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Abstract
The efficient coordination and collaboration of autonomous agents are critical for achieving
complex tasks in various industrial and research applications. In this study, we focus on
recurring tasks, typical in agronomic applications, where tasks need to be executed repeatedly
over an indefinite horizon. We formally specify such tasks using Linear Temporal Logic
(LTL), for planning and coordination of multi-agent systems. We develop a software package
for multi-agent planning and coordination with a focus on precision agriculture, which can
straightforwardly be extended to a wider range of multi-robot control applications. The main
objective of the thesis is to develop a planning strategy that enables agents to execute tasks
collaboratively, ensuring both reliability and reducing computational complexity compared to
previous approaches.
To this end, we adapt a bottom-up approach to motion and task coordination that includes
an offline plan synthesis and an online coordination scheme based on real-time exchange of
request, reply, and confirmation messages. The offline synthesis generates an initial plan,
while the online scheme dynamically adjusts it to accommodate multi-agent collaboration.
Additionally, to address delays that may occur due to actions taking longer than anticipated,
we propose a synchronization mechanism. This mechanism ensures that agents can initiate
collaborative actions simultaneously, thus maintaining coordination despite the potential action
delays introduced in the experimental scenario.
Furthermore, we design a Model Predictive Control (MPC) controller with collision avoidance
capabilities to guarantee safe and efficient motion of agents within the workspace. Both the
planning strategy and the MPC controller are implemented in Python and Robot Operating
System 2 (ROS2) allowing deployment on a wide range of compatible robotic platforms.

To validate the effectiveness of our framework, we conduct extensive tests in various
scenarios, including controlled simulations in ROS2 and practical field experiments involving a
team of five robots, specifically 2 Turtlebots and 3 Hebi Rosies with manipulation capabilities.
The results demonstrated a significant reduction in computational complexity compared to
previous methods, and superior adaptability to various experimental setups.

Keywords
Multi-Rrobot Systems, Robot Collaboration, Linear Temporal Logic, ROS2 Implementation
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Sommario
L’efficiente coordinamento e la collaborazione dei robot autonomi sono fondamentali per

svolgere compiti complessi in diverse applicazioni industriali e di ricerca. In questo studio, ci
concentriamo su compiti ricorrenti, tipici delle applicazioni agronomiche, dove questi devono
essere eseguiti ripetutamente per un periodo indefinito. Specificheremo formalmente tali compiti
attraverso Linear Temporal Logic (LTL) per la pianificazione e il coordinamento dei sistemi
multi-agente. Sviluppiamo un pacchetto software per la pianificazione e il coordinamento multi-
agente con un focus sull’agricoltura di precisione, che può essere esteso in modo semplice
a un’ampia gamma di applicazioni di controllo multi-robot. L’obiettivo principale della tesi
è sviluppare una strategia di pianificazione che consenta agli agenti di eseguire compiti in
collaborazione, garantendo sia l’affidabilità sia la riduzione della complessità computazionale
rispetto agli approcci precedenti.
A tal fine, adattiamo un approccio bottom-up per il coordinamento dei movimenti e dei
compiti che include una sintesi offline del piano e uno schema di coordinamento online
basato sullo scambio in tempo reale di messaggi di richiesta, risposta e conferma. La sintesi
offline genera un piano iniziale, mentre lo schema online lo aggiorna dinamicamente per
consentire la collaborazione multi-agente. Inoltre, per affrontare i ritardi che possono verificarsi
a causa del fatto che le azioni richiedono più tempo del previsto, proponiamo un meccanismo
di sincronizzazione. Questo meccanismo assicura che gli agenti possano iniziare azioni
collaborative simultaneamente, mantenendo così il coordinamento nonostante i potenziali ritardi
introdotti nello scenario sperimentale.
Inoltre, progettiamo un controllore Model Predictive Control (MPC) capace di evitare collisioni
per garantire un movimento sicuro ed efficiente degli agenti all’interno dell’area di lavoro.
Sia la strategia di pianificazione che il controllore MPC sono implementati in Python e Robot
Operating System 2 (ROS2), consentendo l’impiego in un’ampia gamma di robot compatibili.
Per convalidare l’efficacia del nostro framework, conduciamo estesi test in vari scenari, incluse
simulazioni controllate in ROS2 ed esperimenti pratici sul campo coinvolgendo un team di
cinque robot, nello specifico 2 Turtlebot e 3 Hebi Rosie con capacità di manipolazione. I
risultati hanno dimostrato una significativa riduzione della complessità computazionale rispetto
ai metodi precedenti e una superiore adattabilità a diversi setup sperimentali.

Parole Chiave
Sistemi Multi-Robot, Collaborazione Robotica, Linear Temporal Logic, Implementazione in
ROS2
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Sammanfattning
Effektiv koordinering och samarbete av autonoma agenter är kritiskt för utförande av komplexa
uppgifter i olika industriella och forskningsapplikationer. I denna studie fokuserar vi på
återkommande uppgifter, typiska för agronomiska tillämpningar, där uppgifter behöver utföras
upprepade gånger över en obestämd tidshorisont. Vi specificerar formellt sådana uppgifter med
Linjär Temporal Logik (LTL) för planering och koordinering av multiagentsystem. Vi utvecklar
ett mjukvarupaket för multiagentplanering och -koordinering med fokus på precisionsjordbruk,
som enkelt kan utökas till ett brett spektrum av multi-robotregleringsapplikationer. Avhandling-
ens huvudmål är att utveckla en planeringsstrategi som möjliggör för agenter att utföra uppgifter
i samarbete, vilket säkerställer både pålitlighet och minskad beräkningskomplexitet jämfört med
tidigare tillvägagångssätt.
För detta ändamål anpassar oss vi ett bottom-up-tillvägagångssätt för rörelse- och uppgiftsko-
ordinering som inkluderar en offline plansyntes och ett online koordineringsschema baserat på
realtidsutbyte av begärnings-, svars- och bekräftelsemeddelanden. Offline syntesen genererar
en initial plan medan onlineschemat dynamiskt justerar den för att möjliggöra multiagent
samarbete. Dessutom, för att hantera potentiella fördröjningar som kan uppstå till följd av
att handlingar tar längre tid än förväntat, föreslår vi en synkroniseringsmekanism. Denna
mekanism säkerställer att agenter kan påbörja samarbetsåtgärder samtidigt, vilket upprätthåller
koordinering trots potentiella fördröjningar som introduceras i det experimentella scenariot.
Dessutom designar vi en Model Predictive Control (MPC) regulator med kollisionsundvikande
förmåga för att garantera säker och effektiv rörelse av agenter inom arbetsområdet. Både
planeringsstrategin och MPC-regulatorn är implementerade i Python och Robot Operating
System 2 (ROS2) vilket möjliggör distribution på ett brett utbud av kompatibla robotplattformar.
För att validera effektiviteten av vårt ramverk, utför vi omfattande tester i olika scenarion,
inklusive kontrollerade simuleringar i ROS2 och praktiska fältexperiment bestående av ett team
av fem robotar, specifikt 2 Turtlebots och 3 Hebi Rosies med manipulationsförmåga. Resultaten
demonstrerar en signifikant reduktion av beräkningskomplexitet jämfört med tidigare metoder
och överlägsen anpassningsförmåga till olika experimentupplägg.

Nyckelord
Multirobotsystem, Robot-samarbete, Linjär Temporal Logik, ROS2-implementering
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CHAPTER 1

INTRODUCTION

Over the last 50 years, autonomous robots have become integrated into various sectors of
society, including the medical field [2], delivery services [3], warehouse management [4],
and interplanetary exploration [5]. One significant area where autonomous robots are gaining
importance is the agricultural industry. The labor-intensive tasks traditionally performed by
farmers since ancient times can now be accomplished using autonomous robots. This transition
is thoroughly reviewed in a recent study, which highlights various applications developed to
automate this sector [6]. The Collaborative Paradigm for Human Workers and Multi-Robot
Teams in Precision Agriculture Systems (CANOPIES) project [7], which this work is part of,
specifically focuses on the automation of table-grape vineyard harvesting. CANOPIES’s aim
is to develop a novel collaborative human-robot paradigm in the field of precision agriculture
for permanent crops where farmworkers can efficiently work together with teams of robots to
perform agronomic interventions. To reach this goal, among other objectives, it is necessary to
devise a high-level plan, i.e., a set of instructions, that the robots have to follow to complete their
assigned tasks. Within the project, this is done through the use of the Linear Temporal Logic
(LTL) formalism, which, combined with the use of Nondeterministic Büchi Automaton (NBA),
can lead to the creation of plans that satisfy specific tasks assigned to the robotic agents. The
focus of this work is the development of an algorithm that will allow robotic agents to collaborate
to complete complex tasks that would otherwise be unfeasible for a single agent. One of the main
requirements is that it needs to integrate within the framework of CANOPIES, so the algorithm
must be compatible with LTL specifications, including the ability to perform recurring tasks
i.e., tasks that need to be executed repeatedly over an indefinite horizon. Additionally, we aim
to develop a setup that can be scaled, minimizing overall computational complexity as much as
possible.
This work not only contributes to the field of robotics but also has significant implications for
the future of agriculture, potentially transforming traditional farming practices and increasing
productivity in a sustainable manner.
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Figure 1.1: CANOPIES’s stand at Maker Faire, Rome, 2023

1.1 Background
The field of multi-robot systems has seen substantial advancements, driven by the need for
efficiency and automation in various industries. In particular, the agricultural sector has greatly
benefited from these advancements, with autonomous robots being increasingly used to perform
labor-intensive tasks that were traditionally done manually. These robots can now handle
complex tasks, such as harvesting, planting, and monitoring crops, with greater precision and
efficiency.

One of the key methods enabling these advancements is LTL, which provides a formal
framework for specifying the behavior of robots over time. LTL allows for the definition of
complex tasks. Using Transition System (TS) to model the states and actions of the robots is
another popular paradigm used in this field, this allows the LTL to define tasks based on the
states of the robots, thus giving the ability to specify high-level tasks.

Model Predictive Control (MPC) is another important paradigm that enhances the
capabilities of multi-robot systems. MPC allows robots to make real-time decisions based on
predictions of future states, ensuring that they can adapt to changes in their environment and
avoid collisions. By integrating MPC with LTL-based planning, robots can be equipped with
the ability to handle dynamic and unpredictable environments while still following their high-
level plans.

In summary, the combination of LTL, TS, and MPC provides a powerful toolkit for
developing advanced multi-robot systems capable of performing complex tasks. This thesis
aims to leverage these methods to create an algorithm that enables efficient collaboration among
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robots, particularly in the context of the CANOPIES project. By developing such an algorithm,
we aim to enhance the productivity and sustainability of agricultural practices, paving the way
for more widespread adoption of autonomous robots in this critical industry.

1.2 Problem
This subsection serves as an overview of the main challenges that this work aims to tackle. First,
we will provide a general definition of the problem we are trying to address, and then we will
mention the engineering issues that arise from this problem.

1.2.1 Problem Definition
The main problem addressed in this thesis is the design of an algorithm that facilitates multi-
agent coordination, where each agent must satisfy their locally assigned recurring LTL task.
This involves ensuring that each robot can execute collaborative actions requiring more than
one agent to be completed. The algorithm must dynamically adjust the plans of individual
robots to accommodate collaborative actions without violating their LTL constraints. Moreover,
it must handle real-time synchronization among robots to prevent conflicts and ensure seamless
operation. The overarching objective is to create a system where robots can efficiently and
reliably perform complex, interdependent tasks in a dynamic and not fully known environment.

A more detailed and rigorous mathematical formulation of the problem statement will be
given in Chapter 4 once all the necessary background information has been covered.

1.2.2 Scientific and Engineering Issues
The key scientific and engineering issues involved in this work include:

• Minimizing computational complexity to enable implementation on commercially
available hardware.

• Integrating the algorithm within the existing framework of the CANOPIES project to
ensure compatibility with LTL specifications and recurring tasks.

• Ensuring the scalability and robustness of the algorithm to handle larger systems and real-
world discrepancies.

• Validating the algorithm through both simulations and real-world experiments

1.3 Purpose
The purpose of this thesis is to develop and validate an advanced algorithm for effective multi-
agent collaboration in dynamic environments. The algorithm aims to ensure safety and reliability
by adapting to real-time changes and synchronizing robots to guarantee the execution of
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collaborative actions. Addressing the ethical implications of automation, this research promotes
the development of systems that are both technologically advanced and socially responsible.
The algorithm will be implemented and validated within the Robot Operating System 2 (ROS2)
through simulations and real-world experiments, aiming to enhance the efficiency and reliability
of multi-robot systems and contribute significantly to the fields of robotics and automation.

Achieving these goals will benefit several stakeholders. Industrial sectors that rely on
automation will see improved efficiency and safety in their operations. Human operators will
benefit from enhanced safety measures and the ability to work alongside advanced robotic
systems, reducing their physical workload while maintaining job relevance. Researchers and
developers in robotics will gain a validated algorithm that can be further refined and applied in
various contexts. However, it is crucial to address anticipated ethical issues such as balancing
automation with job retention for human workers and ensuring that robots do not lead to
significant job displacement. Sustainability concerns focus on the efficient use of resources
and energy in automated systems, while social issues revolve around enhancing human-robot
collaboration without compromising human safety or ethical standards. This research aims to
promote responsible and sustainable practices in the development and deployment of multi-agent
systems.

1.4 Goals
This project aims to develop an algorithm that allows multi-robot collaboration while adhering
to the specific LTL formulas assigned to each agent. The project objectives have been organized
into the following subgoals:

1. Familiarize with the theoretical foundations of Linear Temporal Logic (LTL), TS,
Nondeterministic Büchi Automaton (NBA), and Model Predictive Control (MPC).

2. Review existing literature on multi-agent collaboration protocols that incorporate LTL
specifications.

3. Develop the multi-robot collaboration algorithm and provide formal proof of its
correctness.

4. Familiarize with the planner developed at Smart Mobility Lab (SML) at KTH Royal
Institute of Technology (KTH) and adapt it to Robot Operating System 2 [1] (ROS2) to
ensure future compatibility.

5. Implement the algorithm within the ROS2 environment, integrating it with the existing
software at SML. This step also includes the integration of the MPC controller with
collision avoidance to manage the movement of the available robots at SML.

6. Conduct tests using ad-hoc simulations designed to represent typical scenarios to assess
the scalability of the protocol. Additionally, conduct field experiments at SML to evaluate
the algorithm’s performance on actual hardware.
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1.5 Research Methodology
The initial phase of the research will focus on a review of existing algorithms that can allow
multi-agent collaboration under LTL specifications. Once a suitable baseline algorithm has
been found, the next step will involve its modification and further development to align
with the overarching objectives of this thesis. Additionally, any segment of the algorithm
requiring proven and effective existing tools will incorporate these, taking into consideration
their complexity and potential issues that could affect the overall performance of the final
algorithm.
Mathematical proofs will be used throughout the thesis to assess key properties and
characteristics of the algorithm, all of these properties will then be used to ensure its correctness.
Afterward, ad-hoc local simulations, implemented using ROS2 and Python, will be conducted
to test the algorithm’s performance under nominal scenarios. Lastly, field experiments will be
performed on actual hardware at SML to assess the algorithm’s real-world applicability and
effectiveness, fulfilling the thesis’s goal of addressing real-world challenges.

1.6 Delimitations
Due to time limitations, the algorithm must be integrated with the existing planner developed
at SML, some compromises expressed in terms of assumptions will be formulated in the
following. These compromises are expected to constrain specific behaviors that would otherwise
be problematic with the currently available software. Moreover, during the experimental phase,
we will focus only on the movement of the robots, omitting the execution of other actions. This is
due to the prohibitive time requirements needed to implement all necessary tasks within the strict
project timeline; however, this is not expected to compromise the evaluation of the algorithm’s
effectiveness. Finally, the development of the MPC controller will be limited to the robots
selected for the experiments, although the framework and algorithm can be extended to any
robotic agent compatible with ROS2.

1.7 Structure of the thesis
Chapter 2 presents relevant background information about LTL, TS, NBA, MPC, and Mutli-
robot collaboration under LTL specification. Chapter 3 presents the methodology and methods
used to solve the problem. Chapter 4 describes the setup we considered and the algorithm
developed to solve the problem. Chapter 5 shows and studies the results of the simulations
and experiments. Chapter 6 concludes the thesis and expands it with extra information about the
future research directions that may be available for this work.
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CHAPTER 2

BACKGROUND

This chapter provides basic background information on Linear Temporal Logic (LTL), and
its integration with Nondeterministic Büchi Automaton (NBA) and Transition System (TS) to
provide the agents with a plan that satisfies the assigned formula. Additionally, we introduce
the Model Predictive Control (MPC) framework, used as the low-level controller for agent
movement. We briefly address Control Barrier Functions (CBFs), implemented as constraints
within the controller. Lastly, this chapter reviews related work on multi-agent collaboration
under LTL specification.

2.1 Linear Temporal Logic
This section introduces Linear Temporal Logic (LTL), a logical formalism suitable for defining
linear-time properties and hence capable of specifying complex system properties and tasks.
LTL plays a fundamental role in formal verification methodologies, particularly in the context
of computer systems and concurrent processes. Additionally, it can be used to describe complex
planning objectives for autonomous robots. LTL enables the specification of temporal behaviors,
allowing one to describe how properties evolve and persist throughout system executions. It
provides a simple yet mathematically rigorous syntax for expressing characteristics regarding
the relationships between state labels in executions.
Although the term ”temporal” implies a relationship with the system’s real-time behavior, this is
only true in an abstract sense since LTL allows for the specification of event order. Furthermore,
the linear sequence of time instants considered is discrete, meaning that, the present moment
refers to the current state, and the next moment corresponds to the immediate successor state.

2.1.1 LTL Syntax
The first step to rigorously define LTL formulas is to identify and define the main components
that constitute them. The basic components are Atomic Propositions (APs) which are Boolean
variables that can either be true or false. We define the set of atomic propositions as Ψ, where
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if a ∈ Ψ then a is an atomic proposition.
Next, we define the boolean constant ⊤ ∆

= True, and the boolean connectors: negation (¬),
conjunction (∧), and the two temporal operators, next (#) and until (U).
With these key elements defined, we can now provide a formal definition of LTL formulas:

Definition 2.1 ([8]). LTL formulas defined over the setΨ of atomic propositions can be obtained
according to the following syntax:

φ ::= ⊤ | a | ¬φ | φ1 ∧ φ2 | #φ | φ1Uφ2 (2.1)

where a ∈ Ψ and φ,φ1,φ2 are LTL formulas.

Based on the syntax of Definition 2.1, we can define the following operators:

• Disjunction (∨): φ1 ∨ φ2 := ¬ (¬φ1 ∧ ¬φ2).

• Implication (→): φ1 → φ2 := ¬φ1 ∨ φ2.

• Eventually (♢): ♢φ := ⊤Uφ.

• Always (□): □φ := ¬♢¬φ.

Lastly, we can define the ”infinitely often φ” behavior, which will be referred to as a recurring
task or behavior, as:

□♢φ (2.2)

This recurring task indicates that there always exists a future moment i such that for any moment
j, where i ≥ j, a φ-sate is visited.

2.1.2 LTL Semantics
LTL formulas represents path properties, which means a path can either satisfy an LTL formula
or not. To determine if a path satisfies an LTL formula, first, we define the semantics of an LTL
formula φ defined as a languageWords(φ) that includes all infinite words over the alphabet 2Ψ

that satisfy φ, where 2Ψ is the power set ofΨ . This implies that each LTL formula is associated
with a single linear-time property.

Definition 2.2 (Semantics of LTL [8]). Let φ be an LTL formula over Ψ. The linear-time
property induced by φ is

Words(φ) = {δ ∈ (2Ψ)ω | δ |= φ} (2.3)

Where (2Ψ)ω denotes the set of words that arise from the infinite concatenation of words in
2Ψ and the satisfaction relation |=⊆ (2Ψ)ω×LTL is the smallest relations with the following
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properties:

σ |= ⊤

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ ̸|= φ

σ |= #φ iff σ[1 . . .] = A1A2A3 . . . |= φ

σ |= φ1Uφ2 iff ∃j ≥ 0. σ[j . . .] |= φ2 and σ[i . . .] |= φ1, ∀0 ≤ i < j

Where for σ = A0A1A2 . . . ∈ (2Ψ)ω, σ[j . . .] = AjAj+1Aj+2 . . . is the suffix of σ starting
in the (j + 1)st symbol Aj . Extending those concepts to an interpretation over paths and states,
the LTL formula φ holds in state s if all paths starting in s satisfy φ.

To illustrate the semantics of LTL, consider the set of atomic propositions Ψ = {p, q, r}.
The power set 2Ψ includes all possible subsets of Ψ, representing different combinations of
propositions that can be true at any state.
Consider the LTL formula φ = ♢(p ∧ #q), which reads as ”eventually, p holds and in the
next state q holds”. This formula defines a languageWords(φ) that includes all infinite words
satisfying this property.
Let’s examine the infinite words γ and τ to check if they satisfy φ:

• γ = {{r}, {p, q}, {q}, {}, {p}, {q}, {}, . . . }: At position 1, we have {p, q} so both p and
q hold, and at position 2, we have {q}, so q holds. This means there is a state where p
holds and in the next one q holds.

• τ = {{r}, {p}, {r}, {}, {q}, {p}, {}, . . . }: At position 1, we have {p}, so p holds, but at
position 2, we have {r}, so q does not hold. Similarly, at position 5, we have {p}, so p
holds, but at position 6, we have {}, so q does not hold. There is no state where p holds
and in the next one q holds.

Since γ contains a state where p is followed by q, it satisfies ♢(p ∧ #q), so γ ∈ Words(φ).
Conversely, τ does not meet this condition, so τ /∈ Words(φ).
For comprehensive information on LTL syntax and semantics refer to [8, Ch. 5.1]

2.2 Transition System
Transition Systems (TSs) are used in computer science as models to describe the behavior of
systems. They can be represented as directed graphs where nodes represent states, and edges
represent transitions between the states. A state describes some information about a system at
a certain moment of its behavior while transitions specify how the system can evolve from one
state to another. In this work, we will consider APs as states, while we will consider action labels
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as transitions, a more detailed explanation of the transition system used will be given in Section
4.1, for now we will limit to the definition the basic concepts.

Definition 2.3 ([8]). A Transition System (TS) is defined as the tuple:

T (Π,Π0,Ψ,Σ,−→,L) (2.4)

where:

• Π is a set of states,

• Π0 ⊆ Π is a set of initial states,

• Ψ is a set of atomic propositions,

• Σ is a set of actions,

• −→⊆ Π× Σ× Π is a transition relation,

• L : Π → 2Ψ is the labelling function.

A TS such that Π, Ψ, Σ are finite is called Finite Transition System (FTS).

To simplify notation, we use π σ−→ π′ instead of (π, σ, π′) ∈−→. The operational behavior
of a transition system can be described as follows: The system begins in an initial state π0 ∈ Π0

and evolves according to the transition relation −→. Specifically, if the current state is π, a
transition π σ−→ π′ is deterministically chosen, indicating that the action σ is performed, and
the system transitions from state π to state π′. This process repeats in state π′ and continues until
a state with no outgoing transitions is encountered.

Remark 2.1. Π0 might be empty; in such a case, the transition system exhibits no behavior as
there is no initial state to select.

The labeling function L assigns a set L(π) ∈ 2Ψ of APs to each state π. L(π) represents the
specific APs ψ ∈ Ψ that hold true in state π. If φ is a LTL formula, then π satisfies φ if the
interpretation provided by L(π) makes φ true, denoted as: π |= φ iff L(π) |= φ.

Given this formal definition of a TS, wewill subsequently consider a modified version known
as a weighted Finite Transition System (wFTS), which is defined as follows. In the rest of this
thesis, any reference to a Finite Transition System (FTS) or TS will implicitly refer to this finite
and weighted version (wFTS).

Definition 2.4 ([8]). A weighted Finite Transition System (wFTS) is defined as the tuple:

Tw = (Π,Π0,Ψ,Σ,−→,L,T) (2.5)

Where:

• Π is a finite set of states,
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• Π0 ⊆ Π is a finite set of initial states,

• Ψ is a finite set of atomic propositions,

• Σ is a finite set of actions,

• −→⊆ Π× Σ× Π is a transition relation,

• L : Π → 2Ψ is the labelling function,

• T : Π×Σ×Π → R+ is the weight function that represents the cost of transitions in −→

2.3 Nondeterministic Büchi Automaton
Definition 2.5 ([9]). A Nondeterministic Büchi Automaton (NBA) is defined as the tuple:

B =
(
S, S0, 2

Ψ, δ,F
)

(2.6)

Where:

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• 2Ψ is the input alphabet,

• δ : S × 2Ψ → 2S is the transition function,

• F ⊆ S is the set of accepting states.

An infinite run s of a NBA is an infinite sequence of states s = s0s1 . . . generated by an
infinite sequence of input alphabets σ = σ0σ1 . . . ∈

(
2Ψ

)ω, where s0 ∈ S0 and sk+1 ∈
δ (sk, σk) , ∀k ≥ 0. An infinite run s is accepted by Aφ if and only Inf(q) ∩ F ̸= ∅, where
Inf(s) is the set of states that appear in s infinitely often.
Remark 2.2. We use a NBA because it allows multiple transitions for a given state and input,
accepting an infinite word if at least one path visits an accepting state infinitely often. In contrast,
a Deterministic Büchi Automaton has exactly one transition for each state and input pair. It
accepts an infinite word if the single path it follows visits an accepting state infinitely often.

2.3.1 LTL Planning
In this subsection, the initial planning for the systemwill be explained. This is part of the original
software developed at SML, and all the details can be found in [10].
The planner node takes as input an LTL task φ comprised of two formulas φhard and φsoft, and
a wFTS Tw = (Π,Π0,Ψ,Σ,−→,L,T). These two LTL formulas define the high-level task: the
hard task φhard specifies requirements that must be strictly satisfied, while the soft task φsoft

includes optional objectives that can be violated if they conflict with the hard task.
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Remark 2.3. Even though this section considers both hard and soft tasks, it is important to note
that in future chapters, when we refer to an LTL task, we will always consider φhard and set
φsoft = ⊤.

First, the hard and soft LTL formulas φhard and φsoft are used to generate the respective
NBAs Bφhard and Bφsoft via the LTL2BA software [11]. Then, the planner generates a combined
NBA Bφ := Bφhard × Bφsoft =

(
S, S0, 2

Ψ, δ,F
)
using the safety ensured product automaton

developed in [12]. Afterwards, building upon the work of [13], a Product Büchi Automaton
(PBA) is defined as follows:

Definition 2.6 ([10]). A Product Büchi Automaton (PBA) is defined as the tuple:

AP = Bφ ⊗ Tw = (SP ,SP,0, δP ,FP ,WP) (2.7)

Where:

• SP = S × Π is a finite set of states,

• SP,0 = S0 × Π0 is the set of initial states,

• δP is the transition relation defined as follows (⟨s, π⟩, ⟨s′, π′⟩) ∈ δP iff ∃σ ∈ δ, s′ ∈
δ(s, σ) and ∃σa ∈ Σ, (π, σa, π

′) ∈−→,

• FP = (F × Π) is the set of accepting states,

• WP : δP → R+,WP (⟨s, π⟩, ⟨s′, π′⟩) = WP (π, π′) is the weight function.

From this PBA, we can determine an optimal run and map it back to the wFTS Tw using
model-checking techniques [14]. Accepting runs exhibit a prefix-suffix structure given by: rP =

p0, p1 · · · pk (pk+1 · · · pnpk)ω, where p0 ∈ SP,0 and pk ∈ FP . The output word comprises two
segments: a finite prefix executed once, transitioning from the initial state p0 to an accepting
state pk, and an infinitely repeating suffix looping from pk back to itself [14]. Furthermore, the
optimal accepting run is one that minimizes a cost function defined by transition weights. This
optimal run also has a corresponding input word, i.e., an action sequence for the agent to follow
to meet its specifications. This plan, like the run, adheres to the prefix-suffix structure. For
comprehensive implementation details, refer to [10].

2.4 Model Predictive Control
One of the most exciting results in the control theory field was the Linear Quadratic Regulator
(LQR), developed in the 1960s, that offered an optimal solution for linear time-invariant
multi-input multi-output systems. This solution featured several desirable properties: it was
unique, asymptotically stable, and came with an easily calculable formula for the feedback gain.
However, LQR has significant limitations in the presence of nonlinearities or when constraints
are imposed, which are common in practical scenarios.
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In the late 1970s and early 1980s, driven by the industrial need for more efficient and robust
control strategies, algorithms that could predict future system behavior and optimize control
actions began to emerge. This development laid the foundation for Model Predictive Control
(MPC). MPC uses a model to predict future outputs and solves an optimization problem at each
time step to determine the best control action for that specific instant.

Before delving into the rigorous mathematical formulation ofMPC, it’s helpful to understand
its basic principles. MPC is centered around the concept of receding horizon control, which
involves solving a finite horizon optimization problem at each time step. The goal is to minimize
a cost function subject to system dynamics and constraints. The main steps of MPC are as
follows:

1. Model Development: Create a mathematical model of the process, which can be
nonlinear, to predict its behavior.

2. Prediction: Use the developed model to predict future outputs over a predefined
prediction horizon based on the current state and a sequence of future inputs.

3. Optimization: Formulate an optimization problem using a cost function that typically
includes terms for tracking performance and control effort, subject to constraints on inputs
and outputs.

4. Implementation: After solving the optimization problem, apply only the first input to the
process. Repeat the optimization step at the next time instant using updatedmeasurements.

One of the primary advantages of MPC is its ability to handle nonlinear dynamics and
constraints, adapting to various unplanned situations while providing high-performance control.
Additionally, the receding horizon principle integrates feedback into the control action, ensuring
continuous supervision of the system’s current state.
However, implementing MPC poses several challenges. The optimization problem must be
solved in real-time with the available hardware moreover stability and robustness are not
inherently guaranteed. The optimization problem may also become infeasible at some future
time step, meaning a plan that meets all constraints might not exist, thus persistent feasibility is
not assured.

2.4.1 Mathematical Formulation
This subsection will be dedicated to the formal mathematical description of the optimization
problem related to MPC. Consider the generic nonlinear system ẋ = f(x,u) where x ∈ X is
the state and u ∈ U is the input. Now we consider sampling time T we can obtain the Euler
discretization of the system which will be defined at the generic instant in time k as xk+1 =

xk+f(xk,uk) ·T . Moreover, we define the prediction horizonN , and we will call the sequence
of output over which we optimize as U = {uk,uk+1, . . . ,uk+N−1}. Lastly, we define the stage
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cost function at time k as q(xk,uk) and the terminal cost function as p(xk+N). we have now all
the elements to give a general definition of the optimization problem according to [15]:

min
U

N−1∑
i=0

[q(xk+i,uk+i)] + p(xk+N)

subject to:

xk+i+1 = xk+i + f(xk+i,uk+i) · T, i = 0, . . . , N − 1

xk+i ∈ X , i = 1, . . . , N

uk+i ∈ U , i = 0, . . . , N − 1

xk given

other constraints

(2.8)

It is important to note that different parameters can be used to tune the controller. Firstly, the
sampling time T and the prediction horizon N are critical parameters that act as a tradeoff
between the controller’s performance and computational cost. Using a low value of T and
a high value of N can improve the controller’s accuracy, but this comes at the expense of
increased computational cost. Therefore, the optimal values for these parameters are application-
dependent and cannot be predetermined. Additionally, we have some degrees of freedom in
tuning the controller by selecting the most appropriate cost function for the specific application.

2.4.2 Control Barrier Functions
Control Barrier Functions (CBFs) are used in control theory to ensure the safety of dynamic
systems. They define a barrier in the state space that the system’s trajectories should not cross,
effectively acting as constraints. By incorporating CBFs into the control design e.g., in MPC,
one can ensure that the system avoids unsafe states while achieving desired behaviors. CBFs
are used as constraints in optimization problems to generate control inputs that keep the system
within safe operational limits.
In the following, we will provide theoretical insights required to understand how to use CBFs as
constraints for the MPC optimization problem defined in Equation (2.8).

Firstly it is necessary to define the concept of safety set C , of which a geometrical
interpretation is shown Figure 2.1. This represents a specific constraint of our design defined
by a differentiable function h(x) that has to always be non-negative in order to consider the
problem to be safe. This set can be expressed as follows:

C = {x ∈ Rn : h(x) ≥ 0} (2.9)
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Figure 2.1: Geometric representation of the safe region C

Definition 2.7 (Lipschitz). a function f such that

| f(x)− f(y) |≤ C | x− y | (2.10)

for all x and y, where C is a constant independent of x and y, is called a Lipschitz function. For
example, any function with a bounded first derivative must be Lipschitz.

Definition 2.8 (Extended class K function). A continuous function α : [0, a) → [0,∞) that
is strictly increasing with α(0) = 0

Definition 2.9 (CBF). Let set C be defined by Equation (2.9). h(x) is a Control Barrier
Function (CBF) for the system ẋ = f(x) + g(x)u if there exists a locally Lipschitz Extended
class K function α such that:

sup
u∈Rm

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D ⊂ C (2.11)

where Lfh = ∇hTf(x) ∈ R and Lgh = ∇hTg(x) ∈ R1×m are the Lie derivatives for the

system and the operator ∇ : C1(Rn) → Rn is defined as the gradient
∂

∂x
of a scalar-valued

differentiable function with respect to x

Given a CBF h(x) defined according to Definition 2.9, a valid constraint to be added to the
MPC can be written as follows:

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 (2.12)

Without going into the details, it has been proven by [16] and [17], under mild assumptions that
are always satisfied in this work, that if the system starts within the safety set C , it will remain
inside it. Conversely, if the initial condition is outside the set, the trajectory will asymptotically
converge to the interior of the set.

2.5 Multi-agent Collaboration under LTL Specification
Multi-agent collaboration under LTL specifications is an active area of research that focuses on
enabling multiple agents to work together to achieve complex tasks while adhering to temporal
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and logical constraints. This section explores various methodologies and algorithms developed
to achieve such collaboration, ensuring that agents can efficiently and effectively meet specified
goals. In this review, we will mostly focus on bottom-up approaches since we aim to achieve a
decentralized structure, which is generally not possible with a top-down approach that typically
requires a central monitoring unit for plan synthesis and execution.

The first significant contribution in this domain we will analyze has been proposed by
Tumova et al., in [18]. This work presents a bottom-up approach that incorporates strategies
to mitigate the state-space explosion phenomenon, which is typical of this approach rendering
it useless for real-world scenarios due to the high computational complexity. Each agent is
assigned local tasks specified by LTL formulas, which define complex, high-level goals and can
include requests for collaboration from other agents. Each agent is modeled as a FTS, and the
workspace is divided into regions, represented by states in the FTS.
The bottom-up approach begins with a decomposition into finite horizons, meaning the planning
problem is broken down into finite horizon planning problems that are solved iteratively.
Additionally, an event-based synchronization mechanism is implemented, allowing efficient
adaptation to varying durations of agents’ discrete steps. These two solutions aim to address
the state-space explosion problem.
During task execution and synchronization, each agent can request synchronization when needed
for collaborative actions. This decomposes the problem of finding collective team behavior
into several subproblems, ensuring that each agent’s task is fulfilled from its perspective. This
approach reduces computational complexity and avoids unnecessary synchronization, thereby
ensuring efficient multi-agent planning and task execution.

The second contribution we will analyze has been proposed by Schuppe et al., in [19].
This work also employs a bottom-up approach while addressing the state-space explosion
phenomenon, with the main innovation being the use of game theory to solve the problem.
Each agent is assigned goals specified by LTL formulas, which may require cooperation among
agents. Agents’ behaviors are modeled as TSs, with states representing different conditions. The
workspace is divided into regions, each represented by states in the TS. To synthesize the plan,
each agent computes its strategy in isolation, making necessary assumptions about the states of
other agents. These assumptions are resolved when composing individual strategies to ensure
overall compliance. To achieve this, each agent’s TS is combined with an NBA, incorporating
assumptions about other agents. The problem is then reduced to safety games, which are easier to
solve. These games ensure that the composed strategies meet the specifications. This algorithm
effectively synthesizes multi-agent strategies by combining individual solutions and resolving
inter-agent dependencies, ensuring scalability and robustness in dynamic environments.

Lastly, we will analyze the work of Guo et al., proposed in [20]. The proposed system
considers a loosely coupled framework, where agents are assigned local tasks specified by
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Syntactically Cosafe LTL (sc-LTL) formulas [21], ensuring that tasks are finite. The authors
assume that agents can navigate a workspace divided into regions, also obstacles are modeled
as regions, and structured by an underlying grid. This motion can be abstracted using a
wFTS. Communication between the robots is facilitated through a two-layer system: a static
backbone network for group coordinators and a dynamic local network for direct neighbor
communication. The action model developed includes local actions (independent), collaborative
actions (requiring assistance), and assisting actions (helping others).
Initially, an offline process creates motion and action plans for each agent using model-checking
algorithms to ensure LTL task satisfaction. If an agent identifies a collaborative action within
a predefined horizon of its plan, it initiates a Request, Reply, and Confirmation cycle. The
agent requests the necessary assisting actions from its neighbors, who respond based on their
capabilities. Upon receiving all responses, a confirmation algorithm selects the best-suited
agents for the required assisting actions, ensuring one agent per action. If a request is unmet,
it is escalated to group coordinators, who seek assistance from other groups. Agents adjust
their plans in real-time based on confirmations, incorporating confirmed collaborations, and if
necessary, delaying actions and revising plans.

2.6 Summary
In this section, we have covered the key theoretical foundations relevant to this work.
Additionally, in the previous section, we reviewed several related studies on multi-agent
collaboration under LTL specifications. Notably, the final algorithm discussed appears
promising for the overall goals of this thesis. Consequently, we will adopt a similar structure but
modify certain key aspects to achieve our objectives. Specifically, we will:

1. Consider recurring LTL tasks, which are excluded from sc-LTL.

2. Aim to reduce complexity by minimizing the number of regions.

3. Ensure compatibility with existing software by utilizing the wFTS for planning instead of
the PBA. Despite some necessary compromises, this approach will lower computational
complexity, as detailed in Chapter 4.

4. Simplify the communication structure to a single layer. Although this simplification
streamlines the overall structure, it could exponentially increase complexity, consequently,
this problem will be addressed.



Methods | 17

CHAPTER 3

METHODS

The purpose of this chapter is to provide an overview of the research methods used in this
thesis. Section 3.1 describes the research process. Section 3.2 focuses on the data collection
techniques, software, and hardware used for experimental design within this thesis. Section
3.3 explains the reliability and validity of the methods used, as well as an analysis of the data
collected.

3.1 Research Process
The research process that will be followed in this can be summarized in four main steps:

Step 1 In parallel perform a literature study and design the algorithm.

Step 2 Implement the algorithm while integrating it with software previously developed.

Step 3 Test all the functionalities of the algorithm in a controlled/nominal ROS2 environment.

Step 4 Perform experiments on actual hardware at SML to validate the performance of the
algorithm.

A diagram representing the research process is shown in Figure 3.1
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Figure 3.1: Diagram showing the research process

3.2 Data Collection and Experiment design
In this section, we will introduce the main frameworks and hardware components used during
the experimental phase of our project. We will detail the main functionalities of each framework
and hardware unit, and explain how they will be employed to collect data.

3.2.1 ROS2
ROS2 is the second iteration of the most used framework in robotics. It consists of a set of
software libraries and tools that are developed by the ROS2 community for both research and
industrial applications. As a middleware, ROS2 operates in conjunction with programming
languages such as Python and C++, in this work we will mostly deal with Python. Furthermore,
ROS2 provides a communication infrastructure among its core units, known as nodes. In this
subsection, we will describe the major components of ROS2 used in this thesis.

Node

Nodes in ROS2 are individual software entities within a robotic system, each performing specific
tasks or functions. These tasks typically correspond to different components of the system,
such as sensors, actuators, controllers, or algorithms. Nodes communicate through a system of
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publishing and subscribing to topics, which enables them to exchange messages and coordinate
activities efficiently. Lastly, it is important to note that for this communication to happen the
nodes must run on the same local network.

In our project, each robotic agent is equipped with several specialized nodes. The first
is an LTL planner node, which is responsible for creating the high-level plan for the agent,
incorporating the algorithm developed in Chapter 4. Following this, there is a node dedicated
to executing actions that the robots are designed to perform. The final node in the sequence is
tasked with the actual execution of these actions, directly interfacing with the robot’s hardware.
It is important to note that while our work focused on the development and integration of the
first two nodes, the execution node is provided by the robot’s manufacturer.

Message

A message is the fundamental data structure used for the communication between nodes, it is
designed to accommodate a wide range of built-in types. It supports standard primitive types
such as integers, floats, Booleans and strings, as well as more complex structures like arrays
of these primitive types. Additionally, messages in ROS2 are highly versatile and capable of
adopting an arbitrarily nested form to meet each application’s specific requirements.

Topic

A topic acts as a communication channel that enables nodes to exchange messages. Each topic
is linked to a specific type of message, which dictates the structure and content of the data that
can be both published and subscribed to on that topic. This structure enables asynchronous
communication, allowing nodes to exchange information without direct dependencies on one
another.

By publishing messages to topics, nodes make data available for other nodes subscribed to
the same topics. This publish-subscribe messaging paradigm enhances modular and scalable
communication within a distributed robotic system, promoting independent and asynchronous
operation of nodes.

3.2.2 Qualisys Motion Capture
Qualisys Motion Capture (MoCap) [22] is a system designed for capturing and analyzing the
movements of objects or subjects within 3D space. This system uses a combination of high-
speed cameras and reflective markers, visible in Figure 3.5, to precisely track the position and
orientation (pose) of objects with high accuracy.

The process begins with the placement of reflective markers on the objects or subjects of
interest. These markers are designed to reflect infrared light emitted by the MoCap cameras,
which allows to accurately determine their pose. Once the cameras detect these markers, the
system employs advanced algorithms to triangulate their locations accurately.
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Additionally, the developers have provided a ROS2 package that allows the transmission
of pose data through specific topics and messages regarding each tracked object within the
workspace. Furthermore, dedicated software, shown in Figure 3.2, allows for the assignment of
markers to each object and for the visualization of the entire setup.

Figure 3.2: MoCap visual output

3.2.3 Hebi ”Rosie” Mobile Omni-Directional Base
The Hebi ’Rosie’ Mobile Omni-Directional Base [23], Rosie for short, is depicted in Figure
3.3. This robotic platform is equipped with omnidirectional wheels that enable it to maneuver
effortlessly in any direction, making it particularly well-suited for navigating through tight
spaces with high precision. Its compact design facilitates the seamless integration of additional
components such as grippers, sensors, and various payloads. The Rosies at SML are equipped
with a gripper allowing the robot to grasp, lift, and transport objects. Lastly, it is worth pointing
out that the internal computer is running an Ubuntu distribution to ensure compatibility with
ROS2.

In order to design the MPC controller for this platform, it is necessary first to define the
robot’s kinematic model. Additionally, to establish the constraints for the controller, we refer to
the technical specifications outlined in Table 3.1. It is important to note that these specifications
are based on those utilized during our experiments, rather than the manufacturer’s original
specifications.

Base radius 0.33 m
Maximum linear velocities 0.20 m/s
Minimum linear velocities -0.20 m/s
Maximum angular velocity 2.00 rad/s
Minimum angular velocity -2.00 rad/s

Table 3.1: Techincal specifications of Hebi Rosie
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Figure 3.3: Hebi ”Rosie” Mobile Omni-Directional Base

Kinematic Model

Although an accurate model can be developed, a relatively simple model is often sufficient for
practical purposes. Therefore, to design an effective MPC controller, a kinematic model of the
Rosie is adequate.

A kinematic model, as widely discussed in the literature, describes the motion of mechanical
points, bodies, and systems without considering the forces acting upon them or their physical
properties. In our specific case, we need to consider a robot equipped with omnidirectional
wheels that allow plane movement without altering its orientation.
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Figure 3.4: Omnidirectional robot kinematics model

LetFw represent the world reference frame andFb the body reference frame, with the origin
located at the robot’s center of mass. The state of the robot is defined as x = [x, y, θ]T ,
representing the pose of Fb with respect to Fb. The system inputs are u = [vx, vy, ω]

T , where
vx and vy are the linear velocities along the xb and yb axis respectively, and ω is the angular
velocity of Fb relative to Fw.

As shown in Figure 3.4, it is straightforward to derive the kinematic equations of the unicycle
model: 

ẋ = vx · cos θ − vy · sin θ

ẋ = vx · sin θ + vy · cos θ

θ̇ = ω

(3.1)

These equations describe how the linear and angular velocities influence the robot’s pose
over time.

3.2.4 Robotis TurtleBot3 Burger
The Robotis TurtleBot3 Burger [24], TurtleBot for short, is depicted in Figure 3.5. It comes
equipped with differential drive wheels, along with a variety of onboard sensors, including laser
distance sensors, and infrared sensors, for navigation and perception tasks. The robots available
at SML are equipped with a Raspberry Pi 4 [25], which runs an Ubuntu distribution to ensure
compatibility with ROS2.

In order to design the MPC controller for this platform, it is necessary first to define the
robot’s kinematic model. Additionally, to establish the constraints for the controller, we refer to
the technical specifications outlined in Table 3.2. It is important to note that these specifications
are based on those utilized during our experiments, rather than the manufacturer’s original
specifications.
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Figure 3.5: Robotis TurtleBot3 Burger

Robot radius 0.11 m
Maximum linear velocity 0.20 m/s
Minimum linear velocity -0.20 m/s

Maximum angular velocity 1.30 rad/s
Minimum angular velocity -1.30 rad/s

Table 3.2: Techincal specifications of Robotis TurtleBot3 Burger

Kinematics Model

As previously mentioned, the TurtleBot is a differential drive robot, meaning each wheel can be
controlled independently. However, thanks to the ROS2 libraries developed by the manufacturer,
it is not necessary to directly control each wheel. Instead, we only need to specify the desired
linear and angular velocities. The low-level controller implemented within the ROS2 framework
translates these velocities into the appropriate wheel speeds. This abstraction simplifies the
definition of the kinematic model, allowing us to treat the TurtleBot as a unicycle for control
purposes.
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Figure 3.6: Unicycle kinematics model

LetFw represent the world reference frame andFb the body reference frame, with the origin
located at the robot’s center of mass. The state of the robot is defined as x = [x, y, θ]T ,
representing the pose of Fb with respect to Fb. The system inputs are u = [v, ω]T , where v is
the linear velocity along the sagittal axis (i.e., the x axis), and ω is the angular velocity of Fb

relative to Fw.
As shown in Figure 3.6, it is straightforward to derive the kinematic equations of the unicycle

model: 
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(3.2)

These equations describe how the linear and angular velocities influence the robot’s pose over
time.

3.3 Assessing Reliability and Validity of Data Collected
The most important question to address now is the reliability of the steps undertaken in the
research process to develop the required capabilities for the goals stated in Chapter 1. To evaluate
this, we first need to examine the methods employed and the data collected.

3.3.1 Validity and Reliability of the Method
A primary concern with the proposed methods is their generalizability and adaptability to
systems beyond the specific robots used for testing. However, while developing the algorithm,
we considered a generic set of agents without restricting their capabilities, as detailed in
Section 4.1. This ensures that the algorithm can adapt to any type of agent we choose. The
only aspect where this work is specific is in the design of the MPC controller for the tested
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robots. Nevertheless, as discussed in Section 2.4, this is a generic framework applicable
to any dynamical system. Furthermore, ROS2 can easily handle more complex systems like
quadcopters. Thus, although we have primarily focused on ground robots, the methodology
should effectively apply to any system compatible with ROS2.

Another concern is scalability andwhether themethods used offer any guarantees of reducing
complexity. It is important to note that mathematical proofs can provide theoretical assurances
regarding complexity reduction, which will be addressed in this work.

3.3.2 Data Validity and Reliability
A primary concern with the data obtained from the experiments is its validity and reliability.
However, since we are recording the same data used to compute the controller values from the
MPC, we can determine that as long as the MPC functions correctly, the data should be reliable
enough to draw meaningful conclusions.

Another major aspect to consider is whether the communication between the robots is
reliable enough to ensure that all necessary data is sent to the correct agents. In this case,
the reliable and stable architecture of ROS2 provides the necessary guarantees. Therefore, if
the overall results provided by the algorithm, which will be recorded, are satisfactory, we can
conclude that the communication was reliable enough to draw valid conclusions.

Lastly, it is necessary to mention how we will measure complexity in the experimental
settings, which will primarily rely on measuring execution time. Unfortunately, execution time
can be influenced by a multitude of factors, many of which are beyond our control. To ensure fair
comparisons when considering complexity and to draw accurate conclusions, we will control all
the variables within our ability and conduct multiple experiment runs to minimize the impact of
uncontrollable factors.
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CHAPTER 4

MULTI-AGENT COLLABORATION

This chapter presents the majority of the work developed for this thesis. First, we will explain
the agents setup and problem statement, providing a clear understanding of the context and the
specific challenges addressed. Following this, we delve into the core of this work, which is the
multi-agent collaboration algorithm developed. This section will detail its design, highlight the
innovative aspects, and discuss their pros and cons with respect to previous research. Lastly,
we will briefly discuss the Model Predictive Control (MPC) controller developed for the field
experiments, outlining the formulation and the parameters used. Through these sections, this
chapter aims to offer a comprehensive overview of the work developed and the advancements
made in the field of multi-agent collaboration under Linear Temporal Logic (LTL) specification.

4.1 Agents Setup
This section will focus on explaining how the multi-agent system is composed. Moreover,
significant emphasis will be placed on modeling each agent’s behavior through the use of
weighted Finite Transition System (wFTS) and the specific syntax of LTL to specify each agent’s
task, which will be considered in the rest of the work.

4.1.1 Multi-agent System
We consider a set of heterogeneous agentsN = {ai, i = 1, 2, ..., N |N ≥ 1} . These agents can
move in a partially known workspace and perform different primitive actions. These actions can
be combined into more complex tasks that may require collaboration with other agents, given in
the form of an LTL formula.
Moreover, we assume that we are working with loosely coupled multi-agent systems. In these
systems, agent collaborations are sporadic, meaning they are required only occasionally relative
to the total actions each agent performs for its local tasks. A more in-depth explanation of this
assumption will be provided in Subsection 4.2.5.1 Lastly, we will consider that all the agents
are connected to the same network, moreover, the number of agents connected is supposed to
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be limited and within the limitation given by the network implemented. Given these premises,
any agent can exchange Robot Operating System 2 [1] (ROS2) messages directly with any other
agent inside the workspace.

4.1.2 Motion Transition System
As seen in Section 2.5, most previous approaches rely on a fully partitioned workspace and then
build a wFTS. A common approach, employed by Guo et al., in [20], is to define a grid-like set
of regions where the robot can be at a given moment. While this approach has advantages, it
increases computational complexity since the number of regions where actions are completed is
low compared to the total number of regions in the wFTS. Additionally, many regions represent
obstacles, implying that the workspace must be well-known a priori by each agent.
In this work, we developed an alternative approach that reduces the number of regions by
considering only a limited set, called Region Of Interests (ROIs). Obstacle avoidance and
movement between regions are managed by the low-level controller, specifically the MPC
controller developed in Section 4.3. This approach reduces the computational complexity of
the final algorithm due to the fewer regions. However, it sacrifices the ability to locate the agent
at any time within the wFTS.

We will now detail the specifics of the workspace setup developed for this thesis. Each
agent ai knows only the set of Mai ROIs, denoted by Πai

M = πai
1 , π

ai
2 , ..., π

ai
Mai . These regions

are known a priori by each agent, and each agent knows only the regions necessary for its
actions. While this is sufficient for the collaboration algorithm to work, the low-level controller
may require a more detailed knowledge of the workspace, as specified in Section 4.3. These
requirements may vary based on the controller’s implementation and type.

Remark 4.1. It is important to note that we do not assume
Mai∪
j=1

πai
j = W , where W is the

workspace. By reducing the number of known regions, we simplify the wFTS used for
agent motion. This reduction decreases the number of states within the wFTS, translating to
lower computational complexity in both the initial planning and the plan adaptation to allow
collaboration with other agents.

A significant drawback of this approach is the potential for an agent to be in a position
not represented in the wFTS, within the workspace at time t. One possible solution is to
introduce a specific state in the wFTS to represent this scenario. However, this would complicate
determining a consistent travel time i.e., weight, from this new state to the target ROI, as the
initial ROI would also influence this time. Due to such limitation, this approach will be discarded
and the agent will be considered in the region where the movement originated until the low-level
controller successfully drives it to the target ROI.

As previously implied we can model this type of motion through a wFTS defined according
to Definition 2.4
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Definition 4.1. The wFTS that models the agent motion is defined as follows:

T ai
M

∆
=

(
Πai

M,Πai
M,0,Ψ

ai
M,Σai

M,−→ai
M,Lai

M,Tai
M
)

(4.1)

where:

• Πai
M is the set of ROIs defined above.

• Πai
M,0 ∈ Πai

M is starting ROI of agent ai,

• Ψai
M is the set of Atomic Propositions (APs) describing the properties of the workspace,

• Σai
M is the set of actions, namely the actions to move from an ROI to another one,

• −→ai
M⊆ Πai

M × Σai
M × Πai

M is the transition relation, representing the valid transitions
between the different ROIs,

• Lai
M : Πai → 2Ψ

ai
M is the labeling function, indicating the properties held by each ROI,

• Tai
M :−→ai

M→ R+ is the transition time function, representing the estimated time
necessary for each transition; it is a design parameter,

4.1.3 Action Model
After defining amodel that captures themovement and localization of the agent in the workspace,
we need to establish a framework that abstracts the non-movement actions of the agent. This
model must distinguish between different types of actions: those that require collaboration
between agents and those that an agent can complete independently.

Definition 4.2. The set of all non-movement related actions that a generic agent ai can perform
is:

Σai
A

∆
= Σai

l ∪ Σai
c ∪ Σai

h (4.2)

where:

• Σai
l : the set of local actions that can be performedwithout collaboration from other agents.

These actions can be initiated by agent ai during the initial planning.

• Σai
c : the set of collaborative actions that require help from other agents. These actions

can be initiated by agent ai during the initial planning.

• Σai
h : the set of assisting actions that the agent can perform to help other agents. These

actions cannot be initiated by agent ai during the initial planning.

From this definition, we derive the set of active actions of agent ai, which are the actions that
the agent itself can initiate:

Σai
a

∆
= Σai

l ∪ Σai
c (4.3)
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Additionally, we call Σ∼ai
h the set of external assisting actions that agent ai depends on, which

can be provided by other agents in N .

Definition 4.3. The action σ0 = None represents that the agent is not performing any action.
This action is assumed to be a local action that can be performed by all agents:

σ0 ∈ Σai
l ∀ai (4.4)

Definition 4.4. The non-movement related action model of agent ai is defined as the tuple:

A ai ∆
= (Σai

A ,Ψ
ai
A ,L

ai
A ,Cond

ai ,Duraai ,Depdai) (4.5)

where:

• Σai
A is the set of non-movement related actions, as defined in Definition 4.2.

• Ψai
A is the set of APs related to Σai

A .

• Lai
A : Σai

A → 2Ψ
ai
A is the labeling function. We assume Lai

A (σa) ⊆ Ψai
A , ∀σa ∈ Σai

a , while
Lai

A (σh) = ∅, ∀σh ∈ Σai
h . This ensures that an agent does not directly initiate an assisting

action in its initial plan.

• Condai : Σai
A × 2Ψ

ai
M → ⊤/⊥ specifies the set of region properties that must be satisfied

to execute an action.

• Duraai : Σai
A → R+ represents the estimated duration of each action, where Duraai(σs) =

Ts > 0 serves as a design parameter.

• Depdai : Σai
A → 2Σ

∼ai
h × 2Π

N denotes the dependence function, where ΠN =
∪

ai∈N
Πai

M.

This function represents the relationship between an action executed by agent ai and the
tuple composed of assisting actions performed by other agents and the possible regions
where each action needs to be performed. We assume Depdai(σs) = ∅, ∀σs ∈ Σai

l ∪ Σai
h ,

and Depdai(σc) ⊆ Σ∼ai
h × 2Π

N
, ∀σc ∈ Σai

c . This implies that each collaborative action
relies on a set of assisting actions from other agents, and distinct collaborative actions may
depend on the same assisting actions.

Remark 4.2. The duration of the action None, Duraai(σ0) = T0 > 0, is critical for delaying
collaboration with other agents if needed. This parameter must be accurately chosen for the
specific application.

Remark 4.3. Each action in the dependence function is unique, meaning ∀σd, σe ∈ Depdai(σm)
such that d ̸= e, then σd ̸= σe. This ensures compatibility with the existing planner.

4.1.4 Agent Transition System
As we have seen in Section 2.3 to build the Product Büchi Automaton (PBA) and consequently
initialize the planner, it is necessary to define a wFTS representing the agent. Now, we need to
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combine the motion wFTS defined in Definition 4.1 and the action model defined in Definition
4.4, and build an wFTS according to Definition 2.4.

Definition 4.5. Given the motion wFTS, T ai
M , and the action model, A ai , related to agent ai, the

wFTS that models the complete behaviour of agent ai is:

T ai
G

∆
=

(
Πai

G ,Π
ai
G,0,Ψ

ai
G ,Σ

ai
G ,−→

ai
G ,L

ai
G ,T

ai
G
)

(4.6)

Where:

• Πai
G = Πai

M×Σai
A is the set states of agent ai. Specifically, πai

G,j = ⟨πai
k , σ

ai
n ⟩ ∈ Πai

G ∀πai
k ∈

Πai
M, ∀σai

n ∈ Σai
A

• Πai
G,0 = ⟨Πai

M,0,None⟩ is the initial state.

• Ψai
G = Ψai

A ∪Ψai
M is the set of APs related to the complete agent model.

• Σai
G = Σai

M
∪

Σai
A . We will adopt the same subdivision into local, collaborative, and

assisting actions as introduced in Definition 4.2, i.e., Σai
G = Σai

l ∪Σai
c ∪Σai

h . We consider
Σai

M ⊂ Σai
l , meaning the movement actions will be considered local actions.

• −→ai
G ⊆ Πai

G × Σai
G × Πai

G is the transition relation:(
⟨πai

h , σ
ai
m⟩, σai

n , ⟨π
ai
j , σ

ai
p ⟩

)
∈−→ai

G if:

1. σai
m = σai

p = None , then (πai
h , σ

ai
n , π

ai
j ) ∈−→ai

M. The transition between ROIs
is possible only if the agent is not performing any action.

2. σai
m = None and σai

p = σai
n ̸= None and πai

h = πai
j , then

Condai(σai
n , L

ai
M(πh)) = ⊤. An action can be performed only if the required

region properties are satisfied and the agent is not performing another action.

3. σai
m ∈ Σai

A and σai
n = σai

p = None and πai
h = πai

j . After an action is performed
(including None), the agent must transition to the None action state.

• Lai
G : Σai

G → 2Ψ
ai
G is the labeling function, defined as: Lai

G (⟨πai
h , σ

ai
m⟩) = Lai

M(πai
h ) ∪

Lai
A (σai

m)

• Tai
G :−→ai

G → R+ is the estimated duration of each transition.

It is defined according to the cases presented in −→ai
G :

1. Tai
G
(
⟨πai

h , σ
ai
m⟩, σai

n , ⟨π
ai
j , σ

ai
p ⟩

)
= Tai

M
(
πai
h , σ

ai
n , π

ai
j

)
i.e., the estimated time to

move between two ROIs.

2. Tai
G
(
⟨πai

h , σ
ai
m⟩, σai

n , ⟨π
ai
j , σ

ai
p ⟩

)
= Duraai(σai

n ) i.e., the estimated time to
complete σai

n .

3. Tai
G
(
⟨πai

h , σ
ai
m⟩, σai

n , ⟨π
ai
j , σ

ai
p ⟩

)
= T0 i.e., the time required to complete None.

Remark 4.4. Due to the way we defined −→ai
G , all the actions are performed only if the agent is

in the correct ROI.
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Remark 4.5. To simplify notation from now on we will call Tai
G (σ

ai
n ) = Tai

G
(
πai
G,m, σ

ai
n , π

ai
G,p

)
Definition 4.6. The path of agent ai is defined as:

τai = πai
G,0π

ai
G,1 . . . (4.7)

where πai
G,j ∈ Πai

G , π
ai
G,0 = Πai

G,0, and
(
πai
G,s, σ

ai
s , π

ai
G,s+1

)
∈−→ ai

G , ∀s = 0, 1, . . ..

Definition 4.7. The sequence of actions that allow the transitions from the states of τai is defined
as:

ρai = σai
0 , σ

ai
1 , . . . (4.8)

where σai
s ∈ Σai

G ,
(
πai
G,s, σ

ai
s , π

ai
G,s+1

)
∈−→ ai

G , ∀s = 0, 1, . . . and πai
G,s, π

ai
G,s+1 ∈ τai

Definition 4.8. The trace of agent ai is defined as:

trace (τai) = Lai
G
(
πai
G,0

)
Lai
G
(
πai
G,1

)
. . . (4.9)

4.1.5 LTL Specifications
In Section 2.1, the full LTL syntax and semantics were defined. This work focuses on a
specific subset of LTL formulas tailored for generating plans for individual agents. These
formulas are designed to accommodate finite-length detours, i.e., a sequence of states between
two adjacent states in a plan, without violating the original LTL formula associated with each
agent. Our approach restricts LTL formulas to positive normal form, where negation (¬) is only
applied to atomic propositions. This constraint eliminates the widespread use of the□ operator.
Additionally, we exclude the # operator to prevent overly interdependent actions; for the same
reason, the U operator is solely employed to construct the ♢ operator.

Definition 4.9. The LTL grammar considered in this work is:

φ′ ::= ⊤|a|¬a|φ′
1 ∧ φ′

2|♢φ′| (4.10)

where a is an AP.

Another important aspect of this work is the possibility of implementing recurring tasks,
i.e., tasks that repeat infinitely often. However, with the grammar defined by Equation (4.10),
the generation of such tasks is not feasible. To enable this behavior, we need to incorporate the
□ temporal operator. To prevent the emergence of problematic tasks that could hinder detour
construction without violating the original LTL formula, we limit the structure of LTL tasks
considered in this study.

Assumption 1. The LTL task assigned to each agent ai is built as follows:

φai = φ′
1 ∧□♢φ′

2 (4.11)

Where φ′
1 and φ′

2 are LTL formulas defined according to Definition 4.9.
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Remark 4.6. The LTL tasks built with Equation (4.11) enable the integration of detours to any
state within the wFTS between two consecutive states in the original plan, devised to satisfy the
original task while ensuring it is not violated.

4.2 Collaboration Algorithm
This section presents the main work developed for the thesis: the collaboration algorithm.
First, we provide a formal definition of the problem. Then, we offer a step-by-step explanation
of the algorithm, highlighting the design choices and how lower computational complexity is
achieved compared to previous approaches. Additionally, we demonstrate theoretical properties
where possible to prove the correctness of the algorithm. The algorithm relies on a bottom-
up motion and task coordination strategy that includes an offline initial plan synthesis and an
online coordination scheme based on the real-time exchange of request, reply, and confirmation
messages. The offline synthesis generates an initial plan, while the online scheme dynamically
adjusts it to accommodate multi-agent collaboration.
Lastly, it is important to note that in this section only the pseudocode of the algorithms
developed will be presented while for the full implementation and ROS2 integration we refer
to Subsection 6.3.1

4.2.1 Problem Formulation
The local task of agent ai, denoted by φai , is given as a LTL formula defined according to
Equation (4.11) over the set of atomic propositions Ψai

G from Equation (4.6). Thus, φai can
contain requirements on the agent’s motion, local and collaborative actions. Given an infinite
path τai of T ai

G , then τai fulfills φai if trace (τai) |= φai where the satisfaction relation is defined
in Section 2.1.
Moreover, sincewe aim to apply the algorithm to a real-world scenario, we assume that allT ai

G are
nominal values for each action’s duration. These values serve as a lower bound on the effective
time an action may take to be completed, acknowledging that some non-negligible delays may
arise.

Remark 4.7. The existence of non-negligible delays implies that each action, σai
d may take longer

than the associated T ai
G (σai

d ), but it will still be completed within a finite amount of time.

Problem 1. Given T ai
G and the locally assigned task φai , design a distributed control and

coordination scheme such that φai is fulfilled for all ai ∈ N . This algorithm must also adapt
to the delays induced by the experimental scenario and ensure that all actions involved in a
collaboration start simultaneously for all agents involved.
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4.2.2 Initial Planning
The first phase of the algorithm is the offline synthesis of an initial plan for each agent that
satisfies φai . As explained in Subsection 2.3.1, this process is completed using the planner
previously developed at KTH Royal Institute of Technology (KTH). Given the wFTS of each
agent, T ai

G and the locally assigned task φai , a PBA is built. Using model checking techniques
this planner outputs the optimal initial plan for the agent, τaiinit (Definition 4.6), i.e., an accepting
run for the PBA, namely a sequence of states that satisfy φai . Lastly, the sequence of actions
that allow the transitions from the states of τaiinit is called ρ

ai
init (Definition 4.7).

Remark 4.8. The use of this planner guarantees that trace (τaiinit) |= φai with the trace defined
according to Definition 4.8.

4.2.3 Request
As anticipated, the second phase of the algorithm relies on the online adaptation of the initial
plans. This involves the exchange of request, reply, and confirmation messages between agents
to determine which agents are best suited to assist with collaborative actions. Starting from this
subsection, we will detail all the steps of the second phase of the algorithm. The first step we
will analyze is the request for collaboration sent by an agent.

Definition 4.10. Given a collaborative action of agent ai i.e., σai
c ∈ Σai

c , the request message
sent by agent ai to all the other agents has the following structure:

Requestai = {(σd, πd, T ai
c )∀σd ∈ Depdai(σai

c )} (4.12)

where:

• σd are the assistive actions required to complete σai
c ,

• πd are the regions where the respective σd is required to take place,

• T ai
c is the amount of time before σai

c is supposed to start according to the transitions time
in ai’s plan.

To describe the algorithm that outputs Requestai , we assume a generic instant in time where
the current state of agent ai is πai

G,l, which is the l-th element of ai’s plan τai (possibly different
from τaiinit due to modification from the collaboration algorithm), i.e., πai

G,l = τai [l]. Moreover,
the agent is currently executing action σai

l i.e., σai
l = ρai [l], where ρai is the sequence of actions

corresponding to τai .
This algorithm takes as input the index representing the current state and action (l), the

sequence of actions associated with the agent’s plan (ρai), the horizon length (Hai), which is the
maximum time ahead ai checks the planned actions to see if any collaborative one is present,
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and the time remaining before the end of the current action (Trem = max(T ai
G (σai

l ) − ∆t, 0),
where ∆t is the time elapsed from the start of the action to the current time instant).

The main idea behind the algorithm is to look at the future actions in the plan and check
if any collaborative action is present within the given horizon. If so, we create the request;
otherwise, we return an empty set and no message is sent to the other agents. The pseudocode
of the algorithm is shown in Algorithm 4.1.

Algorithm 4.1: Check in Horizon and Request
Input : l, ρai Hai , Trem
Output : Requestai

1 s = 1
2 T ai

c = Trem
3 while T ai

c < Hai do
4 σai

c = ρai [l + s]
5 if σai

c ∈ Σai
c then

6 forall σd ∈ Depdai(σai
c ) do

7 πd =Choose_ROI()
8 add (σd, πd, T ai

c ) to Requestai

9 return Requestai

10 T ai
c = T ai

c + T ai
G (ρai [l + s])

11 s = s+ 1

12 return ∅

The only element of Algorithm 4.1 that has not been explained is the function
Choose_ROI. This is because it is a generic function that varies based on the specific
experimental setup; it may take multiple inputs but outputs a specific ROI, which is where we
want the specific assistive action to be completed. A more detailed definition of this function
will be provided when we describe the experimental setup in Chapter 5.

4.2.4 Reply
Suppose now that agent ai has a collaborative action in its plan. In this case, it will send
Requestai to all agents aj ∈ N . All these agents must reply to ai’s request with a reply message.
From now on, in this subsection, we will consider the perspective of a generic agent aj .

Definition 4.11. Given the request for collaboration from agent ai,Requestai , the reply message
sent by agent aj to ai has the following structure:

Replyaj = {(σd, πd, b
aj
d , t

aj
d )∀(σd, πd, T ai

c ) ∈ Requestai} (4.13)

where:

• bajd is a boolean variable indicating the feasibility for agent aj of offering action σd at
region πd
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• tajd is the time when aj can provide the assisting action.

We assume that the request arrives at a generic instant in time when the current state of agent
aj is π

aj
G,m, which is them-th element of the current plan τaj i.e., πaj

G,m = τaj [m]. Moreover, the
agent is currently executing action σaj

m i.e., σaj
m = ρaj [m]. It is important to note that, in this

case, when referring to τaj and ρaj , we refer to the plan and associated sequence of actions of
agent aj that the collaboration algorithm has possibly modified.

The algorithm that produces Replyaj takes as inputs the request received from ai

(Requestai), the index representing the current state and action (m), the current plan of aj
(τaj ), the wFTS associated to aj (T aj

G ), then T
aj , which is a variable indicating if aj is

currently collaborating with other agents. Specifically, T aj
= 0 if the agent is available to

help, and T aj
> 0 if the agent is already collaborating, indicating when this collaboration

is supposed to start, lastly it needs the time remaining before the end of the current action
(Trem = max(T ai

G (σ
aj
m ) − ∆t, 0), where ∆t is the time elapsed from the start of the action

to the current time instant). The algorithm, which is shown in Algorithm 4.2, not only outputs
Replyaj but alsoDaj which is a dictionary containing path detours. For example,Daj(σd) is the
detour starting from τaj [m+ 1] and ending in τaj [m+ 2] that includes a visit to ⟨πd, σd⟩ if this
state is feasible for aj .

Algorithm 4.2: Reply of agent aj to a request from agent ai
Input : Requestai ,m, τaj , T aj

G , T aj , Trem
Output : Replyaj , Daj

1 forall (σd, πd, T ai
c ) ∈ Requestai do

2 if T aj
= 0 and ⟨πd, σd⟩ ∈ Π

aj
G then

3 π
aj
G,init = τaj [m+ 1]

4 π
aj
G,targ = ⟨σd, πd⟩

5 π
aj
G,fin = τaj [m+ 2]

6 Daj(σd), t
aj
d =GetDetour(πaj

G,init, π
aj
G,fin, π

aj
G,targ, T

aj
G )

7 add (σd, πd,⊤, Trem + t
aj
d ) to Replyaj

8 else
9 add (σd, πd,⊥, K) to Replyaj

10 return Daj , Replyaj

This simple algorithm checks if aj can help with any of the actions in the request. Using the
function GetDetour, which will be further examined below, it populatesDaj with the feasible
detours. It is important to note that if a certain state is not feasible for aj or the agent is already
occupied, then tajd = K with K being a constant such that K ≫ T ai

c .

Remark 4.9. tajd and T ai
c are nominal times given by the transition systems; they might not be

the actual time the actions are completed due to non-negligible delays in the experimental setup
(e.g., movement or other actions in the plan may take more time than the nominal one).

Remark 4.10. Thanks to our definition of Trem, we can be certain that Trem ≥ 0. If the action
takes longer than the nominal time, our definition ensures that we avoid negative times, which
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would be nonsensical.

Remark 4.11. We suppose that agent ai also replies to its own request. The reply message it will
send has the following structure:

Replyai = {(σd, πd,⊥, K)∀(σd, πd, T ai
c ) ∈ Requestai}

GetDetour

We will now examine GetDetour, which is used to generate the detour D. The algorithm
description for this function will consider generic states πG of a generic wFTS TG . The inputs
will be: πG,init, the initial state of the detour; πG,fin, the final state of the detour; πG,targ, the
target state we want the detour to visit; and the wFTS TG . The outputs of the algorithm are the
detour D and TD, i.e., the time required before starting the action that will allow the transition
to πG,targ.

Algorithm 4.3: Build a detour from the given states
Input : πG,init, πG,fin, πG,targ, TG
Output : TD, D

1 (D1, C1)=Dijkstra(TG , πG,init, πG,targ)
2 (D2, C2)=Dijkstra(TG , πG,targ, πG,fin)
3 D=D1+D2[1 : end] // we avoid duplicating πG,targ

4 TD=
len(C1)−2∑

i=0

C1[i]

5 return D, TD

This algorithm uses a modified version of the Dijkstra algorithm, which not only returns
the shortest path between two given states in a wFTS (in our caseD1 andD2) but also returns a
list containing the costs of each action required to go from the initial state, the second argument
of the Dijkstra function, to the target state, the third argument of the Dijkstra function
(in our case C1 and C2).

The idea behind the algorithm is to call the Dijkstra function twice and then merge the
two paths obtained. Lastly, we calculate TD by considering that C1 also includes the action
required to reach πG,targ.

It is important to note that in our use case, the value of TD represents the minimum time
required for aj to start the assistive action requested without considering the time to finish the
current action it is performing.

Remark 4.12. It is important to remark that the most computationally expensive operations in
this algorithm are the two calls to Dijkstra, which generally have quadratic cost in the number
of vertices of the graph in our case, the number of states. It is also important to underline that
most of the previous approaches used the PBA, which has a higher number of vertices compared
to the much simpler wFTS. The PBA approach was used to ensure that the task would still satisfy
the LTL specification. However, in our case, this satisfaction is guaranteed by Assumption 1.
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As a consequence, we can reduce the overall complexity of the algorithm. More detailed results
will be presented in Chapter 5.

4.2.5 Confirm
At this point, we suppose that after ai sent Requestai , it received Replyaj ∀aj ∈ N . After
collecting all the replies, it must choose the agents who are best suited to help complete the
request. To communicate with the selected agents, ai will need to send a confirmation message,
providing the necessary information on whether to adapt their plans to assist and specifying
which action they need to help with. If an agent is not required for any assisting action, the
message will indicate that it can continue without adapting its plan.

Definition 4.12. Given Requestai , the confirmation message sent by agent ai to the specific
agent aj , based on Replyaj ∀aj ∈ N , has the following structure:

Confirmai
aj

= {(σd, πd, c
aj
d , T

aj
d ) ∀(σd, πd, T ai

c ) ∈ Requestai} (4.14)

where:

• cajd is a Boolean variable indicating whether agent aj is confirmed to provide σd at ROI
πd,

• T aj
d indicates the estimated time when the collaboration should start. If the agent has not

been selected, we will set T aj
d < 0 since this value will not be used.

The problem that needs to be solved revolves around the decision of the boolean variables
{cajd , aj ∈ N}. These variables need to satisfy two constraints:

1. Each agent in N can be confirmed for at most one (σd, πd) ∈ Requestai

2. Exactly one agent in N can be the confirmed collaborator for each action (σd, πd) ∈
Requestai .

Lastly, we need to define a criterion that allows us to choose the best agents, which in our case
are the ones who can provide the assisting action σd in a time t

aj
d that is as close as possible to

T ai
c .
As previously defined, we know that |N | = N and we will denote |Requestai | = M .

Without loss of generality, denote the set of assisting actions in Requestai as {σd | d =

1, . . . ,M}. The problem of finding {cajd } can be readily formulated as the following Mixed
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Integer Programming (MIP) problem:

min
{c

aj
d ,aj∈N}Md=1

M∑
d=1

N∑
j=1

c
aj
d |tajd − T ai

c | (4.15a)

s.t.
M∑
d=1

b
aj
d c

aj
d ≤ 1 ∀aj ∈ N (4.15b)

N∑
j=1

b
aj
d c

aj
d = 1 ∀d ∈ {1, ...,M} (4.15c)

If the MIP has been solved we can calculate T aj
d as follows:

• If cajd = ⊤ for any agent aj and action σd then T
aj
d = t

aj
d .

• Otherwise T aj
d = −1

Remark 4.13. A necessary condition for the feasibility of Equation (4.15) N > M since we
need to be able to assign one agent to each action, moreover we will need to take into account
that ai will not be able to be assigned to any of the actions since its reply will have baid = ⊥ ∀σd.

Remark 4.14. To guarantee the feasibility of Equation (4.15) there must exist a set NH ⊆ N
such that:

• |NH | =M ;

• Each agent must be able to help in at least one action;

• There exists a combination of these agents such that we can assign to each of them exactly
one action and no action can be assigned to multiple agents

Filtering of the Replies

The general solution of the MIP has exponential complexity with respect to the number of
optimization variables. Given that one of our objectives is to develop a scalable algorithm,
the total number of agents involved can be high. Consequently, solving the MIP might take an
extended amount of time, rendering it unsuitable for the experimental setup. To address this, we
propose filtering the agents involved in the MIP while maintaining feasibility and optimality.

Procedure 1 (Filtering Procedure). The filtering procedure can be divided into two steps. The
first step involves removing agents that cannot provide any help, and the second step involves
selecting only a subset of the best-performing agents for each action:

1. We define as NU ⊆ N as the set of agents who can assist in at least one action i.e.,
aj ∈ NU =⇒ ∃(σd, πd, b

aj
d , t

aj
d ) ∈ Replyaj

ai
such that bajd = ⊤. After this first filtering,

feasibility is preserved because aj /∈ NU =⇒ aj /∈ NH .
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2. If |NU | < M , we will skip the second filtering phase and the calculation of the MIP, as
it would be infeasible according to Remark 4.13. Otherwise, we proceed by defining the
metrics used to filter the agents:

∆
aj
d = |tajd − Tm| (4.16)

In the second phase, for each σd ∈ Requestai , we sort the agents in ascending order of
∆

aj
d and select the firstM agents for each action, adding them toNF which will be the set

containing the filtered agents.

The output of the procedure will be the set of filtered agentsNF and its cardinality NF = |NF |.

Once the filtering is complete, we solve the MIP onNF instead of onN . We summarize this
procedure in Theorem 4.1

Remark 4.15. The number of agents involved in the MIP solution will beM ≤ |NF | ≤ M2. If
N ≫M , the complexity reduction achieved by the filtering procedure is substantial.

Theorem 4.1. Consider the set of agents N and the M actions in Requestai . Let NF be the set
of filtered agents given by Procedure 1. Construct the MIP:

min
{c

aj
d ,aj∈NF }Md=1

M∑
d=1

NF∑
j=1

c
aj
d |tajd − T ai

c | (4.17a)

s.t.
M∑
d=1

b
aj
d c

aj
d ≤ 1 ∀aj ∈ Nf (4.17b)

NF∑
j=1

b
aj
d c

aj
d = 1 ∀d ∈ {1, ...,M} (4.17c)

Then the following are true:

1. If the MIP of Equation (4.15) is feasible then the MIP of Equation (4.17) will be feasible.

2. The optimal solution of MIP of Equation (4.15) is the optimal solution of the MIP of
Equation (4.17).

Proof. We divide the proof into two parts. We first show that feasibility is kept after Procedure
1. Then, the second part will involve proving that the optimal solutions are the same for both
versions of the MIP.

1. Feasibility: To prove that NF includes a feasible solution if N includes one as well, we
need to show that there exists a subset NH ⊆ NF with the properties defined in Remark
4.14. Thanks to the first filtering phase,NU contains only agents who can assist in at least
one action, which implies that every agent in NF can help with at least one action.
To constructNH from the agents inNF , we consider the ordering given by∆

aj
d as defined

in Equation (4.16), as we did in Procedure 1 for each action. We form sets Nd, d ∈
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1, . . . ,M such that aj ∈ Nd if and only if b
aj
d = ⊤ i.e., agents who can assist with that

action. We denote the size of these sets as |Nd| =Md, and without loss of generality, we
assumeM1 ≤ M2 ≤ . . . ≤ MM . Since each agent can help with at least one action, we
have 1 ≤Md ≤M . We then order the agents in ascending order of ∆aj

d for all Nd.
Starting with N1, we select the first agent, ap, assign it to σ1, and add it to NH . Next, we
move to N2, find the first agent different from ap, call it aq, assign it to σ2, and add it to
NH . The existence of aq is guaranteed sinceM2 = 1 then aq ̸= ap. Given that the original
problem was feasible, a valid combination of agents must exist. IfM2 ≥ 2, then selecting
aq ̸= ap is always feasible. We continue this process until we reach NM , where we will
select ar, assign it to σM , and add it to NH . This construction ensures that NH ⊆ NF

with the properties defined in Remark 4.14, thus maintaining feasibility after filtering.

2. Optimality: To prove optimality, we first rewrite the objective function Equation (4.15a)
as follows:

N∑
j=1

c
aj
1 ·∆aj

1 + . . .+
N∑
j=1

c
aj
M ·∆aj

M (4.18)

Each term in this function corresponds to an action. For each term, we define the set Nd

containing the M agents with the smallest ∆aj
d as defined in Equation (4.16). We then

define the set of filtered agents as NF =
∪M

d=1 Nd. We rewrite the objective function
Equation (4.17a) as follows:∑

aj∈N1

c
aj
1 ·∆aj

1 + . . .+
∑

aj∈NM

c
aj
M ·∆aj

M (4.19)

Let {cajd }∗N represent the optimal solution of the MIP in Equation (4.15), and {cajd }∗NF

represent the optimal solution of the MIPin Equation (4.17). Suppose the two solutions
differ. Then there must exist an agent aj ∈ N \NF such that cajd = 1 in {cajd }∗N , resulting
in a smaller value for the objective function compared to any agent ai ∈ NF where caid = 1

in {cajd }∗NF
. This implies:

N∑
j=1

c
aj
d ·∆aj

d <
∑

aj∈Nd

c
aj
d ·∆aj

d (4.20)

Given that Equation (4.15c) requires cajd = 1 for only one aj , this inequality in Equation
(4.20) can be simplified to ∆

aj
d < ∆ai

d . If this is the case, when ordering agents to build
Nd, aj will appear before ai. Since ai was among theM best agents, aj must also be one
of the M best agents, implying aj ∈ Nd and therefore aj ∈ NF . This contradicts the
initial hypothesis.

After attempting to solve the MIP the last step to complete this part of the algorithm is to
build Confirmai

aj
∀ aj ∈ N , consider the two cases that are as follows:
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1. If aj ∈ NF we can divide this case into two further subcases:

(a) If Equation (4.17) has a solution, both {cajd } and T
aj
d exist. If cajd is ⊤ add

(σd, πd,⊤, T
aj
d ) to Confirmai

aj
; otherwise, add (σd, πd,⊥,−1) to Confirmai

aj

(b) If Equation (4.17) has no solutions, add (σd, πd,⊥,−1) to Confirmai
aj

2. If aj /∈ NF , add (σd, πd,⊥,−1) toConfirmai
aj
independently of the feasibility of Equation

(4.17)

In case 1a the agents providing help will need to add the detour to their plan, while in the other
cases, they will not, and continue with their original plan.

4.2.5.1 Loosely Coupled System

As previously mentioned, our focus is on implementing a distributed coordination strategy
specifically designed for loosely coupled multi-agent systems. In these systems, agent
collaborations are sporadic, meaning they are required only occasionally relative to the total
actions each agent performs for its local tasks. When an agent formulates and solves the
coordination problem using Equation (4.17), it should consistently find a solution within a
bounded timeframe, provided some other agents are available to offer the necessary collaborative
assistance.

Assumption 2. (Loosely Coupled System) There exists a finite time T > 0 such that for each
agent ai ∈ N and any collaborative action σai

c requested by agent ai initially at time tc > 0,
problem in Equation (4.17) for σai

c will have a solution within time tc + T.

It is important to note that this assumption does not require Equation (4.17) to always have
a solution. Instead, it allows for the possibility of delaying the collaborative action, as we will
discuss in Subsection 4.2.6, if no immediate solution is found. The coordination procedure will
be repeated, and as long as there exists a finite time bound within which a solution can be found,
the collaboration will eventually be accomplished. This assumption is reasonable for the tasks
described by Assumption 1 formulas. The large number of agents available can provide the
necessary collaboration, and the scarcity of collaborative actions relative to the total number of
actions allows each agent to advance in its plan while also providing the needed assistance.

Remark 4.16. Assumption 2 is necessary to exclude some tightly coupled multiagent systems

4.2.6 Plan Adaptation
Once agent ai has sent the confirmation messages to all other agents aj ∈ N , we need to
distinguish between two possible behaviors for the agents. If a solution to the MIP has been
found, all the selected assisting agents will need to adapt their plans. If no solution has been
found, ai will need to delay the collaboration. This subsection will focus on these scenarios.
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Delay Collaboration

If Equation (4.17) has no solutions, then σai
c cannot be fulfilled according to the current replies.

Agent ai will need to delay σai
c . This can be done by adding a detour of duration T, utilizing

the self-loops given by σ0 = None. However, since T is not known a priori, the idea is to delay
σai
c by an amount of time equal to Tdelay, a design parameter, and then check again if Equation

(4.17) has a solution through a new request. If a solution is found, we proceed with the original
plan; otherwise, we delay the collaborative action again. Thanks to Assumption 2, there will
eventually be a solution for Equation (4.17), and we will not need to delay the action any longer.

Once the assisting agents receive a negative collaboration message, they proceed without
altering their plans.

Adapt to Collaborate

If Equation (4.17) has a solution, each assisting agent aj will check if they have been selected,
i.e., if there exists cajd = ⊤ for any σd. If selected, the agent will update τaj to incorporate
Daj(σd) and then set T

aj
= T

aj
d . If not selected, the agent will proceed without modifying τaj .

Regarding the requesting agent ai, it will simply set T
ai
= T ai

c .

Remark 4.17. For the assisting agents aj involved in a collaboration, T
aj

= 0 at the end of the
detour to ensure the agent progresses in its plan. For the requesting agent ai, T

ai
= 0 after σai

c

has been completed.

4.2.7 Time Synchronization
Suppose that Equation (4.17) has a solution and a collaboration between the requesting agent
ai and the assisting agents aj has been established. Let S ⊆ N be the set composed only of the
agents involved in this collaboration. As it stands, all the agents will have their respective actions
planned at time T a∀a ∈ S . The main problem in synchronizing all the agents and allowing the
collaboration to start at the same time is that T a may differ among the agents involved. To solve
this problem and synchronize all the agents, we have two possible solutions:

1. Add σ0 = None before the collaborative/assistive action so that all the actions involved
will be executed at time maxa{T

a}. This solution will guarantee synchronization of the
agents under nominal conditions, i.e., when the time required to perform an action in the
plan is as given by the wFTS. However, as explained in Remark 4.9, this is not the case in
experimental scenarios where non-negligible delays in the time required to complete an
action may occur. Therefore, this solution will be discarded.

2. Given the requesting agent ai and the assisting agents aj ∈ S\ai, this solution leverages the
communication capabilities between agents provided by ROS2 to effectively synchronize
the agents in time. Moreover, it is resilient to delays introduced by actions in the
experimental scenario. The synchronization strategy proceeds as follows: Once aj is
ready to execute the assigned σd, it will send a Readyaj message to ai. When ai is ready
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to execute σai
c and has receivedReadyaj messages from all aj ∈ S\ai, it will send a Start

message to all aj , indicating that all agents may now start their actions. This guarantees
that they all start at the same moment in time.

The following result is valid for the second scenario:

Lemma 4.1. There exist a finite time Ts ≥ 0 such that if we consider t as the time when
Confirmai

aj
has been sent; then at time t + Ts the message Start will be sent and the agents

will begin their collaboration.

Proof. Consider a generic agent a ∈ S \ ai. At time t, it will be in state πa
G,init. Let πa

G,fin =

⟨πd, σd⟩ be the state reached after completing the assistive action σd. This implies that there
exists a finite sequence of actions ρd ∈ ρa that will bring the agent from πa

G,init to πa
G,fin, with

ρa being the infinite sequence of actions associated with a’s plan (τa). Note that the last action
of ρd will be σd. For each σi ∈ ρd, there exists Tσi

= T a
G (σi) < ∞, which is the estimated

duration of σi given by the wFTS of a. Suppose each action is subject to a delay dσi
such that

0 ≤ dσi
<∞. This means the effective time required to complete σi would be Tσi

+ dσi
.

We can now calculate the total time before starting the execution of σd, denoted as T a
S =

|ρd−2|∑
i=0

(Tσi
+ dσi

) < ∞. After T a
S , agent a will start σd and at time t + T a

S , it will send Readya.

The same result can be reached for ai.
Consider TS = maxa{T a

S} < ∞ with a ∈ S . This implies that at time t + TS , all agents
will have sent Readya. Moreover, ai will be ready to perform σai

c and consequently send Start,
effectively synchronizing all the agents.

4.2.8 Proof of Correctness
In this section we have described the core of the work i.e., the collaboration and synchronization
algorithm developed to solve Problem 1 the only thing that remains to do is to prove its
correctness and the ability to solve the problem, this is what this section is for.

Theorem 4.2. The collaboration and synchronization algorithm presented in Section 4.2 is able
to solve Problem 1.

Proof. We can divide this proof into two parts: first, we will show how each agent ai satisfies its
locally assigned task φai ; second, we will prove how all the actions involved in a collaboration
will start at the same time.

1. Local Task Satisfaction: Consider the initial plan of ai, denoted as τaiinit. As mentioned
in Remark 4.8, the planner developed at KTH guarantees the satisfaction of φai . The
initial plan is thenmodified through the insertion of detours to accommodate both assisting
actions and to delay collaborative actions. Thanks to Assumption 1, we are guaranteed
that the insertion of detours will not void the satisfaction of φai . Moreover, Assumption
2, ensures that all collaborative actions will be executed, allowing all agents with these
types of actions in their plans to advance. In conclusion, the algorithm guarantees the
satisfaction of each locally assigned task.
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2. Synchronization: Consider t as the timewhen the agents received a confirmationmessage
then there will exist a finite time TS > 0 such that at time t+TS all the actions involved in
the collaboration related to the confirmation message will simultaneously start, by Lemma
4.1.

4.3 Model Predictive Controller
In Section 2.4, we defined the generic formulation for an MPC controller using a generic cost
function without specifying the constraints. In this section, we will first explain the setup and
constraints used for collision avoidance. Next, we will provide the specific formulation used in
this work. Finally, we will specify the values of the parameters used to tune the controllers for
both the Turtlebots and the Rosies.

4.3.1 Collision Avoidance
Unlike the algorithm presented in the previous section, where the agent was not required to know
the position of any obstacles present in the workspace, the MPC controller needs to know their
location to avoid them.

Definition 4.13. Let O be the set of obstacles in the workspace. We define a generic obstacle
oi ∈ O as a circular region in the workspace, represented by the tuple:

oi = (xoi , yoi , Roi) (4.21)

where:

• xoi , yoi are the planar coordinates of the center of the obstacle,

• Roi is the radius associated with the circular region representing oi.

Moreover, we can divide the obstacles into two groups:

• Static Obstacles: These obstacles do not move, so their coordinates remain constant during
the execution.

• Dynamic Obstacles: These obstacles change their position during execution and can
represent other agents or people in the workspace. Their positions are updated at each
iteration of the controller by the Motion Capture (MoCap).

The definition of agents as dynamic obstacles implies that each agent ai will also be modeled as
a circular region:

ai = (xai , yai , Rai) (4.22)

where the coordinates are provided by the MoCap, and the radius is a design parameter defined
in Table 3.1 for the Rosies and in Table 3.2 for the Turtlebots.
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Remark 4.18. It is fundamental to note that this implementation of the MPC controller considers
only ground robots, as these are the robots available for the experiments. Consequently, we
consider only the planar coordinates.

From now on, we will consider ai as the agent using the controller and oi ∈ O as the obstacle.
Before providing the mathematical definition of the constraint, we need to define what will be
considered a collision. For this purpose, a collision is defined as an event where the circular
region representing oi intersects with the region representing ai. This can be mathematically
expressed by the following equation:

h(xai) = h(xai , yai , θai) =
√
(xai − xoi)2 + (yai − yoi)2 − (Rai +Roi) (4.23)

h(xai) defined in Equation (4.23) represents a valid Control Barrier Function (CBF), and its safe
region is defined by h(xai) ≥ 0, indicating that no collision occurs. The final step necessary
to define the constraint that will be added to the MPC is the definition of the extended class K
function α(x). For this implementation, we will consider:

α(x) = kx (4.24)

with the constant k = 1.5.

Definition 4.14. The constraint added to agent ai to avoid the collision with obstacle oi is:

Lfh(x
ai) + Lgh(x

ai)uai + α(h(xai)) ≥ 0 (4.25)

where,

• h(xai) as defined in Equation (4.23)

• α(x) = 1.5x

Remark 4.19. It is fundamental to note that we do not perform all the calculations of the Lie
derivatives ourselves, as this will be handled by the optimization software used, namely CasADi
[26].

4.3.2 MPC Formulation
Now that the collision avoidance constraints have been defined, we can move on to the detailed
definition of the optimization problem used in the MPC controller. We will start by defining the
objective of this controller and the corresponding objective function used in the optimization
problem, along with the relative values for the tuning parameters. Afterwards, we will present
the complete formulation of the problem by defining the necessary quantities considered in the
experimental setup, which will be further analyzed in the following chapter.
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Themain objective of this controller is to reach a desired ROI, so the first step will be defining
them; we will consider circular ROI so a similar definition as the one given for the agents and
obstacles applies namely, we can model the j-th ROI of agent ai (πai

j ∈ Πai
M) as the tuple:

The main objective of this controller is to reach a desired ROI. We will consider circular
ROIs, so a similar definition to the one given for agents and obstacles applies. Specifically, we
can model the j-th ROI of agent ai (πai

j ∈ Πai
M) as the tuple:

πai
j = (xπj , yπj , Rπj) (4.26)

The objective can be translated into a Cartesian regulation problem, where we want to drive the
state of the agent to a desired position in the workspace. Note that we do not give any weight to
the orientation of the agent. The problem is to design a cost function suitable for this task.

Definition 4.15. The cost function used to tackle the regulation problem is:

N−1∑
i=0

(xai
k+i − xπ

ai
j )TQ(xai

k+i − xπ
ai
j ) + uai

k+i
TRuai

k+i (4.27)

where:

• xai
k+i is the pose of agent ai at instant k + i,

• xπ
ai
j = [xπj , yπj , 0] is the pose associated to the target ROI,

• uai
k+i is the input of agent ai at instant k + i,

• Q andR are square matrices used for tuning the controller. The values for each application
will be provided at the end of this section.

Definition 4.16. The MPC optimization problem tailored to the Cartesian regulation problem
and collision avoidance can be defined as:

min
U

N−1∑
i=0

(xai
k+i − xπ

ai
j )TQ(xai

k+i − xπ
ai
j ) + uai

k+i
TRuai

k+i

subject to:

xk+i+1 = xk+i + f(xk+i,uk+i) · T, i = 0, . . . , N − 1

xai
k+i ∈ X , i = 1, . . . , N

uai
k+i ∈ U , i = 0, . . . , N − 1

xai
k given

Lfh(x
ai
k+i) + Lgh(x

ai
k+i)u

ai
k+i + α(h(xai

k+i)) ≥ 0

∀oi ∈ O, i = 1, . . . , N

(4.28)

where:
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• f(x,u) represent the kinematic model of the robot, namely Equation (3.1) for the Rosies
and Equation (3.2) for the Turtlebots.

• X represents a rectangular workspace limited by the coordinates given in Table 5.1. We
further restrict this workspace by adding Rai to the minimum values and subtracting it
from the maximum values to ensure that the whole agent is inside the workspace and not
just its center of mass.

• U represent the input set specified in Table 3.1 for the Rosies and Table 3.2 for the
Turtlebots.

• h(xai) is the CBF defined in Equation (4.23).

The parameters used for tuning the controller are as follows:

• Prediction horizon N = 30 steps.

• Sampling time T = 0.1s

• State weight matrix Q =

5 0 0

0 5 0

0 0 0

 for the Rosies and Q =

25 0 0

0 25 0

0 0 0

 for the

Turtlebots.

• Input weight matrix R =

1 0 0

0 1 0

0 0 1

 for the Rosie and R =

[
1 0

0 1

]
for the Turtlebots.

Remark 4.20. The main idea behind the matrix Q is to give equal weight to both the x and y
coordinates while completely disregarding the orientation, as the objective is to solve a Cartesian
regulation problem.

Remark 4.21. It is worth noting that the controller developed will not drive ai exactly to the
center of πai

j . Instead, the controller will be stopped once xai is inside a circular region with the
same center as πai

j and a radius equal to 0.7Rπj . This strategy not only ensures faster transition
times between regions but also allows multiple agents to be in the same region simultaneously
if the region is large enough.
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CHAPTER 5

RESULTS AND ANALYSIS

This chapter provides an overview of the results obtained from testing the algorithm. In Section
5.1, we will analyze the setup used to conduct the tests in depth. Then, in Section 5.2, we will
examine the results obtained, both in terms of complexity and by comparing nominal and real-
world simulations. Finally, in Section 5.3, we will analyze the reliability and validity of the data
obtained.

5.1 Experimental Setup

Figure 5.1: The experimental workspace as used during testing at Smart Mobility Lab (SML)

To evaluate the effectiveness of the proposed algorithm, we conducted simulations with a
group of 5 robots composed of:

• 3 Rosies called rosie0, rosie1, and rosie2.

• 2 Turtlebots called turtlebot1, and turtlebot2.
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The robots move within the arena at SML,i.e., the area of the laboratory where reliable and valid
measurements can be obtained from the Motion Capture (MoCap). This arena contains various
obstacles and Region Of Interests (ROIs) that the robots need to navigate and interact with. An
abstraction of the workspace is shown in Figure 5.2. It is important to note that the locations of
the ROIs in Figure 5.2 are indicative. The workspace has been projected onto the arena floor,
and some keystone distortion issues were encountered, as it is possible to see in Figure 5.1. A
detailed definition of the ROIs and their locations in the workspace can be found in Table 5.2.
The boundary of the workspace is defined in Table 5.1.

Figure 5.2: Abstraction of the experimental workspace where the ROIs are depicted with
different colors, while the obstacles are depicted in red.

Maximum x Coordinate 1.88m
Minimum x Coordinate −2.29m
Maximum y Coordinate 2.30m
Minimum y Coordinate −2.87m

Table 5.1: Boundary of the Workspace
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5.1.1 Motion wFTS
In this subsection, we will describe the weighted Finite Transition Systems (wFTSs) associated
with each group of robots. The nominal transition time is calculated based on the distance
between the centers of the ROIs, without considering any obstacle. The agents are allowed to
move from any known ROI to any other known ROI. We will list all the regions known by each
group of agents, and in Table 5.2, all the ROIs will be defined according to Equation (4.26)
based on the measurements taken in the experimental setup.

• ROIs for the Rosies:

– Manipulation regions (M1 − 4): these regions are depicted in light blue in Figure
5.2. They represent areas where the agents perform manipulation tasks.

– Harvesting region (H): this region is depicted in light green in Fig. 5.2. It represents
the area where the robot harvests grapes and places them into the basket until it is
full.

– Delivery region (D): this region is depicted in dark green in Fig. 5.2. It represents
the area where the full bucket is delivered and an empty bucket is provided to the
agent.

• ROIs for the Turtulebots:

– Connection regions (C1 − 4): these regions are depicted in dark blue in Fig. 5.2.
They represent areas where the robots perform connection checks.

– Patrol regions (P1 − 4): these regions are depicted in grey in Figure 5.2. They
represent areas where the robots take snapshots of the surroundings to check for
possible dangers.

ROI x Coordinate [m] y Coordinate [m] Radius [m]
M1 −0.31 1.53 0.43
M2 1.38 0.43 0.43
M3 −1.50 0.34 0.43
M4 −0.86 1.88 0.43
H 0.00 0.00 0.70
D 0.44 −2.07 0.42
C1 −1.96 1.95 0.14
C2 1.71 1.93 0.14
C3 −1.98 −2.53 0.14
C4 1.56 −2.55 0.14
P1 −1.49 1.03 0.14
P2 0.82 1.42 0.14
P3 −0.22 −2.55 0.14
P4 1.2 −1.88 0.14

Table 5.2: Definition of ROIs based on the experimental setup
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5.1.2 Action Model
In this subsection, we will describe the set of non-movement related actions that each of the
two groups of robots can perform, according to Definition 4.4. The action model for Rosies
is detailed in Table 5.3, while the action model for Turtlebots is detailed in Table 5.4. The

Action Type Cond Dura [s]
load collaborative H 8

help_load assistive H 8
manipulate local M1,M2,M3,M4 7

delvier local D 6
harvest local H 15
None local 1

Table 5.3: Action model for the Rosies

Action Type Cond Dura [s]
check_connection collaborative C1, C3 7

help_check_connection assistive C2, C4 5
patrol local P1, P2, P3, P4 6
None local 1

Table 5.4: Action model for Turtlebots

final element necessary to fully define the action model is the dependence function, which can
be described as follows:

• Depd(load) = (help_load, H).

• Depd(check_connection) = (help_check_connection, {C2, C4}).

5.1.3 Task Specification
Lastly, this subsection will revolve around the Linear Temporal Logic (LTL) task definition for
the different agents, moreover, we in Table 5.5 will define the starting ROI. This last step will
allow us to fully define the setup used in the simulations.

The LTL tasks assigned to the agents are as follows:

φrosie0 = □♢(manipulate ∧M1 ∧ ♢(manipulate ∧M2)) (5.1)

The recurring task assigned to rosie0 involves the manipulation of objects in ROI M1, then
moving toM2 and manipulating objects there.

φrosie1 = □♢(manipulate ∧M3 ∧ ♢(manipulate ∧M4)) (5.2)
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The recurring task assigned to rosie1 involves the manipulation of objects in ROI M3, then
moving toM4 and manipulating objects there.

φrosie2 = □♢(harvest ∧ ♢(load ∧ ♢(deliver))) (5.3)

The recurring task assigned to rosie2 involves harvesting grapes, which can only be done in H ,
then completing the collaboration required to load the full basket, and finally moving to D to
deliver it.

φturtlebot1 = ♢(patrol ∧ ♢(check_connection ∧ C1))∧

□♢(patrol ∧ P1 ∧ ♢(patrol ∧ P2))
(5.4)

The task assigned to turtlebot1 involves an initial phase where it must patrol one of the designated
ROI. Subsequently, it must check the connection in C1. Finally, its recurring task begins, which
entails periodically patrolling P1 and then P2.

φturtlebot2 = □♢(patrol ∧ P3 ∧ ♢(patrol ∧ P4∧
♢(check_connection ∧ C3)))

(5.5)

The recurring task assigned to turtlebot2 involves first patrolling P3 and then P4, and finally
moving to C3 to check the connection.

Agent Starting ROI
rosie0 M1
rosie1 M3
rosie2 D

turtlebot1 P1
turtlebot2 P3

Table 5.5: Starting ROIs for the agents involved in the experimental setup

The only remaining aspect to completely describe the tasks is to define Choose_ROI, the
function responsible for selecting the region in which an assisting action should take place. Its
behavior for the specific application can be summarized as follows:

• help_load is available only at H , so this will be the ROI selected.

• help_check_connection has multiple options, but we want the agents performing this
assisting action to be located in the opposite corner to the agent requesting the
collaboration. Specifically:

– If check_connection will be executed in C1, then Choose_ROI will select C4 as
the ROI for help_check_connection.

– If check_connection will be executed in C3, then Choose_ROI will select C2 as
the ROI for help_check_connection.
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5.2 Results Analysis
In this section, we will analyze the major results obtained from the developed algorithm. First,
we will present the gains in terms of complexity. Then, we will analyze and compare the results
betweenRobot Operating System 2 [1] (ROS2) simulations and the experimental results obtained
at SML.

5.2.1 Complexity Reduction
When evaluating the overall complexity of the algorithm, the two most computationally
expensive operations are the calls to the Dijkstra algorithm and the solution of the Mixed
Integer Programming (MIP). While for the first case, we will provide numerical results based on
the experimental setup, for the second we will refer to the considerations expressed in 4.15 since,
due to time constraints, we could not produce numerical results. Anyway, it is notable to mention
that in the scenario considered solving the MIP would require approximately 10− 20ms, so it is
compatiblewith the real-time requirement to be able to run the algorithm in the field experiments.

The computational complexity of the Dijkstra algorithm is O(V 2), where V indicates
the number of vertices in the graph, in our case, the number of states of TG . This number is
reduced compared to previous approaches by using the ROI representation for TM instead of a
more typical grid structure.
Consider the structure of the workspace, represented by a rectangle of width 4.17m and height
5.17m (Table 5.1), the radius of the Rosies 0.33m (Table 3.1), and the radius of the Turtlebots
0.10m (Table 3.2). To fully partition the workspace with a grid structure where each robot can
fit inside, we would need a 6× 7 grid for the Rosies and a 20× 25 grid for the Turtlebots. The
reduction in the number of states for TM is highlighted in Table 5.6. Another significant factor

Agent States in TM States with Grid Reduction
Rosie 6 42 85.7%

Turtlebot 8 500 98.4%
Average Reduction 92.1%

Table 5.6: Computational gains derived by the use of the TM instead of a grid structure

reducing the complexity when applying the Dijkstra algorithm is the use of the wFTS TG

instead of the Product Büchi Automaton (PBA) AP , which was used in previous approaches
to guarantee the satisfaction of locally assigned tasks. The full extent of the reduction in the
number of states for each agent and assigned task is shown in Table 5.7. It is fundamental
to remark, as shown in Table 5.7, that the more complex the task assigned to an agent the
greater the overall reduction we obtain. From the data in Table 5.7 and Table 5.7, it is clear
that our efforts to reduce computational complexity have been successful, achieving the desired
complexity reduction. Another important remark
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Agent States in TG States in AP Reduction
rosie0 14 56 75.0%
rosie1 14 56 75.0%
rosie2 14 126 88.9%

turtlebot1 16 176 90.9%
turtlebot2 16 144 88.9%

Average Reduction 83.7%

Table 5.7: Computational gains derived by the use of the wFTS instead of the PBA

5.2.2 ROS2 Simulations
After analyzing the computational complexity reduction, we now turn our attention to the
simulations carried out under nominal conditions with ROS2. An extensive simulation is shown
in Figure 5.3. In this figure, we see all the non-movement related actions executed by the agents
(with None not shown to avoid cluttering the plot). Different colors are used to differentiate
the types of actions: blue for local actions, green for collaborative actions, and red for assistive
actions. Additionally, a star indicates the time when a collaboration actually started. A detailed
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Figure 5.3: Results of the simulation performed in ROS2 under nominal conditions. Only non-
movement related actions are shown. The subscripts under the action names indicate the regions
where these actions were completed.

analysis of the sequence of actions completed by each agent reveals that, as expected from the
theoretical results, the algorithm guarantees the satisfaction of the LTL task assigned to each
agent, while also allowing for the insertion of assistive actions.
For example, consider the two Turtlebots. turtlebot1 initially patrols P1 since it is the least
expensive ROI (initial ROI) where it can perform its task. Later, it requests help for a connection
check in C1, prompting turtlebot2 to adjust its initial plan and reach C4 to assist turtlebot1.
An important observation from this collaboration is that turtlebot1 waits for turtlebot2 to be
ready before starting the action, demonstrating that the synchronization mechanism is effectively
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working as intended. After this collaboration, turtlebot1 alternates between patrolling ROIs P1
and P2, satisfying its assigned task while also accommodating requests to help turtlebot2. A
similar analysis can be conducted to verify the satisfaction of tasks assigned to each agent.
Turning our attention to the three Rosies, we observe the MIP in action. Sometimes rosie0 is
tasked with helping rosie2, while other times rosie1 is selected to allow the agents to progress
with their local tasks. This dynamic selection ensures that the workload is balanced and tasks
are completed efficiently.

Through this simulation, we have demonstrated that the developed algorithm guarantees
task satisfaction and the necessary adaptability to start all actions involved in a collaboration
simultaneously.

5.2.3 Field Experiments
Since the nominal simulation presented in the previous subsection yielded positive results, we
now move to the analysis of the results obtained from the tests conducted at SML, where we
see the Model Predictive Control (MPC) controller in action. The simulation is shown in Figure
5.4. This figure depicts a plot with the same characteristics as the one described for the ROS2
simulations. Analyzing the plot, we can reach the same conclusion regarding the satisfaction of
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Figure 5.4: Results of the experiments performed at SML. Only non-movement related actions
are shown. The subscripts under the action names indicate the regions where these actions were
completed.

the tasks. Moreover, observing the behavior of the Rosies, we notice that the time between two
actions is slightly longer than in the nominal simulation, this is mainly due to the presence of
obstacles which was not considered in the transition time used for the nominal simulations. This
indicates that the MPC controller is efficient and successfully avoids obstacles, as will be shown
in the video linked at the end of this section.
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The main issue arises when considering the Turtlebots. There are significant differences in
the times required to move within the workspace compared to the nominal times. This behavior
can be traced back to two main reasons: firstly, an imperfect tuning of the MPC controller; and
secondly, the software provided by the manufacturer, which proved to be challenging to work
with and prone to frequent crashes, such as the one observed Figure 5.4 for turtlebot1 between
225 and 275 seconds. We are currently working on mitigating these problems through extensive
tuning of the controller and possible adaptation of the manufacturer’s code.

The video showing the experiment conducted at SML is available at https://youtu.
be/PnZjAZy23zI.

5.3 Validity and Reliability Analysis
The last consideration is the reliability of the methods and data, as discussed in Chapter 2.
Given the results of both the ROS2 simulations and the experimental tests, which confirmed the
satisfaction of the LTL task assigned to the agents, alongwith the expected complexity reduction,
we can conclude that the methods used to develop the algorithm proved to be reliable.

Regarding the data, although some issues arose while using the Turtlebots, the MPC
controller developed proved to be reliable for the Rosies. Moreover, the communication to
synchronize the agents worked as expected, confirming that the data obtained is reliable enough
to guarantee applicability to real-life systems.

https://youtu.be/PnZjAZy23zI
https://youtu.be/PnZjAZy23zI
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The conclusion chapter serves as a synthesis of the entire thesis, providing a comprehensive
summary of the findings, discussing their implications, and suggesting directions for future
research. It ties together the theoretical and empirical results discussed throughout the thesis,
highlighting the contributions to the field.

6.1 Conclusions
Reflecting on the research objectives presented in Chapter 1, this study aimed to develop and
test an algorithm for effective multi-agent coordination in dynamic environments. The following
conclusions can be drawn:

1. Achievement of Objectives: The algorithm successfully allows multi-agent coordination,
ensuring that each agent satisfies its locally assigned recurring LTL task. The
developed algorithm dynamically adjusted the plans of individual robots to accommodate
collaborative actions without violating their Linear Temporal Logic (LTL) constraints,
thereby meeting the primary objectives of the research.

2. Algorithm Performance: Through simulations and real-world experiments, the
algorithm demonstrated reliability and efficiency in coordinating multiple agents. The
integration of Model Predictive Control (MPC) and LTL provided robust solutions to real-
time synchronization and collision avoidance.

3. Implications for Robotics: The research contributes significantly to the field of robotics
by presenting an algorithm that enhances the productivity and sustainability of agricultural
practices. The application within the Collaborative Paradigm for Human Workers and
Multi-Robot Teams in Precision Agriculture Systems (CANOPIES) project, focusing on
automating table-grape vineyard harvesting, showcased the practical benefits and potential
scalability of the algorithm.
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4. Theoretical Contributions: This study advances the understanding of multi-agent
systems by integrating LTL and MPC frameworks, offering a novel approach to solving
complex collaborative tasks in dynamic environments. The formal proof of the
algorithm’s correctness underlines its theoretical robustness.

6.2 Limitations
Despite the successes, several limitations were encountered, primarily due to the time constraints
imposed on the project:

• Computational Complexity: While the algorithm was designed to minimize computa-
tional complexity, real-time implementation on commercially available hardware posed
challenges. Further optimization is required to enhance performance.

• Scalability Issues: The algorithm’s scalability to larger systems and more complex
environments needs additional validation. Initial results are promising, but extensive
testing in diverse scenarios is necessary.

• Limited Actions and Compatibility: The current implementation focuses primarily
on the movement of robots, with limited consideration for other actions. Moreover,
the implementation of the MPC controller was limited to specific robots (Rosies and
Turtlebots), although the framework can be extended to other robotic agents.

6.3 Future Work
Building on the findings and addressing the limitations identified, the following future research
directions are proposed:

• Extensive Field Testing: Conducting extensive field tests in various agricultural
settings to validate the scalability and robustness of the algorithm in diverse real-world
environments.

• Improved Control Efficiency: Enhance the control algorithms for Turtlebots and other
robots with similar issues to reduce delays and improve overall performance.

• Extension to Additional Actions: Incorporate a wider range of actions beyond
movement, enabling robots to perform more complex collaborative tasks.

• Human-Robot Collaboration: Investigating the potential for human-robot collaboration,
focusing on developing intuitive interfaces and protocols for seamless interaction between
human operators and robotic systems.
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6.3.1 Codes and scripts
The codes developed for Robot Operating System 2 [1] (ROS2) packages, including the initial
planner update to ROS2, the entire implementation of the algorithm, and the MPC controller
presented in Chapter 4, as well as the package used for the experiments, will eventually be
published on the author’s personal GitHub at https://github.com/DavidePeron19.
For now, the code will remain private as a publication is being prepared based on this thesis
work.

6.4 Reflections
Reflecting on the research journey, several insights can be highlighted:

• Research Process: The iterative process of developing, testing, and refining the algorithm
provided valuable lessons on the importance of flexibility and adaptability in research.

• Collaborative Efforts: The success of this research underscores the importance of
collaboration among researchers and end-users to address complex challenges and achieve
practical solutions.

• Impact on the Field: This research has the potential to significantly impact the field of
robotics, offering new methodologies for multi-agent coordination and contributing to the
advancement of autonomous systems in agriculture.

In conclusion, this thesis has made substantial contributions to the field of multi-agent
systems, presenting a robust and scalable algorithm for dynamic environments. The insights
gained and the proposed future work provides a solid foundation for continued research and
development in this area of robotics.

https://github.com/DavidePeron19
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