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Abstract

Congestive heart failure (CHF) is a condition caused by the heart’s inability to correctly

circulate blood to peripheral tissues, which results in a persistent state of increased plasma

volume, due to the overactivation of neurohumoral complexes that induce the body to

retain renal sodium and water.

The most common therapy for decongestion is the administration of diuretics, in par-

ticular loop diuretics such as furosemide. Since the effects of diuretic drugs in case of CHF

can largely vary between patients, the actual course of the treatment is not standardised,

and its efficacy relies on the physician’s expertise.

This work aimed to implement a control system, using a model predictive control

(MPC) strategy, that could automatically and dynamically adapt the administration of

furosemide by predicting the patient’s response to the treatment based on the patient’s

characteristics, in order to achieve decongestion more efficiently than with standard ther-

apy.

As part of the simulation set up, literature was extensively consulted in the search for

a pharmacokinetic and pharmacodynamic (PKPD) model of furosemide, finally settling

on a three-compartment representation of the pharmacokinetics and a four-parameters

sigmoidal pharmacodynamic response that describes the urine production in response to

the drug.

In addition to that, a mathematical model of renal activity was needed. Two models were

shortlisted. One, more articulated and capable of describing several physiological events,

was discarded because it was too complex to integrate with the PKPD model. The second

model was simpler and described a first-order, negative-feedback response of the kidneys

to changes in plasma volume from its normal physiological level, which could be easily

integrated with the furosemide PKPD model.

Once the control simulation was set up, results showed that an automated MPC-

controlled diuretic administration can outperform standard diuretic treatment in case of

congestive heart failure by achieving comparatively higher level of decongestion in less

time.
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Chapter 1

Introduction

Heart failure (HF) is one of the most common causes for hospitalisation, especially in

elder population. In the United Kingdom alone, in 2019 more than 100,000 hospital ad-

missions were associated with heart failure, in a growing trend that was only stopped by

the dramatic emergence of the Covid-19 pandemic[1].

A common by-product of HF is fluid overload, in which case the condition is known

as congestive heart failure (CHF)[2]. Fluid retention can cause the activation of neuro-

humoral complexes that induces a state of increased renal sodium and water avidity that

results in an increased plasma volume, which then induces the further activation of the

same neurohumoral complexes, causing the further worsening of the patient’s prognosis[3]

(see Figure 1.1).

Figure 1.1: Mechanisms of sodium and water retention in patients with heart failure,
adapted from[4].

The most common approach for decongestion therapy in CHF patients is the adminis-
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2 CHAPTER 1. INTRODUCTION

tration of diuretic drugs. In particular, the first and most common approach requires the

use of a specific class of diuretics, the so-called loop diuretics, whose site of action is the

loop of Henle (Fig. 2.2). This approach, however, is undermined by the varied efficacy of

diuretics on CHF patients, deriving from their own decompensated renal function. This

results in the treatment plan being mostly dependent on the physician’s expertise[3, 4].

Our aim with this work is to devise, tune, and test an automated control system capa-

ble of adapting a CHF patient’s diuretic treatment based on the patient’s own physiology

in order to achieve a more efficient decongestion than what the standard clinical therapy

can offer. Particularly, we have elected to use a model predictive control (MPC) strat-

egy, which has already proven effective for automated insulin delivery in type-1 diabetic

patients[5, 6].

The most common loop diuretics are furosemide, torsemide, and bumetanide. We will

focus on the therapeutic effects of furosemide, since it is the chosen loop diuretic at the

Padua Univesity Hospital.



Chapter 2

Introduction to Renal Physiology

In order to understand the quantities and phenomenons involved in controlling the de-

congestion process, we need to establish some ground knowledge about renal physiology,

since the kidneys are the prime actors in the control of the balance of most body fluids.

2.1 Osmoregulation

Figure 2.1: Components of the
urinary tract[8].

Kidneys are the principal players in osmoregulation,

which is the maintenance and regulation of the or-

ganism’s internal balance, known as homeostasis, by

the organism itself in regards to the dynamic equi-

librium between fluids and dissolved materials such

as electrolytes[7].

Kidneys manage that balance through the con-

trol of body fluid volume, electrolyte concentration,

acid-base balance, and fluid osmolarity, by filtrat-

ing waste material out of blood. The product of

renal filtration is urine, which flows into two mus-

cular tubes, the ureteres, to be accumulated in the

bladder. Kidneys, ureters, and the bladder are part

of the urinary tract.

Healthy kidneys can filter about 150ml of blood every minute[8, 9].

2.1.1 Renal filtration

The functional unit of the kidney is the nephron, depicted in Figure 2.2. Each kidney has

over a million nephrons working simultaneously.

Each nephron can be functionally divided into two main components: Bowman’s capsule

3



4 CHAPTER 2. INTRODUCTION TO RENAL PHYSIOLOGY

and the tubule.

Figure 2.2: Model representation of a nephron[10].

Bowman’s capsule is the blind end of the tubule that wraps around a cluster of blood

capillaries, called the glomerulus. The blood in the glomerulus is grossly filtered by pass-

ing through the layers that make up the wall structure of Bowman’s capsule. The product

of this first filtration is called ultrafiltrate. It is mostly a by-product of plasma and is low

in protein.

The ultrafiltrate collected in Bowman’s capsule passes then through the three sections

of the tubule: the proximal tubule, the loop of Henle, and the distal tubule. In the

tubules the composition of the ultrafiltrate is further modified through the reabsorption

and secretion of those substances, such as electrolytes and proteins, that the body needs

to either preserve or excrete. The different sections of the tubules have different mech-

anisms of reabsorption and secretion, as well as preferred target molecules, but for the

purposes of this thesis, we will not need to explore in depth these differences.

Once the ultrafiltrate has passed through the tubule, it arrives to the collecting duct,

which collects the product out of several nephrons and leads the newly-made urine to

the ureters which take it out of the kidneys and onto the bladder, waiting for excretion

through urination[9].
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2.1.2 Hormonal regulation

The reabsorption of fluid and electrolytes is modulated by hormones, such as angiotensin

II, aldosterone, and the antidiuretic hormone (ADH).

Figure 2.3: ADH schematic[13].

The main role of ADH, also

known as vasopressin, is the main-

tenance of blood pressure and the

conservation of fluid volume in or-

der to keep a stable osmolarity by

promoting water reabsorption and

reducing urine output by the kid-

neys. The release of ADH is ex-

tremely easy to trigger, because

it is stored inside neurons within

the hypothalamus which possess

extremely responsive osmorecep-

tors that promote the secretion of

ADH in response even to slight el-

evations in osmolarity[11, 12].

The renin-angiotensin-aldosterone system (RAAS) consists in a hormonal interplay

that mainly aims to regulate sodium and potassium balance, fluid volume, and blood

pressure. Its activity affects not only renal activity, but also the brain and the circulatory

system. Among other things, excessive activation of RAAS increases the risk of cardio-

vascular diseases.

Renin is an enzyme produced by the kindey. Its main purpose is the conversion in the

liver of a protein, angiotensinogen, that activates the angiotensin I hormone which starts

a catalytic reaction that ends in the production of the angiotensin II hormone.

Angiotensin II has several effects on the organisms, such as inducing vase constric-

tion, therefore increasing blood pressure, and promoting the release of ADH and aldos-

terone[14].

The main biological action of aldosterone is the promotion of sodium retention by stimu-

lating the opening of ion channels along the renal tubules that allow for the reabsorption

of sodium into the blood stream in exchange for potassium, which in turn gets expelled

into the urine[15, 16, 17].



6 CHAPTER 2. INTRODUCTION TO RENAL PHYSIOLOGY

Figure 2.4: RAAS schematic[18].

2.2 Mechanisms of action of furosemide

Figure 2.5: Furosemide site of ac-
tion in the nephron, adapted from
[19].

The site of action of furosemide, as is the case

for all loop diuretics, is the ascending loop of

Henle.

The molecule of furosemide is capable of bind-

ing to the active site of the Na-K-2Cl (NKCC2)

cotransporter, thus inhibiting its ability to trans-

port sodium and chloride ions from the lumi-

nal side of the renal tubule back into the blood

stream. The blockade leads to a imbalance in os-

motic pressure that induces increased water ex-

cretion through a higher urine production[15, 19,

20].

The self-regulatory mechanisms of the kidney al-

low our bodies to recoup most of the Na+ that is

blocked in the loop of Henle, through reabsorption

in the distal tubule, while most of the water con-

tent in the filtrate is trapped in the tubule and is

channelled into the collecting duct, increasing urine

volume[21].
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Once challenge that is tied to the use of furosemide, is that the kidney can adapt to

its presence, as well as to that of other diuretic drugs, countering its effect even after

one administration[19, 21], thanks to a physiological phenomenon called diuretic braking.

Figure 2.6 gives for a visual representation of how the effectiveness of loop diuretics is

affected by repeated consecutive doses.

Figure 2.6: From[19]: Effects of repeated daily doses of a loop diuretic (LD) on NaCl
excretion, viewed in 6-hour blocks. Post-diuretic NaCl retention and the braking phe-
nomenon are shown. Natriuresis must exceed antinatriuresis to be of any effect.
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Chapter 3

Furosemide PKPD Modeling

3.1 Pharmacokinetics

In order to apply a model-based control strategy such as model predictive control, we

need a model that describes the patient, the drugs injected, and their interactions. This

is commonly achieved through the use of pharmacokinetic-pharmacodynamic (PKPD)

modelling.

The pharmacokinetic (PK) model of a drug quantitatively describes how body inter-

acts with administered substances for the entire duration of exposure, which is to say

“what the body does to the drug”. In particular, it examines the process of absorption,

distribution, and elimination of the drug in the body[22].

The pharmacokinetics of furosemide administered intravenously are effectively de-

scribed by a three-compartment model with zero-order input and first order elimina-

tion[23]. As shown in Figure 3.1, the three-compartment model includes a central com-

partment, which describes the plasma concentration of the drug, and two peripheral com-

partments that represent respectively highly and scarcely perfused tissues. The fourth

compartment represents the quantity of furosemide collected in urine. The output of in-

terest of our PK model is the urinary excretion rate of the drug.

The differential equations derived from the compartmental model are

Q̇c(t) = k21Qp1(t) + k31Qp2(t)− (k14 + kNR + k12 + k13)Qc(t) + k0Di.v.

Q̇p1(t) = k12Qc(t)− k21Qp1(t)

Q̇p2(t) = k13Qc(t)− k31Qp2(t)

Q̇u(t) = kRQc(t)

(3.1)

where the distribution rates are

k12 =
CLp1

Vc
k21 =

CLp1

Vp1
k13 =

CLp2

Vc
k31 =

CLp2

Vp2
kR = CLR

Vc
kNR = CLNR

Vc

9
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Figure 3.1: Furosemide PKPD compartmental model

Di.v. is the dose in milligrams of furosemide injected intravenously as a bolus; Qc,

Qu, Qp1, and Qp2 describe the amount in milligrams of furosemide stored respectively

in plasma, urine, and the two peripheral compartments; Vc [L] is the central volume of

distribution of the drug; CLR and CLNR [L/h] are the renal and non-renal clearances,

respectively; Vp1, Vp2, CLp1, and CLp2 represent the volume of distribution [L] and the

distribution clearance [L/h] of each peripheral compartment.

The PK parameters estimated in [23] are reported in Table 3.1. Variability (mean

± std) has been taken from the same work, where it was derived using a bootstrapping

approach.

Table 3.1: PK parameters

CLR 3.97 ± 0.21 L/h
Vc 5.97 ± 0.84 L

CLp1 1.10 ± 0.23 L/h
Vp1 18.1 ± 5.85 L

CLp2 2.55 ± 0.69 L/h
Vp2 3.01 ±0.43 L

CLNR 2.02 ± 0.32 L/h
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Figure 3.2: Furosemide pharmacokinetics: urinary excretion rate after one dose of 40mg
of furosemide.

Figure 3.3: Furosemide pharmacokinetics: cumulative amount of furosemide excreted
in urine after one dose of 40mg of furosemide.
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3.2 Pharmacodynamics

Pharmacodynamics (PD) describes the biochemical, physiologic, and molecular effects

effects that the drug has on the tissue of action and, more generally, the whole body.

Where pharmacokinetics deals with “what the body does to the drug”, pharmacodynam-

ics explores “what the drug does to the body”.[24]

In our case, we know that, when active, furosemide binds to the Na-K-2Cl (NKCC2)

symporter from the luminal side, inhibiting its ability to reabsorb sodium at the loop of

Henle. This causes an increase in both water and sodium excretion.

The observed pharmacodynamics can be characterised by a 4-parameter sigmoidal

function[25]:

Y =
a− d

1 + (X
c
)b

+ d (3.2)

Where Y is the measure of interest, either sodium or urine excretion rate; X is the

furosemide urinary excretion rate, which is derived from the PK model; a is the baseline

excretion rate of the response measure at zero furosemide excretion; b is the slope factor;

c is the furosemide excretion rate resulting from ED50; and d is the excretion rate of the

response measure at an infinite furosemide excretion rate.

Given the appropriate sets of parameters, Equation 3.2 can describe either the sodium

or the urine excretion response, because both follow the same behaviour in response to

furosemide.

The review done by Ponto and Schenwald[25] reports values from different studies

that examined the PD response in normal subjects, CHF patients, and patients with

chronic renal insufficiency. The average values of the parameters for subjects with CHF

are reported in Table 3.2.

Table 3.2: PD parameters for average CHF patient

Response a b c d

Urine volume [L/h] [mg/h] [L/h]

(4.47± 0.78) · 10−2 1.63± 0.05 4.46± 1.43 0.54± 0.07

Sodium response [mmol/h] [mg/h] [mmol/h]

(3.06± 4.40) · 10−4 1.80± 0.31 5.55± 1.83 (1.66± 0.74) · 10−2
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Figure 3.4: Sweep response of Equation 3.2 for the average patient

3.3 Simulated population

The population analysis performed by Van Wart et al.[23] identified that the most statis-

tically significant covariate to individualise this model is the subject’s level of renal func-

tionality, which can be modelled through creatinine clearance CLCr [mL/min], a quantity

that can be estimated using the Cockcroft-Gault formula (Equation 3.3, which requires

standard anthropometric data and a measurement of serum creatinine SCr [mg/dL]:

CLCr =
(140–age) · weight

72 · SCr

(·0.85 if female) (3.3)

It stands to reason that renal functionality has a direct impact on CLR, and therefore

on the behaviour of furosemide, since its site of action is the kidney. The relationship

between CLR and CLCr can be approximated with a linear function:

CLR ≈ 0.039 · CLCr (3.4)

Although compromised kidney function is often a by-product of heart failure, for this

work, we elected to consider patients with normal renal function, also considering that a

sever impairment of the renal system would have required extensive adjustments to the

kidney model discussed in Chapters 4 and 5.



14 CHAPTER 3. FUROSEMIDE PKPD MODELING

The pharmacodynamics of furosemide are much more variable than the pharmacoki-

netics, and at the moment, a complete population analysis for the PD model in literature

doesn’t exist. For what concerns the creation of a simulated population dataset, we have

assumed that all parameters follow a Gaussian distribution.

We also decided to not consider the sodium excretion, because of the impossibility to find

a model of renal function that could describe both the overall urine excretion as well as

the electrolyte content in urine.

The parameters for the simulated population are reported in Tables 3.3 and 3.4.

Table 3.3: PK Population parameters

Subject ClR ClNR VC Cld1 Vd1 Cld2 Vd2

[L/h] [L/h] [L] [L/h] [L] [L/h] [L]

0 3.97 2.02 5.97 1.10 18.10 2.55 3.01
1 3.87 1.97 5.82 1.07 7.91 0.89 2.93
2 3.93 2.00 5.91 1.09 17.92 2.94 2.98
3 4.04 2.05 6.07 1.12 20.00 4.20 3.06
4 5.02 2.55 7.55 1.39 12.74 2.62 3.81
5 3.37 1.71 5.07 0.93 17.89 2.95 2.56
6 5.37 2.73 8.08 1.49 30.76 3.37 4.07
7 4.14 2.10 6.22 1.15 24.03 2.76 3.14
8 2.74 1.39 4.12 0.76 15.57 3.29 2.08
9 4.72 2.40 7.10 1.31 13.87 3.49 3.58
10 5.15 2.62 7.74 1.43 16.47 1.78 3.90
11 2.69 1.37 4.05 0.75 12.50 2.94 2.04
12 3.79 1.93 5.70 1.05 21.07 3.34 2.87
13 5.04 2.57 7.58 1.40 16.00 2.59 3.82
14 3.26 1.66 4.90 0.90 3.63 2.78 2.47
15 3.95 2.01 5.94 1.10 26.07 3.16 3.00
16 3.33 1.69 5.01 0.92 19.19 3.34 2.52
17 2.87 1.46 4.32 0.80 23.11 2.63 2.18
18 3.82 1.95 5.75 1.06 16.56 2.95 2.90
19 2.49 1.27 3.75 0.69 15.02 1.41 1.89
20 3.54 1.80 5.32 0.98 14.71 2.96 2.68
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Table 3.4: PD population parameters - Urine output

Subject a b c d

[mL/h] [mg/h] [L/h]

0 44.70 1.63 4.45 0.54
1 37.74 1.63 3.93 0.39
2 53.19 1.69 4.57 0.41
3 45.44 1.60 4.11 0.63
4 56.56 1.63 3.28 0.44
5 48.82 1.61 2.76 0.63
6 47.98 1.67 3.55 0.56
7 45.01 1.64 3.16 0.45
8 42.89 1.61 5.36 0.63
9 43.71 1.58 3.88 0.66
10 31.50 1.54 5.45 0.7
11 41.00 1.63 5.43 0.33
12 27.02 1.69 3.97 0.45
13 48.83 1.74 1.51 0.56
14 41.65 1.66 5.59 0.4
15 20.47 1.59 4.74 0.69
16 38.71 1.63 4.72 0.54
17 55.67 1.66 7.36 0.49
18 61.14 1.58 2.57 0.56
19 43.18 1.64 6.82 0.47
20 52.05 1.60 2.97 0.63
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Chapter 4

Mathematical Models of Renal

Activity

The pharmacology of furosemide is only the first step for a complete model to describes

the process of decongestion. The PKPD model help us describing the organism’s response

to the drug, but it does not give a faithful representation of the renal function as a whole,

especially when no diuretic is administered.

Therefore, we focused on finding and evaluating mathematical models that accurately

described the renal system. Unfortunately, because of the severe physiological complexity

of the system itself, there are not many works that provide a full and working model that

would satisfy our needs.

In particular, most of the attempts recorded in literature were written in the ’70s and

’80s, and only a few considered the human renal system. In addition to that, we needed

a model that was not centred around the fluidodynamics and mechanical resistance of

the blood and urine vessels, but rather could predict urine excretion based on the water

inflow and the patient’s current level of hydration.

In the end, we selected two models that could answer our needs, and we focused our

analysis on the feasibility of adapting them to our work.

4.1 Uttamsingh, 1985

The first model, by Uttmasingh[26], is the most complex and the older of the two. It is a

complex body-fluid system model that gathers in a single model most of the key equations

that had been used to describe different aspects of renal function up until 1985.

Uttmasingh’s model is comprised of four interrelated physiological subsystem models

that represent hormonal and cardiovascular control and regulation of renal action for both

water, sodium, and potassium distribution.

17



18 CHAPTER 4. MATHEMATICAL MODELS OF RENAL ACTIVITY

Each of the four subsystems models an aspect of the physiological processes involved

in renal activity.

Figure 4.1: Schematic representation of Uttamsingh’s model

In 1997, Cloutman[27] revisited the model simplifying the cardiovascular and the fluid

balance blocks. We will review his modifications in the corresponding sections.

4.1.1 Kidney System

The kidney subsystem can be further divided into three blocks, corresponding to the three

sections of the tubule: proximal tubule, loop of Henle, and distal tubule.

The equations describe the entering flows and reabsorption rates of water and sodium

through each section of the tubule.

Proximal tubule (PT) equations:

FNa = GFR · NaP
1000

(4.1)

GTB = 5.815− 0.0357 ·NaP (4.2)

RNa,PT = GTB · FNa (4.3)

RW,PT = GTB ·GFR (4.4)

where RNa,PT and RW,PT are the reabsorption rates of sodium and water respectively,

along the proximal tubule; NaP is the plasma concentration of sodium; FNa is the filtration

rate of sodium into the proximal tubule; and GTB is the glomerular-tubular balance,

which is the linear relationship between proximal tubular reabsorption and glomerular

filtrarion rate GFR, and describes the phenomenon whereby if the GFR spontaneously

increases, the rate of water and solute resorption in the tubule proportionally increases,

thus maintaining the same fraction of the filtered load being resorbed[28, 29].

The GFR in this model is estimated through a linear piecewise function of the arterial

pressure PA (see Appendix A.1).
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Loop of Henle (LH) equations:

JNa,LH = FNa −RNa,PT (4.5)

JW,LH = GFR−RW,PT (4.6)

RW,LH = 0.65 · JW,LH − 0.01J2
W,LH (4.7)

RNa,LH = 0.8JNa,LH (4.8)

where, JW,LH and JNa,LH represent the entering flows of water and sodium, respec-

tively, into the loop of Henle.

Distal tubule (DT) equations:

JNa,DT = JNa,LH −RNa,LH (4.9)

JW,DT = JW,LH −RW,LH (4.10)

RW,DT = BW,DT · JW,DT (4.11)

where BW,DT is the fraction of water load reabsorbed in the distal tubule. It is a quantity

dependent on the concentration of the anti-diuretic hormone (ADH), and it is approx-

imated by a piecewise function. JW,DT , JNa,DT , RW,DT , and RNa,DT follow the same

nomenclature as before.

The outputs of interest of the system are the urine, sodium, and potassium outflows:

JU = JW,DT −RW,DT (4.12)

JNa = JNa,DT −RNa,DT (4.13)

JK = 0.107KP − 0.505 + UK,ALD (4.14)

where UK,ALD is the excretion rate of potassium due to aldosterone (ALD). The swept

responses of GFR, BW,DT , RNa,DT/JNa,DT , and UK,ALD are shown in Figure 4.2. The

piecewise functions that describe each quantity are fully reported in the Appendix A.

As we said, the kidney subsystem is divided into three sections, but since we are more

interested in the overall product of the filtration-reabsorption process, instead of what

happens in each section specifically, the equations can be rewritten to allow a clearer

picture of the interdependencies and the effects of the different variables.

JU = (1− f(ADH)) · (0.35GFR(0.036NaP − 4.8)+ (4.15)

0.01GFR2 · (0.036NaP )
2)
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JNa = JNa,DT −RNa,DT = JNa,DT · (1− f(ALD)) (4.16)

= 0.2GFR · NaP
100

· (0.036NaP − 4.8)(1− f(ALD))

JK = 0.1KP − 0.5 + fK(ALD) (4.17)

The equations themselves underline the effects of the hormones on the outputs of the

system:

� JU is reduced when there is a higher concentration of ADH, as the anti-diuretic

hormone promotes water retention;

� JNa is lower when aldosterone is released in the organism, which is mirrored by an

increase in the excretion of potassium, since aldosterone promotes sodium reabsorp-

tion on an almost one-to-one ration with potassium excretion.

We could further underline the major dependencies of each output:

JU = f(VEX , NaP , ADH) (4.18)

JNa = f(VEX , NaP , ALD) (4.19)

JK = f(KP , ALD) (4.20)

This shows how the urine and salt outflow are directly dependent on the extracellular

volume and the sodium concentration in plasma and that both quantities are controlled

by the presence of a hormone, ADH in the case of urine, and aldosterone in the case of

salt. The excretion of potassium is dependent on the potassium plasma concentration as

well as the quantity of aldosterone present.
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(a) GFR vs Arterial Pressure

(b) Fraction of water load reabsorbed in the distal tubule, function of ADH.
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(c) Reabsorbed sodium in the distal tubule over the rate of flow of sodium into the distal tubule, function

of ALD

(d) UK,ALD. Note: this is the same quantity fK,ALD from Eq 4.17

Figure 4.2: Generated graphs of the piecewise functions in the Kidney block. Done with
MATLAB®.
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(e) 1− f(ADH) from Eq. 4.15

(f) 1− f(ALD) from Eq. 4.16

Figure 4.3: Generated graphs of 1 − f(ADH) and 1 − f(ALD) from 4.15 and 4.16.
Note that f(ADH) = BW,DT and f(ALD) = RNa,DT/JNa,DT . Done with MATLAB®.
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4.1.2 Hormonal System

The hormone subsystem tracks the plasma concentrations of four main hormones involved

in renal activity: the anti-diuretic hormone (ADH or vasopressin), renin (R), angiotensin

II (A), and aldosterone (ALD).

dADH

dt
=

ADHS − ADH · ClADH

P
(4.21)

dR

dt
=

RS − 0.135R

P
(4.22)

=
0.0163− 0.0093JNa,DT − 0.135R

P
dA

dt
=

AS − 4.04A

P
(4.23)

=
583.3R · P − 4.04A

P
dALD

dt
= (

3.0f(ANGII) + 21.64KP − 55.5

4.0
− 0.62ALD) · 1

P
(4.24)

P is the plasma volume which is approximately 0.6 times the blood volume VB.

ADHS is the release rate of ADH and it is dependent on the variation of VEX ; ClADH

is the clearance rate of ADH; f(ANGII) is the function representing the release rate of

aldosterone, dependent on the concentration of angiotensin II. These three quantities are

approximated by piecewise functions, their swept responses are shown in Figure 4.4. The

piecewise functions that describe each quantity are fully reported in the Appendix A.

These equations show that all the hormone concentrations are dependent on the plasma

volume and therefore, as we will see in Section 4.1.3, they are dependent on the extracel-

lular fluid volume.

The interdependence of the RAAS system is clear as well, with the concentration

of renin influencing the formation of angiotensin (AS), which in turn determines the

excretion of aldosterone through the term f(ANGII), which represents the release rate

of aldosterone due to the concentration of angiotensin II in plasma.

Renin release RS is also dependent on the concentration of sodium in plasma, through

the quantity JNa,DT . Since aldosterone is ultimately influenced by renin, as we have just

seen, ALD is actually a function of both potassium and sodium concentrations.
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(a) ADH Clearance rate

(b) f(ANGII) from Eq. 4.24
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(c) ADH release rate

Figure 4.4: Generated graphs of the piecewise functions in the Hormone block. 4.4a and
4.4b were done with MATLAB®. 4.4c is taken directly from [27] as we have not been
able to replicated the ADHS function in MATLAB® because of its complexity.

4.1.3 Cardiovascular System

In Uttmasingh’s model, the cardiovascular block is complex and takes into consideration

several quantities that are difficult to estimate. A kidney simulator based on Uttmasingh’s

model by Cloutman[27], though, gives us a simplified version that can be acceptable for

our purposes. Uttmasingh’s original version is described in depth in Appendix A.

The most important output of this block is the arterial pressure PA, which is ultimately

dependent on the extracellular fluid volume VEX through the blood volume VB and the

mean systemic pressure PMS.

Cloutman’s equations for this block thus are:

P = 0.6 · VB (4.25)

VB = 0.33 · VEX (4.26)

PMS = 3.5(VB − 3) (4.27)

PA =
PMS

0.07
(4.28)
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4.1.4 Fluid Balance System

Lastly, the fluid balance block describes the rates of change of extracellular fluid volume,

extracellular sodium, and extracellular potassium in terms of their respective rates of

ingested and excreted quantities.

This is another block that was simplified by Cloutman in his model, where the only

significant equations reported are

dVEX

dt
= JW,ingested − JU (4.29)

dNaEX

dt
= JNa,ingested − JNa (4.30)

dKEX

dt
= JK,ingested − JK (4.31)

The simplification by Cloutman is in regards to the quantity VEX . Cloutman considers

the variation of external fluid volume as the direct difference between the rate at which

ingested water passes through the gut and the rate of urine formation, but this does not

take into account that the water ingested can also be deviated to intracellular spaces.

Uttmasingh’s model is more accurate on this point, by considering the water compartment

W of the whole body partitioned into an extracellular VEX and an intracellular VIN space.

The actual fluid balance is thus

dW

dt
= JW,ingested − JU (4.32)

By keeping into consideration the intracellular compartment, though, we must also keep

track of the rates of change of sodium NaIN and potassium KIN in the intracellular

compartment as well. In Uttmasingh’s model, these are considered constants in a dynamic

balance.

The electrolyte concentrations in both compartments then become

NaP = NaEX

VEX
NaI =

NaIN
VIN

KP = KEX

VEX
KI =

KIN

VIN

Which ensues that the equating osmolities are

NaEX +KEX + cEX

E
=

NaIn +KIN + cIN
VIN

where cEX and cIN are constants representing the osmotic effect of the remaining body

fluid compartments not modelled here.
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By rewriting

TEX = NaEX +KEX + cEX (4.33)

TIN = NaIn +KIN + cIN (4.34)

we can finally determine that

VEX = W (1 +
TIN

TEX

)−1 (4.35)

and

VIN = W (1 +
TEX

TIN

)−1 (4.36)

Unfortunately, Uttamsingh’s model does not provide a parametric estimation of the quan-

tities concerning the intracellular compartment, only average values for the constants,

without a variability measure.

4.1.5 Limitations

Uttmansingh’s model is a very interesting tool especially since it takes into consideration

that each section of the nephron has different reabsorption capabilities, which is inter-

esting because we know exactly which portion of the nephron is affected by furosemide.

Unfortunately though, the model is fitted to healthy subjects, and we don’t know if and

how the equation’s parameters change in the presence of congestive heart failure.

More importantly, though, while we know that the site of action of furosemide is the

loop of Henle, where the drug acts by inhibiting some electrolyte transporters, we have no

way of knowing, without experimentation, how to account for its presence in this model.

Furthermore, the PKPD model of furosemide does not account for the excretion of potas-

sium, which is reasonably bound to change in response to the drug, as one of the most

common side effects of loop diuretic therapy is hypokalemia.

Additionally, to compute the plasma concentration of ADH we need to also compute

the activation of ADH, ADHS, and those equations include a hidden variable, the plasma

osmolarity, which is not otherwise described within the model. Its estimation is not

entirely straightforward, and it requires additional information, such as glucose levels,

which would further complicate the model.

4.2 Gyenge’s Model, 2003

A much more simplified mathematical model of the kidney was proposed by Gyenge et

al. in 2003[30] as part of a bigger model for the transport of fluids and solutes in the
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body[31]. Figure 4.5 shows the schematic representation of the kidney model as well as

its relationship to the overall whole-body fluide and solute exchange.

Figure 4.5: Schematic representation of the kidney model (red) as well as its relation
to the overall whole body-fluid model by Gyenge et al.[30, 31]

The renal module developed by Gyenge assumes first-order, negative feedback response

to changes in plasma volume and plasma sodium content from the normal physiological

conditions. Hormonal activity is not explicitly formulated, and the excretion of elec-

trolytes other than sodium is proportional to the excretion of sodium itself.

The model describes two main phenomena: fluid excretion and electrolyte excretion.

4.2.1 Fluid Excretion

As we said, the fluid excretion equation assumes a first-order negative-feedback response

to the variation of the plasma volume P from its normal value PNC .
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The urinary output rate JU [mL h−1] therefore is

JU = kU · P − PNC

P
+ JU,NC (4.37)

JU,NC is the normal urinary output rate, which is about 60ml h−1 for an average 70-kg

human.

ku [mL h−1] is a flux rate that has been estimated to change in relation to if the subject

is in a condition of high hydration (P ≥ PNC) or dehydration (P < PNC). Therefore,

kU =

{
kD
U if P < PNC

kE
U if P ≥ PNC

(4.38)

(a) Urine excretion rate
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(b) Cumulative urine excretion

(c) Plasma volume

Figure 4.6: Output of Gyenge’s fluid block, considering a healthy patient with starting
plasma volume of 3.2L
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4.2.2 Sodium excretion

Assuming that renal clearance of sodium ClNa is proportional to the variation in sodium

concentration in plasma from its normal value ClNa,NC ,

ClNa =

(
kNa ·

NaP −NaP,NC

NaP,NC

+ ClNa,NC

)
· F (U) (4.39)

where kNa (ml h−1) is a proportionality constant.

F (U) is an empiric factor that couples sodium excretion with the urinary flow rate:

F (U) =

{
JU

JU,NC
if NaP < NaTP,NC

1 if NaP ≥ NaTP,NC

(4.40)

where NaTP,NC is the threshold sodium concentration in plasma, or the maximal value of

normal physiological range of plasma sodium concentration.

Since sodium clearance can also be written as

ClNa = NaU · JU
NaP

(4.41)

we can compute the sodium excretion rate JNa using Equation 4.39

JNa = NaU · JU (4.42)

=

(
kNa ·

NaP
NaP,NC

(NaP −NaP,NC) + ClNa,NC ·NaP

)
· F (U)

4.2.3 Limitations

As we have seen, Gyenge’s model is much more simplified than Cloutman’s, since it doesn’t

take into direct consideration the action of the several hormones involved in renal activity,

and it reduces the interdependencies between plasma volume and sodium concentration

to a single control action performed by the urine excretion on the sodium excretion.

Furthermore, as was the case with the previous model, we don’t have any information on

how the injection of furosemide can affect the equations that make up the model.

4.3 Model Comparison

While the two models are very different, they both unfortunately present two very impor-

tant limitations to our purposes, namely that they are fitted to the physiological behaviour

of healthy subjects, and that they don’t provide for the addition of the diuretic effects on

the system promoted by furosemide.
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The kidney is a very complicated biological machine, with plenty of interconnected

mechanisms that respond to the minimal change in the organism’s physiological balance

in order to ensure and maintain homeostasis. In the case of CHF, the equilibrium point is

offset and renal activity can be markedly impaired compared to that of a healthy subject.

This means that models of a healthy renal system are not accurate for our purposes.

We also know that because of the complexity of the homeostasis mechanisms, the

effects of furosemide can differ widely between patients and there is not a mathematical

model of the kidney that keeps it into account, therefore it is challenging to effectively

merge the physiological model with the furosemide PKPD model described in Chapter 3.

We thoroughly examined both renal mathematical models and we asked our clinical

partners for their opinion on them, in order to choose the one best suited to our needs.

It is important to note that our decision was influenced by several factors, and we were

affected most of all by the lack of one crucial ingredient: time.

In the end, we decided to discard Uttamsingh’s model, because, while on paper it

seems to be the most complete model of the two, its complexity makes it much more dif-

ficult to adapt on a short notice. In addition to that, as explained in Section 4.1.5, there

is one parameter, plasma osmolarity, that is required by the model but not estimated by

it, and which would require another thorough round of research to be able to estimate it

properly, which we could not afford doing.

Therefore, we settled on adapting Gyenge’s model to our purposes by trying to chain

its inputs to the PKPD outputs. Chapter 5 thoroughly explains Our process to achieve

that.
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Chapter 5

Integrating the Models

5.1 Integration with Gyenge’s model

Once we selected the renal activity model to implement, we had to integrate it with the

PKPD model of the drug.

As explained in Chapter 3, the pharamcodynamics of furosemide are modelled by

Equation 3.2

Y =
a− d

1 + (X
c
)b

+ d

where the output Y is the urinary excretion rate due to the action of furosemide.

As seen in Equation 4.37, in Gyenge’s model the final rate of urine production is the

sum of the average urine flow and an error directly dependent on the changes in plasma

volume from a physiological set point.

JU = kU · P − PNC

PNC

+ JU,NC

Therefore, to link the two models together, we swapped the average urine flow JU,NC

used by Gyenge with the output of the furosemide model, J(F ) = Y .

JU = kU · P − PNC

PNC

+ J(F ) (5.1)

We also decided to consider a simplified version of Gyenge’s model, discarding the

dependency on kU due to the state of hydration of the subject by keeping only the coef-

ficient linked to a higher hydration status.

35
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5.2 Disturbance

Even when patients are congested, they still drink and eat regularly, albeit usually with

a controlled low-sodium diet.The model introduced so far does not account for this inflow.

Drinking, sweating and water loss due to respiration are the most common distur-

bances that can act on the system.

Respiratory water loss is negligible, especially if we consider a temperature controlled

environment, and a patient who is not under physical exertion, which is a sensible assump-

tion for an hospedalised patient. By considering a controlled environment, we can also

consider sweating a negligible disturbance, as it would also be quite difficult to represent

through a mathematical model, because of the high variability in sweat production due

to external temperature, activity levels, and the overall characteristics of the subject.

On the other hand, drinking can be approximated by a more intuitive model, there-

fore, for our model, we only considered the disturbance caused by the subject drinking a

token amount of water every few hours.

We considered a very simple tri-compartmental model, representing the stomach, in-

testines, and plasma (Fig 5.1).

Figure 5.1: Drinking compartmental model

In this way, the won’t always be an outflow from the plasma compartment, since a

certain amount of fluid will replenish the plasma volume after the patient drinks some

water.

5.3 Complete Model

The final version of the model we want to implement therefore is comprised of three blocks

(Fig. 5.2):

� Furosemide: The PKPD model which computes the effect on the urinary flow forced

by the drug;
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� Kidneys: The block that describes the kidneys’ response to changes in plasma vol-

ume, and outputs the current plasma volume and urinary excretion rate;

� Drinking: The disturbance block that allows for plasma replenishing after the sub-

ject drinks water.

Figure 5.2: Simulink® final model scheme

We had to discard the modelling of salt excretion, because after consulting with clin-

ical experts it was deemed too inaccurate and correcting it would have required more

literature research and unfortunately our timetable didn’t allow for that.

Figure 5.3 shows the responses of the system in different conditions:

� Fig. 5.3a shows the system response without any diuretic and with a patient that

does not drink.

� Fig. 5.3b shows the system response without any diuretic, but with an intake of

0.5L of water every 9 hours.

� Fig. 5.4c shows the system response when there is not any water intake, but a

dose of 40mg of furosemide is administered every 6 hours.

� Fig. 5.4d shows the system response when the patient drinks 0.5L of water every

9 hours and is administered 40mg of furosemide every 6 hours.
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Figure 5.3: Simulation of the system under different conditions

(a) Plasma output for the average patient with no furosemide.

(b) Plasma output for the hydrated average patient without diuretic therapy.
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(c) Plasma output for the average patient, standard therapy (40mg furosemide every 6 hours).

(d) Plasma output for the hydrated average patient with standard diuretic therapy.

5.4 Final Population Parameters

With the addition of the Kidney and Drinking blocks, additional parameters are intro-

duced:
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� The coefficient kU from Equation 5.1. Since we have decided to only consider a

subject in a congested state, we have decided to use the parameter associated to a

state of elevated fluid volume, which in Gyenge’s work has the variability (mean ±
std)

kU = 1.250± 0.142L/h

� PNC , the plasma volume in normal condition, for the congested patient. The distri-

bution for this parameter is (mean ± std)

PNC = 4.7± 1.2L

Which is the distribution of plasma volume at hospital admission collected by a 2014

clinical study on blood volume alterations in CHF patients treated with furosemide

by the Mayo Clinic in Rochester, Minnesota[32].

� kSI and kIP were introduced by us when creating the drinking compartmental model.

Considering that simple water absorption is quite fast we decided to set kSI = 4h−1

and kIP = 2h−1 in order to have a relatively short time constant and keeping in

mind that the passage of water from stomach to intestine is faster, especially if the

subject is on an empty stomach. For the purpose of creating a population dataset,

we made an educated guess of a 30% inter-subject variance.

The average patient (Subject 0) is described by the parameters in Table 5.1

Table 5.1: Simulation parameters for the average patient

P
h
ar
m
ac
ok

in
et
ic
s ClR 3.97 L/h

P
h
ar
m
ac
o
d
y
n
am

ic
s

ClNR 2.02 L/h a 0.04 L/h
VC 5.97 L b 1.63
Cld1 1.10 L/h c 4.45 mg/h
Vd1 18.10 L d 0.54 L/h
Cld2 2.55 L/h
Vd2 3.01 L

D
ri
n
k kSI 4 h−1

K
id
n
ey kU 1.25 L/h

kIP 2 h−1 P0 4.7 L
KP0 0.27 h−1

The complete dataset is described in Tables 5.2 and 5.3.
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Table 5.2: PKPD population parameters

PK PD

Subject ClR ClNR VC Cld1 Vd1 Cld2 Vd2 a b c d

[L/h] [L/h] [L] [L/h] [L] [L/h] [L] [mL/h] [mg/h] [L/h]

0 3.97 2.02 5.97 1.10 18.10 2.55 3.01 44.70 1.63 4.45 0.54

1 3.87 1.97 5.82 1.07 7.91 0.89 2.93 37.74 1.63 3.93 0.39

2 3.93 2.00 5.91 1.09 17.92 2.94 2.98 53.19 1.69 4.57 0.41

3 4.04 2.05 6.07 1.12 20.00 4.20 3.06 45.44 1.60 4.11 0.63

4 5.02 2.55 7.55 1.39 12.74 2.62 3.81 56.56 1.63 3.28 0.44

5 3.37 1.71 5.07 0.93 17.89 2.95 2.56 48.82 1.61 2.76 0.63

6 5.37 2.73 8.08 1.49 30.76 3.37 4.07 47.89 1.67 3.55 0.56

7 4.14 2.10 6.22 1.15 24.03 2.76 3.14 45.01 1.64 3.16 0.45

8 2.74 1.39 4.12 0.76 15.57 3.29 2.08 42.89 1.61 5.36 0.63

9 4.72 2.40 7.10 1.31 13.87 3.49 3.58 43.71 1.58 3.88 0.66

10 5.15 2.62 7.74 1.43 16.47 1.78 3.90 31.50 1.54 5.45 0.70

11 2.69 1.37 4.05 0.75 12.50 2.94 2.04 41.00 1.63 5.43 0.33

12 3.79 1.93 5.70 1.05 21.07 3.34 2.87 27.02 1.69 3.97 0.45

13 5.04 2.57 7.58 1.40 16.00 2.59 3.82 48.83 1.74 1.51 0.56

14 3.26 1.66 4.90 0.90 3.63 2.78 2.47 41.65 1.66 5.59 0.40

15 3.95 2.01 5.94 1.10 26.07 3.16 3.00 20.47 1.59 4.74 0.69

16 3.33 1.69 5.01 0.92 19.19 3.34 2.52 38.71 1.63 4.72 0.54

17 2.87 1.46 4.32 0.80 23.11 2.63 2.18 55.67 1.66 7.36 0.49

18 3.82 1.95 5.75 1.06 16.56 2.95 2.90 61.14 1.58 2.57 0.56

19 2.49 1.27 3.75 0.69 15.02 1.41 1.89 43.18 1.64 6.82 0.47

20 3.54 1.80 5.32 0.98 14.71 2.96 2.68 52.05 1.60 2.97 0.63
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Table 5.3: Plasma-related population parameters

Kidneys Drink

Subject kU P0 kP0 kSI kIP

[L/h] [L] [h−1] [h−1] [h−1]

0 1.25 4.70 0.27 4.00 2.00

1 1.03 7.03 0.15 2.79 1.76

2 1.29 4.88 0.27 3.40 1.93

3 1.26 4.90 0.26 6.53 1.18

4 1.17 6.09 0.19 3.63 2.35

5 1.30 5.28 0.25 2.01 2.03

6 1.38 4.17 0.33 4.39 2.03

7 1.28 3.95 0.32 3.01 3.36

8 1.16 5.21 0.22 1.70 0.84

9 1.08 4.07 0.27 4.14 2.54

10 1.30 4.05 0.32 4.58 2.12

11 1.08 4.91 0.22 2.87 1.43

12 1.12 5.30 0.21 2.08 1.28

13 1.25 5.40 0.23 1.70 0.59

14 0.98 6.27 0.16 5.45 1.10

15 1.23 4.37 0.28 4.69 0.40

16 0.98 5.35 0.18 5.07 1.77

17 1.50 4.05 0.37 2.83 2.22

18 1.27 7.90 0.16 4.81 2.23

19 1.28 5.28 0.24 2.73 1.46

20 1.26 4.12 0.31 2.86 1.84
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5.5 Linearisation

We intend to apply to the system the model predictive control strategy, which will be

further explored in Chapter 6. We envision to use a strategy based on a linear model.

The model we have described thus far, though, presents some non-linearities, therefore

we have to linearise it before we can apply our control.

The linearisation process was done through the Model Linearizer application in Simulink®.

We consider two inputs:

� the amount of furosemide that is infused intravenously in a continuous stream, which

is also the quantity that we want to control;

� the amount of water drank by the subject at a given time, which is considered as a

disturbance.

The system has two outputs that are related but that will play different role in the

control algorithm:

� the current plasma volume of the subject, which is the quantity that we aim to

control, but cannot directly measure;

� their urine excretion rate, which is the quantity that we assume to be measurable.

The system was linearised around the working point where the expected plasma out-

put was yeq = 3.35L, with an expected furosemide input of ueq = 0.8mg/h. At equilibrium

the patient is not drinking constantly, therefore the disturbance is null.

The linearisation process requires the introduction of a perturbed state δx = x− xeq,

a perturbed input δu = u− ueq, and a perturbed output δy = y − yeq.

Thus the linearised system can be easily described through four matrices, A, B, C, and D.δẋ(t) = Aδx(t) + Bδu(t)

δẏ(t) = Cδx(t) +Dδu(t)
(5.2)

Our linearised system is described by the following matrices:
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A =



0.3679 0 0 0 0 0

0.4773 0.6065 0 0 0 0

0 0 0.6762 0.0124 0.1565 0

0 0 0.0377 0.9852 0.0040 0

0 0 0.0789 6.6071 · 10−4 0.8177 0

0.1493 0.3733 −1.2484 · 10−4 −1.0234 · 10−6 −1.3342 · 10−5 0.9070


(5.3)

B =



0 0.1580

0 0.0774

12.3872 0

0.3023 0

0.6568 0

−0.0010 0.0142


(5.4)

C =

[
0 0 0 0 0 1

0 0 0.0153 0 0 9.3750

]
(5.5)

D =

[
0 0

0 0

]
(5.6)

To compare the non-linear system and the linearised system we introduced a sinusoidal

30% perturbation on the drug input. The results are reported in Figure 5.5.

As we can see in the figure, the two systems have very similar responses. The non-

linear system is apparently less sensitive to the perturbations, probably because of the

hidden action of a Saturation Block in the Kidneys subsystem which prevents the urinary

output from being negative, as that would indicate a replenishment of plasma volume

from the urine stored in the bladder, which is physiologically impossible.

In order to implement our control strategy, we will also need to be able to estimate

the state of the system in each iteration, since in the non-linear system, the state is inac-

cessible.

Therefore, we need a state estimator. We chose to use a Kalman filter for this task, and

we directly employed the pre-programmed Kalman Filter Block available in Simulink®.

We can tune the Kalman filter to produce an estimated state that closely matches the

states we can extract from the linearised system. The results are reported in Figure 5.6.

We can see how the two versions of the system’s state match in steady-state.

As previously anticipated, the Kalman filter cannot access the plasma volume mea-
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surements, only the urinary flow, which is however a quantity directly connected to the

changes in plasma volume, and will therefore use the urinary flow measurements in order

to estimate the state.

Figure 5.5: Non-linear vs Linearised system



46 CHAPTER 5. INTEGRATING THE MODELS

Figure 5.6: State comparison between linearised system and Kalman filter



Chapter 6

Control

6.1 Model Predictive Control

The term “model predictive control” (MPC) encompasses a variety of closed-loop control

methods with the purpose of minimising a specific cost function.

More specifically, the key strategy of the MPC technique is the receding horizon, which

consists in choosing the optimal control sequence after evaluating the predicted effect of

all the possible sequences of N control actions that could be applied to system.

In other words, the MPC strategy is developed through cyclical steps:

1. Evaluate every possible sequence of N admissable control actions U(k), picking the

sequence that yields the optimal result, as defined by the cost function.

2. Apply only the first control action out of the selected sequence and wait for the new

measurement to be registered.

3. Re-evaluate all the possible sequences U(k) and select the optimal one.

4. Apply only the first action in the optimal sequence, wait for the next measurement

from the system, and go back to step 1.

It is important to note that a solution that produces a very low cost, may not be fea-

sible because of the system’s own limitations, such as the impossibility of administering

a negative dose of a drug. These limitations are described through mathematical con-

straints, which can be either hard or soft constraints. Hard constraints describe forbidden

conditions which must never be reached by the system, while soft constraints define a set

of conditions that are highly discouraged by the cost function but can still be reached by

the system in order to find at least one feasible solution.
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Figure 6.1: MPC Controller Scheme

The key elements needed to describe an MPC therefore are:

� A mathematical model of the system to be controlled,

� A cost function to optimise,

� A set of constraints

The mathematical model we will be considering is of course the linearised model that

has been described thus far in Chapter 5, defined by the Equations 5.3 through 5.6.

As previously mentioned, the system has two inputs and two outputs. However, they all

have different roles in our control strategy. Of the two inputs, the only one we aim to

control is the amount of furosemide administered to the patient, while the other input,

deriving from the patient drinking water, is considered a known, measurable disturbance.

Therefore, for what concerns the controller, there system is single input.

Likewise, while the model includes two outputs, the plasma volume and the urinary

flow, only the latter is measurable and therefore accessible to the state estimator and the

controller. Hence, the MPC will only consider one output, even though the plant will

produce two.

Thus, for the purpose of control, this system is single input, single output (SISO).

The cost function (Equation 6.1) is a quadratic cost function for reference tracking,

which means that we want the MPC to track a reference signal in output y0, but without
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straying too much from a reasonable, pre-determined, input u0.

J =
N−1∑
i=0

[( ŷ(k + i)− y0(k + i))TQ(ŷ(k + i)− y0(k + i))+ (6.1)

(u(k + i)− u0(k + i))TR(u(k + i)− u0(k + i))
]

where ŷ(k+ i) is the predicted output at time k+ i in response to the previous control

action u(k + i− 1), and u(k + i) is the control action delivered at time k + i.

Q and R are the parameters that regulate how aggressive the control will be. Since

we are dealing with a SISO system, Q, R ∈ R1, and we can rewrite Equation 6.1 as

J =
N−1∑
i=0

[
Q

R
(ŷ(k + i)− y0(k + i))2 + (u(k + i)− u0(k + i))2

]
(6.2)

This underlines how the parameter Q/R regulates the controller’s aggressiveness. If

Q is higher than R, the controller will have a more aggressive approach because it will

be less penalised for the control actions that deviate farther from u0, while it will cost

more to deviate from the target output y0. On the other hand, if R is higher than Q, the

MPC algorithm will favour solutions that do not impose control actions much different

from the reference.

Lastly, we had to set a hard constraint on the input so that the amount of drug in-

jected could not be negative, since once the drug is delivered, it cannot be taken out of

the body. So, our constraint is

u ≥ 0 (6.3)

And in the linearised system, it becomes

δu ≥ ueq (6.4)

It is important to note that implementing the strategy as it has been described until

now will not allow us to perfectly match the output we are tracking. This is because while

the MPC tries to match the reference output profile as close as possible, the cost function

penalises the control actions that are furthest from the reference input profile. The MPC

has to reach a compromise and that results in an output that will always present an offset

from the actual reference.

The offset can be removed by adding an integral action to the controller, but we will

not implement this technique because of limited time.
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6.2 Results

6.2.1 Average Subject

By applying an MPC controller to the system we wanted to obtain a better performance

than what the standard diuretic therapy could achieve (Figure 6.2).

Figure 6.2: Plasma output for the hydrated average patient with standard diuretic ther-
apy (40mg furosemide every 6 hours).

Figure 6.3 shows clear improvements in performance with the employment of an MPC

controller with respect to the standard case. The two figures are also meant to show how

different tunings of the controller, through the cost parameters Q and R, can change the

output.

In Figure 6.3a, we set Q = 0.1 and R = 1, therefore any deviance from the input

reference is penalised by the cost function more than any deviance from the tracking

reference. As a consequence, the controller doesn’t have a very aggressive approach, and

there are smaller peaks in the control profile. In Figure 6.3b, on the other hand, the

MPC was set to a more aggressive behaviour (Q = 1, R = 0.1), thus penalising more the

distance from the tracking reference, which results in higher control actions that allow

the system to maintain a smaller offset in output.
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(a) MPC output and control actions executed. The MPC is tuned to be less aggressive.

(b) MPC output and control actions executed. The MPC is tuned to be more aggressive.

Figure 6.3: Results of the control actions with different tunings for the average patient.
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6.2.2 Population Simulation

Finally, we run the simulation on the entire population. The results are shown in Figure

6.4.

It is even more clear that the current version of the MPC, without an integral action, is

unable to reach the target plasma volume. The greater the distance between the original

conditions used for the linearisation, the greater is the offset. Still, most of the subjects

reach a steady-state plasma volume within the 2.5-3.9L range that was the expected

plasma volume at discharge for the patients in the Mayo Clinic study[32], where the

actual range of plasma volume at discharge was 3.0-5.9L.

Figure 6.4: Simulated population - MPC results. The yellow area denotes ±1 std con-
fidence interval. In bold, the average patient.
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Conclusion

When we started this project, we knew that it was a promising and ambitious project and

that we would not be able to address all the aspects of diuretic therapy against congestion

in patients with heart failure.

Indeed, we encountered several challenges.

First and foremost, a lack of contemporary literature on furosemide and its PKPD

description through a reliable mathematical model. Most of the pharmacology research

on the drug was made in the 1970s and 1980s, with results that often were not comparable

from study to study, especially for what concerns the estimation of the parameters needed

for a working mathematical model. It is safe to assume that new insights on furosemide

would be possible if PKPD models were to be reassessed using the pharmaceutical tech-

niques available today, but there is currently a lack of a drive to further explore such a

clinically established drug.

Moreover, the renal system is one of the most complex biological systems in the human

body. So much so, that some of its workings are still being studied nowadays. This, of

course, means that reliable and complete mathematical models of the kidneys and the

renal system are elusive, especially if one is not directly interested in the more mechanical

descriptions of the fluidodynamics involved in renal activity. Because of this, as discussed

in Chapter 4, we only managed to find two models that could be adapted to our purposes.

Another critical point was the modelling of the transportation of liquids within the

human organism. This concept was simplified in this work, but the total fluid volume

within a human body is comprised of two major compartments: the intracellular fluid

volume and the extracellular fluid volume. Plasma can be considered a portion of the

latter.

There are constantly exchanges between these compartments, which are physiologi-

cally controlled by several different mechanisms, and the estimation of the three volumes
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is not straightforward and therefore translating this concepts into workable mathematical

models is challenging.

In this work, we chose to consider the plasma compartment on its own, with the under-

standing that reality is much more complex and, ideally, the existence of the extracellular

fluid compartment should not be discarded.

Figure 7.1: Schematic representation of the exchanges between fluid compartments in
the body. Not represented, the intercorrelations between the ion concentrations and the
rates of exchange between compartments.

Additionally, this project was concerned with dealing with congestive heart failure,

which is a complex and multifaced health condition that complicates matters extensively.

Most of the literature that has been consulted for this work, about both the renal system

and furosemide, focuses on healty subjects, which have remarkably different responses

than CHF patients, as was confirmed by our clinical partners.

Heart failure deeply imbalances the activity of the cardiac and renal systems, and

using a model which is validated only against data collected from healthy individuals is

a non-negligible bias, although it was a necessary starting point.

In spite of all these challenges and issues, which, understandably, could not be all fully

addressed within the scope and the limited time frame of this work, we still successfully

managed to set up a model that integrated both renal activity and its response to di-

uretic treatment in the form of furosemide delivery. In addition to that we successfully

introduced a control algorithm that managed to produce a better outcome in terms of
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decongestion than what the most common clinical therapy provides.

Although this work is just the opening act of the research on automatic control of

diuretic therapy against congestion in heart failure patients, we have shown that it is a

feasible endeavour and we have set up the groundwork on which we can keep building to

achieve more and more accurate results.
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Appendix A

Uttamsingh’s Model, Extended

As seen in Chapter 4, several of the functions that make up the Kidney and Hormonal

subsystems are piecewise functions. Here are reported the extended equations that define

those quantities.

A.1 Kidney System

Glomerular filtration rate (GFR), dependent on the arterial pressure PA:

GFR =



0.0 if PA ≤ 20.0 mmHg

1.29PA − 38.4 if 20.0 < PA ≤ 75.0 mmHg

−8.08 · 10−3P 2
A + 2.195PA − 13.6 if 75.0 < PA ≤ 120.0 mmHg

0.035PA + 129.2 if PA > 120 mmHg

(A.1)

Fraction of water load reabsorbed in the distal tubule, dependent on the concentration

of antidiuretic hormone ADH (BW,DT = f(ADH)):

BW,DT =f(ADH) =

0.0 if ADH ≤ 0.765 munits · L−1

0.383ADH − 0.293 if 0.765 < ADH ≤ 3.0 munits · L−1

−38.3 · 10−3ADH2 + 0.364ADH + 0.109 if 3.0 < ADH ≤ 15.0 munits · L−1

1.2 · 10−3ADH + 0.9653 if ADH > 5.0 munits · L−1

(A.2)

Fraction of reabsorbed sodium in the distal tubule over the rate of flow of sodium

into the distal tubule, dependent on the concentration of aldosterone ALD (
RNa,DT

JNa,DT
=

f(ALD)):

59



60 APPENDIX A. UTTAMSINGH’S MODEL, EXTENDED

RNa,DT

JNa,DT

= f(ALD) =



0.6 if ALD ≤ 0 ng · L−1

0.003ALD − 0.596 if 0 < ALD ≤ 85.0 ng · L−1

0.21 · 10−3ALD + 0.833 if 85.0 < ALD ≤ 800.0 ng · L−1

1 if ALD > 800.0 ng · L−1

(A.3)

Potassium excretion rate due to aldosterone (UK,ALD = fK(ALD))

UK,ALD = fK(ALD) =

0.28 · 10−3ALD + 6.2 · 10−3 if ALD ≤ 85.0 ng · L−1

0.09 · 10−3ALD + 22.4 · 10−3 if ALD > 85.0 ng · L−1
(A.4)

A.2 Hormonal System

The control of ADH concentration is the section of this model that is most difficult to

represent in a graph, because the release rate for ADH, ADHS is a piecewise function that

depends on two variables that are they themselves the outputs of two separate piecewise

functions of different variables.

ADHS =

(17∆VEX · ADHSV + ADHSP )(17∆VEX + 1)−1 if POS > 299.6 mOsm · L−1

and ∆VEX > 2.01 L

((33∆VEX − 32)ADHSV + ADHSP )(33∆VEX − 31)−1 if POS > 299.6 mOsm · L−1

and 1 < ∆VEX ≤ 2 L

1
2
(ADHSV + ADHSP ) for all other conditions

(A.5)

where POS is the plasma osmolarity; and ADHSV and ADHSP are respectively the

release rate for ADH due to deviations of the extracellular fluid ∆VEX = VEX − VEX,NC

from the normal volume VEX,NC , and the release rate of ADH due to the changes in

plasma osmolarity, modelled as a dependency on the concentration of sodium in plasma

NaP .

ADHSV =



0.0 if ∆VEX ≥ 1.8 L

0.15− 0.083∆VEX if 1.8 > ∆VEX ≥ 1.0 L

0.813− 0.75∆VEX if 1 > ∆VEX ≥ −1.2 L

1.71 if ∆− 1.2 > VEX L

(A.6)
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Figure A.1: Block diagram of the cardiovascular subsystem from[26]. Blocks: 1 - blood
volume, 2 - mean systemic pressure, 3 - total peripheral resistance, 4 - cardiac output, 5
- arterial pressure.

ADHSP =

0.73NaP − 103.34 if NaP ≥ 141.9 mOsm · L−1

0.06NaP − 8.04 if NaP < 141.9 mOsm · L−1
(A.7)

The other function dependent on the level of ADH present in plasma is the rate of

ADH clearance ClADH , which is approximated by the function

ClADH =

0.206 if ADH > 4.0 munits · L−1

0.374− 0.042ADH if ADH ≤ 4.0 munits · L−1
(A.8)

Finally, the aldosterone activation due to the level of angiotensin II (A) seen in Eq.

4.24 is approximated by

f(ANGII) =


A if A < 18.0 ng · L−1

4.43A− 61.7 if 18.0 ≤ A < 34.0 ng · L−1

0.78A+ 62.5 if A ≥ 34.0 ng · L−1

(A.9)

A.3 Cardiovascular System

The cardiovascular subsystem modelled by Uttamsingh is quite more complex than what

we have considered in Chapter 4.1.3.
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A.3.1 Block 1: Blood Volume

The blood volume (Block 1 in Figure A.1) represents an empirical relationship between

VB and the extracellular fluid volume VEX such that

VB =

0.33VEX if VEX < 21 L

0.015VEX if vEX ≥ 21 L
(A.10)

A.3.2 Block 2: Mean Systemic Pressure

The mean systemic pressure PMS is dependent on blood volume and described as

PMS = 3.5(VB − 3) (A.11)

A.3.3 Block 3: Total Peripheral Resistance

The total peripheral resistance TPR to the blood flow of Block 3 was not considered by

Cloutman and is dependent on the level of angiotensin II in plasma.

TPR =

19 + 0.037A if A ≤ 27 ng · L−1

12.2 + 5.44 logA10 if A > 27 ng · L−1
(A.12)

A.3.4 Block 4: Cardiac Output

The cardiac output (Block 4) is the most complex section of the system. It depends on

two curves, one relating the venous return V R to the right atrial pressure PRA and PMS,

the other relating the cardiac output CO to both PRA and a generalised index of cardiac

effectiveness CE:

V R = f(PRA, PMS) (A.13)

CO = g(PRA, CE) (A.14)

In particular, Uttamsingh identifies a specific curve for each of these families. For Eq.

A.13:

V R =
PMS − PRA

RV R

(A.15)

where RV R = α is the return venous resistance, with α a constant parameter.

For Eq. A.14, the selected function g has significant non linearities and it is approxi-

mated by four piecewise linear equations of the form

CO = aiPRA + bi (A.16)
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where ai and bi change based on the operating ranges of both PRA and CE. The possible

pairs (ai,bi) associated with each combination of ranges are provided in Table A.1.

CE is equally complex to approximate, as it is dependent on both sodium and potas-

sium concentrations in plasma:

CE =
1

2
(CENa + CEK) (A.17)

CEK =

1.0 if KP < 6.5 mOsm · L−1

−0.065KP + 1.43 if KP ≥ 6.5 mOsm · L−1
(A.18)

CENa =

1.0 if NaP < 148.0 mOsm · L−1

−0.0125NaP + 2.85 if NaP ≥ 148.0 mOsm · L−1
(A.19)

Heart performance balances venous return and cardiac output, according to the Frank-

Starling law. So, the operating right atrial pressure PRA,eq is given by solving

f(PRA,eq, PMS) = g(PRA,eq, CE) (A.20)

which, if using the equations above, solves to

PRA,eq =
PMS − biRV R

1 + aiRV R

(A.21)

Once computed, PRA,eq can be used to calculate CO from Equation A.16.

A.3.5 Block 5: Arterial Pressure

Finally, the arterial pressure, which depends on the cardiac output and the total peripheral

re is such that

PA = CO · TPR (A.22)

Table A.1: Parameters (ai,bi) as functions of the operating ranges of PRA and CE.

PRA ≤ 0 0 < PRA ≤ 2 2 < PRA ≤ 4 PRA > 4

CE a1 b1 a2 b2 a3 b3 a4 b4

CE > 0.85 0 0 3.0 5.250 0.875 9.50 0 13.00

0.85 ≥ CE > 0.62 0 0 2.50 3.75 0.625 7.50 0 8.75

0.62 > CE 0 0 1.7 2.125 0.375 4.75 0 6.25
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