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3 Pólya’s theorem 20
3.1 Random walk on Z . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Random walk on Z

2 . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Random walk on binary trees . . . . . . . . . . . . . . . . . . 22
3.4 Random walk on b-ary trees . . . . . . . . . . . . . . . . . . . 24
3.5 Random walk on Z

3 . . . . . . . . . . . . . . . . . . . . . . . 25

Conclusions 28

2



Introduction

Since Antiquity, the relationship between mathematics and physics has been
object of study. Generally considered a relationship of great intimacy, many
branches of mathematics, like the probability theory, is indebted to physics
as a rich source of problems, inspiration and insight for solving these prob-
lems. In particular, in this thesis we will look at the connection between
random walks on graphs and electric network quantities (i.e. capacities, re-
sistances and potentials), which has actually been recognized for some time.
Our aim will be to prove Pólya’s theorem. It states that a random walker
on the d-dimensional lattice is bound to return to the starting point when
d = 1, 2, but has a positive probability of escaping to infinity without re-
turning to the starting point when d ≥ 3. The key to prove this resault is
to give an equivalent version of the theorem in terms of elementary electric
network theory and then use some techniques from the same theory, which
we owe to Lord Rayleigh, a physicist that made many contributions to sci-
ence. His studies also included the acoustics, so much that he introduced
those techniques in connection with an investigation of musical instruments.
A very nice and simple example we could think of to formalize the topic is
the following: wind instruments are possible in our 3-dimensional world, but
are not possible in Flatland [1], a 2-dimensional world.
Here is the plan of the thesis. Chapter 1 contains some fundamental notions
in order to talk about Pólya’s recurrence problem. We regard simple ran-
dom walks as finite state Markov chain, that is why these topics are linked
together. This leads to Chapter 2, where we first analyze how Markov chains
and resistor networks, one of the most simple electrical circuits, are involved
together. We proceed with the treatement of the essential notions of poten-
tial, currents and energy, even integrating with some laws and intermediate
theorems and thence we have Thomson’s principle and Rayleigh’s Mono-
tonicity law. The chapter ends with a crucial corollary which formalizes the
question about recurrence and transience. The final Chapter 3 is devoted to
the proof of Pólya’s theorem starting from the easiest case, in one dimension,
up to the one in three dimensions, that also generalizes greater dimensions.
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Chapter 1

Random walks and Markov
chains

The concept of random walk, sometimes known as drunkard’s walk, may be
formalized with the idea of taking one step at the time in random directions.
In order to prove the resault we are interested in, we will refer to infinite
graphs as lattices. It is important to explain what do we mean by the term
lattice, so we bring back the construction in [2]. A d-dimensional lattice is
constructed by taking as vertices those points (x1, . . . , xd) of R

d all of whose
coordinates are integers and we join each vertex by an undirected line seg-
ment - which is parallel to one of the coordinate axes of Rd - to each of its 2d
nearest neighbours. In the sequel, we will denote this d-dimensional lattice
by Z

d. Moreover, if the jumps are chosen uniformly from the set of available
neighbours, the random walk is symmetric.
In one dimension, our random walk is just an infinite line divided into seg-
ments of length one; in two dimensions, our lattice looks like an infinite
network of streets and avenues. The primary question read: “Is a wandering
man, starting at some given point, certain to return to its starting point?”
The answer is yes and if so, we say that the walk is recurrent, in either case.
In three dimensions, to fix the ideas, our lattice turns to a sky where a bird
is flying in. So, in this case (and more in general, in every higher dimension),
there is a positive probability that the bird will never return to its starting
point, and we say that the walk is transient.
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Figure 1.1: The two figures right above show us how a 1-dimensional lattice
and a 2-dimensional lattice are done, respectively. In both cases, the walk
is said to be recurrent, since there is a certain probability of return to some
given starting point which we can choose freely.

Figure 1.2: The picture gives us a partial view of what a 3-dimensional lattice
is. Unlike before, here the walk is transient because we cannot be sure that
there will be a return to the starting point eventually.

The solution to the problem of transience and recurrence is given by Pólya’s
theorem and to be able to tell about it we need to give some fundamental
notions.

1.1 Basics on graphs

With the aim of clarifying the notation used in the succeeding paragraphs,
we recall the definition of graph.

Definition 1.1. A graph G consists of a set of vertices, indicated with V (G),
a set of edges, indicated with E(G), and a relation called incidence so that
each edge is incident with either one or two vertices, its ends.
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Two distinct vertices u, v are adjacent if there is an edge with ends u, v and in
this case we will write u ∼ v. We let uv denote such an edge, but sometimes
we may prefer to denote some given edge with e. Finally, we will indicate
with deg(u) the degree of a vertex u, that is the number of edges incident to
that vertex.

Figure 1.3: In this example, we highlight that deg(u) = 4, because we can
count exactly 4 segments outgoing from the vertex u.

We will work under two conditions. The first one is that our graph is simple:
that means it has no loops or parallel edges. The second one is that our
graph is connected.

Definition 1.2. A graph G is connected if for every u, v ∈ V (G) there is a
walk from u to v.

1.2 Basics on Markov chains

Markov chains represent an essential part of the theory we are dealing with;
for this reason let us start by giving its formal definition. For this first part,
we will rely on [3].
Let E ̸= ∅ be at most countable set and M = (M(x, y))x,y∈E a stochastic
matrix, i.e., a matrix for which each row M(x, ·)) is a probability density on
E. Let’s consider a random process on E that at each time step moves from
x to y with probability M(x, y).

Definition 1.3. A sequence of random variables on a probability space (Ω,F , P )
and taking values in E is called a Markov chain with state space E and tran-
sition matrix M , if ∀n ≥ 0, ∀x0, . . . , xn+1 ∈ E

P (Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) =M(xn, xn+1) (1.1)

with P (X0 = x0, . . . , Xn = xn) > 0.
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Basically, a Markov chain is a sequence of random variables with a short
memory span, because the behaviour at the next point in time depends only
on the current value and not on what happened before (Markov property).
We will consider Markov chains whose transition matrix M is irreducible,
maybe better known as ergodic Markov chains.
Let us assume that G = (V,E) with V state space.
In order to lighten notations, we set f(x) = fx for all f functions.

Definition 1.4. A Markov chain on V is reversible if there is some positive
function π : V → (0,+∞) such that the transition probabilities satisfy for
u, v ∈ V

πupuv = πvpvu. (1.2)

Now, assume we have a reversible Markov chain {Xn}n=0,...,∞ on V.
With each distinct pair u, v ∈ V , we associate the weight

wuv = πupuv, (1.3)

noting by (1.2) that wuv = wvu.
Then, for u, v ∈ V

puv =
wuv

Wu

, (1.4)

where, for u ∈ V

Wu =
∑

v∈V

wuv. (1.5)

That means that, given that Xn = u, the chain jumps to a new vertex v with
probability proportional to wuv.
One important functions’ property we will need in the circuits theory is the
following one.

Definition 1.5. Let U ⊆ V , and let X be a Markov chain on V with transi-
tion matrix M , that is reversible with respect to the positive function π. The
function f : V → R is harmonic on U (with respect to the transition matrix
M) if for u ∈ U

f(u) =
∑

v∈V

puvf(v). (1.6)

We need two ingredients in order to describe a Markov chain completely: the
transition matrix M and a method for starting the process. That is possible
by specifing a state in which the process starts and the strategy consists in
comparing the Markov chain states with the vertices of a graph G. So, from
now on, Sn will be the position of the random walk at time n and, with a
small abuse of notation, the Markov chain considered will be denoted by S.
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Let us conclude this introductory part with a simple theorem concerning the
harmonic functions. It will come in useful.
We assume U ⊂ V , W = V \ U and s ∈ U . For u ∈ U , let h(u) be the
probability, starting at u, that the chain hits s before W . That is

h(u) = Pu(Sn = s for some n < TW )

where
TW = inf{n ≥ 0 : Sn ∈ W}

and
Pu(·) = P (· |S0 = u).

Clearly, h(s) = 1 and h(v) = 0 for v ∈ W. This fact suggests us to take
u/∈ W ∪ {s}.

Figure 1.4: Above we are representing the non-trivial case u ∈ U \ {s}; in
fact, if not, h(u) = 0 since we would be starting from the outside of U already.
Basically, h(u) is the probability that, starting from the inside of U , we reach
a point still located in the inside of U without ever touching W .

Theorem 1.1. The function h is harmonic on U \ {s}.
Proof. By the Markov property, for u /∈ W ∪ {s}

h(u) =
∑

v∈V

puvPu(Sn = s for some n < TW |S1 = v)

=
∑

v∈V

puvh(v).
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Chapter 2

Electrical networks

Having explained what we needed about Markov theory, we will now discuss
about the connection between the electrical concepts of current and voltage
and corresponding descriptive quantities of random walks regarded as finite
state Markov chains.

2.1 Resistor networks and reversible Markov

chains

From now on, we will focus on a specific cathegory of electric networks, that is
general resistors networks. This kind of electrical circuits is very elementary,
because it is based on only two electrical components: voltage generators and
resistors. We will assume that G = (V,E) is a simple, finite and connected
graph. We will assign to each edge uv a resistance Ruv; the conductance of
an edge uv is Cuv = 1/Ruv. Below we give an example of such a graph in
which are shown the resistances and the conductances.
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Figure 2.1: Given a connected graph G, we can see the resistances associated
to each edge on the left, and the corresponding conductances obtained by
C = 1/R on the right.

Now, by combining the notions of graph given above and Markov chains, we
are ready to define what a random walk on G is.

Definition 2.1. A random walk on G is a Markov chain with transition
matrix M given by

puv =
Cuv

Cu

, (2.1)

with Cu =
∑

v Cuv.

For our future reasonings, Cuv = 1 and Cu = deg(u).

2.2 Potential and currents

We now introduce some helpful notation. To each edge e = uv of the graph
G, it is possible to associate other two directed quantities: the current from
vertex u to v, iuv and the potential from u to v, φuv, which are both anti-
symmetric:

φuv = −φvu, iuv = ivu.

The best way to proceed with the discussion is to recall the Kirchhoff’s laws.

Kirchhoff’s potential law. The cumulative potential difference around any
cycle v1, v2, . . . , vn, vn+1 = v1 of G is zero, that is,

n
∑

j=1

φvjvj+1
= 0. (2.2)

Kirchhoff’s potential law is equivalent to the statement that there exists a
function φ : V → R, called a potential function or sometimes voltage, such
that

φuv = φ(v)− φ(u) ≡ φv − φu, u, v ∈ E.

Since φ is determined up to an additive constant, we are free to pick the
potential of any single vertex. Notice the convention that current flows uphill:
iuv has the same sign as φuv.

Kirchhoff’s current law. The total current flowing out of any vertex
u ∈ V other than the source set is zero, that is,

∑

v∈V

iuv = 0. (2.3)
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Remark 2.1. Let s, t ∈ V be distinct vertices termed sources; theese differ
from other vertices beacause we could suppose to connect a battery across the
pair s, t. S = {s, t} is the source set.

Figure 2.2: In this example, we assume we have a network of resistors assigned
to the edges of a connected graph. We choose two points s and t and put
a one-volt battery across these points establishing a potential φs = 1 and
φt = 0.

Another essential law is the following one, which describes how potential,
current and resistance are involved together.

Ohm’s law. For any edge e = uv

φuv = Ruviuv.

2.3 Probabilistic interpretation of the poten-

tial

Our purpose now is to give a probabilistic interpretation to the potential. To
make it possible, for one thing we will prove the following resault.

Theorem 2.1. A potential function is harmonic on the set of vertices other
than the source set.

Proof. Let U = V \ S. By Ohm’s law, the currents through the resistors are
determined by the voltages by

iuv =
φuv

Ruv

= (φv − φu)Cuv.
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Kirchhoff’s law tells us, by replacing the expression of the current above,
that for u ∈ U

∑

v∈V

(φv − φu)Cuv = 0

or
∑

v∈V

φvCuv = φu

∑

v∈V

Cuv.

That means that

φu =

∑

v∈V φvCuv
∑

v∈V Cuv

and by (2.1)

φu =
∑

v∈V

puvφv.

That is, by (1.6), φ is harmonic on U .

On the other side, the hitting probabilities are the basic examples of harmonic
functions for the chain, using the argument given by Theorem 1.1. To sum
up, φ and h are both solutions to the problem of finding a harmonic function
given its boundary values. Such a problem is called the Dirichlet problem
and it is well known, by the Uniqueness Principle, that there cannot be two
different harmonic functions having the same boundary values. Hence φ = h.

In conclusion, we have the following interpretation of voltage: when a unit
voltage is applied between s and t, making φs = 1 and φt = 0, the voltage φu

at any point u represents the probability that a walker starting from u will
return to s before reaching t.

2.4 Currents and energy

In the following, it becomes crucial to give the current a potrait of flow. As
such, a flow j from s to t satisfies the following properties:

(a) juv = −jvu;

(b) juv = 0 if u and v are not adjacent;

(c)
∑

v∈V juv = 0 for any u ̸= s, t.
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We denote by Ju =
∑

v∈V juv the flow into u from the outside. It follows
immediately, by (c), that Ju = 0 for any u ̸= s. Thus,

Js + Jt =
∑

u∈V

Ju =
∑

u,v∈V

juv =
1

2

∑

u,v∈V

(juv + jvu) = 0.

Therefore, Js = −Jt, and we call |Js| the size of the flow j. In particular, if
|Js| = 1, we call j a unit flow. With this terminology, we can now formulate
a useful version of the principle of conservation of energy.

Theorem 2.2. Let ψ : V → R be a function and j an s/t flow. Then

[ψ(t)− ψ(s)]Js =
1

2

∑

u,v∈V

[ψ(v)− ψ(u)]juv. (2.4)

Proof.

∑

u,v∈V

[ψ(v)− ψ(u)]juv =
∑

u

∑

v

ψ(v)juv − ψ(u)juv

=
∑

v

ψ(v)
∑

u

(−jvu)−
∑

u

ψ(u)
∑

v

juv

=
∑

v

ψ(v)(−Jv)−
∑

u

ψ(u)Ju

= ψ(s)(−Js) + ψ(t)(−Jt)− ψ(s)Js − ψ(t)Jt

= −2[ψ(s)Js + ψ(t)Jt]

= 2[ψ(t)− ψ(s)]Js.

If we divide both members by 2, the thesis is proven.

The just-obtained resault is useful to see how currents minimize a quantity
called energy dissipation, which is given by

E(j) =
1

2

∑

u,v∈V

j2uv/Cuv.

Now, if φ and i both satisfy the Kirchhoff’s laws and we apply (2.4) with
ψ = φ and j = i, it follows by Ohm’s law that

E(i) = [φ(t)− φ(s)]Is.

The meaning is that the energy of the true current-flow i between s to t
equals the energy dissipated in a single st edge carrying the same potential
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difference and the total current. The conductance Ceff of such an edge would
satisfy Ohm’s law, that is

Is = Ceff[φ(t)− φ(s)], (2.5)

and we define the effective conductance Ceff by this equation. Evidently, the
effective resistance is

Reff =
1

Ceff

= E(i)/I2s .

Let us state this as a theorem.

Theorem 2.3. The effective resistance Reff of the network between vertices
s and t equals the dissipated energy when a unit flow passes from s to t.

Since it is useful to be able to do calculations, we close this section with a
formulaic method for calculating the effective resistance of a network.

Series law. Two resistors of size R1 and R2 in series may be replaced by a
single resistor of size R1 +R2.

Parallel law. Two resistors of size R1 and R2 in parallel may be replaced
by a single resistor of size R where R−1 = R−1

1 +R−1
2 .

Figure 2.3: On the left we give an example of two edges e1 and e2 in parallel;
on the right two edges e3 and e4 in series. Note that both the figures can
rapresent a part of some given resistor network in which, as we said before,
we are assuming that every edge has an associated quantity called resistance.

2.5 Thomson’s principle

Now, we want to prove that the effective resistance is smaller than the energy
dissipated by any other unit flow from s to t. This resault goes under the
name of Thomson’s principle.
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Theorem 2.4 (Thomson’s principle). Let G = (V,E) be a connected
graph and Cuv strictly positive conductances. Let s, t ∈ V , s ̸= t. Then the
flow that satisfies the Kirchhoff’s laws, amongst all unit flows through G from
s to t, is the unique s/t flow i that minimizes the dissipated energy. That is:

E(i) = inf {E(j) : j a unit flow from s to t}.

Proof. Let j be any unit flow from s to t and let k = j − i where i is the
unique unit flow solution to the Kirchoff’s laws. Then k is a flow from s to
t with size |Ks| = |∑v∈V ksv| = 1− 1 = 0. On the other hand

2E(j) =
∑

u,v∈V

j2uvRuv

=
∑

u,v∈V

(kuv + iuv)
2Ruv

=
∑

u,v∈V

k2uvRuv +
∑

u,v∈V

i2uvRuv + 2
∑

u,v∈V

iuvkuvRuv.

Let φ be the potential function corresponding to i. By Ohm’s law and (2.4),

∑

u,v∈V

iuvkuvRuv =
∑

u,v∈V

[φ(v)− φ(u)]kuv = 2[φ(t)− φ(s)]Ks = 0.

Therefore, E(j) ≥ E(i) with equality if and only if j = i.

2.6 Rayleigh’s Monotonicity law

All we need now is a law from electric network theory that will be an im-
portant tool in our future study of random walks. It may be seen as a
consequence of Thomson’s principle.

Theorem 2.5 (Rayleigh’s Monotonicity law). The effective resistance
Reff of the network is a non-decreasing function of the resistances of individ-
ual edges.

Proof. Let i be the unit current flow from s to t with the resistors Ruv and
j the unit current flow from s to t, with the resistors Ruv. Let Ruv ≥ Ruv.
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By Theorem 2.3

Reff =
1

2

∑

u,v∈V
u∼v

i2uvRuv

≤ 1

2

∑

u,v∈V
u∼v

j2uvRuv

≤ 1

2

∑

u,v∈V
u∼v

j2uvRuv

= Reff.

We owe Rayleigh also the credit of two brief laws which are both equivalent
to Rayleigh’s Monotonicity law: the Shorting law and the Cutting law.

Shorting law. Shorting certain sets of nodes together can only decrease the
effective resistance of the network between two given nodes.

Cutting law. Cutting certain branches can only increase the effective resis-
tance between two given nodes.

Figure 2.4: In its simplest form, Rayleigh’s method consists in modifying
the network in order to get a simpler network from the point of view of
the resistances. Specifically, we consider two kind of modifications: cutting,
which involves nothing more than deleting some branches from the network,
and shorting, which means connecting a given set of nodes together with
perfectly conducting wires (like copper) so that the nodes shorted together
behave as if they were a single node.
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Rayleigh’s idea was to use these two laws respectively to get lower and upper
bounds for the resistance of a network. In fact, in the last chapter, we will
apply this method to solve the recurrence problem for simple random walk
in three dimensions.

2.7 Recurrence and transience

In this last section we want to establish a condition on the pair composed by
an infinite connected graph with finite vertex-degrees G = (V,E), and the
conductances Cuv, that is equivalent to the recurrence of a reversible Markov
chain S on the state space V with transition probabilities given by (2.1). For
a better understanding of the examples we will consider, let us proceed in
six stages as follows.

1. We fix a vertex of G and call it 0 which is the origin, supposing that
S0 = 0.

2. Given δ(u, v) the minimum distance in terms of edges between two
generic vertices u and v, let

Λn = {u ∈ V : δ(0, v) ≤ n}

such that
∂Λn = Λn \ Λn−1 = {u ∈ V : δ(0, v) = n}.

3. Let Gn be the subgraph of G comprising the vertex-set Λn, together
with all edges between them.

4. We let Gn be the graph obtained from Gn by identifying all vertices
in ∂Λn, and we indicate the identified vertex with In, so the resulting
finite graph Gn may be considered an electrical network with sources
0 and In. Let Reff(n) be the effective resistance of this network.

5. The graph Gn may be obtained from Gn+1 by identifying all vertices
lying in ∂Λn ∪ {In+1}, and thus, by the Rayleigh’s Monotonicity law,
Reff(n) is non-decreasing in n.

6. By the theorem about the existence of the limit for monotone functions

Reff = lim
n→∞

Reff(n).

Now we are able to prove the following theorem whose importance is mainly
related to a corollary that we will state and proof in a while.
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Theorem 2.6. The probability of ultimate return by S to the origin 0 is
given by

P (Sn = 0 for some n ≥ 1|S0 = 0) = 1− 1

C0Reff

where C0 =
∑

v:v∼0
C0v.

Proof. Let

hn(v) = P (S hits ∂Λn before 0|S0 = v), v ∈ Λn.

As we have seen in Section 2.4, hn is the unique harmonic function on Gn

with boundary conditions

hn(0) = 0,

hn(v) = 1 for v ∈ ∂Λn.

Therefore, hn is a potential function on Gn viewed as an electrical network
with source 0 and sink In. So now we can think about hn as φ and use Ohm’s
law after having conditioning on the first step of the walk:

P (S returns to 0 before reaching ∂Λn|S0 = 0) = 1−
∑

v:v∼0

p0vhn(v)

= 1−
∑

v:v∼0

Cov

C0

[hn(v)− hn(0)]

= 1− |i(n)|
C0

,

where i(n) is the flow of currents in Gn with size |i(n)|. |i(n)| = 1/Reff

by (2.5). Finally, it is enough to observe, by the continuity of probability
measures that

P0(S returns to 0 before reaching ∂Λn) → P0(Sn = 0 for some n ≥ 1)

as n→ ∞.

Let us conclude this section with an essential corollary that give us a char-
acterization of the recurrence and transience of Markov chains.

Corollary 2.1. (Recurrence and transience of S)

(a) The chain S is recurrent iff Reff = ∞.

(b) The chain S is transient iff there exists a non-zero 0/∞ flow j on G
whose energy E(j) =

∑

uv j
2
uv/Cuv satisfies E(j) <∞.
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Proof. (a) follows immediately by Theorem 2.6, in fact it is sufficient to notice
that if Reff = ∞, then

1− 1

C0Reff

= 1,

which means that the probability, starting at 0, that the walk returns to 0
before reaching In is certain, a more laborious way to say that the chain S
is recurrent.
(b) is equivalent to state that the probability that the walk, starting at 0,
returns to the origin is positive. By Theorem 2.3, there exists a unit flow
i(n) in Gn with sources 0 and In such that E(i(n)) = Reff(n). Now we make
this choice: we suppose that i is a non-zero flow so, by dividing by its size,
we may take i to be a unit flow. When restricted to the edge-set En of Gn,
i forms a unit flow from 0 to In, and so, by Thomson’s principle,

E(i(n)) ≤
∑

uv

i2uv/Cuv ≤ E(i)

whence
E(i) = lim

n→∞

E(i(n)) = Reff.

If the chain is recurrent, by (a) we have E(i) = ∞.
Conversely let us suppose that the chain is transient. By Cantor diagonal
selection method, there exists a subsequence (nk) along which i(nk) converges
to some limit j, that is

i(nk)uv → juv for every u, v ∈ V.

And since i(nk) is a unit flow from the origin, so j it is. Now

E(i(nk)) =
∑

uv∈E

i(nk)
2
uv/Cuv

≥
∑

uv∈Em

i(nk)
2
uv/Cuv

→
∑

uv∈Em

j(uv)2/Cuv as k → ∞

→ E(j) as m→ ∞.

Therefore,
E(j) ≤ lim

k→∞

Reff(nk) = Reff <∞

and j is a flow with the required properties.
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Chapter 3

Pólya’s theorem

We have come to the core issue: Pólya’s theorem, a resault which is as simple
as surprising.

Theorem 3.1 (Pólya’s theorem). Symmetric random walk on the d-dimensional
lattice Z

d is recurrent for d = 1, 2 and transient for d ≥ 3.

The proof of the theorem shall consist, at least at the beginning, of a mere
application of the Corollary 2.1. To start with, let us consider the case of
one dimension, Z.

3.1 Random walk on Z

This case is almost trivial to prove, given that an infinite line of resistors
obviously has infinite resistance by the series law. It follows by Corollary 2.1
(a) that this simple and symmetric random walk is recurrent.

Figure 3.1: If we imagine we have an infinite network-line composed by an
infinite number of resitors, this particular kind of circuit has clearly effective
resistance equal to ∞, due to the series law.

3.2 Random walk on Z
2

Now we assume that d = 2. By retracing the six steps exposed in Section
2.8, we obtain the graph showed below.
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Figure 3.2: The vertices represented with the same colour have in common
the same distance from the origin. We aim at shorting together the nodes
with the same colour to get a simplified version of the network.

This graph is equivalent to the network showed below.

Figure 3.3: The vertex labelled i ∈ {1, 2, . . . , n, n + 1, . . . } is obtained by
identifying all vertices with distance i from 0. The number of branches
between each pair of successive nodes is obtained in the following way. We
fix one vertex and count the the different total possibilities to get that vertex
from all the possible erlier with only one step. We repeat the count for all
the vertices with the same colour and finally we take the sum of all these
numbers.

Notice that there are 8i−4 edges of Z2 joining vertices i−1 and i. Figure 3.3
shows a network composed by resistors in parallel, so the modified network
is equivalent to the one in Figure 3.4, thanks to the parallel law.
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Figure 3.4: By assuming that every branch of the network showed in Figure
3.3 has resistance equal to 1, we can apply the parallel law to obtain a
network-line with a sequence of decreasing resistances like given above.

The resistance of this new network out to infinity is clearly given by

∞
∑

n=0

1

8n+ 4
= ∞

thanks to the series law, instead. Since the resistance of the old network can
only be bigger, by Rayleigh’s Monotonicity law, we conclude it too must be
infinite, that is the walk is recurrent when d = 2.

3.3 Random walk on binary trees

Going into detail, one more bidimensional case of great interest and especially
easy is the binary tree, shown in the figure below.

Figure 3.5: By binary tree we mean the tree in which every node has exactly
two children, starting from the root.
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Let us compute its effective resistance R∞ from the root out to infinity. If
we ground the set of branch points and hook the root up to a 1-volt battery
(see Figure 3.6), by Ohm’s law we have

Rn =
1

current through the battery
.

Figure 3.6: In this picture we show a modified circuit built starting from the
original one, which is the binary tree truncated at level n = 3.

By observing that, by simmetry, all branch points of the same generation are
at the same voltage, we are allowed to short together nodes that are at the
same pontetial and this still would not affect the distribution of currents in
the branches, and so the current through the battery too. Consequently

Rn =
1

current in original circuit
=

1

current in modified circuit
.
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Figure 3.7: Taking the example showed in Figure 3.6 and by reasoning in the
same way we did to find the equivalent network in Figure 3.3 starting from
the graph, we obtain this modified circuit. For every level of the binary tree,
we can count exactly the number of branches, identifying nodes situated at
the same level. Remember it goes without saying that, for every branch, we
can associate a resistance that amounts to 1 ohm. So, it is easy to apply first
the parallel law to find the resistance for every group of branches between
two consecutive nodes, and then sum them together to find the equivalent
resistance of the network, applying the series law.

If we generalize the figure above, we get

Rn =
1

2
+

1

4
+ · · ·+ 1

2n
= 1− 1

2n
.

Finally, letting n→ ∞

R∞ = lim
n→∞

Rn = lim
n→∞

1− 1

2n
= 1.

It turns that the binary tree has always finite resistance equal to 1.

3.4 Random walk on b-ary trees

Following the same line as reasoning, we can show that more in general, for
b ≥ 2, the b-ary tree has finite resistance too. Indeed, in this situation

Rn =
1

b
+

1

b2
+ · · ·+ 1

bn

=
n

∑

i=1

1

bi

=
n

∑

i=0

1

bi
− 1.

Then, letting n → ∞, we recognize the geometric series
∑n

i=0

1

bi
converging

to 1

1−
1

b

, since |1
b
| < 1 for all b ≥ 2. Thus,

R∞ =
1

1− 1

b

− 1 =
1

b− 1
.

So, in the case of b-ary trees, it turns that the resistance is always finite and
equal to 1

b−1
.

The first part of Pólya’s theorem is proven.
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3.5 Random walk on Z
3

Let us recall the second part of Pólya’s theorem: the random walk is transient
when d ≥ 3. It suffices to show that Reff < ∞ when d = 3, by Rayleigh’s
Monotonicity law. There are at least two ways of proceeding, as shown in [4].
As approach to this problem, we will try and find a finite upper bound for
Reff and as previously said in Section 2.6, there are two ways to do that: by
increasing individual edge-resistances or by cutting edges. Even if the b-ary
tree is a good prototype of networks having manifestly finite resistance to
infinity, we can’t find it as a subgraph of Z3 since the number of nodes in a
ball of radius r grows exponentially with r, whereas in Z

3, it grows like r, i.e.
much slower. Therefore, we attempt to build a subgraph Tρ of the lattice Z3

such that
Reff ≤ RTρ

<∞,

where RTρ
is the effective resistance associated to the subgraph Tρ. For us,

Tρ is a binary tree in which each connection between generation n − 1 and
generation n has resistance ρn, where ρ is a strictly positive parameter we
will choose appropiately in a while.

Figure 3.8: Still taking back the previous examples where we had a binary
tree truncated to the third level, we represent the tree Tρ, which is nothing
more than a binary tree where the resistances are defined as a function of
the level.
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Let us compute RTρ
. For i = 1, . . . , n Ri =

(

ρ

2

)i
, so

RTρ
=

∞
∑

n=1

(ρ

2

)n

which we make finite by choosing ρ < 2. It is reasonable, then, that our aim
is to embed Tρ in Z

3. In order to do that, we need to cut some excess edges
in Z

3.

Figure 3.9: The picture gives an idea of how to embed Tρ in Z
3. We must

proceed in such a way that a connection between generation n− 1 and gen-
eration n is a lattice-path of order ρn. Then we will have to compare the
number of vertices of Tρ in generation n, whose lattice-distance from the ori-
gin has order

∑n

i=1
ρi, that is, order ρn, with the ones at the same distance

in Z
3.

The key lies in figuring out that this construction is geometrically possible.

Remark 3.1. In Tρ there are 2n vertices of generation n.

Since the surface of a ball of radius r in R
3 has order r2, we have the following

remark.
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Remark 3.2. In Z
3, at the distance

∑n

i=1
ρi, that is, order ρn, the number

of vertices is of order c(ρn)2.

Considering that the vertices of Tρ are selected among the ones of Z3, it is
necessary that

c(ρn)2 ≥ 2n

which is true if ρ >
√
2.

To conclude, if we choose such a tree Tρ where
√
2 < ρ < 2, it is trivial that

Reff < c′RTρ
.

The proof in the 3-dimensional lattice can be considered concluded.
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Conclusions

We have come to the end of the thesis. Let us remind where we started. We
have seen how interpreting a mathematical question in physical terms, that
not only allows us to develop ways of thoughts and practice methods, but
also leads us to the answers to those questions. In particular, we have seen
the utility of involving energy. In took hundreds of years for the concept of
energy to emerge and take its rightful place in physical theory, but it is now
recognized as perhaps the most fundamental concept in all of physics. As far
as concerned Pólya’s theorem, the proof is simple and accessible to anyone
understands the gradual treatment of the examples: the random walk in one
and two dimensions seems almost to constitute a separate demonstration.
Then we apparently change course going to talk about binary and b-ary
trees but there is a good reason for that, and the reason is that even if the
b-ary tree is a good prototype of networks having manifestly finite resistance
to infinity, we can’t find it as a subgraph of Z3. There is simply no room for
these trees in any finite-dimensional lattice. So we come to the construction
of a particular finite-resistance tree that can be embed in Z

3. The argument
is not so detailed since it suffices to understand that this construction is
geometrically possible.
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