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Introduction

The study of the AdS/CFT [1] correspondence has held a central role in theoretical physics for now
more than twenty years. In this thesis we focus on an instance of this correspondence that is the du-
ality between gravity (superstring) theories on backgrounds involving three-dimensional anti-de Sitter
space (AdS3) and supersymmetric two-dimensional conformal field theories (CFT2). The problem
of determining the string spectrum has been recently tackled using exact methods collectively going
under the name of integrability techniques. This approach has been shown to be very useful in the
investigation especially of the AdS5/CFT4 case [2], that is in the case of a N = 4 super Yang-Mills
(SYM) theory in four dimensions and type IIB superstring theory in AdS5 × S5 spacetime. In recent
years a lot of work has been also done in the AdS3 case that we treat here. In ref. [3] it was shown
that the theory describing free strings on maximally supersymmetric AdS3 backgrounds supported by
a mixture of Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes is classically
integrable. The consequence is that it has been possible to bootstrap a factorised S matrix of the string
non-linear sigma model on the two-dimensional string worldsheet. This symmetry-based bootstrap
approach is able to provide exact predictions that must be checked perturbatively on either side of the
gauge/string duality. The aim of this thesis is to perturbatively verify the properties of the worldsheet
S-matrix for the bosonic sector of the string in AdS3 × S3 × T 4 supported by mixed RR and NSNS
fluxes in light-cone gauge.

Let us briefly expand on the role of integrability in this framework. Integrability is usually a feature
of d = 2 quantum field theories. The S-matrix of such theories enjoys a series of properties. An
important one is that a generic n-to-n particles process must factorise into a sequence of two-to-two
processes. In general these conditions largely simplify the job of exactly solving the theory. This
becomes relevant in the AdS/CFT case if we observe that the dynamics of the string is described
by a non-linear σ model (NLSM) living on the string worldsheet, which is in fact a two-dimensional
manifold; the latter can be adequately decompactified in order to properly define the asymptotic states
on which the S-matrix acts.

The machinery of integrability has produced important results on specific regions of the parameter
space and is a very promising tool for the study of the correspondence. Let us mention very quickly
how integrability fits in the picture. For a more detailed discussion, an excellent introduction to its
applicability in the context of AdS/CFT is presented in ref. [4].

On the gauge side we can suppose to take a SYM theory with gauge group SU(Nc). The number of
colours Nc can be taken to infinity. We can define an effective coupling λ = g2YMNc, where gYM is
the original coupling constant, and take the Nc →∞ limit while keeping λ fixed. This is the so-called
planar limit. In this limit the only Feynman diagrams whose contribution is not suppressed are those
that do not present any intersection of the internal lines; these diagrams are those that can be drawn
on a plane, hence the name of the limit. Integrability has proven to be of use especially in this planar
limit.
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INTRODUCTION

The AdS/CFT correspondence relates the string couplings, namely the effective string tension T and
the string coupling constant gstr, to λ and Nc as:

λ = 4π2T 2,
1

Nc
=

gstr
4π2T 2

. (1)

From the relations in (1) it is clear that the planar limit taken in the gauge side would correspond to
a free string theory in the string side of the duality. Even though the string is free, we have a theory
living in the worldsheet of the string that is not free. This theory can be actually identified with an
interacting field theory whose couplings are proportional to the inverse of T . Therefore this shows
how the gauge/string duality also manifests itself as a weak/strong duality. In fact in the weak regime
(λ << 1) the gauge theory is perturbative and the worldsheet theory is not while in the strong regime
(λ >> 1) the opposite happens.

An exact approach using the integrability of the theory on the worldsheet produces results at every
value of the coupling λ (or T ) and it is therefore paramount for the understanding of a region of the
parameter space that could not otherwise be probed. Therefore integrability is able to connect the
regime of perturbative gauge theory with the regime of perturbative string theory. Integrability has
produced results in agreement with the perturbative expectations both for the gauge theory and for
the string theory, meaning at both the large and small λ regimes.

The plan of this thesis is the following. In the first two chapters we introduce some of the properties
of the scattering for integrable quantum field theories (IQFTs) in (1 + 1)-dimensions.

In particular, in the first chapter we start with a brief overview of the properties of scattering processes
for IQFTs. We introduce the factorisation of the S-matrix in the sense of Zamolodchikov [5].

In the second chapter we present some examples of integrable quantum field theories such as the sinh -
Gordon and Bullough-Dodd models. We focus on their scattering properties and we perform some
tree-level calculations to show in practice how factorised scattering looks like.

In the second part of this work we delve into the non-linear σ model we mentioned before. The NLSM
is defined on the worldsheet of the bosonic string propagating in the AdS3 × S3 × T 4 background
supported by a mixture of RR and NSNS fluxes. The ratio of these two fluxes is parametrised by the
parameter q ∈ [0, 1] where 0 corresponds to pure RR and 1 to pure NSNS. This parameter will appear
in the starting string action in front of a differential two-form, the so called Kalb-Ramond field B.
The parameter q together with the overall string tension T are two free parameters in the theory.

In the third chapter we derive the NLSM on the worldsheet. We start from the bosonic string action and
impose the light-cone gauge-fixing procedure, aimed at removing the spurious degrees of freedom on the
worldsheet. Then we go into detail on the calculations needed to obtain the worldsheet Hamiltonian.
The perturbative regime for this theory corresponds to the large string tension regime (T >> 1). As
we then show this corresponds to a ’small field’ expansion and therefore we truncate the Hamiltonian
up to the desired perturbative order.

The fourth chapter is entirely dedicated to the analysis of two-particle interactions in the string non-
linear sigma model at the tree level. We study the properties of the interaction vertices and compare
them to the expectations for an integrable theory. In addition we show how to compute scattering
amplitudes and we obtain the two-to-two particles S-matrix at the tree level.
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INTRODUCTION

The fifth chapter focuses on three-to-three particle processes. We expect their amplitudes to factorise
into products of two-to-two ones. Even though the discussion is limited at the tree level we show
that this property is satisfied at the desired order in 1

T . We present some of the calculations of these
properties in full details.

The sixth chapter contains the conclusions.
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Chapter 1

S-matrix in 1+1 dimensions

1.1 Integrable theories in d=2

The intention of the present work is to study a model that belongs to a specific class of theories,
the so called integrable quantum field theories in d = 2. Here we will omit a serious discussion of
integrability per se and just illustrate some of the properties of integrable theories that are at the
center of the discussions in the following chapters. Historically integrability was first studied in the
context of Hamiltonian systems. These systems can be classified in terms of their symmetries. The
existence of such symmetries constrains the dynamics of the model and as a result if the system
has enough independent symmetries the equations of motion can be integrated explicitly. We will not
delve any deeper into Hamiltonian integrability, for some references see e.g. [6]. In the field-theoretical
framework the situation is slightly different. Since the number of degrees of freedom become infinite,
so does the number of symmetries that are needed to exactly solve the system. The consequence is
that a general mathematical definition of integrable system does not exist. In most cases a theory is
said to be integrable simply when it possesses a large enough number of symmetries.

The relevant objects associated with each symmetry are the conserved charges of the model. Integrable
quantum field theories therefore possess an infinite tower of conserved charges in involution, meaning
commuting with each other. In this work we are not interested in specifying the nature of these charges
and in most cases we will settle with just assuming their existence. A large set of techniques has been
employed to study such models and in some cases they can be solved exactly both at the classical and
quantum level. More details on classical and quantum integrability can be found in ref. [7] and [8, 9].

As previously mentioned, we will focus on integrable quantum field theories in d = 2, meaning one
space and one time dimension. The choice of 1 + 1 dimensions is not casual. In fact for this type of
models the scattering processes of particles moving in one spacial dimension have some very special
features that we will illustrate in the following. In this regard the most important object is the S-
matrix, that is the operator containing all of the information on the scattering of the theory. In the
rest of the chapter we will introduce some properties of such operator for d = 2 integrable theories.

1.2 S-matrix and its properties

In this section we want to discuss some properties specific to the integrable S-matrix in two dimen-
sions. The idea is to keep the discussion simple, avoiding the more technical points. Let us start by
introducing the S-matrix. It is the operator connecting the initial particles asymptotic states with the
final ones. These states are usually defined respectively in the far past and the far future, where we
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1.2. S-MATRIX AND ITS PROPERTIES S-matrix in 1+1 dimensions

are allowed to require the constituents of the states to be so far apart from each other that they are
virtually free. The S-matrix encodes all of the information regarding whatever happens in between
the initial and final states. The asymptotic m-particle states will be written as:

|p1, p2, . . . , pm⟩in/outa1,a2,...,am (1.1)

The indices ai keep track of possible flavours. Call the set of charges of the model {Q̂s}s=1,...,∞.
For now the index s just labels the infinite tower of charges in involution that we assume our model
possesses. Since they commute with each other they diagonalise the asymptotic states and we can
write:

Q̂s|p1, p2, . . . , pm⟩in/outa1,a2,...,am =
∑

i

(qs)
ai |p1, p2, . . . , pm⟩in/outa1,a2,...,am . (1.2)

Here (qs)
ai are the eigenvalues of the single particle states. We should observe here that the additivity

of the eigenvalues in equation (1.2) is not obvious. The equality is actually verified only when the
charges are defined as integrals of local densities. In the following discussion we will mostly ignore
such issues. For more details about these aspects see e.g. ref. [10],[11].

Let us see what properties descend directly from the existence of an infinite number of such conserved
charges. First of all it is not hard to imagine that the scattering of particles in an integrable theory
must obey the following two constraints:

• Equality of the set of initial and final momenta

• Absence of particle production

Let us explain what we mean by these two. Looking at equation (1.2) and knowing that the charges
commute with the S-matrix (since they commute with the Hamiltonian1) it is clear that in general an
eigenstate will evolve into a superposition of states with the same eigenvalue. This corresponds to a
conservation equation for each charge. Hence when the model is integrable it must obey an infinite
number of equations, corresponding to the infinite number of charges. Schematically, taking an n
particles in-state and m particles out-state we have:

(qs)
a1 + (qs)

a2 + · · ·+ (qs)
an = (qs)

an+1 + (qs)
an+2 + · · ·+ (qs)

an+m , s = 1, . . . ,∞. (1.3)

Notice also that at least some of these charges will depend on the momenta (e.g. energy, momentum
itself). The result is that these equations completely constrain the possible kinematic configurations
that can result from an interaction process. The only remaining solution is the one that identically
satisfies the equations (1.3), namely a scattering where the set of final momenta is the same as the set
of initial ones, hence the equality of the set of initial and final momenta condition. At the most the
set of momenta can be reshuffled amongst the outgoing particles. This argument also constrains the
possible interactions to be those where the masses of the initial particles are the same as those of the
final ones. Only the internal quantum numbers are allowed to change.

These first two conditions on the S-matrix, although very constraining, do not tell us much on the
shape of the non-vanishing remnant of interaction. The last property we want to introduce, peculiar
only to d = 2 theories, is the so called factorisation of the S-matrix.

1.2.1 Factorisation of scattering

In the last section we argued that only n → n interactions can happen in an integrable theory. For
integrable theories in d = 2 these n particles scatterings factorise into a sequence of 2 particles ones.

1We did not write an expression for the S-matrix yet it is easy to imagine that it will depend someway on the
Hamiltonian of the system.
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S-matrix in 1+1 dimensions 1.2. S-MATRIX AND ITS PROPERTIES

As a consequence the full scattering matrix can be constructed just by understanding 2 particles
interactions. We do not provide a rigorous proof of this fact and instead we present an argument
that might give a more intuitive sense of how factorisation happens. The discussion will follow a logic
similar to that in ref. [12] and first proposed in ref. [5].

The example we will be focusing on is that of a 3→ 3 particles scattering but the logic can be easily
generalized to a n→ n one.

Suppose to take a general model. We could observe for example the conservation of momentum,
produced by the invariance of the theory under space translations. Suppose to identify a particle with
its wavepacket. The action of the translation operator T̂ on the wavepackets is:

Ψi(x) =

∫

dpe−a(p−pi)
2

eip(x−xi) T̂b=eibp̂−−−−−→ Ψi(x) =

∫

dpe−a(p−pi)
2

eip(x−(xi−b)) (1.4)

Clearly all the particles are shifted spacially by the same amount. On the other hand, since in an
integrable model we have an infinite tower of conserved charges suppose to have one that transforms
in an higher-spin representation of the Lorentz group 2, call it P̂s. It generates a symmetry that will
still shift the wavepackets, although in general not in a constant way. The shift might depend on the
momentum of the particles. This can be seen by defining the shift as a momentum dependent phase,
giving:

Ψi(x) =

∫

dpe−a(p−pi)
2

eip(x−xi)+iϕ(p). (1.5)

For a generic ϕ(p) the translating contribution is found expanding the phase in series around p1. This
corresponds to the approximation of the Gaussian integral close to the peak p1 and therefore the
particle’s wavepacket will be shifted by

b(p) = −∂ϕ(p)

∂p |p=pi

which in general depends on the momentum. The action of these charges will then modify each
particle’s trajectory in a different way. By applying these transformations, which we have assumed to
be symmetries of the model, we can take completely different processes and relate their amplitudes; this
is the observation on which the factorisation of scattering is built on. In fact, using the commutation
of the P̂s with the S-matrix for each value of the number c it holds:

⟨p1, p2, p3| eicP̂s Se −icP̂s |p4, p5, p6⟩ = ⟨p1, p2, p3| S |p4, p5, p6⟩. (1.6)

This basically means that the same amplitude describes processes with trajectories that intersect in
completely different points. Observe now the processes in figure 1.1; these are not Feynman diagrams
but just depictions of macroscopic trajectories with two-particle interactions (grey dots) and three-
particle interactions (red dot) with time flowing upwards. From the previous argument the processes
in figure 1.1 should all yield the same result, meaning that three-particle interactions happen as a
sequence of two-particle ones. This is exactly what happens in the case of integrable quantum field
theories, provided they have a sufficient number of higher-spin conserved charges. More than one
proof of this property can be found in the literature (e.g. ref. [13]), differing mainly on the number
of higher-spin charges required.

Suppose now that the two-particle S-matrix of the processes in figure 1.1 is diagonal. For example we
can require the S-matrix of the made-up process a(p) + b(q)→ c(p) + d(q) to be diagonal if [14]:

Scd
ab(p, q) = δcaδ

d
bSab(p, q). (1.7)

2We call s the ’spin’ of an operator P̂s when it satisfies the relation [M, P̂s] = sP̂s, where M is the generator of
Lorentz boosts in d = 2.
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1.3. ON THE EXACT TWO-PARTICLE S-MATRIX S-matrix in 1+1 dimensions

cba cba cba

Figure 1.1: Depiction of three different possible trajectories of three particles interactions, initial state at the
bottom to final state at the top. These processes must all give the same amplitude in an integrable theory.

Where a, b, c, d label the particles while p, q are the momenta. Then the equivalence of the processes
in figure 1.1 can be written schematically as:

SabSacScb = ScbSacSab = Sabc. (1.8)

Where Sabc corresponds to a three-particle S-matrix. This equation is important for two reasons.
Firstly, the second equality tells us exactly how the 3 → 3 interaction factorises. The three-particle
process factorises into 3 two-to-two processes. In general we can use the same argument to shift n
trajectories and it is easy to deduce that an N -particle process will be made of N(N−1)

2 two-particle
processes. Secondly the first equality, meaning the relation between the diagram on the left and on
the right, is essentially the content of the Yang-Baxter equation 3 which is a general constraint on the
S-matrix for an integrable theory. A detailed discussion of Y-B equation is beyond the scope of this
work, for more details see e.g. ref. [15].

It is worthwhile observing that the mechanism of shifting the trajectories produces these results only
for d = 2. When there are more spacial dimensions it is still possible to shift the trajectories but now
in such a way that the lines representing the particles never intersect. This is actually covered by
Coleman-Mandula theorem [16], which guarantees that, for theories in d > 2, the existence of higher-
spin charges is sufficient to trivialize the S-matrix to S = ✶. The specialty of the d = 2 integrable
case is therefore that the geometry of the model does not allow trajectories to not intersect yet they
will intersect only two at a time.

1.3 On the exact two-particle S-matrix

The properties that we argued in the previous section greatly simplify the problem of determining the
S-matrices of integrable d = 2 theories. In particular we just need to understand how the two-particle
interactions work in order to obtain the full S-matrix of the theory. As a consequence the bootstrap
approach to finding the S-matrix can be very powerful. This approach consists in trying to determine
the shape of the S-matrix by imposing general consistency relations and symmetries. In this section
we briefly mention some of the properties that are required by the two-particle S-matrix; some of these
properties will be used in the next chapters.

Let us restrict to a relativistic S-matrix. In this case it is useful to parametrise the momenta, and
therefore the S-matrix, in terms of rapidities (defined in section 2.1). Since the non-linear sigma model
we investigate next is non-relativistic we will have to make some adjustments.

3Y-B is an operatorial equation, the form shown in the first equality in equation (1.8) is obviously trivially satisfied
in the diagonal case.
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S-matrix in 1+1 dimensions 1.3. ON THE EXACT TWO-PARTICLE S-MATRIX

The analytic structure of the S-matrix can be studied through its dependence on the Mandelstam
variable s = (p1 + p2)

2 where p1, p2 are the two-momenta of the two initial particles. We call the
two-particle S-matrix by S(s). It is clear that physical configurations must satisfy s > (m1 + m2)

2,
nevertheless S(s) can be analytically extended to the complex plane. Once we continue S(s) into the
complex plane we can work on the problem of determining the analytic structure of the S-matrix using
complex analysis techniques. For relativistic theories we can study the properties of the S-matrix as
a function of the difference of the rapidities of the two particles, θ = θ1 − θ2. It turns out that S(θ)
is a meromorphic function on the θ-plane. An introductory discussion of its analytic properties, also
considering the contribution to the scattering of bound states, is presented in ref. [12].

The shape of the S-matrix is also clearly dependent on the (infinite) symmetries that the integrable
model enjoys. On top of this we require the S-matrix to be unitary and to satisfy the factorisation
property illustrated in section 1.2.1. At the level of the two-particle S-matrix this means that it must
satisfy Yang-Baxter equation, which schematically corresponds to the first equality in equation (1.8).
All of these conditions produce a number of equations that the exact S-matrix must satisfy. These are
reviewed for generic models in ref. [12] and [14]. The S-matrix for a model similar to what we study
in the rest of this work is constructed in ref. [17] using the bootstrap approach.

Finally we want to mention crossing symmetry, which we use to simplify some calculations in the next
chapters; this symmetry also imposes strong constraints on the structure of the S-matrix. A more
detailed discussion of these constraints can be found e.g. in ref. [12], [17]. For a relativistic theory
crossing symmetry stems from the known fact that the scattering amplitude for a process with a
particle in the initial (final) state is the same as the one for the same process but with an anti-particle
carrying opposite momentum and energy in the final (initial) state [18].

In the case of the non-relativistic string sigma model discussed in the next sections these relations
still hold as a consequence of the creation and annihilation operators expansion of the fields that we
will show are solutions of the free equations of motion. These symmetries will allow us to connect the
amplitudes of different processes between one another, as we show in section 4.2.
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Chapter 2

Perturbative calculations for d = 2
models

In this chapter we want to discuss two integrable models in d = 2. These are the sinh-Gordon model
and the Bullough-Dodd model. The integrability of these models is discussed respectively in ref.
[19] and [20]. The intention is to use these simpler models to present some of the mechanisms that
we will also observe for the non-linear sigma model which is the focus of the next chapters. We
discuss scattering amplitudes at the first order of perturbation theory, therefore extensively using
the machinery of Feynman diagrams. Here we will just present the calculations and presuppose
the connection between Feynman diagrams and the perturbative expansion or how to obtain the
scattering amplitude from the Feynman rules. Some of this will be discussed briefly in chapter 4
when we introduce the two-particle S-matrix (S2→2) of the string sigma model. Part of this chapter
is inspired by the first chapter in Prof. P. Dorey ’s review [12].

2.1 Sinh-Gordon model

A notable example of integrable field theory in d = 2 is the sinh-Gordon model, with Lagrangian:

LsG =
1

2
∂µϕ∂µϕ− λ−2 [cosh(λϕ)− 1] . (2.1)

Evidently, the interacting potential admits an infinite polynomial expansion in ϕ. For our purposes
we will just focus on the first few terms of this expansion; these are all even powers of the fields as
one can tell from the parity of the potential. We can solve the scattering processes of such theory
perturbatively if we take λ to be a perturbative coupling constant (λ << 1). It is easy to show that
truncating the expansion of the hyperbolic cosine up to the sixth order in the fields we are left with
the Lagrangian of an interacting real boson with mass m = 1:

L =
1

2
∂µϕ∂µϕ−

1

2
ϕ2 − λ

4!
ϕ4 − λ2

6!
ϕ6. (2.2)

Since the goal is to perform perturbative calculation we need to know how to construct Feynman
diagrams for this model. From the Lagrangian, one can directly obtain the Feynman rules:

=
i

p2 − 1 + iϵ
.
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2.1. SINH-GORDON MODEL Perturbative calculations for d = 2 models

• = −iλ.

• = −iλ2.

Figure 2.1

To simplify the calculation it is convenient to use light-cone coordinates for the momenta, defining:

(p, p̄) = (p0 + p1, p0 − p1). (2.3)

Where p0 and p1 are respectively energy and momentum. This way the on-shell condition is p2 =
pp̄ = 1. At this point, for a given particle i involved in the scattering process, we can parametrize
(pi, p̄i) = (ai, ai

−1), ai > 0 for physical particles. For a relativistic theory such as this one it is often
useful to introduce rapidities:

p0i = cosh θi, p1i = sinh θi. (2.4)

θi is the rapidity of particle i and, as can be checked from equation (2.3), we have ai = eθi . The
parametrisation by means of ai will be useful when employing crossing relations on Feynman diagrams.
Observe in fact that once we have written the amplitude with this parametrization it is possible to
pass to the crossed amplitude by simply sending ai → −ai.

We want to compute the 3 −→ 3 scattering amplitude at tree-level; this can be immediately obtained
from crossing the 6 −→ 0, meaning the process where all the particles are incoming. We need to sum
over all connected diagrams with 6 external legs. Besides the (constant) contribution from the 6-leg
vertex we only have the topology in Figure 2.2.

•

1
3

2

•

4
6

5

=
−iλ2

(p1 + p2 + p3)2 − 1 + iϵ

=
−iλ2a1a2a3

(a1 + a2)(a2 + a3)(a1 + a3) + iϵ(a1a2a3)
.

D(a1, a2, a3) =

Figure 2.2: Feynman diagram with all momenta incoming.

It is easy to see that there are in total 10 of these diagrams contributing to the process. This number
depends on the number of different ways of labelling the external legs. Since all the particles involved
in the process are identical we can choose one of the two vertices in figure 2.2 and pick 3 momenta out
of 6 in

(

6
3

)

= 20 ways and, since the two vertices are identical, the number must be halved in order to
not count the same diagrams twice.
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Perturbative calculations for d = 2 models 2.1. SINH-GORDON MODEL

Once we have found all the possible diagrams we need to impose 2-momentum conservation in order
to obtain the physical amplitude. This is the same as requiring the conservation of left and right
light-cone momenta, namely the equations:

a1 + a2 + a3 + a4 + a5 + a6 = 0,
1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5
+

1

a6
= 0. (2.5)

Here, as also in the diagram above, all momenta are assumed incoming. It is also evident from these
expressions that ai → −ai substitutes an incoming particle with an outgoing one and this corresponds
to crossing a particle since ϕ is a real field.

Now define the amplitude for a generic process (since we have not yet fixed the signs of the parameters)
as:

A6 ({ai}) =
1

2

6
∑

i, j, k = 1

i ̸= j ̸= k

D(ai, aj , ak)− iλ2. (2.6)

This is actually only contribution from the Feynman rules and we are neglecting the external legs
factors in front. Notice that in equation (2.6) we added the constant 6-vertex contribution to the sum
of tree diagrams. Proceed constraining the amplitude A6 with equation (2.5) and naively put ϵ = 0
from the start. The result of the calculation can be checked to be [12]:

A6 = iλ2 − iλ2 = 0. (2.7)

For a generic theory this would be a very surprising result. In fact not only the sum of diagrams
with a propagator adds up to a constant: it exactly cancels the single 6-leg vertex and all of this is
independent on the choice of the external momenta. This means that the scattering amplitude for
every process involving six external particles is zero, since this result does not depend on the sign of
each ai.

From integrability we expect this result actually to hold true for every inelastic process and this
can in principle be checked by expanding the original Lagrangian and summing all the contributions.
However we did not take into account the case when iϵ becomes relevant, namely when the propagators
become on-shell. For configurations of momenta satisfying this condition the amplitude is generally
non-zero. These configurations, as we see shortly, correspond to 3→ 3 scattering processes where the
initial and final set of momenta of the 3 particles are exactly the same; these are the configurations
that we discussed in section 1.2.

This kind of calculations also provide a way to perturbatively verify the factorisation of the scattering
matrix of the model, meaning the factorisation of n → n processes into a product of amplitudes
corresponding to 2 −→ 2 processes. The mechanism explaining how this happens perturbatively is
sketched more in detail in the following section.

2.1.1 Sketch of Factorisation for sinh-Gordon model

Since we just claimed that the scattering amplitude corresponds to the sum of their contributions,
it is interesting to understand the mechanism of factorisation of the amplitude in terms of Feynman
diagrams. In the previous section it was argued that tree-level amplitudes of the sinh-Gordon model
are non-zero only when the set of momenta is conserved in the scattering. At the tree level the reason
for this property can be traced back to the shape of the propagator.

Let us consider diagrams shown in figure 2.2. They can all be put in the form:

Di =
iAi

Bi + iϵ
.
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2.1. SINH-GORDON MODEL Perturbative calculations for d = 2 models

The numerator is the product of two four-vertices. In this case simply:

Ai = −λ2. (2.8)

The denominator is due to the propagator. For example recall from figure 2.2 that B1 ∝ (a1 +
a2)(a1 + a3)(a2 + a3). As already mentioned each Bi will be zero only if at least one of the incoming
and outgoing particles have same momenta. As we show shortly the factorisation at tree-level is mainly
due to the propagator and hence sinh-Gordon theory constitutes the simplest example where Ai are
just constant. This obviously can also work when Ai are momentum-dependent as will be the case for
the sigma model on the string worldsheet in chapter 5.

With some algebra we can write Di as
1:

iAi

Bi + iϵ
= Ai

[

i
Bi

B2
i + ϵ2

+
ϵ

B2
i + ϵ2

]

. (2.9)

In these expressions the iϵ is eventually sent to zero. We can observe that those inside the square

brackets are the limiting expressions of distributions, namely the principal value of 1
Bi
, that is P

(

1
Bi

)

,

(on the left) and the δ(Bi) (actually with a π proportionality, on the right).

Now, when taking the amplitude we must add the six-vertex contribution (here V6) and we have
something like:

δ(ptot)δ(Etot)(−iλ2)

[(

P

(

1

B1

)

+ · · ·+ P

(

1

B10

)

+
iV6

λ2

)

− iπ (δ(B1) + · · ·+ δ(B10))

]

. (2.10)

The calculation presented in the last section, where iϵ = 0 was assumed, shows that the bracket
containing the principal values and the six-vertex is null. Finally from equation (2.5) one can check
that if one of the incoming momenta is also one of the outgoing ones then all incoming and outgoing
momenta are the same. Therefore δ(Bi)δ(ptot)δ(Etot) factors exactly impose that the initial set of
momenta stays the same in the final state. Consequently the scattering does not depend on the V6

term but only on the 2→ 2 amplitudes.

It is also possible to explicitly show the factorisation of the three particle interaction by isolating
couples of Feynman diagrams whose sum produce the delta-function responsible for the conservation
of the initial set of momenta. This is presented for similar models in ref. [21]. In what follows
we highlight the main steps of such derivation since this mechanism can be generalised to different
integrable models and will also be applicable to the string sigma model studied in the rest of the
thesis.

Let us concentrate on the diagrams shown in figure 2.3.

• •D1 = 1 6

5

42

3

• •D2 = 1 6

3

24

5

Figure 2.3: Couple of diagrams diverging for a2 → −a3.
1This is essentially Sokhotski–Plemelj theorem. This decomposition was first used to argue the factorisation of

scattering in the seminal Zamolodchikov-Zamolodchikov paper [5].
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Perturbative calculations for d = 2 models 2.1. SINH-GORDON MODEL

We intend the external momenta to be all incoming. We want to see what happens close to the
configurations allowed by integrability, that is those where the set of final momenta is the same as the
set of initial ones. These are represented by points in the phase space; concentrate for example in the
region of the phase space close to the configurations:

a1 = −a6, a2 = −a3, a4 = −a5. (2.11)

First note that this configuration is the one corresponding to the scattering ϕ(p1) + ϕ(p2) + ϕ(p4)→
ϕ(p1)+ϕ(p2)+ϕ(p4). Observe that in total 6 of the 10 diagrams become singular at this configuration,
and the two in figure 2.3 are among the 6. Therefore the sum of the two diagrams in the limit a2 → −a3
will be:

−iλ2

[ −a1a22
(a2 + a1)(a1 − a2)(a2 + a3) + a1a22iϵ

+
+a1a

2
2

(a2 − a1)(−a1 − a2)(a2 + a3) + a1a22iϵ

]

. (2.12)

This is just:

iλ2a1a
2
2

[

1

(a2 + a3)(a21 − a22) + ia1a22ϵ
− 1

(a2 + a3)(a21 − a22)− ia1a22ϵ

]

. (2.13)

From this expression we can recover a delta-function using the limit:

lim
ϵ→0+

(

1

x+ iϵ
− 1

x− iϵ

)

= −2πiδ(x). (2.14)

Eventually the sum of the two diagrams yields:

D1 +D2 = −2πλ2 a1a
2
2

|a21 − a22|
δ(a2 + a3) = −πλ2 1

| sinh θ12|
δ(θ2 + θ3). (2.15)

In the rightmost member the expression is written in terms of the rapidities, where θ12 is the difference
of the rapidities of particles 1 and 2.

To finally compute the amplitude of the 3 → 3 process we should also add all the other diagrams.
Since other 4 of them diverge it is easy to show that we can obtain similar expressions as in equation
(2.15) for two other couples of diagrams. Finally we should plug back the total energy and momentum
conservation alongside the external factors. The expressions of the overall factors perfectly agree with
the factorisation of the amplitude [21]. Considering only the contribution in (2.15) the result for the
tree-level amplitude is:

SD1+D2

124 (θ1, θ2, θ4) = S12(θ1, θ2)S14(θ1, θ4)× δ(θ1 + θ6)δ(θ2 + θ3)δ(θ4 + θ5). (2.16)

Considering also the remaining two couples of singular diagrams we can apply the same logic to show
that we have in total three contributions (the deltas multiplying everything are removed here):

S12(θ1, θ2)S14(θ1, θ4) + S12(θ1, θ2)S24(θ2, θ4) + S24(θ2, θ4)S14(θ1, θ4). (2.17)

This is the tree-level contribution due to only one of the possible kinematical configurations that
preserve the initial set of momenta. In general since the particles in the scattering are identical we
have 6 points in the phase space where the S-matrix exhibits this behaviour.
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In conclusion observe that the full factorisation equation, equation (1.8), would yield schematically:

S124 =
(

✶+ Stree
12 + · · ·

) (

✶+ Stree
24 + · · ·

) (

✶+ Stree
41 + · · ·

)

(2.18)

At the relevant order of perturbation theory, namely λ2, this equation produces exactly three terms
each corresponding to the product of 2 two-particle amplitudes. Therefore the perturbative result we
found reproduces perfectly the expected factorisation of the S-matrix.

2.2 Bullough–Dodd model

Bullough-Dodd model is another notable example of an integrable theory in d = 2. The process we
are interested in computing for this model consists in total of 5 externa particles, meaning we need to
consider Feynman diagrams with 5 external legs. Since the total number of particles in the process is
odd the initial and final states must have a different number of particles and hence the integrability
of the theory dictates that the amplitude must be zero.

We want to carry out an explicit calculation of a tree-level amplitude and verify the absence of
particle production. This kind of calculation becomes very cumbersome and hence not easy to perform
analytically; in the following we will show how to deal with this problem.

Let us start from the following Lagrangian:

LBD =
1

2
∂µϕ∂µϕ− λ−2

[

e2λϕ + 2e−λϕ − 3
]

. (2.19)

This is the Lagrangian for the Bullough–Dodd model. We expect it to show the same scattering
properties as the sinh -Gordon theory. In this case the cancellation of the sum of diagrams contributing
at tree-level to the 5 → 0 interaction is even more remarkable since we have in total 3 different
topologies of Feynman diagrams. Let us see this in detail. We must once again expand the Lagrangian
up to fifth order in the fields, finding:

L =
1

2
(∂ϕ)2 − 1

2
(ϕ)2 − λ

3!
ϕ3 − 3λ2

4!
ϕ4 − 5 λ3

5!
ϕ5. (2.20)

This time the Feynman rules are:

=
i

p2 − 1 + iϵ
.

• = −iλ.

• = −3iλ2.
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• = −5iλ3.

Figure 2.4: Feynman rules

In this case the relevant topologies for processes involving 5 particles are shown in figures 2.5 and 2.6.
We parametrise the momenta as for the sinh-Gordon model, as in equation (2.4). For determining the
multiplicity of diagrams of the type shown in figure 2.5 we can again just argue that we can choose
3 out of 5 external momenta in

(

5
3

)

= 10 without double counting this time since the two vertices
are different. For the second topology the argument would be the following: choose 1 out of 5 labels
for the vertex with one external leg and then choose 2 out of 4 particles for the other two identical
diagrams (avoiding double counting). The end result is 5×

(

4
2

)

× 1
2 = 15 total diagrams.

•

13
2

•

45

=
−3iλ3

(p1 + p2 + p3)2 − 1 + iϵ
=

−3iλ3a1a2a3
(a1 + a2)(a2 + a3)(a1 + a3) + i(a1a2a3)ϵ

.

Figure 2.5: First topology.

•

12

3
•

45
•

=
−iλ3

[(p1 + p2)2 − 1 + iϵ] [(p1 + p2 + p3)2 − 1 + iϵ]

=
−iλ3 (a1a2a3) (a1a2)

[(a1 + a2)(a2 + a3)(a1 + a3) + i (a1a2a3) ϵ]
[

a21 + a22 + a1a2 + i (a1a2) ϵ
] .

Figure 2.6: Second topology.

To obtain the scattering amplitude we need to constrain the 5 external momenta by the two equations
of conservation:

a1 + a2 + a3 + a4 + a5 = 0,
1

a1
+

1

a2
+

1

a3
+

1

a4
+

1

a5
= 0. (2.21)
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In this case we are always allowed to ignore the +iϵ prescription in the propagators since the equations
in (2.21) never allow for an internal momentum to be on-shell. Consequently for this amplitude the
only check of integrability is the absence of particles production.

Due to the quantity of diagrams the explicit calculation is too large to do by hand. It was performed
using Mathematica. Here we show a convenient way to present it in a compact form. Suppose that the
constraints in equation (2.21) leave the amplitude only depending on a1, a2, a3. In order to reduce the
length of the expressions it is useful to define the following symmetric polynomials (for more details
we refer the reader to ref. [22]) of the external momenta:

s1 = a1 + a2 + a3, s2 = a1a2 + a2a3 + a1a3, s3 = a1a2a3. (2.22)

First we express the sum of diagrams of the first topology in figure 2.5 in terms of these polynomials.

Suppose we call {(D1)}i=1,...,10 the set of diagrams of such kind. A quick check shows that the sum,
divided by the coupling factor for convenience, can be written in terms of these polynomials as:

∑10
i=1 (D1)i
−iλ3

=
6s41s2s3 − 6s31s

3
2 − 6s31s

2
3 + 6s21s

2
2s3 + 6s1s

4
2 + 9s1s2s

2
3 − 6s32s3

−s41s2s3 + s31s
3
2 + s31s

2
3 − s21s

2
2s3 − s1s42 + s32s3

=
N1

D1
. (2.23)

It is useful for the final summation to isolate the numerator N1 and denominator D1 of the sum.
Similarly for the contributions of the diagrams in figure 2.6 we have:

N2

D2
=

∑15
i=1 (D2)i
−iλ3

. (2.24)

In this case the expressions of numerator and denominator are still quite large:

N2 = −4096s1s43s132 + 4096s53s
12
2 + 12288s31s

4
3s

12
2 − 12288s21s

5
3s

11
2 − 12288s51s

4
3s

11
2 − 36864s1s

6
3s

10
2

+ 4096s71s
4
3s

10
2 + 86016s31s

6
3s

9
2 + 20480s61s

5
3s

9
2 − 61440s51s

6
3s

8
2 − 12288s81s

5
3s

8
2 − 73728s41s

7
3s

7
2

+ 86016s61s
7
3s

6
2 + 12288s91s

6
3s

6
2 − 12288s81s

7
3s

5
2 − 36864s71s

8
3s

4
2 − 4096s101 s73s

4
2 + 4096s91s

8
3s

3
2.

D2 = −4096s1s43s132 + 4096s53s
12
2 + 12288s31s

4
3s

12
2 − 12288s21s

5
3s

11
2 − 12288s51s

4
3s

11
2 + 4096s71s

4
3s

10
2

+ 12288s31s
6
3s

9
2 + 20480s61s

5
3s

9
2 − 24576s51s

6
3s

8
2 − 12288s81s

5
3s

8
2 + 12288s61s

7
3s

6
2 + 12288s91s

6
3s

6
2

− 12288s81s
7
3s

5
2 − 4096s101 s73s

4
2 + 4096s91s

8
3s

3
2.

Once we have found these individual contributions we can sum everything together to get:

N1D2 +N2D1

D1D2
= −5. (2.25)

Once we plug back the coupling factor the result is 5iλ3. This contribution is opposite to the 5-leg
vertex and this shows that the amplitude for whatever process involving 5 particles is always null
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at the tree-level. Similar yet increasingly more complicated calculations can be carried out for the
higher-order vertices obtained from the expansion of the Lagrangian in (2.19) still yielding a vanishing
sum of diagrams at tree-level.
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Chapter 3

The non-linear sigma model

In the rest of this work we will study a non-linear sigma model. This usually refers to a class of models
whose Lagrangian can be written as:

LNLSM =
1

2
(∂µϕ

a) (∂µϕb)gab(ϕ)− V (ϕ). (3.1)

Here ϕa are scalar fields with a = 1, . . . ,m and constitute a map from the base space (from now on
referred to as Σ) to the target space M, such that dim(M) = m. Hence we can take the symmetric
tensor g as the metric on the target space. The model is referred to as non-linear when the target
space is a curved manifold. In such case gab(ϕ) depends explicitly on the coordinates on M, namely
the fields, producing additional interaction terms in the above Lagrangian.

Sigma models offer a tremendously useful framework in the context of integrable field theories. Many
of them have been shown to be integrable classically (for example see ref. [10]) and in some cases
we are able to deform an integrable sigma model in such ways as to produce a whole continuum of
integrable theories [23]. One of the possible target spaces that was shown to be classically integrable
is AdS3 × S3 × T 4 and this is precisely the target space we will focus on in the rest of this thesis.

Coincidentally a Lagrangian satisfying the form presented in equation (3.1) is also well suited to
describe theories of bosonic strings. In fact, the theory that will be investigated in the following
describes a bosonic closed string of circumference 2r propagating in a 10-dimensional spacetime M.
The string is a one-dimensional object, that is it has zero ’width’, meaning that the surface describing
its points in spacetime is parametrised by 2 coordinates and is called the string worldsheet Σ. As the
letter suggest the string worldsheet will be the base space and the spacetime into which it is embedded
will be the target manifold. Since the string is closed the worldsheet is parametrised by coordinates
(τ, σ) with σ ∈ (−r, r), respectively time and space coordinates on the worldsheet. Therefore the base
space is topologically a cylinder 1.

In this chapter we are interested in the light-cone gauge-fixed string sigma model defined on the
worldsheet. We abstain from any in depth discussion on the actual string theory but most of what we
touch on can be found in standard references such as [24],[25].

1This clearly poses the problem of defining asymptotic particle states which we will circumvent by working in the
decompactification limit.
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3.1 Bosonic strings with mixed flux backgrounds

First we start by introducing the generic action:

S = −T

2

∫ +∞

−∞
dτ

∫ +r

−r
dσ
[√
−hhab∂aXµ∂bX

νGµν

]

. (3.2)

There are two different sets of indices, µ, ν = 0, . . . , 9 and a, b = τ, σ. Xµ are functions of (τ, σ) and
can be thought of as coordinates of the string in spacetime with metric defined through the symmetric
tensor Gµν . The signature is chosen to be mostly positive. hab is the metric on the worldsheet. In the
following we will just write hab

√
−h = hab

√

−det(h) = γab. T is the string tension.

This expression for the action enjoys a number of symmetries that here we just mention (see e.g. ref.
[24] for a serious discussion) in order to justify the need for the gauge-fixing that will be examined in
detail in a moment. In fact, this description of the string is clearly redundant. In the same way as for
the relativistic particle action, the action in equation (3.2) is independent on the parametrisation. In
addition since the worldsheet is 2-dimensional the action is also invariant under a Weyl transformation
on the worldsheet metric hab. These redundancies are to be treated as a gauge freedom and as a
consequence a convenient gauge can be chosen.

On the other hand this action can be interpreted as that of a two-dimensional field theory if one thinks
of the Xµ as fields instead of coordinates. This way we have 10 bosons living in the worldsheet coupled
to the G-field. We usually talk about a non-linear σ model when the latter is the metric on a curved
target space, producing additional field-dependent terms in the Lagrangian. Not all the bosonic fields
are necessarily physical. In fact the gauge freedom means that some of these fields might not be. This
will be investigated in the next sections when fixing the light-cone gauge.

What is presented in equation (3.2) is not actually the action of the model we will study. We introduce
another term containing a differential 2-form, called Kalb-Ramond form, that is added to the previous
action. With this addition the full Lagrangian looks like:

L = γab∂aX
µ∂bX

νGµν + ϵab∂aX
µ∂bX

νBµν . (3.3)

Bµν is an anti-symmetryc field and ϵab is the Levi-Civita symbol with ϵ01 = 1. On the other hand Gµν

is the metric on AdS3 × S3 × T 4, which we introduce shortly. The model is said to be a mixed flux
model because the B-field depends explicitly on a parameter q which interpolates between RR and
NSNS fluxes in the range q ∈ [0, 1]. This and similar models have been already studied in recent years
and the mixed flux model was itself shown to be integrable at the classical level (some references are
[3],[26]). However such theories are still not completely understood. The intention of the rest of this
work is to study the mixed flux model using a perturbative approach and verify the properties of the
scattering that descend from the integrability of the model.

In the next section we introduce the expression of the metric on AdS3 × S3 × T 4 and of the B-field
and once we have introduced all the ingredients we move to light-cone gauge-fixing and the derivation
of the NLSM action.
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3.1.1 AdS3 × S3 × T 4 metric and B-field

We will work on target background AdS3 × S3 × T 4, whose metric is:

ds2 =−
(4 + z21 + z22
4− z21 − z22

)2
dt2 +

( 4

4− z21 − z22

)2
(dz21 + dz22)

+
(4− y21 − y22
4 + y21 + y22

)2
dϕ2 +

( 4

4 + y21 + y22

)2
(dy21 + dy22)

+
8
∑

j=5

dxjdxj .

(3.4)

The coordinates on AdS3 × S3 × T 4 are Xµ = {t, ϕ, z1, z2, y1, y2, x5, x6, x7, x8}. The sector describing
AdS3 has coordinates (t, z1, z2) while (ϕ, y1, y2) are coordinates in S3 and finally (x5, x6, x7, x8) are
those on T 4. The torus sector is flat while the rest has non-zero curvature. One notices immediately
that the metric is independent on the two coordinates t, ϕ. This will be relevant later.

The Kalb-Ramond 2-form is chosen to have the expression in coordinates:

B =
32q

(4− z21 − z22)
2
[z1dz2 ∧ dt+ z2dt ∧ dz1] +

32q

(4 + y23 + y24)
2
[y3dy4 ∧ dϕ+ y4dϕ ∧ dy3] . (3.5)

It does not have degrees of freedom on the directions on the torus, but only on AdS3 × S3.

3.2 Light-cone gauge fixing

As anticipated the description of the model via the Lagrangian in equation (3.3) is characterised by
some non-physical degrees of freedom. A way of fixing this redundancy is to impose the light-cone
gauge; this procedure allows us to understand what are the actual physical degrees of freedom. The
choice of the light-cone gauge is not unique but it is convenient since it simply relates the string
Hamiltonian with the Hamiltonian of the model on the worldsheet. In the following this procedure is
explained in detail.

From now on we define
Ẋµ ≡ ∂τX

µ and X́µ ≡ ∂σX
µ. (3.6)

Introducing the conjugate momenta

pµ =
δL

δ(Ẋµ)
= −T

(

γτβGµν + ϵτβBµν

)

∂βX
ν (3.7)

The action associated with the Lagrangian (3.3) can be rewritten in the first-order form:

S =

∫

dτdσ
(

pµẊ
µ +

γτσ

γττ
C1 +

1

2Tγττ
C2

)

, (3.8)

where

C1 = pµX́
µ , (3.9a)

C2 = Gµνpµpν + T 2GµνX́
µX́ν + 2TGµνBνκpµX́

κ + T 2GµνBµκBνλX́
κX́λ . (3.9b)

To eventually obtain the action for the model we will have to impose C1 = 0 and C2 = 0, which are
called Virasoro constraints. These two constraints will be used to remove the longitudinal modes of
the string x−, x+, p−, p+. Therefore in the first-order formalism the worldsheet metric does not appear

25



3.2. LIGHT-CONE GAUGE FIXING The non-linear sigma model

explicitly in the calculations. Evidently this is not the only viable strategy. It is convenient for us
because we are not interested in the expression of the worldsheet metric or of the longitudinal fields.
We could adopt a different approach and instead solve for those objects, as outlined for example in
ref. [27]. On the other hand in our derivation of the gauge-fixed worldsheet theory, which closely
resembles the one presented in ref. [28] (where instead the background spacetime is AdS5 × S5), we
will only need the Gµν and Bµν fields.

Before solving the two equations we need to fix the light-cone gauge. In order to fix the gauge we will
use the following light-cone coordinates:

x− = ϕ− t , x+ = aϕ+ (1− a)t (3.10)

together with

z =
1√
2
(z1 + iz2) , y =

1√
2
(y1 + iy2) ,

u =
1√
2
(x5 + ix6) , v =

1√
2
(x7 + ix8) .

(3.11)

The expressions for the metric and 2-form components in these coordinates are reported in appendix
A. The conjugate momenta relative to the light-cone coordinates in (3.10) are:

p+ = pϕ + pt, p− = (1− a)pϕ − apt. (3.12)

In these definitions a ∈ [0, 1]. The light-cone gauge, which we impose in one moment, will be attained
through a condition on x+. Therefore the parameter a is simply interpolating between different gauges.
For explicit calculations it is usually convenient to fix a value of a. However most of the results in this
work are true for a generic value of it. Evidently, observables (such as the quantised energy spectrum
of the string) will not be dependent on a.

The action in equation (3.8) now takes the form:

S =

∫

dτdσ
(

p+ẋ++p−ẋ−+pz ż+pz̄ ˙̄z+pyẏ+pȳ ˙̄y+puu̇+pū ˙̄u+pvv̇+pv̄ ˙̄v+
γτσ

γττ
C1+

1

2Tγττ
C2

)

. (3.13)

The invariance of the string model under shifts of t and ϕ coordinates produces two conserved charges:

E = −
∫ r

−r
dσpt, J =

∫ r

−r
dσpϕ. (3.14)

Clearly these are the total energy of the string and the angular momentum in the ϕ direction.

We can find relations in terms of the light-cone momenta:

P+ =

∫ r

−r
dσp+ = J − E, P− =

∫ r

−r
dσp− = (1− a)J + aE. (3.15)

Additionally there is a condition that stems from the nature of the string itself. It is called the
level-matching condition and it is a consequence of the fact that the strings in question are closed.
Therefore it needs to hold that:

xµ(r)− xµ(−r) = 0.2 (3.16)

This means that we are choosing a string with zero winding number, the reason being that only in
this case the large string expansion, discussed in the next section, will be justified. All of the relations

2Compact directions, such as the φ angle on S3 can have non-zero winding number: φ(r)− φ(−r) = 2πm.
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The non-linear sigma model 3.2. LIGHT-CONE GAUGE FIXING

and conditions above will still hold after fixing the gauge and will therefore constrain the physical
sector of the Hilbert space.

Let us impose the uniform light-cone gauge:

x+ = τ , p− = 1. (3.17)

First observe a few things. From equations (3.15), integrating the constant 1 we obtain:

2r = (1− a)J + aE. (3.18)

The radius of the string is expressed in terms of physical quantities. This suggests that the light-cone
gauge-fixing breaks the symmetry under rescalings on the worldsheet [17].

Also, taking the constraint C1 = 0 we find x́− = −paX́a ,where the latin indices now and in the
following run from 0 to 7, which will be the labels of the 8 physical fields. From this fact it follows
that:

0 = ∆x− =

∫ r

−r
x′− = −

∫ r

−r
dσpµx

′µ = Pw.s.. (3.19)

One the right hand side is the definition of the worldsheet total momentum whose conservation is a
consequence of the theory’s invariance under σ traslations. Then from equation (3.16) we see that the
physical states are required to have 0 total momentum.

At this point the action becomes:

S =

∫

dτdσ
(

p+ + pz ż + pz̄ ˙̄z + pyẏ + pȳ ˙̄y + puu̇+ pū ˙̄u+ pvv̇ + pv̄ ˙̄v) . (3.20)

Notice that ẋ− in the action was neglected being a total derivative. It is clear from the action that

p+ = −H (3.21)

where H is the worldsheet hamiltonian density. This is expected since the worldsheet Hamiltonian
generates the τ translations. Also, from the equations in (3.15) it is easy to relate H to the target
space energy from which we can find the spectrum of the quantised string theory.

The goal now is to find the worldsheet Hamiltonian as a function of the z, y, u, v fields. To do so we
need to solve for p+ the two Virasoro constraints, as shown in a moment.

However before going through the calculation let us summarise what was already found. Through the
gauge fixing procedure we have reduced the number of d.o.f. to 8, having removed x+ and x−. These
remaining physical degrees of freedom will be represented by 4 complex fields z, y, u, v.

3.2.1 Decompactification limit and large string tension expansion

After we have fixed the gauge we can start the analysis of the model. The goal is to study the excited
states of the string for generic (finite) length. This can be attained through integrability techniques
once the scattering matrix on the worldsheet is known. However the string sigma model is defined
on a 2-dimensional cylinder and the the notion of asymptotic particles states is ill-defined. To have a
theory that is instead defined on the 2-dimensional plane we need to consider the decompactification
limit, that is a limit where the string length goes to infinity.

From equations (3.15) and (3.17) it is clear that after gauge fixing:

P− = 2r = (1− a)J + aE.
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3.2. LIGHT-CONE GAUGE FIXING The non-linear sigma model

The decompactification limit is taken when P− →∞, keeping the string tension constant. This limit
effectively unfolds the worldsheet from a cylinder to a plane. Observe that this does not affect the
gauge fixed Lagrangian but only changes the integration boundaries of the action. Note also that we
need to have P+ finite since it is the Hamiltonian of the gauge fixed theory. Then from the equations
in (3.15) it is clear that both E and J will go to infinity in the decompactification limit. What is most
relevant for our purposes, the resulting theory in this limit is a d = 2 quantum field theory defined on
the (τ, σ) plane.

There is one last step to take before actually solving the Virasoro constraints. The perturbative
approach works when we can split the Lagrangian in a free, solvable, component and weakly coupled
interaction component. Although not immediate to see, this treatment can be applied to the string
sigma model if we assume the string tension large enough. Suppose the action takes the form:

S =

∫

dσdτLgf . (3.22)

Then we can perform the rescaling σ → Tσ. It is clear from the Virasoro constraints obtained from
equations (3.9) that under the rescaling p+ is independent on T , and hence so is the Lagrangian. As
a consequence the rescaled action becomes:

S = T

∫

dσdτLres
gf .

Then through a simple field redefinition

X → X√
T

we get a canonically normalized kinetic term. After this redefinition the lagrangian can be expanded
in powers of the fields. Each of the interaction terms then carries a power of the string tension as:

S =

∫

dσdτ
[

L
(2) + T− 1

2L
(3) + T−1

L
(4) + · · ·

]

. (3.23)

This manipulation makes it clear that when the string tension is large enough the interaction terms
have small couplings. This shows that by taking the large string regime we can work perturbatively
and also that the coupling of each operator becomes smaller as the number of fields in the operator
grows.

3.2.2 Solving for the Hamiltonian

Now we can pass to the calculation to obtain the gauge-fixed Hamiltonian. As anticipated, after
gauge-fixing, p+ can be obtained by solving the Virasoro constraints. The two terms that we need to
equate to zero are:

C1 = pµX́
µ = 0, (3.24a)

C2 = Gµνpµpν + T 2GµνX́
µX́ν + 2TGµνBνκpµX́

κ + T 2GµνBµκBνλX́
κX́λ = 0. (3.24b)

In the following, we will take T = 1. We can forget about the string tension since, as observed in
the last section, the expansion in large T will correspond to an expansion in small fields. The first
equation after imposing the gauge-fixing conditions in equations (3.17) becomes:

x́− = −paX́a. (3.25)

We now substitute this expression in (3.24b) and find H by solving the constraint C2 = 0:

a1H
2 − a2H + a3 = 0 (3.26)
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where

a1 = G++,

a2 = 2G+− + 2G++B+aX́
a + 2G+−B−aX́

a,

a3 = G−− +Gabpapb +GabX́
aX́b +G−−papbX́

aX́b + 2G−−B−aX́
a

+ 2G−+B+aX́
a + 2GacB−cpapbX́

b +GcdB−cB−dpapbX́
aX́b

+G++B+aB+bX́
aX́b +G−−B−aB−bX́

aX́b + 2G+−B+aB−bX́
aX́b.

(3.27)

In principle we could solve this second order equation exactly obtaining, as expected, the Hamiltonian
in terms of only the physical fields and their derivatives. In particular out of the two solutions of the
quadratic equation (3.26), namely

H± =
a2
2a1
±

√

(

a2
2a1

)2

− a3
a1

the one with the + should be chosen; this in order to have a positive definite energy. However in
this form the Hamiltonian would not be fit for quantization. Instead we will solve equation (3.26)
iteratively to the desired order in the fields. Here are the main steps of the procedure.

We start observing, as it can be checked from the expressions in appendix A, that by setting all the
physical fields to 0 we obtain:

a1 = −1 + 2a , a2 = 2 , a3 = 0. (3.28)

Therefore at the second order in the fields (we write Φ for a generic field to simplify the notation),
the solution is entirely captured by

H
(2) =

a3
a2

+O(Φ4). (3.29)

Clearly the assumption is that the lowest order for the Hamiltonian is the second so that the term
with H

2 only contributes at the fourth order. In fact, iterating the equation by substituting H
(2) in

the squared Hamiltonian term we find an equation for the fourth order Hamiltonian:

H
(4) =

a3
a2

+
a1
a2

a23
a22

+O(Φ6). (3.30)

Finally at the sixth order, by applying the same steps, the solution is:

H
(6) =

a3
a2

+
a1
a2

(a3
a2

+
a1
a2

a23
a22

)2
+O(Φ8). (3.31)

We will stop at this order of the expansion as we are eventually interested in studying tree-level
scattering processes with at most 6 particles. As it can be checked by expanding the terms defined in
equations (3.27) only even powers of the fields and their derivatives will contribute to the Hamiltonian.
Clearly to obtain the Hamiltonian at the sixth order the leading term in equation (3.31) must be
expanded in powers and only the powers up to the sixth order must be kept. The calculation is quite
cumbersome and was performed using Mathematica. The Hamiltonian up to the fourth and the one
containing the sixth powers of the fields are shown in appendix B.
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3.3. THE FREE THEORY The non-linear sigma model

3.3 The free theory

The expansion in the fields that was just introduced allows us to quantise the theory identifying
the quadratic term as the free fields. The interaction terms will be treated as a perturbation of the
free theory. We should first look for the Euler-Lagrange equations for the free theory. In general
the Lagrangian can be found starting from the Hamiltonian and inverting the Legendre transform.
Although it is not a trivial procedure, if we are only looking for the quadratic term it is easy to show
that the Lagrangian is:

L
(2) = ż ˙̄z + ẏ ˙̄y + u̇ ˙̄u+ v̇ ˙̄v − ź ´̄z − ý ´̄y − ú´̄u− v́´̄v − yȳ − zz̄ − iq

(

z̄ź − z ´̄z + ȳý − y ´̄y
)

. (3.32)

From equation (3.32) we see that parity on the worldsheet is not a symmetry of the free theory, and
this can be checked if we transform the Lagrangian under σ → −σ. We can however check that a new
discrete symmetry arises combining worldsheet parity together with the q → −q transformation.

The equations of motion for the z and z̄ fields are then:

(

∂2
τ − ∂2

σ + 2iq∂σ + 1
)

z = 0,
(

∂2
τ − ∂2

σ − 2iq∂σ + 1
)

z̄ = 0.
(3.33)

The same equations hold for the y and ȳ fields. One notices immediately that the Lagrangian and
hence the EOM are not invariant under 2-dimensional (worldsheet) Lorentz transformations. This
is expected since the condition imposed to fix the gauge (equation (3.17)) breaks Lorentz symmetry.
Therefore the gauge-fixed theory is not relativistic. Finally we can identify the two remaining fields
as massless bosons, since they obey the equations:

(

∂2
τ − ∂2

σ

)

u = 0,
(

∂2
τ − ∂2

σ

)

v = 0
(

∂2
τ − ∂2

σ

)

ū = 0,
(

∂2
τ − ∂2

σ

)

v̄ = 0.
(3.34)

The dispersion relations in terms of the spatial momentum p1 can be argued from the EOM. The
actual expansion into creation and annihilation operators is shown in the following section. For the
massive modes the dispersion relations are given by:

ω(p1) ≡ ωz(p1) = ωy(p1) =
√

p21 − 2qp1 + 1,

ω̄(p1) ≡ ωz̄(p1) = ωȳ(p1) =
√

p21 + 2qp1 + 1.
(3.35)

Note that in order to have real positive energies it needs to hold that q ∈ R and |q| < 1. We focus on
this range for the parameter q.

On the other hand the more standard dispersion relation holds for the massless modes:

ωu(p1) = ωū(p1) = ωv(p1) = ωv̄(p1) = |p1|.

This is the full description of the free bosonic spectrum of the theory: we started from a relativistic
theory with 10 degrees of freedom and we are left with a non-relativistc theory where only 8 modes
are physical. As shown above these physical d.o.f. are packaged into 4 complex bosons of which 2
massless and 2 with a non trivial dispersion relation (depending also on q).
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3.3.1 Quantisation

The quantisation of the theory follows the usual procedure. Since the dispersion relation for the fields
z and y is not the standard relativistic one it is worth showing the main steps. The solutions to the
EOM can be expressed as momentum space integrals. For the fields z and z̄:

z̄ =

∫

dp1
√

(2π)

[

e−i(ω̄(p1)τ−p1σ)

√

ω̄ (p1)
az̄(p1) +

e+i(ω(p1)τ−p1σ)

√

ω (p1)
a†z(p1)

]

,

z =

∫

dp1
√

(2π)

[

e−i(ω(p1)τ−p1σ)

√

ω (p1)
az(p1) +

e+i(ω̄(p1)τ−p1σ)

√

ω̄ (p1)
a†z̄(p1)

]

.

(3.36)

Clearly the az(p), az̄(p) coefficients and their hermitian conjugates will become the particle creation
and annihilation operators of the quantised theory. For the fields in equations (3.36) to be solutions of
the EOM the dispersion relations must be the ones already presented in equations (3.35). The same
relations hold for the fields y and ȳ.

Now let us show briefly show the quantisation procedure for the z field. The quantisation is attained
by imposing:

[

z(τ, σ), Pz(τ, σ
′)
]

= iδ(σ − σ′). (3.37)

In the free theory the momenta relative to the z particles are:

Pz = ˙̄z, Pz̄ = ż. (3.38)

and similarly for the other modes. Using the solutions in equations (3.36) one can check the relation
for the creation and annihilation operators:

[

az(p), a
†
z(q)

]

= δ(p− q). (3.39)

As usual this procedure converts the fields to operators acting on a Hilbert space; multi-particle states
are constructed by applying creation operators to the vacuum state of the theory, that is defined by

az(p)|0⟩ = 0, ∀p.

This must hold for each particle type. Single and multi-particle states are defined as:

a†z(p)|0⟩ = |z(p)⟩ , a†z(p)a
†
z(q)|0⟩ = |z(p)z(q)⟩ and so on. (3.40)

Having quantised the theory we can also check the expression for quantities like energy and momentum
in terms of ladder operators. Again restricting to the fields z and z̄ we find:

H =

∫

dp

[

ω(p)a†z(p)az(p) + ω̄(p)a†z̄(p)az̄(p)

]

,

P =

∫

dp

[

pa†z(p)az(p) + pa†z̄(p)az̄(p)

]

.

(3.41)

For example, in the free theory the zero worldsheet momentum condition derived in equation (3.19)
means that a multi-particle state |p1, . . . , pn⟩ is physical if p1 + · · ·+ pn = 0.

For later convenience we can also derive the Feynman propagator of the theory, which will be necessary
to perform perturbative calculations in chapter 5.
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The massless modes propagate as a relativistic particle with m = 0 hence the propagator can be
written in momentum space as:

= i
(

p20 − p21 + iϵ
)−1

.Gu(p) =

Figure 3.1: Massless propagator.

The other particles have q-dependent expression for the propagator. Knowing the dispersion relation
is non-standard so it will be the Feynman propagator itself. We find it by requiring the propagator
to be the Green’s function of the equations of motion:

(

∂2
τ1 − ∂2

σ1
+ 2iq∂σ1

+ 1
)

G(x1, x2) = iδ(2)(x1 − x2), (3.42)

where xi = (τi, σi) and G(x1, x2) is the propagator. As per usual it is convenient to solve the equation
in momentum space and after a few simple steps we find the expression for the z propagator in
momentum space as:

= i
(

p20 + 2p1q − p21 − 1 + iϵ
)−1

.G̃z(p) =

Figure 3.2: Propagator for z particles.

We note that the propagator in figure 3.2 is oriented and the inversion of the momentum p1 for the z
propagator gives as a result the z̄ propagator as it happens for a charged particle/anti-particle pair in
a relativistic theory. From now on when using Feynman diagrams in the context of the string sigma
model we will use the colour green for the lines representing massless particles and blue for the lines
representing z, z̄, y, ȳ.

3.3.2 Obtaining the Lagrangian

As shown in the previous sections we chose to solve the constraints in the most convenient way as to
find the Hamiltonian. However in order to compute scattering amplitudes it is much easier to read
off the Feynman rules from the Lagrangian. In this section we illustrate the procedure to pass from
the Hamiltonian to the Lagrangian description, in particular in the case in which we wish to stop the
expansion at the sixth order in the fields.

The connection between Lagrangian and Hamiltonian is notoriously a Legendre transformation. Schemat-
ically:

L(ϕ̇) = p · ϕ̇−H(p) where p =
∂L

∂ϕ̇
. (3.43)

The dependency on the momentum in the string sigma model Hamiltonian is not only in the kinetic
(quadratic) term so we do not have an easy formula to pass from the interacting Lagrangian to the
interacting Hamiltonian.

In this section we show how to derive a useful formula that allows us to go from the Hamiltonian to
the Lagrangian framework up to a specific order in the fields. Let us work with a simple model. Take
a Lagrangian dependent on a single field ϕ and denote it:

L(ϕ, ϕ′, ϕ̇) = L
(2) + L

(4) + L
(6) + · · · (3.44)

Here and in the following we use the notation such that the terms L
(n) only display the nth powers

of the field and its derivatives. We are also assuming that the Lagrangian only contains even powers.

32



The non-linear sigma model 3.3. THE FREE THEORY

The same notation is used for the Hamiltonian which instead depends on the momentum (that we call
p) in place of the time derivatives of the field ϕ̇:

H(ϕ, ϕ′, p) = H
(2) +H

(4) +H
(6) + · · · (3.45)

Hence the H
(n) only contains nth powers of ϕ, ϕ′ and p combined.

What we start with is the Hamiltonian as a function of the momenta. To get the Lagrangian in terms
of velocities we could just invert Hamilton’s ϕ̇ = ∂H

∂p and plug p(ϕ̇) into equation (3.43). This was done

perturbatively using Mathematica to get an expression of L(4) and L
(6). On the other hand, if one is

not looking for an exact expression but instead wants to truncate the expressions at a certain order
(the sixth in our case) the inversion of the Legendre transformation can be avoided altogether. Here
we show a simple calculation to obtain the Lagrangian from the Hamiltonian at the fourth and sixth
orders. We just start from the Legendre transformation and try to isolate the terms with different
powers of the fields.

Suppose to rewrite the Legendre transform in equation (3.43) expressing everything in terms of the
velocities:

L = ϕ̇
∂L

∂ϕ̇
−H|

p= ∂L
∂φ̇

. (3.46)

Assuming a canonical kinetic term we have:

∂L

∂ϕ̇
= ϕ̇+

∂L(4)

∂ϕ̇
+

∂L(6)

∂ϕ̇
+ . . . (3.47)

We can expand the Hamiltonian around ϕ̇:

H|
p= ∂L

∂φ̇

= H|p=φ̇
+

(

∂H

∂p

)

|p=φ̇

·
(∂L(4)

∂ϕ̇
+

∂L(6)

∂ϕ̇
+ . . .

)

+
1

2

(

∂2
H

∂p2

)

|p=φ̇

·
(∂L(4)

∂ϕ̇
+

∂L(6)

∂ϕ̇
+ . . .

)2
+ · · ·

(3.48)

Isolating explicitly each order of the powers field and leaving only the contribution from the Hamilto-
nian on the RHS of equation (3.43) we find:

L
(2) − ϕ̇2 = −H(2)

|p=φ̇
,

L
(4) − ∂L(4)

∂ϕ̇
ϕ̇ = −H(4)

|p=φ̇
−
(

∂H(2)

∂p

)

·
(

∂L(4)

∂ϕ̇

)

|p=φ̇

.
(3.49)

In equations (3.49) we kept the terms of the Hamiltonian in equation (3.48) so that we have only
second order in the field in the first line, then fourth order in the second. The first line is what we
implicitly already used to obtain the free Lagrangian that was already explored in detail in section
3.3.

Evaluate now the second line. Only fourth order terms must be kept; after inspecting the terms of
the expansion in equation (3.48) and since H

(2) = 1
2p

2 + . . . , at 4th order we have:

(

∂H(2)

∂p

)

·
(

∂L(4)

∂ϕ̇

)

|p=φ̇

=
∂L(4)

∂ϕ̇
ϕ̇. (3.50)
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Such term cancels the term on the LHS of the second line of equation (3.49). Therefore the first useful
result is:

L
(4) = −H(4)|p=ϕ̇. (3.51)

If we go to the next order in the fields, the sixth, from the expansion of the Hamiltonian we obtain:

L
(6) − ∂L(6)

∂ϕ̇
ϕ̇ = −H(6)

|p=φ̇
−
(

∂H(4)

∂p

)

·
(

∂L(4)

∂ϕ̇

)

|p=φ̇

−
(

∂H(2)

∂p

)

·
(

∂L(6)

∂ϕ̇

)

|p=φ̇
− 1

2

(

∂L(4)

∂ϕ̇

)2

.

(3.52)

The terms containing the derivative of the sextic Lagrangian cancel as before. Applying now equation
(3.51) to the sixth order expansion in the fields of the Legendre transformation in equation (3.52) we
get:

L
(6) = −H(6)|p=ϕ̇ +

(

∂H(4)

∂p

)

·
(

∂H(4)

∂p

)

|p=φ̇

− 1

2

(

∂H(4)

∂p

)2

|p=φ̇

. (3.53)

And we finally obtain:

L
(6) = −H(6)|p=ϕ̇ +

1

2

(

∂H(4)

∂p

)2

|p=φ̇

. (3.54)

Let us summarize what was found. Somewhat unexpectedly the fourth order Lagrangian is found
as just the opposite of the fourth order Hamiltonian where the momenta are substituted with the
velocities. This is similar to the velocity-independent result where L

int = −Hint to all orders [18].
The expression for the sixth order Lagrangian is less trivial and receives contribution from the sixth
order Hamiltonian and from the fourth order one (through the last term in equation (3.54)).

This formula can be easily adapted to find the Lagrangian of the string sigma model. In this case we
consider 8 different momenta pz, pz̄, . . . , pv, pv̄ relative to complex fields, instead of p. In the expression
for L(6) it is sufficient to rewrite the squared term as:

(

∂H(4)

∂pz

∂H(4)

∂pz̄
+

∂H(4)

∂py

∂H(4)

∂pȳ
+

∂H(4)

∂pu

∂H(4)

∂pū
+

∂H(4)

∂pv

∂H(4)

∂pv̄

)

(3.55)

and eventually substitute the momenta with the relative velocities. In conclusion the quartic La-
grangian, can be obtained straightforwardly from the quartic Hamiltonian (shown in appendix B) and
has a relatively simple form. However the sextic Lagrangian becomes more complicated and cannot
be expressed fully in a practical form. In order to perform perturbative calculations we can look for
symmetries of such interacting Lagrangians in order to isolate all the different interaction terms.

3.4 Interacting Lagrangian

From the previous considerations we are able to find an expression for both the fourth order and
the sixth order Lagrangians. In the first case the expression is manageable and using the formula in
equation (3.51) we can find the fourth order Lagrangian.
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It can be expressed in a rather compact form as:

L
(4) = −(|z|2 − |y|2)(|ż|2 + |ẏ|2 + |u̇|2 + |v̇|2 + |ź|2 + |ý|2 + |ú|2 + |v́|2)

− |z|2|ź|2 + |y|2|ý|2 + |z|2|ż|2 − |y|2|ẏ|2 − iq

2
(|z|2 − |y|2)(z̄ź − z ´̄z + ȳý − y ´̄y)

+
iq

2
(ź ˙̄z + ´̄zż + ý ˙̄y + ´̄yẏ + ú ˙̄u+ ´̄uu̇+ v́ ˙̄v + ´̄vv̇)(z̄ż − z ˙̄z − ȳẏ + y ˙̄y)

− iq

2
(|ż|2 + |ẏ|2 + |u̇|2 + |v̇|2 + |ź|2 + |ý|2 + |ú|2 + |v́|2)(z̄ź − z ´̄z − ȳý + y ´̄y)

− 2a− 1

2
(|ż|2 + |ẏ|2 + |u̇|2 + |v̇|2 + |ź|2 + |ý|2 + |ú|2 + |v́|2)2

+
2a− 1

2

(

(|z|2 + |y|2)2 + (ź ˙̄z + ´̄zż + ý ˙̄y + ´̄yẏ + ú ˙̄u+ ´̄uu̇+ v́ ˙̄v + ´̄vv̇)2
)

− iq

2
(2a− 1)(z̄ź − z ´̄z + ȳý − y ´̄y)(|ż|2 + |ẏ|2 + |u̇|2 + |v̇|2 + |ź|2 + |ý|2 + |ú|2 + |v́|2 − |z|2 − |y|2)

+
iq

2
(2a− 1)(ź ˙̄z + ´̄zż + ý ˙̄y + ´̄yẏ + ú ˙̄u+ ´̄uu̇+ v́ ˙̄v + ´̄vv̇)(z̄ż − z ˙̄z + ȳẏ − y ˙̄y) .

(3.56)

Fist notice that in the expression above the terms containing the gauge parameter a are isolated from
the rest. The choice a = 1

2 greatly simplifies the Lagrangian in this case. Additionally observe that
the expression of the Lagrangian has some symmetries that reduce the number of different interaction
terms. In particular it is completely symmetric when exchanging u and v. The gauge independent
part is antisymmetric under z and y exchange while the gauge dependent part is symmetric. We can
also check from equation (3.56) that the same discrete symmetries observed in section 3.3 still hold
for the quartic interactions.

At the sixth order the expression becomes much more complicated and it is more convenient to isolate
only the relevant terms without reporting the Lagrangian in full. Let us first do so for the quartic
Lagrangian in (3.56). We can rewrite it as:

L
(4) =

∑

X=z,y

L
(4)
X +

∑

µ=u,v

L
(4)
µ +

∑

X=z,y
µ=u,v

L
(4)
Xµ + L

(4)
zy + L

(4)
uv . (3.57)

We can additionally split each term based on the gauge parameter a. When using it for perturbative
calculations it is easier these terms separated in the way we are reporting them. We have:

L
(4)
X = ±A(4)

X + (a− 1

2
)B

(4)
X where + is for z and − for y,

L
(4)
zy = C(4)

zy + (a− 1

2
)D(4)

zy ,

L
(4)
Xµ = ±E(4)

Xµ + (a− 1

2
)F

(4)
Xµ where + is for z and − for y.

(3.58)
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And the expressions are:

A
(4)
X =− 2|X|2|X́|2 + iq

2

(

(|X|2 + |X́|2)(X ¯́
X − X̄X́)− ˙̄X2XX́ + Ẋ2X̄ ´̄X

)

,

B
(4)
X =|X|4 − (Ẋ2 − X́2)( ˙̄X2 − ´̄X2) + iq

(

(|X́|2 − |X|2)(X ¯́
X − X̄X́)− ˙̄X2XX́ + Ẋ2X̄ ´̄X

)

,

C(4)
zy =− |z|2(|ý|2 + |ẏ|2) + |y|2(|ź|2 + |ż|2)− i

q

2

[

(|z|2 − |ź|2 − |ż|2)(ȳý − y ´̄y)
]

+ i
q

2

[

(|y|2 − |ý|2 − |ẏ|2)(z̄ź − z ´̄z) + (ź ˙̄z + ´̄zż)(−ȳẏ + y ˙̄y) + (ý ˙̄y + ´̄yẏ)(z̄ż − z ˙̄z)
]

D(4)
zy =−

(

2(|ż|2 + |ź|2)(|ẏ|2 + |ý|2)− 2|z|2|y|2 − 2(ź ˙̄z + ´̄zż)(ý ˙̄y + ´̄yẏ) + iq
(

(z̄ź − z ´̄z)(|ẏ|2 + |ý|2 − |y|2)

+ (ȳý − y ´̄y)(|ż|2 + |ź|2 − |z|2)− (ź ˙̄z + ´̄zż)(ȳẏ − y ˙̄y)− (ý ˙̄y + ´̄yẏ)(z̄ż − z ˙̄z)
))

,

E
(4)
Xµ =− |X|2(|µ̇|2 + |µ́|2) + i

q

2
(µ́ ˙̄µ+ ´̄µµ̇)(X̄Ẋ −X ˙̄X)− i

q

2
(|µ̇|2 + |µ́|2)(X̄X́ −X ´̄X),

F
(4)
Xµ =−

(

2(|Ẋ|2 + |X́|2)(|µ̇|2 + |µ́|2)− 2(X́ ˙̄X + ´̄XẊ)(µ́ ˙̄µ+ ´̄µµ̇) + iq(X̄X́ −X ´̄X)(|µ̇|2 + |µ́|2)

− iq(µ́ ˙̄µ+ ´̄µµ̇)(X̄Ẋ −X ˙̄X)
)

.

(3.59)

On the other hand for the exclusively massless terms we have:

L
(4)
µ =− 2a− 1

2

(

(|µ̇|2 + |µ́|2)2 − (µ́ ˙̄µ+ ´̄µµ̇)2
)

,

L
(4)
uv =− 2a− 1

2

(

2(|u̇|2 + |ú|2)(|v̇|2 + v́|2)− 2(ú ˙̄u+ ´̄uu̇)(v́ ˙̄v + ´̄vv̇)
)

.

(3.60)

This concludes the description of the fourth order interaction. As one can see from equation (3.57)
the Lagrangian only contains 5 different types of interaction terms. Therefore to this order the
theory displays only 5 different interaction vertices, shown in appendix D, somewhat simplifying the
classification of 2→ 2 particle processes. This task is the main focus of the next chapter.

Let us now find a similar expression as the one in equation (3.57) for the interaction Lagrangian with
six fields. Starting from the interacting Hamiltonian the Lagrangian is found by using the formula in
equation (3.54). The calculation is quite large and it was performed using Mathematica. The resulting
expression can be split into different pieces as:

L
(6) =

∑

X=z,y

L
(6)
X +

∑

µ=u,v

L
(6)
µ +

∑

X=z,y
µ=u,v

L
(6)
XXµ +

∑

X=z,y
µ=u,v

L
(6)
Xµµ + L

(6)
zzy + L

(6)
zyy + L

(6)
uuv + L

(6)
uvv+

+
∑

µ=u,v

L
(6)
zyµ +

∑

X=z,y

L
(6)
uvX .

(3.61)

The labels of each piece in equation (3.61) indicate all the types of fields involved in the term keeping
in mind each field must appear with its conjugate since the Lagrangian is hermitean. For example

L
(6)
Xµµ contains one z and one z̄ and two µ and two µ̄ fields.
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Here are reported 10 pieces however only 8 of them are truly different interaction terms since we can

define the term L
(6)
uvv from L

(6)
uuv and also L

(6)
zyy from L

(6)
zzy using the symmetries that we mentioned

before.

These terms can be written as:

L
(6)
X = A

(6)
X ± (2a− 1)B

(6)
X + (2a− 1)2C

(6)
X where + is for z and − for y,

L
(6)
µ = (2a− 1)2D(6)

µ ,

L
(6)
µµX = E

(6)
µµX ± (2a− 1)F

(6)
µµX + (2a− 1)2G

(6)
µµX where + is for z and − for y,

L
(6)
µXX = H

(6)
µXX ± (2a− 1)I

(6)
µXX + (2a− 1)2J

(6)
µXX where + is for z and − for y,

L
(6)
uvv =(2a− 1)2K(6)

uvv,

L
(6)
yzz = L(6)

yzz + (2a− 1)M (6)
yzz + (2a− 1)2N (6)

yzz,

L
(6)
yyz = L(6)

yyz − (2a− 1)M (6)
yyz + (2a− 1)2N (6)

yyz,

L
(6)
zyµ = O(6)

zyµ ± (2a− 1)P (6)
zyµ + (2a− 1)2Q(6)

zyµ where + is for z and − for y,

L
(6)
uvX = R

(6)
uvX ± (2a− 1)S

(6)
uvX + (2a− 1)2T

(6)
uvX where + is for z and − for y.

(3.62)

We again split the interactions in contributions of the powers 0, 1, 2 in the factor (2a−1). It is evident
from the expressions in equation (3.62) that the z and y interaction terms are the same except in the
pieces with the first power of (2a− 1), where they have opposite sign. Conversely under the exchange
of u ←→ v (and same for the conjugates) the Lagrangian does not change. This is expected since
the directions on the torus are interchangeable and are not affected by the gauge-fixing procedure in
section 3.2. Hence the u and v interactions are the same.

In terms of spacetime symmetries we note that the interacting Lagrangians in equations (3.57) and
(3.61) preserve the ones of the free theory observed in section 3.3. Therefore each term has an even
number of time derivatives making the theory invariant under time inversion (τ → −τ). This is not
the case for spacial derivatives, meaning the theory is not parity invariant. However the interaction
terms retain a sort of CP symmetry, meaning the invariance under (σ → −σ) and (q → −q) combined.

The expressions of the terms in equation (3.62) can all be found in appendix C.
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Chapter 4

S2→2 of the string sigma model

In the previous chapter we introduced the string action in section 3.1 and we performed the gauge-
fixing (section 3.2) which allowed us to identify the physical fields on the worldsheet. We also found
a perturbative expansion of the Lagrangian in section 3.4. Therefore we have all the ingredients to
study the scattering properties of the interacting sigma model living on the worldsheet.

In this chapter we concentrate on the information contained in the L
(4) term. As we will see in

a moment this term by itself completely describes all 2 → 2 processes at tree-level of perturbation
theory and starting from the Lagrangian we are able to study in detail the interactions involving
4 external particles. In the following we report some notable findings of our analysis of the four-
point vertices. The analysis is aimed at checking the properties of the interactions and comparing
them with the general constraints imposed by integrability discussed in chapter 1. This has been
done leaving the a gauge parameter free. Computing all the relevant scattering amplitudes we can
construct S2→2 at tree-level. This is of great importance since, assuming the theory to be quantum
integrable, the two-particle scattering amplitudes become the only building blocks of the full S-matrix.
Furthermore two-particle amplitudes obtained perturbatively offer an important check for the exact
S-matrix computed through bootstrap techniques [17] and can give us insights on the integrability
side.

4.1 On the calculation of S2→2

The S-matrix of an interacting theory is an operator containing all the information on the scattering
of particles in such theory. It is defined as the operator connecting the asymptotic initial and final
particle states. In order to do perturbative calculations we need to outline the general ideas involved
in the perturbative expansion of the S-matrix. However we will only mention some facts that are used
in the following sections and not go into details about perturbation theory applied to quantum field
theories. A general discussion on the perturbative approach to QFTs (pQFTs) can be found e.g. in
ref. [18].

In the context of pQFTs we define the S-matrix as the following operator:

S = ✶+ iT = T

[

e−i
∫
dσdτ :Hint:

]

. (4.1)

The perturbative treatment consists in expanding the time-ordered exponential in equation (4.1) since,
recalling the large string tension regime we are working in (section 3.2), the perturbative order increases
with the number of fields considered. In this thesis we are interested in computing all tree-level 2-to-2
particles processes and (in the next chapter) some 3-to-3 processes, again at first order in perturbation
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4.1. ON THE CALCULATION OF S2→2 S2→2 of the string sigma model

theory. Each of these processes are associated to different terms in the expansion of equation (4.1).
The time-ordering operation is notably handled with the aid of Wick’s Theorem [18].

The whole perturbative apparatus is operatively simplified by the use of Feynman diagrams. For the
2→ 2 processes the relevant term in the expansion is:

T2→2 = −
∫

dσdτ : H(4) : . (4.2)

This is diagrammatically represented by vertices with four external legs. On the other hand when 6
particles are involved in the scattering the contributing terms are:

T3→3 = −
∫

dσdτ : H(6) : +
i

2!
T

[

(
∫

dσdτ : H(4) :

)2
]

. (4.3)

Firstly, this shows that for the purposes of this work the Hamiltonian can be truncated up to the sixth
order in the fields. Diagrammatically the two terms in equation (4.3) generate two different topologies
of diagrams. The term containing the sextic Hamiltonian is a six-point vertex. Conversely in the
other term the time-ordered product gives us a number of diagrams with 2 vertices connected by one
propagator.

The above discussion justifies why the Feynman diagrams can be used to compute scattering ampli-
tudes. Following the definition in equation (4.1) it is the Hamiltonian that should be used to compute
the Feynman rules associated to each Feynman diagrams whilst in the previous chapter we spent some
time deriving the interaction Lagrangian exactly for the purpose of deriving the Feynman rules. We
want to spend a few words on this Lagrangian v. Hamiltonian choice.

This is a peculiar situation because due to the presence of time derivatives in the interacting terms
H

(int) ̸= −L(int). The evaluation of the integrals with the Hamiltonian (for example in equation
(4.3)) requires the use of the canonical formalism, writing the fields in the free theory’s creation
and annihilation operators expansion, then computing contractions using Wick’s theorem. However
the Feynman rules can be read off more easily from the Lagrangian in an algorithmic way (see for
example [18] for the case with derivative couplings). Evidently the Lagrangian formalism stems from
the path integral formulation of the model, notoriously providing an alternative way of constructing
the quantum theory ([18],[29]).

When the interaction Lagrangian and Hamiltonian are not the same, namely when there are couplings
with time derivatives, the derivation of the Feynman rules using the Hamiltonian becomes much more
involved. In particular the use of Feynman diagrams is intimately related to the Lagrangian approach
and is instead less suited to the Hamiltonian one in this case. The relation between the two procedures
is explained more in detail for example in sec. 6.2 and 7 of ref. [29].

4.1.1 External legs factors

After this premise it is clear that the first step of every calculation is deriving the Feynman rules
for the interaction vertices. The 4-point vertices are presented in appendix D. If we are looking to
derive scattering amplitudes we should also add the external legs factors, which are independent on
the interaction. In general the amplitudes can be obtained by adding these factors to the Feynman
rules:

1. each external particle (labeled by i) carries a factor 1√
2ωi

;

2. conservation of energy and momentum enforced by δ

(

∑

i
pi

)

δ

(

∑

i
ωi

)

.

40



S2→2 of the string sigma model 4.2. PROPERTIES OF VERTICES

Since we will present the amplitudes for 2→ 2 processes let us see this case. Observe that the δ (ωtot)
will be rewritten, using the known properties of the δ-functions, as:

δ

(

n
∑

i=1

ωi

)

=
2
∑

j=1

δ
(

p− p∗j

)

|∂ω1

∂p + ∂ω2

∂p + · · ·+ ∂ωn
∂p |

(4.4)

Where in equation (4.4) we solve the constraints with respect to the momentum p and we find two
solutions since they are second degree equations. When the dispersion relations are the standard
relativistic ones the factor is notoriously:

ω1ω2

|ω1 · p2 − ω2·1 |
.

For the particles with dispersion relations as in equation (3.35) this factor will become instead:

ω1ω2

|ω1 · (p2 ∓ q)− ω2 · (p1 ∓ q)| . (4.5)

The sign is − or + respectively for the z, y particles and for z̄ , ȳ particles as can be checked from the
dispersion relations. For example if particle 1 is z and particle 2 is ȳ we have a factor:

ω1ω̄2

|ω1 · (p2 + q)− ω̄2 · (p1 − q)| . (4.6)

4.2 Properties of vertices

The Feynman rules for the interaction vertices with four external legs are presented in figures D.1
and D.2. Notice that these rules are written in the convention where all the particles are incoming,
meaning for a 4 → 0 process. From the integrability of the theory we expect only 2 → 2 processes
with the same sets of momenta at the initial and final states to be non-vanishing. These properties
have been checked successfully for all the 5 different interaction vertices. In this section we present
some examples of the calculations that we carried out; notice that here for simplicity we just use the
contributions to the amplitudes due to the Feynman diagrams without reporting the external legs
factors.

Take for example the vertex with both z and y particles. Here we show the procedure for the case
a = 1

2 . Use notation where index 0 is for the energy and 1 is for the momentum. The Feynman rules
reported in appendix D can be associated to amplitudes of processes where 4 particles annihilate each
others as:

⟨0|T |z(p′)y(p)z̄(k′)ȳ(k)⟩ ∝ i(p0k0 + p1k1 − p′0k
′
0 − p′1k

′
1) +

iq

2

[

(p′1k
′
0 + k′1p

′
0)(k0 − p0)

]

+
iq

2

[

+(p1k0 + k1p0)(p
′
0 − k′0) + (1 + p′0k

′
0 + p′1k

′
1)(p1 − k1)

]

− iq

2

[

(1 + p0k0 + p1k1)(p
′
1 − k′1)

]

.

(4.7)

From the free solutions for the z and z̄ fields presented in section 3.3 we see that we can assume
the amplitudes to satisfy crossing symmetry; the only difference with a usual particle/anti-particle
crossing is that when we cross, for example, z(p′) into z̄(p′), besides just inverting the sign of energy
and momentum, we must also use in place of p′0 the dispersion relation for z̄ (equation (3.35)), which
differs from the one of z by the sign of q.
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First note that all the processes that can be obtained from the vertex in (4.7) of the form 4 → 0 or
3 → 1 vanish simply because the energy and momentum conservation cannot be satisfied. This is
actually true for all the possible processes that do not contain massless particles.

Now we can use crossing symmetry to analyse a process such as:

y + ȳ → z + z̄ .

We can show that this process has vanishing amplitude. Using crossing symmetry we can write:

⟨0|T |y(p)ȳ(k)z(p′)z̄(k′)⟩ = ⟨z̄(−p′)z(−k′)|T |y(p)ȳ(k)⟩. (4.8)

Hence we can just invert the signs and obtain :

⟨z̄(p′)z(k′)|T |y(p)ȳ(k)⟩ ∝ i(p0k0 + p1k1 − p′0k
′
0 − p′1k

′
1)

+
iq

2

[

(p′1k
′
0 + k′1p

′
0)(k0 − p0)− (p1k0 + k1p0)(p

′
0 − k′0)

+ (1 + p′0k
′
0 + p′1k

′
1)(p1 − k1) + (1 + p0k0 + p1k1)(p

′
1 − k′1)

]

.

(4.9)

Recall that the dispersion relations for the process above are:

p′0 =
√

p′21 + 2qp′1 + 1 k′0 =
√

k′21 − 2qk′1 + 1 p0 =
√

p21 − 2qp1 + 1 k0 =
√

k21 + 2qk1 + 1. (4.10)

Energy and momentum conservation give the following constraints:

{

p′1 + k′1 = p1 + k1

(p′21 + 2qp′1 + 1)
1

2 + (k′21 − 2qk′1 + 1)
1

2 = (p21 − 2qp1 + 1)
1

2 + (k21 + 2qk1 + 1)
1

2

(4.11)

The system in equation (4.11) has only two solutions:

1. {k1 = p′1, p1 = k′1} with energies {k0 = p′0, p0 = k′0},
2. {k′1 = k1 + 2q, p′1 = p1 − 2q} with energies {k0 = k′0, p0 = p′0}.

As it can be explicitly checked in equation (4.9) in both cases the amplitude is null. This result can
be easily shown to be true for generic values of a. In general we used the same logic to show that all
inelastic processes vanish at tree-level.

Another relevant result can be extracted from the same interaction vertex. We can take into account
the process:

y(p) + z(k)→ y(p′) + z(k′) ,

which is not supposed to vanish. Integrability only constrains the set of momenta to be conserved in
the process. In this 2→ 2 case the conservation of energy and momentum is actually sufficient to fix
the momenta. In fact, repeating the same steps as before we find that kinematics has solutions:

1. {k1 = k′1, p1 = p′1} with energies {k0 = k′0, p0 = p′0},
2. {k1 = p′1, p1 = k′1} with energies {k0 = p′0, p0 = k′0}.

The first solution gives a non-zero amplitude. Ths expression, together with the rest of the non-trivial
amplitudes, is presented in the next section 4.3. Notice that this process just leaves z and y with
the same momenta they started with. On the other hand the second configuration would invert the
momenta but the amplitude in this case cancels. It can be shown that this is true for any other 2 into
2 amplitude at tree-level, hence making the S-matrix reflectionless.
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Take now an inelastic process involving massless modes:

ū+ u→ z + z̄ .

The vertex contribution is:

⟨0|T |u(p)z(p′)ū(k)z̄(k′)⟩ ∝ +i
[

p0k0 + p1k1 −
q

2
(p0k0 + p1k1)(p

′
1 − k′1) +

q

2
(p1k0 + k1p0)(p

′
0 − k′0)

]

.

(4.12)

First, in this process the energy and momentum conservation equations do not allow the massless
particles to be heading in the same verse, meaning that the only solutions are those for p1 and k1 with
different signs 1. In fact we have:

{

k1 + p1 = k′1 + p′1
|k1|+ |p1| = (p′21 + 2qp′1 + 1)

1

2 + (k′21 − 2qk′1 + 1)
1

2

(4.13)

The consequence is that the structure of this vertex already ensures the vanishing of all the inelastic
scattering. In fact, since massless modes have energy p0 = |p1| it is immediate to show that, when p1
and k1 have opposite sign

p0k0 + p1k1 = 0, p1k0 + k1p0 = 0. (4.14)

When we compare this result with the vertex shown in equation (4.12) we see that it vanishes auto-
matically when the particles scattering have momenta of opposite signs. This automatically cancels
also the 1→ 3 vertices that are kinematically possible in this case.

For example if we want to check whether the process z → z + u + ū vanishes we can consider the
energy and momentum constraints:

{

p′1 = p1 + k′1 + k1

(p′21 − 2qp′1 + 1)
1

2 = |p1|+ |k1|+ (k′21 − 2qk′1 + 1)
1

2

(4.15)

Suppose to take sign(p1) = sign(k1) then we can remove the moduli from equation (4.15) and obtain:

{

p′1 = k′1 + (p1 + k1)

(p′21 − 2qp′1 + 1)
1

2 = ±(p1 + k1) + (k′21 − 2qk′1 + 1)
1

2

(4.16)

Where in equation (4.16) we have + sign when the momenta are positive and − when they are negative.
Either way we can sum/subtract the two equations and obtain:

(p′21 − 2qp′1 + 1)
1

2 − (k′21 − 2qk′1 + 1)
1

2 = ±(p′1 − k′1). (4.17)

This equation has no solution for q ∈ (0, 1). The consequence is that the two outgoing massless
momenta cannot have the same sign. Since the amplitude contains only terms like the one in equation
(4.14) the it vanishes automatically. This same mechanism can be checked for the amplitude for
generic values of a , shown in appendix D.

The vanishing of the terms in equation (4.14) can be applied to this vertex also for the amplitudes
that are not forbidden by integrability. In fact if we cross a u particle the terms in equation (4.14)
only change for an overall sign. Consider the elastic process:

z + u→ z + u .

1Observe that with massless particles the scattering is not even well defined if the two incoming particles have momenta
directed the same way.
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The energy and momentum conservation yeld:

{

p′1 + p1 = k′1 + k1

(p′21 − 2qp′1 + 1)
1

2 + |p1| = |k1|+ (k′21 − 2qk′1 + 1)
1

2

(4.18)

The only configuration where the massless momenta have the same sign is when {k1 = p1, p
′
1 = k′1}.

The other solution is more complicated. If we fix p′1 > 0 we can write the solution for the outgoing
momenta as:

{k1 =
p1
[

2qp′0 − 2p′1(p
′
0 + 2q)− 2p1(p

′
0 − p′1 + q) + 2p′21 + q2 + 1

]

4p1 (p′1 − q) + 4p21 + q2 − 1
,

k′1 =

(

q2 − 1
)

p′1 + 2p21 (p
′
0 + 3p′1 − q) + 2p1

(

p′1p
′
0 − qp′0 + (p′1)

2 − 1
)

+ 4p31
4p1 (p′1 − q) + 4p21 + q2 − 1

}.
(4.19)

Solution in equation (4.19) are written keeping implicit the dispersion relation p′0 =
√

p′21 − 2p′1q + 1.
It is immediate to check that k1 < 0 for every value of p′1 and q. Differently from the scattering
between y and z, since u and z have different dispersion relations, here the configuration in equation
(4.19) is not just the reflection of the momenta; nevertheless for this second solution it holds that
sign(p1) = −sign(k1), meaning that the amplitude cancels due to equation (4.14) as we would expect
from the integrability of the theory. It is not difficult to check that the properties for the z+u→ z+u
and ū+ u→ z + z̄ hold for each value of a.

It is possible to check that the remaining 3 four-point interaction vertices are also purely elastic.
Similar mechanisms to the ones shown for uū → zz̄ work also for 4-point vertices involving only
massless particles.

4.3 2-to-2 amplitudes

In this section we list all the different non-vanishing amplitudes for 2→ 2 processes. The computation
of these amplitudes closely resembles the ones shown in section 4.2 with the addition of the external
legs factors discussed in section 4.1. In the following expressions it is assumed p > 0 > p′. This choice
ensures the correctness of the perturbative treatment for massless particles. The assumption is that
states in the far past (τ → −∞) and the far future (τ →∞) are asymptotically free i.e. the particles
are infinitely far away from each other. With this choice of ordering for the momenta the absolute
value in the denominator in equation (4.5) can be removed.

Since we have 5 different interaction vertices, the 5 different amplitudes are:

iT |X(p)X(p′)⟩ =∓ i (p+ p′) (p′ω + pω′)
2 (p− p′)

− i

(

a− 1

2

)

[

pω′ − p′ω
]

|X(p′)X(p)⟩,

iT |z(p)y(p′)⟩ =1

2
i
(

p′ω + pω′)− i

(

a− 1

2

)

[

pω′ − p′ω
]

|z(p′)y(p)⟩,

iT |X(p)µ(p′)⟩ =± 1

2
i
(

p′ω + pω′)− i

(

a− 1

2

)

[

pω′ − p′ω
]

|X(p′)µ(p)⟩,

iT |µ(p)µ(p′)⟩ =i(2a− 1)pp′|µ(p′)µ(p)⟩,

iT |u(p)v(p′)⟩ =i(2a− 1)pp′|u(p′)v(p)⟩.

(4.20)
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Observe that the notation follows the symmetries of the quartic Lagrangian. The X particles can be
either z or y while µ can be u or v. In the first and third expressions the upper sign is for z particles
and the lower one for y particles. Clearly all the other non-vanishing-amplitudes can be obtained from
these 5 using crossing relations and the discrete symmetries of the quartic Lagrangian discussed in
section 3.4.

We compared these results with those in ref. [17] for the case q = 0 and [30] for the massive scatterings,
finding agreement. We mention that the amplitudes in equation (4.20) are expressed in a particular
form such that they are formally the same as those for the theory in absence of the Kalb-Ramond field
(q = 0). In fact, as first noted in [30], the expressions are the same when we substitute the correct
dispersion relations in the formula. This is irrelevant for the exclusively massless amplitudes which
are completely independent on the q parameter.
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Chapter 5

3 particles scattering on the string

worldsheet

In this chapter we study the scattering on the worldsheet involving 6 external particles. We limit the
analysis to tree-level calculations. The interaction vertices for these processes can be read off from
from the sextic Lagrangian which we split into the relevant terms in section 3.4; the expressions of
these terms is reported in appendix C.

The study of factorisation at tree-level can be relevant in different ways. In general when the interaction
factorises for a particular model it could be a hint that said model is integrable. Yet if factorisation
does not happen, even simply at tree-level, we can be sure that the model is not integrable. For
example, tree-level calculations showing amplitudes failing to factorise have been used in ref. [31]
to exclude the integrability of particular models. In the following we present a general discussion of
the tree-level 3-to-3 particles interactions of the string non-linear sigma model and we exhibit the
factorisation of such processes.

5.1 Calculation of 3-to-3 processes

To compute the amplitudes for 3 → 3 processes at the tree-level we need both four-point and six-
point Feynman diagrams. Accounting for the symmetries of the Lagrangian under (different) particle
exchange we are able to isolate 8 different interactions. We will not write explicitly the vertices but
they can easily be read off from the terms of the sextic Lagrangian shown in appendix C. From the
integrability of the theory we expect the scattering to be elastic and factorise in a sequence of two-
body interactions, as argued in section 1.2.1. The topologies of Feynman diagrams contributing to the
amplitudes are exactly the same as those contributing to the same processes in sinh-Gordon theory,
in section 2.1. Consequently we follow a similar logic as for sinh-Gordon theory.

Let us revisit the general logic to obtain 3 → 3 amplitudes. We start from the Feynman rules of the
6-point vertices from which we can compute a whole set of processes by the use of crossing symmetry.
Besides the 6-leg vertex also some diagrams with a propagator contribute. In these diagrams the
propagator connects the 4-point vertices of our sigma model, listed in appendix D. The total number
of diagrams will be different depending on the process. Also in this case divergencies might only arise
in a 0-measure subset of the phase space, that is when the particle in a propagator becomes on shell;
exclusively in this case the iϵ at the denominator is relevant. Therefore the strategy we adopted is
(similarly to what is shown in section 2.1 and in ref. [12]) to check first that the sum of all diagrams,
setting iϵ to 0 cancels. This has been checked numerically for all the possible processes at tree-level.
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5.1. CALCULATION OF 3-TO-3 PROCESSES 3 particles scattering on the string worldsheet

This is actually enough to argue the tree-level factorisation for all the processes that do not involve
massless particles, since we actually recover a case almost identical to the one in section 2.1.1. Massless
processes are slightly more delicate and we keep them for last.

A sample calculation of such a cancellation when iϵ = 0 is shown explicitly in the next section.

5.1.1 Calculation for z(p1) + z(p2) + z(p3)→ z(p4) + z(p5) + z(p6)

Consider a process where three z particles scatter. We expect such a process to have a vanishing
amplitude everywhere in the phase space except when the incoming and outgoing momenta are the
same. The relevant term from the sextic Lagrangian is, from appendix C:

A(6)
z = L

a= 1

2
z =

1

4
|z|2

[

|z|2(|ż|2 − 9|z′|2)− (z′2 − ż2)(z̄′2 − ˙̄z2)
]

+
iq

4
|z|2

[

|z|2(zz̄′ − z̄z′) + 2(ż2z̄z̄′ − ˙̄z2zz′) + 6|z′|2(zz̄′ − z̄z′)
]

+
q2

2
|z′|2

[

|z|2(|ż|2 − |z′|2)− 1

2
z2( ˙̄z2 − z̄′2)− 1

2
z̄2(ż2 − z′2)

]

.

(5.1)

For convenience let us consider the case a = 1
2 . The Lagrangian in equation (5.1) gives us the Feynman

rules for the 6-point vertex shown on the left hand side in figure 5.1. On the right we have the only
topology stemming from the quartic Lagrangian (or Hamiltonian from the discussion in section 4.1).
The Feynman rules for the 4-point vertices are reported in appendix D.

•

1

3
2

4

5

6 •

1
3

2

•

4
6

5

Figure 5.1: Diagrams contributing at tree-level to processes involving 6 particles in total.

Notice that these diagrams describe not only the z z z → z z z process but whatever process can be
connected to it by crossing. Similarly to what we did in section 2.1 we can find a useful parametrisation
of energy and momenta to be able to pass from one process to the other more easily.

Recalling the dispersion relations in equations (3.35), it holds:

ω(p)2 − (p− q)2 = 1− q2,

ω̄(p)2 − (p+ q)2 = 1− q2.
(5.2)

The usual parametrization via the rapidities can be modified to obtain

ωi = ω̄i =
√

1− q2 cosh(θi), pi = ±q +
√

1− q2 sinh(θi) (5.3)

where + sign is for z and − for z̄. Rapidities θi are real for physical configurations. Also in this case
it is useful to redefine eθi = ai giving:

ωi = ω̄i =
1

2

√

1− q2
(

ai +
1

ai

)

, pi = ±q +
1

2

√

1− q2
(

ai −
1

ai

)

. (5.4)
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It is clear that in order to cross the amplitude with respect to the particle i we just need to invert
the sign of the parameter ai and invert the sign of q in equation (5.4). This is the same procedure
that we used in section 4.2 when crossing two-particle amplitudes. In the following we assume all
incoming particles when writing the Feynman rules for the diagrams. The even labels will correspond
to particles z and the odd labels to antiparticles z̄, and this justifies the orientation in the propagator
in figure 5.1. As a consequence if we show the cancellation of the amplitude for whatever value of {ai}
this means that the amplitude for every process that can be obtained by the crossing procedure also
vanishes.

The expression of the diagrams with the propagator, using the parametrisation in equation (5.4) and
the definition of the Feynman propagator in figure 3.2, is shown in figure 5.2. The V4 terms are
the quartic vertices attached to the propagators. Besides those and a prefactor dependent on q the
expression of these diagrams is very similar to the one found in section 2.1 for the scattering in the
sinh-Gordon theory.

•

1
3

2

•

4
6

5

=
iV4 [a1, a2, a3,−a1 − a2 − a3]V4 [a1 + a2 + a3, a4, a5, a6]

(ω1 + ω2 + ω3)2 + 2(p1 + p2 + p3)q − (p1 + p2 + p3)2 − 1 + iϵ

=
a1a2a3
1− q2

iV4 [a1, a2, a3,−a1 − a2 − a3]V4 [a1 + a2 + a3, a4, a5, a6]

(a1 + a2)(a2 + a3)(a1 + a3) + (a1a2a3)i
ϵ

1−q2
.

D(a1, a2, a3) =

Figure 5.2: Feynman diagram with all momenta incoming.

Before summing all the diagrams we must impose the energy and momentum conservation. Interest-
ingly, these constraints are simply:

6
∑

i=1

ai = 0,
6
∑

i=1

1

ai
= 0. (5.5)

The q parameter does not appear in these constraints, despite energy and momentum depend on it.
Therefore the energy and momentum conservation equations are the same as the ones found for the
scattering in the (relativistic) sinh-Gordon theory in equation (2.5). Notice that this is not true if
massless modes are involved. This is a consequence of the shape of the dispersion relation for the
massive modes, together with charge conservation at the vertices.

Let us show all the steps of the calculation. Here we report the expressions where we put q = 0, this
is just to obtain more compact expressions but the same steps lead to the same cancellation for the
generic q case. First we report the Feynman rules for the 6-vertex, that we call V6.
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They can be written as:

V6 =i
[

p5p3ω2ω4 + p5p3ω2ω6 + p5p3ω4ω6 + p2p4ω3ω5 + p2p6ω3ω5 + p4p6ω3ω5

+ p1

(

p3ω2ω4 + p5ω2ω4 + p3ω2ω6 + p5ω2ω6 + p3ω4ω6 + p5ω4ω6 + 9p6

+ p2

(

−p4p5 − p6p5 − p3 (p4 + p6) + 9
)

−p4 (p3p6 + p5p6 − 9)
)

+ ω1

(

p4p6ω3 + p4p6ω5 + p2 ((p4 + p6)ω3 + p4ω5 + p6ω5)− ω4ω6ω3 − ω4 − ω4ω5ω6

− ω6 − ω2 (ω4ω5 + ω6ω5 + ω3 (ω4 + ω6) + 1)
)

+9p2p3 + 9p4p3 − p2p4p5p3 − p2p5p6p3

− p4p5p6p3 + 9p6p3 + 9p2p5 + 9p4p5 + 9p5p6 − ω2ω3 − ω3ω4 − ω2ω5 − ω2ω3ω4ω5

− ω4ω5 − ω3ω6 − ω2ω3ω5ω6 − ω3ω4ω5ω6 − ω5ω6

]

.

(5.6)

Once rewritten in the parametrisation in equation (5.4) this expression becomes:

V6 =−
i

4a1a2a3a4a5a6

[

a2a3a
2
4a

2
1 + a2a3a

2
6a

2
1 + a3a4a

2
6a

2
1 + a2a5a

2
6a

2
1 − 8a2a3a4a5a

2
6a

2
1

+ a4a5a
2
6a

2
1 + a22a3a4a

2
1 + a2a

2
4a5a

2
1 + a22a4a5a

2
1 + 10a2a3a4a5a

2
1 + a3a

2
4a6a

2
1

+ a22a3a6a
2
1 + a22a5a6a

2
1 − 8a2a3a

2
4a5a6a

2
1 + a24a5a6a

2
1 + 10a2a3a5a6a

2
1 − 8a22a3a4a5a6a

2
1

+ 10a3a4a5a6a
2
1 + a2a

2
3a

2
4a1 + a2a

2
4a

2
5a1 + a22a4a

2
5a1 + 10a2a3a4a

2
5a1 + a2a

2
3a

2
6a1 + a2a

2
5a

2
6a1

− 8a2a3a4a
2
5a

2
6a1 + a4a

2
5a

2
6a1 + a23a4a

2
6a1 + 10a2a3a4a

2
6a1 − 8a2a

2
3a4a5a

2
6a1 + 10a2a4a5a

2
6a1

+ a22a
2
3a4a1 − 8a2a3a4a1 + 10a2a

2
3a4a5a1 − 8a2a4a5a1 + a22a

2
3a6a1 + a23a

2
4a6a1 + 10a2a3a

2
4a6a1

+ a22a
2
5a6a1 − 8a2a3a

2
4a

2
5a6a1 + a24a

2
5a6a1 + 10a2a3a

2
5a6a1 − 8a22a3a4a

2
5a6a1 + 10a3a4a

2
5a6a1

− 8a2a3a6a1 + 10a22a3a4a6a1 − 8a3a4a6a1 + 10a2a
2
3a5a6a1 − 8a2a

2
3a

2
4a5a6a1 + 10a2a

2
4a5a6a1

− 8a2a5a6a1 + 10a22a4a5a6a1 − 8a22a
2
3a4a5a6a1 + 10a23a4a5a6a1 − 8a4a5a6a1 + a2a3a

2
4a

2
5

+ a22a3a4a
2
5 + a2a3a

2
5a

2
6 + a3a4a

2
5a

2
6 + a2a

2
3a5a

2
6 + a23a4a5a

2
6 + 10a2a3a4a5a

2
6 + a2a

2
3a

2
4a5

+ a22a
2
3a4a5 − 8a2a3a4a5 + a3a

2
4a

2
5a6 + a22a3a

2
5a6 + a22a

2
3a5a6 + a23a

2
4a5a6 + 10a2a3a

2
4a5a6

− 8a2a3a5a6 + 10a22a3a4a5a6 − 8a3a4a5a6

]

.

(5.7)

Now it is the turn of the diagrams with propagators. We put iϵ = 0. The configurations for which iϵ
must be kept will be considered in one moment. We label by D the only topology of these diagrams. It
is convenient to isolate their numerator and denominator. For example the diagram on the right-hand
side of figure 5.1 can be written as:

D(a1, a2, a3) =
N(a1, a2, a3)

D(a1, a2, a3)
. (5.8)

With:

N(a1, a2, a3) =
[

expression reported in appendix E
]

. (5.9)

and
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D(a1, a2, a3) =− 4a2a
3
3a4a5a6a

4
1 − 4a22a

2
3a4a5a6a

4
1 − 4a2a

4
3a4a5a6a

3
1 − 8a22a

3
3a4a5a6a

3
1

− 4a32a
2
3a4a5a6a

3
1 − 4a22a

4
3a4a5a6a

2
1 − 4a32a

3
3a4a5a6a

2
1.

(5.10)

This is just one of the tree diagrams. It turns out there are 9 of these diagrams in total. We can see
this by counting all the possible different diagrams. In fact if we take one of the two vertices, it can
either have 2 or 1 incoming particles in the external legs. In the former case we can choose the last leg
out of 3 incoming antiparticles while for the latter we choose 2 antiparticles out of 3. Then the sum
of these configurations is

(

3
2

)(

3
1

)

+
(

3
2

)(

3
1

)

= 18. Since the vertices are identical we halve the number
not to double count, obtaining 9 diagrams.

At this point we just need to compute all the other 8 diagrams and sum them with the one with 6 legs.
It is convenient to do this by summing the 9 diagrams and isolating the numerator and denominator
as in figure 5.3:

=
N6

D6
+

9
∑

i=1

{ }
i

=
Ntree

Dtree
.

Figure 5.3: Sum of all diagrams involved in the amplitude

We therefore isolate the numerator and denominator of the six-point contribution as V6 = N6/D6 and
we define the contribution from the sum of all tree diagrams as Ntree/Dtree .

Again in computing the amplitude it is useful to define the following symmetric polynomials:

s1 = a2 + a4 + a6, s2 = a4a2 + a2a6 + a4a6, s3 = a2a4a6. (5.11)

We can then solve the energy-momentum constraints for a1 and a3 for example. Although not immedi-
ately apparent, both the 6-leg vertex and the sum of diagrams with the propagator become independent
on the last incoming particle momentum when solving equation (5.5) with respect to the other two
incoming particles. Hence in our case the amplitude is independent on a5. This simplification does
not happen for q ̸= 0.

This observation simplifies largely the calculation. In fact the expression is now much shorter and
only a function of s1, s2, s3:

Ntree =− 128is21s
8
3 − 144is83 + 128is31s2s

7
3 + 560is1s2s

7
3 − 432is21s

2
2s

6
3 − 128is22s

6
3 + 16is31s

3
2s

5
3

+ 128is1s
3
2s

5
3,

Dtree =64 (s1s2 − s3) s
7
3.

(5.12)

and:

N6 =− i
[

s21s
2
2 + 8s22 − 26s1s3s2 + 8s21s

2
3 + 9s23

]

,

D6 =4s23.
(5.13)
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As we can check, numerator and denominator in equation (5.12) can be simplified by collecting the
factor 16s53 (s1s2 − s3). This gives us:

Ntree

Dtree
=

i
[

s21s
2
2 + 8s22 − 26s1s3s2 + 8s21s

2
3 + 9s23

]

4s23
(5.14)

Equation (5.14) is exactly the opposite contribution to the one from equation (5.13). This shows the
cancellation of the amplitude for the 3 z scattering.

5.1.2 Factorisation

The previous calculation was performed numerically for all the 8 interactions that appear at tree-
level. Therefore the amplitudes vanish on almost every kinematic configuration. At this point we can
differentiate the discussion depending on whether massless particles are involved or not.

When massless particles are not involved in the scattering, as for the process we studied in the previous
section, we can essentially repeat the same points that we discussed in subsection 2.1.1. The main
idea is that the full cancellation does not happen only when a propagator goes on-shell. From the
expression of the propagator in figure 5.2 we see that this happens if an incoming particle and an
outgoing particle have the same momenta, namely if ai = −aj (since we took all momenta incoming).
When only z, z̄ and y, ȳ particles are involved the energy and momentum constraints are shown
in equation (5.5) and are exactly the same as those of the sinh-Gordon 3 → 3 scattering (equation
2.5). As a consequence also for the massive scattering in the string sigma model we find that if a
final particle has the same momentum as an initial one, for example a1 = −a2, then also the other
momenta satisfy:

{a3 = −a4, a5 = −a6} or {a3 = −a6, a5 = −a4}. (5.15)

This is simply a consequence of the overall energy-momentum conservation. Therefore the only config-
urations we neglected when putting iϵ = 0 are exactly the configurations allowed to scatter non-trivially
by integrability.

This is enough to show that factorisation occurs for the massive interactions of the string sigma model.
It can be shown in a similar way as we did in subsection 2.1.1 that the tree diagrams can be picked in
couples to produce the Dirac delta-function needed to enforce the momentum conservation; therefore
we can argue in the same way we did in section 2.1.1 that the S3→3 at the first perturbative order has
the same factorised structure as in equation (2.18).

The scatterings involving massless particles are slightly different. As we already mentioned we checked
numerically that also for these types of processes the amplitudes cancel when iϵ = 0. However it is
worth noting that the factorisation does not happen exactly in the same way. Take for example the
process:

u(p1) + u(p2) + z(p3)→ u(p4) + u(p5) + z(p6) (5.16)

The six-point vertex for this process can be obtained from the L
(6)
µXX piece in appendix C, equations

(C.5),(C.6),(C.7). The tree diagrams that contribute to this process are 8 in total, four of which have
a massless propagator and the others a z particle propagator.

Notice that by crossing z(p3) we can connect the process in equation (5.16) to u u → u u z z̄. We
expect this last process to have zero amplitude for every kinematic configuration since an integrable
theory should not allow interactions to produce particles. The difference in this case with respect to
interactions that do not involve massless particles is in the kinematic constraints. The energy and
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momentum conservation constraints for the process in equation (5.16) can be written as:






p1 + p2 +
1
2

√

1− q2
(

a3 − 1
a3

)

= p4 + p5 +
1
2

√

1− q2
(

a6 − 1
a6

)

|p1|+ |p2|+ 1
2

√

1− q2
(

a3 +
1
a3

)

= |p4|+ |p5|+ 1
2

√

1− q2
(

a6 +
1
a6

) (5.17)

The massless particles have the standard momentum and energy definitions while for the energy and
momenta of the z particles are parametrised as in equation (5.4). These equations are different from
the ones we have already seen in the sense that if one of the initial momenta is equal to one of the
final ones the constraints do not automatically ”collapse” the other momenta to the solution allowed
by integrability. This fact was crucial for the factorisation of the amplitude in the sinh-Gordon case
and hence also in the elastic three z scattering in the string sigma model.

Now suppose that we are in the region of the phase space close to the p1 = p4 solution. This will
make some of the tree diagrams divergent and we expect them to diverge in couples. The divergent
diagrams with the massless propagator are:

• •2 6

3

51

4

Vu Vzu
• •
Vu Vzu

5 6

3

21

4

Figure 5.4

While the ones with the massive propagator are:

• •3 6

2

51

4

Vzu Vzu
• •
Vzu Vzu

3 6

4

12

5

Figure 5.5

Observe that the u particles are depicted in green and the z and z̄ particles in blue. Vu and Vzu refer
respectively to the vertex with four u particles and the mixed vertex with u and z, both reported in
appendix D.

These two couples of diagrams are able to produce the delta-functions in a way closely resembling
what we already saw. Suppose to have p1 > 0 and p2 < 0. Notice that the only other choice can be
the opposite one since the two incoming massless momenta must be opposite in sign in order to allow
the scattering to happen. Taking the limit p1 → p4 and selecting the p2 = p5 solution at this limit the
sum of the propagators in figure 5.4 can be rewritten as:

− i

4p2

(

1

p1 − p4 − iϵ
4p2

− 1

p1 − p4 +
iϵ
4p2

)

. (5.18)

On the other hand from the diagrams in figure 5.5 we obtain from the sum of the propagators:

− ia3

2(1− q2)1/2

(

1

p1 − p4 − iϵa3
2(1−q2)1/2

− 1

p1 − p4 +
iϵa3

2(1−q2)1/2

)

. (5.19)
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From the considerations in section 2.1.1 we can obtain from each couple of diagrams the delta-function
enforcing p1 = p4. Therefore for this configuration of momenta the amplitude factorises in products
of two 4-vertices amplitudes in the same way as for the massive case.

Until now the reasoning is similar to the one we employed for sinh-Gordon theory. Yet in the massless
case in the string model we should immediately spot a difference. With the p1 = p4 assumption the
kinematic equations in (5.17) actually yield two solutions, not only the {p2 = p5, a3 = a6} one. In
fact we obtain the same system that we discussed in equation (4.19). Therefore the deltas enforcing
p1 = p4 would not be enough to also impose that the initial set of momenta is conserved.

This difference seems to spoil the factorisation of the interaction but actually it does not. The other
solutions are taken care of once we recall the properties of the Vzu vertex, in particular the discussion in
section 4.2. Indeed, from equations (5.17) we can check that the energy and momentum conservation,
when p1 = p4 is imposed, requires either that p2 = p5, namely the only configuration for which we
expect a non-zero, factorised amplitude, or that sign(p2) = −sign(p5). Clearly all of the four diagrams
in figures 5.4 and 5.5 contain the vertex Vuz with incoming particles 2 and 5. When the momenta have
opposite signs we observed that such vertex is automatically zero. These vanishing 4-vertices are at
the numerator of the apparently divergent tree diagrams; however the ”0

0 ” ambiguity is prevented by
the iϵ, whose limit to zero must be taken at the end. Hence all of these potentially divergent diagrams
actually vanish. Hence for this process the amplitude factorises only when the initial set of momenta
is equal to the final one.

We should also mention that this mechanism is also responsible for canceling processes that are not
allowed by integrability. As a matter of fact, we can cross one z particle in the previous process to
obtain another process where two incoming u end up into two u plus z and z̄. Observe that the latter
is described by the exact same diagrams and only the total conservation of energy and momentum
differs. The kinematic constrains become instead:







p1 + p2 = p4 + p5 +
1
2

√

1− q2
(

a3 − 1
a3

)

+ 1
2

√

1− q2
(

a6 − 1
a6

)

|p1|+ |p2| = |p4|+ |p5|+ 1
2

√

1− q2
(

a3 +
1
a3

)

+ 1
2

√

1− q2
(

a6 +
1
a6

) (5.20)

Here the label were kept the same so that near the configuration p1 = p4 the diagrams in figure 5.4
and 5.5 are still the divergent ones. Even in this case we do not expect any delta to appear since this
process should not happen from the integrability of the theory. When p1 = p4 the equations in (5.20)
reduce to the equations in (4.13) which again admit two solutions. These two solutions both require
that sign(p2) = −sign(p5). The properties of the massless vertices are in this case sufficient to cancel
the numerator of the diagrams that would individually diverge otherwise. Once again we can check
that each potentially divergent diagram actually vanishes due to the presence of vanishing Vuz or Vuu

vertices.
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Chapter 6

Conclusions

This thesis was focused on the perturbative investigation of the S-matrix of bosonic non-linear σ
models defined on the worldsheet of the strings in AdS3 × S3 × T 4 supported by a mixture of RR
and NSNS fluxes. These models have been shown to be perturbatively integrable at the tree level, as
expected from the classical considerations presented in ref. [3]. In this work we have first studied the
two-to-two particles processes and computed the full tree-level two-particle S-matrix. We also checked
that all the scatterings involving three particles factorise.

More precisely the thesis has been structured as follows.

In the first chapter we introduced certain universal properties that integrable QFTs need to satisfy. In
chapter 2 these properties have been explicitly checked at the tree-level for two notoriously integrable
models. Some of these calculations have been used as training grounds in preparation for the actual
string sigma model.

Then we dedicated the third chapter to the complete derivation of the NLSM starting from the string
action. The model is obtained after fixing the light-cone gauge and the subsequent derivation was
similar to the one in ref. [28] (where the AdS5 × S5 background was investigated). The resulting
theory is described by an Hamiltonian with derivative interactions which was computed up to the
sixth order in the fields and momenta. This is a necessary step to compute three-to-three amplitudes
perturbatively at the tree-level. The interacting Lagrangian was also obtained and split into the
relevant pieces describing the 4-point or 6-point Feynman vertices. The interacting Hamiltonian and
the pieces composing the interacting Lagrangian are presented in appendices B and C respectively.

After deriving the Lagrangian of the theory we have obtained the Feynman rules for the four and
six-leg vertices; the first kind are reported in appendix D in full. The others are not reported due to
the length of the expressions but can be read off from the sextic Lagrangian. In the fourth chapter we
computed all the possible two-to-two scattering processes at the tree level. We checked that only the
processes allowed by integrability are non-vanishing; we reported all the amplitudes that contribute
to the two-to-two S-matrix.

Finally in the last chapter we considered processes involving 6 external particles. The cancellation
of all the amplitudes forbidden by integrability has been checked. We reported an example of a
calculation explicitly showing this fact for a class of processes. Afterwards we successfully checked the
tree-level factorisation of the allowed three-to-three amplitudes into products of two-to-two amplitudes
and explained the mechanisms through which this happens.

The original results of this work are presented in [32].
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Appendix A

G and B-fields in light-cone coordinates

Here we present the expression for the metric G and the B-field in light-cone coordinates. The metric
can be written as spacetime interval:

ds2 =
[

−
(2 + |z|2
2− |z|2

)2
+
(2− |y|2
2 + |y|2

)2]

dx2+

+
[

−a2
(2 + |z|2
2− |z|2

)2
+ (1− a)2

(2− |y|2
2 + |y|2

)2]

dx2−

+
[

2a
(2 + |z|2
2− |z|2

)2
+ 2(1− a)

(2− |y|2
2 + |y|2

)2]

dx+dx−

+
8

(2− |z|2)2dzdz̄ +
8

(2 + |y|2)2dydȳ + 2dudū+ 2dvdv̄.

(A.1)

The B-field takes the form:

B =
8iq

(2− |z|2)2 [z̄dx+ ∧ dz − zdx+ ∧ dz̄ − az̄dx− ∧ dz + azdx− ∧ dz̄]

+
8iq

(2 + |y|2)2 [ȳdx+ ∧ dy − ydx+ ∧ dȳ + (1− a)ȳdx− ∧ dy − (1− a)ydx− ∧ dȳ] .

(A.2)

From these we read the terms in the coefficients in equation (3.27):

Bz+ = Bz̄+ =
−4iqz̄

(2− |z|2)2 , Bz− = Bz̄− =
4aiqz̄

(2− |z|2)2 ,

By+ = Bȳ+ =
−4iqȳ

(2− |y|2)2 , By− = Bȳ− =
−4(1− a)iqȳ

(2− |y|2)2 .

(A.3)

and

G++ = −
(2 + |z|2
2− |z|2

)2
+
(2− |y|2
2 + |y|2

)2
,

G−− = −a2
(2 + |z|2
2− |z|2

)2
+ (1− a)2

(2− |y|2
2 + |y|2

)2
,

G+− = a
(2 + |z|2
2− |z|2

)2
+ (1− a)

(2− |y|2
2 + |y|2

)2
,

Gzz̄ =
4

(2− |z|2)2 , Gyȳ =
4

(2 + |y|2)2 , Guū = Gvv̄ = 1.

(A.4)
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Appendix B

Free and interacting Hamiltonians

The free Hamiltonians of the non-linear sigma model is the following.

H
(2) =

[

pzpz̄ + pypȳ + pupū + pvpv̄ + |ź|2 + |ý|2 + |ú|2 + |v́|2
]

(B.1)

+ (|z|2 + |y|2) + iq(z̄ź − z ´̄z + ȳý − y ´̄y).

The quartic Hamiltonian is also reported. It has a a gauge dependence and is wrote in a way that it
greatly simplifies in the a = 1

2 gauge.

H
(4) = (|z|2 − |y|2)

[

pzpz̄ + pypȳ + pupū + pvpv̄ + |ź|2 + |ý|2 + |ú|2 + |v́|2
]

− pzpz̄|z|2 + pypȳ|y|2 + |ź|2|z|2 − |ý|2|y|2 +
iq

2
(|z|2 − |y|2)(z̄ź − z ´̄z + ȳý − y ´̄y)

− iq

2
(pz ´̄z + pz̄ ź + py ´̄y + pȳý + pu ´̄u+ pūú+ pv ´̄v + pv̄v́)(z̄pz − zpz̄ − ȳpy + ypȳ)

+
iq

2

[

pzpz̄ + pypȳ + pupū + pvpv̄ + |ź|2 + |ý|2 + |ú|2 + |v́|2
]

(z̄ź − z ´̄z − ȳý + y ´̄y)

+
(2a− 1)

2

[

(pzpz̄ + pypȳ + pupū + pvpv̄ + |ź|2 + |ý|2 + |ú|2 + |v́|2)2
]

+
(2a− 1)

2

[

−(|z|2 + |y|2)2 − ((pz ´̄z + pz̄ ź + py ´̄y + pȳý + pu ´̄u+ pūú+ pv ´̄v + pv̄v́))
2
]

+
(2a− 1)iq

2

[

(z̄ź − z ´̄z + ȳý − y ´̄y)
(

pzpz̄ + pypȳ + pupū + pvpv̄ + |ź|2 + |ý|2 + |ú|2 + |v́|2 − (|z|2 + |y|2)
)]

− (2a− 1)iq

2

[

(pz ´̄z + pz̄ ź + py ´̄y + pȳý + pu ´̄u+ pūú+ pv ´̄v + pv̄v́)(z̄pz − zpz̄ + ȳpy − ypȳ)
]

.

(B.2)

The part of the Hamiltonian containing 6 powers of the fields can be written as:

H
(6) = H

(6)
0 +

(2a− 1)

2
H

(6)
1 +

(

2a− 1

2

)2

H
(6)
2 . (B.3)

For completeness we also report the expressions of H
(6)
0 , H

(6)
1 H

(6)
2 obtained from Mathematica.
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H
(6)
0 =

1

4

(

−
(

(yȳ + zz̄)
(

ȳy′ + z̄z′ − yȳ′ − zz̄′
)2

q2
)

− (yȳ + zz̄)
(

−ȳy′ + z̄z′ + yȳ′ − zz̄′
)2

q2+

+ (yȳ + zz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′) 2q2 + 2 (yȳ + zz̄)
(

z̄2z′2 − 2zz̄z̄′z′ +
(

ȳy′ − yȳ′
)2

+ z2
(

z̄′
)2
)

q2 − i
(

3z̄2z̄′z3 + z̄
(

−3z′z̄2 − 4ȳy′z̄ + 4yȳ′z̄ + 4yȳz̄′
)

z2+

+ 4yȳ
(

−z′z̄2 − ȳy′z̄ + yȳ′z̄ + yȳz̄′
)

z + y2ȳ2
(

−3ȳy′ − 4z̄z′ + 3yȳ′
)

)

q + 4i (yȳ + zz̄)
(

y
(

−ȳz̄z′ + zz̄ȳ′ + zȳz̄′
)

− zȳz̄y′
)

q − (yȳ + zz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′+

+ pȳȳ
′ + pz̄ z̄

′
)2

+(yȳ + zz̄)
(

yȳ + iqy′ȳ + zz̄ + pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′ + u′ū′ + v′v̄′−

− iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)2

+3
(

y3ȳ3 + z3z̄3
)

+ y2ȳ2pypȳ + z2z̄2pzpz̄ + 3y2ȳ2y′ȳ′ + 3z2z̄2z′z̄′+

+ i
(

2iyȳ − qy′ȳ − 2izz̄ + qz̄z′ + qyȳ′ − qzz̄′
)(

(

ȳy′ + z̄z′ − yȳ′ − zz̄′
) (

−ȳy′ + z̄z′ + yȳ′ − zz̄′
)

q2+

+ 2i (yȳ + zz̄)
(

ȳy′ − z̄z′ − yȳ′ + zz̄′
)

q + 2i (zz̄ − yȳ)
(

−ȳy′ − z̄z′ + yȳ′ + zz̄′
)

q + 2i
(

−z̄z̄′z2+

+ z̄2z′z + yȳ
(

yȳ′ − ȳy′
)

)

q − i (ypy − zpz − ȳpȳ + z̄pz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ ++pūū
′+

+ pv̄v̄
′ + pȳȳ

′ + pz̄ z̄
′
)

q + 2y2ȳ2 − 2z2z̄2 + 2yȳpypȳ − 2zz̄pzpz̄ − 2yȳy′ȳ′ + 2zz̄z′z̄′
)

+

+
(

yȳ + iqy′ȳ + zz̄ + pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′ + u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′−

− iqzz̄′ + z′z̄′
)(

−q2
(

−ȳy′ + z̄z′ + yȳ′ − zz̄′
)2 − 8yzȳz̄ − 2iq

(

z̄z̄′z2 −
(

z′z̄2 − 2ȳy′z̄+

+ 2yȳ′z̄ + 2yȳz̄′
)

z + yȳ
(

−ȳy′ + 2z̄z′ + yȳ′
)

)))

.

(B.4)

H
(6)
1 =

(

(zz̄ − yȳ)
(

ȳy′ + z̄z′ − yȳ′ − zz̄′
)2

q2
)

− (yȳ − zz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′+

+ pȳȳ
′ + pz̄ z̄

′
)2

q2 − (yȳ + zz̄)
(

ȳy′ − z̄z′ − yȳ′ + zz̄′
) (

−ȳy′ − z̄z′ + yȳ′ + zz̄′
)

q2 −
[

2
(

ȳy′ + z̄z′−

− yȳ′ − zz̄′
)

(

−z̄z̄′z2 + z̄2z′z + yȳ
(

yȳ′ − ȳy′
))

q2 − 2 (yȳ + zz̄)
(

z̄2z′2 − 2zz̄z̄′z′ −
(

ȳy′ − yȳ′
)2

+

+ z2z̄′2
)

q2 +
1

2
i
(

ȳy′ − z̄z′ − yȳ′ + zz̄′
)

(

yȳ + iqy′ȳ + zz̄ + pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′+

+ u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)2

q + (zz̄ − yȳ)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′+

+ pv̄v̄
′ + pȳȳ

′ + pz̄ z̄
′
)2

+
1

2
i
(

2iyȳ − qy′ȳ − 2izz̄ + qz̄z′ + qyȳ′ − qzz̄′
)

(

puu
′ + pvv

′ + pyy
′ + pzz

′+

+ pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′
)(

−iqypy + y′py − iqzpz + iqȳpȳ + iqz̄pz̄ + puu
′ + pvv

′ + pzz
′+

+ pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′
)

+
(

yȳ + iqy′ȳ + zz̄ + pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′ + u′ū′+

+ v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)((

(

ȳy′ − yȳ′
)2 − z̄2z′2

)

q2 + 3iyȳ
(

yȳ′ − ȳy′
)

q+

+ zz̄z′
(

3iz̄ + 2qz̄′
)

q − 2y2ȳ2 + z2
(

2z̄2 − 3iqz̄′z̄ − q2z̄′2
)

)

−
(B.5)
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Free and interacting Hamiltonians

− 1

2
i
(

2iyȳ − qy′ȳ + 2izz̄ − qz̄z′ + qyȳ′ + qzz̄′
)

[

(

ȳy′ + z̄z′ − yȳ′ − zz̄′
) (

−ȳy′ + z̄z′ + yȳ′ − zz̄′
)

q2+

+ 2i (yȳ + zz̄)
(

ȳy′ − z̄z′ − yȳ′ + zz̄′
)

q + i (−ypy + zpz + ȳpȳ − z̄pz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′+

+ pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′
)

q + 2i
(

y
(

ȳz̄z′ + zz̄ȳ′ − zȳz̄′
)

− zȳz̄y′
)

q + 2y2ȳ2 − 2z2z̄2 + 2yȳpypȳ−

− 2zz̄pzpz̄ − 2yȳy′ȳ′ + 2zz̄z′z̄′
]

−
(

yȳ + iqy′ȳ + zz̄ + pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′ + u′ū′+

+ v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)[

(

ȳy′ + z̄z′ − yȳ′ − zz̄′
) (

−ȳy′ + z̄z′ + yȳ′ − zz̄′
)

q2+

+ 2i (yȳ + zz̄)
(

ȳy′ − z̄z′ − yȳ′ + zz̄′
)

q + i (−ypy + zpz + ȳpȳ − z̄pz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′+

+ pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′
)

q + 2i
(

y
(

ȳz̄z′ + zz̄ȳ′ − zȳz̄′
)

− zȳz̄y′
)

q + 2y2ȳ2 − 2z2z̄2 + 2yȳpypȳ−

− 2zz̄pzpz̄ − 2yȳy′ȳ′ + 2zz̄z′z̄′ + i
(

2iyȳ − qy′ȳ − 2izz̄ + qz̄z′ + qyȳ′ − qzz̄′
)

(

yȳ + iqy′ȳ + zz̄+

+ pupū + pvpv̄ + pypȳ + pzpz̄ + iqz̄z′ + u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)]]

.

(B.6)

H
(6)
2 = −

((

pupū + pvpv̄ + pypȳ + pzpz̄ + ȳ
(

y + iqy′
)

+ z̄
(

z + iqz′
)

+ u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′+

+ z′z̄′
)

(

2izz̄ − qz′z̄ + ȳ
(

2iy − qy′
)

+ qyȳ′ + qzz̄′
)2
)

−i
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′+

+ pȳȳ
′ + pz̄ z̄

′
)(

iqȳpȳ + ȳ′pȳ + iqz̄pz̄ + puu
′ + pvv

′ + py
(

y′ − iqy
)

+ pz
(

z′ − iqz
)

+ pūū
′ + pv̄v̄

′

+ pz̄ z̄
′
)

(

2izz̄ − qz′z̄ + ȳ
(

2iy − qy′
)

+ qyȳ′ + qzz̄′
)

+ q2 (yȳ + zz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′+

+ pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′
)2
− (yȳ + zz̄)

(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′ + pȳȳ
′ + pz̄ z̄

′)2−

−
(

pupū + pvpv̄ + pypȳ + pzpz̄ + ȳ
(

y + iqy′
)

+ z̄
(

z + iqz′
)

+ u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′+

+ z′z̄′
)2
(

yȳ + iq
(

ȳy′ + z̄z′ − yȳ′
)

+ z
(

z̄ − iqz̄′
))

− 2
(

pupū + pvpv̄ + pypȳ + pzpz̄ + ȳ
(

y + iqy′
)

+

+ z̄
(

z + iqz′
)

+ u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
)((

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′+

+ pv̄v̄
′ + pȳȳ

′ + pz̄ z̄
′
)2

+iq (−ypy − zpz + ȳpȳ + z̄pz̄)
(

puu
′ + pvv

′ + pyy
′ + pzz

′ + pūū
′ + pv̄v̄

′+

+ pȳȳ
′ + pz̄ z̄

′
)

−
(

pupū + pvpv̄ + pypȳ + pzpz̄ + ȳ
(

y + iqy′
)

+ z̄
(

z + iqz′
)

+ u′ū′ + v′v̄′ − iqyȳ′+

+ y′ȳ′ − iqzz̄′ + z′z̄′
)2

+2iq (yȳ + zz̄)
(

ȳy′ + z̄z′ − yȳ′ − zz̄′
)

+ 2iq (yȳ + zz̄)
(

−ȳy′ − z̄z′ + yȳ′+

+ zz̄′
)

−i
(

2izz̄ − qz′z̄ + ȳ
(

2iy − qy′
)

+ qyȳ′ + qzz̄′
)(

pupū + pvpv̄ + pypȳ + pzpz̄ + ȳ
(

y + iqy′
)

+

+ z̄
(

z + iqz′
)

+ u′ū′ + v′v̄′ − iqyȳ′ + y′ȳ′ − iqzz̄′ + z′z̄′
))

.

(B.7)
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Appendix C

Pieces of the sextic Lagrangian

Here we report all the different interaction pieces of the sextic Lagrangian of the string sigma model.
These contribute to L

(6) as illustrated in section 3.4.

A
(6)
X =

1

4
|X|2

[

|X|2(|Ẋ|2 − 9|X ′|2)− (X ′2 − Ẋ2)(X̄ ′2 − ˙̄X2)
]

+
iq

4
|X|2

[

|X|2(XX̄ ′ − X̄X ′) + 2(Ẋ2X̄X̄ ′ − ˙̄X2XX ′) + 6|X ′|2(XX̄ ′ − X̄X ′)
]

+
q2

2
|X ′|2

[

|X|2(|Ẋ|2 − |X ′|2)− 1

2
X2( ˙̄X2 − X̄ ′2)− 1

2
X̄2(Ẋ2 −X ′2)

]

.

(C.1)

B
(6)
X = |X|2

[

˙̄X2X́2 + ´̄X2Ẋ2 − 2|X́|4
]

+ iq
[

−(X ´̄X − X̄X́)(−3

2
|X́|2|X|2 + 1

2
|X|4 + 1

2
|X́|2|Ẋ|2 − 3

2
|X́|4 − 1

2
|Ẋ|4)

+ (
1

2
|Ẋ|2 − 3

2
|X́|2 − |X|2)(XX́ ˙̄X2 − X̄ ´̄XẊ2) + X̄ ˙̄X2X́3 −XẊ2 ´̄X3

]

+ q2|X ′|2
[

|X|2(|Ẋ|2 − |X ′|2) + 2(X̄2X́2 + ´̄X2X2)− 2(X̄2Ẋ2 + ˙̄X2X2)
]

.

(C.2)

C
(6)
X = −1

4

[

|X|2(|X|4 − ˙̄X2X ′2 − Ẋ2X̄ ′2 + |X ′|4 + |Ẋ|4) + 2|Ẋ|2( ˙̄X2X ′2 + Ẋ2X̄ ′2 − |X ′|4 − |Ẋ|4)
]

− 1

2

[

|X ′|2(|X ′|4 − ˙̄X2X ′2 − Ẋ2X̄ ′2)
]

− iq

4

[

(XX̄ ′ −X ′X̄)(−|X|4 − |Ẋ|4 + 2|Ẋ|2|X ′|2 − 3|X ′|4)

+ (XX ′ ˙̄X2 − X̄X̄ ′Ẋ2)(3|X ′|2 − 2|Ẋ|2) + Ẋ2XX̄ ′3 − ˙̄X2X̄X ′3
]

−q2

4

[

2|X|2(|X ′|4 −+|Ẋ|2|X ′|2)

+ (Ẋ2X̄2 + ˙̄X2X2 −X ′2X̄2 − X̄ ′2X2)|X ′|2
]

.

(C.3)

D(6)
µ = −1

2

[

|µ′|2(|µ̇|4 − |µ̇|2|µ′|2 + |µ′|4 − µ̇2µ̄′2 − ˙̄µ2µ′2) + |µ̇|2(µ̇2µ̄′2 + ˙̄µ2µ′2 − |µ̇|4)
]

. (C.4)
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E
(6)
µµX = −1

4
|X|2

[

|µ̇|4 − µ̇2µ̄′2 − µ′2 ˙̄µ2 + |µ′|4
]

. (C.5)

F
(6)
µµX = |X|2

[

|µ̇|2 − |µ′|2
]

−1

4
iq
[

(XX̄ ′ − X̄X ′)(|µ̇|4 − 3|µ′|4 + µ̄′2µ̇2 + µ′2 ˙̄µ2)

− (X ˙̄X − X̄Ẋ)(2|µ̇|2 − 2|µ′|2)(µ̇µ̄′ + ˙̄µµ′)
]

.
(C.6)

G
(6)
µµX =

1

4

[

(ẊX̄ ′ + ˙̄XX ′)(4(|µ′|2 − |µ̇|2)(µ̇µ̄′ + ˙̄µµ′) + (|Ẋ|2 − |X ′|2)(−2µ̇2µ̄′2 − 2 ˙̄µ2µ′2 + 6|µ̇|4 − 2|µ′|4)

+ |X|2(µ̇2µ̄′2 + ˙̄µ2µ′2 − |µ̇|4 − |µ′|4)
]

+
1

4
iq
[

−(XX̄ ′ − X̄X ′)(|µ̇|4 + 3|µ′|4 + µ̄′2µ̇2 + µ′2 ˙̄µ2)

− (X ˙̄X − X̄Ẋ)(2|µ̇|2 − 2|µ′|2)(µ̇µ̄′ + ˙̄µµ′)
]

.

(C.7)

H
(6)
µXX =

1

2
|X|2

[

(µ̇µ̄′ + ˙̄µµ′)(X ′ ˙̄X + X̄ ′Ẋ)− (|µ̇|2 + |µ′|2)(|X ′|2 + |Ẋ|2 + |X|2)
]

+ iq|X|2
[

|µ′|2(XX̄ ′ − X̄X ′)
]

+
q2

2
|X|2

[

(µ̇µ̄′ + ˙̄µµ′)(X ′ ˙̄X + X̄ ′Ẋ)

− (|µ̇|2 + |µ′|2)(|X ′|2 + |Ẋ|2 + |X|2)
]

.

(C.8)

I
(6)
µXX = |X|2

[

|µ̇|2(|Ẋ|2 − |X ′|2) + (µ̇µ̄′ + ˙̄µµ′)(X ′X̄ + X̄ ′X) + |µ′|2(|Ẋ|2 + 3|X ′|2)
]

− iq

2

[

2(µ̇µ̄′ + ˙̄µµ′)(X ˙̄X − X̄Ẋ)(|X ′|2 − |Ẋ|2) + (XX ′ ˙̄X2 − X̄X̄ ′Ẋ2)(|µ′|2 − |µ̇|2)

+ (µ̇µ̄′ + ˙̄µµ′)(XẊX̄ ′2 − X̄ ˙̄XX ′2)− |µ′|2(XX̄ ′ − X̄X ′)|X|2
]

− q2

2

[

(|µ′|2 − |µ̇|2)(X̄2Ẋ2 +X2 ˙̄X2)− 2|X|2|µ′|2(|Ẋ|2 − |X ′|2)
]

.

(C.9)

J
(6)
µXX =

[1

2
(|µ′|2(−|X|2|Ẋ|2 + |Ẋ|4 − |X|2|X ′|2 + (X̄2Ẋ2 +X2 ˙̄X2))

+ |µ̇|2(−|X|2|Ẋ|2 − |X ′|4 − |X|2|X ′|2 − (X̄2Ẋ2 +X2 ˙̄X2))

+ (|X|2 − 2|Ẋ|2 + 2|X ′|2)(µ̇µ̄′ + ˙̄µµ′)(X ′ ˙̄X + X̄ ′Ẋ) + 3|µ̇|2|Ẋ|4 − 3|µ′|2|X ′|4)
]

iq

2

[

(µ̇µ̄′ + ˙̄µµ′)
(

(|Ẋ|2 − 2|X ′|2)(X ˙̄X − X̄Ẋ)− (XẊX̄ ′2 − X̄ ˙̄XX ′2)
)

− (XX̄ ′ − X̄X ′)(|µ̇|2|X ′|2 + 3|µ′|2|X ′|2) + (XX ′ ˙̄X2 − X̄X̄ ′Ẋ2)(|µ̇|2 − |µ′|2)
]

q2

4

[

|µ′|2(X̄2X ′2 +X2X̄ ′2 − X̄2Ẋ2 −X2 ˙̄X2) + 2|X|2(|Ẋ|2 − |X ′|2)|µ′|2
]

.

(C.10)
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K(6)
uvv =

1

2

[

2(|v′|2 − |v̇|2)(u̇ū′ + ˙̄uu′)(v̇v̄′ + ˙̄vv′) + 3|u̇|2|v̇|4 − 3|u′|2|v′|4

− |u′|2|v̇|4 − |u̇|2|v′|4 + (|u′|2 − |u̇|2)( ˙̄v2v′2 + v̇2v̄′2)
]

.
(C.11)

L(6)
yzz =

1

4

[

|z|2
(

|z|2(|y|2 − |y′|2 + 2|ẏ|2)− 2|ẏ|2|ż|2 − 2|y′|2|ż|2 − 2|z′|2|ẏ|2 − 2|y′|2|z′|2

+ 2(żz̄′ + ˙̄zz′)(ẏȳ′ + ˙̄yy′) + 8|y|2|z′|2
)

−|ż|4|ẏ|2 + |y|2
(

−|z′|4 + ˙̄z2z′2 + ż2z̄′2
)]

.

iq

2

[

(zz̄′ − z̄z′)(−|z|2|y|2 − |y|2|z′|2 + 2|z|2|y′|2)− |y|2(zz′ ˙̄z2 − z̄z̄′ż2)− 2(yȳ′ − ȳy′)|z|2|z′|2
]

q2

2

[

|z|2(|ż|2|y′|2 − |y′|2|z′|2) + |z′|2
(

(z̄ż − ˙̄zz)(ȳẏ − ˙̄yy)− (z̄z′ − z̄′z)(ȳy′ − ȳ′y)
)]

.

(C.12)

M (6)
yzz = −

[

|z|2
(

−|ż|2|ẏ|2 + |ż|2|y′|2 + |ẏ|2|z′|2 + 3|z′|2|y′|2 − (żz̄′ + ˙̄zz′)(ẏȳ′ + ˙̄yy′)
)

+ |y|2(|ż|4 − |z′|4)
]

− iq

2

[

( ˙̄yy′ + ẏȳ′)
(

(z̄ż − ˙̄zz)(|ż|2 − 2|z′|2)− z′2z̄ ˙̄z + z̄′2zż − 2|z|2(z̄z′ − z̄′z)
)

+ (zz′ ˙̄z2 − z̄z̄′ż2)
(

|y|2 − |ẏ|2 + |y′|2
)

−|ż|2( ˙̄zz′ − z̄′ż)(ȳẏ + ˙̄yy)

+ ( ˙̄zz′ + z̄′ż)(ȳẏ − ˙̄yy)|z′|2 + (z̄z′ − z̄′z)
(

−|y|2|z′|2 + |ẏ|2|z′|2 + 2|z|2|y′|2 + 3|z′|2|y′|2
)

+ (ȳy′ − ȳ′y)
(1

2
(−|z|4 + |ż|4 + z′2 ˙̄z2 + z̄′2ż2) + 2|z|2|z′|2 + 3

2
|z′|4

)]

− q2

2

[

|y′|2
(

−2|z|2|ż|2 + |z|2|z′|2 − z′2z̄2 − z̄′2z2 + z2 ˙̄z2 + z̄2ż2
)]

.

(C.13)

N (6)
yzz =

1

4

[

|z|2
(

−3|z|2|y|2 − 2|z′|2(|ẏ|2 + |y′|2)− |ż|2(|ẏ|2 + |y′|2)
)

+ |z′|4(−|y|2 − 2|ẏ|2 − 6|y′|2) + |ż|4(−|y|2 + 2|y′|2 + 6|ẏ|2)

+ (żz̄′ + ˙̄zz′)(ẏȳ′ + ˙̄yy′)
(

2|z|2 + 4|z′|2 − 4|ż|2
)

+(z′2 ˙̄z2 + z̄′2ż2)(|y|2 − 2|ẏ|2 + 2|y′|2)
]

+
iq

4

[

(ȳy′ − ȳ′y)
(

−|z|4 − 3|z′|4 + |ż|4 + z′2 ˙̄z2 + z̄′2ż2
)

−(z̄z′ − z̄′z)(|z|2|y|2 + |z′|2(2|ẏ|2 + 6|y′|2)

+ ( ˙̄yy′ + ȳ′ẏ)
(

( ˙̄zz − z̄ż)(−4|z′|2 + 2|ż|2)− 2zżz̄′2 + 2z̄ ˙̄zz′2
)

−( ˙̄zz′ + z̄′ż)( ˙̄yy − ȳẏ)(2|z′|2 − 2|ż|2)

+ 2(|ẏ|2 − |y′|2)(zz′ ˙̄z2 − z̄z̄′ż2)
]

+
q2

4

[

2|z′|2( ˙̄yy − ȳẏ)( ˙̄zz − z̄ż) + |y′|2
(

z′2z̄2 + z̄′2z2 − z2 ˙̄z2 − z̄2ż2

− 2|z|2|z′|2 + 2|z|2|ż|2
)

−2|z′|2(ȳ′y − ȳy′)(z̄′z − z̄z′)
]

.

(C.14)
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O(6)
yzµ =

1

2
(|µ′|2 + |µ̇|2)(−|z|2|ẏ|2 − |y|2|ż|2 − |z|2|y′|2 − |y|2|z′|2) + (|µ′|2 − |µ̇|2)|z|2|y|2

1

2

(

( ˙̄µµ′ + µ̄′µ̇)(|z|2( ˙̄yy′ + ȳ′ẏ) + |y|2( ˙̄zz′ + z̄′ż)
)

+
iq

2

[

(|µ′|2 − |µ̇|2)
(

|z|2(ȳy′ − ȳ′y) + |y|2(z̄z′ − z̄′z)
)

+ ( ˙̄µµ′ + µ̄′µ̇)(|z|2(ȳẏ − ˙̄yy) + |y|2(z̄ż − ˙̄zz)
]

+
q2

2

[

|µ′|2
(

(żz̄ − ˙̄zz)(ẏȳ − ˙̄yy)− (zz̄′ − z̄z′)(yȳ′ − ȳy′)
)]

.

(C.15)

P (6)
yzµ = −1

2

[

4|µ′|2(|z|2|y′|2 − |y|2|z′|2)− 4|µ̇|2(|z|2|ẏ|2 − |y|2|ż|2)
]

− iq

2

[

(|µ′|2 − |µ̇|2)
(

(ȳy′ − yȳ′)(|z|2 − |ż|2)− (z̄z′ − zz̄′)(|y|2 − |ẏ|2)

− (żz̄ − ˙̄zz)(ẏȳ′ + ˙̄yy′) + (ẏȳ − ˙̄yy)(żz̄′ + ˙̄zz′)
)

+(3|µ′|2 + |µ̇|2)((z̄z′ − zz̄′)|y′|2 − (ȳy′ − yȳ′)|z′|2)

+ ( ˙̄µµ′ + µ̄′µ̇)
(

(ẏȳ − ˙̄yy)(|z|2 + |z′|2 + |ż|2)− (żz̄ − ˙̄zz)(|y|2 + |y′|2 + |ẏ|2)

− (ẏȳ′ + ˙̄yy′)(z′z̄ − z̄′z) + (żz̄′ + ˙̄zz′)(y′ȳ − ȳ′y)
)]

.

(C.16)

Q(6)
yzµ =

1

4

[

(|µ′|2 + |µ̇|2)
(

−2|z|2(|y′|2 + |ẏ|2)− 2|y|2(|z′|2 + |ż|2)
)

+ |µ′|2
(

4(ẏȳ′ + ˙̄yy′)(żz̄′ + ˙̄zz′)− 4|ẏ|2|z′|2 − 12|y′|2|z′|2 + 4|ż|2(|ẏ|2 − |y′|2)
)

− |µ̇|2
(

4(ẏȳ′ + ˙̄yy′)(żz̄′ + ˙̄zz′)− 4|ż|2|y′|2 − 12|ż|2|ẏ|2 − 4|z′|2(|ẏ|2 − |y′|2)
)

+ ( ˙̄µµ′ + µ̄′µ̇)
(

( ˙̄yy′ + ȳ′ẏ)(2|z|2 − 4|ż|2 + 4|z′|2) + ( ˙̄zz′ + z̄′ż)(2|y|2 − 4|ẏ|2 + 4|y′|2)
)]

+
iq

4

[

(|µ′|2 − |µ̇|2)
(

−2( ˙̄zz − z̄ż)( ˙̄yy′ + ȳ′ẏ)− 2( ˙̄yy − ȳẏ)( ˙̄zz′ + z̄′ż)− 2(ȳy′ − ȳ′y)|ż|2

− 2(z̄z′ − z̄′z)|ẏ|2
)

+(3|µ′|2 + |µ̇|2)
(

−2(ȳy′ − ȳ′y)|z′|2 − 2(z̄z′ − z̄′z)|y′|2
)

+ ( ˙̄µµ′ + µ̄′µ̇)
(

2( ˙̄zz − z̄ż)(|ẏ|2 + |y′|2) + 2( ˙̄yy − ȳẏ)(|ż|2 + |z′|2)− 2(ȳ′y − ȳy′)( ˙̄zz′ + z̄′ż)

− 2(z̄′z − z̄z′)( ˙̄yy′ + ȳ′ẏ)
)]

+
q2

2

[

|µ′|2
(

(ȳ′y − ȳy′)(z̄′z − z̄z′)− ( ˙̄zz − z̄ż)( ˙̄yy − ȳẏ)
)]

.

(C.17)

R
(6)
Xuv =

1

2
|X|2

(

−|u′|2|v′|2 − |u̇|2|v̇|2 − |u̇|2|v′|2 − |u′|2|v̇|2 + ( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)

. (C.18)

S
(6)
Xuv = −1

2

[

|X|2(−|u̇|2|v̇|2 + |u′|2|v′|2)
]

− iq

2

[

(z̄′z − z̄z′)
(

−3|u′|2|v′|2 + |u̇|2|v̇|2 − |u̇|2|v′|2 − |u′|2|v̇|2 + ( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)

+ ( ˙̄zz − z̄ż)
(

−( ˙̄uu′ + ū′u̇)|v̇|2 − ( ˙̄vv′ + v̄′v̇)|u̇|2 + ( ˙̄uu′ + ū′u̇)|v′|2 + ( ˙̄vv′ + v̄′v̇)|u′|2
))]

.

(C.19)
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T
(6)
Xuv =

1

4

[

|X|2
(

−2|u̇|2|v̇|2 − 2|u̇|2|v′|2 − 2|u′|2|v̇|2 − 2|u′|2|v′|2 + 2( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)

|X ′|2
(

+4|u̇|2|v̇|2 − 4|u̇|2|v′|2 − 4|u′|2|v̇|2 − 12|u′|2|v′|2 + 4( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)

|Ẋ|2
(

12|u̇|2|v̇|2 + 4|u̇|2|v′|2 + 4|u′|2|v̇|2 − 4|u′|2|v′|2 − 4( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)

− 4(X ˙̄X + X̄Ẋ)
(

(|v̇|2 − |v′|2)( ˙̄uu′ + ū′u̇) + (|u̇|2 − |u′|2)( ˙̄vv′ + v̄′v̇)
)]

+
iq

4

[

2(X ˙̄X − X̄Ẋ)
(

(|v̇|2 − |v′|2)( ˙̄uu′ + ū′u̇) + (|u̇|2 − |u′|2)( ˙̄vv′ + v̄′v̇)
)

− (XX̄ ′ −X ′X̄)
(

2|u̇|2|v̇|2 − 2|u′|2|v̇|2 − 2|u̇|2|v′|2 − 6|u′|2|v′|2 + ( ˙̄uu′ + ū′u̇)( ˙̄vv′ + v̄′v̇)
)]

.

(C.20)
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Appendix D

Feynman Rules

Here are shown the Feynman rules for the 4-point vertices of the string sigma model:

•

X(p) X(p′)

X̄(k)X̄(k′)

= ±2i
[

−1

2
q
(

(

k0k
′
0 − k1k

′
1

) (

p′1 + p1
)

−
(

k′1 + k1
) (

p0p
′
0 − p1p

′
1

)

+ k′1 + k1 − p′1 − p1

)

+ p1k
′
1 + k1p

′
1 + k′1p

′
1 + k1p1

]

−1

2
i(1− 2a)

[

q
[

2p0
(

k′1 + k1
)

p′0 − 2k0k
′
0

(

p′1 + p1
)

− 2
(

p1
(

k′1 + k1
)

p′1 + p′1 + p1
)

+ 2
(

k1k
′
1

(

p′1 + p1
)

+ k′1 + k1
) ]

− 4k0p0k
′
0p

′
0 − 4k1p1k

′
1p

′
1 + 4

(

k1p0k
′
1p

′
0 + k0p1k

′
0p

′
1

)

+ 4
]

.

•

y(p) z(p′)

ȳ(k)z̄(k′)

= +i(p0k0 + p1k1 − p′0k
′
0 − p′1k

′
1) +

iq

2

[

(p′1k
′
0 + k′1p

′
0)(k0 − p0)

+ (p1k0 + k1p0)(p
′
0 − k′0) + (1 + p′0k

′
0 + p′1k

′
1)(p1 − k1)

− (1 + p0k0 + p1k1)(p
′
1 − k′1)

]

+
2a− 1

2
i
[

2(−(p′0k′0 + p′1k
′
1)(p0k0 + p1k1)

+ 1 + (p′1k
′
0 + p′0k

′
1)(p1k0 + p0k1)) + q((k′1 − p′1)(1 + p1k1 + p0k0)

+ (k1 − p1)(1 + p′1k
′
1 + p′0k

′
0) + (p0 − k0)(p

′
1k

′
0 + k′1p

′
0) + (p′0 − k′0)(p1k0 + k1p0))

]

.

•

µ(p) X(p′)

µ̄(k)X̄(k′)

= ±i
[

p0k0 + p1k1 −
q

2
(p0k0 + p1k1)(p

′
1 − k′1) +

q

2
(p1k0 + k1p0)(p

′
0 − k′0)

]

+
2a− 1

2
i
[

2(−(p′0k′0 + p′1k
′
1)(p0k0 + p1k1) + (p′1k

′
0 + p′0k

′
1)(p1k0 + p0k1))

+ q((k′1 − p′1)(p1k1 + p0k0) + (p′0 − k′0)(p1k0 + k1p0))
]

.

Figure D.1: Massive and massless interaction vertices. X = y, z and µ = u, v. In the first and last vertices + is
for z and − for y.
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Feynman Rules

•

µ(p) µ(p′)

µ̄(k)µ̄(k′)

= −2i(2a− 1)(p0p
′
0 − p1p

′
1)(k0k

′
0 − k1k

′
1).

•

u(p) v(p′)

ū(k)v̄(k′)

= (2a− 1)i
[

−(p′0k′0 + p′1k
′
1)(p0k0 + p1k1) + (p′1k

′
0 + p′0k

′
1)(p1k0 + p0k1)

]

.

Figure D.2: Massless interaction vertices. Notice they all vanish in a = 1

2
gauge.
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Appendix E

Expression of N(a1, a2, a3)
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