence

〈ε, (while B do T)S, {ρ}〉 →pc 〈[(while B do T)S, {ρ}]w, T, JBK{ρ}〉 →∗pc

〈[(while B do T)S, {ρ}]w, P, {ρ′}〉 →∗pc 〈Σ, S ′,Q〉.

Now, by inductive hypothesis

〈T (while B do T)S, ρ〉 →∗ 〈P (while B do T)S, ρ′〉 ≡ 〈S ′Cont(Σ), ρ′〉

for all ρ′ ∈ Q.

Proof. (Theorem4.1) (1) Act by structural induction on S ∈ Stm.
If S ≡ ε, then both 〈ε, ρ〉 6→ and 〈ε, ε, {ρ}〉 6→. Hence the ‘if and only if’ holds vacuosly.
Now

〈cS, ρ〉 →∗ 〈S, ρ′′〉 →∗ 〈ε, ρ′〉 ⇐⇒ 〈ε, cS, {ρ}〉 →∗pc 〈ε, S, {ρ′′}〉 →∗pc 〈ε, ε, {ρ′}〉

thanks to the Lemma 4.8 (1) and inductive hypothesis.
(2) Recall

sp(S,P) = {ρ′ | 〈ε, ρ′〉 ∈ Post∗[S]P}

where Post∗[S]P = {〈S ′, ρ′〉 | ∃ρ ∈ P .〈S, ρ〉 →∗ 〈S ′, ρ′〉}.
(⊇) Let ρ′ ∈ Q. By Lemma 4.8 (3)

〈S, ρ〉 →∗ 〈ε, ρ′〉 ∃ρ ∈ P .

Hence ρ′ ∈ sp(S,P).
(⊆) Let ρ′ ∈ sp(S,P).

Then 〈ε, ρ′〉 ∈ Post∗[S]P , hence there exists ρ ∈ P such that 〈S, ρ〉 →∗ 〈ε, ρ′〉 and applying Lemma
4.8 (2) we obtain ρ′ ∈ Q.

Proof. (Theorem4.3) (1) By induction on S ∈ Stm.
If S ≡ ε the thesis is vacuosly true.
Assume S ≡ cS with c ∈ Cmd and act by induction on c ∈ Cmd.

• c ≡ skip; , x := E; ,whileB do T, the thesis is true because sequential and parallel interpreters
follow the same rules.

30

• c ≡ if B then S1 else S2.
Assume that 〈S1, JBKP〉 →∗ 〈ε,P ′true〉 and 〈S2, J¬BKP〉 →∗ 〈ε,P ′else〉 because otherwise there
is nothing to prove. We have

〈ε, (if B then S1 else S2)S,P〉 →sc 〈[(if B then S1 else S2)S, J¬BKP]t, S1, JBKP〉 →∗sc
〈[(if B then S1 else S2)S,Pelse]t, ε,P ′then〉 →sc 〈[(if B then S1 else S2)S,P ′then]e, S2,Pelse〉 →∗sc
〈[(if B then S1 else S2)S,P ′then]e, ε,P ′else〉 →sc 〈ε, S,P ′then ∪ P ′else〉.

Hence

〈ε, (if B then S1 else S2)S,P〉 →∗sc 〈ε, ε,Q〉 ⇔ 〈ε, S,P ′then ∪ P ′else〉 →∗sc 〈ε, ε,Q〉.

Moreover

〈ε, (if B then S1 else S2)S,P〉 →pc 〈[S]t, S1, JBKP〉 ‖ 〈[S]e, S2, J¬BKP〉 →∗pc

〈[S]t, ε,P ′then〉 ‖ 〈[S]e, ε,P ′else〉 →pc 〈ε, S,P ′then ∪ P ′else〉.

Hence

〈ε, (if B then S1 else S2)S,P〉 →∗pc 〈ε, ε,Q〉 ⇔ 〈ε, S,P ′then ∪ P ′else〉 →∗pc 〈ε, ε,Q〉

So the equivalence is proved because, by inductive hypothesis, it holds:

〈ε, S,P ′then ∪ P ′else〉 →∗sc 〈ε, ε,Q〉 ⇔ 〈ε, S,P ′then ∪ P ′else〉 →∗pc 〈ε, ε,Q〉

(2) By induction on S ∈ Stm.
Trivial if S ≡ ε.
Let us prove it for cS ∈ Stm by induction on c ∈ Cmd.
As in the previous case, the only case to analyze is the ((if B then S1 else S2)S) case because in the
other cases sequential and parallel interpreters follow the same rules.
S ′ ∈ C((if B then S1 else S2)S). Recall that

C((if B then S1 else S2)S) = [(if B then S1 else S2)S] ◦ (C(S1) ? S) ◦ (C(S2) ? S) ◦ C(S).

Asssume S ′Cont(Σs) ∈ C(S1) ? S. Hence, by definition, S ′ ≡ T where T ∈ C(S1).
We have

〈ε, (if B then S1 else S2)S,P〉 →sc 〈[(if B then S1 else S2)S, J¬BKP]t, S1, JBKP〉 →∗sc
〈[(if B then S1 else S2)S, J¬BKP]t, S

′,P ′〉

hence

〈ε, (if B then S1 else S2)S,P〉 →pc 〈[S]t, S1, JBKP〉 ‖ 〈[S]e, S2, J¬BKP〉 →∗pc 〈[S]t, S
′,P ′〉 ‖ 〈...〉.

On the other hand, assuming that S ′Cont(Σp) ∈ C(S1) ? S implies in the same way that S ′ ∈ C(S1)
and the other implication turns out in the same way.

31

4.3 More on Invariants
The function Invc[S,P] : C(S) → ℘(Store), for any continuation K ∈ C(S) and store property
P ∈ ℘(Store), returns the strongest invariant property for the continuation K of the program S when
evaluated by the small step collecting interpreter:

Invc[S,P](K) =
⋃
{Q ∈ ℘(Store) | 〈ε, S,P〉 →∗pc 〈Σ, S ′,Q〉, K ≡ S ′Cont(Σ)}

Corollary 4.9. For any S ∈ Stm, P ∈ ℘(Store) and K ∈ C(S), it holds:

Inv[S,P](K) = Invc[S,P](K)

In particular, sp(S,P) = Invc[S,P](ε).

Proof. Recall

Inv[S,P](K) =
⋃

τ∈Trace[S,P]

{ρ | τi = 〈K, ρ〉 ∃i ∈ N};

Invc[S,P](K) =
⋃
{Q | 〈ε, S,P〉 →∗pc 〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K}.

(⊆) Let Q ⊆
⋃
τ∈Trace[S,P]{ρ | τi = 〈K, ρ〉∃i ∈ N}.

For every ρ ∈ Q there exist a trace τ ∈ Trace[S,P] and an index i ∈ N such that τi = 〈K, ρ〉;
this means that 〈S, ρ̄〉 →∗ 〈K, ρ〉 for a certain ρ̄ ∈ P .
By the Lemma 4.8 (2) there exists Q′ρ ∈ ℘(Store) such that

〈ε, S, {ρ̄}〉 →∗pc 〈Σ, S ′,Q′ρ〉, S ′Cont(Σ) ≡ K.

In particular
Q ⊆

⋃
ρ∈Q

Q′ρ and Q′ρ ⊆ Invc[S,P](K)∀ρ ∈ Q.

Hence Q ⊆ Invc[S,P](K).
(⊇) Let Q ∈ {Q | 〈ε, S,P〉 →∗pc 〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K}.

In particular for every ρ ∈ P there exists a Qρ ⊆ Q such that 〈ε, S, {ρ}〉 →∗pc 〈Σ, S ′,Qρ〉 and hence,
by Lemma 4.8 (3),

〈S, ρ〉 →∗ 〈S ′Cont(Σ), ρ′〉 ≡ 〈K, ρ′〉 ∀ρ′ ∈ Qρ.
This implies that ρ′ ∈ Inv[S,P](K)∀ρ′ ∈ Qρ and hence Qρ ⊆ Inv[S,P](K) ∀ρ ∈ P .
Now

Q =
⋃
ρ∈P

Qρ ⊆ Inv[S,P](K).

For the second part it is enough to observe that

Inv[S,P](ε) =
⋃

τ∈Trace[S,P]

{ρ | τi = 〈ε, ρ〉 ∃i ∈ N} = sp[S,P].

32

We conclude this section with a definition that will be useful later:

Definition 4.10. Consider a program S ≡ while B do T ∈ Stm and let Q ∈ ℘(Store). Then
the sequence (Qi)i∈N of the concrete loop invariants computed at the entry point of the loop, after i
iterations, is defined recursively by the clauses:{

Q0 = Q
Qn = Qn−1 ∪ JT KJBKQn−1

33

5 Small Step Abstract Interpreter
We show that a small step abstract interpreter is simply an abstract interpretation of the collecting
interpreter. We consider a join-semilattice (A,≤,∨) such that (℘(Store), A, γ, α) is a Galois connec-
tion, where α and γ denote the corresponding abstraction and concretization maps. In turn, abstract
states are defined by StateA , Stm×A.

Let us now define the best correct approximations of the transfer functions:

Jx := EKA : A→ A Jx := EKAa , α(Jx := EKγ(a))

JBKA : A→ A JBKAa , α(JBKγ(a))

Actually, a sound abstract interpreter can be defined for any sound approximation of the transfer
functions, and their correctness can be stated just by relying on the concretization map γ as follows:

Jx := EK] : A→ A such that Jx := EKγ(a) ⊆ γ(Jx := EK]a)

JBK] : A→ A such that JBKγ(a) ⊆ γ(JBK]a)

Example 5.1. Interval Abstract Domain Transfers Functions
Let us give some examples of how to compute Interval abstract transfer functions, as the best

correct approximations of the collecting ones.
Let [a, b] ∈ Int and k ∈ Z.

• Consider the expression E ≡ x+ k. Then

Jx := x+ kK : ℘(Store)→ ℘(Store),

Jx := x+ kKX = {ρ[x 7→ v] | ρ ∈ X, v = EJx := x+ kKρ} = {ρ[x 7→ x+ k] | ρ ∈ X}

Hence
Jx := x+ kKInt : Int→ Int,

Jx := x+ kKInt([a, b])
bca
= α ◦ Jx := x+ kK ◦ γ[a, b] =

α(Jx := x+ kK{ρ ∈ Store | a ≤ ρ(x) ≤ b}) = α({ρ[x 7→ x+ k] | a ≤ ρ(x) ≤ b}) =

α({ρ ∈ Store | a+ k ≤ ρ(x) ≤ b+ k}) = [a+ k, b+ k]

• In the same way, consider the boolean expression B ≡ x > k. Recall

Jx > kK : ℘(Store)→ ℘(Store),

Jx > kKX = {ρ ∈ X | BJx > kKρ = true} = {ρ ∈ X | ρ(x) > k}

34

Hence
Jx > kKInt : Int→ Int,

Jx > kKInt([a, b])
bca
= α ◦ Jx > kK ◦ γ[a, b] =

α(Jx > kK{ρ ∈ Store | a ≤ ρ(x) ≤ b}) = α({ρ ∈ X | a ≤ ρ(x) ≤ b ∧ ρ(x) > k})

Now, if a ≤ k < b then

Jx > kKInt([a, b]) = α({ρ ∈ X | k < ρ(x) ≤ b}) = [k + 1, b]

If k < a or k ≥ b then {ρ ∈ X | a ≤ ρ(x) ≤ b ∧ ρ(x) > k} = ∅, hence

Jx > kKInt([a, b]) = α(∅) = ⊥Int.

5.1 Parallel Abstract Interpreter
The forward parallel abstract interpreter over the abstract domain A relies on an abstract evaluation
stack StackA whose records r are defined as follows:

StackA 3 r ::=[S]t | [S]e | [(while B do S)K, a]w

The informal meaning of StackA is similar to the stack for the parallel collecting interpreter: if [K]t or
[K]e are at the top of the stack then the interpreter is currently evaluating in parallel the two branches
of an if-then-else command whose continuation is K, while if [(while B do S)K, a]w is at the top of
the stack then the interpreter is evaluating the while-command while B do S whose continuation is
K and whose current abstract loop invariant is a.

A sequential abstract state in State�A of the small step parallel collecting interpreter is defined as
a triple

〈Σ, S, a〉 ∈ Stack∗A× Stm× StateA

while the possibly parallel abstract states are defined by

State�p,A
3 C ::= 〈Σ, S, a〉 | C1 ‖ C2

The forward parallel abstract interpreter is in Figure 3. Here, the transition relation
→p,A⊆ State�p,A

× State�p,A
is nondeterministic due to the parallel evaluation of the two branches of

an if-then-else, meaning that the execution of ‘then’ and ‘else’ statements can be freely interleaved by
the abstract interpreter, while at the end, the interpreter computes the lub of the output abstract values
of the two branches. This abstract interpreter exploits the best correct approximations Jx := EKA and
JBKA, although it could also use any other correct approximation.

The forward parallel abstract interpreter may also consider a widening operator∇ on the abstract
domain A. This can be obtained by using the following rule which encodes a widening point at the
entry point of a while-loop.

a 6≤ awhile

〈[(while B do S)K, awhile]w · Σ, ε, a〉 →p,A 〈[(while B do S)K, awhile∇(awhile ∨ a)]w · Σ, S, JBKA(awhile∇(awhile ∨ a))〉

35

〈Σ, skip;K, a〉 →p,A 〈Σ,K, a〉

〈Σ, x := E;K, a〉 →p,A 〈Σ,K, Jx := EKAa〉

〈Σ, (if B then S1 else S2)K, a〉 →p,A 〈[K]t · Σ, S1, JBKAa〉 ‖ 〈[K]e · Σ, S2, J¬BKAa〉

〈[K]t · Σ, ε, athen〉 ‖ 〈[K]e · Σ, ε, aelse〉 →p,A 〈Σ,K, athen ∨ aelse〉

〈Σ, (while B do S)K, a〉 →p,A 〈[(while B do S)K, a]w · Σ, S, JBKAa〉

a 6≤ awhile

〈[(while B do S)K, awhile]w · Σ, ε, a〉 →p,A 〈[(while B do S)K, awhile ∨ a]w · Σ, S, JBKA(awhile ∨ a)〉

a ≤ awhile

〈[(while B do S)K, awhile]w · Σ, ε, a〉 →p,A 〈Σ,K, J¬BKAawhile〉

Figure 3: The forward parallel abstract interpreter.

5.2 Examples
We give now several examples to show that the termination of concrete or collecting interpreters and
the termination of the abstract one are not related with each others.

Example 5.2. Consider the following program P :

1 x := 5;

2 while x > 1 do
3 if (x mod 2 = 0) then 4 x := x+ 3;

else 5 x := x− 2;

6

Here the concrete evaluation terminates, i.e., for any N ∈ Z, 〈P, {x/N}〉 →∗ 〈ε, {x/1}〉. Further-
more, the forward collecting interpreter also terminates, that is, 〈ε, P, Store〉 →∗pc 〈ε, ε, {x/1}〉. Also,
the strongest invariant properties at the program points of P are as follows:

Inv[P, Store] = { 1 7→ Store, 2 7→ {x/1, x/3, x/5}, 3 7→ {x/3, x/5},
4 7→ ∅, 5 7→ {x/3, x/5}, 6 7→ {x/1}}

36

Consider the abstract domain Int of Example 2.3.1. It turns out that the abstract evaluation of
〈ε, P, a〉, where a ∈ Intr⊥Int, for→p,Int does not converge. Of course, this non-termination depends
on the fact that the assignment x := x + 3; is dead-code, but the abstract domain of intervals is not
able to detect this. Hence, if S denotes the body of the while-loop of P then we have the following
infinite trace:

〈ε, P, a〉 →p,Int〈ε,while x > 1 do S, [5, 5]〉 →p,Int 〈[while x > 1 do S, [5, 5]]w, S, [5, 5]〉 →∗p,Int

〈[while x > 1 do S, [5, 5]]w, ε, [3, 3]〉 →∗p,Int

〈[while x > 1 do S, [3, 5]]w, ε, [1, 7]〉 →∗p,Int

〈[while x > 1 do S, [1, 7]]w, ε, [1, 9]〉 →∗p,Int

〈[while x > 1 do S, [1, 9]]w, ε, [1, 11]〉 →∗p,Int · · ·

Let us point out that

〈ε,while x > 1 do S, [5, 5]〉 →∗p,Int 〈[while x > 1 do S, [3, 5]]w, ε, [1, 7]〉

because:

Jx mod 2 = 0KInt[3, 5] = α ◦ Jx mod 2 = 0K ◦ γ([3, 5]) = [4, 4], Jx := x+ 3KInt[4, 4] = [7, 7],

J¬(x mod 2 = 0)KInt[3, 5] = [3, 5], Jx := x− 2KInt[3, 5] = [1, 3],

and [1, 3] ∨ [7, 7] = [1, 7]. Hence, the abstract evaluation of 〈ε, P, a〉 for Int does not terminate.
Of course, if the abstract interpreter makes use of the standard widening operator for intervals then
we obtain the following finite trace:

〈ε, P, a〉 →p,Int〈ε,while x > 1 do S, [5, 5]〉 →p,Int 〈[while x > 1 do S, [5, 5]]w, S, [5, 5]〉 →∗p,Int

〈[while x > 1 do S, [5, 5]]w, ε, [3, 3]〉 →p,Int

〈[while x > 1 do S, (−∞, 5]]w, S, [2, 5]〉 →∗p,Int

〈[while x > 1 do S, (−∞, 5]]w, ε, [1, 7]〉 →p,Int

〈[while x > 1 do S, (−∞,+∞)]w, S, [2,+∞)〉 →∗p,Int

〈[while x > 1 do S, (−∞,+∞)]w, ε, [1,+∞)〉 →p,Int

〈ε, ε, (−∞, 1]〉

so that the abstract evaluation of 〈ε, P, a〉 for Int does terminate.

37

Example 5.3. Consider the following program P :

x := 5;

p while x > 1 do
if (x mod 2 = 0) then {
x := x+ 1;

q while x > 1 do
if (x mod 2 = 0) then x := x+ 3;

else x := x− 2;

}
else x := x− 2;

This is an alteration of the program in Example 5.2 where the dead-code includes a while-loop. Here
again, the abstract evaluation of P of the interval abstraction Int does not terminate: at the second iter-
ation for the outermost while-loopW the abstract loop invariant is [3, 5], so that Jx mod 2 = 0KInt[3, 5] =
[4, 4] and, in turn, Jx := x+ 1KInt[4, 4] = [5, 5], so that, by Example 5.2, the abstract evaluation
of the innermost while-loop from the initial abstract state [5, 5] does not terminate. Moreover, the
abstract evaluation of P reaches the program point p twice with abstract states: 〈ε,W, [5, 5]〉 and
〈[W, [5, 5]]w, ε, [3, 3]〉. On the other hand, Inv[P, {〈x/N〉}] p = {x/1, x/3, x/5}. Furthermore, the
evaluation of 〈ε, P, Store〉 by the collecting interpreter terminates:

〈ε, P, Store〉 → 〈ε, ε, {x/1}〉

The strongest invariant property at program point p for the collecting interpreter is {x/1, x/3, x/5}.
Hence, the lub of the abstract values at program point p along the infinite trace starting from 〈ε, P, a〉,
with a 6= ⊥Int, provides the interval [3, 5], which is not sound for this program point p , w.r.t. both the
concrete and collecting interpreters. Thus, a possibly nonterminating abstract interpreter is inherently
unsound.

Example 5.4. Consider the following program P :

1 x := 1;

2 while x < 2 do
3 if (x > 0) then 4 x := 0;

else 5 x := 1;

6

Here, the concrete evaluation of P does not terminate and the strongest invariant properties are as
follows:

Inv[P, Store] = { 1 7→ Store, 2 7→ {x/0, x/1},
3 7→ {x/0, x/1}, 4 7→ {x/1}, 5 7→ {x/0}, 6 7→ ∅}

38

Also, the evaluation of P by the collecting interpreter terminates. In fact, ifW denotes the while-loop
of P then we have that:

〈ε, P, Store〉 →pc 〈ε,W, {x/1}〉 →∗pc 〈[W, {〈x/1〉}]w, ε, {x/0}〉 →∗pc

〈[W, {x/0, x/1}]w, ε, {x/0, x/1}〉 →pc 〈ε, ε,∅〉

On the other hand, the abstract evaluation of P for Int in this case terminates:

〈ε, P,>〉 →Int 〈ε,W, [1, 1]〉 →∗Int 〈[W, [1, 1]]w, ε, [0, 0]〉 →∗Int 〈[W, [0, 1]]w, ε, [0, 1]〉 →Int 〈ε, ε, [0, 1]〉

We finally observe that Trace[P, Store] is complete for Int.

Example 5.5. Consider the following program P :

1 x := 1;

2 while x < 2 do
3 if (x > 0) then 4 x := −1;

else 5 x := 1;

6

Here, the concrete evaluation of P does not terminate, while the abstract evaluation of P for Int does
terminate. We observe that in this case Trace[P, Store] is not complete for Int:

α(J¬(x > 0)K{−1, 1}) = [−1,−1] < [−1, 0] = α(J¬(x > 0)Kγ(α({−1, 1})))

Of course, it may also happen that the collecting interpreter does not terminate while the abstract
interpreter terminates. It is enough to consider the program P in Example 4.2, whose evaluation
by the collecting interpreter does not terminate, while, for any finite abstract domain (e.g., a sign
abstraction) the abstract evaluation of P terminates.

5.3 Abstract Traces
The set Trace∞A of (finite and infinite, partial and maximal) abstract traces of the abstract interpreter
on the abstract domain A is defined as follows:

Trace∞A , {τ ∈ State∞→p,A
| ∀i ∈ [1, |τ |). τi−1 →p,A τi}.

The abstract trace semantics of a program S is in turn defined as follows:

TraceA[S] , {τ ∈ Trace∞A | ∃a ∈ A. τ0 = 〈ε, S, a〉}
TraceA[S, a] , {τ ∈ TraceA[S] | τ0 = 〈ε, S, a〉}

39

The abstract execution of S from a terminates if TraceA[S, a] has elements of finite lenght.
The function InvA[S, a] : C(S) → A, for any continuation K ∈ C(S), returns the (strongest)

abstract invariant for K:

InvA[S, a](K) ,
∨
{a′ ∈ A | 〈ε, S, a〉 →∗p,A 〈Σ′, S ′, a′〉, K ≡ S ′Cont(Σ′)}

Let us define the abstract equivalent of Definition 4.10:

Definition 5.6. Consider a program S ≡ whileB do T ∈ Stm and a ∈ A. Then the sequence (ai)i∈N
of abstract loop invariants computed starting from a, at the entry point of the loop, after i iterations,
is defined recursively by the following clauses:{

a0 = a

an = an−1 ∨ JT KAJBKAan−1

5.4 Soundness and Completeness
It turns out that the forward parallel abstract interpreter provides a sound static analyzer in case of
termination, meaning that, if the abstract interpreter on a program S terminates, then, for each con-
tinuation K ∈ C(S), it computes an abstract invariant for K which is a safe approximation of the
strongest concrete invariant property for K. Instead, if the abstract interpreter on S does not termi-
nate then the abstract invariants may be unsound.

Example 5.7 (Unsoundness of nonterminating abstract interpreters). Consider the program P in
Example 5.3, where we observed that Inv[P, {x/N}] p = {x/1, x/3, x/5} while the abstract eval-
uation for Int of 〈ε, P, {x/[N,N]}〉 does not terminate and is such that InvInt[P, {x/[N,N]}] p =
{x/[3, 5]}, so that it is unsound:

Inv[P, {x/N}] 6⊆ γ(InvInt[P, {x/[N,N]}])

If TraceA[S, a] elements have finite lenght then InvA[S, a] : C(S) → A, for any continuation
K ∈ C(S), returns the (strongest) abstract invariant for K.

Theorem 5.8 (Soundness). If TraceA[S, a] elements have finite lenght then for any K ∈ C(S),

α(Inv[S, γ(a)](K)) ≤A InvA[S, a](K).

Proof. Recall that

Inv[S, γ(a)] : C(S)→ ℘(Store), InvA[S, a] : C(S)→ A

where
Inv[S, γ(a)](K) =

⋃
{Q | 〈ε, S, γ(a)〉 →∗pc 〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K}

40

and
InvA[S, a](K) =

∨
{a′ | 〈ε, S, a〉 →∗p,A 〈Σ, S ′, a′〉, S ′Cont(Σ) ≡ K}.

For the sake of clarity, these sets will be referred to respectively as {Q | γ(a), K} and {a′ | a, K}.

Since (℘(Store), γ, A, α) is a Galois connection,

α(Inv[S, γ(a)](K)) = α(
⋃
{Q | γ(a), K}) =

∨
{α(Q) | γ(a), K}.

The strategy of the proof is to show that, for any K ∈ C(S),

∀Q ∈ {Q | γ(a), K} ∃a′ ∈ {a′ | a,K} such that α(Q) ≤A a′.

In such a case, we say that the program S is sound.
This is enough to ensure the truth of the thesis; in fact, since the abstract traces are finite, {a′ | a,K} =
{a1, ..., an} for some a1, ..., an ∈ A. Hence

∀Q ∈ {Q | γ(a), K} it holds α(Q) ≤A
∨

1≤i≤n

ai

Hence
∨
{α(Q) | γ(a), K} ≤A

∨
1≤i≤n

ai

which is α(Inv[S, γ(a)](K)) ≤A InvA[S, a](K).

First of all, assume that C(S) has no elements starting for ‘while’.
Let K ∈ C(S) and fix Q ∈ {Q | γ(a), K}.
Here the rules used to obtain Q are simply determined by the syntax of S and do not depend on the
store properties.
Hence, if 〈ε, S, γ(a)〉 →(n)

pc 〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K, we can act by induction on n:

• the case n = 0 follows immediately since αγ(a) = a;

• assume now the n− 1th configuration is 〈Σ′, S ′′,Q′〉. It is lead to the nth configuration through
one of the rules of the interpreter. By induction, there exists a′′ ∈ A such that α(Q′) ≤A a′′.
Hence:
if the nth rule is the skip-one there is nothing to prove;
if it is an assignment, it is enough to observe that

α(Q) = α(Jx := EKQ′) ≤A
G.C.

α(Jx := EKγα(Q′)) ≤A α(Jx := EKγ(a′′)) =
bca

Jx := EKA(a′′);

if it is the opening if B then S1 else S2-rule, observe that

α(Q) = α(JBKQ′) ≤A α(JBKγα(Q′)) ≤A α(JBKγ(a′′)) = JBKA(a′′);

if it is the contracting if B then S1 else S2-rule, then

α(Q) = α(Qt ∪Qe) = α(Qt) ∨ α(Qe) ≤A
induction

a′′t ∨ a′′e .

41

Hence, it is always possible to find a′ ∈ {a′ | a, K} such that α(Q) ≤A a′.

Next, assume S ≡ S1(while B do T)S2 with S1, T, S2 sound subprograms.
Let

`1 = `(S);

`p = `((while B do T)S2);

`q = `(S2).

Fix K ∈ C(S) and let us distinguish three different cases, according to the position of K in the CFG
of S, i.e., according to the index of `(K). Observe that `1 ≤ `(K).

(1) Assume `(K) � `p. Here, there is nothing to prove since S1 is assumed to be sound.

(2) Now, assume `p ≤ `(K) � `q.
Fix Q ∈ {Q | γ(a), K}. Assume that Q is reached at the nth iteration of the loop.
Using the notations of Definition 4.10 it turns out that: if `p = `(K) thenQ = Qn; if `p � `(K)
then Q = JT ′KJBKQn, with T ′ ⊆ T and hence sound.
Now, observe that the application of the first case at `p = `((while B do T)S2), provides the
existence of a0 ∈ {a′ | a, (while B do T)S2}, such that α(Q0) ≤A a0.
Recall that the abstract traces are finite, hence there exists ā ∈ {a′ | a, (while B do T)S2}
which is the strongest abstract loop invariant, i.e.

JT KAJBKAā ≤A ā.

Obviously, a0 ≤A ā and by transitivity α(Q0) ≤ ā. Apply the following

Lemma 5.9. With the notation above

α(Q0) ≤A ā ⇒ α(Qn) ≤A ā.

Proof. By induction on n.
Recall that, by Definition 4.10, Qn = Qn−1 ∪ JT KJBKQn−1.
If n = 0 there is nothing to prove;
if n = 1: Q1 = Q0 ∪ JT KJBKQ0. Observe that

α(JT KJBKQ0) ≤A α(JT KJBKγα(Q0)) ≤A α(JT KJBKγ(ā))

≤A α(JT Kγα(JBKγ(ā))) = JT KAJBKAā ≤A ā

and hence
α(Q1) = α(Q0) ∨ α(JT KJBKQ0) ≤A ā.

42

Assume α(Qn−1) ≤A ā. Then, applying the same argument as before

α(Qn) = α(Qn−1) ∨ α((JT KJBKQn−1) ≤A ā ∨ JT KAJBKAā = ā

We have proved that, at the entry point of the loop, soundness holds at every iteration.
What is left to do is leading soundness at K.

Recall Q = JT ′KJBKQn, with T ′ sound.
Observe that

Q ∈ {Q | 〈Σ, T,Qn〉 →∗pc 〈Σ′, S ′,Q〉, S ′Cont(Σ′) ≡ K} and α(Qn) ≤A ā.

The conclusion easily follows since T is sound.

(3) Assume now `q ≤ `(K), hence K ∈ C(S2) (K is fixed below the while-loop).
Fix Q ∈ {Q | γ(a), K}.
If the concrete traces are finite, there exists Qw ∈ ℘(Store) such that JT KJBKQw ⊆ Qw, and
hence the loop output store property is J¬BKQw.
Let ā be the strongest abstract loop invariant as before (it does exist since the abstract traces are
finite). It follows, from the second case, that α(Qw) ≤A ā. Hence

α(J¬BKQw) ≤A α(J¬BKγα(Qw)) ≤A α(J¬BKγ(ā)) =
b.c.a

J¬BKAā

and now the conclusion follows since S2 is sound.
If there is a concrete infinite trace (i.e. the collecting interpreter cannot exit from the while-
loop), then Q = ∅ and

α(∅) = ⊥A ≤A a, ∀a ∈ A.

Now, the theorem is proved for S ≡ S1(while B do T)S2 with S1, S2, T sound. Let us show
how every program can fit into this scheme.
A generic program may consist of one or more of the following cases: two (or more) nested while-
loops, two (or more) disjoint subsequent while-loops, at least a while-loop nested in an if-then-else
command.

(i) Assume C(S) has two elements starting with ‘while’, namely whileB do T ⊆ S and whileC doR ⊆
T. The key observation is that we can assume T ≡ S1(while C do R)S2 with S1, S2 sound.
Looking at C(R), if it has an element starting for ‘while’, observe that it can be decomposed as
R ≡ S ′1(while C ′ do R′)S ′2 with S ′1, S

′
2 sound. Repeat this stuff until the innermost loop body

is reached: it has no more while-loops, hence it is sound.
For the sake of clarity, we assume that C(R) has no elements starting for ‘while’.

43

– Let K be fixed inside the internal loop body.
If the internal loop does not terminate, it reduces to the second case of the proof.
If the internal loop terminates, we show that soundness holds at K, after n iterations of
the external one, for every n. This provides soundness at K, either if the external loop
terminates or not.
The key observation is that, at the ith iteration (i ≥ 0) of the external loop, the second
case of the proof provides soundness at K for the store properties related to that precise
iteration. In other words, it is possible to define

Inv(i)[S, γ(a)](K) =
⋃
{Q | 〈Σ, T, JBKQ(i)

w 〉 →∗pc 〈Σ′, S ′,Q〉, S ′Cont(Σ′) ≡ K}

whereQ(i)
w is the store property computed at the entry point of the external loop, at the ith

iteration. Moreover, we can assume, by the second case, that there exists a(i) ∈ {a′ | a,K}
such that α(Inv(i)[S, γ(a)](K)) ≤A a(i).
At this point, the concrete invariant, computed after n iterations of the external loop at K,
is ⋃

i�n

Inv(i)[S, γ(a)](K).

We want to show, by induction on n ≥ 1, that

α(
⋃
i�n

Inv(i)[S, γ(a)](K)) ≤A InvA[S, a](K).

The case n = 1 is easy since, from the previous observation, we know

α(Inv(0)[S, γ(a)](K)) ≤A a(0)

for a0 ∈ {a′ | a,K}. Obviously a0 ≤A InvA[S, a](K).
By induction, assume that

α(
⋃
i�n

Inv(i)[S, γ(a)](K)) ≤A InvA[S, a](K).

Now, from the previous observation, there exists an ∈ {a′ | a,K} such that

α(Inv(n)[S, γ(a)](K)) ≤A an.

Hence

α(
⋃

i�n+1

Inv(i)[S, γ(a)](K)) = α(
⋃
i�n

Inv(i)[S, γ(a)](K) ∪ Inv(n)[S, γ(a)](K))

= α(
⋃
i�n

Inv(i)[S, γ(a)](K)) ∨ α(Inv(n)[S, γ(a)](K))

≤A
induction

InvA[S, a](K) ∨ an = InvA[S, a](K)

44

where the last equality is due to the fact that an ≤A InvA[S, a](K).

– Let now K be fixed inside the external loop body, but below the internal one.
Here, the thrid case provides soundness atK, at each iteration of the external loop (either if
the internal one terminates or not). Following the same induction argument of the previous
case, soundness is provided after n iterations of the external loop, for every n ∈ N.
The same is true if K is fixed inside the external loop body and above the internal one.
In this case, the first case of the proof provides soundness at K, at each iteration of the
external loop. As before, the induction argument provides soundness after n iterations of
the external loop, for every n ∈ N.

(ii) Assume now to have two disjoint subsequent while-loops, i.e. while B do T ⊆ S and
while C do R ⊆ S , both T and R sound.
K could be inside the second loop body or below it. In both cases, if the first loop does not
terminate, the third case of the proof provides soundness at K.
If it terminates, fix a continuation K ′ below the first loop and above the second one.
The third case provides soundness at K ′. Moreover, the second case applied starting from K ′

(if K is inside the second loop body), or the third case starting from K ′ (if K is below the
second loop body) provides soundness at K.
Notice that, if the disjoint subsequent while-loops are more than two and K is fixed below or
inside the nth one, it is enough to repeat this argument a suitable number of times. In fact,
the above discussion has provided soundness below the first two loops. By an easy induction
argument, soundness is provided below or inside the nth one, precisely at K.

(iii) Assume to have a while-loop nested in an if-then-else command, i.e.
if B then S1 else S2 ⊆ S and while C do R ∈ C(S1). In particular, S1 ≡ S ′1(while C do R)S ′2.

If K is fixed in the true branch above, inside, below the while-loop body, there is nothing to
prove because these are, respectively, the first, second, third cases of the proof.

IfK is fixed in the other branch, notice that `(while C doR) � `(K). But, since the interpreter
works in parallel, the information flow arriving at K does not pass through while C do R.
Hence, soundness atK is provided by the suitable case of the proof, regardless of what happens
in the other branch.
If the while-loops are more than one, they can be both in the same branch or not, nested or
subsequent. In all these cases, soundness at K is provided combining some of the previous
discussions.

Resuming, given a generic program S and K ∈ C(S), these cases (individually or combined) are
enough to provide soundness at K.
These scheme will be reused for the following theorem.

45

Let us exhibit an example of how to treat a technically difficult program, combining the cases of
the proof.

Example 5.10. Consider the following program P

while B1 do
if B2 then

while B3 do skip;

else skip;

while B4 do skip;

while B5 do skip;

and its CFG (we omit the computation of C(P) for the sake of clarity)

`1

`2

`3

`4

`5

`6

`7 `8

`9

`10

B1 ¬B1

B2 ¬B2

B3 ¬B3
skip skip

B4 ¬B4skip

B5skip

¬B5

Assume to be at the ith iteration of the external loop. Let Q(i) be the store property at `1, and assume
that there exists a(i) ∈ A such that α(Q(i)) ≤A a(i).
Look at the loop body S: it consists of a while-loop nested in a conditional command in `3, and two
disjoint subsequent while-loops in `6 and `8.
Notice that the store property reaching `2 is JB1KQ(i), and α(JB1KQ(i)) ≤A JB1K

Aa(i). The case (iii)
of the proof provides soundness at `3, `4, `5.
Now, if the loop at `3 does not terminate, soundness trivially holds at the subsequent nodes. If it
terminates, what arrives at `6 isQ(i)

6 = J¬B3KQw3 ∪ J¬B2KJB1KQ(i), whereQw3 is the strongest loop
invariant and there exist aw3 and a2 such that{

α(Qw3) ≤A aw3

α(J¬B2KJB1KQ(i))) ≤A a2

hence α(Q(i)
6) ≤A aw3 ∨ a2.

46

The application of case (ii) of the proof, provides soundness at `6, `7, `8, `9. We have obtained that
S is sound. Soundness at `1 is consequently provided after n iterations of the external loop, for every
n.
Now, let K ∈ C(S) be fixed at `4, i.e., in one of the nested loops. Notice that the external loop-body
S can be written as

S1(while B3 do skip;)S2

with S1, S2 sound. Soundness at K is, hence, provided by case (i).

Actually, this result can be refined requiring a stronger hypothesis.

Definition 5.11. Given an abstraction A, a command c ∈ Cmd is complete for a set of stores
X ∈ ℘(Store) when:

– c ≡ skip; is always complete for X

– c ≡ x := E; is complete for X when α(Jx := EKX) = Jx := EKAα(X)

– c ≡ if B then S1 else S2 is complete for X when α(JBKX) = JBKAα(X) and α(J¬BKX) =
J¬BKAα(X)

– c ≡ while B do S is complete for X when α(JBKX) = JBKAα(X) and α(J¬BKX) =
J¬BKAα(X)

Definition 5.12. A trace τ ∈ Trace[S] is complete for A when for any cK ∈ C(S), c is complete for
Inv[τ](cK). Trace[S, In] is called complete for A when any trace τ ∈ Trace[S, In] is complete for
A.

Theorem 5.13 (Completeness). Assume Trace[S, In] has finite elements, is complete for A, and
TraceA[S, α(In)] has finite elements. Then, for any K ∈ C(S),

α(Inv[S, In](K)) = InvA[S, α(In)](K)

Proof. First of all, notice that the thesis is equivalent to showing that, for every K ∈ C(S):∨
{a′ | 〈ε, S, α(In)〉 →∗p,A 〈Σ, S ′, a′〉, S ′Cont(Σ) ≡ K} =

=
∨
{α(Q) | 〈ε, S, In〉 →∗pc 〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K}.

For the sake of clarity we refer to these sets, respectively, as {a′ |α(In), K} and {α(Q) | In, K}.
Let us begin with ‘≥A’.

It follows directly from GC properties, since

α(Inv[S, In](K)) ≤A α(Inv[S, γα(In)](K)) ≤A InvA[S, α(In)](K)

by Theorem 5.8.

47

For the other inclusion, it is enough to show that, for every K ∈ C(S), {a′ |α(In), K} ⊆
{α(Q) | In, K}. In this case we say that S is complete.
As in the previous theorem, consider the case in which C(S) has no elements starting for ’while’. Fix
K ∈ C(S) and a′ ∈ {a′ |α(In), K}. Notice that the rules leading to a′ from α(In), depend only on
the syntax of S and not on the store properties.
Hence, assuming that 〈ε, S, α(In)〉 →(n)

p,A 〈Σ, S ′, a′〉, S ′Cont(Σ) ≡ K with n ≥ 0, we can act by
induction on n ≥ 0.

• The case n = 0 is trivial since α(In) = α(In);

• Assume the n−1th configuration is 〈Σ′, S ′′, a′′〉. By induction, there existsQ′ ∈ ℘(Store) such
that a′′ = α(Q′).
Moreover, the nth configuration is reached through one of the abstract interpreter rules.
If it is the skip-rule then

a′ = a′′ = α(Q′);

if it is the assignment rule, then

a′ = Jx := EKA(a′′) = Jx := EKA(α(Q′)) =
completeness

α(Jx := EKQ′);

if it is the opening if B then S1 else S2-rule, then

a′ = JBKA(a′′) =
completeness

α(JBKQ′);

if it is the contracting if B then S1 else S2-rule, then

a′ = a′′t ∨ a′′e =
induction

α(Q′t) ∨ α(Q′e) = α(Qt ∪Qe).

Now let us consider S ≡ S1(while B do T)S2 with S1, T and S2 complete. The general case can be
reached following the scheme in the second part of Theorem 5.8 proof.
Let

`1 = `(S);

`p = `((while B do T)S2);

`q = `(S2).

(1) Assume `(K) � `p, i.e. K is fixed inside S1. There is nothing to prove, because S1 is assumed
to be complete.

(2) Assume `n ≤ `(K) � `m, i.e. K is a continuation taken inside the loop body T .
Fix a′ ∈ {a′ |α(In), K}. Assume a′ is reached at the nth iteration of the loop. Let Qw and aw

48

be the concrete and abstract store properties, before entering in the loop. By the previous case,
it holds α(Qw) = aw.

Now recall the notations of Definition 5.6:

{
a0 = aw

an = an−1 ∨ JT KAJBKAan−1

We need the following

Lemma 5.14. With the notation above, for all n ∈ N, there exists Q ∈ ℘(Store) such that

an = α(Qn).

Proof. By induction on n ≥ 0.
For n = 0 it is enough to set Q0 = Qw.
Assume an−1 = α(Qn−1), for some Qn−1 ∈ ℘(Store). Now

an = an−1 ∨ JT KAJBKAan−1 =
induction

α(Qn−1) ∨ JT KAJBKAα(Qn−1) =
completeness

α(Qn−1) ∨ α(JT KJBKQn−1) = α(Qn−1 ∪ JT KJBKQn−1).

To complete the proof set Qn = Qn−1 ∪ JT KJBKQn−1.

Now, if `(K) = `p, a′ = α(Qn) and the conclusion follows from the lemma.
If `p � `(K) then a′ = JT ′KAJBKAan with T ′ ⊆ T. Since an = α(Qn), the thesis follows from
the fact that T is complete.

(3) Assume `q ≤ `(K), i.e. K is fixed inside S2.
Fix a′ ∈ {a′ |α(In), K}.
Focus on the while-loop: with the notation above, since the abstract traces are finite, there exists
n ∈ N such that JT KAJBKAan ≤A an, i.e. an is the strongest abstract loop invariant.
By the previous case, there exists Qw ∈ ℘(Store) such that α(Qw) = an.
Observe that

a′ = JS ′KJ¬BKan

with S ′ ⊆ S2, and hence complete.
We have two cases:

– If JT KJBKQw ⊆ Qw the thesis follows from the first case;

– If JT KJBKQw 6⊆ Qw the collecting interpreter goes through T again. Since the concrete
traces are supposed to be finite, there exists Q̃ ∈ ℘(Store) such that
JT KJBKQ̃ ⊆ Q̃.
We claim to show that α(Q̃) = α(Qw).

Assume Q̃ is reached after n extra iterations of the loop, and proceed by induction on n.
Obviously, it holds that Qw ⊆ Q̃. By monotonicity α(Qw) ≤A α(Q̃), hence it is enough

49

to show the other inequality.
If n = 1, we have Q̃ = Qw ∪ JT KJBKQw. Hence

α(Q̃) = α(Qw ∪ JT KJBKQw) =

α(Qw) ∨ α(JT KJBKQw) =
completeness

an ∨ JT KAJBKAan ≤A an.

Let n ≥ 2 and assume Q̃n−1 is the loop invariant after n− 1 extra iterations. By induction
it holds that α(Q̃n−1) ≤A α(Qw).
Observe:

α(Q̃) = α(Q̃n−1 ∪ JT KJBKQ̃n−1) = α(Q̃n−1) ∨ α(JT KJBKQ̃n−1) =
completeness

α(Q̃n−1) ∨ JT KAJBKAα(Q̃n−1) ≤A
induction

α(Qw) ∨ JT KAJBKA(α(Qw)) =

an ∨ JT KAJBKAan = an.

Hence, α(Q̃) = α(Qw) = an and the thesis follows since S2 is complete.

5.5 Safety Verification
Let S ∈ Stm and In ∈ ℘(Store). Let inv : C(S)→ ℘(Store) be a program point property for S. We
write

[S, In] |= inv when ∀K ∈ C(S). Inv[S, In](K) ⊆ inv(K).

As usual, let (℘(Store), A, γ, α) be a Galois connection. inv is called A-representable when for
any K ∈ C(S), γ(α(inv(K))) = inv(K). We write

[S, In] |=A inv when τA[S, α(In)] is finite and

∀K ∈ C(S). γ(InvA[S, α(In)](K)) ⊆ inv(K).

It turns out that abstract safety verification is sound, that is:

[S, In] |=A inv ⇒ [S, In] |= inv

In fact, by Theorem 5.8, α(Inv[S, In](K)) ≤A InvA[S, α(In)](K) and this implies
Inv[S, In](K) ⊆ γ(InvA[S, α(In)](K)) ⊆ inv(K).

If concrete traces are complete and inv is A-representable, abstract safety verification is sound
and complete, namely:

50

Theorem 5.15 (Sound and Complete Safety Verification). If Trace[S, In] is complete for A, inv is
A-representable and τA[S, α(In)] is finite then

[S, In] |= inv ⇔ [S, In] |=A inv .

Proof. By Theorem 5.13, InvA[S, α(In)](K) = α(Inv[S, In](K)) ≤A α(inv(K)) so that we obtain
γ(InvA[S, α(In)](K)) ⊆ γ(α(inv(K))) = inv(K).

5.6 Nondeterministic Interpreter
The nondeterministic transition relation →nd⊆ State�pc × State�pc of the parallel interpreter adds
the following rule to the rules in Figure 1:

P 6⊆ Pwhile

〈[(while B do S)K,Pwhile]w · Σ, ε,P〉 →nd 〈Σ, K, J¬BK(Pwhile ∪ P)〉

Thus, each time the evaluation of the body of a while-loop (while B do S)K terminates with a
concrete invariant P which is not a fixpoint (namely, if Pwhile is the current abstract loop invariant
then P 6⊆ Pwhile), we have a non-deterministic branching: on the one hand, the computation of the
least concrete loop invariant may go on, and, on the other hand, the computation may proceed with
the loop-continuation K by assuming the current loop invariant Pwhile ∪ P , so that K is evaluated
from the abstract exit condition J¬BK(Pwhile ∪ P).
In a sense, this gives rise to a form of dovetailing which allows a breadth-first search in a tree of
concrete traces, which may potentially contain a path of infinite length. This corresponds to make the
abstract interpreter ‘fair’, because all the concrete traces of this non-deterministic interpreter become
fair in the sense that if the interpreter enters in a state infinitely often, it also takes every possible
transition from that state.

This rule appears to be related to the hypercollecting semantics of while-loops in [1, Section 4],
since this returns a setR of sets of stores where any set R ∈ R contains those stores that exit the loop
in less than k iterations, for some k ∈ N.

The function Invnd[S, In] : C(S) → ℘(Store), for any continuation K ∈ C(S), returns the
(strongest) concrete invariant at K for the non-deterministic collecting interpreter:

Invnd[S, In](K) =
⋃
{Q′ ∈ ℘(Store) | 〈ε, S,Q〉→nd∗〈Σ, S ′,Q′〉, S ′Cont(Σ) ≡ K}.

In the same way, it is possible to define the non-deterministic abstract transition relation
→nd

A ⊆ State�A× State�A, obtained by adding the following rule to Figure 3:

a 6≤A awhile

〈[(while B do S)K, awhile]w · Σ, ε, a〉 →nd
A 〈Σ, K, J¬BKA(awhile ∨ a)〉

51

Also, for every continuation K ∈ C(S), it is possible to define the function InvndA [S, a] : C(S)→ A,
which returns the strongest abstract invariant at K for the non-deterministic abstract interpreter:

InvndA [S, a] =
∨
{a′ ∈ A | 〈ε, S, a〉→nd

A

∗〈Σ, S ′, a′〉, S ′Cont(Σ) ≡ K}.

Fairness implies soundness, that is the following result.

Theorem 5.16 (Soundness). Let S ∈ Stm and In ∈ ℘(Store). For any K ∈ C(S),

α(Invnd[S, In](K)) ≤A Invnd
A [S, α(In)](K).

Proof. The strategy of the proof is the same of Theorem 5.8. We show the thesis in the cases C(S)
without elements starting for ‘while’ and S ≡ S1(while B do T)S2 with S1, S2, T sound. The
general case is provided through the scheme of the second part of Theorem 5.8 proof.
For the sake of clarity, let us use the following notations:

Invnd[S, In](K) =
⋃
{Q | In,K}nd InvndA [S, α(In)](K) =

∨
{a′ |α(In), K}nd.

First of all, observe that the non-deterministic interpreter acts as the parallel one, except for the
additional contraction while-rule.
By this fact, the cases in which C(S) has no elements starting for ‘while’, S ≡ S1(while B do T)S2

with S1, T, S2 sound, andK fixed inside S1 or inside the loop body T , follows directly from Theorem
5.8.

The only relevant case is K ∈ C(S2), i.e. K fixed inside S2.
In this case, fix Q ∈ {Q | In,K}nd. We want to show that there exists a′ ∈ {a |α(In), K}nd such
that α(Q) ≤A a′.
This is enough to prove the thesis at K.

Notice that the continuation K is reached either if the while-loop does terminate or not, since, at
every iteration, there is a store property which exits from the loop; in other words, using notations of
Definition 4.10, at the ith iteration the continuation S2 is reached by J¬BKQi, and consequently K is
reached by JS ′KJ¬BKQi, with S ′ ⊆ S2.
Moreover, by Theorem 5.8, there exists ai ∈ {a′ |α(In), (while B do T)S2} such that α(Qi) ≤A ai.

Assume now that Q = JS ′KJ¬BKQn, i.e. Q is reached by the store property exiting at the nth

iteration.
By the previous observation, there exists an ∈ {a′ |α(In), (while B do T)S2} such that
α(Qn) ≤A an. Hence

α(J¬BKQn) ≤A
G.C.

α(J¬BKγα(Qn)) =
b.c.a

J¬BKAα(Qn) ≤A J¬BKAan.

Moreover, S ′ ⊆ S2 and S2 is sound. Hence

α(Q) = α(JS ′KJ¬BKQn) ≤A JS ′KAJ¬BKAan

52

and the theorem is proved.

Example 5.17. Consider the program P in Example 5.2, where the abstract domain A is given by the
interval abstraction. If we consider the non-deterministic collecting and abstract interpreter then we
have that

Invnd[P, {N}] = { 1 7→ {N}, 2 7→ {x/1, x/3, x/5}, 3 7→ {x/3, x/5},
4 7→ ∅, 5 7→ {x/3, x/5}, 6 7→ {x/1}}

Invnd
A [P, {x/[N,N]}] 1 = [N,N]

Invnd
A [P, {x/[N,N]}] 2 = [1,+∞] =

∨
{[5, 5], [3, 5], [1, 7], [1, 9], [1, 11], ...}

Invnd
A [P, {x/[N,N]}] 3 = [2,+∞] =

∨
{[5, 5], [3, 5], [2, 7], [2, 9], [2, 11], ...}

Invnd
A [P, {x/[N,N]}] 4 = [2,+∞] =

∨
{[4, 4], [2, 6], [2, 8], [2, 10], ...}

Invnd
A [P, {x/[N,N]}] 5 = [3,+∞] =

∨
{[5, 5], [3, 5], [3, 7], [3, 9], ...}

Invnd
A [P, {x/[N,N]}] 6 = [1, 1]

Example 5.18. Consider the program P in Example 5.3, where the abstract invariant at program point
p for the interval abstraction was not sound. If we consider the non-deterministic abstract interpreter,
we have that

Invnd
A [P, {x/[N,N]}] q =

∨
({[5, 5], [3, 5]} ∪ {[1, 7 + 2n] | n ∈ N}) = [1,+∞]

Invnd
A [P, {x/[N,N]}] p =

∨
{[5, 5], [3, 5], [1, 5]} = [1, 5]

so that the soundness at program point p has been restored.

53

6 An equivalence result
In previous chapters, we studied the relation between collecting and abstract parallel interpreters. We
saw that soundness might not hold if infinite abstract traces are there, and solved this issue by defining
the non-deterministic interpreters.

In Theorem 5.16 we proved that soundness holds for non-deterministic interpreters, and this lets
us hope for having equivalence with denotational collecting and abstract interpreters.
In fact, this is what we are showing. Previously, let us formally define operational and denotational
semantic functions.

Definition 6.1. The operational non-deterministic semantic function is defined inductively:

Sco : Stm→ (℘(Store)→ ℘(Store))

where

ScoJSKQ =

{
Q if S = ε;

ScoJKKI if S = cK, c ∈ Cmd, I = Invnd[cK,Q](K)

Moreover,

Definition 6.2. The denotational semantic function is defined inductively

Scds : Stm→ (℘(Store)→ ℘(Store)), S 7→ JSK,

where

JεKQ = Q
Jskip;KKQ = JKKQ
Jx := E;KKQ = JKK{ρ[x 7→ v] | ρ ∈ Q, v = EJEK}
J(if B then S1 else S2)KKQ = JKK(JS1KJBKQ∪ JS2KJBKQ)

J(while B do S)KK = JKK(J¬BK lfp(λT.Q∪ JSKJBKT).

Theorem 6.3. Let S ∈ Stm . For all Q ∈ ℘(Store) it holds

ScoJSKQ = ScdsJSKQ.

Proof. By induction on S ∈ Stm .

• S ≡ ε. Then ScoJεKQ = Q = JεKQ = ScdsJεK;

• S ≡ cK, c ∈ Cmd . Here ScoJSKQ = ScoJKKI where I = Inv[cK,Q](K).

54

– c ≡ skip; . We have Inv[skip;K,Q](K) = Q because 〈ε, skip;K,Q〉 →nd 〈ε,K,Q〉.
Hence ScoJskip;KKQ = ScoJKKQ.
On the other hand, ScdsJskip;KKQ = Jskip;KKQ = JKKQ.
By structural induction ScoJKKQ = ScdsJKKQ, and hence

ScoJskip;KKQ = ScdsJskip;KKQ.

– c ≡ x := E;. Here Inv[x := E;K,Q](K) = {ρ[x 7→ v] | ρ ∈ Q, v = EJEKρ}.
Hence

ScoJx := E;KKQ = ScoJKK{ρ[x 7→ v | ρ ∈ Q, v = EJEKρ}.

Moreover ScdsJx := E;KKQ = ScdsJKK{ρ[x 7→ v | ρ ∈ Q, v = EJEKρ}, and the conclu-
sion follows by structural induction.

– c ≡ if B then S1 else S2. In this case it may be difficult to compute directly
Inv[(if B then S1 else S2)K,Q](K).
Although, observe that

〈ε, (if B then S1 else S2)K,Q〉 →nd 〈[K]t, S1, JBKQ〉||〈[K]e, S2, J¬BKQ〉
→∗nd 〈[K]t, ε, I1〉||〈[K]e, ε, I2〉 →nd 〈ε,K, I1 ∪ I2〉

where
I1 = ScoJS1K(JBKQ) and I2 = ScoJS2K(J¬BKQ).

Hence
ScoJ(if B then S1 else S2)KKQ = ScoJKK(I1 ∪ I2).

On the other hand

J(if B then S1 else S2)KKQ = JKK(JS1KJBKQ∪ JS2KJ¬BKQ).

Observe now that, by induction, ScoJS1K(JBKQ) = ScdsJS1K(JBKQ); i.e.

I1 = JS1KJBKQ, and in the same way
I2 = JS2KJ¬BKQ.

Now, the conclusion follows by structural induction, since

ScoJKK(I1 ∪ I2) = JKK(I1 ∪ I2) = ScdsJ(if B then S1 else S2)KK.

– c ≡ while B do S. Recall the sequence of elements in ℘(Store) of Definition 4.10:{
Q0 = Q
Qi = Qi−1 ∪ JSKJBKQi−1.

The following lemma holds:

55

Lemma 6.4. With the notation above, for all i ≥ 1

Qi = Q∪ JSKJBKQi−1.

Proof. By induction on i:
i = 1. It is trivial, since Q1 = Q0 ∪ JSKJBKQ0 by definition.
Assume Qi = Q∪ JSKJBKQi−1. Now:

Qi+1 = Qi ∪ JSKJBKQi =
inductive hp

Q∪ JSKJBKQi−1 ∪ JSKJBKQi

Observe that JSKJBKQi = JSKJBK(Qi−1∪JSKJBKQi−1) andQi−1 ⊆ Qi−1∪JSKJBKQi−1.
Hence, by monotonicity of transfer functions

JSKJBKQi−1 ⊆ JSKJBKQi

which implies

Qi+1 = Q∪ JSKJBKQi−1 ∪ JSKJBKQi = Q∪ JSKJBKQi.

We have to distinguish two cases.
Assume there exists n ∈ N such that JSKJBKQn ⊆ Qn (i.e. the loop terminates), and
assume Qn is the smallest element of ℘(Store) containing Q, with this property. In par-
ticular JSKJBKQj 6⊆ Qj, ∀j � n.
Our claim is to show that

I = Inv[(while B do S)K,Q](K) = J¬BKQn.

In fact:

Inv[(while B do S)K,Q](K) =⋃
{P | 〈ε, (while B do S)K,Q〉 →∗nd 〈Σ, S ′,P〉, S ′Cont(Σ) ≡ K} =⋃
{J¬BKQj | 1 ≤ j ≤ n}.

Now

Qj ⊆ Qn ∀ 1 ≤ j ≤ n⇒ J¬BKQj ⊆ J¬BKQn ∀ 1 ≤ j ≤ n

hence
⋃
{J¬BKQj | 1 ≤ j ≤ n} ⊆ J¬BKQn ;

moreover J¬BKQn ⊆
⋃
{J¬BKQj | 1 ≤ j ≤ n}.

56

Hence the equality holds. This shows that

ScoJ(while B do S)KKQ = ScoJKKJ¬BKQn =
induction

ScdsJKK(J¬BKQn).

Recall that ScdsJ(while B do S)KKQ = JKK(J¬BK lfp(λT.Q∪ JSKJBKT)).
Hence it is enough to show that

Qn = lfp(λT.Q∪ JSKJBKT).

By Lemma 6.4 it holds Qn = Q∪ JSKJBKQn−1. Moreover

Qn = Q∪ JSKJBKQn−1 ⊆ Q ∪ JSKJBKQn ⊆ Qn

which shows that Qn is a fixed point for λT.Q∪ JSKJBKT .
It is obviously the least one, since, if there exists X (Qn such that Q∪ JSKJBKX = X ,
then JSKJBKX ⊆ X: against the assumption on Qn.

Assume now that ∀n ∈ N . JSKJBKQn 6⊆ Qn (i.e. the loop does not terminate). As in
the previous case

Inv[(while B do S)K,Q](K) =
⋃
j≥1

J¬BKQj = J¬BK(
⋃
j≥1

Qj).

Hence

ScoJ(while B do S)KKQ = ScoJKK(J¬BK
⋃
j≥1

Qj) =
induction

ScdsJKK(J¬BK
⋃
j≥1

Qj).

Again ScdsJ(while B do S)KKQ = JKK(J¬BKlfp(λT.Q∪ JSKJBKT)).
Hence, it is enough to show that⋃

j≥1

Qj = lfp (λT.Q∪ JSKJBKT).

Let F : ℘(Store)→ ℘(Store), X 7→ Q ∪ JSKJBKX.
It is well known that, by Knaster-Tarski theorem,

lfp F =
⋃
i≥0

F i(∅).

Lemma 6.5. With the notation above

Qi = F i+1(∅).

57

Proof. By induction on i.
The case i = 0 is true by definition, since

Q0 = Q F (∅) = Q∪ ∅ = Q.

Assume Qi−1 = F i(∅). Then

Qi =
lemma 6.4

Q∪ JSKJBKQi−1 =

Q∪ JSKJBKF i(∅) = F (F i(∅)) = F i+1(∅).

Hence ⋃
j≥1

Qj =
⋃
j≥0

Qj =
⋃
i≥0

F i(∅) = lfp F.

Next, we want to show that the same equivalence holds between non deterministic and denota-
tional abstract interpreters.
We begin with the definitions of abstract operational semantic function and abstract denotational se-
mantic function.

Definition 6.6. The abstract operational non-deterministic sematic function is defined inductively:

S]o : Stm→ (A→ A)

where

S]oJSKa =

{
a if S = ε

S]oJKKa′ if a′ = InvndA [cK, a](K)

Definition 6.7. The abstract denotational semantic is defined inductively:

S]ds : Stm→ (A→ A), S 7→ JSK]

where

JεK]a = a;

Jskip;KK]a = JKK]a;

Jx := E;KK]a = JKK](Jx := EK]a);

J(if B then S1 else S2)KK]a = JKK](JS1K
]JBK]a ∨ JS2K

]JBK]a);

J(while B do S)KK] = JKK](J¬BK]lfp(λc. ∨ JSK]JBK]c).

58

As for concrete interpreters, the following theorem holds:

Theorem 6.8. Let S ∈ Stm. For all a ∈ A it holds:

S]oJSKa = S]dsJSKa.

Proof. The proof is simply obtained from the proof of Theorem 6.3 replacing collecting elements
with abstract ones.
The reasoning is exactly the same, since the definitions of the interpreters (concrete and abstract) are
strictly related.

Now, the equivalence has been established for concrete and abstract interpreters. Our next claim
is to relate the invariants soundness studied in Theorems 5.8, 5.16 and the semantic functions above.

In turn, look at the scales: on the one side there is the notion of invariant Inv[S, In](K), and in
the other, the semantic function ScoJSK.
It turns out that, for S ∈ Stm, In ∈ ℘(Store),

ScoJSKIn = Invnd[S, In](ε).

In fact, we can act by structural induction on S ∈ Stm :
If S ≡ ε then ScoJεKIn = In and

Invnd[ε, In](ε) =
⋃
{Q | 〈ε, ε, In〉→nd

pc

∗〈ε, ε,Q〉} = In.

If S ≡ cK, c ∈ Cmd then

ScoJcKKIn =
def
ScoJKK Invnd[cK, In](K) =

induction
Invnd[K, Invnd[cK, In](K)](ε).

This has to coincide with Invnd[cK, In](ε). For the sake of clarity let Invnd[cK, In](K) = I. Let us
prove the double inclusion.
We need a preliminary

Lemma 6.9. The set {Q | 〈ε, cK, In〉→nd∗〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K} is a filtering set, i.e., it is
equal to {Q0,Q1, ...,Qn, ...}, with Qi ⊆ Qi+1 for every i ≥ 0.

Proof. By structural induction on c ∈ Cmd .

• c ≡ skip;, c ≡ x := E;. Then {Q | 〈ε, cK, In〉→nd∗〈Σ, S ′,Q〉, S ′Cont(Σ) ≡ K} is a
singleton, and it is trivially a filtering set.

59

• c ≡ if B then S1 else S2. Then

〈ε, (if B then S1 else S2)K, In〉→nd〈[K]t, S1, JBKIn〉 ‖ 〈[K]e, S2, J¬BKIn〉
→nd∗〈[K]t, ε,Qt〉 ‖ 〈[K]e, ε,Qe〉 →nd 〈ε,K,Qt ∪Qe〉

By induction, the sets

{Qt | 〈ε, S1K, JBKIn〉 ≡ 〈[K]t, S1, JBKIn〉→nd∗〈[K]t, ε,Qt〉 ≡ 〈ε,K,Qt〉}
{Qe | 〈ε, S2K, J¬BKIn〉 ≡ 〈[K]e, S2, J¬BKIn〉→nd∗〈[K]e, ε,Qe〉 ≡ 〈ε,K,Qe〉}

are filtering sets, and hence

{Qt ∪Qe | 〈ε, (if B then S1 else S2)K, In〉→nd∗〈ε,K,Qt ∪Qe〉}

is a filtering set too.

• c ≡ while B do T . Let

{
P0 = In

Pn = Pn−1 ∪ JT KJBKPn−1

Then

〈ε, (while B do T)K, In〉→nd∗〈[(while B do T)K, In]w, T, JBKIn〉

→nd∗〈[(while B do T)K, In]w, ε, JT KJBKIn〉 →nd

{
〈[(while B do T)K,P1]w, T, JBKP1〉
〈ε,K, J¬BKP1〉

The upper branch goes on with

→nd∗〈[(while B do T)K,P1]w, ε, JT KJBKP1〉 →nd

{
〈[(while B do T)K,P2]w, T, JBKP2〉
〈ε,K, J¬BKP2〉

Following the upper branch again→nd∗ ... →nd∗

→nd∗〈[(while B do T)K,Pn]w, ε, JT KJBKPn〉 →nd{
〈[(while B do T)K,Pn+1]w, T, JBKPn+1〉
〈ε,K, J¬BKPn〉

→nd∗...

At each iteration, the set

{JT KJBKPi | 〈[(whileB do T)K,Pi]w, T, JBKPi〉→nd∗〈[(whileB do T)K,Pi]w, ε, JT KJBKPi〉}

is filtering by inductive hypothesis, and hence, by definition of Pi, the set

{J¬BKPi | 〈ε, (while B do T)K, In〉→nd∗〈ε,K, J¬BKPi〉}

60

is a filtering set too.
Notice that, if there exists n ∈ N such that JT KJBKPn ⊆ Pn, i.e. the loop terminates, then

{J¬BKPi | 〈ε, (while B do T)K, In〉→nd∗〈ε,K, J¬BKPi〉} =
⋃

1≤i≤n

J¬BKPi

otherwise, it is a numerable infinite union.

Let us come back to the proof of

Invnd[K, Invnd[cK, In](K)](ε) = Invnd[cK, In](ε).

(⊆) Let Q ∈ {Q | 〈ε,K, I〉→nd∗〈ε, ε,Q〉}. Then, 〈ε,K, I〉→nd∗〈ε, ε,Q〉.
Since

I = Invnd[cK, In](K) =
⋃
{P | 〈ε, cK, In〉→nd∗〈ε,K,P〉}

and, by the previous Lemma, this set is filtering, there exists P ∈ {P | 〈ε, cK, In〉→nd∗〈ε,K,P〉}
such that

〈ε,K,P〉→nd∗〈ε, ε,Q〉.
Hence

〈ε, S, In〉→nd∗〈Σ, S ′,P〉 ≡ 〈ε,K,P〉→nd∗〈ε, ε,Q〉,

i.e., Q ∈ {Q | 〈ε, S, In〉→nd∗〈ε, ε,Q〉}. This, in particular, implies

Invnd[K, Invnd[cK, In](K)](ε) ⊆ Invnd[S, In](ε).

(⊇) Let Q ∈ {Q | 〈ε, cK, In〉→nd∗〈ε, ε,Q〉}. Then

〈ε, cK, In〉→nd∗〈ε,K,P〉→nd∗〈ε, ε,Q〉,

for some P ∈ ℘(Store). In particular,

P ∈ {P | 〈ε, cK, In〉→nd∗〈ε,K,P〉} =⇒ P ⊆ Invnd[cK, In](K).

and Q ∈ {Q | 〈ε,K,P〉→nd∗〈ε, ε,Q〉} =⇒ Q ⊆ Invnd[K,P](ε).

Hence, Invnd[K,P](ε) ⊆ Invnd[K, Invnd[cK, In](K)](ε)
and Q ⊆ Invnd[K, Invnd[cK, In](K)](ε). Then, the equality is proved.

Obviously, the abstract version holds too, i.e., for S ∈ Stm, a ∈ A, , S]oJSKa = InvndA [S, a](ε).

In particular, we can apply Theorem 5.16 deriving that

α(ScoJSKQ) = α(Invnd[S,Q](ε)) ≤A InvndA [S, α(Q)](ε) = S]oJSKα(Q)

61

In conclusion, given S ∈ Stm, we can summarize all the previous paragraphs within the following
diagram.

Q ℘(Store) ℘(Store) Q

ScoJSKQ ℘(Store) ℘(Store) SdsJSKQ

α(ScoJSKQ) A A α(SdsJSKQ)

S]oJSKα(Q) A A S]dsα(Q);

ScoJSK

id

SdsJSK

α

Thm6.3

α

≤A Thm5.16 Thm5.16 ≤A

Thm6.8

62

We conclude with an example, in which every step of the diagram is computed.
We consider the computation on two initial store properties, to show that the ≤A cannot be refined.

Example 6.10. Let us consider A = Int and S ≡ while x > 0 do x := x− 2;.
Let Q ∈ ℘(Store), Q = {x/0, x/3, x/4};
Then α(Q) = [0, 4]. Let us compute ScoJSKQ.
〈ε,while x > 0 do x := x− 2; ,Q〉 →nd

〈[while x > 0 do x := x− 2; ,Q]w, x := x− 2, {x/3, x/4}〉 →nd

〈[while x > 0 do x := x− 2; ,Q]w, ε, {x/1, x/2}〉 →nd

〈[while x > 0 do x := x− 2; , {x/0, x/1, x/2, x/3, x/4}]w, x := x− 2; , {x/1, x/2, x/3, x/4}〉 →nd

〈[while x > 0 do x := x− 2; , {x/0, x/1, x/2, x/3, x/4}]w, ε, {x/− 1, x/0, x/1, x/2}〉 →nd

〈[while x > 0 do x := x− 2; , {x/− 1, x/0, x/1, x/2, x/3, x/4}]w,
x := x− 2; , {x/1, x/2, x/3, x/4}〉 →nd

〈[while x > 0 do x := x− 2; , {x/− 1, x/0, x/1, x/2, x/3, x/4}]w, ε, {x/− 1, x/0, x/1, x/2}〉 →nd

〈ε, ε, {x/− 1, x/0}〉
Notice that, since the while-loop terminates, the non-deterministic interpreter acts exactly as the par-
allel one.

We have obtained ScoJSKQ = {x/− 1, x/0} and α(ScoJSKQ) = [−1, 0].
Now compute JSK]α(Q).

〈ε,while x > 0 do x := x− 2; , [0, 4]〉 →nd
A

〈[while x > 0 do x := x− 2; , [0, 4]]w, x := x− 2; , [1, 4]〉 →nd
A

〈[while x > 0 do x := x− 2; , [0, 4]]w, ε, [−1, 2]〉 →nd
A

〈[while x > 0 do x := x− 2; , [−1, 4]]w, x := x− 2; , [1, 4]〉 →nd
A

〈[while x > 0 do x := x− 2; , [−1, 4]]w, ε, [−1, 2]〉 →nd
A

〈ε, ε, [−1, 0]〉.

It turns out that JSK]α(Q) = [−1, 0], and it coincides with = α(ScoJSKQ).

Now consider P = {x/0, x/2, x/4}, and repeat the computation.

〈ε,while x > 0 do x := x− 2; ,P〉 →nd

〈[while x > 0 do x := x− 2; ,P]w, x := x− 2; , {x/2, x/4}〉 →nd

〈[while x > 0 do x := x− 2; ,P]w, ε, {x/0, x/2}〉 →nd

〈ε, ε, {x/0}〉,
hence ScoJSKP = {x/0}.
Notice that α(P) = α(Q) = [0, 4], hence JSK]α(P) = [−1, 0], and

α(ScoJSKP) = α({x/0}) = [0, 0] �A [−1, 0] = JSK]α(P).

63

7 Conclusions and further work
This thesis firstly aims to show off a complete analysis of the operational approach to abstract in-
terpretation. Starting from the definition of a standard continuation-style WHILE language and its
operational semantics, we moved to the definition of the small step collecting interpreter and proofs
of the strict correlation between the concrete and collecting interpreter.

After that, we considered a generic abstract domain A. Assuming to have a Galois connection,
we defined the abstract operational interpreter and the abstract transfer functions as the best correct
approximations of the concrete ones. We proved the Soundness theorem, which represents maybe the
most meaningful result of this work. It provides a gauge to compare collecting and abstract invariants
at every continuation of a given program. This point has certainly represented the toughest step of
the thesis: the result had to be set on ‘every continuation’; although, we had no tools to analyze the
number of continuations of a generic program. Hence, we split up the problem: it turned out that the
main issue was to analyze a particular case of program. The general case should have been an intu-
itive and obvious consequence of this particular case. Although this obviousness was as well tough
to formalize and it is still hard to be confident to have considered the whole totality of programs. But
after all, we are pretty sure we can accept this fact.
On the other hand, the second part of the Soundness theorem proof provides a logic scheme which
has been used in several following proofs to make them accordant to that one.
Between them, we want to remark the Soundness theorem for non-deterministic interpreter proof.
This interpreter is defined as adding a while-contraction rule to the parallel one, to guarantee a sound-
ness result even with infinite abstract traces.
The parallel interpreter gets stuck in an infinite loop while the non-deterministic can keep on the com-
putation: the added rule makes it ‘fair’ in the sense that, if it enters in a state infinitely often, it also
takes every transition from that state through non-deterministic branches.

Such a behavior reminds us of the denotational interpreter: it computes invariants through fixed
points and does not matter if there are non-terminating loops.
In fact, in the final chapter, we proved the equivalence between non-deterministic collecting inter-
preters and denotational ones, both in concrete and abstract versions.

We see several interesting avenues for further work on this topic. For instance, we may quote
the one that actually was the originary goal of this thesis work: proving that the abstract operational
interpreter is not a Universal Turing Machine, i.e., find a program whose interpretation on a coded
input is different from the coding of its output on the same input data.

64

References
[1] M. Assaf, D.A. Naumann, J. Signoles, É. Totel, and F. Tronel. Hypercollecting semantics and

its application to static analysis of information flow. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA,
pp. 874-887, 2017. DOI: https://doi.org/10.1145/3009837.3009889

[2] T. Ball. Formalizing Counterexample-Driven Refinement with Weakest Preconditions. In Broy
et al. editors, Engineering Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute on Engineering Theories of Software Intensive Systems, Marktoberdorf,
Germany, Springer, pp. 121-139, 2005.

[3] S. Dissegna, F. Logozzo, F. Ranzato. An Abstract Interpretation-based Model of Tracing Just-
in-Time Compilation. In ACM Transactions on Programming Languages and Systems. January
2016, Article No.: 7. https://doi.org/10.1145/2853131

[4] M. Gordon and H. Collavizza. Forward with Hoare. In A.W. Roscoe et al. editors, Reflections on
the Work of C.A.R. Hoare, Springer London, pp. 101-121, 2010.

[5] S. Guo and J. Palsberg. The essence of compiling with traces. In Proceedings of the 38th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL 2011). ACM,
New York, NY, USA, 563–574, 2011.

[6] N.D. Jones. Computability and Complexity from a Programming Perspective. The MIT Press,
1997.

[7] A.J. Kfoury, R.N. Moll and M.A. Arbib. A Programming Approach to Computability. Springer-
Verlag, 1982.

[8] A. Miné. Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation. In Foun-
dations and Trends in Programming Languages, Vol. 4, No. 3-4 (2017), pag. 120-372.

[9] H.R. Nielson and F. Nielson. Semantics with Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer-Verlag London Limited, 2007.

65

https://doi.org/10.1145/3009837.3009889

	Introduction
	Background
	Order theory
	Fixpoints
	Abstract Domains
	Interval Abstract Domain

	Language
	Remarks
	Small Step Operational Semantics
	Expressions
	Program Semantics

	Traces and Invariants
	Safety Verification Problem and Hoare Triples

	Small Step Collecting Interpreter
	The sequential collecting interpreter
	Proof
	More on Invariants

	Small Step Abstract Interpreter
	Parallel Abstract Interpreter
	Examples
	Abstract Traces
	Soundness and Completeness
	Safety Verification
	Nondeterministic Interpreter

	An equivalence result
	Conclusions and further work

