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Abstract

In a world where data collected by edge devices is of high interest, gathering it
at a central point has become more challenging due to current data protection
regulations.

Decentralized paradigms, such as federated and gossip learning, have
gained popularity as a solution to train models while avoiding to share raw
data. In decentralized machine learning, edge devices train a local version
of the model on their own private data. Moreover, local models are then
iteratively shared and merged to produce an aggregated model. Federated
learning has been proposed as an initial solution, which relies on a central
server for the aggregation. In gossip learning, on the other hand, the model
sharing and aggregation is performed in a peer-to-peer fashion, giving peers
more control over which peers to collaborate with.

Previous studies tested feasability and limits of decentralized machine
learning training models from scratch, which requires access to a large pool
of data. In this thesis, we analyze a different aspect of decentralized training,
exploring the case of decentralized fine-tuning of machine learning models
with a limited amount of available data. Our research involves extensive
experimentation with a number of model architectures and datasets, consid-
ering different data distributions and imbalances to simulate a real-life setup,
demonstrating its applicability across different scenarios.

Keywords: Decentralized Machine Learning, Gossip Learning, Fed-
erated Learning, Fine-tuning, Model averaging.
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Abbreviations and Acronyms

Abbreviation Meaning

FL Federated learning
ML Machine learning
DML Decentralized Machine learning
AI Artificial Intelligence
SGD Stochastic Gradient Descent
IoT Internet of Things
Non-IID Non-Independent and Identically

Distributed
TN True negative
TP True positive
FN False negative
FP False positive
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Notation Table

Notation Meaning

¸ The learning rate
x Feature vector
y Class label
n Number of training examples
m Number of target classes
N Number of peers
w Model parameters
fw(x) Model
t Number of iteration
C Set of classes
N Set of N peers
D Dataset
B Batch size
J(w) Objective function
ℓ(fw(x), y) Loss function
L(x, y, w) Per-example loss function
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Chapter 1

Introduction

Edge devices are well known for producing large volumes of data which is
specially needed for machine learning (ML) applications, since they require
enormous amounts to achieve high accuracy. The standard approach in ML
applications is to collect data from distributed data sources, then convey it to
a central node where they continue learning and making decisions. However,
collecting data at a central point has become a main challenge in the past
years due to current regulations over data privacy [7], along with the overall
general awareness of the public on concerns related to data handling.

Decentralized machine learning (DML) paradigms, such as federated and
gossip learning, have gained popularity as a solution to avoid sharing raw
data while training models. Federated learning (FL), originally proposed
by Google [18], has been recognized for its innovative approach to training
machine learning models across decentralized networks, allowing data to re-
main on the local device. It only shares model updates to the server, hence
mitigating privacy risks for the peers.

FL relies on a central aggregation node for processing data. This central
node or server is responsible for merging the model updates from all devices
and distribute the updated global model back to them. While this approach
simplifies the coordination of the learning process, it introduces potential
scalability challenges. As the number of devices increases, the central node
starts limiting the system’s ability to scale effectively. Additionally, the server
represents a possible point of failure: If the central node is compromised, it
could potentially impact the entire network.

As for gossip learning, which is truly decentralized since it uses a peer to
peer fashion of aggregating the data instead of relying on a central server, it
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represents an innovative approach that addresses critical challenges inherent
in traditional machine learning techniques [22] [12] [11]. This decentralized
approach offers several significant benefits. Similarly to FL, the data never
leaves its originating device having devices only share updates. Scalability
also represents an important benefit since gossip learning does not rely on a
central server.

While gossip learning shows great potential, it also presents some chal-
lenges. The random nature of the communication between devices can lead
to slower convergence times compared to centralized methods, ensuring that
all devices have updated models also presents itself as a great challenge due
to the asynchronous nature of the updates.

The primary objective of this research is to explore the potential of decen-
tralized machine learning in different settings not previously explored. Many
prior works have studied the applicability and limitations of decentralized
machine learning. However, most of these works focused on settings where
data providers contribute with a large amount of data, which allows to train
complex machine learning models from scratch. On the other hand, a more
common case is that the node has limited data and access to pretrained foun-
dation models, which can be fine-tuned for specific tasks. This is a frequent
setting in several computer vision and natural language processing appli-
cations [24][29]. Our research will focus on observing how fine-tuning could
impact the overall performance of decentralized machine learning paradigms,
with a clear interest on federated and gossip learning.

To capture various possible settings, we conduct a series of experiments
involving the variation of the number of models, datasets, with different dis-
tributions and imbalances in data. By doing so, we aim to provide a robust
assessment of DML capabilities and limitations.The similarities and differ-
ences in their performance provide valuable insights into the strengths and
weaknesses of that approach, and we hope to encourage further exploration
and adoption of decentralized machine learning methods.

The remainder of this thesis is structured as follows. Chapter 2 covers
essential concepts and background information necessary for understanding
this research, including the fundamentals of deep learning, decentralized ma-
chine learning, and network science. Chapter 3 reviews related work in the
field of decentralized machine learning, emphasizing existing research on un-
balanced partition sizes, non-IID data, and various averaging techniques.
Chapter 4 details the experimental setup used to assess the performance of
decentralized fine-tuning across different scenarios.
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Chapter 2

Background

In this chapter, we will explain necessary information for understanding the
context of this research. This includes an overview of the basics of machine
learning, along with in-depth explanation of federated and gossip learning.

2.1 Machine Learning Fundamentals

Machine learning is an important field of artificial intelligence (AI) where
we explore how computer systems can improve their perfomance based on
experience. ML enables machines to learn from data so that they can make
decisions without being explicitly programmed for it. A computer program
is said to learn from experience with respect to some class of tasks and
performance measure, if its performance at tasks, as measured, improves
with experience [19]. This chapter serves as a thorough introduction to the
fundamental principles of machine learning, which represents the foundation
for the concepts explored in this research.

2.1.1 Goal of Machine Learning

Machine learning involves machines grasping patterns and making decisions
without being explicitly programmed for each task. Instead of providing spe-
cific instructions, like traditional programming, machine learning algorithms
are given data to learn from.

ML tasks usually involve specifying how the system should handle exam-
ples. An example consists of features that have been assessed from an object
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or event that the machine learning system aims to analyze. These examples
are commonly represented as vectors x in R

n, where each entry xi of the
vector corresponds to a distinct feature.

Numerous types of tasks can be addressed using machine learning. Among
the most prevalent machine learning tasks are classification and regression.

In this research, our focus will be on the classification task as it represents
our goal. This task type involves the computer program determining which
of c categories some input belongs to. To accomplish this task, the learning
algorithm is typically tasked with generating a function f : Rn → {1, ..., k}.
When y = f(x), the model assigns an input described by the vector x to a
category identified by the numeric code y.

An example of a classification task is object recognition, where the input
is an image (represented as a set of pixel brightness values), and the output
is a numerical code that identifies the object depicted in the image.

We work with a dataset D = {(x1, y1), . . . , (xn, yn)} containing n exam-
ples. Each example (x, y) comprises a feature vector x in n-dimensional space
and its corresponding class label y, which is a categorical designation of a
data point to indicate its belonging to a certain class, from the set C.

The primary goal is to determine the parameters w of a function fw :
R

n → C that effectively classifies examples in D and generalizes well beyond
it, achieved by minimizing an objective function J(w).

w∗ = argmin
w

J(w) = argmin
w

(

1

n

n
∑

j=1

ℓ(fw(xj), yj) +
¼

2
∥w∥2

)

(2.1)

The regularization term ∥w∥2 and the coefficient ¼ help in controlling
model complexity and preventing overfitting. Next sections will provide a
more comprehensive explanation of how this process works.

The loss function ℓ() quantifies the prediction error and, in the context
of classification tasks, it represents the cross-entropy loss. The objective in
classification is to predict the label y for a given input x. To achieve this,
the model is designed to output a value for each class. If there are m classes,
the model’s output for an input x is fw(x) = [s1, . . . , sm], where sk ∈ R is
the score for the k-th class. These scores are converted into probabilities
[q1, . . . , qm] using the softmax activation function:

qk =
esk

∑m

l=1 e
sl

(2.2)
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Each qk lies between 0 and 1, and the sum of all qk’s equals 1.
The cross-entropy loss is the standard loss function used in classification

problems. It calculates the error based on the probability assigned to the
true class y. The loss function is defined as:

ℓ(fw(x), y) = − log(qy) (2.3)

This loss function yields higher values (indicating larger errors) when the
probability qy is low. Conversely, the loss approaches 0 as qy approaches 1.

2.1.2 The Classification Task

When data is not complete, classifying it becomes tougher for computer pro-
grams. In typical classification tasks, algorithms create one function linking
input vectors to categorical outputs. Yet, if some inputs are absent, the algo-
rithm must learn multiple functions, each handling x with different missing
subsets.

This distinction between complete and incomplete data is particularly
relevant when considering different learning paradigms. Machine learning
algorithms can be broadly categorized as supervised or unsupervised based
on the type of experience they are allowed to have during the learning process.

In supervised learning, where algorithms are trained on labeled data to
predict outputs accurately, handling missing data is crucial to ensure effective
model training. The goal in this type of learning is to learn a decision rule f :
X → Y using some labeled pairs (xj, yj) with j = 1, ..., n and xj ∈ X, yj ∈ Y .

Regression tasks, which involve predicting numerical values based on in-
puts, also face challenges with incomplete data. The learning algorithm is
tasked with producing a function f : Rn → R. While similar to classifica-
tion, the key distinction lies in the format of the output. Algorithms focus on
estimating relationships between variables to predict continuous outcomes,
making the handling of missing data equally important in regression scenar-
ios.

On the other hand, unsupervised learning involves discovering patterns
and structures in data without explicit labels. Usually, this type of learning
leverages similarities and differences within the data. In this type of learning,
the algorithm must infer relationships and patterns solely from the input
data, making the handling of missing data equally important. The absence
of labels necessitates robust methods for dealing with incomplete data, as the
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algorithm relies solely on the inherent structure of the data for learning. In
deep learning, which is the most prominent subfield of machine learning and
represents an umbrella term for all machine learning applications that utilize
neural network models, the goal often involves learning the entire probability
distribution that generated a dataset, either explicitly (in density estimation)
or implicitly (tasks like denoising).

Classification comes in two main types: binary classification and multi-
class classification. In binary classification, the machine decides between
only two options, while in multi-class classification, there are more than two
choices, which adds complexity to the task.

Performance evaluation in machine learning is crucial for assessing the
effectiveness of models. For tasks like binary classification, where there are
only two possible outcomes, and multi-class classification, where there are
more than two classes, accuracy is a common measure of performance. Ac-
curacy represents the proportion of examples for which the model produces
the correct output.

In addition to accuracy, various metrics evaluate the performance of ma-
chine learning models in both binary and multi-class classification tasks.

Binary Classification

For binary classification, these metrics include accuracy, precision, recall,
specificity, balanced accuracy, and F1 score.

� Accuracy represents the probability of correct guesses given a random
sample from the test dataset, limitations to this measure is that it may
not represent a good performance measure when the test dataset is
unbalanced;

Accuracy =
ncorrect

ntotal

(2.4)

� Precision measures the proportion of correctly predicted positive cases
out of all cases predicted as positive;

Precision =
TP

TP + FP
(2.5)

where true positive (TP) refers to the number of instances where the
model correctly predicts the positive class, and false positive (FP) as
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the number of instances where the model incorrectly predicts the pos-
itive class when it is actually negative.

� Recall quantifies the model’s ability to identify all relevant instances
among all actual positive cases;

Recall =
TP

TP + FN
(2.6)

where false negative (FN) refers to the number of instances where the
model incorrectly predicts the negative class when it is actually posi-
tive.

� Specificity measures the proportion of correctly identified negative cases
among all actual negative cases;

Specificity =
TN

TN + FP
(2.7)

where true negative (TN) refers to the number of instances where the
model correctly predicts the negative class when it is actually negative.

� Balanced accuracy calculates the average of sensitivity and specificity
to provide a comprehensive measure of model performance;

Balanced accuracy =
1

2
Recall +

1

2
Specificity (2.8)

� The F1 score is a harmonic mean of precision and recall, it offers a bal-
anced assessment of a model’s performance by considering both false
positives and false negatives;

F1 = 2 ∗
Precision ∗Recall

Precision+Recall
=

2
1

Precision
+ 1

Recall

(2.9)

Multi-class Classification

Similarly, for multi-class classification, accuracy, balanced accuracy, and F1
score are common metrics used to evaluate model performance. In this case,
balanced accuracy is the average of Recalls for all classes. For instance, in a
dataset with 3 classes we get
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Balanced accuracy =
1

N

N
∑

c=1

Recallc (2.10)

Where Recallc denotes the recall computed for class. As for F1 score, it
is the average F1 score for all classes.

F1avg =
1

N

N
∑

c=1

F1c (2.11)

Where F1c denotes the F1 score computed for each class c, and N is the
total number of classes.

2.1.3 Generalization and Model Complexity

The primary challenge in machine learning lies in ensuring that our algorithm
performs effectively on new, previously unseen inputs. The ability to perform
well on previously unseen data is called ”generalization”.

A machine learning model is trained on a training dataset and, subse-
quently, its generalization capability is assessed on a test dataset. During
training, the model is tuned to minimize a certain error measure on the
training data. This is done by treating the error minimization as an opti-
mization problem.

However, even if the optimal value is found for the training dataset, the
same performance is not guaranteed for data which was not included in the
dataset. The expected value of the error on unseen data, called generalization
error, is estimated by measuring the error on the test dataset.

Machine learning algorithms tend to achieve optimal performance when
their capacity aligns with the true complexity of the task they are intended to
address and the volume of training data available. Controlling the capacity
of a learning algorithm can be achieved by specifying its hypothesis space,
which denotes the set of functions that the learning algorithm can choose
from as potential solutions.

Models with inadequate capacity may struggle to tackle complex tasks
effectively. On the other hand, models with high capacity can address com-
plex tasks proficiently; however, if their capacity exceeds what is necessary
for the current task, they may overfit the training data.

Overfitting occurs when a model learns the training data too well, cap-
turing noise or random fluctuations, which leads to poor generalization on
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unseen data. Inversely, underfitting happens when the model is too sim-
ple to capture the underlying structure of the data, which results in poor
performance on both the training and unseen data.

Balancing model complexity is of great importance, as it influences the
trade-off between underfitting and overfitting. Hence the need for techniques
such as controlling the hypothesis space and quantifying model capacity using
the VC dimension. We can influence a learning algorithm with a preference
for one solution over another within its hypothesis space. This implies that
both functions are admissible, but one is favored. The less preferred solution
will be selected only if it significantly outperforms the preferred solution in
fitting the training data, this is the regularization technique.

2.1.4 Hyperparameters and Validation Sets

Most machine learning algorithms are characterized by hyperparameters,
which are settings used to govern the behavior of the algorithm. In some
cases, a setting is designated as a hyperparameter because it is challenging
for the learning algorithm to optimize. More commonly, a setting becomes a
hyperparameter because it is not suitable to learn that parameter from the
training set. If these hyperparameters were learned from the training set,
they would invariably select the maximum possible model capacity, leading
to overfitting.

To address this challenge, we use a validation set of examples that the
training algorithm does not observe. A held-out test set consists of examples
from the same distribution as the training set. It is used to estimate the
generalization error of a learner once the learning process concludes. It is
crucial that the test examples are not used in any manner to make decisions
about the model, including its hyperparameters. Hence, no example from
the test set can be included in the validation set. Consequently, we always
construct the validation set from the training data.

In fact, we partition the training data into two separate subsets. One
subset is employed for learning the parameters, while the other serves as our
validation set, used to estimate the generalization error during or after train-
ing. This enables us to update the hyperparameters accordingly. Usually,
around 80 % of the training data is allocated for training, while the remaining
20 % is designated for validation.

Dividing the dataset into a fixed training set and a fixed test set can
pose challenges, particularly if the test set ends up being small. A small test
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set leads to statistical uncertainty around the estimated average test error,
making it difficult to confidently assert that algorithm A performs better
than algorithm B on the given task.

While this is not a serious issue when the dataset contains hundreds of
thousands of examples or more, it becomes problematic with smaller datasets.
In such cases, alternative procedures allow one to utilize all examples in esti-
mating the mean test error, at the cost of increased computational overhead.
These procedures are based on the concept of repeating the training and
testing computations on different randomly chosen subsets or splits of the
original dataset.

One common approach is k-fold cross-validation, where the dataset is
partitioned into k non-overlapping subsets. The test error is then estimated
by averaging the test error across k trials. In each trial, one of the k subsets
serves as the test set, while the remaining data is used for training.

Hence, hyperparameters and validation sets play a pivotal role in fine-
tuning machine learning models to achieve optimal performance. Since, we
need to carefully select hyperparameters and validate model performances
on separate validation sets to ensure of a good generalization. This iterative
process of hyperparameter tuning is closely intertwined with optimization
techniques such as stochastic gradient descent, since it serves as an opti-
mization algorithm, enabling models to efficiently navigate parameter space
and converge towards optimal solutions.

2.1.5 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an algorithm playing an important role
in the field of deep learning. A common issue in machine learning is the ne-
cessity for large training sets to achieve good generalization, yet such sets are
computationally expensive. Typically, the cost function used by a machine
learning algorithm decomposes as a sum over training examples of a per-
example loss function. For instance, the negative conditional log-likelihood
of the training data can be expressed as:

J(w) = Ex,y∼p̂dataL(x, y, w) =
1

m

m
∑

j=1

L(x(j), y(j), w) (2.12)

J(w) denotes the cost function parameterized by w, p̂data represents the
empirical distribution over training data, L(x, y, w) = ℓ(fw(x), y) denotes the
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per-example loss function, and m is the number of training examples. The
cost function is computed as the average loss over all training examples.

For such additive cost functions, gradient descent necessitates computing
the gradient of the cost function with respect to the parameters w, denoted
as ∇wJ(w). This gradient is computed as the average of the gradients of the
per-example loss functions over all training examples:

∇wJ(w) =
1

m

m
∑

j=1

∇wL(x
(j), y(j), w) (2.13)

∇wL(x
(j), y(j), w) represents the gradient of the per-example loss function

with respect to the parameters w.
The computational cost of computing the gradient of the cost function

with respect to the parameters w in this manner is O(m). However, as
the size of the training set grows to billions of examples, the time required
to take a single gradient step becomes prohibitively long. This limitation
poses a significant challenge in practical applications of machine learning,
particularly in deep learning where large-scale datasets are common.

The key insight of stochastic gradient descent is that the gradient can
be approximated as an expectation, which can be estimated using a small
set of samples. Specifically, in each step of the algorithm, a mini-batch of
examples B = {x(1), . . . , x(B)} is sampled uniformly from the training set.
The mini-batch size B is typically chosen to be a relatively small number of
examples, ranging from one to a few hundred.

B is usually held fixed as the training set size m grows. This allows for
training on a dataset with billions of examples using updates computed on
only a hundred examples.

g =
1

B
∇w

B
∑

j=1

L(x(j), y(j), w) (2.14)

g represents the estimate of the gradient, computed as the average of the
gradients of the per-example loss function over the mini-batch B, where B

is the mini-batch size.
Using examples from the mini-batch B, the stochastic gradient descent

algorithm then updates the parameters as follows: w ← w − ¸g, where ¸ is
the learning rate.
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Hence, the SGD emerges as a prevalent approach for determining w∗

Equation (2.1). Initially, we set an initial weight vector w0. The iterative
process involves updating w through successive iterations or epochs, where
each epoch represents a complete pass through the entire dataset. Each iter-
ation typically involves selecting a random example (xj, yj) from the dataset.
The learning rate ¸t governs the size of the step taken in each update.

wt+1 = wt − ¸t

(

¼wt +
∇wℓ(fw(xj), yj)

w

)

(2.15)

This equation represents the update rule used in SGD, where ¸t repre-
sents the learning rate at iteration t. In practice, data is often divided into
batches to improve computational efficiency during training. After training,
the model’s performance is evaluated on a separate test dataset to assess its
generalization ability.

Through exploring the goal of machine learning, various performance
measures, learning paradigms involving supervised and unsupervised learn-
ing, as well as the critical aspects of generalization, regularization, hyper-
parameters, validation sets, and stochastic gradient descent, we have estab-
lished a solid groundwork. We are now well prepared to delve deeper into
more complicated topics.

2.2 Decentralized Machine Learning

In the field of machine learning, conventional methods typically depend on
centralized data storage, where large volumes of data are gathered, processed,
and examined in a single location. This centralized model presents notable
obstacles, such as risks to privacy, inefficient communication, and scalability
limitations. In answer to these challenges, decentralized machine learning
has presented itself as a valid alternative, providing a distributed framework
where data stays localized, and computations are executed cooperatively
across different nodes.

Decentralized machine learning (DML) refers to the process of training
machine learning models across a network of distributed devices, where each
device holds local data and contributes to the model training process without
sharing raw data externally. The significance of DML lies in its ability to
harness the collective intelligence of different datasets while respecting more
data privacy and security concerns, by manipulating data directly from edge
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devices, such as smartphones, IoT devices, and edge servers. In the next
sections, we will introduce two of the main DML paradigms we focus on in
this research.

2.2.1 Federated Learning

Driven by concerns regarding privacy among data owners, the concept of
federated learning (FL) is introduced by Google [18]. FL enables users to
collectively train a shared model while retaining their personal data on their
respective devices, hence improving their privacy. Consequently, FL emerges
as a facilitating technology for training machine learning models within mo-
bile edge networks.

Algorithm 1 Local training function [18].

1: Input: fw is the model weights; Di is the local dataset; B is the mini-
batch size; E is the total number of epochs; ¸ is the learning rate

2: Return: Updated model weights w
3:

4: function LocalTraining(fw):
5: B1, . . . ,BK ← Split Di to minibatches of size B

6: for each epoch e from 1 to E do
7: for k = 1, . . . , K do
8: Compute g on Bk according to (2.14)
9: w ← w − ¸g.

10: end for
11: end for
12: end function

A federated learning system consists of two primary entities: the data
owners, also called peers or nodes, and the model owner, often referred to
as the central server or aggregator. Let N = {1, . . . , N} represent the set
of N peers, each possessing a private dataset Di ∈ N . Each peer i, . . . , N

utilizes its dataset Di to train a local model (Algorithm 1) and transmits only
the local model parameters wi to the FL server. Subsequently, all collected
local models are aggregated into a global model with weight wG (Figure 2.1).
This approach differs from traditional centralized training, where data from
all sources are aggregated before centrally training a model.
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Node 1 Node 2

Node 4 Node 3

D1 = {(x
(j)
1 , y

(j)
1 )}n1

j=1 D2 = {(x
(j)
2 , y

(j)
2 )}n2

j=1

D4 = {(x
(j)
3 , y

(j)
3 )}n3

j=1 D3 = {(x
(j)
4 , y

(j)
4 )}n4

j=1

Server

Local update Local update

Local update Local update

Figure 2.1: Federated learning network example.

Algorithm 2 Federated averaging algorithm [18].

1: Input: N is the set of peers; T is the total number of iterations; w0
G is

the initial global model weights; LocalTraining is the local training
function

2: Return: Final global model weights wG

3:

4: Initialize wG

5: for each iteration t from 1 to T do
6: Randomly choose a subset St of x peers from N
7: for each peer node i ∈ St parallely do
8: wi ← LocalTraining(fwG

)
9: end for

10: wG ←
1∑

i∈N
Di

∑N

i=1 Diwi

11: end for

FL peers collaborate to train a machine learning model requested by an
aggregate server. The server initiates the training task by determining the
goal and its associated data requirements. The server then specifies the
hyperparameters of the global model and the training process, such as the
learning rate, batch size, and number of epochs per training round. The
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server then shares the initialized global model wG and task details to the
devices.

Utilizing the global model wG each peer individually uses its local data
and device to update the local model parameters wi. The objective for peer
i in iteration t is to determine the optimal parameters w∗

i that minimize the
loss function ℓ(wi), expressed as:

w∗

i = argminwi
J(wi) (2.16)

Following this update, the peer transmits the revised local model param-
eters to the server (Algorithm 2). The server then updates the global model
parameters wG using the received local models contributed by peers. The
server aims to minimize the global loss function ℓ(wG).

While this method simplifies the coordination of the learning process, it
presents potential scalability challenges. As the number of devices increases,
the server’s ability to scale effectively becomes more limited. Hence the need
for an alternative: Gossip learning, which is a decentralized communication
protocol offering a different approach to address these concerns.

2.2.2 Gossip Learning

Gossip learning represents a decentralized machine learning method that
operates without a central control over fully distributed data. In this setup,
we presume that the dataset D is distributed horizontally across multiple
nodes, where each node i holds its own subset Di.
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Figure 2.2: Gossip learning network example.

Each node i executes Algorithm 3. Initially, the node initializes its local
model (wi) and its age ti. A portion of the model parameters is periodically
transmitted to another node within the network. Upon receiving such a
parameter sample, a node adds it into its own model and then executes
a local update step. Although all nodes adhere to the same period ∆Ä ,
the rounds are not synchronized. Various versions of the algorithm can be
developed by employing different implementations of the methods sample,
merge, and update. In its simplest form, the sample method transmits the
entire model (without sampling), the merge method calculates the average,
and the update method performs a mini-batch update based on local data.

Gossip learning proved itself applicable in various domains including dis-
tributed sensor networks [23], peer-to-peer networks [20], and Internet of
Things (IoT) where data privacy, fault tolerance, and decentralization are of
great importance. While gossip learning algorithms can offer benefits, one
potential challenge is ensuring that the learning process converges to an ac-
curate model. The convergence rate and the final model accuracy can be
influenced by several factors, including the number of devices, the frequency
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Algorithm 3 Gossip Learning Algorithm.

1: Input: ∆Ä is the time interval; t is the communication round; w is the
model weights LocalTraining is the local training function

2: Return: Final parameters ti, wi after convergence
3:

4: Initialize parameters: ti = 0, wi = 0
5: repeat
6: Wait for time interval ∆Ä

7: Select a peer node i

8: Transmit model sample (ti, wi) to node i

9: until convergence
10:

11: procedure onReceiveModel(tr, wr)
12: Merge received model (tr, wr) into local model (ti, wi)
13: wi ← LocalTraining(fwi

)
14: ti ← max(ti, tr) + 1
15: end procedure

in which they communicate between them, and the diversity of the data
distribution across nodes.

Each iteration of the gossip learning algorithm involves nodes sharing
their model parameters to other nodes. In a large-scale network, this could
lead to an important communication cost. Techniques to reduce this cost
could be using a better sampling method to select specific parameters to
share. The performance of gossip learning can also depend heavily on how
the sample, merge, and update methods are implemented.

2.3 Fine-Tuning

Fine-tuning refers to the process of taking a pre-trained model (model that
was trained for a specific task before) and further training it on a specific
task or dataset of interest. In the context of ML, this process is applied
to large neural networks trained on extensive datasets for tasks like image
classification or natural language processing. It enables leveraging existing
knowledge for new tasks with minimal data and computational resources. It
is closely linked to transfer learning, where knowledge from one task informs
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another. Fine-tuning adjusts the pre-trained model to better suit the nuances
of the target task, making it a common strategy in transfer learning.

Fine-tuning offers several advantages over training a model from scratch
for a new task. Pre-trained models have learned rich feature representations
from vast amounts of data, which can significantly speed up the training
process and require less labeled data for the target task. Additionally, fine-
tuning often leads to better generalization performance, as the pre-trained
model has already captured generic patterns from the source task, which can
be beneficial for related tasks.

The typical workflow for fine-tuning involves four steps as described in
[27] and shown in Algorithm 4. First, we train a neural network model,
known as the source model ws, on a specific dataset. Then, we develop a
new neural network model, referred to as the target model wt, replicating all
design aspects and parameters from the source model, except for the output
layer. The parameters of the source model encapsulate knowledge from the
source dataset Ds, assumed to be transferable to the target dataset Dt. The
output layer from the source model, closely tied to source dataset labels, is
omitted in the target model. We introduce an output layer to the target
model, tailored to the number of categories in the target dataset. Initialize
the parameters of this layer randomly. Finally, we train the target model
on the target dataset. The output layer undergoes training from scratch,
whereas the parameters of all other layers are fine-tuned based on those of
the source model.

Algorithm 4 Fine-tuning example.

1: Input: fw is the pretrained model; Dt is the target dataset
2: Return: Fine-tuned target model weights wt

3:

4: m ← number of unique labels in Dt

5: f ′

w ← fw with last layer replaced by a fully connected layer with m

outputs
6: wt ← LocalTraining(f ′

w)
7:

8: return wt

To optimize the fine-tuning procedure and boost the effectiveness of the
fine-tuned model we use various techniques. These include adjusting learning
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rate schedules, implementing data augmentation strategies, and making task-
specific modifications to the model architecture.

While fine-tuning offers advantages, it also presents various factors to con-
sider. A potential challenge is overfitting to the target task, especially when
dealing with a small dataset or one that differs significantly from the original
task. Regularization techniques such as dropout, which randomly deactivates
neurons during training, and weight decay, which penalizes large parameter
values, are often employed to mitigate overfitting during fine-tuning. Addi-
tionally, selecting an appropriate pre-trained model and fine-tuning strategy
requires careful consideration of factors such as task similarity, dataset size,
and computational resources.

2.4 Fundamentals of Network Science

Network science studies the structure and dynamics of networks. This field
of research seeks to understand complex systems by analyzing the interaction
of individual components within a network. Network science studies general
properties of networks that can be applied to many different fields, including
social networks, biological systems, computer networks, and more. In the
context of decentralized machine learning, network science can be used to
analyze the convergence of a model in different types of networks.

In this section, we introduce different properties of networks and discuss
how these affect the convergence of a model.

2.4.1 Degree Distribution

One of the most important properties for nodes in a network is their degree,
which is the number of other nodes with whom they are connected. Nodes
with higher degree often play a pivotal role in networks, especially when
message propagation is involved, as in the case of decentralized machine
learning.

In general, the degree distribution in a network, i.e., the probability of
a node having a certain degree, determines how interconnected a network
is. If we denote with k the degree of a node, the degree distribution of a
network can be fully characterized by specifying the probability pK(k) for
each possible value of k.
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A possible distinction between different network types is based on their
degree distribution. Two widely studied degree distributions are the Poisson
distribution and the power-law distribution.

Poisson distribution and random networks A Poisson distribution has
the following expression:

pK(k) =
¼k

k!
e−λ (2.17)

where ¼ > 0 is a parameter that characterizes it. A network that follows
a Poisson distribution of the degrees is also called a random network. A
network generated by connecting pairs of nodes with constant probability p

follows a Poisson distribution, as long as the number of nodes N is large.
Generally, random networks lack highly connected nodes, which causes the
spread of messages to be more uniform and slower, as no single node can
serve as a major conduit for information dissemination.

Power-law distribution and scale-free networks A power-law distri-
bution has the form

pK(k) ∝ k−γ (2.18)

and here the parameter µ, which typically takes values between 2 and 3, char-
acterizes the distribution. Networks that follow a power-law distribution are
called scale-free networks. This type of distribution is especially important,
since several real-world networks are scale-free, including Internet hyperlinks,
power grids, social networks, and more. A power-law distribution of the de-
gree implies that most nodes have few connections, while a small number
of nodes, known as hubs, have a very high degree. Hubs play a central role
in the network’s connectivity and facilitate rapid information dissemination.
When a message reaches a hub, it can quickly spread to many other nodes
due to the hub’s numerous connections, thus accelerating the propagation
process.

2.4.2 Graph Representation and Adjacency Matrix

To uniquely define the topology of a network, which is its graph, you need
to specify the set of nodes and the links connecting them. Nodes can be
identified by assigning each one a unique number from 1 to N , where N is
the total number of nodes. After numbering the nodes, the network topology

Page 26 of 64



can be uniquely represented by the adjacency matrix A, where the entries
indicate the links between the nodes. The adjacency matrix is an N × N

matrix, whose entries can be either 0 or 1 according to the following criterion:

Aij =

{

1, if i is connected to j

0, otherwise
(2.19)

Since we consider only undirected network graphs, it must always be Aij =
Aji. Additionally, we do not allow loops, meaning that Aii = 0 for all
i = 1, . . . , N . An example of adjacency matrix for a given graph is reported
in Fig. 2.3.

A =













0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0













1 2

3 4

5

Figure 2.3: Example of adjacency matrix and corresponding graph topology.

2.4.3 Network models

When analyzing network protocols, it is often useful to generate synthetic
networks with specific topologies or properties. In this work, we aim to test
model convergence in networks with particular degree distributions. To this
end, we utilize two well-established algorithms to create synthetic networks:
the Erdős-Rényi algorithm, which generates networks with a Poisson degree
distribution, and the Barabási-Albert algorithm, which generates networks
with a power-law degree distribution.

Erdős-Rényi The Erdős-Rényi algorithm constructs a random network
given the number of nodes N and a link probability p. The rationale of the
algorithm is quite simple: it initializes a graph of N disconnected nodes,
and for each possible node pair (i, j) it creates a link between them with
probability p ∈ [0, 1].
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Clearly, the higher the value of p, the more connected is the resulting
network. Since each node i is connected to every other node with probability
p, the average degree in an Erdős-Rényi network is given by

E[d] = N · p. (2.20)

Furthermore, one can observe that the degree distribution is binomial with
parameters N and p, which approaches a Poisson distribution with ¼ = N ·p
for large values of N .

Barabasi-Albert Contrary to the Erdős-Rényi approach, the Barabasi-
Albert algorithm starts with a small network and gradually introduces new
nodes until the desired number of nodes N is reached. Each new node has a
fixed number ¿ of available links and uses them to connect to existing nodes.
The core idea behind this algorithm is preferential attachment: new nodes
are more likely to connect to nodes with higher degree. This aims to mimic
the dynamics of real-world networks, where “popular” nodes tend to become
more and more popular as the network evolves. For each existing node i in
the network, the probability of being chosen by a new node is proportional
to its degree di.

For N large enough, this algorithm generates a network where the degrees
follow a power-law distribution with µ ≈ 3. The average degree is simply

E[d] = 2 · ¿ (2.21)

as every new node introduces 2 new links, which contribute to both their
degree and to the degree of the nodes they connect to.
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Chapter 3

Related Works

This chapter serves as an introduction to the existing literature on feder-
ated and gossip learning, covering the most important works related to these
topics. By examining previous researches, this section highlights the con-
tributions of previous researchers but also provides a foundation for this
research.

We prioritize gathering various perspectives and conducting a critical
evaluation of the strengths and limitations of the existing research. This helps
us to establish the groundwork for interpreting and discussing the findings
in the next sections.

3.1 Non-IID Data

In decentralized machine learning, the class distribution inside the data be-
tween peers significantly affects the performance and efficiency of the result-
ing models. To verify the effectiveness of proposed solutions in real-world
situations, it is essential to test these models with non-IID (Non-Independent
and Identically Distributed) data. Non-IID data represents the natural dis-
position of real-world datasets, where each peer’s data may not be evenly
distributed. For example, in the case of labeled data (used in classification
problem), non-IID data means that different peers might own data with dif-
ferent proportion of the classes. A non-IID distribution may also result in
peers having samples from only part of the classes. By assessing models in
these conditions, we can gain insights on the robustness and adaptability of
our methods. In this section, we will focus on their method for creating non-
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IID data, and in the next sections, we will delve deeper into their approaches
to addressing the associated challenges.

The paper [21] discusses possible issues arising from peers having different
data distribution and proposes a methodology to mitigate these issues. In
federated learning, peers are expected to contribute the same type of data
drawn from one global distribution. However, data is often collected in differ-
ent ways from different resources, leading to different marginal distributions
among peers compared to the underlying global distribution. The authors’
main idea is to adjust the peer distribution closer to the global distribution
using sample weights. This adjustment allows the machine learning model
to converge faster with higher accuracy.

The authors mimicked non-IID data by equally dividing the data into 100
partitions and introducing varying levels of noise to each peer’s data, inspired
by the skewness simulation in [15]. The noise was drawn from a Gaussian
distribution with a mean of 0 and differing standard deviations. Specifically,
for the k-th peer (k ∈ [0, 99]), the noise was added with a variance of k× x

100
,

where x denotes the added noise variance.
This procedure is one of many ways to emulate a skewed data distribution

across peers.

Another approach to addressing this critical problem in the federated
learning environment is presented in the paper [18], which originally intro-
duced federated learning. The authors conducted extensive experiments us-
ing five different model architectures and four datasets. They tested itera-
tive model averaging, demonstrating that their method significantly reduces
communication costs compared to traditional communication rounds. They
argue that this approach is effective for both unbalanced and non-IID data.

The authors used a sharding technique, specifically for the MNIST dataset
(which is a dataset of labeled digits between 0 and 9), to recreate non-IID
data. In contrast to the previous approach, which simulated non-IID data
by adding noise to the samples, this method assigns different distributions
of labels to different peers. The authors first sorted the data by digit labels,
then divided it into 200 shards of size 300, and assigned each of the 100
peers 2 shards. This created a pathological non-IID partition of the data,
as most peers only had examples of two digits. This setup allowed them
to explore the extent to which their algorithms could handle highly non-IID
data distributions.
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This approach appealed to us more because we will be sharding our data
to mimic the non-IID state, but using 3 shards instead of 2 for a better
distribution of the data in our experimental setup.

3.2 Unbalanced Partition Sizes

The distribution of available data to different peers for training can have an
important impact on the performance of the models being trained.

Data imbalance is of common occurrence in real-world scenarios, where
some peers may have access to a large amount of data, while others may have
very little. This difference can lead to significant performance degradation in
the global model. Since in decentralized machine learning it relies on training
with multiple peers, peers with less data can disproportionately influence the
overall model.

This issue is widely addressed in various research papers due to its im-
pact on the performanceof models. This issue is addressed in the paper [3].
The authors acknowledge data heterogeneity across peers in FL settings as a
widely acknowledged challenge. They propose a novel method, FedNH, that
improves the local models’ performance for both personalization and gener-
alization by combining the uniformity and semantics of class prototypes.

Moreover, data imbalance can also affect the convergence speed of the
model. In FL for example, peers with more data contribute more to the
global model update, which can cause the model to converge towards the
data distribution of these peers faster. This can result in a model that is
biased towards the data-rich peers, potentially at the expense of performance
on data-poor peers.

In the next section, we will present how some researchers were able to
tackle the challenges of non-IID data and unbalanced data by implementing
new averaging techniques.

3.3 Averaging Techniques

In decentralized machine learning, aggregating parameters from different
peers is essential. This section examines various averaging techniques pro-
posed in prior studies to address possible challenges. By assessing these
approaches, this section aims to identify their strengths, weaknesses, and
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implications for decentralized model refinement in machine learning.

In the paper “Communication-Efficient Learning of Deep Networks from
Decentralized Data” [18] introduces a method for federated learning based
on iterative model averaging, named FederatedAveraging or FedAvg.

Algorithm 2 illustrates how the server aggregates model updates from
participating clients or peers in a federated learning setting. Initially, the
server initializes the global model parameters (w0). Then, in each communi-
cation round (t = 1, 2, . . . ), a subset of peers (St) is randomly chosen. Each
selected peer updates its model parameters (wk

t+1) based on its local data and
transmits these updates to the server. Once all peers complete their updates,
the server computes the weighted average of these parameters to derive the
new global model parameters (wt+1).

FederatedAveraging demonstrates an averaging approach that utilizes
decentralized computation to aggregate model updates from diverse data
sources, addressing challenges arising from data imbalances among peers.
Through iterative collaboration, it facilitates the creation of a global model
that integrates insights from all participating peers, thereby enhancing the
overall performance and resilience of the federated learning system.

The iterative model averaging technique proves particularly effective in
scenarios where data is unbalanced and non-IID (non-Independently and
Identically Distributed) across different peers. The authors conducted an
extensive empirical evaluation using five different model architectures and
four datasets. Their results demonstrated that FedAvg trains high-quality
models with relatively few communication rounds, as evidenced by its per-
formance across various architectures: a multi-layer perceptron, two different
convolutional neural networks, a two-layer character LSTM, and a large-scale
word-level LSTM.

The paper [21] starts from the fundamental concept of empirical risk
minimization and theoretically derive a solution for adjusting the distribution
skewness using sample weights. The main idea is to adjust the weight of
each sample in the loss function during training, which effectively adjusts
the peer’s data distribution closer to the global distribution.

The goal is to approximate the true global distribution p(x) as closely as
possible. To achieve this, it is necessary to find the appropriate adjusting
weights ³k(x) for the data distribution of the k-th peer qk(x), as shown in
equation (3.1) from [21]:

Page 32 of 64



³k(x)qk(x) = p(x) (3.1)

To determine sample weights, the authors utilize a neural network-based
density estimation model, MADE (Masked Autoencoder for Distribution Es-
timation) [8], to implicitly exchange density information without exposing
raw data.

MADE is an autoencoder modification that produces powerful generative
models by masking the autoencoder’s parameters to respect autoregressive
constraints. This ensures that each input is reconstructed only from previous
inputs in a specific order. Under these constraints, the autoencoder outputs
represent conditional probabilities, whose product yields the full joint prob-
ability.

The central server calculates sample weights for each peer using the esti-
mated global data distribution. These weights adjust the peers’ local models
during federated learning, aligning their local data distributions with the
global distribution. This method addresses the challenge of skewed data dis-
tribution across peers in federated learning. By adjusting data distribution
with sample weights, the authors enhance federated learning performance,
achieving faster convergence and higher accuracy.

The paper [16] explores the challenges posed by data heterogeneity in
federated learning environments. The authors begin by highlighting how
standard federated learning algorithms perform poorly when applied to net-
works where data is not independently and identically distributed, leading
to non-optimal results.

To address this problem, the paper introduces a novel algorithm called
FedProx, which extends the traditional federated averaging (FedAvg) method.
FedProx adds a proximal term to the local objective function of each par-
ticipating device. This proximal term penalizes deviations from the global
model, effectively regularizing the updates and mitigating the effects of data
heterogeneity. The loss function establishes a balance between optimizing
the local model and minimizing drift from the global model, allowing a local
model to deviate from the global model only if its performance improvement
justifies it. This approach prevents significant drifts that yield only minor
performance gains for the local model.

The main concept of FedProx involves solving the following optimization
problem at each device:
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Fk(w) +
µ

2
∥w − wt∥2 (3.2)

Here, Fk(w) represents the local function for the k-th device, w denotes
the model parameters, wt is the global model parameters at the t-th iteration,
and µ is a regularization parameter that controls the influence of the proximal
term.
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Chapter 4

Experimental Results and
Analysis

In this chapter, we present and analyze the experimental results of our study
across various scenarios, some of which were discussed in previous chapters.
We begin by outlining the methods and procedures used to collect data in
these different contexts. Then, we detail the findings for each scenario. In
the analysis section, we interpret these results and compare them to the
existing research discussed earlier. This approach helps us understand the
implications of our findings within the broader context of the field.

4.1 Datasets

In this research, we will utilize the CIFAR-10 dataset [14], a well-known and
widely-used dataset in the field of computer vision provided by Krizhevsky
et al. of the Hinton team. The CIFAR-10 dataset consists of 60,000 color
images divided into 10 different classes, with each class containing 6,000
images. The images are 32 × 32 pixels in size, making the dataset suitable
for a variety of image recognition tasks, hence our interest. The CIFAR-10
dataset includes the following 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck as shown in Figure 4.1. Each class is
mutually exclusive and represents a distinct category of objects, allowing for
a comprehensive evaluation of model performance across different types of
images.

In our research, we will use the CIFAR-10 dataset in two ways. First, we
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will use all 10 classes to test the overall performance of our models across
a diverse set of categories. This approach will allow us to measure how
well our models generalize to a broad range of objects and scenes. Second,
we will focus on only two classes: cats and dogs. This subset will allow
us to investigate how our models perform with a smaller dataset and fewer
categories. Also, since cats and dogs are visually similar in some aspects,
this scenario will help us assess the models’ classification capabilities.

The full CIFAR-10 dataset is composed of a training set of 50,000 images,
evenly distributed across the 10 classes, and a test set of 10,000 images, also
evenly distributed across the 10 classes. This full dataset will be used for
training the models, and performing final evaluations on a diverse range of
categories. For the subset of cats and dogs, the training set will consist of
10,000 images (5,000 cats and 5,000 dogs), and the test set will consist of
2,000 images (1,000 cats and 1,000 dogs). Data preprocessing is performed
using the transform function in the torchvision library. The data is shuffled
to prevent classes clustering when needed and normalized to enhance data
integrity and reduce redundancy, with a mean and standard deviation of 0.5.

frog truck truck deer automobile automobile bird horse ship cat

deer horse horse bird truck truck truck cat bird frog

deer cat frog frog bird frog cat dog deer airplane

airplane truck automobile cat deer airplane cat horse cat cat

dog bird bird horse automobile automobile automobile bird bird airplane

Figure 4.1: Sample image of CIFAR-10 data set. 
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4.2 Experimental setup

All experiments were conducted using an NVIDIA T4 GPU, known for its
high performance and efficiency in machine learning tasks. The resources
available included 12.7 GB of system RAM, 15.0 GB of GPU RAM, and
201.2 GB of disk storage.

The NVIDIA T4 GPU comes with 16 GB of GDDR6 memory, 320 Tur-
ing Tensor Cores, and 2,560 CUDA Cores, making it great for training and
running deep learning models. It supports mixed-precision training, which
helps speed up these processes. However, for our experiments, which involve
a lot of tests with many peers and numerous epochs, the T4 isn’t quite pow-
erful enough. The memory and processing power are adequate for regular
tasks but fall short for the large-scale and complex nature of our experiments,
which involve numerous peers running for many epochs.

4.3 Model architecture

In our experiments, we initially considered ResNet18 and ShuffleNetv2 as
candidate models because of their balanced performance, as it can be noticed
in the model comparison table on the TorchVision website[2].

ResNet18, part of the Residual Networks (ResNet) family, is known for
its simplicity and effectiveness. It works as a robust baseline model with rela-
tively low computational and memory requirements, which makes it suitable
for environments with limited resources. On the other hand, ShuffleNetv2 is
designed for high efficiency on mobile devices and other low-power environ-
ments, achieving competitive accuracy with significantly reduced computa-
tion and memory usage compared to more complex models.

Understanding the detailed structure of ResNet18 is crucial because it
serves as a strong foundation for many computer vision tasks. ResNet18 is
widely recognized for its effectiveness and versatility in these tasks, making it
important to explain how it is built internally. By exploring its architecture,
we gain insights into why ResNet18 is so powerful and adaptable for different
types of visual recognition problems.

The architecture of ResNet18 is composed of 18 layers, including convolu-
tional layers and fully connected layers, organized into residual blocks. The
use of residual blocks is a defining feature of ResNet18. This design helps
to mitigate the vanishing gradient problem, enabling the training of deeper
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networks.
ResNet18 starts with a 7×7 convolutional layer, followed by a batch nor-

malization layer and a ReLU activation function, which normalize the data
and introduce non-linearity. Next, a max-pooling layer reduces the spatial
dimensions. This initial sequence is followed by a series of residual blocks,
each comprising two 3 × 3 convolutional layers. Each convolutional layer in
these blocks is paired with a batch normalization layer and a ReLU acti-
vation function to ensure stable training and enhanced performance. Some
blocks also include a downsampling layer to adjust feature map sizes. Prior
to the final fully connected layer, a global average pooling layer is applied to
further reduce spatial dimensions and minimize overfitting. The final fully
connected layer outputs the classification scores for each class.

4.4 Experimental Results

This section focuses on results in different scenarios to offer an initial insight
into the experimental data collected from the various cases studied. These
scenarios were chosen based on the research reviewed in previous chapters,
ensuring a good analysis.

In these preliminary experiments, we assessed the performance of ResNet18
[10] and ShuffleNetv2 [17] models using three distinct training methods: stan-
dalone, federated, and gossip learning. Our experiments utilized the complete
CIFAR-10 dataset, which includes all 10 classes, as well as a subset containing
only 2 classes (cats and dogs). Additionally, we tested both models trained
from scratch and models that were fine-tuned on the ImageNet dataset[5].
For reproducibility purposes, all experiments were conducted with a random
seed of 42.

By examining the performance of these models with both the complete
dataset and the subset, we aim to identify which training method is most
effective for different types of data. This analysis helps us understand the
potential of each approach in scenarios with varying data availability and
computational constraints.

Upon reviewing previous researches, we understood that achieving over
90% accuracy on datasets like CIFAR10 requires extensive training, often
requiring more than 100 epochs [26]. For instance, research has shown
that Shufflenetv2 models reach their peak accuracy after around 300 epochs,
achieving results between 90% to 95% accuracy [26]. Additionally, studies
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focusing on federated learning with CIFAR have found that baseline central-
ized settings achieve slightly above 80% accuracy [28]. These findings high-
light the importance of extended training periods for optimal performance,
especially with complex datasets like CIFAR10. Given our restricted compu-
tational resources, we were unable to extend training beyond 50 epochs for
the following experimentations. The reason behind choosing this number of
epochs will be explained in the next section.

4.4.1 Training Hyperparameters

This section outlines the key training hyperparameters used in our experi-
ments to evaluate the performance of ResNet18 [10] and ShuffleNetv2 [17]
models across different scenarios. These hyperparameters include batch size,
epochs, and learning rate, which are critical factors influencing the training
process and other model performance.

In our experimental setup, we varied these hyperparameters to assess their
impact on model accuracy and convergence. The choice of hyperparameters
was guided by established practices and experiments done below to be sure
what is best for our environment.

Batch Size

The batch size determines the number of samples processed in each iteration
of training. A larger batch size can lead to faster convergence but may require
more memory. We explored batch sizes ranging from 32 to 128 to find an
optimal balance between efficiency and performance, see Figure 4.2.

The results show that the batch size 32 consistently demonstrates strong
performance across various model groups. Its competitive accuracy, effi-
ciency, and stability highlight its robustness in this analysis. Eventhough 32
may not always achieve the highest accuracy compared to batch sizes like 64
and 128, its close performance suggests competitiveness.

Batch size 32 represents a model with lower complexity and fewer param-
eters, yet it achieves commendable accuracy, indicating efficient resource uti-
lization. This makes it a potentially more efficient choice in scenarios where
there are constraints on processing power, memory, or energy consumption.
Hence why we chose to continue our tests with B = 32.
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Figure 4.2: Comparing batch sizes in federated learning with ResNet18 across
different numbers of peers over 50 epochs.

Epochs

Epochs indicate how many times the model goes through all the data dur-
ing training. Due to our limited resources, we ran experiments using 50
epochs. We chose this to find a good balance between getting good results
and considering how much time and computer resource we had available.

The Learning Rate ¸

The learning rate controls the step size at each iteration when updating
model parameters, significantly impacting the speed and stability of conver-
gence during training. We tested learning rates ranging from 0.1 to 0.001, as
illustrated in Figure 4.3. By adjusting these parameters, we aimed to observe
their impact on the model’s performance. This analysis helps identify the
most effective learning rate for our next experiments.

It is evident that ¸ = 0.01 provides us with the best accuracy within 50
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epochs, consistently outperforming the other options for the majority of the
test duration. Therefore, we will use ¸ = 0.01 for our subsequent tests.
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Figure 4.3: Centralized test using different learning rates for 50 epochs.

4.4.2 Centralized test

To accurately assess the outcomes of our experiments, we implemented a cen-
tralized setting where a single node is trained with the entire dataset. This
setup serves as a benchmark, demonstrating the maximum achievable perfor-
mance when one node has full access to all the data. These results will allow
us to compare how well multiple peers can compete with this. As shown in
Table 4.1, ShuffleNetv2 significantly underperforms compared to ResNet18.
While we will conduct further tests with both models, it becomes evident
that ResNet18 consistently delivers better results in most cases. Therefore,
we mostly use ResNet18 in the subsequent experiments.
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Training Type Model # Classes Accuracy (%) F1 Score (%)
Fine-tuning ResNet18 10 84.40 84.42
Fine-tuning ResNet18 2 81.90 82.05
Fine-tuning ShuffleNetv2 10 73.93 73.44
Fine-tuning ShuffleNetv2 2 77.80 77.25
From scratch ResNet18 10 82.38 81.63
From scratch ResNet18 2 78.80 77.84
From scratch ShuffleNetv2 10 70.56 70.12
From scratch ShuffleNetv2 2 73.90 72.54

Table 4.1: Performance comparison of one peer using ResNet18 and Shuf-
fleNetv2 models, fine-tuned versus trained from scratch for 50 epochs.

4.4.3 Performance Comparison of Two Different 2 Classes
Settings

In our tests, we specifically chose the two classes, cats and dogs, because they
represent similar categories that can be difficult to distinguish accurately. To
further illustrate this point, we conducted a test that clearly demonstrates
our reasoning (Table 4.2). In the fine-tuned setting, we observed a 97.85%
accuracy for cats vs ships (two distinctly different classes) compared to only
81.9% accuracy for cats vs dogs. Similarly, results from training from scratch
show that cats vs ships achieved 96.5% accuracy, while cats vs dogs only
reached 78.8% accuracy. The difference is even more visible in the figure 4.4.
This justifies our selection of these two specific classes from the 10 available
in CIFAR-10 for our upcoming experiments and validates its legitimacy.

Training Type 2 classes Accuracy (%) F1 Score (%)
Fine-tuning cats vs ships 97.85 98.60
From scratch cats vs ships 96.50 97.55
Fine-tuning cats vs dogs 81.90 82.28
From scratch cats vs dogs 78.80 77.72

Table 4.2: Performance comparison of one peer using two different class
comparisons with ResNet18 fine-tuned versus trained from scratch for 50
epochs.
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Figure 4.4: Comparison of the accuracy of the two different 2-classes choices
in a fine-tuned and from scratch environment within 50 epochs.

4.5 Decentralized Learning Experiments

We now explore the performance of decentralized learning methodologies in
details. Building on the preliminary results, we examine the effectiveness of
federated and gossip learning approaches in a decentralized setting. These
experiments aim to assess the performances of ResNet18 and ShuffleNetv2
models when trained across multiple peers, simulating real-world distributed
environments.

We use both the full CIFAR-10 dataset and the subset of two classes (cats
and dogs) to evaluate how data diversity and volume impact our results. By
comparing the decentralized methods with traditional centralized training,
we want to make in evidence the strengths and limitations of decentralized
approaches, particularly under constrained computational resources and lim-
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ited training epochs. This analysis offers valuable insights into the practical
feasibility and potential benefits of decentralized learning, particularly in
scenarios where data privacy and distribution are critical.

4.5.1 Performance Comparison: Standalone vs. Fed-
erated vs. Gossip Training

It is predictable that individual peers (standalone case) generally exhibit
lower accuracy and struggle with generalization. Since each peer only has
access to a portion of the dataset, they miss out on the broader data diversity
needed for comprehensive training. This trend is evident in our results. For
instance, in the models trained from scratch (Table 4.3), standalone ResNet18
models achieved accuracies of 69.94% with 4 peers and 56.49% with 10 peers
when using all 10 classes. Similarly, standalone ShuffleNetv2 models achieved
accuracies of 58.13% with 4 peers and 48.15% with 10 peers under the same
conditions. These values show the limitations of standalone training, where
models lack the benefit of shared knowledge from other peers, resulting in
lower overall performance.

The federated learning approach demonstrated significantly better perfor-
mance compared to standalone training. For instance, federated ResNet18
models achieved an accuracy of 85.75% with 4 peers and 84.36% with 10
peers when fine-tuned (Table 4.4). The ShuffleNetv2 models showed a sim-
ilar trend, with federated learning achieving 71.47% accuracy with 4 peers
and 66.20% with 10 peers. This improvement underscores the advantage of
federated learning, where models benefit from the collaborative training pro-
cess, leading to enhanced generalization and accuracy. In this case, we used
the system of communication rounds and used every epoch as one to average
every model’s weights with each other.

As expected, gossip learning provided us with efficient outcomes, compa-
rable to those of federated learning. However, the extent of its effectiveness
surpassed our expectations. In all cases, gossip learning outperformed stan-
dalone training, showing superior performance. It even outperformed fed-
erated learning in many cases, especially the 2 classes case with ResNet18.
Notably, in the case of fine-tuned models, the gossip ResNet18 achieved an
accuracy of 83.29% with 4 peers, surpassing the 82.29% achieved by fed-
erated learning (Table 4.4). Similarly, with 10 peers, it achieved 82.53%,
outperforming the 82.09% attained by federated learning. This improvement
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suggests that gossip learning has a small advantage with smaller datasets,
which aligns with real-world scenarios.

Initially, we aggregated peers every epoch, similar to federated learning,
but this approach provided us with poor results, even worse than standalone
training. This was expected since gossip learning is designed to aggregate one
peer with another, rather than all peers simultaneously as federated learning
does. Consequently, we revised the algorithm to a more efficient version that
properly aggregates gossip models. In this revised method, gossip models
were aggregated more frequently, being combined different times within each
epoch. Aggregation is based on the age, t, which starts at 0 for all peers and
increases by the maximum age of the peer and its randomly selected partner.
Each peer is assigned a random partner in each iteration within the epoch,
and the peer’s age is updated to the maximum of both ages incremented by
one. We chose a fully connected network for these tests where every peer is
connected with another giving the possibility to aggregate with any peer in
the system.

Page 45 of 64



Training Type Model # Peers # Classes Accuracy (%) F1 Score (%)
Standalone ResNet18 4 10 69.94 69.27
Federated ResNet18 4 10 79.90 79.55
Gossip ResNet18 4 10 79.16 75.32

Standalone ResNet18 10 10 56.49 55.10
Federated ResNet18 10 10 69.55 68.05
Gossip ResNet18 10 10 67.21 64.43

Standalone ResNet18 4 2 69.14 66.62
Federated ResNet18 4 2 76.6 75.73
Gossip ResNet18 4 2 76.88 77.44

Standalone ResNet18 10 2 62.76 63.12
Federated ResNet18 10 2 73.5 75.94
Gossip ResNet18 10 2 71.44 61.05

Standalone ShuffleNetv2 4 10 58.13 56.24
Federated ShuffleNetv2 4 10 64.22 63.73
Gossip ShuffleNetv2 4 10 79.59 76.12

Standalone ShuffleNetv2 10 10 48.15 45.73
Federated ShuffleNetv2 10 10 56.88 55.11
Gossip ShuffleNetv2 10 10 70.78 68.06

Standalone ShuffleNetv2 4 2 62.24 63.87
Federated ShuffleNetv2 4 2 63.51 68.55
Gossip ShuffleNetv2 4 2 74.45 74.37

Standalone ShuffleNetv2 10 2 57.77 46.03
Federated ShuffleNetv2 10 2 62.37 58.20
Gossip ShuffleNetv2 10 2 69.76 66.75

Table 4.3: Comparison of ResNet18 and ShuffleNetv2 performance across
different training methods from scratch for 50 epochs.
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Training Type Model # Peers # Classes Accuracy (%) F1 Score (%)
Standalone ResNet18 4 10 77.51 76.25
Federated ResNet18 4 10 85.75 85.63
Gossip ResNet18 4 10 82.45 77.72

Standalone ResNet18 10 10 71.22 69.73
Federated ResNet18 10 10 84.36 84.81
Gossip ResNet18 10 10 76.85 72.16

Standalone ResNet18 4 2 78.13 78.22
Federated ResNet18 4 2 82.15 82.15
Gossip ResNet18 4 2 83.29 84.25

Standalone ResNet18 10 2 75.2 74.04
Federated ResNet18 10 2 82.09 82.16
Gossip ResNet18 10 2 82.53 84.29

Standalone ShuffleNetv2 4 10 67.44 65.38
Federated ShuffleNetv2 4 10 71.47 70.73
Gossip ShuffleNetv2 4 10 83.14 78.51

Standalone ShuffleNetv2 10 10 59.23 58.11
Federated ShuffleNetv2 10 10 66.20 65.06
Gossip ShuffleNetv2 10 10 76.81 70.26

Standalone ShuffleNetv2 4 2 73.88 74.72
Federated ShuffleNetv2 4 2 75.01 74.63
Gossip ShuffleNetv2 4 2 82.71 82.55

Standalone ShuffleNetv2 10 2 68.92 71.98
Federated ShuffleNetv2 10 2 70.02 69.47
Gossip ShuffleNetv2 10 2 81.31 78.18

Table 4.4: Comparison of fine-tuned ResNet18 and ShuffleNetv2 performance
across different training methods for 50 epochs.

The main takeaway from these preliminary experiments is that gossip
learning, while capable of enhancing model performance over federated train-
ing, does not consistently do so. Gossip learning aims to match the perfor-
mance of federated learning in some cases (2 classes) while not overtaking
it and surpasses it in some other instances. Despite this, gossip learning
presents a truly decentralized approach, addressing our primary concern of
privacy, which gives it more importance. Given the balanced dataset, re-
porting balanced accuracy is unnecessary, but these findings are important
for understanding the dynamics of different training methodologies in dis-
tributed learning environments.

Overall, both gossip and federated learning proved to be the most effective
methods in our experiments, significantly enhancing accuracy and general-
ization compared to the standalone approach. We also compared the per-
formance of fine-tuned models to those trained from scratch, clearly demon-
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strating that the fine-tuned models significantly outperform the ones trained
from scratch. As previously noted, ResNet18 consistently outperforms Shuf-
fleNetv2 in all scenarios, whether fine-tuned or trained from scratch. Given
these results, it is clear that further testing with ShuffleNetv2 is unnecessary,
and we will focus exclusively on ResNet18 in our future experiments.

4.5.2 Unbalanced Partition Sizes

The challenge of unbalanced data distribution among peers is a common
occurrence in a real-world setting. It represents the situation where not all
peers possess similar amounts of data.

We created this unbalanced data scenario by partitioning a dataset into
subsets using an exponentially distributed proportions approach. Initially,
we generated random values uniformly distributed between 0 and 1 and
transformed them into an exponential distribution by taking the negative
logarithm. After normalizing these values to ensure their sum equals 1, we
multiplied the normalized proportions by the total dataset length to deter-
mine the size of each subset. Finally, we iterated through these sizes to create
subsets of indices corresponding to each size.

We conducted tests on standalone, federated, and gossip approaches, ex-
ploring cases involving 4 and 10 peers, using both all classes of CIFAR-10 and
the binary classification of cats vs dogs. Our findings consistently demon-
strate federated learning as the top performer in this context, followed by
gossip learning, with standalone performance ranking the lowest (Table 4.5).
This outcome is as expected, since standalone peers operating independently
make it that the presence of peers with limited data drags down the overall
accuracy of the group.
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Training Type Model # Peers # Classes Accuracy (%) F1 Score (%)
Standalone ResNet18 4 10 56.49 69.21
Federated ResNet18 4 10 83.49 80.53
Gossip ResNet18 4 10 75.31 68.79

Standalone ResNet18 10 10 60.97 69.93
Federated ResNet18 10 10 85.23 81.61
Gossip ResNet18 10 10 77.24 75.21

Standalone ResNet18 4 2 70.5 42.84
Federated ResNet18 4 2 75.79 72.66
Gossip ResNet18 4 2 74.98 73.17

Standalone ResNet18 10 2 70.09 74.52
Federated ResNet18 10 2 79.61 80.07
Gossip ResNet18 10 2 78.27 69.41

Table 4.5: Comparison of fine-tuned ResNet18 performance across different
training methods for 50 epochs in an unbalanced dataset setting.

An important challenge we encountered was the varying training dura-
tions for each peer within an epoch, conversely with previous cases where all
peers trained for the same duration. This difference has minimal impact on
federated and standalone cases. In federated learning, models aggregate after
each epoch, by which time all models have completed their training. Con-
versely, standalone peers do not aggregate, eliminating any issues related to
training duration discrepancies.

However, in the gossip environment, this scenario poses a significant chal-
lenge. The age t of each peer starts to diverge over time, with some peers
having limited data and thus fewer opportunities for aggregation, while oth-
ers have more chances to aggregate, enhancing their efficiency and getting
them a higher age value. This difference in age gives an advantage to certain
peers during aggregation, favoring their weights when aggregating, which
complicates the dynamics of the gossip approach.

4.5.3 Non-IID Data

Non-Independent and Identically Distributed (Non-IID) data presents a sig-
nificant challenge in decentralized learning environments. This scenario arises
when the distribution of data across different peers is not uniform, meaning
that each peer’s dataset varies in class distribution and feature space, which
makes the problem of classification harder due to the lack of diversity while
training the models.
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In our study, we explored the impact of Non-IID data on the performance
of federated, gossip, and standalone learning approaches using the CIFAR-10
dataset. To create a highly skewed distribution, we partitioned the dataset
so that each peer received data from a limited subset of classes. Specifically,
we employed a sharding technique, dividing the dataset into 3 × n shards,
where n represents the number of peers. These shards were then randomly
assigned to different peers, ensuring that most peers had data from at least
two classes, enabling them to classify the data accurately.

Our findings, detailed in Table 4.6, reveal that federated learning con-
tinues to outperform both gossip and standalone methods under Non-IID
conditions, with one case where the gossip technique is able to slightly out-
perform it. This is attributed to the federated approach’s ability to aggregate
diverse models, thereby mitigating the skewness in individual peers’ data.
Conversely, the gossip approach, while slightly more robust than standalone,
struggles with the lack of diversity in the data it aggregates, especially no-
ticeable in the 10 classes cases, leading to lower overall performance. The
standalone method, as expected, performed the worst, as the lack of data
sharing and aggregation limits its ability to generalize. Figure 4.5 visually
demonstrates the performance disparities among these methods, emphasizing
the federated model’s superior ability to handle Non-IID data distributions.

Training Type # Classes # Peers Accuracy (%) F1 Score (%)
Federated 10 4 61.76 56.21
Federated 10 10 44.49 25.41
Gossip 10 4 50.35 23.63
Gossip 10 10 25.69 08.86

Standalone 10 4 38.19 22.52
Standalone 10 10 26.76 07.74
Federated 2 4 83.29 80.05
Federated 2 10 83.58 83.21
Gossip 2 4 83.71 83.24
Gossip 2 10 77.22 79.41

Standalone 2 4 64.49 60.18
Standalone 2 10 67.13 73.66

Table 4.6: Comparison of fine-tuned ResNet18 across different training types
within 50 epochs using all classes.
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Figure 4.5: Comparison of fine-tuned ResNet18 performance accross different
training methods using all classes in a non-IID environment within 50 epochs.

Federated Gossip Standalone
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

Model Accuracies
4 models
10 models

Figure 4.6: Comparison of fine-tuned ResNet18 performance accross different
training methods using 2 classes in a non-IID environment within 50 epochs.
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4.5.4 Extensive Experiments on the Unbalanced Data
Scenario

In our extensive experiments, we incrementally added two peers at a time, up
to a total of 20 peers, and tested federated, gossip, and standalone methods.
Initially, we applied this process to an unbalanced dataset with only two
classes, chosen for its simplicity and quick evaluation potential. Despite the
limited scope, the results were compelling: federated learning consistently
outperformed the other methods, followed by gossip learning, with standalone
methods lagging behind, as shown in Figure 4.7. These findings highlight the
robustness of federated learning, even in a constrained experimental setup.
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Figure 4.7: Comparison of fine-tuned ResNet18 final accuracy accross differ-
ent training methods using 2 classes in an unbalanced environment in term
of number of peers within 50 epochs.

We conducted additional tests to ensure precise results by increasing the
number of peers by four in each step until reaching 20, repeating each test
scenario three times for reliable average accuracy. Instead of using a line
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graph, we opted for a detailed bar plot presentation that includes error bars
to depict the variability of each technique, as shown in Figure 4.8. Interest-
ingly, the gossip method showed increasing stability with additional peers.
In contrast, while the federated method also demonstrated improved sta-
bility with more peers, this trend was not as pronounced as with the gossip
method. Standalone performance remained consistent with minimal variance
across all tested scenarios.
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Figure 4.8: Comparison of fine-tuned ResNet18 final accuracy accross differ-
ent training methods using 2 classes in an unbalanced environment in term
of number of peers within 50 epochs.

To gain a clearer understanding of these values, we also included a line
graph that represents accuracy over epochs. The graph features the 75th
and 25th percentiles, shown with faded blue and darker faded blue, respec-
tively, allowing us to observe the evolution of each learning method over
time. We were pleasantly surprised by the strong performance of the feder-
ated approach, as its graph resembled a typical line graph, with the 25th and
75th percentiles closely aligning with the median (Figure 4.9). In contrast,
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the standalone method produced consistent results but showed no significant
improvement over time. However, the gossip learning method demonstrated
better performance, with the range of the 75th percentile decreasing over time
and the 25th percentile already close to the median, unlike the standalone
method, as seen in the Figure 4.10.
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Figure 4.9: Line graph of fine-tuned ResNet18 accuracy using the federated
training method with 2 classes in an unbalanced environment using 20 peers
within 50 epochs.
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Figure 4.10: Line graph of fine-tuned ResNet18 accuracy using gossip and
standalone training methods with 2 classes in an unbalanced environment
using 20 peers within 50 epochs.
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4.5.5 Impact of Adjacency Matrix

In the next phase of our tests, we focused on modifying the adjacency matrix
for gossip learning. We utilized different types of graph structures, including
Barabási-Albert and Erdős-Rényi models, to explore their impact on per-
formance. The Barabási-Albert model generates a scale-free network where
some nodes become highly connected, simulating real-world networks. In
contrast, the Erdős-Rényi model creates a random graph where each edge is
included with a fixed probability, resulting in a more uniformly distributed
structure.

Initially, we performed two sets of tests using average degrees of 10 and 8,
respectively, over 30 epochs, seen in the Table 4.7. These variations allowed
us to assess how connectivity affects the efficiency and accuracy of gossip
learning, leading us to conclude that an average degree of 10 yields the best
results.

We conducted experiments with 30 peers using the ResNet18 architec-
ture on the CIFAR-10 dataset for 50 epochs. The accuracy results of fully
connected gossip, Barabási-Albert gossip, and Erdős-Rényi gossip were com-
pared against those of federated and standalone learning methods seen in the
Table 4.8.

Training Type # Peers Accuracy (%) F1 Score (%)
Federated 30 43.75 41.22
Standalone 30 26.61 54.21

Normal gossip 30 65.52 66.05
Gossip barabasi albert (1) 30 61.74 64.09
Gossip barabasi albert (2) 30 61.51 60.24
Gossip erdos renyi (1) 30 57.49 65.04
Gossip erdos renyi (2) 30 48.69 41.71

Table 4.7: Comparison of fine-tuned ResNet18 across different training types
within 30 epochs using all classes.

(1): Barabasi Albert: Average degree of 10
(2): Barabasi Albert: Average degree of 8
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Training Type # Peers Accuracy (%) F1 Score (%)
Federated 30 51.31 40.21
Standalone 30 24.09 56.30

Fully Connected gossip 30 65.10 67.08
Gossip Barabási-Albert 30 63.20 56.41
Gossip Erdős-Rényi 30 62.44 46.32

Table 4.8: Comparison of fine-tuned ResNet18 across different training types
within 50 epochs using all classes and an average of three test each.

The results presented in Table 4.8 reflect the average accuracy across
three runs for each training method (federated, standalone, and the three
gossip methods), conducted over 50 epochs. This averaging ensures the sta-
bility and reliability of the reported information. In this test, gossip learning
methods outperformed both federated learning by over 13% and standalone
learning by 40% in terms of accuracy. Additionally, the Barabási-Albert
method demonstrated slightly better performance compared to the Erdős-
Rényi method, where both had an average degree of 10.

We initially expected federated learning to outperform all other methods.
However, the results were surprising, with gossip methods showing a signifi-
cant advantage. The presence of multiple partitions increased the likelihood
of including low-accuracy peers (as seen in the standalone training results),
which negatively impacted the final results for federated learning. In con-
trast, gossip learning methods consider the age of the peers, making it more
likely to retain weights from better-performing peers, thus enhancing overall
accuracy.

4.5.6 Euclidean Distance

In our experiment, we utilize the Euclidean distance as a standard metric
to measure the similarity or distance between data points. We assess the
distance between feature vectors extracted from the CIFAR-10 dataset using
a fine-tuned ResNet18 model. This test is important because it gives us a
clear and measurable way to see how well the model is doing, especially when
it comes to accuracy and how well it groups similar things together.

We calculate the Euclidean distance over the course of 50 epochs using 30
peers, repeating this process three times and averaging the results for greater
reliability. This approach allows us to analyze the model’s convergence be-
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havior and refine its predictive capabilities. The outcomes of this test are
crucial for evaluating the model’s classification accuracy, as they indicate
how closely the predicted feature vectors align with the actual data points.

By using Euclidean distance here, we can clearly see how the model learns
over time. This metric allows us to compare different network topologies and
evaluate the performance of our method in each scenario. In our experi-
ment, we evaluated three network topologies: the Barabasi-Albert network,
the Erdos-Renyi model, and the fully connected gossip learning approach.
The results demonstrated that fully connected gossip learning consistently
achieved the smallest Euclidean distances, which was expected due to the
ease of communication among all connected models. The Barabasi-Albert
network also performed well, slightly lagging behind the fully connected re-
sults, followed by the Erdos-Renyi network. These findings indicate that our
gossip learning method is effective with both Barabasi-Albert and Erdos-
Renyi network topologies, even with a relatively large number of peers, such
as 30 (Figure 4.11).
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Figure 4.11: Line graph comparison of euclidean distance of different network
models using 30 peers within 50 epochs.
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These findings confirmed that training is feasible across various network
topologies using multiple models. To better differentiate between the network
topologies, more models should be used, since the slight differences in results
might come from the limited number of model exchanges. Therefore, adding
more peers and training them over more epochs would provide us with more
conclusive results. However, implementing these experiments is challenging
due to test limitations. Despite this, our approach still provides valuable
insights into the practical applications of our method across different network
topologies.
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Chapter 5

Conclusion

We studied how effective decentralized fine-tuning is using federated and
gossip learning across different scenarios, comparing them with standalone
methods. Our experiments consistently showed that decentralized fine-tuning
performed better than standalone approaches in all situations, including un-
balanced partition sizes, non-IID data, and scenarios with numerous peers
sharing data among themselves. However, neither federated nor gossip learn-
ing consistently outperformed the other. Their performance varied depending
on specific factors like the number of peers or classes involved.

Additionally, our tests revealed that fine-tuning significantly outperforms
learning from scratch, with accuracy improvements of up to 10% in many
cases (Tables 4.3 and 4.4). This advantage was evident across all methods,
including standalone, federated, and gossip learning.

Our experiments showed that fine-tuning using decentralized methods
were effective even with just 50 epochs, achieving over 80% accuracy in
most cases. In scenarios with unbalanced partition sizes, federated learn-
ing achieved 85.23% accuracy when using 10 peers for the entire dataset
(Table 4.5). The results for non-IID data varied, achieving promising accu-
racy above 80% for the 2-class scenario but falling below 62% for the 10-class
scenario. This drop in accuracy could be attributed to the limited training
opportunities, which might improve with better resources allowing us to train
for more epochs.

We also conducted an experiment involving 30 peers, where gossip learn-
ing significantly surpassed federated learning. This was because gossip learn-
ing aggregates weights based on peers’ age, avoiding excessive influence from
peers with lower accuracy, unlike federated learning. In this case, gossip
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learning achieved over 40% higher accuracy than the standalone approach
and nearly 15% more than federated learning. Although the final accuracy
was lower than in other experiments, this was likely due to our limited number
of epochs. These results highlight the potential of decentralized fine-tuning
techniques to improve machine learning model performance across various
real-world applications.

5.1 Future Works

Unlike federated learning, which has been extensively studied with different
aggregation methods and in diverse scenarios using CIFAR10, gossip learning
has not yet been thoroughly experimented with, to our knowledge. This
makes our work an intriguing area for future researchers to explore.

To increase our understanding of this research, future studies should focus
on conducting experiments with a significantly higher number of epochs,
ideally exceeding 300 epochs. The limited number of epochs in our study
was also a major constraint that impacted our findings. Replicating these
tests with a larger number of peers would better simulate the complexity
of real-world applications, providing clearer insights into the effectiveness of
these methods.

Addressing these limitations will allow future research to more thoroughly
validate and expand upon the promising findings of this study, providing
deeper insights into the practical applications of decentralized fine-tuning for
machine learning models.
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