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ABSTRACT

This work aims at measuring the electrical activity of a network of rat neurons with
Multi-Transistor Array technology. The recorded signal analysis is made using the spike
detection algorithm proposed after A. Lambacher ("Identifying �ring mammalian neurons
in networks with high-resolution multi-transistor array (MTA)", Applied Physics A 102.1
(2011), pp. 1-11).
After locating a group of neurons, the spike frequency of one of these is measured. The
time correlation between spikes of di�erent neurons allows the meaurement of inter-neuronal
signal transmission velocity. Preliminary results are discussed.
Furthermore the algorithm is implemented on a FPGA digital circuit. The on-line digital
algorithm is tested and compared with o�-line analysis to verify its working. A graphical
interface is created to visualize neuronal activity on-line. This work aims at building an
acquisition chain for real-time analysis of neuronal activity.
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Chapter 1

Introduction

In this chapter it is introduced the physiology of neural communication. Then it is
explained the chip used to meausure the neuronal network activity, the cell-chip coupling
model and the setup used to perform o�-line data acquisition.

1.1 Communication between neurons

Neurons are the signal sources of the biophysical system that the experiment deal with.
The neuron is a cell composed of a central body from which di�erent branches originate:
the dendrites and the axon. The dendrites receive signals from the a�erent neurons and
transmit them to the neuron in the centripetal direction. On the other hand the axon
conducts the signal in centrifugal direction to other cells. The �nal part of the axon is
an extension called the synaptic button. Through these buttons an axon can bind to
dendrites or to the cell body of other neurons so that the nerve impulse propagates with
a reaction chain along a neuronal circuit. The Figure 1.1 shows an example of neuronal
network cultivated in vitro.

1.1.1 Neuron membrane and resting membrane potential

The membrane is the physical barrier between the intracellular and extracellular environments
of the biological cell. It is composed by a lipid bilayer and some proteins that allow or
don't allow ions to cross the membrane.
The concentration of ions is di�erent in the cytosol and in the extracellular enviroment:
extracellular liquids have an high concentration of Na+, Cl− and low concentration of
K+; intracellular liquids have high cencentration of K+ and large organic anions A− and
low concentration of Na+. The Figure 1.2 shows the ions concentration gradients scheme.
Indeed the di�erence in concentration of cations and anions from exterior and interior
generates themembrane potential. The membrane potenzial of a cell that is not conducting
is called resting membrane potential, kept around −70 mV.
The concentration imbalance is produced by the ion transport mechanisms through the
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of primary hippocampal neuronal network, cultivated in vitro [15].

membrane itself. The only ions that can e�ectively cross the membrane of a neuron
are Na+ and K+. But in a resting cell many potassium channels remain open while
many sodium channels are closed. The membrane permeability to K+ allow potassium
to di�use to exterior, according to the concentration gradient. Because of this A− charge
is not totally balanced from K+.

1.1.2 Action potential and signal propagation

The most commonly used synonym for the action potential is a nervous impulse. An
action potential is in fact an electric potential �uctuation that travels along the surface
of the membrane of an excitable cell, reaching speeds up to 120 m/s [14].

Action potential phases:

• due to an appropriate stimulation some sodium channels open. Na+ enter in the
neuron and this establishes a local depolarization;

• if the depolarization value reaches or exceeds a potential threshold (about −50 mV)
many sodium channels open;

• Na+ internal concentration increases and the membrane potential reverses, reaching
up to +30 mV;
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Figure 1.2: Neuronal membrane potential, generating by ion gradients between
extracellular and intracellular space [11].

• the channels remain open for about 1 ms, causing ever-equal ddp;

• when the threshold of +30 mV is reached K+ channels open restoring the original
negative value of membrane potential;

• then the channel are closed and the Na+ −K+ pomp restores intial concentration:
it carries two ions K+ inside the cell and three ions of Na+ outside every time it
works.

The period from action potential start to resting membrane potential is called refractory
period as described in Figure 1.3. One distinction is made between absolute and relative
refractory period: during the �rst one sodium channels are deactivated and no local
stimulus generates any response on the membrane (about 0.5 ms); during the second one
the membrane responds only to high intensity stimuli (some milliseconds after absolute
refractory period).

The local inversion of polarization induces a �ux of current between the area where
the action potential is generated and near the area of the membrane. Because of this near
sodium channels open, generating a new action potential.
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Figure 1.3: Schematic of an electrophysiological recording of an action potential,
showing the various phases that occur as the voltage wave passes a point on a cell
membrane [13].
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Figure 1.4: Schematic representation of electrical and chemical synaptic signal
transmission [2].

This "spike train" produces the signal propagation on the membrane of the neuron. Along
the axons the signal propagates unidirectionally due to the absolute refractory period.

Two neurons are connected by synapses. This structure allows neurons to communicate
with each other. The action potential can be transmitted through two types of synapses:
the chemical synapse or the electrical synapse (Figure 1.4).
The chemical synapse is composed by three elements: the pre-synaptic membrane, the
post-synaptic membrane and the synaptic space. The pre-synaptic membrane of the �rst
neuron axon releases neurotransmitters in the synaptic space. These chemical messengers
reach the post-synaptic membrane of the second neuron dendrite where the action potential
is generated. This kind of process takes about 0.3 ms, reducing inter-neuron signal
transmission velocity.
The electrical synapse consists of the connection between two neurons through a gap
junction, allowing the direct �ux of current. This second type of synapse allows a faster
communication and the signal can travel in both direction.
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Figure 1.5: Schematic cross section of a sensor transistor with an EOMOSFET (not
to scale). The neurons are cultivated on the top layer of TiO2/ZrO2 that insulates a
metallic pathway to the gate oxide of a standard MOSFET with source and drain. Note
that there is no �oating gate node: the operating point of the MOSFET is adjusted by
an autozeroing circuit connected to the gate of the sensor MOSFET, indicated by the
"reset" arrow in the �gure [1].

1.2 Mapping the neuronal network electrical activity

The diameter of a neuronal cell body is of the order of 20 µm. The action potential
duration is about 1 ms. Therefore, a measuring instrument with su�cient spatial and
temporal resolution is required. It is possible to couple neural cell with extended CMOS
technology. Prof. S. Vassanelli's laboratory makes use of chips with an high density
microelectrode matrix on which neuronal cell cultures are performed.

1.2.1 The EOMOSFET and the neuron-chip interface model

The fundamental unit used for measuring the electrical signals of a neuron is the EOMOSFET
(Electrolyte Oxide Metal Oxide Semiconductor Field E�ect Transistor). The EOMOSFET
comes from the redesign of the MOSFET (Metal Oxide Semiconductor Field E�ect
Transistor). For neural activity recording, this device is used as voltage controlled current
generator.
The neurons are cultivated on a top layer of TiO2/ZrO2 that insulates a metallic pathway
to the gate oxide of a standard MOSFET with source and drain. The neuron culture is
surrounded by an electrolyte solution with chemical compounds to allow them to survive
for a period of time su�cient to record their electrical activity. The system scheme is
reported in Figure 1.5.

The layer of oxide provides a capacitive coupling between the electrolyte and the
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Figure 1.6: Point contact model to describe neuron-electrode coupling.

underlying transistor. Variations in the extracellular �eld potential modulate the gate
voltage. By measuring the drain current of the transistor, it's possible to record neuronal
activity.

1.2.2 Junction model

To describe the coupling between the neuron and the electrode the point contact model

[5] is used, represented in Figure 1.6.

The intracellular voltage VM(t) and the extracellular voltage VJ(t) are related during
an action potential. Considering the circuit that describes the ionic and the capacitive
currents from internal to the external of the cell (Figure 1.7) and using the Kirko�'s law,
we obtain the following:

gj(Vj − VE) ≈
∑
i

giJM
(
VM − V i

0

)
+ cM

dVM
dt

(1.1)

≈
∑
i

(
giJM − giFM

) (
VM − V i

0

)
(1.2)

where cM is the area-speci�c capacitance of the membrane. V i
0 is the reversal voltage of

the considered ion, due to di�erence in concentration from internal and external of the
cell. gJ = ηJ/(rJAJ) is the area-speci�c conductance of the cell-chip junction, where rJ
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Figure 1.7: Parallel-Conductande Model for an Excitable Membrane (IN = intracellular,
OUT = extracellular). Indipendent conductances represent K+, Na+ and Cl- channels.
Polarity of batteries is chosen in order to associate negative membrane potentials to K+
and Cl- ions and positive to Na+. Cm quanti�es the membrane capacitance [6].

and AJ are the sheet resistance and the area of the junction. ηJ accounts for the position
of the transistor, with ηJ = 4π for a recording in the center of a circular junction. giJM
is the area-speci�c ion conductances of the adherent membrane. VE is the potential of
the electrolyte. The Eq. 1.1 is a good approximation for small signals for the junction
model (VJ � VM − V i

0 and dVJ � dVM). The second approximation (Eq. 1.2) can be
done taking into account the di�erence between the area-speci�c ion conductances of the
adherent membrane giJM and the area-speci�c ion conductances of the free membrane
giFM .
Then the signal of VJ is capacitively coupled to Vox via the bio-compatible oxide substrate.

1.2.3 Multi-Transistor Array and CAN-Q setup

To measure the electrical signals coming from a neuronal network is used a MTA (Multi-Transistor
Array) fabricated with the EOMOSFET technology. The MTA is composed by 256x384
hexagonal pixels with a column pitch of 5.625µm and a row pitch of 6.5µm. The area
of a single hexagonal pixel is 30µm2. A rat neuron covers about 7 near pixels. The full
frame sampling frequency is equal to 9375 Hz. In other words the sampling period on the
single pixels is about 106 µs, which is adeguate for accurate measurement of the action
potential waveform that lasts about 1 ms.
The MTA is in the center of a support designed to allow neuronal cultivation on it. This
support can be coupled with the CAN-Q R© Station [8] for the data acquisition, as shown
in Figure 1.8 and 1.9.
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Figure 1.8: 9.2mm2-MTA chip with support. It is designed to immerse the chip in a
elecrolyte solution bath.

Figure 1.9: CAN-Q setup coupled with the chip support, put in the right slot.
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The Figures 1.10 and 1.11 show the block scheme of signal �ow of the CAN-Q system.
On the left side, there is the CAN-Q chip including the active matrix of 256x384 pixels.
The matrix is divided in west and east side. Each pixel can be connected to the west
row ampli�ers or east row ampli�ers according to pixel's side: there are 256 1st-stage
ampli�ers on each side.
Also there are 256 2nd-stage ampli�ers on each side, which include a sample and hold
circuit. This allows the whole column (per side, so actually 2 columns) to be sampled at
the same time.
Finally there are 16 3rd-stage ampli�ers on each side, which are connected subsequently
to 1 of 16 2nd-stage ampli�ers each.
Sequencers on the chip control the connection of columns to the readout ampli�er chain
and the multiplexing from stage 2 to stage 3.
The outputs of the 2x16 3rd stage ampli�ers are current outputs. Transimpedance
ampli�ers translate the currents into voltages for acquisition by the ADCs (Analog to
Digital Converter). The ADCs have a sampling rate of currently 18 MHz and a resolution
of 14-bit. The 4 ADCs have 8 channels each, the samples are serialized and sent to the
DSPs.
The 2 DSP (Digital Signal Processing) FPGAs (Field Programmable Gate Array) are
Xilinx Artix-200. They work in parallel, one on the upper half of the matrix, the other
on the lower half. Inside, the data from the ADCs are deserialized. The the samples
are streamed to the DDR (Double Data Rate) memory with a datamover IP (Intellectual
Property) core. The same core can retrieve the data from memory and send it via a serial
link to system handling FPGA.
The system handling FPGA is a Xilinx Zynq (FPGA + Arm core). It is a module from
National Instruments (sbRIO-9651). The sbRIO runs a real time Linux. The sbRIO
controls the whole system including the DSP modules and streams the acquired data
from the DSPs to the connected host via a gigabit ethernet connection. The data are
serialized as a bus of 16-bit signed numbers.
In order to control data in real-time is available the CAN-Q acquisition software [9], to
be installed on an host PC. It can be used by connetting the CAN-Q to internet. Because
of this the CAN-Q and the PC are connected to a router.
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Figure 1.10: Block scheme of signal �ow of the CAN-Q system, provided by Venneos.
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Figure 1.11: Block scheme of signal �ow of the CAN-Q system, provided by Venneos.



Chapter 2

Spike detection

To identify neuron spikes from chip noise it is important to reduce the number of false
positive per second and to detect correlated events. The noise has a gaussian distribution
around the zero baseline, as it can be seen in Figure 2.1.

The probability to have only one false positive per second on a pixel is calculated as
the inverse of sampling rate of a pixe. So we can impose that

P (|V | > V0) =

∫ ∞
V0

dv
1√

2πσ2
exp

(
− v2

2σ2

)
= (9375)−1 (2.1)

Resolving Eq. 2.1 numerically we obtain that V0 = 3.8σ. However the number of false
positive events can be reduced thanks to time and space resolution.

2.1 Correlation algorithm

It is used the spike detection algorithm of A. Lambatcher [1] this algorithm takes advantage
of space-time-correlation. Since a pixel is sampled multiple times during an action
potential event and the matrix pixel is smaller than the size of a neuron, the same action
potential is detected in several consecutive time frames and at several adjacent sites. As
a matter of fact the duration of an action potential is about 1 ms and the samplig period
is about 106 µs; a neuron covers about 7 adjacent pixels.
It can be considered the joint probability to see the same event on 9 sampling period
intervals and 7 adjacent exagonal pixel, doing the substitution v′i = vi/σi

P (|V'| > V ′0) =
9×7∏
i=1

∫ ∞
V ′
0

dv′i
1√
2π

exp

(
−v
′
i
2

2

)
= (9375)−1 (2.2)

where V' is a 9× 7-dimensional vector and V ′0 is the radius of a 9× 7-dimensional sphere.
To resolve Eq. 2.2 numerically, it must be put in a better form. The general problem is
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Figure 2.1: Gaussian distribution of a pixel �ltered signal.

solved for the n-dimensional case:

P (|V'| > V ′0) =

∫ ∞
V ′
0

dv′1...

∫ ∞
V ′
0

dv′n (2π)−
n
2 exp

(
−

n∑
i=1

v′i
2

2

)
(2.3)

Passing to n-dimensional spherical coordinates [17] it's possible to write:

r2 =
n∑

i=1

v′i
2

(2.4)

P (|V'| > V ′0) =

∫ ∞
r0

dr (2π)−
n
2 rn−1 exp

(
−r

2

2

)∫
Ωn

dΩn (2.5)

where Ωn is the n-dimensional solide angle [16] and it can be computed explicitly as
follows:

Ωn =
(2π)

n
2

Γ
(
n
2

) (2.6)

Ωn =


1

(n
2
−1)!

(2π)
n
2 , n even

( 1
2

(n−1))!

(n−1)!
2nπ

1
2

(n−1) n odd
(2.7)
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Figure 2.2: Plot of normalized couples (V ′1(t), V ′2(t)) of two near pixels. The vertical and
horizontal lines identify the uncorrelated pixels threshold (3.8), the radius of the circle
identify the correlated pixels threshold (4.3).

The �nal equation to compute r0 is obteined imponing the value of probability:∫ ∞
r0

dr (2π)−
n
2 rn−1 exp

(
−r

2

2

)
Ωn = b (2.8)

∫ ∞
r0

dr rn−1 exp

(
−r

2

2

)
=

(2π)
n
2 b

Ωn

= Γ
(
n
2

)
· b (2.9)

where b = (9375)−1 is the inverse of the sampling rate of one pixel.
For a better understanding it is shown the two-dimensional case in Figure 2.2.
The points in the graphic are the couple (V ′1(t), V ′2(t)) of two adjacent pixels. It is
computed the threshold in the case of uncorrelated events and spatial correlated events.
As can be seen from the �gure the 2-pixels threshold reduces the number of uncorrelated
false positive events, but also it includes a correlation event that is rejected by the
previous threshold.
Resolving numerically Eq. 2.9 can be get the value of r0 for di�erent values of n. In the
Table 2.1 are reported the values of r0 for di�erent values of timeframes and near pixels
convolution.
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Time Frames x Near Pixels Threshold

1 x 1 3.8
2 x 1 4.3
3 x 1 4.7
4 x 1 5.0
5 x 1 5.3
6 x 1 5.6
7 x 1 5.8
8 x 1 6.1
9 x 1 6.3
9 x 2 8.0
9 x 3 9.4
9 x 4 10.6
9 x 5 11.7
9 x 6 12.7
9 x 7 13.6

Table 2.1: Table of threshold values for
some values of consecutive timeframes and
near pixels.

In Figures 2.3, 2.4, 2.5, and 2.6 show the number of spikes detected over the 32x32 matrix
with increasing degrees of correlation. As can be seen the algorithm reduces the number
of false positive events, allowing the localization of neurons.

The �nal condition of spike detection is that the module of the 9x7-dimensional vector is
higher than r0(9x7)

9×7∑
i=1

V 2
i

σ2
i

> (13.6)2 (2.10)
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Figure 2.3: Activity map recorded over 1s, obteined
with 5x1 degrees of correlation.

Figure 2.4: Activity map recorded over 1s, obteined
with 9x1 degrees of correlation

Figure 2.5: Activity map recorded over 1s, obteined
with 9x3 degrees of correlation

Figure 2.6: Activity map recorded over 1s, obteined
with 9x7 degrees of correlation
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Chapter 3

Measurements and o�-line data analysis

In this chapter are illustrated the neuronal cells plating procedure on chips and the
procedure of data analysis after the data acquisition. After explained how to process the
signals we focus on the neuronal activity analysis of the chip 678 recording. We manage
to measure the spiking frequency of a neuron and the inter-neuron signal transmission
velocity.

3.1 Chip preparation

Before the neuronal network activity measurement, the plating of neurons on the chips
takes place. It is foundamental to follow some steps to ensure the best culture possible
on the chip.

3.1.1 Chip cleaning and sterilization

First of all the chips must be cleaned and sterilized: 1 minute of gentle cleaning with 70◦C
warmed 5% (v/v) Tickopur R33 detergent (Bandelin), followed by extensive rinsing with
deionized water; under sterile laminar hood, 30 minutes of incubation with 70% (v/v)
ethanol, followed by three washings with sterile deionized water. After drying of the chip
under the laminar �ow, the chips are exposed to a germicidal lamp for an additional 30
minutes sterilization.
This procedure must be done for every chips after measuraments.

3.1.2 Getting neurons

The neurons are obtained from E18/19Wistar rats embryos. The procedure for hippocampi
dissection is explained in the article [4]. The hippocampus is dissected during the 18th
or 19th day of rat pregnancy because its development becomes complete in that period.
Furthermore in the hippocampus there are neurons but also glial cells. Neurons don't
divide through mytosis but glial cells yes, so the glial cells number increases exponentially

25
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in time. Because of this it's crucial not to wait beyond the 19th day.
Primary neurons are dissociated from hippocampi through the action of a dissociating
protein (trypsin). Then there is the so called �pre-plating� step. It allows to reduce the
amount of glial cells in the cultures, without removing them completely and avoiding the
use of chemical compounds. It consists in a physical separation of glial cells: neurons and
glial cells are plated together on a Petri dish where only glial cells are able to adhere, thus
making it possible to separate them from the neurons.

3.1.3 Neuronal cells plating

Sterile chips are incubated with a 20 µg/ml poly-L-Lysine solution at room temperature
under a sterile laminar hood to coat the chip surface with the adhesive protein. Then the
protein is removed and the chip is dried under the laminar hood. This protein is necessary
for a good adhesion of the neurons on the chip surface.
1600 neuronal cells/mm2 are seeded on the chip surface (Achip = 9.2 mm2) diluted in
NeuroBasal medium added with 1% (v/v) Glutamax-1, 2% (v/v) B27 supplement (Gibco)
and 25 µM Glutamate. Every 3 days, 2/3 of the medium is changed with NeuroBasal
medium added with 1% (v/v) Glutamax-1 and 2% (v/v) B27 supplement.
Then chips with plated neuronal cells are maintained in a humidi�ed incubator at around
37◦C and 5% CO2.

3.2 Blue chips for measurement

Every chips with plated neurons are maintained in the incubator at least until DIV (Days
In Vitro) 14 to let neurons grow and connect each other. After DIV 14 dentrites and axons
are properly developed, branched and well spread to allow connetions between neurons
[7]. The measurements reported are done at DIV 18.

3.2.1 Conditions of measurement

The �rst condition to choose is the type of electrolyte for the neuronal culture bath.
For these measuraments three di�erent solutions are used, with the following compositions
(the components are given in mM unit, unless otherwise stated):

• Solution 1: 135.0 NaCl, 5.4 KCl, 1.0 MgCl2, 1.8 CaCl2, 10.0 glucose, 5.0 HEPES
(adjusted to pH 7.4 with 1 M NaOH)
This solution provide the essential minerals for neurons to work in a living-type
ambient;

• Solution 2: has the same components of solution 1, but with 10 µM of
1(S), 9(R)− (−)−BICUCULLINE METHIODIDE (Sigma Aldrich)
This solution should increase the spontaneous activity of neurons.
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Figure 3.1: Ag | AgCl bath electrode. It is used to set the ground terminal.

Figure 3.2: Bath electrode coupled with the chip slot.

• Solution 3: it is solution 2 with the addition of 250 µL of KCl 1M. The �nal
concentration of KCl is about 100 mM.

The culture medium used during neuronal network growing is replaced carefully and slowly
by the new solutions using a pipette.
The next very important step is to keep the bath temperature stable. The CAN-Q setup
has a Peltier device under the chip slot. By the CAN-Q software it's possible to set the
temperature: for each measure it is set equal to 37◦C, the physiological temperature to
let neurons to survive.
At the end, before recordings, the ground electrode is immersed in the electrolytic solution.
The electrode and the electrode coupling are shown in Figures 3.1 and 3.2.
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3.2.2 RMS map

To understand where the neurons clustered on the chip the RMS map of the full 256x384
matrix can be recorded. The CAN-Q software shows an RMS heatmap of the matrix.
The di�erence of RMS is due to the di�erent value of conductance between the electrolyte
solution and the recording electrode. Indeed it is an index of cells adhesion on the chip
surface. This imaging technique is usefull to localize neurons. Sometimes the presence of
glial cells growing near neurons can disturb their localization.
The immage of a neuron culture is also photographed thanks to an immage acquisition
device coupled with an optical microscope. The immage of the neuron culture is shown
in Figure 3.3.
To show that the RMS map is closed to the microscope immage it is built the overlap, as
can be seen in Figure 3.4.

3.2.3 Data acquisition

Identi�ed the areas where probably there are clusters of alive neurons on the chip, the
CAN-Q software allows to choose a 32x32 pixels area for data acquisition. It is possible
to select the acquisition time in ms, for a maximum of 60 s.
Then data are saved in a HDF5 �le in a 3-dimensional matrix (2 dimension for the array
position and 1 dimension for the time). The value of a voltage measurament is a 16-bit
signed integer. For a 1 minute acquisition it is generated a �le of about 1 GB.
The data are recorded in arbitrary unit so it is necessary to perform a calibration. The
CAN-Q software allows the acquisition of a known-voltage-value signal to calibrate the
data at a later time.

3.3 Measurements and data analysis

For each chip about 15 recordings of 60 s are acquired: the signals with the three di�erent
solutions are recored for 4/5 minutes. The o�-line data analysis is performed by Python
scripts.

3.3.1 Amplitude calibration

Raw CAN-Q data aren't calibrated in amplitude and present an o�set. This is due to the
variability of transistors parameters. The CAN-Q system allows to calibrate by injecting
a signal of 50 Hz with amplitude peak to peak of 4 mV. In one acquisition it's possible
to record the calibration signal for the 32x32 matrix. It is recorded for about 15 seconds
every time chip solution is changed. The Figure 3.5 shows an example of it. As can be
seen the signal hasn't a good squared shape.

The Figure 3.6 shows the distribution of the calibration signal values. As can be seen
there are two predominant peaks. The distance between the two maximum points is
computed as a measurement of the amplitude A. Then the amplitude calibration factor
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Figure 3.3: Example of neuronal culture photographed through an
optical microscope.

Figure 3.4: Overlap between neuronal culture immage and RMS map
recorded with CAN-Q Analyzer.
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Figure 3.5: Signal recorded for data calibration. It is supposed to be a 50 Hz square
wave signal of 4 mV peak to peak amplitude.

CF = A/4 mV is calculated. The Figure 3.7 shows the calibration factor map. As can
be seen from it the factor value changes signi�cantly from di�erent pixels.

To calibrate the signal V ′i (t) of the pixel i the following formula is used:

Vi(t) =
V ′i (t)

CFi

(3.1)

The Eq. 3.1 doesn't care about the signal o�set, correcting only the peak to peak
amplitude of the signals. The Figure 3.8 shows an example of an amplitude-calibrated
signal.

3.3.2 Filtering

When measured by means of extracellular currents, spikes usually range in the bandwidth
between 300 Hz and 3 kHz. Because of this the signals are �ltered with a bandpass
butterworth �lter in that range. The Figure 3.9 shows the signal in the Figure 3.8 �ltered.
As can be seen the original o�set is canceled by the �ltering. This is a fundamental
condition to perform the spike detection algorithm. The signal distribution is reported in
Figure 2.1, in chapter 2.
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Figure 3.6: Distribution of 15 s rocorded calibration signal.

Figure 3.7: Calibration factor value over the 32x32 matrix.
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Figure 3.8: Calibrated signal from a matrix pixel of 10 s duration.

Figure 3.9: Filtered signal of 1 s duration. The o�set and low frequencies disappeared.
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Figure 3.10: 9x7 convolved signal over 10 s.

3.3.3 Correlation algorithm

The correlation algorithm condition (Eq. 2.10) is applied to data. The signi�cant steps
of signal processing by this condition are:

• squaring of the signal;

• summation over 9 consecutive timestamps;

• division by σ2;

• summation over 7 near pixels;

• comparison the output with the threshold.

The Figure 3.10 shows the signal 9x7-convolved over 10 s.
As can be seen from Figures 3.11 and 3.12 in the case of extracellular solution and

the extracellular solution with bicuculline the number of spikes recorded over 5 minutes
is very low and distributed evenly (maybe false positive events). Furthermore the
number of spikes with bicuculline solution is lower than the solution without over the
same time. In other cultures analyzed it happens that the number of spikes is higher
with the bicuculline solution, but not systematically for every cultures as we expected.
Because of this we decide to not use solution 1 and solution 2 for more analisys, at this
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Figure 3.11: Activity map of 678 chip over 5
minutes with solution 1.

Figure 3.12: Activity map of 678 chip over 5
minutes with solution 2.

stage of understanding.

On the other hand with KCl solution the number of spikes detected is signi�cantly
higher than the previous cases. The Figure 3.13 shows the moment during which the
neurons start to �re. As can be seen the signal coming from a real action potential is
signi�cantly higher than signal noise. The convolved signal coming from the correlation
algorithm is shown in Figure 3.14.

The Figures 3.15, 3.16 and 3.17 show the activity maps recorded over 4 minutes of
three chips.

As can be seen the presence of spike detection is concentrated in speci�c areas. This
result con�rm the presence of neurons. In particular it con�rms the fact that after the
neuron plating the cells are still alive.
The spike detection allows to localize neurons over the 32x32 matrix and to analyze the
network activity.
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Figure 3.13: Signal showing the moment when a neuron starts to �re with the solution
3.

Figure 3.14: 9x7 convolved signal from the signal shown in Figure 3.13.
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Figure 3.15: Activity map from 682 chip over 4
minutes with solution 3.

Figure 3.16: Activity map from 669 chip over 4
minutes with solution 3.

Figure 3.17: Activity map from 678 chip over 4
minutes with solution 3.
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Figure 3.18: Comparison between RMS map and activity map.

3.4 Neuronal activity analysis

It is chosen to analyze the track recorded from the 678 chip with the presence of KCl
solution because it allows to localize neurons and the number of spikes is higher than every
other chip analyzed. The most of spikes are recorded during 1 second after KCl dilution.
The neuronal activity on this chip allows to perform a good localization of neurons over
the 32x32 matrix, the measurement of the �ring frequency of a neuron, to verify the time
correlation between di�erent neurons spikes and the inter-neuron conduction velocity.

3.4.1 Neurons localization

It is interesting to compare the neuronal activity map with the rms map. As can be seen
from the Figure 3.18 the rms map doesn't allow to localize neurons as well as activity
map. Indeed the areas with higher rms is due to glial cells that in most cases surrond
neurons. Probably the horizontal area with low rms is where glial cell failed to adhere
because the presence of neurons. Neurons have a spherical shape and a little surface to
adhere.

The Figure 3.19 shows the activity heatmap and the 3D-graphic, showing the number
of spikes detected, from which can be seen the presence of four main peaks.

The neurons are localized in the �ve areas and numbered as shown in Figure 3.20.
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Figure 3.19: Heatmap and 3D-graphic of neuronal activity.

Figure 3.20: Numbered masks areas over the �ve neurons.
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Figure 3.21: Full frame neuronal network activity and neuron 1 mask activity. The
ordinate value corresponds to the number of on-pixels in a frame.

3.4.2 Firing frequency measurement

The �ring frequency of a neuron can be measured from the recorded activity. An index
of neuronal network activity can be consider the number of "on-pixels" (pixels that turn
on) detected per full frame. The Figure 3.21 shows the presence of an high neuronal
network activity after putting the KCl in the solution. It is possible to �lter the number
of "on-pixels" counting only pixels over one neuron. The masks used to �ler the activity
are shown Figure 3.20. In Figure 3.21 the activity from mask 1 and the neuronal network
activity are superimposed, resulting a systematic activity due to the �ring neuron.

In Table 3.1, 3.2 and 3.3 the time value during which the neuron 1 �red are reported.
The time zero coincides with the beginning of the time window chosen.
The Figure 3.22 shows the spiking events over the time. It is possible to notice that there
are three zone of di�erent spike frequency. To measure the frequency three linear �t are
performed with the linear function f(x) = mx+ q. The value of parameters are reported
in Table 3.1, 3.2 and 3.3 and the frequency value in Hz is calculated from m parameter. It
is possible to notice that the frequency value decreases over time. This phenomenon can
be explained considering that when the KCl is added the neuron membrane is depolarized
too much. In this condition the neuron becomes inactive, reducing its spike frequency
over the time.
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Figure 3.22: Spike events over time from neuron 1 mask. Linear �ts parameter and
frequency are report in Table 3.1, 3.2 and 3.3.

# Firing event Time (ms)

1 111.680± 0.009
2 126.400± 0.009
3 139.093± 0.009
4 147.947± 0.009
5 157.333± 0.009
6 165.867± 0.009
7 173.867± 0.009
8 182.613± 0.009
9 192.320± 0.009
10 202.133± 0.009
11 212.693± 0.009
12 223.253± 0.009

Fit parameters

m (1/ms) q

0.103± 0.002 −11.0± 0.4

Frequency = (103± 2) Hz

Table 3.1: High frequency data with �t
parameters and frequency value.

# Firing event Time (ms)

12 223.253± 0.009
13 272.853± 0.009
14 285.547± 0.009
15 327.147± 0.009
16 340.267± 0.009
17 376.107± 0.009
18 396.480± 0.009
19 428.693± 0.009
20 442.987± 0.009
21 477.013± 0.009

Fit parameters

m (1/ms) q

0.036± 0.001 3.3± 0.4

Frequency = (37± 1) Hz

Table 3.2: Medium frequency data with
�t parameters and frequency value.
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# Firing event Time (ms)

21 477.013± 0.009
22 545.067± 0.009
23 586.067± 0.009
24 696.533± 0.009
25 721.707± 0.009

Fit parameters

m (1/ms) q

0.015± 0.001 13.8± 0.9

Frequency = (15± 2) Hz

Table 3.3: Low frequency data with �t parameters and frequency value.

3.4.3 Time correlation between di�erent neurons spikes

The neurons growing form connection among them. Because of this when a neuron �res
it can induce a near neuron to �re too. The Figures 3.23, 3.24, 3.25 and 3.26 show the
overlap between activity of near neurons, as the number of "on-pixels" (number of pixels
that turn on in the selected neuron mask during a spike). It is possible to notice that there
are many spikes colse in time between neurons (1, 3) and (4, 5), less between (3, 4) and
(3, 2). In this way it is possible to �nd sequential events to measure signal transmission
velocity, as shown in the next section.

3.4.4 Inter-neuron conduction velocity

From di�erent neurons activities overlap it is possible to �nd some cases during which
more than two neurons communicate. As shown in Figure 3.27, a sequence of frame during
which occurs the signal transmission between four neurons is found. This sequence of
frame is used to estimate the inter-neuron conduction velocity.
To measure the position of the signal we choose one pixel per frame. The frames during
which occurs the sequential events are reported in Figures 3.28, 3.29, 3.30, 3.31, 3.32,
3.33, 3.34 and 3.35. The red pixels used to measure the signal position is the �rst along
the direction of signal propagation. Frame 6 and 8 are discarded because the head pixels
were outliers. Probably in that frames the signal was traveling throgh axons without been
recorded.
To measure the time of spike detection on those pixels we considere that a whole column
signal is recored in the same time with a frequency of 30000 Hz = 32 x 9375 Hz. So the
time is calculated with the following formula:
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Figure 3.23: Overlap between activity of neuron 1 mask and neuron 3 mask.

Figure 3.24: Overlap between activity of neuron 3 mask and neuron 4 mask.
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Figure 3.25: Overlap between activity of neuron 4 mask and neuron 5 mask.

Figure 3.26: Overlap between activity of neuron 3 mask and neuron 2 mask.
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Figure 3.27: Sequential spikes between 4 di�erent neurons (5,4,3,1).

Figure 3.28: Frame 1 of signal transmission. The
red pixel is the head of signal propagation.

Figure 3.29: Frame 2 of signal transmission. The
red pixel is the head of signal propagation.
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Figure 3.30: Frame 3 of signal transmission. The
red pixel is the head of signal propagation.

Figure 3.31: Frame 4 of signal transmission. The
red pixel is the head of signal propagation.

Figure 3.32: Frame 5 of signal transmission. The
red pixel is the head of signal propagation.

Figure 3.33: Frame 6 of signal transmission. No
head pixel is recorded.
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Figure 3.34: Frame 7 of signal transmission. The
red pixel is the head of signal propagation.

Figure 3.35: Frame 8 of signal transmission. No
head pixel is recorded.

tN,y =
32× (N − 1) + y

f
(3.2)

whereN is the frame number, starting fromN = 1; y ∈ [0, 31] is the column coordinate
of the pixel considered; f = 30000 Hz is the column sampling frequency.
The error gave to the time measurement is the uniform distribution error calculated as
the time intervall between two measures divided by

√
12.

The Figure 3.36 shows the hexagonal grid and the pixels used to calculate space intervals.
The number on a pixel is the value of N . To calculate the distance between the center
of near red pixels it is used the value of column pitch (5.625µm) and row pitch (6.5µm).
The �rst red pixel of signal propagation is put at position zero. The space covered by the
signal is calculated as the sum of distances between near red pixels.
The Figure 3.37 shows the graphic of space covered over time. It is performed a linear �t
with the function y = mx + q. The space error is calculated with ordinate deviations ei
from linear �t as:

σs =

√∑n
i=1 e

2
i

n− 2
(3.3)

ei = yi − (mxi + q) (3.4)
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Figure 3.36: 32x32 hexagonal grid. The red pixels are the pixels where the head of
signal propagation is recorded. The number on the pixel is the value of the frame during
which the signal is detected.
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Figure 3.37: Space covered by signal between neurons over time. It is performed a
linear �t and from parameters the conduction velocity is extimated (Table 3.4).

In Table 3.4 are reported the time and space values and �t parameters.

# Frame Time (µs) Space (µm)

1 13± 1 0± 3
2 130± 1 17± 3
3 250± 1 40± 3
4 373± 1 68± 3
5 487± 1 91± 3
7 700± 1 136± 3

Fit parameters

m (m/s) q (µm) Velocity (cm/s)

0.201± 0.006 −7± 2 20.1± 0.6

Table 3.4: Time and space values of signal propagation throgh neurons. The parameters
of linear �t and the velocity extimation are reported.

The time takes from the signal to propagate from the �rst neuron to the fourth in about
0.7ms. So the time scale of transmission is compatible with the trasmition synaptic delay
of about 0.3 ms. In future can be possible to perform a measurement of neuronal signals
transmission timing to con�rm this result.



Chapter 4

Real-time data acquisition chain

Much time has been devoted to set up an acquisition chain to real-time process the
streaming data coming from the CAN-Q, through a FPGA card. In this chapter the
choices made to set up the acquisition chain are explained. It focuses on the digital
implementation of correlation algorithm on FPGA for action potential detection and on
the graphical user interface. The Figure 4.1 shows the acquisition chain scheme: the single
parts of it are described in the following sections.

4.1 Zedboard

The Zedboard [19] is an evaluation and development board based on the Xilinx Zynq-7000
[20] that integrates the software programmability of an Dual-Core ARM-based processor
with the hardware programmability of an FPGA (Artix-7). On the board there is a 100
MHz oscillator. The Figure 4.2 shows the Zynq Z7020 Bank Assignments.
The CAN-Q has only an ethernet output port. So the Zedboard must receive the data
through its ethernet input port. As can be seen from the Bank Assignment scheme,
the ethernet port is connected to the Processing System (PS) and not directly with the
Programmable Logic (PL). Because of this it was decided to implement the Xillinux OS
on the Processing System. Thanks to this embedded OS it is possible to send data to
FPGA of the Programmable Logic side.

4.1.1 Vivado Design Suite

To implement the application logic on Zedboard FPGA it is used the Vivado software
produced by Xilinx. It is a design enviroment used for digital circuit disign, using the
programming language VHDL and Verilog. Thanks to this software a bitstream �le can
be generated: it contains the informations to implement the digital circuit on the FPGA.

49
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Figure 4.1: Acquisition chain to analyze data coming from the CAN-Q in real time.
The CAN-Q is connetted to a router from which data are sent to a Zedboard through
the ethernet port. Xillinux, an embedded OS, drives data to an FPGA on which it is
implemented the correlation algorithm. The output is sent to a graphical user interface
to show real-time the neuronal activity map.
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Figure 4.2: Zynq Z7020 Bank Assignments [19]. The ethernet port is connected to the
Processing System side.
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Figure 4.3: Block scheme of communication between ARM processor and the
Programmable Logic [12].

4.2 Xillinux

The Xillinux [18] distribution is a software + FPGA code kit for running a graphical
desktop on the Zedboard attaching a monitor, keyboard and mouse to the board itself.
The useful feature is the possibility to make integration between the Linux host (PS) and
the FPGA (PL). As a matter of fact there are four device ports that virtualize the input
and the output of two FPGA FIFOs (First In First Out), one of 32-bit and one of 8-bit.
Xillinux is based upon Ubuntu LTS 12.04 for ARM. It makes the board behave like a PC
with the SD card as its hard disk.

4.2.1 The Xillybus IP core

The communication between the ARM processor and the Programmable Logic side takes
place through the Xillybus IP (Intellectual Property) core. The Xillybus IP core communicates
with the ARM processor through the AMBA (Advanced Microcontroller Bus Architecture)
bus protocol. On the other side it communicate with application logic through FIFOs.
To implement the correlation algorithm for action potential detection just need to add
the application logic between writing-FIFO and reading-FIFO, as shown in Figure 4.3.

To generate the Xillybus IP core it is necessary to load the xillydemo-vivado.tcl

script into Vivado software. Then it is possible to generate the corrispondent bitstream
�le: xillydemo.bit.
In Linux OS it is possible to �nd the �les that virtualized FIFOs in devices folder:
\dev\xillydemo_32bit_write and \dev\xillydemo_32bit_read;
\dev\xillydemo_8bit_write and \dev\xillydemo_8bit_read.
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4.2.2 Building Xillinux on SD card

To boot the Xillinux distribution from the SD card (2 GB or more), it must have two
components:

• a FAT32 �lesystem in a boot partition (16 MB), consisting of boot loaders, the
con�guration bitstream for FPGA, and the binaries for booting the Linux kernel;

• an ext4 root �le system partition (the remaining memory).

Xillinux provides the Xillinux SD image xillinux-1.3.img. The image contains a
partition table, a partly populated FAT �le system for placing initial boot �les, and
the Linux root �le system of ext4 type. To load the Xillinux SD image on the SD card
it was used Win32 Disk Imager, generating the uImage �le in the boot partition and the
Linux root �le system in the second partition.
In order to boot, four �les need to exist in the SD card's �rst boot partition:

• uImage � The Linux kernel binary. This is the �le in the boot partition after writing
the Xillinux SD image to the card. The kernel is board-independent;

• boot.bin � The initial bootloader, provided by Xillinux. This �le contains the initial
processor initializations and the U-boot utility, and it is signi�cantly di�erent from
board to board;

• devicetree.dtb � The Device Tree Blob �le, provided by Xillinux, which contains
hardware information for the Linux kernel;

• xillydemo.bit � The bitstream �le for the FPGA.
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4.3 Implementation of action potential detection algorithm

on FPGA

The action potential detection algorithm was designed in VHDL in collaboration with E.
A. Vallicelli (Bicocca in Milan) [3]. In this section the block scheme and the implementation
of the algorithm on the FPGA are explained.

4.3.1 The Action Potential detector block scheme

The idea is to implement a digital circuit that, receiving the data in input, computes the
condition

9×7∑
i=1

V 2
i

σ2
i

> (13.6)2 (4.1)

returning the boolean value 1 or 0 if the condition 4.1 is true or false respectively.

In order to do that, these steps are followed:

• calculate the σ2 map of the 32x32 matrix;

• sum over nine squared points consecutive in time of the same pixel;

• divide the result by the σ2 of the respective pixel;

• sum over seven near pixel;

• compare the �nal value with the threshold and return a boolean value.

The action potential detector block scheme is shown in Figure 4.4, between the writing
and reading FIFOs.

4.3.2 Pipeline and triggers

The digital algorithm works with a maximum input and output data rate of 100 MHz.
Using the "empty" signal of the �rst FIFO the input data rate is reduced down to the
streamed data rate of 9.6 MHz. A time delay of 4 clocks is introduced: one by the
MEM-T block, one by the DIV block, one by the MEM-S block and one by the C block
(Figure 4.4). The reduced time delay of DIV block is assured because "the core is highly
pipelined: the throughput of the core is con�gurable and can be reduced from 1 clock
cycle per division to 2, 4, or 8 clock cycles per division to reduce resources" [10].
The most important triggers are two: the "newdata" trigger from F1 �agging to MEM-T
and σ2 − CALC when a new data is available; the "division" trigger from DIV �agging
to MEM-S and F2 when the last division is performed.
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Figure 4.4: Action potential detection algorithm scheme:

F1 and F2: writing FIFO and reading FIFO
RC*: recoder to reduce data size;
SQ: it squares the data with a 32 bit output;
MEM-T: nine 32x32 memories of 32 bit; S1: it implements the sum of 9 consecutive data
coming from the same pixel (time sum);
DIV: diveder to implement the division by σ2 for the corrispondent pixel;
MEM-S: 32x32 memory of 32 bit;
S2: to implement the sum of data in 7 near pixels (space sum);
C: the output of the comparator is 1 or 0 if the result coming from S2 is higher or lower
the threshold;
σ2 CALC. : black box for σ2 calculation from initial coming data;
MEM-σ2 : 32x32 memory storing σ2 map.

* RC blocks could be put in di�erent parts of the algorithm to optimize memory
utilization. At this alpha-test of algorithm implementation they are not really used.
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4.3.3 Squared RMS map calculator and memory

The formula to calculate the σ2 is

σ2 =

∑N
i=1 (xi − x̄)2

N − 1
(4.2)

but in this form it is not very useful because of the calculation of x̄ that needs a division
module. It is better to implement less divisions since they take longer than simpler
operations.
The formula can be rewritten in a better form:

N∑
i=1
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N∑
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N
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2
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−
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)2

N (N − 1)
(4.11)

To implement Eq. 4.11 it is necessary to use two 32x32 memories: one to store progressively
the sum of data, one to store progressively the sum of squared data. After storingN frames
it is implemented a subtractor between the second memory value multipied by N and the
squared value of �rst memory. Finally a module implements the division by N (N − 1).
The outup is sent to the 32x32 memory storing the �nal value of σ2.
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4.3.4 Summation over 9 time frames

First of all, the data needs to be squared. So it is implemented a module that riceve in
input the serial data and return serially the squared value of them.
Then it is implemented the summation over 9 consecutive squared data of the same pixel.
Sampling the data stream in a matrix of 32x32, the consecutive recorded data from the
same pixel are separated by 1024 data. Because of this 9 32x32 memories are used to
store 9 consecutive time frames. An iteretor loops over the full memories to �ll them.
And an iterator loop over the 32x32 memories to return the value stored from the same
pixel for each memory. In this way a summer takes as input the same position element
from the 9 memories and returns the sum.

4.3.5 Divider

The divider is generated by the IP catalog in the Vivado software: Divider Generator
[10]. This block takes as input the dividend and the divisor and return the quotient and
the reminder. The algorithm used by the divider is the Radix-2 algorithm.

The Radix-2 algorithm it is a methon to compute the quotient of a division, based on a
standard recurrence equation:

Rj+1 = 2×Rj − qn−1−j × 2n ×D 0 ≤ j ≤ n− 1

R0 = N , Rn = 2n ×R

• N is the numerator with k digits;

• D is the divisor with h digits;

• R is the last remainder;

• n = k − h ;

• qn−1−j is the bit value of the quotient at the digit position n− 1− j .

The Divider takes as input dividend the sum of nine time frames and as input divisor the
σ2 memory. The two inputs are synchronized on the same matrix pixel. The output of the
divider gives the quotient and the remainder of the division. At this time the remainder
is discarded, but it could be used in future algorithm optimization.
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Figure 4.5: Grid reshaping. The numbers indicate the nth streamed value of the 32x32
frame. The �rst central pixel to perform the space convolution is the 34th, only when the
66th is available.

4.3.6 Summation over 7 near pixels and comparator

The quotient of the divider is the input of a 32x32 memory.
As can be seen in Figure 4.5 the 7 near pixel to sum are selected taking into account
which are the rows and columns of an hexagonal grid. A very important consideration is
that only the 30x30 central submatrix has pixels with 7 neighboring pixels. Because of
this it isn't returned the convolution value of boundary pixels.
According to the 7 pixel position, the �rst summation of 34th pixel occurs only when the
66th data of a 1024-frame is available, as shown in Figure 4.5.

The last module is the comparator. It takes as input the summation over 7 near pixels
and the output is 1 if the value is greater than a threshold, else it is 0.

4.4 C-program for data streaming

A program written in C language is developed to allow the streaming of data from the
ethernet port of the Zeadboard to the input 32-bit FIFO of the FPGA. Furthermore the
same program allows the reading of data from the output 32-bit FIFO of the FPGA. In
the program two main threads work:

• the �rst thread performs the ethernet communication between the CAN-Q and
Xillinux through the creation of a socket. After a reshaping of data from 16 bit
to 32 bit the same thread writes the data into the \dev\xillydemo_32bit_write

port;

• the second reads the data coming from the \dev\xillydemo_32bit_read port and
sends them to a GUI (Graphical User Interface).



4.5. SHOWING ANALYZED DATA 59

Figure 4.6: SkyWalkeR Graphical User Interface developed in GTK+2 to show the
electrical activity map of neuronal network.

4.5 Showing analyzed data

At the end of the processing chain a key element is the possibility to show boolean value
of the action potential detection. A simple GUI is developed in GTK+2 with the software
Glade. It is a RAD (Rapid Application Development) tool that allows to save the user
interface design as XML �le. Using the GtkBuilder object of GTK+2 the C application
can load it dynamically.

4.5.1 SkyWalkeR graphical user interface

As can be seen in Figure 4.6 the SkyWalkeR GUI is developed. The designed GUI allows
to start the �rst thread for the Socket connection with the CAN-Q through a Start button,
inserting the IP address and the port in the speci�c text boxs. It can also stop the two
threads with the Stop button. A 32x32 pixel matrix is designed to show the correlation
algorithm output. It can be set in the two modes: the frame-mode, showing sequentially
the OR between N consecutive frames; the heatmap mode to collect spike events and
showing the electrical activity map of neuronal network. Some buttons to chose the
algorithm threshold or save a video are also designed but not already implemented.
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Chapter 5

Algorithm implementation tests

To test the correlation algorithm the data recorded from 678 chip are used. A PC is
used to simulate the CAN-Q, sending the data through the ethernet port to the router
that streams the data to the Zedboard. In this chapter it is shown that the correlation
algorithm implemented on FPGA works correctly. The data sent to the Zedboard are
�ltered before and multiplied by 100 to process integer numbers with better precision.

5.1 Squared RMS map calculator test

This module processes the �rst N frames streamed to calculate the σ2 value of the signal
fro each pixel. It is possible to set the number N of frames to perform the calculation.
The data used for this calculation are lost, so the value is set to 4000, about half second
of recording. It will be shown this time is long enough.

The output of this module is sent to the output FIFO and saved in a binary �le.
Than it is analyzed and compared with the σ2 value calculated o�-line from the same
4000 frames. In Figures 5.1 and 5.2 the σ2 map is shown, calculated on-line and o�-line
respectively. As can be seen the output data from FPGA is very closed to the o�-line
one. The Figure 5.3 shows the percentage error distribution over the 1024 pixels. As can
be seen the percentage error results lower than 2%.

5.2 Summation over 9 timeframes comparison

The next algorithm step to test is the sum over 9 consecutive time frame. This test is the
evidence of the proper �lling of 32x32 memories and working of iterators.
The (17, 27) pixel signal is chosen to show the output from time convolution. The Figures
5.4 and 5.5 show the time convolved signal, calculated on-line and o�-line respectively.
There aren't di�erences between the two graphics: this happens because from square and
multiply logical operations no approximations occur.
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Figure 5.1: σ2 map, calculated by FPGA over 4000
frames, about 0.4 s.

Figure 5.2: σ2 map calculated by a Python script
over 4000 frames, about 0.4 s.

Figure 5.3: Percentage error of σ2 values from FPGA.
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Figure 5.4: Time-onvolved signal coming from (17,27) pixel, processed by FPGA.

Figure 5.5: Time-onvolved signal coming from (17,27) pixel, processed by a Python
script.
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Figure 5.6: Normalized time/space-convolved signal coming from (17,27) pixel,
processed by FPGA.

5.3 Division and sum over 7 near pixels test

After the time convolution occurs the division by σ2. The quotient is stored in a 32x32
matrix thanks to which then occurs the sum over 7 near pixels. The Figures 5.6 and
5.7 show the space convolved signal, calculated on-line and o�-line respectively. As can
be seen they are almost the same. The Figure 5.8 shows the di�erence between the
o�-line signal and the on-line one. As can be seen there is a little di�erence due to the
division approximation. This little di�erence is not a real problem for action potential
spike detection because the �nal threshold can be adjusted accordingly with the o�set.

5.4 Activity map showing

The last test performed is the proper showing of activity map on the GUI, coming from
FPGA processed data. In the Figure 5.9 can be seen the heatmap recorded through the
FPGA. On the GUI there isn't the color bar yet, but can be seen it is almost the same
activity map of Figure 3.18, recorded over 1 s.
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Figure 5.7: Normalized time/space-convolved signal coming from (17,27) pixel,
processed by a Python script.

Figure 5.8: Di�erence between convolved signals shown in Figure 5.7 and 5.6.
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Figure 5.9: Activity map recorded through FPGA from 678 chip data, shown on the
GUI.



Chapter 6

Conclusions and perspectives

In this work it is explained the algorithm used to detect spikes of a neuronal network
cultivated on a chip built with the MTA tecnology. In particular it is used the time and
spatial correlation probably distribution of measured signals to reduce the number of false
positive events.

The measurement are performed with three di�erent solution on the chip: the extracellular
solution, the bicuculline solution and the KCl solution. The measured signals are calibrated
and �ltered o�-line and then it is calculated the activity map. The analysis of neuronal
activity is possible only with the KCl solution because of cells stimulation. As a matter of
fact it is calculated the spiking frequency of a neuron. It results to decrease in less than
1 s from (103± 2) Hz to (37± 1) Hz and then to (15± 2) Hz. This is due to due to the
progressive inactivity from too much membrane depolarization using KCl. Secondly it
is observed the time correlation between near neurons spikes �nding a signal that moves
through 4 neurons in about 0.7 ms. Using it the inter neuron signal conduction velocity is
measured, resulting (20.1± 0.6) cm/s. The time scale of transmission is compatible with
the trasmition synaptic delay of 0.3 ms. In future could be possible to understand better
the compatibility of this result measuring the timing of neuronal signals transmission.

The second part of the work is devoted at building the acquisition chain of data streaming
to show a real-time activity map on a GUI. To do this the correlation algorithm is
implemented on FPGA and then it is tested, with a great similarity with o�-line data
analisys. In future new neuronal activity measurements can be performed with this
modality, but �rst must be implemented a �lter too. The algorithm can be optimized
and the GUI can perform other tasks, like threshold selection, σ2 recalculation, video
recording, color bar showing.

In perspective of a future development of CAN-Q setup could be possible to record the
full 256x384 matrix. This would allow to study the whole neuronal network activity on
the chip.
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