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Abstract
In the field of Natural Language Processing, word embeddings are fundamen-
tal tools to represent the semantic relations among words. These tools are
built by training learning algorithms on large corpora of textual data, which
often reflect different types of biases and cultural peculiarities inherited by
the society itself. Since word embeddings are the state-of-the-art representa-
tions in NLP tasks, biases are likely to be carried over by Machine Learning
algorithms, which may, in turn, reinforce them. The present work lever-
ages sparse optimization techniques to find a transformation among word
embeddings trained on different corpora, able to highlight different types of
biases in the data. Moreover, this study attempts to analyze the transformed
data in order to detect the presence of cultural differences, both known and
unknown.
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Introduction

Natural language processing (NLP) is a sub-field of artificial intelligence that
is concerned with how computers can process, understand and generate natu-
ral language ((Kaddari et al., 2021)). We could consider the adjective natural
as opposed to artificial, a characteristic proper of symbolic languages of logic
and mathematics, whose sintax is given by explicit and agreed rules ((Pi-
cardi, 1999)). On the other hand, natural language is full of contradictions,
ambiguities, exceptions and it is not always logical. We could say that the
ambitious aim of NLP is indeed to explain natural language by using artifi-
cial language.
Most Natural Language Processing (NLP) algorithms nowadays rely on vec-
torial representations of words, called word embeddings . It is well known
that such fundamental representations inherit cultural and social traits from
data they are trained on, giving rise to various problematic situations. First,
the distortion of word embeddings due to cultural peculiarities of the spe-
cific textual data might lead to various types of error in NLP tasks. Second,
dangerous prejudice can be propagated and amplified by word embeddings,
employed by systems massively used by millions of users in everyday life,
influencing their perception of the world.
The goal of the present thesis is to provide a method to automatically detect
when and how cultural influence hidden in data affects the inner structure
of words embeddings, causing a phenomenon we call cultural semantic
conditioning. Our method is based on alignment , a map between two
different embedding spaces, applied by multiplying each vector of the source
space by a transformation matrix W. By the resolution of nonlinear optimiza-
tion problems, we compute different transformation matrices, which should
place the images of word vectors more distant to the target vector if they are
more likely to be subject to cultural semantic conditioning, and viceversa.
By applying such new transformation, we manage to connect embeddings
trained on different textual corpora, and then to quantify the cultural se-
mantic conditioning over all its common words by using different measures
we propose in this work.
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The thesis is structured into two parts: part I consists of a general overview
of the theory we rely on in our research, while the part II illustrates our
contributions and the results of our experiments. More specifically, part I is
made up by three chapters: in the chapter 1 we explore word embeddings,
their properties, and popular models used to generate them; in the chapter
2, we overview linear and nonlinear optimization models, focusing on the
FW’s method in the end; in chapter 3 we investigate the phenomenon of
cultural semantic conditioning, relying on renowned research works. Then,
the part II is divided into chapter 4, which delves into our idea and our new
contributions, and chapter 5, containing the results of our experiments.
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Part I

The Backround
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Chapter 1

Word Embeddings: A General
Overview

The term word embedding denotes the vectorial representation of words
widely used in the field of NLP, made up by particularly dense vectors. Math-
ematically, it can be seen as a mapping e from a vocabulary D = {wi}i=i,...N ,
a set of N words, to a d-dimensional vectorial space V = {w⃗i}i=i,...N ((Juraf-
sky and Martin, 2000)).

e : D −−−−−−→
w 7→e(w)=w⃗

V

As a result, V ∼= Rd, where d can take different values: the most common are
50, 100, 200, 300. Usually, V ∼= R300, since 300 is the most commonly used
dimensionality in various studies ((Yin and Shen, 2018)). Word embeddings
are built on vector semantics.

1.1 Vector Semantics and the Distributional Hy-
pothesis

The distributional hypothesis Vector semantics is the model used to
represent words meaning in NLP, and it is based on the distributional
hypothesis, according to which, in summary, linguistic items with similar
distributions have similar meanings.
This theory has roots in several studies starting in the 1950s in the field
of linguistic. The groundbreaking idea that the meaning of a word can be
represented as a point in space is due to Osgood et al. ((1957)). In their
revolutionary work, The Measurement of Meaning, they notice that it is pos-
sible to retrieve a 3-dimensional vector from a word, by assigning it ratings
on three different scales, decided by the authors.
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On the other hand, other scholars in these years help to investigate a new re-
search area, that is the Distributional Semantics. The key concept behind
this new branch of linguistic is the idea that it is possible to study linguistic
elements starting from their distributional properties (distributional hypoth-
esis). Harris ((1954)) gives an other important contribution with his work
Distributional Structure, published in 1954, where he write:

Here we will discuss how each language can be described in terms
of a distributional structure, i.e. in terms of the occurrence of
parts (ultimately sounds) relative to other parts, and how this
description is complete without intrusion of other features such
as history or meaning.

In the same years, also Firth ((1957)) and Joos ((1950)) support the same
view in their works. According to them, the language usage is fundamental
to decipher the meaning of the word, which depends on its context. Conse-
quently, words which are used in the same context are likely to be semanti-
cally similar.
In order to better understand, let us consider the following incomplete sen-
tences:

1. Can I use your ?

2. Sure, the is in the living room.

3. Shhh, he’s on the .

4. Pick up the and call me.

While many words can appear in some of these contexts, only the words
which can appear in all of them are likely to be synonimous. For example,
words like sofa in 1., 2., and 3., television in 1., and 2., bathroom only in 1.
belong to a similar semantic fields but they are not equivalent. In the same
way, a word like volcano which cannot appear in none of these sentences
belongs to a completely different semantic field.
In contrast, telephone and dog and bone have exactly the same meaning, and
they can occur in all of the four sentences.

Vector semantics Vector semantics derives from the application of linear
algebra tools to distributional semantics. Indeed, this model collects dis-
tributional information in high-dimensional vectors, using large samples of
language data ((Rieger, 1991)). By using different types of algorithms, as we
will see in the following sections, each word is matched to a vector accordingly
the above-mentioned principle.
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1.2 Semantic and syntactic properties of em-
beddings

1.2.1 Cosine Similarity Measure

In this vector space, beyond the usual euclidean distance, it is possible to
define the measure of cosine similarity, which highlights both the distribu-
tional and the semantic similarity between two vectors. Let v, w ∈ D be two
words and let v⃗, w⃗ ∈ V be the corresponding vectors. The cosine similarity
between v⃗ and w⃗ is the cosine of the angle between the vectors, and it can
be computed as ((Jurafsky and Martin, 2000)):

cos(v⃗, w⃗) =
v⃗ · w⃗

∥v⃗∥2∥w⃗∥2

Obviously, cos(v⃗, w⃗) ∈ [−1, 1]. When two words are similar, the cosine is
larger, which implies that the angle between them is smaller. For example,
let us consider the pre-trained embedding given by 50-dimensional GloVe
word vectors ((Atienza, 2018)). We have that:

cos(
−−−−→
father,

−−−−→
mother) = 0.890903844289

cos(
−−→
ball,

−−−−−−→
crocodile) = 0.274392462614

Indeed, the words father and mother are semantically more similar than ball
and crocodile.

1.2.2 Analogy

Another semantic property of embeddings worth mentioning is the analogy,
which is able to capture relational meanings ((Jurafsky and Martin, 2000)).

Origin of the concept In 1973, Rumelhart and Abrahamson ((1973)) first
show that sets of concepts can be related by analogical relationships in their
work A Model for Analogical Reasoning. These analogies can be solved using
the parallelogram model through simple vectorial operations. In more recent
times, this model is applied to famous pretrained embeddings (as Word2Vec
((Mikolov et al., 2013a)) or GloVe vectors ((Levy et al., 2015a)) and turned
out to be very effective in bringing out relations of different nature among
words.
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Definition If we consider three words a, b, c we can find the solution
x of the analogy a : b = c : x (a is to b as c is to x) by computing
argminx d(x, b⃗− a⃗+ c⃗), where d is the euclidean distance ((Jurafsky and
Martin, 2000)). Given the optimal result d, we can also write b⃗− a⃗+ c⃗ ≈ d⃗.
Let us consider again the pre-trained word embedding given by 50-dimensional
GloVe word vectors ((Zhang et al., 2021)). We can observe:

−−−−→woman−−−→man+−→son ≈
−−−−−−→
daughter

The analogy in this case captures the semantic relation of the pair (man,
woman) which is of the type (male, female), and transposes it on new words.

−−−−→
China−

−−−−−→
Beijing +

−−−−→
Tokyo ≈

−−−−→
Japan

Now, the semantic relation represented by this operation is of the type
(country, capital).

−−−→
worst−

−→
bad+

−→
big ≈

−−−−→
biggest

On the other hand, in this last example, it is possible to observe the inter-
polation of the syntactic relation of the type (basic form, superlative).

1.3 Models
The term embedding is given to a specific type of vectorial representation,
where the vectors are particularly short and dense. Despite this current
conformation, the first experiments to construct vectorial representations of
words are based on the one hot encoding, producing sparse vectors whose
length was given by the size of the vocabulary, usually much more than 300
((Jurafsky and Martin, 2000)).
One of the most successful tools used to build word embeddings is Word2Vec,
introduced by the groundbreaking work Efficient Estimation of Word Repre-
sentations in Vector Space by Mikolov et al. ((2013b)) in 2013. Word2Vec is
a group of models, based on different neural architectures: CBOW model
and Skip-Gram model, which are better explained in the section 1.3. After
the release of Word2Vec tool, one of the best more recent embedding model
is Stanford’s GloVe ((Pennington et al., 2014)), which is based on a different
learning algorithm.
Finally, it is important to mention that both Word2Vec and GloVe models
produce static embeddings, namely they do not change depending on the
context of the word. More recently, learning dynamic contextual embed-
dings have been trained, like the popular family of BERT representations
((Jurafsky and Martin, 2000)).
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1.3.1 One Hot Encoding

One hot encoding representation consists of binary vectors of the same size
of the vocabulary D. Each word corresponds to a vector containing all zero
values except the index of the word itself in the vocabulary, which is marked
with a 1 ((Med, 2020)). All the vectors are orthogonal and equally dissimilar
to each other, which is also one of the limitations of this method.
Now, for instance, let us consider as a vocabulary the following sentence:

I left home last summer and I went to Paris and Rome.

|D| = 10, which means that each vector has 10 components. Assuming the
indices of the words in the vocabulary are given by their order of appearance
in the sentence, the one hot encoding representation becomes:

I [1 0 0 0 0 0 0 0 0 0]
left [0 1 0 0 0 0 0 0 0 0]
home [0 0 1 0 0 0 0 0 0 0]
last [0 0 0 1 0 0 0 0 0 0]
summer [0 0 0 0 1 0 0 0 0 0]
and [0 0 0 0 0 1 0 0 0 0]
went [0 0 0 0 0 0 1 0 0 0]
to [0 0 0 0 0 0 0 1 0 0]
Paris [0 0 0 0 0 0 0 0 1 0]
Rome [0 0 0 0 0 0 0 0 0 1]

Pros and cons On the one hand, one hot encoded vectors are highly
intuitive and easy to compute. On the other hand, they require a significant
amount of memory when the vocabulary is large, and, in addition, this type
of word representation loses the inner meaning of the word in a sentence,
since, by its nature, it does not consider a word’s context. Equivalently, it
does not emphasize the semantic relation between words, since, as previously
mentioned, every vector is equally to any other ((Gupta, 2022)) ((Shabou,
2020)). In this regard, let us consider the words of the example: Paris and
Rome, which are both names of european capitals, should result more similar
than Paris and summer, which are respectively a city and a season.

1.3.2 CBOW Model

Creating word representations can be considered as a learning task, as shown
in the paper of Mikolov et al. ((2013b)), which presents two learning model
architectures. The first one is the Continuous Bag-of-Words (or CBOW)
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model, which tries to predict the target word based on the surrounding words,
named context words ((Madhukar, 2020)).

Representation of center and context words Given a text corpus, let
us consider a sliding window of size h, moving one word at time. At each
step, the window contains a center word and h− 1 context words.
Let us provide an example: given h = 5 and the following sentence as corpus:

I love giraffes because I love their long necks

if we take giraffes as the center word we obtain:

I love giraffes because I love their long necks

namely, in this case the 4 context words are I, love, because, and I again. The
vocabulary D of this corpus is made up by I, love, giraffes, because, their,
long, necks, whose corresponding one hot encoded 7-dimensional vectors are:

I [1 0 0 0 0 0 0]
love [0 1 0 0 0 0 0]
giraffes [0 0 1 0 0 0 0]
because [0 0 0 1 0 0 0]
their [0 0 0 0 1 0 0]
long [0 0 0 0 0 1 0]
necks [0 0 0 0 0 0 1]

as shown in the previous section. For each center word, the corresponding
context words are embedded in a vector x⃗ given by the one hot encoded
vectors averaged. In the the previous example, considering again giraffes as
the center word, context words are embedded in

I

1
0
0
0
0
0
0


+

love

0
1
0
0
0
0
0


+

because

0
0
0
1
0
0
0


+

I

1
0
0
0
0
0
0




/4 =



0.5
0.25
0

0.25
0
0
0


It is important to notice that the order of the context words is not considered.

12



Figure 1.1: Schematic representation of the CBOW architecture

The neural network The model consists of a fully connected feedforward
neural network, made up by an input layer, an hidden layer and an output
layer. The input layer takes as input the context words vector x⃗, while the
output is the predicted center word vector y⃗. The hyperparameters are d, the
word embedding size, and |D| = N , the cardinality of the vocabulary. The
network is sketched in Figure 1.1. It has ReLU and then softmax activation
functions, M∈ Rd×N , N∈ RN×d, the weights matrices, and a and b the bias
values 1. As loss function, the Cross Entropy Loss ((Wikipedia, 2022a))
J is used:

J = −
N∑
k=1

y⃗k log(⃗yk)

considering y⃗k the k-th target word and the corresponding prediction y⃗
k
. At

the end, the optimal weights matrices M, N are learned, and the final em-
bedding is given by the raws of the average of M and N transposed.

1.3.3 Skip-Gram Model

The second architecture can be seen as the reverse of CBOW ((Doshi, 2019)):
instead of predicting the current word based on the context, it tries to op-
timize classification of a word based on another one in the same sentence
((Mikolov et al., 2013b)). In other words, given a word w the learning algo-
rithm tries to predict if a word c is in the context, solving a classification
problem.

1For further information about Neural Networks, see Stanford ((2020))
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The classifier In order to define better the classification task, let us con-
sider the following part of sentence and a sliding window of size h = 5
((Jurafsky and Martin, 2000)):

... lemon, a tablespoon of apricot jam, a pinch ...

where the target word w is apricot.
Given a pair (w, c), where c is the candidate context word, the classifier
returns the probability that c is a real context word P (+|w, c), which is true
if for example c = jam and false if c = space. The calculation of P (+|w, c)
relies on the intuition that a word is likely to occur near the target if its
embedding vector is similar to the target embedding ((Jurafsky and Martin,
2000)). As shown in section 1.2.1, it is possible to quantify similarity between
w an c by computing their cosine similarity cos(w⃗, c⃗) which the normalized
dot product between them; in general, w⃗ and c⃗ are similar if their dot product
w⃗ · c⃗ is high. Consequently, the probability P (+|w, c) is defined as:

P (+|w, c) = σ(w⃗ · c⃗) = 1

1 + e−w⃗·⃗c

where indeed σ is the sigmoid function. Since Skip-gram make the assump-
tion that all context words are indipendent, then the probability that a set
of h words c1, c2, ...ch are a real context window for w is defined as:

P (+|w, c1, ...ch) =
h∏

i=1

σ(ci · w)

The algorithm considers as parameters two embeddings for each word, one
for the word as a target, and one for the word as context. The two embed-
dings are gathered respectively in the two matrices W∈ Rd×N and C ∈ Rd×N ,
whose concatenation gives the matrix θ (where |D| = N and d is the dimen-
sionality of the embedding).

Learning Skip-Gram with Negative Sampling (SGNS) After taking
a corpus of text as input, the skip-gram model begins by assigning a random
embedding vector for each of the N vocabulary words. Then, it proceeds
to iteratively shift the embedding of each word w to be more similar to the
embeddings of words that occur nearby in corpus texts, and less like the
embeddings of words that don’t occur nearby. The training of this binary
classifier is based on the sets of positive and negative samples of the form
(w, c), which we call respectively
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S+ := {(w, c+)} and S− := {(w, c−)}. Referring to the previous exam-
ple, having apricot as target word, (apricot, jam) or (apricot, tablespoon)
belongs to S+, while among negative samples belonging to S− there could
be (apricot, space) or (apricot, dog). Since the leaning procedure uses more
negative samples than the positive ones, it is called skip-gram with neg-
ative sampling or SGNS. The ratio k between the provided pairs (w, c+)
and (w, c+) is a hyperparameter of the algorithm: for each positive sample,
k negative samples are created according to the weighted unigram frequency
of w. Since the goal of this architecture is to maximise similarity between
positive (w, c) pairs and minimise similarity between negative (w, c) pairs,
for each word w ∈ D the loss function L to minimize is defined as:

L(θ) = −
[
log(P (S+|w, c)) +

k∑
i=1

log(P (S−|w, c))
]
=

−
[
log(σ(w⃗ · c⃗)) +

k∑
i=1

log(σ(−w⃗ · c⃗))
]

This loss function is minimized using stochastic gradient descent2.
An other hyperparameter is the previous mentioned context window h, which
has an heavy influence on the results: a small window size leads to similar
embeddings for words with the same semantic role (or the same part-of-
speech tag3) e.g. Paris and Rome, while a large window size emphasize the
topical relatedness e.g. pope and Rome. Usually h ≤ 10.

1.4 Word Alignment
A brief summary The term Alignment indicates a mapping function A
between two vector spaces corresponding to two different embeddings. Let
us consider the embeddings e1 and e2 defined as:

e1 : D1 −→ V1 e2 : D2 −→ V2

where D1 and D2 are different vocabularies and V1 ∼= Rd1 and V2 ∼= Rd2 .
Usually, the considered embedding spaces have the same dimensions, hence
we denote d1 = d2 = d. If there exist a correspondence between elements
x ∈ D1 and y ∈ D2, then the alignment between their respective embedding

2For a detailed explanation of the skip-gram architecture, see Jurafsky and Martin
((2000))

3For further information about part-of-speech or POS tagging, see Engine ((2018))
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spaces seeks to find a map A of the following form ((Kalinowski and An,
2020)):

A : V1 −→ V2 such that A(e1(x)) ≈ e2(y)

This approach is widely used to build cross-lingual embedding models.
In this case, referring to the previous notation, D1 and D2 are vocabularies
in different languages. However, there are example in literature where the
alignment is applied to embedding spaces retrieved from data of the same
language: an example is given by the project Histwords by Hamilton et al.
((2016)), explained in section 3.2.

Cross-lingual transfer The main applications of alignment are cross-
lingual embedding models, which are cross-lingual representations of words in
a joint embedding space((Ruder et al., 2019)). They can be used to facilitate
cross-lingual transfer, which consists of modelling on data from one language
and then applying it to another relying on shared cross-lingual features, for
some NLP tasks.
An example among these cross-lingual tasks is sentiment analysis, namely
the task of determining the sentiment polarity (e.g. positive and negative) of
texts in different languages ((Ruder et al., 2019)). In this context, Mogadala
and Rettinger ((2016)) evaluate their embeddings on the multilingual Ama-
zon product review dataset of Prettenhofer and Stein ((2010)).
An other example is obviously machine translation, to translate entire
texts in other languages. Zou et al. ((2013)) use phrase-based machine trans-
lation to evaluate their embeddings4.

Types of alignment The embedding space alignment can occur in dif-
ferent situations, which influence the types of elements taken as input and
returned as output. Our interest lies in Word (or Word-to-Word) Align-
ment models, which take as input the embedding of a given word e1(x)
and receive as output the embedding of a semantically or syntactically simi-
lar token e2(x

′) ((Kalinowski and An, 2020)).
Moreover, two other cases are worth mentioning: Sentence (or Sentence-
to-Sentence) Alignment and Document Alignment models. Sentence
Alignment models often serve as an entry point to machine translation ap-
plications and rely on a parallel corpus of sentences in two languages ((Kali-
nowski and An, 2020)). Although in the present work we focus on word
representations, also sentences can be mapped to vectors of real numbers
through sentence embedding5. Letting s and t be two corresponding sen-

4For more example, we recommend to consult Ruder et al. ((2019))
5For further information, see Perone et al. ((2018))
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tences, and f1 and f2 their embeddings, the alignment A is defined in the
same way, respecting the property A(f1(s)) ≈ f2(t). Finally, Document
Alignment Models require documents in different languages that are trans-
lations of each other ((Ruder et al., 2019)), which is very rare.

1.4.1 Word Alignment Models

Mikolov et al. ((2013c)) first observe that word embedding models trained
on different corpora (in their specific case, corpora of distinct languages)
exhibite similar geometric patterns and behaviors. This intuition leads to
the hypothesis for which word embedding spaces can be transformed from
one to another through linear operations. Here we review different mapping-
based approaches6 methods for word alignment: starting from embeddings
independently trained on different corpora (e1 and e2), the goal is to construct
the linear map A by finding the transformation matrix W:

A : V1 −−−−−−→
x⃗7→Wx⃗≈y⃗

V2

where x⃗ = e1(x) ∈ D1 and y⃗ = e2(y) ∈ D2 are representations of corre-
sponding words x and y, and W ∈ Rd×d. This means that if the alignment
is used to build cross-lingual embedding models x and y are each the transla-
tion of the other, while if the alignment acts on embedding spaces of the same
language, x and y are simply the same word with different representations.
Moreover, since A is a bijection, there are some assumptions we can do on
D1 and D2: |D1| = |D2| and ∀x ∈ |D1| ∃ y ∈ D2 such that y corresponds to
x.

Regression methods Regression methods map the source embedding to
the target embedding by maximizing their similarity. As shown in Exploit-
ing Similarities among Languages for Machine Translation by Mikolov et al.
((2013c)), using the n most frequent words x1, ..., xn ∈ D1 and the corre-
sponding y1, ..., yn ∈ D2 as seed words, it is possible to learn a transforma-
tion matrix W using stochastic gradient descent by minimising the squared
Euclidean distance (mean squared error, MSE) between x⃗i and y⃗i ((Ruder
et al., 2019)). Namely, the function to minimize in this case to find W∈ Rd×d

is defined as:

ΩREG(R) =
n∑

i=1

||Rx⃗i − y⃗i||2 with R ∈ Rd×d

6Although mapping-based approaches are the most popular, it is important to pre-
cise that there exist other approaches, like pseudo-multi-lingual corpora-based ap-
proaches and joint-methods which are well explained in Ruder et al. ((2019)).
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which in matrix form becomes:

ΩREG(R) =
n∑

i=1

||RX−Y||2F with R ∈ Rd×d

X, Y ∈ Rd×n are the embedding matrices of the seed words, whose columns
of the same index Xi and Yi with i = 1...n are the embedding vectors of two
corresponding words x⃗i and y⃗i. Finally, it holds:

W = argmin
R∈Rd×d

ΩREG(R)

The basic approach of Mikolov et al. ((2013c)) is later used by other re-
searchers who incorporated ℓ2 regularization ((Ruder et al., 2019)). Some-
times, when X and Y are not given, the minimization of ΩREG := ΩREG(R,X,Y)
can be incorporated with the usual learning models used to compute the em-
beddings7.

Orthogonal methods This kind of methods is one of the most popular
improvement of the previous class of models, by adding the orthogonal con-
strains, i.e. WTW = I ((Ruder et al., 2019)). This is equivalent to the
orthogonal Procrustes Problem, given by:

W = argmin
R∈Rd×d

||RX−Y||F subject to RTR = I

Schönemann ((1966)) finds out that the exact solution to this problem can
be efficiently computed in linear time with respect to the vocabulary size
using SVD:

W = VUT where YTX = UΣVT

The orthogonal constrains have been motivated in different ways from various
authors ((Ruder et al., 2019)): Xing et al. ((2015)) write that these constrains
lead to the preservation of length normalization, while Artetxe et al. ((2016))
motivate orthogonality as a means to ensure monolingual invariance and
Smith et al. ((2017)) to be self-consistent. However, this class of methods is
one of the most used in the current research.

Canonical methods This class of methods is based on the idea of mapping
the embeddings in a shared space using Canonical Correlation Analysis
(CCA). Faruqui and Dyer ((2013)) are the first to apply CCA to project

7See the section 1.3.
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words from two languages into a shared embedding space. The innovative
aspect of this model is that, instead of finding only one transformation matrix
W which projects the source embedding space V1 into the target embedding
space V2, it is able to learn two transformation matrices W1 and W2 pro-
jecting respectively the embedding spaces V1 and V2 into a new joint space.
Relying on the same notation as before, let e1(x) = x⃗ and e2(y) = y⃗ be the
representations of two corresponding words x and y, and let R1,R2 ∈ Rd×d

be the possible transformation matrices candidates. The correlation between
the projections R1x⃗ and R2y⃗ can be defined as:

ρ(R1x⃗,R2y⃗) =
cov(R1x⃗,R2y⃗)√
var(R1x⃗)var(R2y⃗)

where cov(·, ·) is the covariance and var(·) is the variance ((Ruder et al.,
2019)). Then, the aim of CCA methos is to to maximize the function:

ΩCCA(R1,R2) = −
n∑

i=1

ρ(R1x⃗i,R2y⃗i)

which means that

W1,W2 = argmax
W1,W2∈Rd×d

ΩCCA(R1,R2)

where, as before, x⃗i and y⃗i are the columns of X and Y. Artetxe et al. ((2016))
prove that the canonical method is similar to the orthogonal method with
dimension-wise mean centering ((Ruder et al., 2019)).
As for ΩREG the optimization of ΩCCA := ΩCCA(R1,R2,X,Y) can be used
to compute X and Y when they are not given.

Margin methods Finally, this last class of methods, introduced by Lazari-
dou et al. ((2015)) is built on the optimization of a max-margin based ranking
loss instead of MSE in order to reduce hubness. Hubness is a phenomenon
observed in high-dimensional spaces, occurring when some points are the
nearest neighbours of many other points ((Radovanovic et al., 2010)). It of-
ten affects cross-lingual word embedding models.
Similarly as before, the aim is to compute the unique transformation matrix
W, through the optimization of the new function:

ΩM(R) =
n∑

i=1

k∑
j ̸=i

max{0, γ − cos(Rx⃗i, vecyi) + cos(Rx⃗i, y⃗j)}
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where R∈ R300×300 is the generic candidate matrix, γ and k are tunable
hyperparameters denoting the margin and the number of negative examples,
respectively. Again, ΩM can be used for the computation of the embedding
spaces themselves.
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Chapter 2

Linear and Non Linear
Optimization Problems

2.1 Linear Programming
In this section, we recall some basic concepts about linear programming,
in order to introduce in the following ones a series of results concerning
nonlinear programming. For more detailed information about the topic, we
recommend to refer to the textbooks of Bertsimas and Tsitsiklis ((1997)) and
Wright and Nocedal ((1999)).

2.1.1 Introduction

A linear program is a constrained optimization problem in which the func-
tion to be maximized (or minimized) is linear and the constraints are de-
scribed by linear equations and/or inequalities:

max (or min) c1x1 + · · ·+ cnxn

s.t. a11x1 + · · ·+ a1nxn ∼ b1
...

...
am1x1 + · · ·+ amnxn ∼ bm

(2.1)

where the symbol ∼ can stand for one of the operators ≤, ≥, =, and
aij, bi, cj ∈ R (i = 1, ...,m,, j = 1, ..., n). The set of all the vectors x ∈ Rn

satisfying all the constrains, namely the feasible solutions, is called the feasi-
ble region. A vector x̄ ∈ Rn is an optimal solution of the linear program if
x̄ is feasible and cT x̄ ≥ cTx ∀x in the feasible region, and the corresponding
value cT x̄ is called optimal value. Let us provide now an important theorem.
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Theorem 1. Given a linear program, one and only one of the following
alternatives holds:

(a) the problem has at least one optimal solution;

(b) the problem is infeasible, i.e., it has no feasible solutions;

(c) the problem is unbounded, i.e., for every K ∈ R, there exists a feasible
solution x such that cTx > K (cTx < K for minimization problems).

2.1.2 Standard form

Every linear program of the form (2.1) is equivalent to a linear program in
standard form, that is, of the type:

max cTx
s.t. Ax = b

x ≥ 0
(2.2)

where A ∈ Rm×n, and b ∈ Rm, c ∈ Rn and x is a vector of variable in Rn

2.2 Nonlinear Programming
In this section we present the notation we use for nonlinear optimization
problems, and we provide some results useful to understand the tools we use
in the II part.

2.2.1 Introduction

An optimization problem is defined as the minimization or maximization of
a real valued function on a specified set. Letting F be the feasible set and
f : F → R be the objective function, the problem can be represented as
following:

min f(x) s.t. x ∈ F (2.3)

or
max f(x) s.t. x ∈ F (2.4)

Now, we report some useful definition holding for minimization problems
(2.3). However, it is important to notice that it is always possible to turn
a minimization problem into a maximization problem (2.4) by changing the
sign of f , and viceversa. In particular, it holds:

max
x∈F

f(x) = −min
x∈F

(−f(x))
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In conclusion there is no loss of generality if we study and address only
minimization problems or, on the contrary, only maximization problems.

Definition 1. An optimization problem of the type (2.3) is said to be infea-
sible if F = ∅, that is, if there are no feasible solutions.

Definition 2. An optimization problem of the type (2.3) is said to be un-
bounded (below) if however, if you choose a value M > 0 there is a point
xM ∈ F such that f(xM) < −M .

Definition 3. An optimization problem of the type (2.3) is said to have an
optimal solution if there exists a x∗ ∈ F such that it results f(x∗) ≤ f(x)∀x ∈
F . The corresponding value f(x∗) is the optimal value.

Optimization problems can be classified, according to the feasible set
structure S into:

• Continuous Optimization Problems where variables can assume real
values (x ∈ Rn) and, therefore, we have that F ⊆ Rn;

• Integer Optimization Problems whose variables are constrained to be
integers (x ∈ Z) and, therefore, we have that F ⊆ Zn;

• Mixed Integer Problems where only a subset of variables is constrained
to be integer.

For the purpouse of the present thesis, we will focus only on the first class of
the problem.

2.2.2 Continuous Optimization Problems

In order to get a better characterization of the solution points for the above
problem, we introduce the following definitions.

Definition 4. A point x∗ ∈ F is a global minimum for f in F , if f(x∗) ≤
f(x) ∀ x ∈ F .

Definition 5. A point x∗ ∈ F is a strict global minimum for f in F , if
f(x∗) < f(x) ∀ x ∈ F , x ̸= x∗.

Definition 6. A point x∗ ∈ F is a local minimum for f in F if there
exists a neighborhood B(x∗; ρ), with ρ > 0 such that f(x∗) < f(x) ∀ x ∈
F ∩B(x∗; ρ).

Moreover, we have an unconstrained problem if F = Rn, or a constrained
problem if F ⊂ Rn.
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2.2.3 Existence conditions

When dealing with an optimization problem, it is necessary to check its well-
posedness. Indeed, there are situations in which there is not a minium point
in F for the function f :

• F = ∅

• F ̸= ∅, but f is unbounded from below on F , i.e. infx∈F f(x) = −∞

• F ≠ ∅, f is bounded from below on F , but there exists no global
minimum point for f in F .

Consequently, sufficient conditions for the existence of a global minimum
point can be established.

Existence conditions for continuous problems Now, we report a propo-
sition which consists of a fundamental result regarding the existence of a
solution for a given continuous optimization problem. It is strongly related
to the well known Weierstrass Theorem.

Proposition 1. Let F ⊂ Rn be a non-empty and compact set. Let f be a
continuous function defined on F . Then there exists a global minimum point
for f in F .

The result only applies to the class of problems with compact feasible set.
In the case of constrained problems, since F ⊂ Rn, if F is closed and limited,
then it is compact.
Otherwise, when the problem is unconstrained (F = Rn), or if F is closed
but not limited, it is necessary to identify some subset of F containing the
optimal solutions of problem.

Definition 7. Let F ⊆ Rn and f : F → R; a level set for f on F is a
non-empty set of the form:

L(α) := {x ∈ F : f(x) ≤ α}

where α ∈ R

In particular, if x0 ∈ F , we denote by L0 the level set L(f(x0)) with
α = f(x0) Now, we provide some propositions useful to establish a sufficient
condition for the existence of global optima.

Proposition 2. Let F ⊆ Rn and f be a continuous function defined on F .
Suppose there exists a level set of f on F that it is not empty and compact.
Then there exists a global minimum point for f in F .
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Proposition 3. Let F ∈ Rn and let f be a continuous function on F . Then
all the level sets L(α) := {x ∈ F : f(x) ≤ α} of f in F are compact if and
only if the following condition is satisfied:

• Let {xk} be a sequence of xk ∈ F such that limk→∞ ||xk|| =∞, then it
follows that

lim
k→∞

f(xk) =∞

By combining propositions 2 and 3, we obtain the following sufficient
conditions of existence for a minimization problem with F closed set.

Proposition 4. Let F ⊆ Rn be a closed set and let f be a continuous function
on F and assume that f is coercive on F , that is

lim
k→∞

f(xk) =∞

for each sequence {xk}, with xk ∈ F , such that limk→∞ ||xk|| = ∞. Then
there exists a global minimum of f on F .

2.2.4 Convex and concave programming problems

Convex programming problems Convex programming problems consist
of an interesting class of problem, since it allows to model plenty of real world
applications. We first report some useful definitions and then move to the
main features of those problems.

Definition 8. Let us consider a set C ⊆ Rn. C is a convex set if, ∀x, y ∈ C
and ∀α ∈ [0, 1], it holds

αx+ (1− α)y ∈ C

Definition 9. Let C ⊆ Rn be a convex set and let f: C → R. f is convex on
C if, given any x, y ∈ C and α ∈ [0, 1], we have that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Then, f is strictly convex on C if, given any x, y ∈ C, with x ̸= y and
α ∈ (0, 1) have that

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)
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Definition 10. Let C ⊆ Rn be a convex set and let f: C → R. f is concave
on C if, given any x, y ∈ C and α ∈ [0, 1], we have that

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y)

Then, f is strictly concave on C if, given any x, y ∈ C, with x ̸= y and
α ∈ (0, 1) have that

f(αx+ (1− α)y) > αf(x) + (1− α)f(y)

Now we can formally define a convex programming problem as following.

Definition 11. A convex programming problem is a minimization prob-
lem of the form:

min f(x) s.t. x ∈ F

where F is a convex set and f is convex on F , or, equivalently

max f(x) s.t. x ∈ F

where F is a convex set and f is concave on F .

Convex programming problems have important properties described in
the following proposition, which states the equivalence between local and
global minima.

Proposition 5. Let F ⊆ Rn be a convex set and f a convex (strictly convex)
function on F . Then any (one) minimum point of f on F is also (the only)
global minimum.

Concave programming problems Concave programming problems rep-
resent another class of minimization problems widely used to model real
world applications. Let us see their definition.

Definition 12. A concave programming problem is a minimization prob-
lem of the form:

min f(x) s.t. x ∈ F

where F is a convex set and f is concave on F , or, equivalently

max f(x) s.t. x ∈ F

where F is a convex set and f is convex on F .
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Concave programming problems are more difficult than convex ones, since
those problems usually have a large number of local minimum points which
are not global. Despite this, here we report some results which gives some
information about their global minima.

Theorem 2. Let F ⊆ Rn be a closed convex set, and let f be concave (and
non-constant) on F. Hence, if there is a global minimum of f on F , this lies
on the boundary of F .

Theorem 3. Let F ⊆ Rn be a polyhedron with at least one vertex and let f
be a concave function with global minima in F . Then, there exists a global
minimum of f in F that coincides with a vertex of the polyhedron F .

The latter theorem shows that, when dealing with concave programming
problems with a polyhedral feasible set, the search for a global minimum can
focus on the set of vertices of the given feasible set.

2.2.5 Linearization of nonlinear problems

Sometimes, it is possible to linearize a nonlinear problem, that is, to trans-
form it into a linear one (of the form 2.1). Among all the examples of this
useful operation, here we report just the linearization of absolute value
problems, which is necessary to understand the computation we do in the
II part.

Absolute value problems Let us consider a problem of the following
form:

min
x,y

∑
j

cj|xj|+
∑
k

dkyk s.t. (x, y) ∈ C (2.5)

where C, the feasible region, is a polyhedron, and that cj ≥ 0. Now, we
transform the variables in the following way:

x = x+
j − x−

j , x+
j ≥ 0, x−

j ≥ 0

Such transformation is not unique, indeed there are two possible cases:

• xj ≥ 0⇒ x+
j = xj + δ = |xj|+ δ and x−

j = δ

• xj < 0⇒ x+
j = δ and x−

j = −xj + δ = |xj|+ δ

with δ ≥ 0. When δ = 0, one component must be 0 and the other one is
consequently |xj|. Moreover, we notice that:

x+
j + x−

j = |xj|+ 2δ
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Now, by making a replacement in the objective function of term |xj| with
the sum of x+

j and x−
j , we obtain that for the optimal solution x+

j = 0 or
x−
j = 0 (or, equivalently, δ = 0). As a result, it is possible to rewrite 2.5 as:

minx,y

∑
j cj(x

+
j + x−

j ) +
∑

k dkyk s.t. (x+
j − x−

j , y) ∈ C

x+
j ≥ 0, x−

j ≥ 0 ∀j = 1, ..., n

where C is the feasible region.
It is possible to obtain a different formulation, by simply rewriting the absolut
value as:

|xj| = max{xj,−xj}
Then by replacing in 2.5, we have:

min
x,y

∑
j

cj max{xj,−xj}+
∑
k

dkyk s.t. (x, y) ∈ C

which, by introducing a new variable zj, can be rewrite as following:

minx,y,z

∑
j cjzj +

∑
k dkyk s.t. zj = max{xj,−xj}

(x, y) ∈ C

Finally, we obtain:

minx,y,z

∑
j cjzj +

∑
k dkyk s.t. − zj ≤ xj ≤ zj j = 1, ..., n

(x, y) ∈ C

Linear regression model Let us suppose we want to build a mathematical
(linear) model related to a specific real problem of the form:

y = aTx+ b

where x ∈ Rn is the input vector for the model, y ∈ R is the output, a ∈ Rn

an b ∈ R are the parameters related to the model. Moreover, we assume to
have a finite set T of input-output samples, named training set :

T := {(x1, y1), ..., (xm, yl)}

Then, let us define the error between real and model output:

Ei = yi − (aTxi + b)

Since our goal is to minimize the errors over the training set Ei, i = 1, ..., l,
a classic approach for calculating model parameters is considering the square
loss function and then solving the well-known least-square problem:

min
a,b

l∑
i=1

(yi − aTxi − b)2 (2.6)
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Now, it is possible to model the problem by relying on the absolute value
formulation, namely, by rewriting 2.6 as:

min
a,b

l∑
i=1

|yi − aTxi − b|

and then, by using the transformation shown in the section 2.2.5, we obtain:

min
a,b,z

l∑
i=1

zi s.t. |yi − aTxi − b| ≤ zi ∀i = 1, ..., l

that is

min
a,b,z

l∑
i=1

zi s.t. − zi ≤ yi − aTxi − b ≤ zi ∀i = 1, ..., l

This is the well-known Least Absolute Deviation (LAD) model (also
known as least absolute residual, least absolute error or least absolute value
model)8.
ℓ1-norm is a good choice for two reasons: first, the model we get is very easy
to solve (since it is equivalent to a linear programming problem); second,
ℓ1-norm is less sensitive to outliers.

2.3 Frank-Wolfe method
The Frank-Wolfe method (aka conditional gradient method or reduced gradi-
ent method) is an optimization algorithm originally proposed by Frank and
Wolfe ((1956)) to solve quadratic programming problems with linear con-
straints. In this section we describe the classical method and its properties,
in preparation to the II part, where we present a slightly different version
used in our experiments.

2.3.1 Description of the algorithm

Let us consider a problem of the form

min f(x) s.t. x ∈ C

8For further information, see ((LAD, 2008))
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where f : Rn → Rn is a continuously differentiable function and C ⊆ Rn is a
convex compact set.
We start with a feasible solution and, at each iteration, we define a descent
direction in the current iterate xk by solving the problem:

min
x∈C
∇f(xk)

T (x− xk)

We notice that this is equivalent to minimize the linear approximation of f
in xk:

min
x∈C

f(xk) +∇f(xk)
T (x− xk) (2.7)

By the proposition 1, by compactness of C, we can deduce that there exists
a solution x̂k ∈ C for the linearized problem. Now, let us see a useful
proposition:

Proposition 6. Let x∗ ∈ C be local minimum for problem

min f(x) s.t. x ∈ C

with C ⊆ Rn convex and f ∈ C1(Rn). Then

∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ C

which leads to the first order optimality condition:

Proposition 7. Let C ⊆ Rn be a convex set and f ∈ C1(Rn) be a convex
function. x∗ ∈ C is a global solution of the following problem:

min f(x) s.t. x ∈ C

if and only if
∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ C

Returning to 2.7, we have two cases. If ∇f(xk)
T (x̂k − xk) = 0 then we

have
0 = ∇f(xk)

T (x̂k − xk) ≤ ∇f(xk)
T (x− xk) ∀x ∈ C

and xk satisfies first order optimality conditions (proposition 7). On the con-
trary, if ∇f(xk)

T (x̂k − xk) < 0 we have a new descent direction in xk given
by dk = x̂k − xk. Thus we can have a new iterate given by xk+1 = xk + αkdk
with αk ∈ (0, 1] calculated by means of a line search.
Finally, we report the pseudocode:

1: Choose a point x1 ∈ C
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2: For k=1,2,...
3: Set x̂k = argminx∈C ∇f(xk)

T (x− xk)
4: If x̂k satisfies some specific condition, then STOP
5: Set xk+1 = xk + αk(x̂k − xk), with α ∈ (0, 1] suitably chosen stepsize
6: End for

2.3.2 Unit stepsize

There are several rules for choosing the stepsize αk depending on the structure
of the problem. Here we mention only a particular type of fixed stepsize,
namely a stepsize which remains constant throughout iterations. In other
word:

αk = s, with s > 0, k = 0, 1...

More precisely, in the present thesis we consider the unit stepsize9, that
is, αk = 1 k = 0, 1.... The following result concerns the minimization of
a concave function over a polytope, by applying a simplified version of the
Frank-Wolfe algorithm with unit stepsize.

Proposition 8. Let us consider the problem

min f(x) s.t. x ∈ C

with f ∈ C1(Rn) concave function lower bounded on C, and C ⊆ Rn polyhe-
dron. The Frank-Wolfe algorithm with unit stepsize converges to a stationary
point in a finite number of steps.

In other words, thanks to the latter proposition 8, we are sure to find
a solution in a finite number of steps by applying such algorithm in that
situation.

9For an in-depth analysis of such variant of the Frank-Wolfe algorithm, and in general
to better understand versatility and applicability in a wide range of contexts of the method,
we recommend the paper by Rinaldi et al. ((2021)).
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Chapter 3

Cultural Semantic Conditioning:
from Idelogical Biases to
Language Evolution

Word2Vec pretrained embeddings10 are freely available online ((Wikipedia2Vec,
2020)). However, the usage of pretrained embeddings requires caution, since
these representations can hide and propagate cultural peculiarities inher-
ited by the large corpora of text on which they were trained ((Petreski and
Hashim, 2022)). In this chapter we will go through two declinations of the
same phenomenon, which we indicate with the term cultural semantic
conditioning. Such phenomenon affects words embeddings, showing the in-
trinsic link between data and vectorial representations, whose inner geome-
tries depend on cultural and ideological differences among corpora. Several
studies prove that embeddings can reflect the cultural semantic conditioning
due to particular prejudice of different types, such as gender bias, racial bias,
homophobia and discrimination (as shown in section 3.1) or to the general
evolution of a language troughout history (which consists of the phenomenon
of historical semantic change explained in section 3.2).

3.1 Societal Biases in Word Embeddings
According to the Oxford English Dictionary in general the term bias means:
Tendency to favour or dislike a person or thing, especially as a result of a pre-
conceived opinion; partiality, prejudice ((Dictionary, 2021)). In the context
of AI fairness, this term occurs very often but it is not defined in a unique and
precise way. By various AI researchers, it is described as skew that result in

10Word2Vec architectures are described in section 1.3
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undesirable impacts ((Crawford, 2017)) or more precisely computer systems
that systematically and unfairly discriminate against certain individuals or
groups of individuals in favor of others ((Friedman and Nissenbau, 1996)).
As, Blodgett et al. ((2020)) write in Language (Technology) is Power: A
Critical Survey of “Bias” in NLP :

Large body of work analyzing “bias” in natural language process-
ing (NLP) systems has emerged in recent years, including work
on “bias” in embedding spaces (...). Although these papers have
laid vital groundwork by illustrating some of the ways that NLP
systems can be harmful, the majority of them fail to engage crit-
ically with what constitutes “bias” in the first place.

In the present work we try to provide a general definition, focusing on the
context of word embeddings, fully aware that past attempts are criticized for
their inconsistency.
In Bias in Computer Systems Friedman and Nissenbau ((1996)) propose an
interesting framework for analyzing algorithmic biases, splitting them into
preexisting, technical, and emergent. Such subdivision is based on the phases
of the learning system in which the bias arises: while the preexisting bias is
related exclusively on the input data on which the algorithm is trained, tech-
nical bias is caused by technical constraints or technical considerations and
emergent bias arises in a context of use with real users. Althought word em-
beddings might face all three types of bias ((Papakyriakopoulos et al., 2020)),
we focus on the preexisting bias. The expression indicates the phenomenon
in which AI systems embody biases that exist independently, exemplifying
them. It has roots in social institutions, practices, and attitudes ((Friedman
and Nissenbau, 1996)). Moreover, we adopt their expression societal bias11,
by which the authors mean bias that originates from society at large to de-
note different types of bias. Certainly, this type of bias is strongly related to
social discrimination, namely, the discrimination emerging from members of
one social group towards members of another.
In the following section, we list various well-known types of biases, by review-
ing different NLP research works presenting various strategies for analyzing
and detecting them.

3.1.1 Different types of societal biases

Gender bias One of the most studied type of societal bias affecting NLP
algorithms is gender bias, due to implicit sexism permeating the society

11The expression is adopted also by other authors in more recent times, like Sheng et al.
((2021))
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Figure 3.1: A table from Bolukbasi et al. ((2016)) showing examples of au-
tomatically generated analogies for the pair she− he

.

which is often reflected in the input data. Such phenomenon might emerge
in different ways: many studies provide evidence for gender bias in the asso-
ciation of the pair male/female with a semantic domain (e.g. work/family)
with sets of traits or with specific occupations ((Caliskan et al., 2022)).
In Man is to Computer Programmer as Woman is to Homemaker? Debi-
asing Word Embeddings of Bolukbasi et al. ((2016)) the authors adopt two
approaches to detect these biased associations, focusing mainly on the em-
bedding w2vNEWS 12. First, they highlight occupational stereotypes by
measuring the distances among given occupational terms and the words she
and he (some results are shown in the figure 3.1). Second, they investigate
analogies exhibiting stereotypes by automatically generating pairs of
words (x, y) which satisfy the relation

he : she = x : y or ⃗she− h⃗e ≈ y⃗ − x⃗

Taking (he, she) = (a, b), for all the possible pairs (x, y) it is defined the
following score:

Sa,b(x, y) =

{
cos a⃗− b⃗, x⃗− y⃗ if ||x⃗− y⃗|| ≤ δ

0 otherwise

where δ is a threshold for similarity. The best pairs (x, y) are the one with
the largest score Sa,b(x, y), and some of them are shown in the figure 3.2:

12w2vNEWS consists of the word2vec embedding trained on a corpus of Google News
texts consisting of 3 million English words and terms into 300 dimensions (for further
information see the section 1.3
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Figure 3.2: A table from Bolukbasi et al. ((2016)) showing the list of the
occupations that are closest to she and to he in the w2vNEWS embedding

.

many of them have been judged stereotype and others appropriate by crowd-
sourcers13.

Finally, the authors present a debiasing algorithm which tries to correct
the components of biased words by finding a gender subspace, given by two
binary extremes among an axesrelying on pairs of gender specific words.
However, gender biases in text can extend beyond such semantic associations
among words. Caliskan et al. ((2022)) in Gender Bias in Word Embeddings:
A Comprehensive Analysis of Frequency, Syntax, and Semantics investigate
deeply how gender biases permeate word embeddings by studying the fre-
quency, the part-of-speech, the conceptual clusters and the emotional char-
acterization14 of words associated with each gender.
Finally, we are fully aware that gender is a complex spectrum, instead of a
simple polarity. We rely anyway on the polar classification, due to the lim-
itations inherent in data which make a comprehensive group representation
difficult.

Racial bias Another important type of social discrimination which might
emerge from word embeddings is the one towards specific ethnic groups.

13The study of Bolukbasi et al. ((2016)) relies also on human experiments, which were
performed on the Amazon Mechanical Turk crowdsourcing platform. Only U.S.-based
workers were selected, in order to maintain homogeneity and reproducibility with crowd-
sourcing to the extent possible.

14With emotional characterization we indicate the scores given to words in the three
components of emotion: valence (the pleasantness of a stimulus), arousal (the intensity
of emotion provoked by a stimulus), and dominance (the degree of control exerted by a
stimulus). This information is widely used by researchers working on text-based sentiment
analysis. Warriner et al. ((2013))
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Caliskan et al. ((2017)) show in Semantics derived automatically from lan-
guage corpora contain human-like biases that vectors representing African
American names are closer to negative words than positive words, a trend
which does not repeat among European American names. In order to define
such associations, the authors use analogy as well.
Similarly, Garg et al. ((2018)) find occupational stereotypes related to em-
beddings of proper names depending on the ethincity. In their experiments,
bias detection is achieved by measuring distance among the elements a set
of proper names and a set of occupations words15. However, other authors
highlight the presence of ethnic bias hidden in NLP systems also beyond
word-embedding themselves ((Kiritchenko and Mohammad, 2018; Davidson
et al., 2019)).

Political bias Gordon et al. ((2020)) prove in their paper that it is possible
to apply the same approach of Bolukbasi et al. ((2016)) in order to investigate
the political bias contained in word embeddings. Their work models political
bias as a binary choice between the Democratic pole and the Republican pole,
since they refer to American politics. In order to apply the methodology of
Bolukbasi et al. ((2016)), the authors find binary pairs by analyzing the most
frequent words of a collection of tweets of politicians of both parties. Finally,
they conclude that modelling bias along multiple axes or as a range of points
along a single axis could be necessary to make a comprehensive analysis,
since the politics, as many other fields, is much more complicated than a
binary choice.

Other types of bias This is only a partial overview of the kinds of biases
investigated in the relevant literature. Papakyriakopoulos et al. ((2020)) un-
cover sexual orientation stereotypes in word embeddings trained on Wikipedia
and social media16. Using the method of ((Bolukbasi et al., 2016)), they bring
out the occupational words related to homosexuality, which correspond to
stereotypical roles such as artists and hairdressers. Moreover, beyond oc-
cupational context, homosexuality seems to be related with very negative
concepts: from violence, prohibition and adultery, to abuse and harassment.
Also Sheng et al. ((2021)) mention different types of bias emerging, related
to profession, sexuality or other.

15For further information about word embeddings and methodologies adopted by the
authors, we recommend to read the original papers of Caliskan et al. ((2017)) and Garg
et al. ((2018))

16Papakyriakopoulos et al. ((2020)) train their own embeddings on data collected from
Facebook, Twitter and Wikipedia. For more precise information, we recommend to see
the third section of the original paper.
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3.1.2 The problem of bias propagation and amplifica-
tion

Due to their widespread usage, word embeddings have the power to amplify
intrinsic stereotypes which hide in language itself. In fact, every day, billions
of people interact with interfaces that help them access information and make
decisions. Consequently, NLP algorithms built to allow that can influence
people’s behaviors and perceptions about the world.
In order to understand the entity of the problem, let us see two examples.

Search engine In web search, it has been shown that, when carefully com-
bined with existing approaches, word vectors have the potential to improve
web page relevance results. Hence, let us suppose that the search query is
cmu computer science phd student for a computer science Ph.D. student at
Carnegie Mellon University. Between two pages that differ only in the names
Mary and Mark, the biased word embedding would influence the search en-
gine to rank John’s web page higher than Mary. This means that in general,
in certain fields, women could lose visibility, contributing to gender gap.

NLG Tasks Natural Language Generation (NLG) is a set of techniques
used to generate human-readable language for different applications, such as
virtual assistants, chat bots, automatic translators, summarizers, and cre-
ative language composers. Sheng et al. ((2021)) emphasize in their work the
importance of understanding how societal biases manifest in NLG applica-
tions, which directly interact with many different users (for example, chat
bots for health, education, and customer support). As we pointed out before,
the authors mention many studies about various types of biases pervading
NLG systems. Such biases are due to both the training of NLG algorithms
themselves, and to the word embeddings used to represent data.

3.2 Historic Semantic Change
Bloomfield ((1933)) defines semantic change in his fundamental work Lan-
guage:

Innovations which change the lexical meaning rather than the
grammatical function of a form, are classed as change of meaning
or semantic change.

Nowadays, it is possible to find many NLP research works investigating the
repercussions of such linguistic phenomenon on diachronic word embeddings.
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The adjective diachronic means of, relating to, or studying the development
of a phenomenon through time ((Dictionary, 2022a)).
In the following sections we will summarize two studies which has been fun-
damental for the present work, since they have provided tools we used to
conduct our analysis17.

3.2.1 Histwords

A group of researchers at Stanford University show in their paper Diachronic
Word Embeddings Reveal Statistical Laws of Semantic Change ((Hamilton
et al., 2016)) that it is possible to study the historical semantic change of
words by analyzing different embedding spaces. Each of these embedding
spaces is obtained by training known learning algorithms over texts written
in a specific time period, spanning two centuries, from 1800 to 1990: as a
result, the authors provide diachroinic word embeddings, which are publicly
available on the GitHub page. These embeddings are then aligned over time
and submitted to a procedure to quantify the semantic change. With this
purpose, in this study, they develope a new methodology, capable of verifying
known semantic shifts and discovering new shifts from the available data.

Datasets The project relies on the historical corpora of Google n-grams
((Lin et al., 2012)) ((GoogleBooks, 2013)) and the Corpus of Historical Amer-
ican English ((Davies, 2012)). On the one hand the Google N-Grams dataset
is extremely large, since it includes almost 6% of every book ever published,
but on the other hand, it contains many corpus artifacts and noise. On the
contrary, the COHA corpus is smaller but cleaner. The 6 corpora, described
precisely in the figure 3.3, span 200 years and 4 languages, namely English,
German, French, and Chinese.

Embedding Algorithms In order to construct the word embeddings, dif-
ferent state-of-the-art approaches are compared: PPMI, SVD, and SGNS (i.e.
Word2Vec) using the work of Levy et al. ((2015b)) as a reference. According
to the paper, the latter embedding seems to achieve better performances.

Alignment In order to compute the transformation matrix, the authors
consider the Procrustes problem with orthogonal constrains, applied on each
pair of diachroinc word embeddings. Let W(t) ∈ Rd×N be the matrix of word
embeddings where N is the cardinality of the vocabulary. The alignment

17The anaysis is explained in the part II of the thesis.
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Figure 3.3: A table from ((Hamilton et al., 2016)) showing the characteristics
of the 6 datasets built for the project Histwords

.

across time period is realized by optimizing the following problem:

R(t) = argmin
QTQ=I

||QWT −W(t+1)||F

where R(t) ∈ Rd×d. The solution is provided by the usual application of SVD
provided in section 1.4.

Analysis Finally, the authors present two methods to quantify semantic
change over time: (i) by measuring pair-wise word similarities (ii) by quantify
an individual overall word’s embedding shift, through Spearman correlation.
In the present thesis we provide a measure similar to (i) for our analysis,
which will be explained in part II. Let us see an explanatory example show-
ing some interesting conclusions of this project 18. The Figure 3.4 shows a
representation of the semantic change of the words gay, broadcast, and awful
over time, comparing the diachronic Word2Vec embeddings learned at year t.
It is possible to see how the context words, which are the grey ones, change
depending on the epoch related to the corresponding embedding space.
The word gay (A) moved away from cheerful and tasteful and got closer
to homosexual and lesbian, due to its new meaning connected to the sexual
orientation semantic field. According the same visualization, broadcast (B)
completely shifted its meaning, from its original sense of sowing seeds, to
its current use, connected to contemporary technologies. Finally, awful (C)
changed from meaning full of awe to meaning terrible or appalling.

18For further information, we recommend the original paper ((Hamilton et al., 2016))
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Figure 3.4: A t-SNE visualization of the semantic change of the three words
gay, broadcast, and awful over time, taken from Hamilton et al. ((2016))

.

3.2.2 Exploring Word Evolution

Another paper is worth mentioning: Every Word has its History: Interac-
tive Exploration and Visualization of Word Sense Evolution by Jatowt et al.
((2018)). The authors present an interactive framework that allows users
to study the semantic change of words and concepts, made public on the
web page Exploring Word Evolution. By using word representations, giving
any query word, the online platform provides evolutionary word investigation
at different levels: word analysis, contrastive word pair analysis, multi-word
analysis and temporal context analysis.

Datasets The study is based again both on the GoogleBooks ((2013)) 5-
gram dataset and on the Corpus of Historical American English (COHA)
((Davies, 2012)). On the website, the user can select one of the two datasets,
on which the analysis will be based19.

System Description For a given query word w, in a decade d, the system
automatically finds the vectorial representation w⃗d

19.
Here we focus on the first type of analysis made by the authors, the word
analysis, since we use it in our experiments reported in part II. Such test
evaluates the degree of a query word’s context change across time. The
representation w⃗d̄ at reference decade d̄ is compared to any other decade of
a fixed time range. In order to do the comparison, the user can chose among
the measures cosine similarity, Pearson correlation, and Jaccard similarity.
For the purpouse of the present work, the first method is the most suitable
one. We refer to the similarity measure between the representations of a
word w in the two decades d1, d2 provided by the website Exploring Word

19For further information, we recommend the original paper ((Jatowt et al., 2018)).
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Evolution as:
sE(w⃗d1 , w⃗d2) := | cos(w⃗d1 , w⃗d2)|

Then, also a similarity plot is provided (as shown in the following exam-
ple), representing the trend of sE(w⃗d̄, w⃗di) by varying the decade di over the
selected time period (by default, from 1750 to 2000). By downloading the
CSV, the user can visualize specifically all the sE values.

Figure 3.5: A screenshot showing the results obtained for the the word mail
in the online framework Exploring Word Evolution Jatowt et al. ((2018))

.

The screenshot of Figure 3.5 shows the outputs for the the word mail. The
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top left-hand side graph shows the similarity plot between the query’s seman-
tics in the reference decade and the ones in each past decade using cosine
similarity. The right-hand side plot adds more evidence to the word evolu-
tion analysis by outputting similarities between two consecutive decades. It
is clearly evident from these charts that the word mail has been been sub-
jected to a deep semantic evolution starting from 1980s. Finally, the bottom
graph shows both the raw word count and its normalized frequency over time,
offering information about the interplay of word popularity and its semantic
change.

3.3 Alignment and Cultural Contaminations
Finally, it is important to highlight how cultural peculiarities are not only
hidden in the inner structure of word embeddings, but they are also dissem-
inated by alignments20 to different embedding spaces. Several studies show
how this contamination can happen in the context of cross-lingual word em-
beddings, also providing methods to mitigate the consequences on machine
translation of such phenomenon.

Girl and shōjo Zhang et al. ((2019)) present in their paper a method to
increase word translation accuracy of cross-lingual word embedding models,
obtained by applying an orthogonal alignment. They notice some difficulties
in building cross-lingual mappings from a language to another due to cul-
tural differences related to them, and they propose an algorithm (called
the Iterative Normalization) which tries to correct the monolingual word
embeddings before the alignment, in order to make the transformation more
effective.
For instance, they focus on the translation between Japanese and English:
the usual orthogonal alignment fails in translating the word shōjo, which
means girl. This is due to the fact that in the two monolingual embed-
dings, the most similar words to shōjo and girl are different: in the Japanese
embedding shōjo is closed to neko, which means cat, while in the English
embedding girl and cat are much more unsimilar. This is due to the fact
that in Japanese culture, cats are considered animals belonging to feminine
dimension, contrary to what happen in west culture.

Towards more neutral monolingual embeddings Doval et al. ((2018))
state that language-specific phenomena and corpus specific biases make

20Word alignment is explained in section 1.4
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the alignment between two monolingual embeddings more difficult. Con-
sequently, they propose a method to average between the representations
obtained from different languages, ending up with more “neutral” monolin-
gual embedding. In particular, they attempt to do it by moving each word
vector towards the middle point between its current representation and the
representation of its translation.

Different languages, different graphs Søgaard et al. ((2018)) identify
the limitations of unsupervised machine translation, finding out that perfor-
mances are generally worse when monolingual corpora from different domains
or different embedding algorithms are used. Regarding this, their critique is
based on the idea that:

Unsupervised approaches to learning crosslingual word embed-
dings are based on the assumption that monolingual word embed-
ding graphs are approximately isomorphic, that is, after removing
a small set of vertices (words)

They use as a reference the state-of-the-art unsupervised model of Conneau
et al. ((2017)), which relies on an orthogonal alignment, and attempt to
improve it. They firstly investigate the nearest neighbor graphs of word
embedding spaces in order to conclude that, in general, monolingual word
embeddings are far from isomorphic. This holds even if the two languages
are closely related, like English and German. In the figure 3.6 it is possible
to see how different are the nearest neighbors graph of the embeddings of the
10 most frequent English words and the one of their translation in German.
This could be due both to the differences between the synctatic structures,
and the different meaning associations between the two languages.
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Figure 3.6: A representation provided by Søgaard et al. ((2018)) of the near-
est neighbor graphs of 10 most frequent words in English Wikipedia and of
their their automatic translation in German, by using the method of Con-
neau et al. ((2017)).

.
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Part II

Our Contribution: the Idea and
the Experiments
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Chapter 4

Contributions

Let us describe the notation we adopt in the whole chapter. It is important
to precise that the present work is based on the comparison of two different
word embeddings in the same language. Hence, we will refer to them as e1
and e2:

e1 : D1 → V2 e2 : D2 → V2
where D1 and D2 are the vocabularies, and V1 and V2 are the corresponding
d-dimensional embedding spaces. For the sake of simplicity, we consider
D1 = D2 = D and we denote |D| = N . Then, given a word wi ∈ D,
then e1(wi) = x⃗i and e2(wi) = y⃗i. Moreover, all the vectors x⃗i and y⃗i with
i = 1, ..., N are the columns of the matrices X, Y ∈ Rd×N respectively.

4.1 The Idea Behind: an Aligment Highlight-
ing Biases

As explained in chapter 3, every word embedding contains cultural peculiari-
ties inherited by data, which can be then propagated through the alignment.
The goal of our study is finding a technique based on word alignment21 able
to auomatically highlight the presence of cultural semantic conditioning
hidden in word representations.

21The topic is precisely explained in section 1.4
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w

D

e1

e2

A

V1 V2

x⃗ Wx⃗
y⃗

Figure 4.1: Representation of the embedding maps e1 : D → V1, e2 : D → V2
and the alignment map A : V1 → V2 acting in turn on a word w of a
vocabulary D.

Let us suppose to have two word embeddings e1 and e2 trained on two dif-
ferent corpus of data of the same language reflecting different cultural traits.
The goal of a classic alignment A : V1 → V2 should be minimizing the error
among all the words w ∈ D, namely between the image A(x⃗) and y⃗, such
that e1(w) = x⃗ and e2(w) = y⃗, as represented in figure 4.1.
Now, we make an hypothesis: we suppose that some words would be
changed more by the alignment A due to the semantic cultural conditioning,
while other more stable, less likely to change semantic meaning depending on
societal biases or historic characteristics of the data, would change less. Con-
sequently, in the present thesis, we attempt to change the classic approach
to alignment, by starting from a simple idea: instead of looking for a trans-
formation which tries to minimize the error on all w ∈ D, we want to obtain
a map A and a corresponding matrix W which minimizes the error only on
words which would not drastically change after applying A. In other words,
our ideal alignment would leave the images A(x⃗) = Wx⃗ of representations
of words more likely to be subject to cultural semantic conditioning farther
from the corresponding y⃗ than the words more likely to be stable.

4.2 Embedding Alignment: A Nonlinear Pro-
gramming Approach

In this section we describe the three alignments A1, A2, and A3 used in our
experiments: starting from the classic approach of orthogonal alignment A1,
we move then to the computation of two alignment model A2 and A3, based
on different optimization problems.
In all the cases, the desired alignement Ai is a map of the type:

Ai : V1 −−−−→
x⃗7→Wiy⃗

V2
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where V1 and V2 are d-dimensional embedding spaces, and i = 1, 2, 3. As
deeper explained in section 1.4, in order to find the map A it is necessary to
find a transformation matrix Wi ∈ Rd×d.

V1 V2A1

A2

A3

x⃗

W1x⃗

W2x⃗

W3x⃗

Figure 4.2: Representation of the alignment maps Ai : V1 → V2, i = 1, 2, 3
acting on a word vector x⃗ of the first embedding space V1.

4.2.1 A1: the classic alignment

In order to compute the first alignment matrix W1 we apply the orthogonal
method22, because of its popularity and its widespread usage, using as a
reference Histwords by Hamilton et al. ((2016)). The computation of W1

is based on the resolution of the classic Procrustes problem with orthogonal
constrains given by

W1 = argmin
W∈Rd×d

||WX−Y||F such that WTW = I

which can be solved by the application of SVD ((Schönemann, 1966)):

W1 = UVT , with UΣVT = SV D(YXT )

4.2.2 A2: an alignment optimized by a linear decompo-
sition

In order to obtain the second alignment matrix W2, we consider the following
optimization problem:

W2 = argmin
W∈Rd×d

||WX−Y||1

which coincides to:

W2 = argmin
W∈Rd×d

N∑
i=1

||Wx⃗i − y⃗i||1

22The method is explained in the section 1.4
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where x⃗i and y⃗i are the i-th columns of the matrices X and Y. Let x⃗i := xi,
y⃗i := yi, let the j-th element of y⃗i be yji , and the j-th row of W be wj. Then
the formulation above becomes:

W2 = argmin
W∈Rd×d

N∑
i=1

300∑
j=1

|(wj)Txi − yji | = argmin
W∈Rd×d

300∑
j=1

N∑
i=1

|(wj)Txi − yji |

Consequently, by the nature of the problem, it is possible to solve the latter
formulation by combining the solutions of 300 subproblems of the type:

min
wj∈Rd

N∑
i=1

|(wj)Txi − yji | ∀ j = 1...300

Each of these non-linear problems behaves like the linear regression model
explained in the section 2.2.5, and consequently it can be replaced by the
following equivalent linear problem23:

min
wj∈Rd, z∈RN

N∑
i=1

zi s.t. − zi ≤ (wj)Txi − yji ≤ zi ∀ j = 1...300

where z ∈ RN is a new variable.
The subdivision into smaller problems is key to the solution of the problem,
otherwise the computer would have to deal with an optimization problem
with a number of constrains near to 5 millions at once, which would make
the computation infeasible.
Through the modeling language AMPL, we apply CPLEX algorithms to the
data, finding the optimal W2 for the problem24.

4.2.3 A3: improving the alignment thorugh Frank-Wolfe
method

For the computation of the third alignment matrix W3 we start from the
following formulation, based on the 0-norm, considering W ∈ Rd×d, A ∈
Rd×N , z ∈ RN :

W3 = argmin
W,A,z

||z||0 s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi

where ai is the i-th column of A as usual, and e is a vector of 1s. In our
case the 0-norm should lead to a better solution for our purposes, since it

23The linearization is realized by using as a reference the method explained in the
subsection 2.2.5.

24The complete AMPL script can be found in the appendix A.
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minimize the error function z by distributing less its components between 0
and the maximal value.
It is possible then to rely on the following approximation of the objective
function:

||z||0 ≈
N∑
i=1

(1− e−αzi) = f(z)

where α is a fixed positive integer. Hence, we obtain a concave function,
given by a finite sum of concave functions, depending only on the variable z.
Consequently, although the problem has three variables, which would have
to be concatenated in the unique variable x of the pseudocode we provided
in the section 2.7, it holds

∇f(xk) · x = ∇f(zk) · z

since ∂f
∂wl

j
= ∂f

∂aji
= 0 ∀ j = 1, .., d, l = 1, ..., d, i = 1, ..., N . As a result, the

minimization problem on which the computation of W3 relies becomes:

min
A,W,z

∇f(zk) · z s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi

Let us call Ω the feasible set containing all the possible W ∈ Rd×d, A ∈
Rd×N , z ∈ RN satisfying the constrains above. Now, let us see the pseu-
docode of the version of the Frank-Wolfe algorithm we use. zk ∈ RN ,
gk := ∇f(zk) ∈ RN and it are parameters which change value through-
out the iterations of the algorithm, while ϵ, used for the cut-off condition, is
fixed. At the beginning of the algorithm, (gk)i is initialized as (g0)i

1: it← 0
2: (gk)i ← (g0)i ∀i = i, ...N
3: A,W, z ← argminA,W,z∇f(zk) · z such that A,W, z ∈ Ω
4: it← 1
5: repeat{
6: (zk)i ← zi ∀i = i, ...N
7: (gk)i ← αe−α(zk)i ∀i = i, ...N
8: A,W, z ← argminA,W,z∇f(zk) · z such that A,W, z ∈ Ω
9: it← it+ 1 }

10: until
∑N

i=1(gk)i(zi − (zk)i) ≥ −ϵ

However, the processing of such algorithm would require again the resolution
of a problem containing almost 5 millions of constrains at each iteration
(in line 3 and then in line 8). It is possible to realize a subdivision of the
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problem into smaller problems in order to make the computation lighter, by
the following substitutions:

eTai =
300∑
j=1

aji = zi ⇒

⇒ ∇f(zk)·z =
N∑
i=1

(gk)izi =
N∑
i=1

(gk)i

300∑
j=1

aji =
N∑
i=1

300∑
j=1

(gk)i a
j
i =

300∑
j=1

N∑
i=1

(gk)i a
j
i

Consequently the optimization problem becomes:

min
A,W

300∑
j=1

N∑
i=1

(gk)i a
j
i s.t. − ai ≤Wxi − yi ≤ ai

Since f(z) is a concave function, (gk)i > 0 ∀ i = 1, ..., N , which means
that the previous problem can be solved by combining the solutions of 300
subproblems of the type:

min
aj ,wj

N∑
i=1

(gk)i a
j
i s.t. − aji ≤ (wj)Txi − yi ≤ aji ∀ j = 1, ..., 300

where wj ∈ Rd and aj ∈ RN are the j-th rows of W and A. Similarly as
before, let us call Ωj the feasible set containing all the possible wj ∈ Rd and
aj ∈ RN respecting the constrains above, for each j. In this case, the pseu-
docode can be modified in the following way:

1: it← 0
2: (gk)i ← (g0)i ∀i = i, ...N
3: aj, wj ← argminaj ,wj

∑N
i=1(gk)i a

j
i such that aj, wj ∈ Ωj ∀ j = 1...300

4: it← 1
5: repeat{
6: (zk)i ←

∑300
j=1 a

j
i ∀i = 1, ...N

7: (gk)i ← αe−α(zk)i ∀i = 1, ...N
8: aj, wj ← argminaj ,wj

∑N
i=1(gk)i a

j
i such that aj, wj ∈ Ωj∀ j = 1...300

9: it← it+ 1 }
10: until

∑N
i=1(gk)i(

∑300
j=1 a

j
i − (zk)i) ≥ −ϵ

We are certain that the algorithm converges in a finite number of steps by the
proposition 8. Indeed, the function f to minimize is concave, and the feasible
sets Ωj are polyhedrons, since they are intersections of linear constrains.

51



Moreover, it is possible to obtain a further reduction of the dimension of the
problem by applying the idea proposed by Rinaldi et al. ((2008)), which is
based on the following consideration:

if (zk)i = 0⇒
300∑
i=1

aji = 0⇒ aji = 0 ∀ j = 1, ..., 300⇒

⇒ 0 ≤ (wj)Txi − yi ≤ 0⇒ (wj)Txi − yi = 0

Consequently, let us define the set of indices I0 = {i = 1, ..., N s.t. (zk)i ̸= 0},
and the j-th minimization subproblem becomes:

min
aj ,wj

∑
i∈I0

(gk)i a
j
i

s.t. (wj)Txi − yi = 0 ∀ i /∈ I0

− aji ≤ (wj)Txi − yi ≤ aji ∀ i ∈ I0

Let us call Ω̄j the space containing all the possible wj ∈ Rd and aj ∈ RN

respecting the new constrains above, for each j. Finally, the pseudocode can
be modified by replacing the lines 3 and 8 with:
aj, wj ← argminaj ,wj

∑
i∈I0(gk)i a

j
i such that aj, wj ∈ Ω̄j ∀ j = 1...300

Again, through the modeling language AMPL and CPLEX algorithms it is
possible to find the optimal solution for W3

25.

4.3 Measuring the Similarity of Embeddings

4.3.1 Absolute cosine similarity si

One of the fundamental measures for our experiments is si which takes as
argument the transformation matrix Wi. si, applied to the word w, is defined
as:

si(w) := | cos(y⃗,Wix⃗)|

where y⃗ ∈ V1 and x⃗ ∈ V2 are the representations of w in the two embedding
spaces, and cos(·, ·) is the cosine similarity measure provided in section 1.2.1.

25The complete AMPL script can be found in the appendix B.
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4.3.2 The θ measure

An other important measure for the present project is σk, defined as following:

θk : V1 × V2 → R

θk(x⃗, y⃗) =
|{x1, ..., xk} ∩ {y1, ..., yk}|

k

where {x1, ..., xk} and {y1, ..., yk} are the sets of k words corresponding to
the nearest k vectors to x⃗ and y⃗ respectively in the corresponding embedding
spaces V1, and V2. Given a word w ∈ D, and we use θk it in two ways:

(i) θk(e1(w), e2(w)) quantifies how many neighbors have in common the
representations of the same word in the two different embedding spaces
V1 and V2.

(ii) θk(A(e1(w)), e2(w)) quantifies how many neighbors have in common in
the embedding space V2 the representation e2(w) ∈ V2 of the word w
in the second embedding and the aligned image of the representation
of the same word w in the first embedding e1(w) ∈ V1.

In the figure 4.3 a diagram representing how θ can act in different embedding
spaces is reported: the dashed lines connects the possible arguments of θ,
which are e1(w) := x⃗, e2(w) := y⃗, and A(e1(w)) := Wx⃗ (were W is the
matrix associated to the alignment A).

V1 V2x⃗

θk

A

θk si

y⃗

Wx⃗

Figure 4.3: Diagram representing how θk can act between different embedding
spaces.

As shown in the sections 5.2, si is coherent with θk applied as in (ii). Such
behaviour is due to embedding models property: indeed, it is easy to evince
that if the cosine similarity between two vectors is high, they are likely to
have neighbors in common.
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The choice of k parameter By varying k among the values 10, 20, 30, 50,
we obtain more staggered values as the parameter increases. We observed
that higher values of k correspond to heavier computational cost, without
achieving a consistently better measure for k ≥ 20. Consequently, we fix the
parameter k to the value 20, and we use the notation θ20 := θ.
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Chapter 5

Experiments

This chapter is dedicated to the description of two experiments fundamen-
tal for the present work. In the first experiment, reported in section 5.1,
we propose and validate three test sets, which, according to our hypothesis,
should be subject to semantic cultural conditioning in different amounts.
In the second experiment, reported in the section 5.2, we compare three
different alignments, in order to find a transformation able to highlight cul-
tural peculiarities, as we describe in the section 4.1.

Our focus It is important to precise that due to the lack availability of
open source pre-trained word embeddings trained on coeval corpora subject
to different cultural influences, the present thesis focuses mainly on one of
the declinations of semantic cultural conditioning. Since diachronic word
embeddings (i.e. trained on corpora of different epochs) are more easily found
online, the historic semantic change consists of the core of our research.
However, we include also a test set containing words related to societal biases.
The embeddings training is a long and computationally expensive procedure,
hence we leave the application of our method on coeval word embeddings for
future works.

5.1 First Experiment
Validation of test sets

5.1.1 Experimental setup

Pre-trained embeddings We use the pre-trained 300-dimensional Word2Vec
historical vectors for English from the GitHub page of the project Hist-
words((Hamilton et al., 2016)), described in the subsection 3.2.1. In par-
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ticular, we rely on the ones trained on the corpora EngFic, made up by
english fiction book, with 7.5 × 1010 tokens. The twenty available embed-
dings have different vocabulary, as shown in the table 5.2.

Word2Vec embeddings of
Histwords trained on EngFic

Decade Cardinality of
the vocabulary

1800 686
1810 1103
1820 1750
1830 2665
1840 3355
1850 4499
1860 4385
1870 4742
1880 6184
1890 8896
1900 9719
1910 7735
1920 10225
1930 9163
1940 8657
1950 11682
1960 13755
1970 13521
1980 19353
1990 24049

Table 5.2: Table illustrating the cardinality of the vocabulary depending
on the decade of data of the pre-trained word embeddings of the project
Histwords.

Selected decades We compare only the representations corresponding to
the decades 1890 and 1990, given by embedding maps e1890 and e1990:

e1890 : D1890 → V1890 e1990 : D1990 → V1990
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Let D1890 and D1990 be the vocabularies related to e1890 and e1990 respectively:
while |D1890| = 8896, and |D1990| = 24049, the cardinality of the intersection
D1890 ∩ D1990 := D of the two vocabularies is |D| = 8810.
Then we consider the corresponding 300-dimensional vector spaces V1890 and
V1990 containing the diachronic vectorial representations, retrieved by Hamil-
ton et al. ((2016)) through SGNS model. Letting d = 300 and N = |D| =
8810, we creat two matrices X,Y ∈ Rd×N , whose columns are respectively
x⃗i ∈ V1890 and y⃗i ∈ V1990, embedding vectors for all the words wi ∈ D,
i = 1, .., N .

Test sets The preparation of the test sets H, B, and S, shown in tables
5.3, 5.4, 5.5, is a fundamental step for the experiments.
H is the set of words subject to historical semantic change according to liter-
ature26. B is the set of words subject to certain types of cultural biases, due
to ageism, racism, sexism, or homophobia which are personally annotated or
found on the web ((ONGIG, 2020)). S is the set of words which are likely to
be stable, namely not subject to biases or semantic change. The idea behind
this last list, is that words belonging to the categories of inaninimate ob-
jects and common animals and natural elements are less involved in cultural
change over time.

H
fun, fond, terrific, tremendous, awe, grin, smart, egregious, sad, smug,
facetious, bully, gay, fatal, awful, nice, broadcast, monitor, record, guy,
call, awesome, terrible, terrific, naive, demagogue, guy, mouse, queer,
nigger, jaw, kill, astound, knave, knight, recording, bitch, tape, check-
ing, diet, sex, plastic, transmitted, peck, honey, hug, windows, bush, ap-
ple, sink, click, handle, instant, twilight, rays, streaming, ray, delivery,
combo, candy, rally, snap, mystery, stats, sandy, shades, god, propa-
ganda, atomic, toilet, halloween, king

Table 5.3: Test set of the words subject to historical semantic change

26With this regard, the reference texts are ((Hamilton et al., 2016)), ((Floss, 2015)),
((Wikipedia, 2022b)), ((Bloomfield, 1933)), ((Kulkarni et al., 2015)) ((Jatowt and Duh,
2014)), ((Wijaya and Yeniterzi, 2011)).
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B
chink, colored, indian, african, foreign, lesbian, gypsy, elderly, handi-
capped, homos, homosexual, alien, master, slave, retarded, tranny, tribe,
girl, boy, man, woman, housekeeper

Table 5.4: Test set of the words subject to societal bias

S
house, tree, table, lamp, book, shoe, mirror, box, fork, chair, telephone,
bottle, stove, engine, wallet, boat, pencil, box, cup, plate, paper, stereo,
leaf, stick, cloud, shampoo, hat, painting, clothes, watch, window, key,
pillow, water, fire, book, door, street, path, bird, horse, cat, dog, fox,
fish, school, paper, fountain, cage, ink, pen, bone, forniture, dictionary,
umbrella, scissor, hammer, rubbish

Table 5.5: Test set of the words likely to be stable.

In D 25 words of H, 9 words of B, 6 words of S are missing, so they are
not considered for the next analysis.

5.1.2 Results of the experiment

Firstly, we calculate θ(x⃗, y⃗)27 of all the words w ∈ D, with x⃗ ∈ V1890 and
y⃗ ∈ V1990 representations of w. The trend of θ values sorted in ascending
order, computed for each word in the common vocabulary, is shown in the
graph 5.1. It is clear that the representations x⃗ ∈ V1890 and y⃗ ∈ V1990 of the
same word w ∈ D change in different ways according to θ. We recall that
the higher is θ, the higher the number of common neighbours between two
words, which corresponds to an higher semantic similarity. Indeed, θ takes
all its possible values throughout the vocabulary, which are discrete by its
very nature. Consequently, our hypothesis is confirmed by this behaviour:
some words seems to change their meaning more than others, depending on
their common neighbors, between the two diachronic embedding spaces.

We validate the test sets shown in the tables 5.3, 5.4, 5.5 by computing
the averages of θ(x⃗, y⃗) and the corresponding variances σθ(x⃗,y⃗), for w taken in
H, B, and S.

27θ is described in the section 4.3
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Figure 5.1: Graph representing the values of θ(x⃗, y⃗) reported on the y-axis,
for all w ∈ D whose indices are reported on x-axis, sorted in ascending order
according to the corresponding θ value

Set H B S
θ(x⃗, y⃗)± σθ(x⃗,y⃗) 0.30094± 0.04532 0.38437 ± 0.05772 0.497115 ± 0.023789

Table 5.6: Averages and corresponding variances of θ(x⃗, y⃗) values for the test
sets

In the table 5.6 the results of validation are shown, confirming our choice
of words, especially regarding H. Indeed, the averages of θ(x⃗, y⃗) of the ele-
ments of H and B are clearly lower than the mean value of S. However, the
mean θ of H is 0.8 lower than B. This could be due to the fact that H is
constructed by having robust linguistic literature supporting our hypothesis.

5.2 Second Experiment
Comparing Three Different Alignments

The idea behind this experiment is to compare two pre-trained diachronic
embeddings (presented in the subsection 5.1.1) by aligning them following
three different approaches, deeper explained in the section 4.2:
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• The classic alignments A1 associated to the matrix W1 found in lit-
erature ((Hamilton et al., 2016; Conneau et al., 2017)), obtained by
solving the Procrustes problem with orthogonal constrains.

• The alignment A2 associated to W2, computed by solving an optimiza-
tion problem based on a linear decomposition.

• The alignment A3 associated to W3, computed by solving an optimiza-
tion problem with 0-norm by applying the Frank-Wolfe method.

5.2.1 Esperimental setup

Alignment parameters In order to find the matrix W3 for the alignment
A3, we make some test by making varying the parameters of the Frank-Wolfe
method. ϵ is made vary among 10−4, 10−6, 10−12, and gk is initialized as (g0)i
by using a unit vector and then a randomly generated vector. The results
seem to be quite similar for our purposes. Finally, we decide to fix ϵ = 10−12,
and to take a randomly generated (g0)i for the first iteration of Frank-Wolfe
method. We set α = 5 for all experiments.

5.2.2 Evaluation methodology

After applying the three alignments thorugh W1, W2, and W3, multiplying
them by X, the analysis of the results is structured into three parts. In the
current subsection, let us indicate e1890(w) := x⃗ ∈ V1890 and e1990(w) := y⃗ ∈
V1990.

First part: a general evaluation on the test sets Given all the words
w ∈ H, B, S we compute the mean value of si(w) and the mean value of
θ(Wix⃗, y⃗) for i = 1, 2, 3.

Second part: evaluation of the top and bottom of the rankings ri
We retrieve the rankings r1, r2, and r3, by sorting w ∈ D with respect to
the values s1, s2, and s3 respectively in ascending order. Firstly, we take the
first and the last 50 words of sorted lists ri, obtaining the sets Li and Hi,
i = 1, 2, 3:

• Li are the sets made up by the first 50 words in ri, associated with lower
si values. The words w ∈ Li correspond to representations e1890(w) and
e1990(w) which change more before and after the alignment through Wi.
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• Hi are the sets made up by the last 50 words in ri, associated with
higher si values. The words w ∈ Hi correspond to representations
e1890(w) and e1990(w) which change less before and after the alignment
through Wi.

This distinction is summarized in the table 5.7, where we report our corre-
sponding interpretation concerning cultural semantic conditioning.

Set si Our hypothesis
Li Lowest 50 si values More likely to be subject of cultural semantic

conditioning according to the alignemnt through
Wi

Hi Highest 50 si values Less likely to be subject of cultural semantic
conditioning according to the alignemnt through
Wi

Table 5.7: A table summarizing the properties of the elements in Li and Hi,
and the corresponding hypothesis.

Then, we find the intersection among the test sets H, B, S and Li

and Hi. We provide the mean values of the similarity measures si(w) with
i = 1, 2, 3, and sE(w) := sE(w⃗1890, w⃗1990) obtained by using the tools of the
website Exploring Word Evolution Jatowt et al. ((2018)) described in the
section 3.2.2. Moreover, we compute the averages of θ(Wix⃗, y⃗), and θ(x⃗, y⃗),
with w ∈ Li and then with w ∈ Hi for i = 1, 2, 3. Finally, we investigate the
presence of semantic or syntactic regularities in Li and Hi.

Third part: comparison of the rankings through H In this last part
of analysis, we focus on the single test set H, by identifying the position of
its elements in the rankings r1, r2, and r3. More specifically, letting ii(w) be
the index of the word w in ri with i = 1, 2, 3, we identify the words w ∈ H
for which the absolute difference of indices |ii(w)− ij(w)| (i, j = 1, 2, 3, i < j)
is higher than the threshold m. In that cases, fixing p > 0 we individuate
three possibilities:

• ii(w) < ij(w), ii(w) ≤ p ⇒ the ranking ri classify w better than rj.

• ij(w) < ii(w), ij(w) ≤ p ⇒ the ranking rj classify w better than ri.

• Otherwise, ii(w) and ij(w) are close, or they are both far from the
tops of the rankings ri and rj. This could mean that their placement
is realized according to our prediction or not in both rankings.
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It is important to observe that the goal of this test is to compare the
alignments. Finally, we make a qualitative analysis of the retrieved words.
We decide to fix m = 2000 and p = 1000.

5.2.3 Results

First analysis: a general evaluation on the test sets For all the words
w ∈ D in the sets H, B, and S we compute s1(w), s2(w), and s3(w) defined
as in the section 4.3, where y⃗ ∈ V1990 and x⃗ ∈ V1890 are the representations
of w in the two embeddings. In the following table 5.8 the averages of the
measures si(w) with the corresponding variances σsi with i = 1, 2, 3 in the
three different sets are reported.

Set Mean s1 ± σs1 Mean s2 ± σs2 Mean s3 ± σs3

H 0.04120 ± 0.00109 0.56898 ± 0.02608 0,5581 ± 0.02513
B 0.05414 ± 0.00185 0.62243 ± 0.01828 0.60922 ± 0.01905
S 0.04562 ± 0.00109 0.66787 ± 0.00903 0.6518 ± 0.00918

Table 5.8: Table showing the averages of the measures si with the corre-
sponding variances σsi with i = 1, 2, 3 in H, B, and S.

In table 5.8 it is possible to notice that while the first alignment A1 leads
to very low and similar s1 values, both A2 and A3 recognize a difference of
similarities s2 and s3 among the test sets. According to both alignments, the
test set H of the words subject to historic semantic change corresponds to si
(i = 2, 3) 0.1 higher than S of presumably stable words. Moreover, the mean
s3 of the biased words in B is lower than the mean s2, which means that A3

seems to be more sensitive to the semantic differences among the words of
such test set.
Then, in table 5.9 the averages of θ(W1x⃗, y⃗), θ(W2x⃗, y⃗), and θ(W3x⃗, y⃗) are
reported, with the corresponding variances σθ(Wix⃗,y⃗), with i = 1, 2, 3.

Set Mean θ(W1x⃗, y⃗) ±
σθ(W1x⃗,y⃗)

Mean θ(W2x⃗, y⃗) ±
σθ(W2x⃗,y⃗)

Mean θ(W3x⃗, y⃗) ±
σθ(W3x⃗,y⃗)

H 0.02075 ± 0.01853 0.38679 ± 0.07001 0.38962 ± 0.07144
B 0.12812 ± 0.10874 0.55 ± 0.07218 0.5625 ± 0.07078
S 0.00096±4.71523×10−5 0.58557 ± 0.02128 0.57307 ± 0.02071

Table 5.9: Table showing the averages of the measures θ(Wix⃗, y⃗) with the
corresponding variances σθ(Wix⃗,y⃗) with i = 1, 2, 3 in H, B, and S.

62



From table 5.9 it is possible to evince that the average θ(W1x⃗, y⃗) of each
test set show a much higher change among words of S than the other sets
(corresponding to a very low mean θ(W1x⃗, y⃗) = 0.00096), which contradicts
the hypothesis on the test sets, confirmed by the first experiment (section
5.1). This means that the alignment A1 does not perceive the semantic
change which corresponds to the validated test sets. On the other hand, the
averages of θ(W2x⃗, y⃗) and θ(W3x⃗, y⃗) among test sets are similar and respect
the hypothesis we do on such sets: H and B correspond to lower values than
S, even if the the difference il slight between B and S.

Results of the second analysis: evaluation of the top and bottom of
the rankings As explained formerly in the subsection 5.2.2, in this part of
the analysis the rankings r1, r2, and r3 are built, by sorting all the words in
D in ascending order based on the values s1, s2, and s3 respectively. Then,
we construct L1, L2, and L3 taking the first 50 words of the rankings, and
H1, H2, and H3 taking the last 50 words of the rankings. The sets Li are
shown in the table 5.11, while Hi, are shown in 5.12, for i = 1, 2, 3.
The intersection among all the test sets H, B, S are shown in the table 5.10.
All the words in Li, Hi, with i = 1, 2, 3 also belonging to the test sets are in
bold in the tables 5.11 and 5.12.
In the table 5.10 it is possible to observe that the intersections among test
sets and the subsets of the ranking r1 are not very significant, since there is
just one word of H in L1 and one word of B in H1. On the contrary, we note
a more positive trend corresponding to the subsets of the other two rankings
r2 and r3. Indeed, both in L2 and L3 there are 3 words of H and B, the test
sets corresponding to the words more likely to be subject to semantic cultural
conditioning. In H2 and H3 there are respectively 4 and 5 presumably stable
words of S, respecting our precision. However, in both the latter sets there
are few words of H, and none of B.

∩ L1 H1 L2 H2 L3 H3

H 1 0 2 2 2 1
B 0 1 1 0 1 0
S 0 0 0 5 0 4

Table 5.10: Intersection among H, B, S and Li, Hi, with i = 1, 2, 3
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L1 L2 L3

kill, cavalry, to, root,
ought, introducing,
representatives, dis-
tress, slumber, court,
brow, greet, helpless,
warmly, searched,
unnoticed, talks, pro-
longed, concerned,
conversing, devote,
sideways, dobbin, con-
vince, nodding, loom,
brussels, clarence,
centuries, firing,
revolver, simple,
signs, dimly, seized,
mancha, kitchen,
forest, rank, breath,
somehow, grand-
mother, finishing,
colors, aimed, argu-
ments, console, stores,
glance, everything

guy, dow, tony,
quentin, gavin,
georgie, vis, egyp-
tian, checking, mac,
ut, barnaby, jan,
the, dinah, gypsy,
cranford, comer,
catriona, percy, deb-
orah, dad, gilbert,
jessie, palmer, jason,
kenneth, martha,
barker, edith, foster,
nanny, ta, overdue,
scot, almayer, comers,
66, covers, esther, sig-
nor, judy, headed,
romances, clennam,
tho, hilda, urge, amy,
jean

guy, tony, quentin,
gavin, egyptian,
georgie, dow, mac,
vis, checking, ut,
cranford, jan, the, di-
nah, barnaby, gypsy,
deborah, comer, ja-
son, nanny, catriona,
gilbert, jessie, dad,
percy, edith, palmer,
martha, esther,
romances, foster, sig-
nor, almayer, barker,
66, overdue, ta, com-
ers, dale, kenneth,
amy, minstrel, covers,
clennam, hilda, jenny,
headed, weaving, joan

Table 5.11: Elements of L1, L2, and L3, with first 50 words in ri, associated
with lower si values, sorted in ascending order. The elements of the test sets
H, B, and S are in bold.
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H1 H2 H3

disadvantage,
churches, impulse,
shoulders, poured,
sugar, immortal,
assuring, retain-
ing, gale, choosing,
pew, happily, cor-
responding, income,
relationship, bee,
shudder, exquisite,
jump, swam, ex-
ercised, overboard,
waked, purchased,
expressions, modest,
quitted, tender, in-
dignantly, recalling,
couple, architecture,
another, folded, plight,
den, girl, developed,
went, burgundy,
scornfully, blank,
alternative, appealed,
operations, influence,
strengthened, vote,
extinguished

marhaus, gaheris,
beaumains, heard, sat,
hight, trees, gat, door,
miles, evening, balin,
water, five, launcelot,
jesu, windows,
years, hear, ye, floor,
church, hundred,
voice, stairs, sea,
kenwigs, steps, glass,
unto, oh, knight,
twenty, warm, chair,
mother, hair, morn-
ing, standing, brown-
low, gude, ried, thou,
sitting, window,
eyes, horses, hours,
afternoon, horse

marhaus, beaumains,
gaheris, hight, heard,
trees, gat, sat, miles,
kenwigs, floor, balin,
door, launcelot, wa-
ter, years, hundred,
evening, jesu, stairs,
unto, ye, windows,
church, sea, oh, voice,
mother, five, chair,
gude, twenty, sitting,
thou, steps, hear, hair,
glass, eight, sister,
sit, standing, smile,
dressed, feet, brown-
low, horse, flowers,
stared, hours

Table 5.12: Elements of H1, H2, and H3, with the last 50 words in ri, asso-
ciated with higher si values, sorted in descending order. The elements of the
test sets H, B, and S are in bold.

For each of the 6 sets of words, we provide the mean si value and the
corresponding variance σsi , based on our data, and the mean sE(w) value
and the corresponding variance σsE . The results are reported in the table
5.13 and in charts of the figure 5.2.
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(a) si values, with i = 1, 2, 3

Set Mean s1 ± σs1

L1 0.000145 ± 5.9 ×10−9

H1 0.16897 ± 0.000139
Mean s2 ± σs2

L2 0.21399 ± 0.00517
H2 0.81909 ± 0.0004

Mean s3 ± σs3

L3 0.20279 ± 0.00524
H3 0.80822 ± 0.00039

(b) sE values
Set Mean sE ± σsE

L1 0.9109 ± 0.00836
H1 0.88498 ± 0.02846
L2 0.55203 ± 0.10113
H2 0.95848 ± 0.00370
L3 0.566 ± 0.10532
H3 0.95529 ± 0.0037

Table 5.13: The averages of the corresponding variances of the similarity
values in Li and Hi, i = 1, 2, 3
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Figure 5.2: Bar charts representing the averages of the similarities si and sE
of the sets Li and Hi, i = 1, 2, 3.

In the table 5.13(a), it is clear that the mean s1 is overall low in both L1

and H1, which gathers the highest values with an average of only 0.16897.
On the other hand, the mean s2 and s3 vary more, obtaining a 0.6 difference
between the pairs Li and Hi (i = 2, 3), corresponding to a more marked
semantic difference in both cases.
In the table 5.13(b), it is possible to notice that while L1 and H1 correspond
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to almost equally high mean values of sE, L2 and L3 seem to correspond to
lower values of sE, and H2 and H3 to higher values of sE.
In summary, the similarity perceived through the alignment A1 is not re-
flected by the other measure sE, while the same measure apparently confirm
the diachronic similarity found according to the other alignments A2, A3.

Then, we compute the averages of θ(x⃗, y⃗) with x⃗ ∈ V1890 and y⃗ ∈ V1990
corresponding to the same word w in the sets Li, Hi, with i = 1, 2, 3. In
addition, we calculate the mean values and the corresponding variance of
θ(Wix⃗, y⃗) for Li and Hi, for i = 1, 2, 3. All the results are reported in the
table 5.14 and in the graphs of the figure 5.3.

(a) θ(x⃗, y⃗) values
Set Mean θ(x⃗, y⃗) ± σθ(x⃗,y⃗)

L1 0.40399 ± 0.02388
H1 0.349 ± 0.02634
L2 0.088 ± 0.00195
H2 0.625 ± 0.02272
L3 0.091 ± 0.00217
H3 0.627 ± 0.02252

(b) θ(W1x⃗, y⃗) values, with i = 1, 2, 3

Set Mean θ(W1x⃗, y⃗) ± σθ(W1x⃗,y⃗)

L1 0.002 ± 9.6×10−5

H1 0.027 ± 0.00172
Mean θ(W2x⃗, y⃗) ± σθ(W2x⃗,y⃗)

L2 0.05 ± 0.0058
H2 0.796 ± 0.00888

Mean θ(W3x⃗, y⃗) ± σθ(W3x⃗,y⃗)

L3 0.05 ± 0.0054
H3 0.807 ± 0.0066

Table 5.14: The averages and the corresponding variances of the θ values in
Li and Hi, i = 1, 2, 3

In the table 5.14(a) it is possible to observe that the mean θ(x⃗, y⃗) in L1 is
even higher than in H1, which means that there is not even a correspondence
between the measures s1 and θ. On the contrary, s2 and s3 seems to be
coherent to θ according to A2 and A3 respectively. Indeed, in both pairs of
subsets Li and Hi with i = 2, 3, there is the same considerable difference
between the mean θ(x⃗, y⃗) values: in particular,the averages are much higher
in H2 and H3. In the table 5.14(b) a similar trend emerges: θ(W2x⃗, y⃗) and
θ(W3x⃗, y⃗) are positively unbalanced in the same way as before. On the other
hand, this time θ(W1x⃗, y⃗) is more coherent with s1, but the corresponding
values are very slow.

The next sep is the semantic and syntactic regularities detection among
Li and Hi, with i = 1, 2, 3. Apparently, in the two subsets L1 and H1 ex-
tracted from the ranking r1 there would not appear to be any regularity,
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Figure 5.3: Bar chart representing the averages of θ(x⃗, y⃗) and θ(Wix⃗, y⃗) of
the sets Li and Hi with i = 1, 2, 3.

given that such words belongs to different semantic and syntactic categories.
The respective mean s1 values are low, while the mean sE values are overall
high, showing a non-significant general semantic change.
On the contrary, the subsets L2, H2, and L3, H3 extracted from r2 and r3
respectively show a significant semantic and syntactic imbalance. Exactly
23 of the words of L2 (tony, quentin, gavin, georgie, barnaby, jan, dinah,
cranford, catriona, percy, deborah, gilbert, jessie, jason, kenneth, martha,
edith, esther, judy, clennam, hilda, amy, jean), and 23 of the words in L3

(coinciding with the ones of L2, except for judy, jean which are replaced by
jenny, joan) are proper names, largely fallen out of use during the 1900s.
In addition, 7 of the words of L2 (guy, gypsy, comer, barker, foster, nanny,
signor) and 8 words of L3 (coinciding with the ones in L2, with the addition
of minstrel) are non proper names referred to people, while none of the el-
ements of L2 and L3 belongs to the categories of inanimate objects or body
parts and human attributes. Just one words in L3 (dale) is in the category
natural elements and common animals. It is interesting to observe the word
mac is in both L2 and L3: probably its old meaning of a familiar term of
address to a man or boy whose name is not known to the speaker originated
in 1600s overlaps with the contemporary meanings of Macintosh personal
computer or short for macaroniDictionary ((2022b)). Moreover, we can no-
tice that the word corresponding to the lowest s2 and s3 values is guy, which
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belongs to the test set H.
On the other hand, only 3 of the words in H2 and in H3 are proper names
(jesu, launcelot, brownlow), but it is important to precise that they corre-
spond to important religious, epic or literature characters. Moreover, 9 words
in H2 (gat, door, windows, window, floor, church, stairs, glass, chair) and
8 words in H3 (coinciding with the ones of H2, excluding window) belong
to the category inanimate objects. 4 words in both H2 and H3 (trees, sea,
water, horses in H2, and trees, sea, water, flowers in H3) belong to the cat-
egory natural elements and common animals. 3 elements of H2 (hair, voice,
eyes) and 5 elements of H3 (hair, voice, smile, feet, dressed) belong to the
category body parts and human attributes. 2 words of H2 (knight, mother)
and 2 words of H3 (mother, sister) are non proper names referred to people.
In the figure 5.4 a graph illustrates the distribution of the words of L2 and
H2 in the mentioned categories. All these considerations are summarized in
the table 5.15 and in the bar chart 5.4.

Category L2 H2 L3 H3

Proper names 23 3 22 3
Non proper names referred to people 7 2 8 2
Body part and human attributes 0 3 0 5
Natural elements and common animals 0 4 1 4
Inanimate objects 0 9 0 9

Table 5.15: Table reporting the distribution of the words of L2, H2 and L3,
H3 into the mentioned categories for the regularities detection.

Although the analysis is qualitative and subjective, since the choice of
categories is arbitrary, it is clear that the distribution of some semantic and
syntactic categories is related to the values s2 and s3, and consequently,
depends on the position of the words in the rankings r2 and r3.
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Figure 5.4: A graph representing the described regularities in L2 and H2, L3

and H3

Finally, we proceed to make a qualitative comparison of A2 and A3.
Since L2 and L3 are quite similar, let us investigate more precisely the dif-
ferences between them. In the tables 5.16 and 5.17 the intersections and the
differences between such sets are shown. Focusing on the table of the differ-
ences 5.17, it is possible to notice that the alignment A3 replaces in L3 the
words scot, judy, tho, urge, jean of L2 with dale, minstrel, jenny, weaving,
joan. While jenny, joan are proper nouns as well as judy, jean, we observe
that dale and minstrel are expressions which are fallen into disuse through-
out 20th century: indeed, according to the Collins Dictionary, dale is a term
referring to an open valley in Old English ((Collins Dictionary, 2022a)), and
minstrel is a singer and musician who travelled around and entertained noble
families in medieval times ((Collins Dictionary, 2022b)).
Then, regarding H2 and H3, it is possible to observe a slight unbalanace.
While in H3 there are 3 words of the category body parts and human at-
tributes (smile, feet, dressed) in H2 there is only 1 (eyes). Moreover, contary
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to H3, in H2 there is window belonging to the test set H.

Intersection L2 ∩ L3 H2 ∩H3

Cardinality 45 42
Elements guy, dow, tony, quentin,

gavin, georgie, vis, egyptian,
checking, mac, ut, barn-
aby, jan, the, dinah, gypsy,
cranford, comer, catriona,
percy, deborah, dad, gilbert,
jessie, palmer, jason, ken-
neth, martha, barker, edith,
foster, nanny, ta, overdue,
almayer, comers, 66, cov-
ers, esther, signor, headed,
romances, clennam, hilda,
amy

marhaus, gaheris, beau-
mains, heard, sat, hight,
trees, gat, door, miles,
evening, balin, water, five,
launcelot, jesu, windows,
years, hear, ye, floor,
church, hundred, voice,
stairs, sea, kenwigs, steps,
glass, unto, oh, twenty,
chair, mother, hair, stand-
ing, brownlow, gude, thou,
sitting, hours, horse

Table 5.16: Intersections between the pairs of sets Li and Hi, with i = 2, 3

Difference L3 − L2 H3 −H2 L2 − L3 H2 −H3

Cardinality 5 8 5 8
Elements dale, min-

strel, jenny,
weaving, joan

eight, sister,
sit, smile,
dressed, feet,
flowers, stared

scot, judy, tho,
urge, jean

knight, warm,
morning, tried,
window, eyes,
horses, after-
noon

Table 5.17: Differences between the pairs of sets Li and Hi, with i = 2, 3

Third part: comparison of the rankings through H We identify the
words w ∈ H respecting the conditions |ii(w) − ij(w)| > 2000, ii ≤ 1000 or
ij ≤ 1000, i, j = 1, 2, 3, i < j. Fixing (i, j) = (2, 3), none word respects such
conditions, and consequently we consider only (i, j) = 1, 2 and (i, j) = 1, 3.
Moreover, also the comparison among the pairs r2 and r3 with respect to r1
gives the same results, since, as shown before, r2 and r3 are similar. Hence,
the considered sets of words, shown in the table 5.18 are:

• w ∈ H s.t. i1(w)−i2(w) > 2000, i1(w)−i3(w) > 2000, i2 ≤ 1000, i3 ≤
1000, corresponding to the words better placed by r2 and r3 rather than
r1.
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• w ∈ H s.t. i1(w)− i2(w) < −2000, i1(w)− i3(w) < −2000, i1 ≤ 1000,
corresponding to the words better placed by r1 rather than r2 and r3.

w ∈ H better placed by r2 and r3 than
r1

w ∈ H better placed by r1 than r2 and
r3

terrific, bully, gay, record, guy, check-
ing, delivery, snap, toilet

fun, tremendous, nice, kill, windows,
instant, king

Table 5.18: Table showing the selected words w ∈ H better placed by r2 and
r3 rather than r1 and viceversa.

In the table 5.18 it is possible to observe that the balance is slightly better
for r2 and r3 in comparison to r1, with 9 better placed words against 7 of r1.
Among them, it is important to notice that instant is a word related to social
media language, much more recent than 1990, which means that its semantic
change took placed after the epoch corresponding to the second embedding.

5.3 Discussion of the Results
The first experiment (section 5.1) prove that the social cultural conditioning,
and expecially its declination of historic semantic change, takes actually place
among diachronic embeddings trained on different corpora.
Regarding the second experiment (section 5.2), it emerges that overall, the
alignments of our creation A2 and A3 give better results than the classic
alignments A1, which performs significantly worse in all our tests. This could
be also due to the fact that in order to compute the alignment matrix W1

we consider all the words of the common dictionary to construct matrices X
and Y, and not the n most frequent ones, as shown in the section 1.4. Our
choice is motivated by two reasons: first, the selection of n most frequent
words used in two different epochs requires a deeper linguistic knowledge,
which is beyond the scope of this thesis; second, we decide at the beginning
to adopt the method used by Hamilton et al. ((2016)) as a reference.
Although A2 and A3 are in general more effective in highlighting cultural
semantic conditioning, in the second part of the analysis conducted in the
present chapter, A3 apparently performs slightly better, expecially in the
regularities detection. However, the present analysis can be expanded in
many way, as we explain in Conclusion and Future Works.
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Conclusion and Future Works

Word embeddings are built by training learning algorithms on large corpora
of textual data, which often reflect different types of biases and cultural
peculiarities inherited by the society itself. Since these tools are the state-of-
the-art representations in NLP tasks, biases are likely to be carried over by
Machine Learning algorithms, which may, in turn, reinforce them.
The aim of the present work is to build an alignment able to highlight
the cultural semantic conditioning of word embeddings trained on different
corpora. The alignment, a map between two different embedding space, is
realized by multiplying the vectors x⃗ of the source space by the transforma-
tion matrix W. Current alignments methods minimize the contribution to
the error between Wx⃗ and the target vector y⃗ of every word representation.
On the contrary, the hypothesis our work is based on is that the alignment
should place the images of word vectors more distant to the target vector
if they are more likely to be subject to cultural semantic conditioning, and
viceversa. The first contribution is to model our hypothesis as a nonlin-
ear optimization problem, whose resolution has been made possible by ad
hoc linear decompositions. The more original contribution consists in the
application of such decomposition to the Frank-Wolfe method, leading to a
considerable reduction in computational cost. The experiments we conducted
confirm our hypothesis: as an overall trend, the alignments we propose show
an error proportional to the semantic change of a single words represented
in two diachronic embeddings, trained on data 100 years apart.
However, the significant results of the present work can be seen as a spring-
board to future works. Indeed, it is possible to expand our research in the
following directions:

• combining pairs of diachronic embeddings, beyond the decades 1890
and 1990, in order to investigate more generally how language evolves;

• training word embeddings on coeval data of different political ideology,
or related to different cultures, places and social contexts, and then
applying the same methodogical analysis on them;
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• another option is making the regularities detection shown in the section
5.2.3 more systematic, by exploiting the ontology provided by Miller
((1998)) in the famous online project Wordnet ;

• an other interesting idea could be to give sociological and linguistic
interpretation to the trend of θ measure shown in figure 5.1.
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Appendix A

In order to compute W2, the following AMPL code has been executed with
the command:

include decomposition.run

with the file decomposition.run given by

reset;
model decomposition.mod;
data 1890_1990.dat;

option solver cplexamp;

for {it in 1..300} {
let j:=it;
solve;\newline
}

which refers to the file decomposition.mod, whose script is

set I:=1..8810;
set K:=1..300;
set J:=1..300;

param j, in J, default 1;
param x{K,I};
param y{J,I};

var z{I};
var W{J,K};
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minimize f: sum{i in I}z[i];
s.t. v{i in I}:

sum{k in K} W[j,k]*x[k,i]-z[i] <= y[j,i];
s.t. v1{i in I}:

sum{k in K} W[j,k]*x[k,i]+z[i] >= y[j,i];

Finally 1890_1990.dat is a text document which contains the assignment
of the parameters x, y (corresponding to the previously mentioned matrices
X and Y), and j.

76



Appendix B

In order to compute W3, the following AMPL code has been executed with
the command:

include FW.run

reset;

model FW.mod;
data 1890_1990.dat;.dat;
option solver cplexamp;

param z_curr{I};
param eps:=1e-12;
param it_fw;
param grad_mean:=5;
param grad_variance:=3.5;

let it_fw:=0;
let {i in I} grad_curr[i]:=

max(Normal(grad_mean, grad_variance), 0);
let {i in I : grad_curr[i]>10}grad_curr[i]:=10;

for {it in 1..300}{
let j:=it;
solve;

}
let it_fw:=1;
repeat {

let {i in I} z_curr[i]:=sum{k in K}a[k,i];
let {i in I}grad_curr[i]:=5*exp(-5*z_curr[i]);
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for {it in 1..300} {
let j:=it;
solve;

}
until sum{i in I}grad_curr[i]*(sum{k in K}a[k,i]+

-z_curr[i])>=-eps;

referring to the file FW.mod, whose script is

set I:=1..8810;
set K:=1..300;
set J:=1..300;

param x{K,I};
param y{J,I};
param grad_curr{I};
param j, in J, default 1;

var a{K,I};
var W{J,K};

minimize f: sum{i in I}grad_curr[i]*a[j,i];
s.t. v1{i in I}:

sum{k in K}W[j,k]*x[k,i]-a[j,i] <= y[j,i];
s.t. v2{i in I}:

sum{k in K}W[j,k]*x[k,i]+a[j,i] >= y[j,i];

The reduced dimension version is given by the same FW.run file combined
with a slightly different .mod file called FW_RD.mod, given by the following
script:

set I:=1..8810;
set K:=1..300;
set J:=1..300;

param x{K,I};
param y{J,I};
param grad_curr{I};
param j, in J, default 1;

var a{K,I};
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var W{J,K};

minimize f:
sum{i in I : z_curr[i]<>0}grad_curr[i]*a[j,i];

s.t. v1{i in I : z_curr[i]<>0}:
sum{k in K}W[j,k]*x[k,i]-a[j,i] <= y[j,i];

s.t. v2{i in I : z_curr[i]<>0}:
sum{k in K}W[j,k]*x[k,i]+a[j,i] >= y[j,i];

s.t. v3{i in I: z_curr[i]=0}:
sum{k in K}W[j,k]*x[k,i]-y[j,i]=0;

79





List of Figures

1.1 Schematic representation of the CBOW architecture . . . . . . 13

3.1 A table from Bolukbasi et al. ((2016)) showing examples of
automatically generated analogies for the pair she− he . . . . 34

3.2 A table from Bolukbasi et al. ((2016)) showing the list of the
occupations that are closest to she and to he in the w2vNEWS
embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 A table from ((Hamilton et al., 2016)) showing the character-
istics of the 6 datasets built for the project Histwords . . . . . 39

3.4 A t-SNE visualization of the semantic change of the three
words gay, broadcast, and awful over time, taken from Hamil-
ton et al. ((2016)) . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 A screenshot showing the results obtained for the the word
mail in the online framework Exploring Word Evolution Ja-
towt et al. ((2018)) . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 A representation provided by Søgaard et al. ((2018)) of the
nearest neighbor graphs of 10 most frequent words in English
Wikipedia and of their their automatic translation in German,
by using the method of Conneau et al. ((2017)). . . . . . . . . 44

4.1 Representation of the embedding maps e1 : D → V1, e2 : D →
V2 and the alignment map A : V1 → V2 acting in turn on a
word w of a vocabulary D. . . . . . . . . . . . . . . . . . . . . 47

4.2 Representation of the alignment maps Ai : V1 → V2, i = 1, 2, 3
acting on a word vector x⃗ of the first embedding space V1. . . 48

4.3 Diagram representing how θk can act between different em-
bedding spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Graph representing the values of θ(x⃗, y⃗) reported on the y-axis,
for all w ∈ D whose indices are reported on x-axis, sorted in
ascending order according to the corresponding θ value . . . . 59

81

https://www.okayama.silk.jp/WordEvolution/


5.2 Bar charts representing the averages of the similarities si and
sE of the sets Li and Hi, i = 1, 2, 3. . . . . . . . . . . . . . . . 66

5.3 Bar chart representing the averages of θ(x⃗, y⃗) and θ(Wix⃗, y⃗)
of the sets Li and Hi with i = 1, 2, 3. . . . . . . . . . . . . . . 68

5.4 A graph representing the described regularities in L2 and H2,
L3 and H3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

82





Bibliography

Zakaria Kaddari, Youssef Mellah, Jamal Berrich, and Mohammed G. Belka-
smi. Studying Political Bias via Word Embeddings. In WWW ’20: Com-
panion Proceedings of the Web Conference 2020, volume 144, 2021.

Eva Picardi. Le teorie del significato. Editori Laterza, 1999.

Daniel Jurafsky and James Martin. Speech and Language Processing. Prentice
Hall, 2000.

Zi Yin and Yuanyuan Shen. On the Dimensionality of Word Embedding.
Advances in neural information processing systems, 31, 2018.

Charles E. Osgood, George J. Suci, and Percy Tannenbaum. The Measure-
ment of Meaning. University of Illinois press, 1957.

Zellig S. Harris. Distributional Structure. Word, 10(2-3):146–162, 1954.

J. Firth. A Synopsis of Linguistic Theory 1930-1955. In Studies in Linguistic
Analysis. Philological Society, Oxford, 1957.

Martin Joos. Description of Language Design. The Journal of the Acoustical
Society of America, 22(6):701–707, 1950.

Burghard B Rieger. On Distributed Representation in Word Semantics. In-
ternational Computer Science Institute Berkeley, CA, 1991.

Gema Atienza. Operations on Word Vectors. https://github.com/
gemaatienza/Deep-Learning-Coursera, 2018.

David E. Rumelhart and Adele A. Abrahamson. A Model for Analogical
Reasoning. Cognitive Psychology, 5(1):1–28, 1973.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic Regularities in
Continuous Space Word Representations. In Proceedings of the 2013 con-
ference of the north american chapter of the association for computational
linguistics: Human language technologies, pages 746–751, 2013a.

84

https://github.com/gemaatienza/Deep-Learning-Coursera
https://github.com/gemaatienza/Deep-Learning-Coursera


Omer Levy, Yoav Goldberg, and Ido Dagan. Improving Distributional Simi-
larity with Lessons Learned from Word Embeddings. Transactions of the
association for computational linguistics, 3:211–225, 2015a.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. arXiv preprint arXiv:2106.11342, 2021.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word representations in Vector Space. arXiv preprint
arXiv:1301.3781, 2013b.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

Medium - Word Embedding and One Hot Encoding. https:
//medium.com/intelligentmachines/word-embedding-and-
one-hot-encoding-ad17b4bbe111#, 2020.

Shashank Gupta. Word Vector Encoding in NLP (Make Machine Un-
derstand Text). https://www.enjoyalgorithms.com/blog/word-
vector-encoding-in-nlp, 2022.

Saif Shabou. Natural Language Processing with R - Chapter 3,
Section 2. https://s-ai-f.github.io/Natural-Language-
Processing/Word-embeddings.html#one-hot-encoding, 2020.

Bhoomika Madhukar. The Continuous Bag Of Words (CBOW)
Model in NLP – Hands-On Implementation With Codes. https:
//analyticsindiamag.com/the-continuous-bag-of-words-
cbow-model-in-nlp-hands-on-implementation-with-
codes/, 2020.

Stanford. CS229 - Syllabus and Course Schedule. http://
cs229.stanford.edu/syllabus-spring2020.html, 2020.

Wikipedia. Cross Entropy. https://en.wikipedia.org/wiki/
Cross_entropy, 2022a.

Sanket Doshi. Skip-Gram: NLP context words prediction algo-
rithm. https://towardsdatascience.com/skip-gram-nlp-
context-words-prediction-algorithm-5bbf34f84e0c, 2019.

85

https://medium.com/intelligentmachines/word-embedding-and-one-hot-encoding-ad17b4bbe111#
https://medium.com/intelligentmachines/word-embedding-and-one-hot-encoding-ad17b4bbe111#
https://medium.com/intelligentmachines/word-embedding-and-one-hot-encoding-ad17b4bbe111#
https://www.enjoyalgorithms.com/blog/word-vector-encoding-in-nlp
https://www.enjoyalgorithms.com/blog/word-vector-encoding-in-nlp
https://s-ai-f.github.io/Natural-Language-Processing/Word-embeddings.html#one-hot-encoding
https://s-ai-f.github.io/Natural-Language-Processing/Word-embeddings.html#one-hot-encoding
https://analyticsindiamag.com/the-continuous-bag-of-words-cbow-model-in-nlp-hands-on-implementation-with-codes/
https://analyticsindiamag.com/the-continuous-bag-of-words-cbow-model-in-nlp-hands-on-implementation-with-codes/
https://analyticsindiamag.com/the-continuous-bag-of-words-cbow-model-in-nlp-hands-on-implementation-with-codes/
https://analyticsindiamag.com/the-continuous-bag-of-words-cbow-model-in-nlp-hands-on-implementation-with-codes/
http://cs229.stanford.edu/syllabus-spring2020.html
http://cs229.stanford.edu/syllabus-spring2020.html
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://towardsdatascience.com/skip-gram-nlp-context-words-prediction-algorithm-5bbf34f84e0c
https://towardsdatascience.com/skip-gram-nlp-context-words-prediction-algorithm-5bbf34f84e0c


Sketch Engine. POS tags. https://www.sketchengine.eu/blog/
pos-tags/#, 2018.

Alexander Kalinowski and Yuan An. A Survey of Embedding Space Align-
ment Methods for Language and Knowledge Graphs. arXiv preprint
arXiv:2010.13688, 2020.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic Word
Embeddings Reveal Statistical Laws of Semantic Change. arXiv preprint
arXiv:1605.09096, 2016.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. A Survey of Cross-Lingual
Word Embedding Models. Journal of Artificial Intelligence Research, 65:
569–631, 2019.

Aditya Mogadala and Achim Rettinger. Bilingual Word Embeddings from
Parallel and Non-parallel Corpora for Cross-Language Text Classifica-
tion. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 692–702, San Diego, California, 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/N16-1083. URL
https://aclanthology.org/N16-1083.

Peter Prettenhofer and Benno Stein. Cross-Language Text Classification
Using Structural Correspondence Learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, pages
1118–1127, Uppsala, Sweden, July 2010. Association for Computational
Linguistics. URL https://aclanthology.org/P10-1114.

Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Manning.
Bilingual Word Embeddings for Phrase-Based Machine Translation. In
Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1393–1398, Seattle, Washington, USA, Oc-
tober 2013. Association for Computational Linguistics. URL https:
//aclanthology.org/D13-1141.

Christian S. Perone, Roberto Silveira, and Thomas S. Paula. Evaluation of
Sentence Embeddings in Downstream and Linguistic Probing Tasks. arXiv
preprint arXiv:1806.06259, 2018.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting Simi-
larities among Languages for Machine Translation. arXiv preprint
arXiv:1309.4168, 2013c.

86

https://www.sketchengine.eu/blog/pos-tags/#
https://www.sketchengine.eu/blog/pos-tags/#
https://aclanthology.org/N16-1083
https://aclanthology.org/P10-1114
https://aclanthology.org/D13-1141
https://aclanthology.org/D13-1141


Peter H Schönemann. A Generalized Solution of the Orthogonal Procrustes
Problem. Psychometrika, 31(1):1–10, 1966.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embed-
ding and orthogonal transform for bilingual word translation. In Proceed-
ings of the 2015 conference of the North American chapter of the asso-
ciation for computational linguistics: human language technologies, pages
1006–1011, 2015.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning principled bilin-
gual mappings of word embeddings while preserving monolingual invari-
ance. In Proceedings of the 2016 conference on empirical methods in natural
language processing, pages 2289–2294, 2016.

Samuel L. Smith, David H.P. Turban, Steven Hamblin, and Nils Y. Ham-
merla. Offline Bilingual Word Vectors, Orthogonal Transformations and
the Inverted Softmax. arXiv preprint arXiv:1702.03859, 2017.

Manaal Faruqui and Chris Dyer. An information theoretic approach to bilin-
gual word clustering. In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pages
777–783, 2013.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and Pollu-
tion: Delving into Cross-Space Mapping for Zero-Shot Learning. In Zong
C, Strube M, editors. Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers); 2015
Jul 26-31; Beijing, China. Stroudsburg (PA): Association for Computa-
tional Linguistics; 2015. p. 270-80. ACL (Association for Computational
Linguistics), 2015.

Milos Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovic. Hubs in
Space: Popular Nearest Neighbors in High-Dimensional Data. Journal of
Machine Learning Research, 11(sept):2487–2531, 2010.

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear optimiza-
tion, volume 6. Athena scientific Belmont, MA, 1997.

Stephen Wright and Jorge Nocedal. Numerical Optimization. Springer Sci-
ence, 35(67-68):7, 1999.

Least Absolute Deviation Regression, pages 299–302. Springer New York,
New York, NY, 2008. ISBN 978-0-387-32833-1. doi: 10.1007/978-

87



0-387-32833-1_225. URL https://doi.org/10.1007/978-0-387-
32833-1_225.

Marguerite Frank and Philip Wolfe. An Algorithm for Quadratic Program-
ming. Naval Research Logistics Quarterly, 3, 1956.

Francesco Rinaldi, Immanuel M. Bomze, and Damiano Zeffiro. Frank–Wolfe
and friends: a journey into projection-free first-order optimization meth-
ods. 4OR, 2021.

Wikipedia2Vec. Pretrained Embeddings. https://
wikipedia2vec.github.io/wikipedia2vec/pretrained/,
2020.

Davor Petreski and Ibrahim C. Hashim. Word embeddings are biased. But
whose bias are they reflecting? AI & SOCIETY, pages 1–8, 2022.

OED Oxford English Dictionary. Bias. https://www.oed.com/
view/Entry/18564?rskey=xGzzk8&result=1&isAdvanced=
false#eid, 2021.

Kate Crawford. The trouble with bias. In Proceedings of NeurIPS 2017,
2017.

Batya Friedman and Helen Nissenbau. Bias in Computer Systems. ACM
Transactions on information systems (TOIS), 14(3):330–347, 1996.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Lan-
guage (Technology) is Power: A Critical Survey of" Bias" in NLP. arXiv
preprint arXiv:2005.14050, 2020.

Orestis Papakyriakopoulos, Simon Hegelich, Juan Carlos Medina Serrano,
and Fabienne Marco. Bias in Word Embeddings. In Proceedings of the
2020 conference on fairness, accountability, and transparency, pages 446–
457, 2020.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng.
Societal Biases in Language generation: Progress and Challenges. arXiv
preprint arXiv:2105.04054, 2021.

Aylin Caliskan, Pimparkar Parth Ajay, Tessa Charlesworth, Robert Wolfe,
and Mahzarin R. Banaji. Gender Bias in Word Embeddings: A Com-
prehensive Analysis of Frequency, Syntax, and Semantics. arXiv preprint
arXiv:2206.03390, 2022.

88

https://doi.org/10.1007/978-0-387-32833-1_225
https://doi.org/10.1007/978-0-387-32833-1_225
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://www.oed.com/view/Entry/18564?rskey=xGzzk8&result=1&isAdvanced=false#eid
https://www.oed.com/view/Entry/18564?rskey=xGzzk8&result=1&isAdvanced=false#eid
https://www.oed.com/view/Entry/18564?rskey=xGzzk8&result=1&isAdvanced=false#eid


Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and
Adam T. Kalai. Man is to Computer Programmer as Woman is to Home-
maker? Debiasing Word Embeddings. Advances in Neural information
processing systems, 29, 2016.

Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. Norms of Va-
lence, Arousal, and Dominance for 13,915 English lemmas. Behavior Re-
search Methods, 45(4):1191–1207, 2013.

Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived
automatically from language corpora contain human-like biases. Science,
356(6334):183–186, 2017.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. Word em-
beddings quantify 100 years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):E3635–E3644, 2018.

Svetlana Kiritchenko and Saif M. Mohammad. Examining Gender and
Race Bias in Two Hundred Sentiment Analysis Systems. arXiv preprint
arXiv:1805.04508, 2018.

Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. Racial bias
in hate speech and abusive language detection datasets. arXiv preprint
arXiv:1905.12516, 2019.

Josh Gordon, Marzieh Babaeianjelodar, and Jeanna Matthews. Studying Po-
litical Bias via Word Embeddings. In WWW ’20: Companion Proceedings
of the Web Conference 2020, pages 760–764, 2020.

Leonard Bloomfield. Language. George Allen & UNWIN LTD, 1933.

Collins Dictionary. diachronic. https://
www.collinsdictionary.com/dictionary/english/
diachronic, 2022a.

Yuri Lin, Jean-Baptiste Michel, Erez Aiden Lieberman, Jon Orwant, Will
Brockman, and Slav Petrov. Syntactic Annotations for the Google Books
NGram Corpus. In Proceedings of the ACL 2012 system demonstrations,
pages 169–174, 2012.

GoogleBooks. The Google Books Ngram Viewer. https:
//storage.googleapis.com/books/ngrams/books/
datasetsv3.html, 2013.

89

https://www.collinsdictionary.com/dictionary/english/diachronic
https://www.collinsdictionary.com/dictionary/english/diachronic
https://www.collinsdictionary.com/dictionary/english/diachronic
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html


Mark Davies. Expanding horizons in historical linguistics with the 400-
million word Corpus of Historical American English. Corpora, 7(2):121–
157, 2012.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving Distributional Simi-
larity with Lessons Learned from Word Embeddings. Transactions of the
association for computational linguistics, 3:211–225, 2015b.

Adam Jatowt, Ricardo Campos, Sourav S. Bhowmick, Nina Tahmasebi, and
Antoine Doucet. Every word has its history: Interactive exploration and
visualization of word sense evolution. In Proceedings of the 27th ACM In-
ternational Conference on Information and Knowledge Management, pages
1899–1902, 2018.

Mozhi Zhang, Keyulu Xu, Ken ichi Kawarabayashi, Stefanie Jegelka, and Jor-
dan Boyd-Graber. Are Girls Neko or Shojo? Cross-Lingual Alignment of
Non-Isomorphic Embeddings with Iterative Normalization. arXiv preprint
arXiv:1906.01622, 2019.

Yerai Doval, Jose Camacho-Collados, Luis Espinosa-Anke, and Steven
Schockaert. Improving Cross-Lingual Word Embeddings by Meeting in
the Middle. arXiv preprint arXiv:1808.08780, 2018.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. On the Limita-
tions of Unsupervised Bilingual Dictionary Induction. arXiv preprint
arXiv:1805.03620, 2018.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic De-
noyer, and Hervé Jégou. Word translation without parallel data. arXiv
preprint arXiv:1710.04087, 2017.

Francesco Rinaldi, Marco Sciandone, and F. Shoen. Concave programming
for minimizing the zero-norm over polyhedral sets. Comput Optim Appl
46, 2008.

Mental Floss. 13 Words That Changed From Negative to Positive Meanings
(or Vice Versa). https://www.mentalfloss.com/article/65987/
13-words-changed-negative-positive-or-vice-versa,
2015.

Wikipedia. Semantic change. https://en.wikipedia.org/wiki/
Semantic_change#, 2022b.

90

https://www.mentalfloss.com/article/65987/13-words-changed-negative-positive-or-vice-versa
https://www.mentalfloss.com/article/65987/13-words-changed-negative-positive-or-vice-versa
https://en.wikipedia.org/wiki/Semantic_change#
https://en.wikipedia.org/wiki/Semantic_change#


Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Statis-
tically Significant Detection of Linguistic Change. In Proceedings of the
24th international conference on world wide web, pages 625–635, 2015.

Adam Jatowt and Kevin Duh. A Framework for Analyzing Semantic Change
of Words across Time. In IEEE/ACM Joint Conference on Digital Li-
braries, pages 229–238. IEEE, 2014.

Derry Tanti Wijaya and Reyyan Yeniterzi. Understanding Semantic Change
of Words Over Centuries. In Proceedings of the 2011 international work-
shop on DETecting and Exploiting Cultural diversiTy on the social web,
pages 35–40, 2011.

ONGIG. 25+ Examples of Biased Language. https://blog.ongig.com/
diversity-and-inclusion/biased-language-examples/,
2020.

Collins Dictionary. mac. https://www.collinsdictionary.com/
dictionary/english/mac, 2022b.

Collins Dictionary. dale. https://www.collinsdictionary.com/
dictionary/english/dale, 2022a.

Collins Dictionary. minstrel. https://www.collinsdictionary.com/
dictionary/english/minstrel, 2022b.

George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

91

https://blog.ongig.com/diversity-and-inclusion/biased-language-examples/
https://blog.ongig.com/diversity-and-inclusion/biased-language-examples/
https://www.collinsdictionary.com/dictionary/english/mac
https://www.collinsdictionary.com/dictionary/english/mac
https://www.collinsdictionary.com/dictionary/english/dale
https://www.collinsdictionary.com/dictionary/english/dale
https://www.collinsdictionary.com/dictionary/english/minstrel
https://www.collinsdictionary.com/dictionary/english/minstrel

	Introduction
	I The Backround
	Word Embeddings: A General Overview
	Vector Semantics and the Distributional Hypothesis
	Semantic and syntactic properties of embeddings
	Cosine Similarity Measure
	Analogy

	Models
	One Hot Encoding
	CBOW Model
	Skip-Gram Model

	Word Alignment
	Word Alignment Models


	Linear and Non Linear Optimization Problems
	Linear Programming
	Introduction
	Standard form

	Nonlinear Programming
	Introduction
	Continuous Optimization Problems
	Existence conditions
	Convex and concave programming problems
	Linearization of nonlinear problems

	Frank-Wolfe method
	Description of the algorithm
	Unit stepsize


	Cultural Semantic Conditioning: from Idelogical Biases to Language Evolution
	Societal Biases in Word Embeddings
	Different types of societal biases
	The problem of bias propagation and amplification

	Historic Semantic Change
	Histwords
	Exploring Word Evolution

	Alignment and Cultural Contaminations


	II Our Contribution: the Idea and the Experiments
	Contributions
	The Idea Behind: an Aligment Highlighting Biases
	Embedding Alignment: A Nonlinear Programming Approach
	: the classic alignment
	: an alignment optimized by a linear decomposition
	: improving the alignment thorugh Frank-Wolfe method

	Measuring the Similarity of Embeddings
	Absolute cosine similarity 
	The  measure


	Experiments
	First Experiment. Validation of test sets
	Experimental setup
	Results of the experiment

	Second Experiment. Comparing Three Different Alignments
	Esperimental setup
	Evaluation methodology
	Results

	Discussion of the Results

	Conclusion and Future Works
	
	
	List of Figures
	Bibliography


