
ENRICO CALORE
569811-IF

OPTIMIZATION OF THE AGATAPULSE SHAPE ANALYSISALGORITHM USING GRAPHICSPROCESSING UNITS

Ottimizzazione dell’algoritmo per l’analisi di forma di impulso per
il rivelatore AGATA tramite l’uso di processori grafici

TESI DI LAUREA SPECIALISTICA

Relatore: Chiar.mo Prof. C. Ferrari1
Co-relatore: Dr. D. Bazzacco2

Co-relatore: Dr. F. Recchia2

Università degli Studi di Padova
Facoltà di Ingegneria
Dipartimento di Ingegneria dell’Informazione

Anno Accademico 2009/2010

1 Università Degli Studi di Padova, Dip. di Ingegneria dell’Informazione
2 Istituto Nazionale di Fisica Nucleare, Sezione di Padova

Enrico Calore: Optimization of the AGATA Pulse Shape Analysis al-
gorithm using Graphics Processing Units / Ottimizzazione dell’algoritmo
per l’analisi di forma di impulso per il rivelatore AGATA tramite l’uso
di processori grafici, Tesi di Laurea Specialistica, © 2010.

I N T R O D U Z I O N E

La spettroscopia nucleare γ ad alta risoluzione è uno degli
strumenti più potenti e sensibili per lo studio dei nuclei atomici.
A partire dagli anni ottanta sono stati utilizzati array di rivelato-
ri al germanio con schermi anti-Compton capaci di risoluzioni
sempre più elevate, permettendo la scoperta di nuovi fenomeni
nucleari.

L’ulteriore sviluppo che è stato proposto negli ultimi anni si
basa sulla possibilità di determinare la posizione e l’energia de-
positata dalla singola interazione di un fotone all’interno di un
cristallo di germanio, e sulla capacità di ricostruire la sequen-
za delle interazioni attraverso sofisticati algoritmi di analisi dei
segnali prodotti.

Attualmente due progetti mirano alla costruzione di un array
di rivelatori di nuova generazione basato su questo paradigma:
AGATA in Europa e GRETA negli Stati Uniti.

AGATA è attualmente in fase di sviluppo presso i Laboratori
Nazionali di Legnaro dell’INFN e non essendo ancora costituito
da tutti i rivelatori previsti è attualmente denominato AGATA
Demonstrator.

A differenza degli array di rivelatori utilizzati in passato, la
grande quantità di dati prodotti dal Dimostratore ed a maggior
ragione in futuro da AGATA, non consente l’archiviazione degli
stessi su supporti abbastanza economici e versatili da permetter-
ne l’analisi successivamente all’acquisizione.

Per questo motivo il sistema di acquisizione dati utilizzato de-
ve effettuare un’elaborazione a run-time dei dati acquisiti ed in
seguito l’archiviazione dei soli risultati prodotti. Conseguente-
mente, la velocità del sistema di acquisizione/analisi dei dati
risulta essere un possibile fattore limitante sulla massima fre-
quenza di lavoro dell’array stesso.

Una delle parti piú critiche ed impegnative dal punto di vista
computazionale del sistema di acquisizione è l’analisi di forma
di impulso. Per evitare che questa parte dell’analisi sia il collo
di bottiglia del sistema, questo lavoro di tesi affronta i proble-
mi di ottimizzazione dell’algoritmo stesso, fornendone un’imple-
mentazione in grado di sfruttare la potenza di calcolo contenuta
all’interno delle moderne schede grafiche.

iii

I N T R O D U C T I O N

High-resolution γ-ray spectroscopy is one of the most power-
ful and sensitive tools to investigate Nuclear Structure. Since
the eighties various nuclear phenomena has been discovered
thanks to the use of high-purity germanium detectors arrays
with Compton suppression, capables of higher resolution than
before.

The further improvement which has been proposed since the
mid-nineties relies on the possibility to determine the position
and the energy deposition of the individual interaction points of
a photon within a germanium crystal and on the capability to re-
construct the photon scattering sequence through data analysis
algorithms.

Presently, two major projects aim at the construction of an
array of germanium detectors based on the pulse shape analysis
and γ-ray tracking techniques, namely GRETA in the USA and
AGATA in Europe.

AGATA is currently under development at the Legnaro Na-
tional Laboratories of the Italian National Institute of Nuclear
Physics and since is not yet composed of all the planned detec-
tors, is called the AGATA Demonstrator.

The Demonstrator (and moreover the final AGATA array) be-
cause of the great amount of data it produces, does not allow to
store the acquired information on affordable and small devices
to let the physicists analyze it after the acquisition, as has been
done in the past.

For this reason the data acquisition system has to analyze the
acquired data at run-time and eventually has to store only the
results. Consequently the speed of the data acquisition and anal-
ysis system becomes an important specification of the whole
project that may introduce a limit on the acquisition frequency
of the array.

One of the operation requesting more computing power is the
pulse shape analysis and to prevent it to be the bottleneck of
the whole system, this dissertation work will investigate on the
possibility to speed up the PSA algorithm execution, giving an
implementation capable to run on modern GPUs.

iv

C O N T E N T S

1 The AGATA Project 1

1.1 Introduction to Gamma-Spectroscopy 2

1.1.1 Detector efficiency 2

1.1.2 Spectral resolution 4

1.2 AGATA working principles 4

1.2.1 Gamma-ray Tracking 6

1.2.2 High-fold segmented Ge detectors 9

1.2.3 Pulse Shape Analysis 10

1.2.4 Basis Database Production 13

2 Data Acquisition System 17

2.1 Overview . 17

2.1.1 Signals Digitization 18

2.1.2 Pre-Processing 19

2.1.3 Software Processing 20

2.2 Computing Infrastructure 21

2.3 Distributed DAQ: NARVAL 24

2.3.1 Algorithms Integration 28

2.3.2 NARVAL Emulator 29

3 General-Purpose Computing on GPUs 31

3.1 GPUs Architecture Model 33

3.2 Programming API & Languages 34

3.2.1 Compute Unified Device Architecture 35

3.2.2 Open Computing Language 36

3.3 Hardware Architecture 41

3.3.1 NVIDIA Quadro FX 1700 41

3.3.2 ASUS ENGTX 285 43

3.3.3 SIMT Model 44

4 PSA Algorithm Optimization 47

4.1 GridSearch Algorithm 47

4.1.1 GridSearch for CPU 52

4.2 OpenCL GridSearch Implementation 54

4.2.1 First Implementation 56

4.2.2 Code Profiling 59

4.2.3 Code Optimization 62

4.2.4 Profiling and Occupancy Calculation 64

5 Conclusion 73

v

5.1 Benchmarks . 74

5.2 Considerations about Results 74

5.3 Future code development 75

5.4 Hardware improvement 77

a Code fragments 79

a.1 Original Implementation for CPUs 80

a.1.1 libPSAFilter 80

a.1.2 PSAFilterGridSearch 81

a.2 Implementation for GPUs 84

a.2.1 PSAFilterGridSearch 84

a.2.2 OpenCL Kernels 91

vi

1 T H E A G ATA P R O J E C T

AGATA (Advanced GAmma Tracking Array) is an array of 180

highly-segmented HPGe (High-Purity Germanium) detectors. At
present, this is the most ambitious joint project of the European
Nuclear Structure community to design and construct a spec-
trometer with unprecedented efficiency and spectral resolution
[6, 7, 43].

The first prototype of the AGATA array consisting of a re-
duced number of detectors (15) has been put into operation at
the beginning of this year (2010) at Legnaro National Laborato-
ries (LNL) of the Italian National Institute of Nuclear Physics
(INFN) and is called the AGATA Demonstrator.

Figure 1: Sketch of the AGATA Demonstrator

The innovative techniques on which AGATA relies, namely
the highly segmented Germanium detectors, the analogue and
digital processing of their signals, the pulse shape analysis of the
recorded waveforms to determine the positions of the interac-
tion points inside the germanium crystals and the analysis of
these points to track the gammas of the event through the de-
tectors γ-ray tracking are being actively investigated since the
mid-nineties.

In order to get some understanding of these techniques and
with the main purpose of justifying the very high computational
needs of the pulse shape analysis step, this chapter will give a

1

2 THE AGATA PROJECT

brief introduction to γ spectroscopy and an overview of its basic
working principles.

1.1 INTRODUCTION TO GAMMA-SPECTROSCOPY

γ-ray spectrometers are instruments used to measure as effi-
ciently and as precisely as possible the energy of γ-rays emitted
by excited atomic nuclei. The energy of these γ-rays corresponds
to the energy difference between excited states of the emitting
nucleus so that from their precise knowledge it is possible to re-
construct the level scheme of the nucleus of interest making it
possible to obtain evidence an understanding of the particular
behaviors and phenomena produced by the interplay of funda-
mental forces in such a complex system.

The investigation of the nuclear structure requires the study
of nuclear species generated using various types of nuclear reac-
tions that are produced by a beam of energetic particles imping-
ing on a target with a velocity of a few percents of the speed of
light.

As an example of detection system, figure 2 on the facing
page shows the AGATA Demonstrator and its reaction chamber.
In this picture the reaction chamber is open to show at its center
the position of the target, which is where the nuclear reaction
takes place and therefore the source of the gamma rays seen by
the detectors.

The gamma rays produced in the nuclear reaction are emitted
almost isotropically and those entering-into and interacting-with
the germanium crystals generate small electrical signals which
are transformed into useful information by the associated elec-
tronics, data acquisition system and processing algorithms. At
the end of this complex chain, the derived information is nor-
mally displayed as energy spectra with characteristic peaks that
are used by the physicists to define the excitation structure of
the produced nuclei.

Two of the most important parameters that determine the per-
formance of a γ spectrometer are the detector efficiency and the
spectral resolution.

1.1.1 Detector efficiency

Not all gamma rays emitted by a radiation source enter into
the detectors and, furthermore, those entering into a detector

1.1 INTRODUCTION TO GAMMA-SPECTROSCOPY 3

Figure 2: The AGATA demonstrator (on the left) positioned near the
opened reaction chamber (on the right). The 15 germanium
detectors are assembled three-by-three in 5 cryostats. In this
picture, the front-most cluster is opened to show the position
of the three germanium crystals

have a certain probability to pass through it without being seen.
The efficiency of a detector is consequently given by the proba-
bility of detecting the radiation emitted by a source and depends
obviously on the size, type and material of the detector.

High-efficiency detectors produce spectra in less time than
low-efficiency ones and are essential in the research of rare nu-
clear species and the associated exotic phenomena. In fact, the
reactions that populate the nuclei of interest for the most ad-
vanced research are limited in mumber and can produce (for
technical and/or economical reasons) only limited number of
events, the γ-rays of which should therefore be detected as effi-
ciently as possible.

Detector efficiency is determined by comparing the measured
count rate to the known activity of a standard calibration source.
Relative efficiency values are often used for germanium detec-
tors and compare the efficiency of the detector at 1332 keV to
that of a 3inch x 3inch NaI detector. Relative efficiency values
greater than one hundred percent are therefore commonly en-
countered when working with very large germanium detectors.

4 THE AGATA PROJECT

1.1.2 Spectral resolution

The energy resolution is the other essential feature of spec-
troscopic detectors. Resolution is analogous to resolving power
in optical spectroscopy; it allows the separation of two gamma
lines that are close to each other and the highlighting of transi-
tions otherwise lying in the background.

The common figure of merit used to express detector reso-
lution is the FWHM (Full Width at Half Maximum) which gives
the width of the γ-ray peak at half of the highest point on the
peak distribution. Resolution figures are given with reference
to specified γ-ray energies. Resolution can be expressed in ab-
solute (eV or MeV) or relative terms. The energy resolution of
germanium detectors for 1 MeV gamma rays is 2 keV or 0.2 %,
more than one order of magnitude better than the resolution of
a good scintillator detector like sodium iodide (NaI).

1.2 AGATA WORKING PRINCIPLES
In the full configuration, AGATA will have 180 HPGe detec-

tors, each of them consisting in a 36-fold electrically-segmented
crystal, that will be positioned in a spherical arrangement cov-
ering the full 4π solid angle. In figure 3 part of the complete
sphere is depicted [6]. As mentioned before, the target from
where the γ-rays will be emitted during the physics experiments
will be at the center of the sphere.

Figure 3: Part of the “full configuration” AGATA array

Ionizing radiation like γ-rays, interacts with matter producing
energetic electrons (or electron-positron pairs) that release very
rapidly the absorbed energy as atomic excitations of the detector
material. In a semiconductor like germanium or silicon, this

1.2 AGATA WORKING PRINCIPLES 5

results in a number of electrons transferred to the conduction
band and in a corresponding number of holes left back in the
valence band. These free charges are collected to the detector
electrodes under the influence of an the applied electric field and
result eventually in a small electrical pulse that can be amplified
and measured in an outer circuit.

As the amount of energy required to create an electron-hole
pair is known, and is independent of the energy of the incident
radiation, the measurement of the number of electron-hole pairs,
i.e. the amplitude of the pulse, gives the energy of the absorbed
radiation.

In comparison to silicon, germanium crystals can be produced
with a much smaller concentration of impurities (hence the name
of hyper-pure germanium). A smaller impurity concentration
allows to produce thicker detectors and this is the main reason
why HPGe are the detector of choice in advanced γ-ray spec-
troscopy. The bigger size and the small mean free path of the
radiation increase the probability of interaction for the γ-rays
passing through the crystal’s matter, increasing consequently the
detector efficiency.

Germanium detectors are important because of their large ef-
ficiency, but are relatively more difficult to use than scintillator
detectors as they must be cooled to liquid nitrogen temperatures
to obtain a good energy resolution. In fact, at room tempera-
ture, the thermal energy of the electrons is sufficient to cross the
band gap in the germanium crystal and to reach the conduction
band where they are free to respond to the applied electric field
producing a high-enough steady current that would cover com-
pletely the small signals generated by the real radiation.

Cooling to liquid nitrogen temperatures (77K)1, reduces ther-
mal excitations so that only a γ-ray interaction can give to the
electrons the energy necessary to cross the band gap and reach
the conduction band.

As it can be seen in figure 2 on page 3, the AGATA detectors
are grouped three by three and mounted in cryostats that are
refilled with liquid nitrogen every 6-8 hours. Such a group of
three crystals in a cryostat is normally called ATC (AGATA Triple
Cluster) [50]. In figure 3 on the preceding page the cylindrical
cryostats cooling every ATC can be seen in the outer part of the
shell.

1 While working the crystals will maintain a temperature around 90K

6 THE AGATA PROJECT

1.2.1 Gamma-ray Tracking

As mentioned at the beginning of this chapter, one of the most
innovative techniques used for AGATA is the so called γ-ray
tracking [49].

The photoelectric effect causing the full absorption of the pho-
ton is not the only kind of interaction that may occur between
a photon and the matter. In fact, there are three main radiation-
matter interactions involved, namely: photoelectric, Compton
scattering and pair production.

The probability for every interaction to occur depends on the
energy of the photon and on the type of material constituting the
detector. This can be seen in figure 4 where the cross section2 of
the main radiation-matter interactions in a germanium crystal is
plotted as a function of the photon energy.

Figure 4: Cross section of the main radiation-matter interactions in ger-
manium as a function of photon energy.

Compton scattering is an inelastic scattering of photons in
matter that results in a decrease in energy (increase in wave-
length) of a γ-ray photon. In other words, when a γ-ray undergo
Compton scattering, part of the energy of the photon is trans-
ferred to a scattering electron, which recoils and is ejected from

2 Cross section is a hypothetical area measure around the target particles (usu-
ally its atoms) that represents a surface. It is proportional to the probability of
interaction on a given amount of matter per unit area.

1.2 AGATA WORKING PRINCIPLES 7

its atom, while the rest of the energy is taken by the scattered,
“degraded” photon, as is presented schematically in figure 5.

Figure 5: A photon of wavelength λ comes in from the left, collides
with an electron at rest, and a new photon of wavelength λ′

emerges at an angle θ.

Since, as can be seen in figure 4 on the facing page, Compton Gamma radioactive
decay photons (the
ones AGATA is
designed for)
commonly have
energies of a few
hundred keV, and
are almost always
less than 10MeV in
energy.

scattering is the dominant process between 150keV and 10MeV,
algorithms should be developed to reconstruct the full energy of
the γ-ray also in case of multiple interaction.

As the purpose of the spectrometer is the measurements of
the γ-rays coming from a nuclear reaction, one needs a way to
recognize if a detected γ is coming from the nuclear reaction
and has been detected thanks to a photoelectric effect, or if only
part of its energy has been measured (point ¬ in figure 6) due
to the detection of a “degraded” photon resulting from a previ-
ous Compton scattering thanks to another Compton scattering
(point in figure 6) or to an eventual photoelectric effect (point
® in figure 6).

Figure 6: A photon going through two subsequent Compton scatter-
ings in ¬ and and being eventually absorbed with a pho-
toelectric effect in ®.

If a γ-ray undergoes (multiple) Compton scattering and pho-
toelectric absorption within the same detector, the initial photon
energy is correctly measured from the sum of all the energy de-
posits.

8 THE AGATA PROJECT

Instead, if a γ-ray undergoes (multiple) Compton scattering in
the detector but the resulting scattered photon escape the detec-
tor, the spectrometer will detect only a partial energy resulting
in a background event.

To solve this issue, detector arrays built in the past used a
Compton suppression technique [24] in which the germanium
crystal are surrounded by a high-efficiency and relatively low
cost scintillator which can detect the escaping photons and veto
the acquisition of the main event. The drawback of this tech-
nique is a reduced efficiency as a consequence of the space occu-
pied between the detectors by the Compton suppression shields.
A simple sketch depicting the working principle of a Compton
suppression shield is reported in figure 7.

Figure 7: Compton Suppression shields around a germanium detector.
A photon that undergoes Compton scattering inside one de-
tector and ends up inside the Compton suppression shield,
as the upper one, invalidates the acquisition of the germa-
nium signal. On the other side, a photon that undergoes
Compton scattering without escaping the detector, as the one
in the lower part of the figure, not being vetoed by the shield
is accepted by the electronics and taken into the data acqui-
sition system.

Since Compton scattering is a known phenomenon that is
well described by the Compton scattering formula 1.1, the knowl-
edge of the position and deposited energy of every interaction
allows, at least in principle to reconstruct, or in other words to
track, the path of the γ-rays through the detector.λ, λ′ and θ have the

same meanings as in
figure 5 on the
preceding page
h is the Planck

constant,
me is the mass of the

electron and
c is the speed of

light.

λ′ − λ =
h

mec
(1− cos θ) (1.1)

In fact formula 1.1 can be re-written as reported in formula 1.2
on the next page to show explicitly the relation between photon
energies and the scattering angle and can therefore be used to

1.2 AGATA WORKING PRINCIPLES 9

test each measured interaction point for validity as a Compton
vertex.

E′γ =
Eγ

1 + Eγ

mec2 (1− cos θ)
(1.2)

In principle, a good positional information on each interaction
point could be otained by using a very large number of small
and independent detectors. However, due to technical and eco-
nomical reasons this is not feasible in practice and the required
positional precision has to be obtained by pulse shape analysis
of the signals seen in electrically segmented detectors.

1.2.2 High-fold segmented Ge detectors

As mentioned before, in order to achieve a good tracking effi-
ciency, the positions at which the γ-rays interact inside the detec-
tor volume should be determined and, it has to be known with
an accuracy between 2 and 5mm. This corresponds to an effec-
tive granularity between 3000 and 50000 voxels3 per germanium
crystal.

Such granularity is technically impossible to achieve as a phys-
ical segmentation of the crystal for reasons of complexity, num-
ber of read-out channels and inclusion of large amounts of insen-
sitive materials in the detection body. However it is possible to
increase the number of electrodes connected to the germanium
detector by electrical segmentation of the outer surface of the
crystal and the positional information can be extracted from the
shape of the pulses seen on the different contacts.

Figure 8: Three photons that undergo to Compton scattering inside
two nearby segmented detectors.

For this reason pulse shape analysis methods have been devel-
oped [26, 42], which can provide this position accuracy together

3 A voxel (volumetric pixel) is a volume element, representing a value on a
regular grid in three dimensional space. This is (in 3D) analogous to a pixel in
2D.

10 THE AGATA PROJECT

with a precise timing information (≈ 10ns). These methods re-
quire a technically feasible level of segmentation of the outer
detector contacts forming around 20 ∼ 40 segments.

After various simulations, the AGATA project has decided to
use 36-fold segmented germanium detector, with six-fold az-
imuthal and six-fold longitudinal segmentation, schematically
shown in figure 9 and in figure 10 on the next page.

Figure 9: A 3D view of the germanium crystal of an AGATA Detector
with its capsule on the left and its connections plate on the
right. Colors are not realistic and are used to describe the
electrical segmentation. Its dimensions and a view of the
inside central electrode and segmentation are given below.

The AGATA germanium detector has a circular shape at the
rear side with a diameter of ≈ 80mm and a hexagonal shape at
the front face. The length of the detector is ≈ 90mm and the
segmentation is achieved by a separation of the outer implanted
contact into six slices and six orthogonal sectors. The 36 seg-
ments together with the inner common electrode are read out
via individual preamplifiers and can be considered as separate
detectors.

1.2.3 Pulse Shape Analysis

The interaction points of the γ-rays in the germanium detec-
tor can be localized with a much higher accuracy than defined

1.2 AGATA WORKING PRINCIPLES 11

Figure 10: Pictures of the AGATA physically-unsegmented crystals.
On the left the row germanium block, in the center the
encapsulated crystal and on the right with the connectors
PCB.

by the geometry of the segments if the spatial information con-
tained in the shape of the detector signals is exploited.

As introduced in section 1.2 on page 4, signals are produced
when the interaction between a photon and an electron, pro-
duces a large number of free electrons and holes which induce
image charges of opposite signs on the detector electrodes.

As the charge carriers (electrons and holes) drift towards the
electrodes, the amount of the image charges changes causing a
flow of currents into or out of the electrodes.

Since signals are induced only if there are moving charge car-
riers within the detector, different signal shapes will result for
interactions occurring at different distances from the electrodes,
or at different distances from the segment borders.

Consequently, the observation of a net charge on the charge-
collecting electrode can be used to identify the detector segment
where the interaction took place. The transient image signals
on the other non-collecting electrodes vanish when the charge
carriers are collected.

Examples of calculated induced current signals in a coaxial
detector are schematically shown in figure 11 on the next page.
In the left part of the figure, a transversal cut through a coax-
ial detector is presented together with the drift directions of the
charge carriers. Depending on the radius where the charge car-
riers are produced, the shapes of the induced current signals are
different for different interaction radii. The right part of figure 11

on the following page depicts four such examples.
Experimentally, characteristic pulse shapes have been studied

in detail with the various existing segmented germanium de-
tectors before the construction of the first AGATA detector; fig-

12 THE AGATA PROJECT

Figure 11: On the left there is a sketch of how the charges moves inside
a coaxial germanium detector, while on the right is plotted
a simulation of the different pulses collected for different
interaction position radii.

ure 12 shows an example of pulse shapes measured at the core
and at the six segments of a MINIBALL detector [48]. The signalMINIBALL

detectors are 6-fold
segmented HPGe

detectors

of segment 4 has the same pulse height as the signal of the core,
indicating that all the energy was deposited in this segment. The
neighboring segments (3 and 5) show a positive mirror-charge
signal, indicating that the main interaction occurred close to the
core in segment 4. The pulse height of the mirror charge in seg-
ment 3 is larger than in segment 5, showing that the interaction
occurred closer to the segment 3 than segment 5.

Figure 12: Signals produced in the core and in the segments for a 6-
fold segmented detector when a photon is fully absorbed
in segment 4. Since the interaction takes place closer to
segment 3, the amplitude of the corresponding transient
signal is larger than the amplitude for segment 5.

This is basically the technique used with the MINIBALL de-
tectors to extract the azimuthal coordinate of the interaction [48].
Unfortunately, this simple method cannot provide the kind of

1.2 AGATA WORKING PRINCIPLES 13

precision needed by the tracking algorithms and more sophis-
ticated techniques had to be developed, involving the digitiza-
tion of the signals from each segment and the comparison of the
transient and net charge signals with a database (called basis) of
reference signals (that is, a set of signals corresponding to inter-
actions taking place in specific locations within the detector).

Several algorithms have been developed and tested so far with-
in the AGATA collaboration. The method used in the present
work is a grid search, consisting of a comparison between the ac-
quired signals and the basis signals, which are sampled over a
uniformly-spaced grid. A more detailed description of the algo-
rithm, as well of the results obtained, will be given in section 4.1
on page 47.

Since the construction of the reference basis is an essential in-
gredient for any pulse shape analysis algorithm, the techniques
used to measure and construct such basis will be illustrated in
section 1.2.4.

Following this approach AGATA will use pulse shape analy-
sis methods to reduce the segmentation scheme to a technically
feasible level while maintaining the position resolution needed
for tracking. In fact, for an efficient tracking, especially in case of
multiple interactions, not only the accurate positions of the inter-
actions, but also their number, and the partial energies released
at each interaction, have to be determined.

Pulse shape analysis can provide this information, however
with a finite accuracy, which depends on various parameters,
where detector geometry, segmentation level, impurity concen-
tration, preamplifier bandwidth, signal-to-noise ratio and sam-
pling frequency are some of them. In this respect pulse shape
analysis plays a key role for the AGATA spectrometer, electron-
ics design and for γ-ray tracking in general.

1.2.4 Basis Database Production

As introduced before, for any pulse shape analysis algorithm
to work, a record of the pulse shapes read at every electrode of
the detector, for every interaction position has to be recorded.
Once obtained a database of pulse shapes (called reference ba-
sis) that associates some pulses read on the electrodes to an in-
teraction position, the PSA algorithm can compare the acquired
experimental data to the saved ones looking for a match and
therefore finding the correct interaction position.

Hence every detector may have different responses due to its
peculiarities (germanium impurities, pre-amplifiers characteris-

14 THE AGATA PROJECT

tics, crosstalk phenomena, etc.), one database for each of them
has to be provided.

Several devices, known as scanning tables, have been devel-
oped within the AGATA collaboration in order to construct the
reference basis needed by the PSA algorithms or, in other words,
to measure in a semi-automatic way the signals corresponding
to each specific locations within the crystal (with the possibility
to move such locations in any point of the detector).

In case a collimated4 photon beam is available, the position of
the interaction can be determined by requiring the coincidence
of the germanium signal with a second collimated detector, as
schematized in figure 13 on the facing page. The main prob-
lem with this kind of measurement is that the constraints on the
recorded events are stringent and as a consequence, very long
measurement times are needed to collect the required statistics.
In addition, the measurement for points at the backward part of
the detector is extremely difficult [41].

It should be observed that, in principle, the information gath-
ered with this kind of scanning table is redundant. In fact, the
energy deposited by the photon inside the germanium detector
is fixed by the geometrical arrangement since the source emits
constant energy photons and the scattering angle is fixed (with
a minimum spread distribution around 90

◦). This information
on the energy is used in combination with the equivalent infor-
mation given by the coincidence detectors to clean the data from
spurious events in which the photon underwent multiple Comp-
ton scattering.

Using the scanning method previously presented, it takes far
too long time (two months) to scan a full detector with a fine
grid (1mm× 1mm× 1mm). This means that years of scanning
will be required to fully characterize the detectors composing
AGATA, which will be 180. Additionally, the uncertainties of the
scanning setup are too large to allow the production of a finely
sized basis set that, if not precise enough, will compromise the
whole array tracking performance [41].

In principle, knowing the electric fields inside the detectors,
the signal shapes can be calculated and the data from the scan-
ning tables can be used to tune the parameters of the calculations
and eventually to validate the simulated results.

4 Collimated rays are nearly parallel, and therefore will spread slowly as they
propagates.

1.2 AGATA WORKING PRINCIPLES 15

Figure 13: Schematic view of a scanning table. The collimated photon
beam enters from the front face of the detector through a
hole collimator. The trigger of the acquisition system selects
only the events where the photon Compton scatters and
the residual photon passes through a second collimator to
reach one of the scintillator detectors placed around.

Consequently, to move around the scanning tables limitations,
many software codes have been developed to calculate the signal
shapes in segmented germanium detectors; an early example is
reported in [8], but other examples are MGS [25] (Multi Geometry
Simulation), JASS [41] (Java AGATA Signal Simulation) and the
ADL (AGATA Data Library) detector simulation software.

Most of these programs can calculate the signal shapes for in-
teractions distributed over a regular cubic lattice having 1mm
step and their results can be validated using sophisticated scan-
ning tables, e.g. using the PSCS (Pulse Shape Comparison Scan)
characterization technique [15].

In particular, for this work, a 2mm step pulse shapes database
produced by the ADL software, has been used.

16 THE AGATA PROJECT

Figure 14: Photo of the scanning table in Liverpool. The lateral colli-
mation and the BGO detectors are visible.

2 DATA A C Q U I S I T I O N S Y S T E M

The Data Acquisition (often referred-to as DAQ) is interact-
ing with almost all the AGATA elements and it has two essen-
tial functions; the first one is to read-out and transport the data
flow from the detectors up to the storage, while the second is to
process data, applying Pulse Shape Analysis and Tracking algo-
rithms.

As already discussed, the detectors of AGATA will be op-
erated in a “position-sensitive” mode, by digitizing the signals
from the preamplifiers and by using PSA algorithms to extract
the information (energy and position) on the single interaction
points.

Given that all the signals are digitized continuously at a sam-
pling frequency of 100MHz using 14bit ADCs, the flow of digital
data produced by each AGATA crystal is 38 channals× 200MB/s Channals are 38

since the core signal
is digitized two
times with different
amplification ratios

≈ 7.6GB/s, which sums-up to the impressive value of ≈ 1.3TB/s
for the 180 detectors of the whole array. This huge amount of
data is reduced to more reasonable values (≈ 10kB per event for
a maximum event rate of 50kHz per detector) by the real time
data processing algorithms of the AGATA front-end electronics.
After this, the data can be read-out to the Data Acquisition com-
puters but, keeping in mind that a typical experiment can run
for a full week, its amount is still too big to be stored for off
line analysis and has to be further reduced by the Pulse Shape
Analysis algorithms.

This chapter will describe the organization and the features of
the AGATA Distributed Data Acquisition System, starting from
an overview of its main components and later focusing on its
software part.

2.1 OVERVIEW

As illustrated in figure 15 on the next page, the DAQ elements
are made of analog electronics (dark gray boxes), digital electron-
ics (light gray boxes) and pieces of software (white boxes).

17

18 DATA ACQUISITION SYSTEM

Figure 15: Schematic view of the AGATA Data Acquisition System.

2.1.1 Signals Digitization

For every detector data has to be acquired from the 36 seg-
ments of the cathode plus the two energy ranges of the central
contact (anode) as mentioned in section 1.2.2 on page 9. For ev-
ery one of them there is an analog amplifier composed of a cold
part (kept at liquid nitrogen temperature) and a warm part (at
room temperature).

Those amplifiers are mounted on the detectors structure and
are needed to amplify the signals to let them reach throw a dif-
ferential line the digitizers that are placed far from the detectors.

A graphical electrical scheme of the amplifiers can be seen in
figure 16.

All of the digitizers work synchronously by receiving a 100MHz
clock from a central clock generator, called the Global Trigger
and Synchronization, often referred as GTS [46]. The continuous

2.1 OVERVIEW 19

Figure 16: Electrical scheme of segment and core preamplifiers.

flux of samples from the digitizers is sent over optical fibers to
the pre-processing digital electronics, which analyzes each crys-
tal, extracting the information on the energy deposited in each
segment, managing the synchronization, attaching to the data a
timestamp and reading out the interesting part of the signals for
further analysis.

2.1.2 Pre-Processing

To be able to perform the requested operation in real time1,
the signal-processing algorithms are implemented into powerful
highly-parallel FPGAs (Field Programmable Gate Array).

The occurrence of useful signals in a crystal is detected by a
digital trigger applied to the data stream of the anode (core),
since a pulse there means that an interaction occurred in one of
the segments of the crystal and the acquired samples after that
moment may be useful. This local trigger forces the core and
all 36 segments to generate an energy value (by means of the so-
called Moving Window Deconvolution [20, 21]), and up to 160

samples (1.6µs) of the rise time of the pulse, discarding all the
rest.

Although in this way a data reduction of two orders of magni-
tude is achieved, the throughput can still be as high as 500MB/s
per detector and it is almost mandatory to have a second-level
trigger selecting the most useful events according to to user-
defined, experiment-specific conditions. These conditions can
be simply that a minimum number of germanium crystals fire

1 Which in this case means to analyze a sample every 10ns

20 DATA ACQUISITION SYSTEM

simultaneously, or request that other (ancillary) detectors partic-
ipate in the event.

The time correlation among the detectors of AGATA is achieved
by means of a time-stamping system where each clock pulse dis-
tributed by the GTS has an associated 48bit clock counter which
gives, in steps of 10ns, the time elapsed since the beginning of
the measurement run.

Whenever the local trigger in a detector fires, the clock num-
ber (a timestamp) is recorded in a local memory buffer together
with the energies and rise time slices of the 36 segments plus
the two core signals. At the same time, the timestamp is sent
back to the GTS system which uses it to generate a global trig-
ger according to the specified conditions. The locally-recorded
data is validated and passed over to the next processing stage
only if the global trigger fires, otherwise it is discarded, thereby
reducing even more the data throughput.

To simplify the operation of the global event builder, the GTS
generates an event number which is added as a tag to the val-
idated data. The global level trigger can be defined in such a
way that all local triggers are validated (e.g. in case of very low
counting-rate experiments) achieving what in the AGATA speci-
fications is called the “trigger-less” mode.

In the AGATA scheme, the ancillary detectors can use a simi-
lar digital electronics but can also use a classical VME-based [1]
analogue DAQ. In this case, the time correlation to the AGATA
detectors is performed by a dedicated VME module, called AGA-
VA, which interfaces to the GTS system by reading its clock and
timestamp, by sending local trigger requests and getting the cor-
responding validations. After pre-processing, the validated local
events are passed to the Pulse Shape Analysis stage.

2.1.3 Software Processing

The PSA algorithms are implemented in software and are ap-
plied inside a computer farm, in order to extract the coordinates
of the interaction points from the pulse rise-time samples. Once
this is done, the traces can be discarded, thereby reducing the
data throughput by an order of magnitude. This analysis is local
to each germanium crystal and the fastest PSA algorithms devel-
oped using CPUs need a few milliseconds of an E5420 2.5GHz
Intel® Xeon® core to analyze one event.

This was the bottleneck of the whole data-processing sequence
and to achieve the 50kHz singles rate of the AGATA specifica-

2.2 COMPUTING INFRASTRUCTURE 21

tions, a farm of about 100 CPUs cores should be dedicated to
each crystal.

In the initial phase of AGATA the rate of accepted signals has
been reduced by the global trigger to ≈ 1kHz per detector, mean-
ing that the PSA farm could be limited to a few CPUs per crystal,
but for the physical measurements campaign there is the need
of an increased acquisition rate and consequently an higher PSA
algorithms efficiency or computing power dedicated.

The PSA completes the data analysis at the detector level. Af-
ter this, the global event has to be built collecting together, on the
basis of the event number and/or timestamps, the information
of all firing detectors.

In the first implementation of the AGATA DAQ, this is done
by first assembling the germanium detectors and then merging
the data from the ancillaries.

After the PSA results of all the detectors have been collected
together in single events and they have been merged with ancil-
lary detectors ones (in the case ancillary detectors are present),
global events contains all information (energies and positions of
the interaction points of the firing germanium detectors) needed
to perform the γ-ray tracking and any other experiment-specific
on-line analysis.

After the tracking operation, full tracked events will be saved
on permanent storage [5] and will be made available to the ex-
perimental groups for the final off-line data analysis.

2.2 COMPUTING INFRASTRUCTURE

Due to the need of AGATA to have most of the analysis done
during run-time, a computing farm has been installed near the
experimental hall, where AGATA is placed.

Since AGATA is a mobile experiment and will be hosted in
several laboratories in different countries, the computing farm
has been organized to be an autonomous network inside the
bigger hosting laboratory one. Thanks to this configuration and
also to the use of the NARVAL Distributed Data Acquisition Sys-
tem described in section 2.3 on page 24, the computing farm of
AGATA is often referred as the “DAQ Box” and appears to the
physicists running experiments as a black box that can be oper-
ated from an intuitive GUI software running on workstations.

22 DATA ACQUISITION SYSTEM

Actually, the farm, as reported in figure 17, is composed of
IBM® x3550 1U machines, equipped with two E5420 Intel® quad
cores Xeon® CPUs (12MB of cache per CPU) and 16GB of RAM
each2.

Figure 17: Photo of the machines installed in the AGATA computing
room. Front view on the left and rear view on the right.

As depicted in the scheme in figure 18 on the next page, the
machines are connected thanks to two different networks, one
of them, called “data-flow network” is used only to transfer ex-
perimental data between computing nodes, while the other one,
called “services network”, is used to monitor the acquisition and
to send commands to the machines.

The data flow coming from the FPGAs described in section 2.1.2
is transmitted to some machines inside the farm trough PCI Ex-
press connections over optic fibers, those machines are the ones
where the data flow is injected inside the Distributed Data Ac-
quisition Software described later in section 2.3.

Apart from the machines dedicated to computation, two other
machines (on the upper left in figure 18 on the facing page)
host some virtual servers, using Xen®, and are used as library-
developers machines, to run monitoring tools, the run control
software, an internal DHCP service and a documentation wiki.

Another machine (depicted in white in figure 18 on the next
page), is used to implement a VPN service in order to let all the

2 The number of those machines is constantly increasing, since the number of
crystals composing the array is increasing too.

2.2 COMPUTING INFRASTRUCTURE 23

Figure 18: Network connections in the AGATA computing room.

computer administrators in the AGATA community to connect
to the DAQ Box from their home institutions.

For the storage of experimental results, the computing farm
is connected to a SUN® StorageTek™ 6540 disk array equipped
with 64TB of SATA hard disks. In figure 19 can be seen the
interconnections of the two disk server machines (in gray), used
to write data on disks and the machine dedicated to read-only
operations (in white).

Figure 19: Network connections in the AGATA storage room. Copper
1Gbit/s Ethernet connections in black, optic fiber ones in
red and 4Gbit/s Fibre Channel disk connections in orange.

24 DATA ACQUISITION SYSTEM

This disk array has been planned as a fast temporary storage
to be used while acquiring data, since after the experiments, the
results will be moved to the GRID Tier-1 computing center in
Bologna where will be archived on tapes [5].

All the disk server machines are part of a GPFS™ cluster;
GPFS™ (General Parallel File System) [2] is a high performance
shared-disk clustered file system developed by IBM® and it pro-
vides concurrent high-speed file access to applications executing
on multiple nodes. In addition, thanks also to connections and
data redundancy, it increase the fault tolerance of the storage
system letting it work (with reduced performances) also in case
of one machine/disk/connection failure.

Apart from providing filesystem storage capabilities, GPFS™
provides also some tools for the management and administra-
tion of the cluster and allows for shared access to the filesystem
from remote NFS clients.

2.3 DISTRIBUTED DAQ: NARVAL
NARVAL (Nouvelle Acquisition temps-Réel Version 1.6 Avec Linux)

is a distributed data acquisition system written in Ada95 pro-
gramming language and partitioned with the use of the Ada
DSA (Distributed System Annex), also known as Annex E [23].

NARVAL is a modular distributed system that allow to man-
age the DAQ data flow; its main task is to dispatch data buffers
coming from the detectors to the different steps of the data anal-
ysis and eventually to the disk storage [5].

Figure 20: Generic sketch of some NARVAL Actors and the data flow
passing through them.

2.3 DISTRIBUTED DAQ: NARVAL 25

Its modularity allows the separate management of different
“blocks” of the system called actors, where every actor can be
seen as a box containing some programming code that can be
modified to determine what kind of operation will be performed
on the data passing through it.

The NARVAL system takes care of the coordination of the var-
ious actors involved in the data acquisition. It can be configured
in order to assign every actor to a computer (where it will be
run) and to set the path of the data flow through the actors.

At execution time every actor represents a single process that
can run on one core of the different machines of the distributed
system. Actors can be of three different classes, every class is
sketched in figure 21 by a different colored box and the main
differences between them are summarized.

• producer, which collects data from
the hardware and dispatch it to
other actors. It’s used to get data,
which can be read from files or sock-
ets, inside the NARVAL system.

• intermediary or filter, which re-
ceives/sends data from/to one or
more actors. It’s used to process
data accordingly to its code and
then dispatch it to other actors. It
can be used to implement the PSA,
the event building, the tracking, etc.
accordingly to what is written into
the library.

• consumer, which receives data from
one or more actors. It’s used to get
data out of the system, for example
writing it to disk.

Figure 21: Different kind of NARVAL Actors.

All the actors are written in Ada95, but, a generic actor (for
each class) without data manipulation code is provided with
an interface for C/C++ code inclusion. Consequently external
libraries can be linked in order to manipulate data, while the

26 DATA ACQUISITION SYSTEM

Ada95 part of the actor still manage input/output buffers, as
can be seen in figure 22.

Figure 22: Sketch of a generic filter actor that can be provided with a
C/C++ linked library implementing any algorithm for data
processing.

Every NARVAL instance, is started loading a main plain text
configuration file and a XML topology file.

The main configuration file is used, like a script, to automati-
cally commit a list of commands to the NARVAL system; some
of those commands are used to set the instance name, the XML
topology file path, the libraries to be loaded by every kind of
actor, etc.

The XML topology file is used instead to instruct the system
on the number of actors, for every kind, that has to be run and
to assign them the origins and/or destinations of the input/out-
put data flow, to choose the input/output buffers size, and to
designate the machine where every actor will run.

A sample XML file to load a chain of three actors running
on three different machine is reported in listing 1 on the facing
page.

All the actors with the same processing code have in common
the same name, but various instances of them can be run con-
currently with different data origin and destination; in this way,
once all the actors are programmed and tested, adding a new
detector in the AGATA array from the DAQ point of view, is
just a matter of changing the topology file and to have enough
computing power.

Once running, all the actors provide various information about
their status that can be read and visualized using a GUI software,
called Cracow. The same interface is also used to start, stop and

2.3 DISTRIBUTED DAQ: NARVAL 27

Listing 1: Simple NARVAL XML topology file example:�
<configuration>

<producer>
<name>file_reader</name>
<hostname>narval01</hostname>
<binary_code>generic_producer</binary_code>
<output_buffer_name>data1</output_buffer_name>
<size output_buffer="data1">1000000</size>
<port output_buffer="data1">eth1</port>
<debug>info</debug>

</producer>

<intermediary input_buffers="1" output_buffers="1">
<name>filter</name>
<hostname>narval02</hostname>
<binary_code>generic_filter</binary_code>
<data_source source_port="eth1" source_buffer="data1">

producer</data_source>
<output_buffer_name>data2</output_buffer_name>
<size output_buffer="data2">1000000</size>
<port output_buffer="data2">eth1</port>
<debug>info</debug>

</intermediary>

<consumer>
<name>consumer</name>
<hostname>narval03</hostname>
<binary_code>generic_consumer</binary_code>
<data_source source_port="eth1" source_buffer="data2">

filter</data_source>
</consumer>

</configuration>
� �

28 DATA ACQUISITION SYSTEM

pause the acquisition system. A screenshot of this software can
be seen in figure 23.

Figure 23: Screenshot of the Cracow GUI showing the DAQ system
running on one triple cluster and splitting the PSA compu-
tations on three identical actors to occupy more processor
cores.

2.3.1 Algorithms Integration

As it has been discussed, the design of NARVAL is based on
the actor concept and these actors are unaware of the topology
of the whole system; therefore they can be developed separately
as long as they provide the interface layer used by NARVAL to
load, control, and communicate with them [16].

For PSA and Pre-processing algorithms, C++ based classes
have been developed providing a simple mean to connect a work-
ing algorithm with the data flow of the AGATA DAQ using the
concept illustrated in figure 22 on page 26.

The interface that has to be implemented in a library to be
linked as the processing-code inside a NARVAL actor, is very
simple and it has to contain four required symbols plus six op-
tional ones.

2.3 DISTRIBUTED DAQ: NARVAL 29

• The process_config function that will be called by the
system only once, before any other calls. NARVAL will
supply a directory path as an argument, specifying where
configuration data can be found. This routine has the re-
sponsibility to read all necessary configuration data into
local arrays.

• The process_register function that will be called by the
system only once, at program load time for each algorithm
process instance.

• The process_initialise function that will be called once
per instance every time a (re)initialization of the loaded
program is required. After the initial call, any further call
will follow a process_reset function call.

• The process_block function that will be called every time
an incoming data block is received and requires processing.
This function receives as an argument a pointer to a full
incoming buffer and a pointer to an outgoing empty buffer.
This is where the algorithm to actually process data has to
be implemented.

The six optional functions has self-explanatory names and are:
process_start, process_pause, process_resume, process_stop,
process_reset and process_unload.

To further facilitate the separation between data transport and
algorithm development, has been provided the ADF framework
(AGATA Data Format). The purpose of this software is to de-
fine a standard data format to let the actors pack and unpack
frames contained inside data buffers, calling predefined func-
tions. Thanks to the ADF library, NARVAL can completely ig-
nore the content of data buffers, while the data-processing li-
braries can read/write data frames without re-implementing the
formatting code.

2.3.2 NARVAL Emulator

Since to debug C++ libraries to be used with NARVAL actors,
running them inside the whole system is very hard and in some
cases actually impossible, a NARVAL emulator has been devel-
oped and provided.

The main problems that arise debugging C++ libraries inside
NARVAL are caused by its distributed and concurrent nature,

30 DATA ACQUISITION SYSTEM

that make impossible the use of debuggers like gdb. The NAR-
VAL emulator aims to facilitate the development and debugging
of C++ libraries implementing a fake NARVAL environment
that, simulating a running system, calls the developing library
as the real system would.

This tool is written in C language and using dlopen() func-
tion calls can dynamically load C/C++ shared libraries imple-
menting the processing-code, that should be loaded by an actor,
according to the NARVAL configuration files.

The main difference in comparison to the real system, is that
in the Emulator, all the processing-code libraries run on the same
machine and they are executed sequentially from the first one,
to the last one in the data-flow path.

Actually the NARVAL Emulator, will at first read the configu-
ration files used by NARVAL, load all the needed libraries and
then will execute the shared library that would be executed by
the first “producer actor” in the NARVAL environment. When
it will have filled its output buffer, the emulator will execute the
next actor’s library in the chain, using the filled buffer as an in-
put. The emulator will run until the buffer will reach the library
of the last consumer actor and then will start again from the
principle “acquiring” another buffer.

Thanks to the Emulator all the data processing can be “fol-
lowed” inside the libraries thanks to debuggers like gdb, and
the code can be checked against memory leaks with tools like
valgrind.

Unfortunately, some of the actor libraries could not be devel-
oped using the Emulator, as the event builder actor for example,
since their features are strongly related to the concurrent and
parallel execution of the preceding actors in the data flow path.
In fact, these actors were not implemented in C/C++ language,
but in Ada95.

In spite of this, the PSA actor, having only one incoming and
one outcoming data stream, could be developed using the NAR-
VAL Emulator in C++ code as will be discussed in chapter 1.2.3
on page 10.

3 G E N E R A L- P U R P O S E C O M P U T-
I N G O N G P U S

The GPGPU (General-Purpose computing on Graphics Processing
Units) is the technique of using a GPU (Graphics Processing Unit),
which typically handles computation only for computer graph-
ics, to perform computation in applications traditionally han-
dled by the CPU.

In the last years, a technologic limit (caused by electronic com-
ponents miniaturization) has been reached in the production of
faster and faster CPUs, inducing the manufacturers to increase
the number of cores contained in one processor instead of its
clock frequency.

This rather new trend for CPUs has been introduced several
years ago for GPUs that actually carried hundreds of “low clock”
cores on the same GPU chip. The reason why GPUs manufac-
turers entered this trend sooner, was the need of producing low-
cost chips helped by the fact that graphic calculations are easily
parallelizable on a very large number of cores.

GPUs manufacturers exploiting the peculiarity of graphic com- Data-parallelism is
achieved when each
processor performs
the same task on
different pieces of
distributed data

putations, that are highly data-parallel by nature, reached an af-
fordable processor model capable of a great computational power
that moreover seems to follow Moore’s Law [45] better than or-
dinary CPUs, as can be seen in figure 24 on the following page.

However, the reason why GPUs did not supersede CPUs, is
that they are not so well suited for every kind of computational
problem. In figure 24 is plotted the theoretical number of single-
precision floating point operations per second that different pro-
cessors may handle, but it does not show how to reach it in
practice.

For example, having a huge array of data where the same
operations have to be applied on every cell of the array, indepen-
dently from each others, a CPU and a GPU are likely to reach the
GFLOP/s peaks indicated in figure 24. Instead a CPU will most
likely outperform a GPU for the solution of a problem where
the same number of operations has to be applied (on the same

31

32 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 24: NVIDIA GPUs theoretical computational power in
GFLOP/s compared to Intel CPUs. Image courtesy of
NVIDIA Corporation.

amount of data), but with a lot of conditional statements and
dependencies between different array cells1.

In fact is quite infrequent in graphic computations to have a lot
of conditional statements and if we could plot the percentages
of transistors used to implement the control unit, the cache, and
the arithmetic cores in a GPU, against the percentages relative
to a CPU, we would obtain the graphic in figure 25, showing a
fewer percentage for the control unit.

Figure 25: Average chip area (corresponding to the number of transis-
tors) used to implement the various units of a processor for
CPUs on the left and for GPUs on the right. ALU stand for
Arithmetic and Logic Unit, while DRAM for Dynamic Random
Access Memory (system or card memory). Image courtesy of
NVIDIA Corporation.

Apart from the control unit, the GPUs have also a smaller
cache and “smaller” ALUs (Arithmetic Logic Unit) (although in a
higher number), than in the CPUs. The smaller cache can be ex-
plained since highly arithmetic independent operations, running
in parallel on different data trunks (different threads), can easily
hide memory latency, while simpler ALUs can be explained by

1 This example does not want to be exhaustive, but just an introduction to the
more formal and detailed concepts discussed in section 3.1.

3.1 GPUS ARCHITECTURE MODEL 33

the fact that they have a restricted set of functions and basically
have to be fast floating-point arithmetic units.

What General-Purpose computing on GPUs technique aim to,
is the exploitation of the great computational power offered by
modern graphics cards, providing to software developers the
tools needed to execute some parts of their programs on GPUs
processors. Selecting only the software parts that may be ex-
ecuted faster on a GPU and running them on a graphic card
rather than on the CPU, huge execution speed improvements
can be obtained.

3.1 GPUS ARCHITECTURE MODEL
GPUs are designed specifically for graphic computations and

thus are very restrictive in terms of operations and program-
ming. Because of this nature, GPUs are only effective at tack-
ling problems that can be solved using a particular program-
ming paradigm called stream processing that is perfectly suited
for graphic computational needs.

This paradigm is strongly related to the SIMD (Single Instruc-
tion Multiple Data) class of computer architecture in Flynn’s tax-
onomy [18] and allows software applications tu run on multi-
ple computational units, without explicitly managing allocation,
synchronization, or communication among those units.

To allow this simplification in the software parallelization, this
paradigm restricts the parallel computations that can be per-
formed. Therefore it can be defined as a SIMD paradigm since
it allows the same set of instructions (often called Kernel) to be
run on different processing units, on different sets of data. In
figure 26 on the following page a graphical representation of the
SIMD model is reported.

If the same code is executed on different processing units, only
one control unit is needed for all of them and hence a lot of
transistors in the GPUs can be used for arithmetic units instead
of control units as shown in figure 25 on the preceding page.

This model is not new in the computing history and has been
used in the vector supercomputers of the early 1970s. However
for its lack of flexibility for general purpose computing, it has
been used only for specific computing fields and for providing
a few specific multimedia instructions inside general purpose
processors (like the MMX “technology” of Intel processors, or
3DNow! for AMD ones).

34 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 26: SIMD model representation. Each PU (Processing Unit) is
some functional unit that can perform processing. The PU’s
are indicated as such to show relationship between instruc-
tions, data, and the processing of the data.

Not being forced to produce general purpose processors, graph-
ics card manufacturers, pushed the development of wide SIMD
hardware implementation until reaching the capabilities of mod-
ern GPUs and eventually providing the possibility to use such
kind of processors for “more general” computations not strictly
related to graphics. Consequently in the last years some efforts
to slightly modify GPUs architecture have been done to make
them more flexible and some standard frameworks for software
developments have been released.

3.2 PROGRAMMING API & LANGUAGES

In the past some software projects tried to use standard graph-FANN (Fast
Artificial Neural

Network Library),
for example,

attempted to run
part of its code on

GPUs using the
OpenGL library

ics libraries like OpenGL (Open Graphics Library) to use the graph-
ics functions provided to execute non graphics computations on
GPUs. Anyway, such approach did not spread, since not all com-
putational problems that may benefits from running on GPUs
can be translated in “graphical problems” solvable by the use of
graphical functions.

One of the first attempts to provide a standard interface and
language to program GPUs, to execute generic computations on
them, dates back to the 2004, with the release of BrookGPU, the
Stanford University Graphics group’s compiler and runtime im-
plementation of the Brook stream programming language [11].

3.2 PROGRAMMING API & LANGUAGES 35

Anyway, despite its BSD license that could help it to rapidly de-
velop, it did not have a lot of success and has been in beta version
for a long time without becoming of common use; afterward the
development apparently stopped in the 2007.

Apart from the early experimentations, the first popular soft-
ware to provide GPGPU functions to developers, has been cre-
ated by NVIDIA, that in November 2006 introduced and later in
February 2007 released, the first CUDA™ SDK (Software Devel-
opment Kit).

3.2.1 Compute Unified Device Architecture

CUDA (Compute Unified Device Architecture) provides to devel-
opers the possibility to add to ordinary software codes some
parts to be run on the GPU. This is done using ’C for CUDA’ (C
with NVIDIA extensions), compiled through a PathScale Open64

C compiler that generates binary code suitable for all the mod-
ern NVIDIA GPUs [32].

The main idea on which the CUDA SDK is based is illustrated
in figure 27 on the following page and can be summarized in
4 different steps that can be executed from an ordinary C/C++
or FORTRAN code, using some functions implemented in the
CUDA shared library:

1. Copy data to be processed by the GPU, from the host mem-
ory to the GPU one.

2. Configure the GPU setting all the configurations and ar-
guments needed to execute the computation on the right
portions of data.

3. Launch the computation on the GPU instructing it to exe-
cute a kernel with the arguments provided at the step be-
fore. This kernel is a function written in C for CUDA and
compiled with PathScale Open64 C compiler.

4. Once the same kernel has been executed on various cores
on different portions of data, the results can be copied back
to the host memory.

Also CUDA did not spread as much as expected, even if it
is much more used for GPGPU than OpenGL or BrookGPU. A
possible reason is that being an NVIDIA Corporation creation,
it is intended to work only on NVIDIA graphic cards. Indeed

36 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 27: Processing flow with CUDA

in the field of GPUs, in contrast with the CPUs one, there is a
lack of architectures standardization, making it impossible to let
NVIDIA’s CUDA implementation works on other brands cards.
On the other side, other manufacturers have no interest in the
implementation of a CUDA compatible driver for their boards
being CUDA a property of one of their competitors.

The limitation of CUDA running only on NVIDIA boards,
postponed the research on the PSA algorithm implementation
for GPUs. Being AGATA a detector expected to run for the next
decades, a limitation to only one manufacturer implementation
of a so young technology, is a serious risk because NVIDIA could
decide to stop supporting CUDA in favour of a more established
standard.

3.2.2 Open Computing Language

Fortunately several companies operating in the computing in-
dustry being interested on GPGPU understood the problem and
decided to define an open standard for a middle-ware software to
interpose between GPUs drivers and user software, as has been
done in the past with OpenGL. These companies leaded by Ap-

3.2 PROGRAMMING API & LANGUAGES 37

ple inc. through the Kronos Group2 created the OpenCL (Open
Computing Language) royalty-free standard [4].

This has been a fundamental step also for AGATA because
the idea of a PSA algorithm implementation for GPUs was born
in 2007, but it started to be actually developed only in 2009 af-
ter the release of the first OpenCL specification (December 8,
2008) [4] and the first beta version of the NVIDIA OpenCL im-
plementation (April 20, 2009) for its boards [34, 35].

The creators of OpenCL evidently treasured the experience of
NVIDIA with CUDA and in fact OpenCL is based on the same
model exposed for CUDA, and the steps illustrated in figure 27

on the preceding page can be considered perfectly suited also
for OpenCL.

Conceptually the greatest difference between CUDA and Open-
CL is that the first is provided as an SDK (Software Development
Kit), while the second is “only” a specification that in particular
is composed of three parts:

• A language specification, defining an extension of a subset of
ANSI C99 language to program kernels to be run on GPUs.
Manufacturers had to provide JIT (Just In Time) compilers
from this language to their processors bytecode.

• A platform layer API3 that gives to the developers a set
of functions to access to routines to query and give com-
mands to the devices in the system.

• A runtime API, that allows the developers to queue up com-
pute kernels for execution and manage the computing and
memory resources in the OpenCL system.

Those parts define what the GPUs manufacturers have to pro-
vide to let third party software run on their hardware using
OpenCL.

NVIDA, for example, added inside the CUDA SDK a com-
patibility layer enabling OpenCL software support, that actually
uses the CUDA architecture previously implemented, as illus-
trated in figure 28 on the following page.

2 The Khronos Group is a member-funded consortium focused on the creation
of royalty-free open standards for parallel computing, graphics and dynamic
media on a wide variety of platforms and devices. Some of the consortium
members are: Apple, NVIDIA, AMD, IBM, etc.

3 API stands for Application programming interface

38 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 28: Scheme of the CUDA software architecture showing how
the OpenCL implementation has been inserted. ¬ Parallel
compute engines inside NVIDIA GPUs. OS kernel-level
support for hardware initialization, configuration, etc. ®
User-mode driver, which provides a device-level API for de-
velopers. ¯ PTX (Parallel Thread Execution) ISA (Instruction
Set Architecture) for parallel computing kernels and func-
tions. Image courtesy of NVIDIA Corporation.

Together with the specifications, the Khronos Group, provides
also a lot of documentation explaining the conceptual abstrac-
tions introduced by OpenCL, which in contrast to CUDA, aims
to provide an interface suitable to program various kind of pro-
cessors, multi-core CPUs, some FPGAs and not only GPUs.

The Platform Model

The platform on which OpenCL is supposed to run, is com-
posed by a host (a computer) connected to one or more “OpenCL
devices”, allowing applications to use the host and the OpenCL
devices as a single heterogeneous parallel computer system.

Indeed an OpenCL device can be a CPU, a GPU or some other
kind of processor. These processors are divided into one or more
CUs (Compute Units) which are further divided into one or more
PEs (Processing Elements, referred before as PUs Processing Units).

An OpenCL application runs on the host machine and it can
submit commands from the host to execute computations on the
processing elements within a device. The processing elements
within a compute unit execute a single stream of instructions as

3.2 PROGRAMMING API & LANGUAGES 39

SIMD units or as SPMD4 (Single Process, Multiple Data or Single
Program, Multiple Data) units.

This level of abstraction grants the possibility of writing OpenCL
applications capable of exploiting all the processors (CPU, GPU,
vector processors, etc.) that they may find on a host machine, no
matter the manufacturer or the internal hardware architecture.
What is needed is only an OpenCL implementation provided by
the manufacturer (or a third party) for a specific processor. Dif-
ferent processors may be more or less efficient for a particular
application, but a well programmed OpenCL application may
“decide” which processor, on the host machine is better suited
for running each part of its code.

The Memory Model

As different devices may implement different memory mod-
els, OpenCL provides a standardization defining some “kind”
of memory space that may be available on supported devices.
Some of them may not be available on some devices, or may
have different size and throughput.

OpenCL defines four memory spaces that are summarized
later and showed as a memory hierarchy diagram in figure 29

on the next page:

• Private Memory can be seen as registers in ordinary CPUs;
a fast small sized memory, accessible only by the thread
running on the PU the memory belongs to.

• Local Memory is accessible by a group of threads and can
be used to share data among different threads.

• Constant Memory is a read-only memory that is writable
only by the host system before the execution of a Kernel.
It can be used as a fast cache to store data that has to be
readable by all the threads running on all the CUs of one
device.

• Global Memory is the mass memory, usually is off-chip and
is readable and writable by all the threads running on the
same device. Usually is the biggest, but slowest memory
space available.

4 In SPMD, multiple autonomous processors simultaneously execute the same
program at independent points, rather than in the lockstep that SIMD imposes
on different data. SPMD is a subcategory of MIMD (Multiple Instruction stream,
Multiple Data) in the Flynn’s taxonomy. Different cores of a multi-core CPU
execute instruction as SPMD.

40 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 29: OpenCL Memory Model

The Execution Model

Compute kernels can be thought of either as data-parallel
(SIMD paradigm), which is well-matched to the architecture of
GPUs, or task-parallel (SPMD paradigm), which is well-matched
to the architecture of CPUs.

A compute Kernel is the basic unit of executable code and can
be thought of as a function.

In terms of organization, the execution domain of a kernel is
defined by an N-dimensional computation domain. This lets the
system know how large of a problem the user would like the
kernel to be applied to. Each element in the execution domain
is called a work-item and it can be seen as a single thread.

OpenCL gives the possibility to group together work-items
into work-groups for synchronization and communication pur-
poses; every work-group runs on a CU and every work-item
running in a PE, belonging to the same work-group, can access
the same Local Memory space. On devices without physical Lo-
cal Memory space, it will be mapped on Global Memory, obtain-
ing lower performances, but transparently from the programmer
point of view.

3.3 HARDWARE ARCHITECTURE 41

3.3 HARDWARE ARCHITECTURE
Apart from the standard software organization that OpenCL

defines in order to grant the possibility to run on different de-
vices, the optimization of an algorithm should take into account
also the hardware architecture where it has to be run. In the next
page an overview will be given on the graphics cards used and
about the NVIDIA’s GPUs architecture in general.

Thanks to the diffusion of NVIDA graphic cards at the Leg-
naro National Laboratories where AGATA is hosted and also
to the fact that NVIDIA appeared the strongest GPGPU sup-
porter company when this project started, this hardware brand
has been chosen for the PSA algorithm optimization.

Despite the choice of using this manufacturer cards, a partic-
ular care has been taken to ensure the portability of the algo-
rithm’s code also on other devices.

3.3.1 NVIDIA Quadro FX 1700

The first implementation of a PSA algorithm exploiting GPUs
computational power has been developed on the NVIDIA Quadro
FX1700 that was installed on an available workstation computer.

The NVIDIA Quadro FX1700 is a graphic card architected for
engineering and design professionals. It mounts the G84GL
GPU chip and is not intended for high intensity 3D compu-
tations (like the GeForce series) or for scientific computation
(like the Tesla or Fermi series). Anyhow it is supported by the
NVIDIA CUDA/OpenCL implementation and it was well suited
to perform some feasibility and preliminary tests.

The specifications of the Quadro FX1700 board are listed in ta-
ble 1 and its theoretical computing power is about 58.88GFLOP/s.
This is lower than the theoretical computing power of modern
multi-core CPUs (as can be seen from figure 24 on page 32).

Table 1: NVIDIA G84GL (NVIDIA Quadro FX1700) Specifications

SMs Memory
SPs Clock Bus Width Bandwidth Type Size

32 400MHz 128bit 12.8GB/s DDR2 512MB

In NVIDIA GPUs, Processing Units are called SP (Straming
Processor) and are grouped 8 by 8, sharing 16kB of Local Mem-

42 GENERAL-PURPOSE COMPUTING ON GPUS

ory5, in units called SM (Streaming Multiprocessor) as shown in
figure 30. In the OpenCL taxonomy every hardware SM mapsCU (Compute

Units) and PE
(Processing Element)

definitions were
given in

section 3.2.2

to an abstract CU while every one of the 8 SPs (or cores) that
compose an SM, maps to a PE.

The image on the left shows a
schematic view of the content of a
Symmetric Multiprocessor unit of a
NVIDIA GPU. Every SM contains:

• 1 Instruction Cache (Orange)

• 1 Multi-thread Instruction Issuer
Unit (Brown)

• 1 Constants Cache (Orange)

• 8 Symmetric Processors (Blue)

• 2 Special Functions Unit (Green)

• 1 Shared Memory space (Or-
ange)

Figure 30: NVIDIA Streaming Multiprocessor architecture. Image cour-
tesy of http://www.anandtech.com/.

Every SM, referring to figure 30, does not contain only SPs,
but also some caching, control and math-coprocessor units.

The multi-thread instruction issuer unit has the task to dis-
patch instructions to the different threads running on the 8 SPs
of the SM, using the instructions and constants caches. The 8 SPs
are the cores where the threads are executed, while the two SFUs
(Special Functions Unit) are used to execute a subset of floating-
points instructions not implemented in the SPs cores (every SFU
contains for example 4 floating-point multipliers).

In the latest NVIDIA GPU chips models, SMs contain also a
double-precision units to remedy to the lack of double-precision
support of the SPs; in the future double-precision instruction
will probably be incorporated inside SPs.

In addition, NVIDIA GPUs chips group SM in bigger groups
called TPC (Thread Processing Cluster, often called in the graphic
field Texture Processing Cluster), that may comprise two or more

5 The value of 16kB for the Local Memory size is for the cards used for this
project, it may change on different models.

3.3 HARDWARE ARCHITECTURE 43

SMs. The G84GL chip has every TPC formed by two SM, and
consequently embed two TPC (32 SPs in total). In spite of this,
for example the GT200b chip has every TPC formed by three SM,
as is shown in figure 31.

Figure 31: NVIDIA GT200/GT200b GPU chip Thread Processing Clus-
ter scheme. Image courtesy of http://www.anandtech.com/.

Every TPC provides to the contained SMs a Geometry Control
Unit6, an SMC (Symmetric Multiprocessor Controller) handling ex-
ternal memory access (load, store, atomic functions) and an on-
chip L1 cache to store Constant Memory read-only data.

3.3.2 ASUS ENGTX 285

After the initial tests, which confirmed the feasibility of the
project, the development of the PSA algorithm for GPUs pro-
ceeded on a more performing graphic card: the ASUS ENGTX285,
mounting the NVIDIA GTX285 GPU chip codenamed GT200b.

This card, has been purchased for the scope, since it is an
affordable card architected for intense 3D computation, and it ASUS ENGTX285

is architected mainly
for modern
computer games.

uses a slightly newer GPU chip with respect to that used in the
more expensive Tesla C1060 card.

Tesla series card, produced by NVIDIA and not by third par-
ties companies, are specifically produced for GPGPU scientific
computing [30] but, despite the guarantee of better memory
quality and quantity, they rely on the same chips used on the

6 The Geometry Control Unit, is called so, because it was used in graphics com-
putations to manage input and output vertex data to the SMs. In GPGPU it is
instead used as a generic input/output dispatcher unit.

44 GENERAL-PURPOSE COMPUTING ON GPUS

Figure 32: NVIDIA GT200/GT200b GPU chip global architecture. Im-
age courtesy of http://www.anandtech.com/.

GeForce series. NVIDIA claims that in future the GPU chips
used for the Tesla series will follow a different development path,
according to the GPGPU computational needs.

The PSA algorithm has been developed on the ASUS ENGTX285
card that is equipped with 240 SPs (or PEs or cores) divided in
30 SMs (or CUs), further divided in 10 TPCs, where every TPC
contain three SM as can be seen in figure 31 on the previous
page and in figure 32. Clock and memory frequencies for this
card are plotted in table 2 giving an impressive theoretical com-
puting power of 1062.72GFLOP/s.

Table 2: NVIDIA GT200b (ASUS ENGTX285) Specifications

SMs Memory
SPs Clock Bus Width Bandwidth Type Size

240 648MHz 512bit 159.0GB/s GDDR3 1GB

3.3.3 SIMT Model

NVIDIA claims [30, 32] of having implemented in its GPUs
(programmable with CUDA or OpenCL), a processing model
that is an improved variant of the SIMD model (Flynn’s taxon-
omy) used in previous GPUs, named SIMT (Single Instruction,
Multiple Thread).

Even if it can be ignored for the programming correctness
point of view (and indeed is not exposed in OpenCL), this NVI-
DIA variant must be taken into account to achieve best perfor-

3.3 HARDWARE ARCHITECTURE 45

mance. Consequently, even though processing models have al-
ready been discussed in section 3.1 on page 33 and 3.2.2 on
page 38, the strict relation of the SIMT model with the NVIDIA
architecture, forces this subject to this section.

The main idea behind this model is the warp concept: ev- The term warp
originates from
weaving, the first
parallel thread
technology

ery SM’s multi-thread instruction issuer creates, manages, sched-
ules and executes threads in group of 32 parallel threads called
warps.

Every SM (in the GT200 chip) manages a pool of 32 warps (32

threads each), for a total of 1024 threads, that multiplied for 30

SM give a maximum number of 30,720 concurrent threads for
one GPU chip.

Every thread in the same warp executes the same instruction
at the same time. If one (or more) of the threads in the same
warp stops (for example waiting for a memory fetch), the whole
warp stops its execution and another warp ready to execute is
loaded on the SM with no context switching overhead. Every
thread in the same warp executes with its own independent reg-
isters state, but if different threads in the same warp diverge, due
to a data-dependent conditional branch, all the different paths
executes serially, lowering performances. When all the different
paths in the same warp complete the threads converge to the
original execution path.

However, branch divergence occurs only within the same warp,
since different warps can execute different data paths with no
performance degradation.

As mentioned before, the programmer may ignore the warp
concept while dealing with programs correctness, but should
take it into account for performance tuning, in particular should
take care to avoid thread branch divergences within the same
warp of threads.

The main difference between SIMT and SIMD is that in the
SIMD model every instruction is applied to a different trunk of
data, exposing the size of the trunk to the software, while SIMT
instructions are executed by different independent threads in
parallel, that may take different branches.

4 P S A A LG O R I T H M O P T I M I Z AT I O N

As introduced in section 1.2.3 on page 10, the Pulse Shape
Analysis algorithm analyzes the shapes of the pulses from all
the electrical contacts of a segmented detector and gives as an
output the points where the interactions causing the pulses oc-
curred.

The PSA algorithm used for AGATA is called GridSearch and
is provided in two versions: the Full GridSearch Algorithm [40]
and the Adaptive GridSearch [47] one.

In this chapter a detailed description of the algorithm will be
given and then the core of this dissertation work will be treated,
illustrating the development choices to implement a GridSearch
Algorithm for GPU devices.

4.1 GRIDSEARCH ALGORITHM

Several PSA algorithms to calculate interaction positions in-
side segmented γ-ray detectors have been developed in the past
[8, 40, 47]. On the basis of the position resolution obtained dur- Anyway research of

new algorithms is
still going on [41]

ing the first test experiments [40] and processing speed tests, the
GridSearch algorithm [10] by Roberto Venturelli has been chosen
for the AGATA array. In particular this thesis is focused on the
optimization of the Full GridSearch algorithm that, despite its
simplicity, is granted to provide a global optimum, in contrast
to the faster, but potentially less precise Adaptive GridSearch.

The kind of data that are processed by the PSA algorithm
are here exemplified by the experimental event reported in fig-
ure 33 on the next page. In this figure all the signals from the 36 The segments with a

net charge collected
are C4 and F3

segments are reported together with the signal from the central
contact.

Actually in this implementation the event is assumed to have
only one interaction in the same segment, but in future develop-
ments also multiple interactions have to be considered.

The GridSearch algorithm was originally developed and tested
on the experimental data from the MARS in-beam experiment.

47

48 PSA ALGORITHM OPTIMIZATION

Figure 33: Signal waveforms of the 36 segments given as input to the
PSA algorithm showing an event (interaction) inside two
segments. Transient signals can be noticed in the surround-
ing segments. In the lower-right corner also the core signal
waveform is plotted.

The original implementation was modified to cope with the new
AGATA data format and it was further optimized as well. The al-
gorithm is based on the comparison between measured net and
transient signals of the segments and calculated signals from a
fine grid of points in the crystal. The calculated signals (often
called reference basis), discussed in section 1.2.4 on page 13, are
grouped in a sort of database of signal waveforms, where for
every point of the ideal 3D grid inside the detector, is stored a
record. These records contain the signal waveforms that would
be read on all the segments in correspondence of an interaction
at the grid point the record is about.

4.1 GRIDSEARCH ALGORITHM 49

Although it can assume one or two interaction points per
segment, in its simpler implementation the GridSearch method
searches for just one interaction point per firing segment. It has
been verified in Monte Carlo simulations that the single interac-
tion hypothesis is correct in more than 95% of the cases.

Using simulated signals, it was proven that, in case of multi-
ple interactions within one segment, the result of this algorithm
is indeed a fictitious single interaction point positioned at the
center of gravity of the real interactions. An energy equal to
the sum of the individual energy depositions is assigned to such
fictitious interaction point. This justifies the approximation con-
sidered with the simulated data, namely packing the interaction
points within the same segment. The signal comparison is done
by evaluating the following FoM (Figure of Merit):

FoM = ∑
j∈Segm

Tend

∑
i=T0

|Sm
ij − Sb

ij|p (4.1)

The algorithm has to find the basis record that minimize the
evaluation of the fiugre of merit (FoM) shown in formula 4.1,
where the j index iterates on the segments, i index iterates on the
samples of the waveform (starting from the T0 first sample to the
Tend last one), Sm

ij is the ith sample of the jth segment measured
waveform, while Sb

ij is the corresponding basis sample and p is
a positive number.

It can be proven that this figure of merit is a metric and for
instance an exponent p = 2 will make it correspond to the Eu-
clidean metric. The p exponent in particular has been adjusted
experimentally, showing that best results can be obtained for
p = 0.3 that is the value actually used.

This parameter, as well as other parameters entering the algo-
rithm, has been adjusted in order to minimize the peak FWHM
following Doppler correction, using the point position to infer
the photon direction, or in other words to produce the best ef-
fective energy resolution. For the events where more than one
segment was firing, a hit pattern (“neighbouring pattern” in the
following) was chosen to avoid the use for a given interaction
of the transient signals due mainly to another one. A possi-
ble neighbouring segment pattern for multiple interactions is
depicted in figure 34 on the following page.

This segment pattern is deduced from simple geometrical con-
siderations, however in some cases it is possible to improve the
performance by modifying it. Consequently, it has to be a modi-
fiable parameter for the GridSearch algorithm.

50 PSA ALGORITHM OPTIMIZATION

Figure 34: Pattern used to define the set of neighbouring segments for
events with more than one segment firing. The closed-end
shape of the detector is reflected in an extended neighbour-
ing pattern when a frontal segment is hit.

In order to deduce the position of an interaction, its full set
of neighbouring segments is used, except the segments where
another net-charge signal is present. The best performance is
obtained using for the FoM calculation also the segments where
the transients of two interactions are overlapping, i.e. a further
reduction of the set of neighbouring segments worsens the peak
width. Recent versions of the algorithm allow to search for the
interaction points in decreasing energy order, subtracting at each
step the resulting basis signal from the experimental data, in an
iterative way.

The signal registered from the central contact and from the
net-charge segment are not used since it turns out that their
inclusion in the FoM calculation results in a worsening of the
energy resolution obtained using the hit pattern in figure 34.

The comparison of a signal with the basis is done indepen-
dently of the position of the tested point inside the detector and
the result for the matching of a certain point does not depend on
the matching of the neighbouring points. Hence the algorithm
has no particular requirements about the geometry of the grid
of calculated signals, allowing the use of irregularly spaced sig-
nal basis which can be constructed with a density distribution
matching the position sensitivity of the detector [22].

As introduced before, different versions of the algorithm were
developed in order to meet various experimental situations.

A possibility, if enough computing power is available, is to
search for two interactions within the same firing segment. When
two points are searched, Sb

ij is a linear combination of signals for
two possible points in the real segment while their amplitudes
represent the energy partition between the two deposits. While

4.1 GRIDSEARCH ALGORITHM 51

searching for the position of a single interaction inside a seg-
ment is a 3-dimensional problem, the search for two interactions
is a 7-dimensional problem: x1, y1, z1, x2, y2, z2 and the energy
partition k = E1/E2 between the two interactions should be esti-
mated.

Thus, the algorithm turned out to be significantly slower than
the version searching for single interaction points. On the other
hand, it turned out that its performance in terms of the result-
ing Doppler correction is not better than the case where only a
single interaction point is searched. Therefore, our results were
produced assuming only one interaction per segment.

Finally, it should be pointed out that variants of the algorithm Actually the Full
GridSearch
algorithm for CPUs
can process about
300 events per
second as illustrated
in table 3 on page 73

have been implemented in order to speed up the search in case
the computing time is an issue, such as during the on-line anal-
ysis. Such variants rely on adaptive methods based on a first
rough search, which can be a parametric one or a grid search
on a coarsely-spaced grid, followed by a fine search in the re-
gion identified by the rough search (like the mentioned Adaptive
GridSearch).

This solution however gives worst results than the extensive
grid search, since it is not granting to find optimal FoM mini-
mums, but may find local ones.

Another solution to move around the execution speed prob-
lem has been to reduce the acquired and basis data precision,
available as floating point values, processing it inside the PSA
algorithm as 16-bit integers.

A more performing PSA algorithm, or a more performing
hardware to execute it, would permit to exploit all the available
information and the realization of more sophisticated techniques
to analyze multiple interactions.

52 PSA ALGORITHM OPTIMIZATION

Figure 35: Signal waveforms of the 36 segments given as input to the
PSA algorithm plotted in black and the closest waveform
set contained in the basis database found by the PSA al-
gorithm plotted in red. In the lower-right corner the core
signal waveform.

4.1.1 GridSearch for CPU

In listing 2 is reported the core part of the C++ code used to
run on the CPU the GridSearch algorithm

The C++ code that implements the figure of merit calculation
for one event, before the optimization attempt using GPUs, is
given in listing 2. On line 10, pS->sAmplitude[iSegm] is a pointer
to the acquired signal coming from the iSegm segment, so the
experimental signal.
On line 11, fBasis.Pts[netChSeg][iPts].amplitude[iSegm] is a pointer
to the reference basis signal that would be read from segment

4.1 GRIDSEARCH ALGORITHM 53

iSegm if an interaction would occur in the point iPts of the net-
charge segment netChSeg.

The actual
GridSearch library is
composed by more
than a thousand
lines of code, here is
reported only the
core of the algorithm
that needs to be
optimized

Listing 2: Main Full Grid Search loop�
2 for(int iPts=0; iPts < nPts; iPts++) { // loop over the base points

4 chi2 = 0;

6 for(int iSegm=0; iSegm < NCHAN; iSegm++) { // loop over the segments

8 if(lMask[iSegm] != ’0’) {

10 short * realTrace = pS->sAmplitude[iSegm];
11 short * baseTrace = fBasis.Pts[netChSeg][iPts].amplitude[iSegm];
12 realTrace += samp_first;
13 baseTrace += time_first;

15 for(int nn = 0; nn < uSamples; nn++) {
16 chi2 += metrics[(*realTrace++) - (*baseTrace++)];
17 }

19 if(chi2 > chi2min)
20 break;
21 }

23 } // end loop over the segments

25 if(chi2 < chi2min) {
26 bestPt = iPts;
27 chi2min = chi2;
28 }

30 } // end loop over the base points iPts

32 pS->bestPt = bestPt;
33 pS->chi2min = chi2min;
� �

The outer cycle at line 2 in listing 2, as mentioned in the com-
mented text, loops over the points of the grid inside the net-
charge segment where the interaction occurred. At every cycle it
compute the FoM of formula 4.1 on page 49 for the current point.
The second nested cycle at line 6, loops over the segments and
correspond to the outer summation in formula 4.1 on page 49,
while the inner cycle at line 15, loops over the signal samples and
correspond to the inner summation in formula 4.1 on page 49.

The partial FoM for every sample is calculated at line 16 and
at the end the ID of the point with the smallest FoM with its
FoM value get saved at line 32 and 33.

In summary this code is performing a “brute force” search
comparing the signal recorded from the detector with all the

54 PSA ALGORITHM OPTIMIZATION

possible corresponding signals in the database. Other details
about the code will be given later showing the code optimization
path followed.

4.2 OPENCL GRIDSEARCH IMPLEMENTATION
The GridSearch algorithm has been studied in detail in order

to determine if the problem it solves can be parallelized and
how to do it in the most efficient way for its execution on GPU
devices.

It can be noticed that the core of the algorithm, reported in
listing 2 on the preceding page, comprise an outer for loop (line
2) over the base points of the net-charge segment where at every
cycle one point get “processed” and the value of its figure of
merit get calculated. The FoM of every point can be calculated
independently and in any order, thus allowing the subdivision
of the problem in different threads where every thread process
one point.

Consequently it can be concluded that the problem is paral-Since segments are
of different volumes,

the number of points
in each of them is

variable.

lelizable at least in a number of thread corresponding to the
number points comprised in the net-charge segment. This means
about one thousand for a 2× 2× 2mm grid.

In order to predict the speed improvements obtainable from
a GPU implementation the various possible bottlenecks should
be considered.

There could be two memory access bottlenecks:

• The PCI-Express 16x Gen2 connection from the host com-
puter to the graphics card.

• The memory bus between the GPU chip and the on-board
memory on the graphics card.

Other slowing factors could be:

• The parallelization of the problem in an insufficient num-
ber of threads to occupy all the cores available on the GPUs

• The use of mathematical functions that are not common
in the graphics calculations and consequently that are not
optimized in GPUs

• The presence of a lot of divergent branching threads (see
section 3.3.3 on page 44)

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 55

The PCI-Express bandwidth that is 8GB/s is much more than
the maximum 1Gbit/s of experimental data that may arrive in-
side one processing node due to the network speed and conse-
quently it should not be a bottleneck. Moreover, to move the
basis data inside the graphics card on-board memory, the PCI-
Express link will be used only once, at the algorithm initializa-
tion and in this phase execution speed is not relevant.

The bandwidth from the GPU chip to the on-board memory,
is more critical, since it will be used to read the basis database
while calculating the FoM related to every net-charge segments’
grid points.

The GPU to on-board memory bandwidth is specified as 12.8GB/s
and 159.0GB/s for the Quadro FX1700 card and the ENGTX285
respectively. The memory accessed to calculate the FoM of ev-
ery point is variable according to the number of segments con-
sidered in the neigbourhood of the net-charged one, but consid-
ering to compare an average of eight segments’ waveforms per
event with the acquired ones, the GridSearch algorithm would The bytes to fetch

are calculated
considering 60
samples signals,
using short data
type values (2 bytes
wide). The result
has to be doubled for
float data type
values (4 bytes
wide))

need to fetch 2× 60× 9× 1000 = 1.08MB of data, to calculate the
best matching point in a segment containing 1000 points. Giving
an impressive result of more than 10 thousand and more than
100 thousand events per second for the Quadro FX1700 card and
the ENGTX285 respectively, assuring that memory bandwidth
will not be bottleneck.

What can not be easily taken into account are the negative ef-
fects of the GPU on-board Global Memory latency (in the order
of 400-600 GPU clock cycles) that heavily depends on the data
access pattern, on the number of threads and on their mathemati-
cal complexity. These effects may prevent to reach the maximum
available bandwidth.

The latency effects depend on the data access pattern since if
threads with consecutive IDs access consecutive memory loca-
tions, most of the GPU chips (the used ones for sure) have the
capability to execute a coalesced memory load, that result in a sin-
gle memory access moving the biggest possible trunk of data,
lowering the average latency perceived by the threads.

Indirectly also the number of threads and their mathemati-
cal complexity can influence the memory latency effects, hiding
them. This because if a warp of threads is waiting for a mem-
ory load, the cores time that is wasted can be used to execute
other warps of threads if they exists. Moreover, if threads have a
high mathematical complexity, their execution can occupy more
easily the cores while others are waiting for memory loads.

56 PSA ALGORITHM OPTIMIZATION

4.2.1 First Implementation

Assured by the fact that the GridSearch algorithm seamed eas-
ily parallelizable and that graphics cards bandwidth to the host
and to its on-board memory was enough, the easiest way to test
memory latency impact on performances and to adjust threads
number and complexity, was to profile a running implementa-
tion written in OpenCL of the GridSearch core.

Some restraints to the possible code manipulations had to be
considered during all the developing process. In particular, only
the core part of the GridSearch algorithm could be re-organized,
while all the rest should have been modified as less as possible
since other developers not willing to deal with OpenCL com-
plexity were still working on it.

Consequently the main idea to organize the development has
been to add to the PSA library function process_initialise()

(that is run by NARVAL only once at the system initialization, as
illustrated in section 2.3.1 on page 28) the code to find, initialize
and return handlers to the GPU device, or devices, found on
the host machine and the code to load the basis database on the
GPU’s Global Memory as a read-only buffer.

The code to run the OpenCL kernel inside the GPU has been
implemented inside the SearchFullGrid() function, loading the
needed data like the acquired samples, the pointer to the array
where to store the results, etc. to its on-board memory.

In listing 3 on the next page the first OpenCL Kernel code
implementation of the GridSearch algorithm is reported. All the
omitted host side code running on CPU can be found in the
appendix A on page 79. As can be clearly seen the code is very
conservative compared to the C++ version for CPUs reported in
listing 2 on page 53 and only minor changes can be noticed; this
has been done in order to state a reference implementation to be
used as a base point to start the profiling and optimization1.

This Kernel code is executed by every thread lunched on the
graphics card and in fact the outer loop on points visible at line
2 in listing 2 on page 53 disappeared, since there will be one
thread for every point in the net-charge segment running this
code. In fact every thread at line 9 in listing 3 on the next page
(using the get_global_id() OpenCL defined function), gets its

1 Following a famous Knuth’s advise: «premature optimization is the root of all evil
(or at least most of it) in programming»

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 57

Listing 3: First OpenCL GridSearch implementation using pre-
calculated powers array.�

1 __kernel void GridSearch(__constant const short* pSsAmplitude,
2 __constant const char* lMask,
3 __global const short* fBasis,
4 __constant const float* metrics,
5 __global float* chi2,
6 const int netChSeg,
7 const int nPts) {

9 int iPts = get_global_id(0);
10 if (iPts >= nPts) return;

12 float this_iPts_chi2 = 0;

14 for(int iSegm = 0; iSegm < NSEGS; iSegm++) {
15 if(lMask[iSegm] != ’0’) {

17 __constant const short* realTrace = pSsAmplitude + iSegm*USAMP;
18 __global const short* baseTrace = fBasis +
19 ((netChSeg*MAXPTS + iPts)*NSEGS + iSegm)*USAMP;

21 for(int nn = 0; nn < USAMP; nn++) {
22 this_iSegm_chi2 += metrics[realTrace[nn] - baseTrace[nn]];
23 }
24 }
25 }
26 chi2[iPts] = this_iPts_chi2;
27 }
� �

ID that in this implementation correspond to the grid point num-
ber for which the thread has to compute the FoM.

All the threads running, receive as arguments some pointers
to memory areas in the GPU’s on-board memory that may have
been already loaded with data from the host side code2.

The pSsAmplitude pointer to short, point to the memory space
initialized with the experimental data of the event being pro-
cessed, while fBasis to the basis. Both of the memory spaces
are defined as const since they will not be changed by the al-
gorithm, but they are defined as different OpenCL spaces; one
as __constant, while the other as __global, since we want the
experimental data to be cached, but not the basis data. This is
due to the fact that the same experimental data (2× 60× 36 =
4.320kB) is needed by all the threads and fits inside the cache
memory that is 64kB wide, but basis data, besides of its dimen-
sion (60 samples × 2Byte × 36 segments × No. of whole de-
tector 2mm-grid points ≈ 300MB), its samples will not be read
more than once for every event, so it make no sense to cache its
values processing one event at a time.

2 As explained in figure 27 on page 36 phase ¬.

58 PSA ALGORITHM OPTIMIZATION

The lMask array is needed to avoid the inclusion in the com-
putation of segments that are far from the net-charge one, thatWhich segments are

to be considered “too
far” is a parameter

that may change and
has not to be

statically
implemented.

otherwise will simply add noise to the FoM calculation. Since
lMask is a 36Byte array and is read by all the threads, it make
sense to keep it in cache memory.

All the results are stored in the chi2 array and every cell of the
array contain the FoM of the corresponding point; the smallest
FoM will be found on the host side after coping it to the host
memory.

The netChSeg and nPts variables contains respectively the num-
ber of the net-charge segment end the number of points con-
tained in that segment. If the ID of a thread for some reason is
bigger than the number of point contained in the current seg-
ment the thread returns (line 10 in listing 3 on the previous
page).

It can be noticed that in listing 3 on the preceding page at line
22, the variable this_iPts_chi2, containing the partial FoM of
the current segment, is not updated by an explicit calculation,
but by reading a value inside an array called metrics. This array
contains all the pre-calculated powers of the possible differences
between acquired and basis samples and has been implemented
to speed up the calculation for the CPU implementation, since
the array can be easily cached and a cache read is much faster (15

clock cycles of latency and 2 clock cycle throughput) with respect
to an absolute value plus an exponentiation (few hundreds of
clock cycles) [3].

This revealed to be slow on the GPUs used, since the arrayOn different GPUs
with bigger caches

or different memory
organizations this

may change.

does not fit inside the cache memory. Moreover, a read from the
constant memory costs as a read from a local register only if all
the threads in a half-warp read the same address. Unfortunately,
this is not the case and hence the reads would be serialized any-
way.

For this reason the first simple optimization has been the re-
moval of the metrics array and its substitution it with the ex-
plicit calculation as can be seen in listing 4 on the next page (line
21 and 22).

The first version using the metrics array, running on a NVIDIA
Quadro FX1700 graphics card was running at half the speed of
a single Intel Xeon 2.5GHz core (about 150 events per second),
while the second version with the explicit computation reached
almost the speed of the CPU core (260 events per second). This
is indeed a good result considering that the card used is not

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 59

Listing 4: First OpenCL GridSearch Implementation computing pow-
ers on the fly.�

1 __kernel void GridSearch(__constant const short* pSsAmplitude,
2 __constant const char* lMask,
3 __global const short* fBasis,
4 __global float* chi2,
5 const int netChSeg,
6 const int nPts) {

8 int iPts = get_global_id(0);
9 if (iPts >= nPts) return;

11 float this_iPts_chi2 = 0;

13 for(int iSegm = 0; iSegm < NSEGS; iSegm++) {
14 if(lMask[iSegm] != ’0’) {

16 __constant const short* realTrace = pSsAmplitude + iSegm*USAMP;
17 __global const short* baseTrace = fBasis +
18 ((netChSeg*MAXPTS + iPts)*NSEGS + iSegm)*USAMP;

20 for(int nn = 0; nn < USAMP; nn++) {
21 this_iPts_chi2 += native_powr((float)abs_diff(realTrace[nn],
22 baseTrace[nn]), METRIC);
23 }
24 }
25 }
26 chi2[iPts] = this_iPts_chi2;
27 }
� �

architected for intense calculation and it is rated as having a
theoretical computing power in GFLOP/s of the same order of
magnitude3 of the Intel processors used for comparison.

4.2.2 Code Profiling

The Visual Profiler software provided by NVIDIA has been
used to obtain more detailed information to understand if there
were still inefficiencies. This software, runs the target code to
be profiled for a predefined number of times collecting statistics
about GPU’s memory and cores usage and provides the users
also with some suggestions about the kind of operations that
could be slowing down the calculation.

A screenshot of a plot produced by the Visual Profiler that
permitted to analyze the code reported in listing 4 is reported
in figure 36 on page 61. This plot reports the percentage of
counters registered by the profiler software executing the kernel,

3 Since the GFLOP/s value associated to a processor can be measured in various
ways (e.g. according to the floating-point operation used), it really make no
sense to compare it precise value measured by different companies; its order
of magnitude instead can give an idea of the computing capabilities.

60 PSA ALGORITHM OPTIMIZATION

highlighting the fact that the code is not suffering about diver-
gent branching (although the number of branches is high, since
all the threads belonging to the same event are using the same
lMask array) or warp serialization.

Another information produced by the Visual Profiler is the
cores’ Occupancy, expressed as a percentage, representing the
kernel capability to occupy the available cores. In the case of the
code reported in listing 4 on the previous page the produced
value (on the Quadro FX1700) was of 33.3% executing work-
groups of one thread (consequently running only 8 thread per
SM) and 100% running work-groups of 128 threads. In this sec-
ond case the number of work-groups, for a thousand points per
event, become only about eight; remembering that a work-group
can not be split on different SMs, the weakness of this code can
be easily seen, since it will not scale on bigger graphics cards
with a bigger number of SMs.

The problem of Occupancy will be extensively discussed in
section 4.2.4 on page 64 looking at profiling data produced by
the run of the OpenCL kernel on the ENGTX285 graphics card.

4.2
OPENCL

GRIDSEARCH
IM

PLEM
ENTATION

61

Figure 36: Profiler counters plot produced by the Visual Profiler software running kernel in listing 4 on page 59. This software while
executing the OpenCL kernel collects statistics about various events; in this graph, the name of the event on the left is plotted
against the value of its counter as a percentage over all the counted events. This graph gives various information, an important
one is that in this kernel there was not warp serialization or divergent branching although there were lot of branches in
comparison to the number of instruction executed.

62 PSA ALGORITHM OPTIMIZATION

4.2.3 Code Optimization

Thread indexing in OpenCL is not “mono-dimensional”, but
indexes are vectors of a maximum three coordinates. If only
one dimension is used, the OpenCL function get_global_id(0)

outputs the thread ID, but actually, being the thread index a
vector of the form (x, y, z) where every dimension has a size
(Dx, Dy, Dz), the thread ID (determining for example the threads
grouping in warps) is calculated as ID = (x + yDx + zDxDy).

The 3-dimension indexing system provides a natural way to
invoke computation across the elements in a domain such as a
vector, matrix, or volume and can be exploited also to further
divide the problem to be solved in work-groups.

The OpenCL GridSearch implementation has been modified
in view of its use on a more performing graphics card, removing
the nested for loops and augmenting the threads number. The
problem has been further divided assigning to the first dimen-
sion the grid points (as before) and adding a second dimension
representing the 36 segments corresponding to the iterations of
the cycle at line 13 in listing 4 on page 59.

After this modification, to save in the chi2 array the final re-
sults for every point and not all the partial FoM related to ev-
ery segment and every point, some kind of synchronization and
data sharing between threads cooperating to calculate the FoM
for the same point is needed. The work-group concept exposed
in section 3.2.2 on page 40, has been used in order to execute
all the threads calculating the FoM of a segment, related to the
same point, in the same work-group. In fact, running in the
same work-group, threads can store the partial FoM related to
“their” segment in the shared memory and before exiting apply
a reduction algorithm to sum all the partial results and store the
sum in the right cell of the chi2 array.

The modified version of the code is reported in listing 5 on
the next page in order to use a two-dimensional thread index;
every thread has an index that is given by two numbers (x, y),
where x span from 0 to nPts, while y span from 0 to NSEGS (that
equals to 36: the number of segments).

Moreover, since the GPU used are 32-bit architectures, the use
of short data type was a source of inefficiency, afterward in the
version reported in listing 5 on the facing page, acquired and
basis data is read as an array of vectors, where every vector con-
tains two short. The GPU used are not vector processors, but
scalar ones, consequently the operation at line 23 will be exe-

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 63

cuted as two operations, one to the first vector’s component and
the second to the other, but as mentioned before, moving trunks
of 32-bit instead of 16-bit ones, increased memory transfers effi-
ciency.

Listing 5: OpenCL GridSearch Implementation using 2-dimensional
thread indexing and reading data as short2 vectors.�

1 __kernel void GridSearch2(__constant const short2* pSsAmplitude,
2 __constant const char* lMask,
3 __global const short2* fBasis,
4 __global float* chi2,
5 const int netChSeg,
6 const int nPts)
7 {

9 unsigned int iPts = get_global_id(0);
10 unsigned int iSegm = get_global_id(1);

12 if (iPts >= nPts) return;
13 if (iSegm >= NSEGS) return;

15 float2 this_iSegm_chi2 = 0.0f;

17 __local float local_chi2[36];

19 if(lMask[iSegm] != ’0’) {

21 __constant const short2* realTrace = pSsAmplitude + iSegm*USAMP2;
22 __global const short2* baseTrace = fBasis + ((netChSeg*MAXIPTS +
23 iPts)*NSEGS + iSegm)*USAMP2;

25 for(int nn = 0; nn < USAMP2; nn++) {
26 this_iSegm_chi2 += native_powr(convert_float2(abs_diff(realTrace[nn],
27 baseTrace[nn])), (float2)METRIC);
28 }
29 }

31 local_chi2[iSegm] = this_iSegm_chi2.s0 + this_iSegm_chi2.s1;

33 barrier(CLK_LOCAL_MEM_FENCE);

35 if (iSegm == 0) {
36 float this_iPts_chi2 = local_chi2[0];
37 for (int i = 1; i < NSEGS; i++) {
38 this_iPts_chi2 += local_chi2[i];
39 }
40 chi2[iPts] = this_iPts_chi2;
41 }

43 }
� �
At line 33 in listing 5 can be noticed one of the synchronization

function provided by OpenCL. This particular one, impose that
every thread in the same working-group has to reach this instruc-
tion before anyone can continue; this grant the local_chi2[iSegm]

64 PSA ALGORITHM OPTIMIZATION

array to be completed with all the partial FoM related to ev-
ery segment. Between line 35 and 41 for every grid point x,
only the threads with index (x, 0) execute the reduction, sum-Other more

sophisticated
reduction algorithm
demonstrated to be

slower, probably
because the sum
concern only 36

elements.

ming all the local_chi2[iSegm] values produced by threads
(x, 0), (x, 1), . . . , (x, 36) (that are in the same work-group) and
writing the results in the chi2 array’s cell with index x, corre-
sponding to the xth grid point.

4.2.4 Profiling and Occupancy Calculation

After the promising experience on the Quadro FX1700 graph-
ics card, as mentioned before, the code has been tested on the
ASUS ENGTX285 board. The program could run on the new
device without any modification or code recompilation.

However, since the first board had 4 SMs and 32 SPs, while the
second one had 30 SMs and 240 SPs, one question that arose is
whether the proposed modification in listing 5 on the preceding
page could correctly scale on the new device using all the com-
putational power available. This question rises from the consid-
eration that, although the threads number may be enough, they
may be divided in work-groups with sizes that can not divide
well among all the available cores.

The Visual Profiler provided some information that have been
used not only to measure the reached occupancy, but also to
calculate, with a tool called Occupancy Calculator, the theoretical
occupancy of the SPs, according to the kernel needs of registers,
shared memory and work-group size.

The Visual Profiler, was initially created for CUDA, hence still
uses CUDA taxonomy, in its OpenCL version; thus for clearness,
it must be remembered that a Grid is a collection of work-groups,
Block is a synonym of work-group and thread (often used before)
is a synonym of work-item.

Running the implementation reported in listing 5 on the pre-
vious page inside the Visual Profiler and then running its Ana-
lyze Occupancy function results in the following information for
every GridSearch kernel call:

Kernel details : Grid size: 1080 x 1, Block size: 1 x 36 x 1
Register Ratio = 0.5 (8192 / 16384) [13 registers per thread]
Shared Memory Ratio = 0.25 (4096 / 16384) [180 bytes per Block]
Active Blocks per SM = 8 : 8
Active threads per SM = 288 : 768
Occupancy = 0.5 (16 / 32)
Achieved occupancy = 0.5 (on 30 SMs)
Occupancy limiting factor = Block-Size

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 65

Reading it from the first row, it can be noticed that threads
were executed in work-groups of 36 work-items each and that
in this particular GridSearch kernel call, the net-charge segment
had 1, 080 points and consequently 1, 080 work-groups were laun-
ched.

The lines about registers and shared memory usage suggest
that were used only 50% of the available registers and only 25%
of the available shared memory, so these factors are not limiting
cores occupancy.

Moreover it can be noticed that 8 work-groups were assigned
to every SM (that is the maximum possible) and consequently
36× 8 = 288 work-items were run on every SM.

The last three rows give the result of a maximal theoretical
occupancy of 50% that is equal to the actual achieved occupancy,
eventually suggesting to modify the work-group size in order to
achieve a better one. This is due to the fact that no more than 8

work-groups can share a single SMs at the same time, therefore
if eight times the work-items of a single work-groups are not
enough threads to fully occupy the SMs cores, for some times
they will be idle causing an inefficiency.

To know how to modify the work-group size to better opti-
mize the code for this kind of device, the already mentioned
Occupancy Calculator (that is a simple spreadsheet file) can be
used. In figure 37 on page 67 is reported its main page where
the user has to select the Compute Capability4 of the device, the
threads per work-group, the number of used registers by one
thread and the shared memory used by one work-group. Once
inserted all the needed information the Occupancy Calculator
provide the user with some plots, reported in figure 38 on page 68.

The calculations accomplished by the Occupancy Calculator
are based on some simple rules that for a GPU of Compute Ca-
pability 1.3 are:

• The total number of threads active on a SM is limited to
a maximum of 32 per warps and a maximum of 32 warps
per SM (1024 threads), but also by the available registers
(16, 384 32-bit registers) since every thread has its own pri-
vate registers. Registers usage per SM is calculated as the
register used by every thread multiplied by the number
of threads (the actual allocated value has to be calculated

4 The Compute Capability is a number associated by NVIDIA to its GPU chip
series identifying common physical limits like the ones in the gray box in
figure 37 on page 67. The Quadro FX1700 has Compute Capability 1.1, while
the ENGTX285 1.3.

66 PSA ALGORITHM OPTIMIZATION

according to the allocation unit sizes and allocation gran-
ularity provided in the gray box in figure 37 on the next
page).

• The total number of work-groups sharing the same SM is
limited by the number of threads they contain, since the
total number of threads can not to exceed the previously
mentioned limitations.

• The total number of work-groups per SM is also limited to
8 and by the shared memory they use, since 16, 384Bytes of
shared memory is available for every SM and it has to be
divided between the work-groups sharing the same SM.

In the graphs produced by the Occupancy Calculator and in
particular in the first one, it can be noticed that increasing the
number of threads per work-group a better occupancy can be
achieved. Moreover the second graph indicates that increasing
the usage of shared memory per work-group will not negatively
effect occupancy till it will be less than 16, 384/8 = 2, 048Bytes.

Following the Occupancy Calculator results, the code has been
modified again to calculate three grid points for every work-
group in order to augment the number of thread per work-group.
The obtained code is reported in listing 6 on page 69 and as can
be noticed, it contains also some other modifications like a more
sophisticated reduction algorithm, a change in the vector data
type used and some initial hints for the Just In Time OpenCL
compiler that, providing information about the used vector data
type and work-group dimensions, let it slightly optimize the pro-
duced code.

The used data type has been changed in this version, because
basis and acquired data is available as floating-point values. In
the CPU version of the GridSearch algorithm data was cast as
short loosing precision in order to speed up the computation.
Since with this GPU implementation the speed performance im-
proved significantly, it has been introduced the possibility to de-
cide at the library compile time if to process data as short (losing
precision) or as float.

The user defined gs_type type can be defined as a short or
as a float at compile time and thanks to the optimization of the
GPU chips for floating-point data processing, a great improve-
ment can be seen in table 3 on page 73 comparing speeds, oper-
ating with float between CPU and GPU.

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 67

Figure 37: NVIDIA Occupancy Calculator main page

68 PSA ALGORITHM OPTIMIZATION

Figure 38: Plots produced by the NVIDIA Occupancy Calculator. Red
triangles show the maximum number of allocable warps
per SM limited by (from top to bottom): threads per work-
group, shared memory used per work-group and registers
used per thread respectively. The other data points repre-
sent the range of possible work-group sizes, register counts,
and shared memory usage.

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 69

Listing 6: OpenCL GridSearch Implementation using 2-dimensional
thread indexing, reading data as gs_type4 vectors and cal-
culating 3 points per work-group.�

2 __kernel __attribute__((vec_type_hint(gs_type4)))
3 __attribute__((work_group_size_hint(3, 36)))
4 void GridSearch2(const __constant gs_type4* pSsAmplitude,
5 const __constant char* lMask,
6 const __global gs_type4* fBasis,
7 __global float* chi2,
8 const int netChSeg,
9 const int nPts)

10 {

12 unsigned int iPts = get_global_id(0);
13 unsigned int lPts = get_local_id(0);
14 unsigned int iSegm = get_global_id(1);

16 if (iPts >= nPts) return;
17 if (iSegm >= NSEGS) return;

19 float4 this_iSegm_chi2 = 0.0f;

21 __local float local_chi2[3][36];

23 local_chi2[lPts][iSegm] = 0;

25 if(lMask[iSegm] != ’0’) {

27 __constant const gs_type4* realTrace = pSsAmplitude + iSegm*USAMP4;
28 __global const gs_type4* baseTrace = fBasis + ((netChSeg*MAXIPTS + iPts)*
29 NSEGS + iSegm)*USAMP4;

31 for(int nn = 0; nn < USAMP4; nn++) {
32 #ifdef GS_FLOAT
33 this_iSegm_chi2 += native_powr(fabs((float4)(realTrace[nn] -
34 baseTrace[nn])), (float4)METRIC);
35 #else
36 this_iSegm_chi2 +=

native_powr(convert_float4(abs_diff(realTrace[nn],
37 baseTrace[nn])), (float4)METRIC);
38 #endif
39 }
40 }

42 local_chi2[lPts][iSegm] = this_iSegm_chi2.s0 + this_iSegm_chi2.s1 +
43 this_iSegm_chi2.s2 + this_iSegm_chi2.s3;

45 barrier(CLK_LOCAL_MEM_FENCE);

47 if (iSegm == 0) {
48 local_chi2[lPts][0] += (local_chi2[lPts][32] + local_chi2[lPts][33] +
49 local_chi2[lPts][34] + local_chi2[lPts][35]);
50 }
51 if (iSegm < 16) { local_chi2[lPts][iSegm] += local_chi2[lPts][iSegm+16]; }
52 barrier(CLK_LOCAL_MEM_FENCE);
53 if (iSegm < 8) { local_chi2[lPts][iSegm] += local_chi2[lPts][iSegm + 8]; }
54 barrier(CLK_LOCAL_MEM_FENCE);
55 if (iSegm < 4) { local_chi2[lPts][iSegm] += local_chi2[lPts][iSegm + 4]; }
56 barrier(CLK_LOCAL_MEM_FENCE);
57 if (iSegm < 2) { local_chi2[lPts][iSegm] += local_chi2[lPts][iSegm + 2]; }
58 barrier(CLK_LOCAL_MEM_FENCE);
59 if (iSegm == 0) {
60 local_chi2[lPts][iSegm] += local_chi2[lPts][iSegm + 1];
61 chi2[iPts] = local_chi2[lPts][0];
62 }

64 }
� �

70 PSA ALGORITHM OPTIMIZATION

Another optimization introduced is the read of basis and ac-Also eight
components vectors

were tried, but the
JIT compiler crashed

giving an
undocumented error

message. This
problem was

reported as a bug.

quired data as four components vectors instead of two; the rea-
son why it should increase performance is not reported in any
manual, but, since the NVIDIA chip is a scalar processor, it has
to be an improvement related to data fetching and not to the
processing parallelization.

The Visual Profiler output produced running the code in list-
ing 6 on the preceding page is reported here:

Kernel details : Grid size: 360 x 1, Block size: 3 x 36 x 1
Register Ratio = 1 (16384 / 16384) [13 registers per thread]
Shared Memory Ratio = 0.25 (4096 / 16384) [468 bytes per Block]
Active Blocks per SM = 8 : 8
Active threads per SM = 864 : 1024
Occupancy = 1 (32 / 32)
Achieved occupancy = 1 (on 30 SMs)
Occupancy limiting factor = None

The new input to the Occupancy Calculator is reported in fig-
ure 39 and the new graphs in figure 40 on the facing page.

Figure 39: NVIDIA Occupancy Calculator input cells for the code in
listing 6 on the preceding page

4.2 OPENCL GRIDSEARCH IMPLEMENTATION 71

Figure 40: Plots produced by the NVIDIA Occupancy Calculator with
the input displayed in figure 39 on the preceding page rela-
tive to the code in listing 6 on page 69.

5 C O N C L U S I O N

Table 3: Full GridSearch implementations comparison. All the runs for the CPU were performed on an Intel® Core™ 2 Quad CPU at
2.40GHz, while for the GPU on the ASUS® ENGTX285 graphics card. Values are averages over various runs, expressed as events
per second. All the runs use a 2× 2× 2mm 3D grid basis database.

CPU GPU

Original version Mono-dimensional Bi-dimensional Occupancy optimized Speed increase between CPU
in listing 2 in listing 4 in listing 5 in listing 6 and best GPU versions

short 275 ev/s 650 ev/s 1250 ev/s 1650 ev/s × 6.00

float 65 ev/s 500 ev/s 1100 ev/s 1350 ev/s × 20.77

73

74 CONCLUSION

Table 3 on the previous page presents the performance mea-
surements comparison for the main developing steps presented
in chapter 4 on page 47.

In this chapter the obtained results will be analyzed and plans
for further optimization will be introduced, together with hints
about the possible future perspective on upcoming hardware so-
lutions.

5.1 BENCHMARKS

In the results presented in table 3 on the previous page all the
values (except the final ratio) are expressed as processed events
per second and all the code versions were modified in order
to use gs_type data type to measure performances using both
integer and floating-point input data precision.

The tests were executed on a workstation (since the chosen
graphics card, due to its form factor, does not fit inside the NAR-
VAL’s computing nodes) equipped with an Intel® Core™ 2 Quad
CPU at 2.40GHz and one ASUS® ENGTX285 graphics card. AllOther more

expensive GPU’s
form factors suited
to fit 1U severs are

available with
external enclosures,
connected through
PCI Express links,
embedding various

graphics cards each.

the runs were executed using the NARVAL Emulator, reading
real experimental data from the AGATA network storage and
using a 2× 2× 2mm 3D grid basis database.

Due to the lack of multiple PCI Express slots on the used
workstation, the ENGTX285 card was the one and only graphics
card in the system; consequently it was used shared to drive the
monitor display, using it instead, only for GPGPU computations,
would give slightly better results.

5.2 CONSIDERATIONS ABOUT RESULTS

From the results of the previously introduced benchmark, re-
ported in table 3 on the preceding page, one can note the good
speed improvement using short integer input data, but there is a
much more interesting performance increase using float input
data.

The obtained results will allow to run the PSA GridSearch
algorithm operating on floating point data and therefore exploit-
ing all the available information, obtaining a better position res-
olution.

5.3 FUTURE CODE DEVELOPMENT 75

The processing speed achieved will permit to run the Full
GridSearch algorithm for on-line analysis reaching over 1kHz of
events processed per computer and probably much more using
multiple GPU cards or faster devices as explained in section 5.4
on page 77.

Moreover the use of the NARVAL Emulator surely worsen the
results, since executing every actor in a serial sequence, there
is idle GPU time while actors different from the PSA one are
executing. Consequently using the real NARVAL environment,
the performance will certainly increase, although it is hard to
predict reliably by how much.

This phenomenon is easily observable in figure 41, where idle
GPU time can be noticed between blocks of events that are the
NARVAL buffers.

Figure 41: This is another graph produced by the Visual Profiler run-
ning the code in listing 6 on page 69. The elapsing GPU
time is plotted from left to right reporting the operations
executed. Idle time can be seen between blocks of events.
At the beginning the large memory copy operation is the
load of the basis database to the GPU Gloabl Memory.

Anyhow, apart from the proposed code implementation, this
work opens also a wide range of possibilities to exploit the com-
puting power of GPU devices for the AGATA Pulse Shape Anal-
ysis. Other algorithms, considered too time consuming using
CPUs, may be developed using OpenCL and may provide good
results also for multiple interactions.

5.3 FUTURE CODE DEVELOPMENT
The proposed GridSearch for GPUs implementation can be

further improved in the future, since a strong limitation on its
development has been the need of modifying as less as possible
the GridSearch library structure to avoid modifications that may
clash with the mainstream GridSearch development.

This limitation constrained the processing to one event at a
time like for the CPU implementation. This is a source of in-

76 CONCLUSION

efficiency, in the GPU version, since the instruction, loading of
arguments and lunching of a kernel, cost in terms of time and
would be much more efficient the lunch of only one kernel pro-
cessing more events. A whole NARVAL buffer of acquired data
could be loaded in the GPU memory, in a single memory trans-
fer, optimizing the host to device achieved bandwidth. More-
over, processing a lot of events in the same kernel call, could
be also useful to dramatically increase the number of threads
granting the code to scale more easily on newer hardware.

Another great limitation on the GridSearch for GPU perfor-
mances derived from the fact that, as mentioned in section 4.2
on page 54, Memory Coalescing can be achieved only for mem-
ory locations with consecutive addresses.

To compute the FoM in formula 4.1 on page 49 the compar-
ison between acquired and basis signals is not performed on
all the segments as explained in section 4.1 on page 47, but
is performed on segments that are near to the net-charge one.
These segments are close to each other in a 3D fashion, but
there is no way to collect segments data1 in order to have all
the needed samples loaded in consecutive memory addresses as
would be accessed looking for the neighbouring of every possi-
ble net-charge segment.

Actually in the provided implementation, coalesced global
memory loads happens for all the data belonging to the same
segments, or to segments that are near in the basis array and in
the detector as well, but it would be more efficient (and all the
bandwidth could be exploited) if all the accessed data could be
consecutive.

A possible solution, although not very elegant, would be toThis is not elegant,
since redundant

data has to be stored
in the GPU’s Global

Memory

have enough memory on the GPU to load different basis arrays,
one for every possible net-charge segment (consequently one for
every segment), containing all the samples that would be used
for the comparison in the right order they are accessed.

Furthermore, all the events coming from a NARVAL buffer
could be sorted in order to process together all the events with
a net charge in the same segment and therefore accessing for
every one of them the same basis segments’ samples. This would
decrease the global memory accesses and would let the caching
system be exploited also for basis data.

1 Basis data in particular, since the acquired one is cached and does not suffer
about uncoalesced global memory loads.

5.4 HARDWARE IMPROVEMENT 77

5.4 HARDWARE IMPROVEMENT

The cutting edge architecture of NVIDIA is not anymore repre-
sented by the GT200b chip series and moreover a new Compute
Capability major version has been released, the 2.0.

Actually the latest available technology produced by NVIDIA
is the Fermi architecture, implemented in the codenamed GT300
GPU chip series providing 512 SPs (32 SPs for each SM), the ca-
pability to execute concurrently multiple kernels, ECC memory,
L2 caching, optimized double precision floating-point execution,
unified 64-bit memory addressing, etc. [38]. NVIDIA claimed
this card to reach over a TFLOP/s in single precision and over
500 GFLOP/s in double precision, confirming that hardware re-
search and improvements are quickly developing in this field.

Also AMD (owner of the ATI brand) is releasing GPU chips
whith GPGPU in mind like the AMD FireStream series reaching
1.2 TFLOP/s in single precision, and 240 GFLOP/s in double
precision. In addition AMD is providing an OpenCL implemen-
tation capable of exploiting also CPU’s cores in order to execute
kernels on AMD processors to easily handle threads.

The idea to produce hybrid processors including inside CPU
some characteristics of GPU’s architectures is gaining ground
and with good probability OpenCL will be the standard to pro-
gram these new kind of processors.

The most famous examples of these hybrid processors are
probably the Intel Larrabee (originally expected for the first month
of 2010, but Intel postponed the release to the end of this year),
and the Cell (Cell Broadband Engine Architecture) processor pro-
duced by IBM, Sony and Toshiba corporations.

The Cell processor (architected initially for the PlayStation3

gaming console), takes a radical departure from conventional
multiprocessor or multi-core architectures. Instead of using iden-
tical cooperating cores, it uses a conventional high performance
PowerPC main core that controls eight simple SIMD cores, called
SPEs (Synergistic Processing Elements), where each SPE contains
an SPU (Synergistic Processing Unit), a local memory, and a mem-
ory I/O controller. Moreover it implements vector processing
[51], that could be already exploited by the proposed implemen-
tation. IBM already provided in late 2009 an OpenCL implemen-
tation for POWER6 and Cell processors.

A future development path for the GridSearch algorithm could
be the comparison of the performance obtainable with different
processors slightly modifying the provided OpenCL implemen-

78 CONCLUSION

tation optimizing it for each of them, and identifying the best
matching architecture to the GridSearch problem.

Once identified, the development could be “stabilized” and
the NARVAL nodes dedicated to PSA could be equipped with
the chosen processors.

A C O D E F R A G M E N T S

Some code fragments have been collected in this appendix to
better understand how the Grid Search Algorithm has been im-
plemented using OpenCL.

The actor libraries directory tree is reported to have an overview
of the code organization, focusing on the filters/PSA directory
contents:

|-- common

| |--

|

|-- consumers

| |--

|

|-- filters

| |-- PSA

| | |-- PSAFilter.cpp

| | |-- PSAFilter.h

| | |-- PSAFilterGridSearch.cpp

| | |-- PSAFilterGridSearch.h

| | |-- includePSA

| | | |-- GridSearchClasses.h

| | | |-- GridSearchParams.h

| | | |-- SignalBasis.cpp

| | | ‘-- SignalBasis.h

| | |-- libPSAFilter.cpp

| | ‘-- openCL

| | ‘-- gridsearch.cl

| |

| |--

|

|-- myADF0.2

| |--

|

|-- producers

| |--

79

A.1 ORIGINAL IMPLEMENTATION FOR CPUS

A.1.1 libPSAFilter

This is the library called by the NARVAL distributed data ac-
quisition system; the actual implementation of the functions is
loaded from the selected class, that in this case is the
PSAFilterGridSearch one.

This is common to both the implementations, CPU and GPU
one.

Listing 7: libPSAFilter.cpp�
#include "PSAFilter.h"
#include "PSAFilterGridSearch.h"

extern "C" {
PSAFilter *process_register(UInt_t *error_code)
{
if((PSAFilter::gActualClass.size() == 0) ||

(PSAFilter::gActualClass == "basic"))
{

std::cout << "\nPSAFilter::gActualClass == \"PSAFilter base
class\"\n";

return new PSAFilter();
}
else if(PSAFilter::gActualClass == "PSAFilterGridSearch") {
std::cout << "\nPSAFilter::gActualClass == \"PsaFilterGridSearch\"\n";
return new PSAFilterGridSearch();

}
else {
std::cout << "\nERROR : PSAFilter::gActualClass " <<

PSAFilter::gActualClass << " not
recognised\n";

return NULL;
}

}
void process_config(const char *directory_path, UInt_t *error_code)
{
PSAFilter::process_config (directory_path, error_code);

}
void process_block(PSAFilter *algo_data,

void *input_buffer,
UInt_t size_of_input_buffer,
void *output_buffer,
UInt_t size_of_output_buffer,
UInt_t *used_size_of_output_buffer,
UInt_t *error_code)

{
algo_data->process_block(

input_buffer, size_of_input_buffer,
output_buffer, size_of_output_buffer,
used_size_of_output_buffer, error_code);

}
void process_initialise(PSAFilter *algo_data, UInt_t *error_code)
{
algo_data->process_initialise (error_code);

}
void process_reset(PSAFilter *algo_data,UInt_t *error_code)

80

{
algo_data->process_reset(error_code);

}
void process_start(PSAFilter *algo_data, UInt_t *error_code)
{
algo_data->process_start(error_code);

}
void process_stop(PSAFilter *algo_data,UInt_t *error_code)
{
algo_data->process_stop(error_code);

}
void process_pause(PSAFilter *algo_data,UInt_t *error_code)
{
algo_data->process_pause (error_code);

}
void process_resume(PSAFilter *algo_data, UInt_t *error_code)
{
algo_data->process_resume (error_code);

}
};
� �
A.1.2 PSAFilterGridSearch

This is the interface of the PSAFilterGridSearch class that is
not entirely reported due to its dimension. This is the original
version of the CPU implementation.

Listing 8: PSAFilterGridSearch.h: interface of the PSAFilterGridSearch
library (include file)�

//! Implementation of a simple grid search method.
/**
Coded by Roberto Venturelli
Ported first to Narval by Joa Ljungvall
Modified and maintained by Dino Bazzacco

*/

#ifndef ADF_PSAFILTERGRID_SEARCH_H
#define ADF_PSAFILTERGRID_SEARCH_H

#include "NarvalInterface.h"
#include "AgataFrameFactory.h"
#include "AgataKeyFactory.h"
#include "Trigger.h"

#include "commonDefs.h"

#include "PSAFilter.h"
#include "SignalBasis.h"

#ifdef _FromGRU_

//#include <TAttFill.h>
#include <TROOT.h>
#include <TApplication.h>
#include <TH1.h>
#include <GAcq.h>
#include <TCanvas.h>
#include <TGraph.h>
#include <TMultiGraph.h>

81

#include <TH3.h>
#include <TFile.h>
#include <GSpectra.h>
#include <TSystem.h>

#endif // _FromGRU_

const int WCHAN = 42; // number of channels to write in the output waves
const int WSAMP = 60; // number of samples per channel in the output waves

class PSAFilterGridSearch : public PSAFilter
{
private:
Float_t fHitSegThreshold;
bool bDoSpec;
bool bDoMats;

SignalBasis fBasis;
float fMetrics[NMETRIC];
char hmask[NCHAN][NCHAN+1];

#ifdef LOCALSPECTRA
nDhist<unsigned int> *specEner;
nDhist<unsigned int> *specTzero;
nDhist<unsigned int> *specSigma;
nDhist<unsigned int> *matrXYZR;
nDhist<unsigned int> *matrSeg;

#endif //LOCALSPECTRA

std::string fnPsaTraces;
FILE *fpPsaTraces;

#ifdef _FromGRU_

GNetServerRoot *PSANetworkRoot;
GSpectra *PSASpectraDB;
TH1I *PSACCE_raw,*PSACCE1_raw, *PSACCE, *PSACCE1;
TH1I *PSAseg;
TH1F *PSAxy_xproje, *PSAxz_xproje, *PSAyz_xproje;
TH2F *PSAxy_Proje, *PSAxz_Proje, *PSAyz_Proje;
TH3F *PSAxyz;

#endif // _FromGRU_

void MakeSegmentMap(int neighbours);
void PrepareEvent (PsaData *pD, pointExp *pS);
void SetToSegCenter(PsaData *pD, pointExp *pS);
int SearchFullGrid(pointExp *pS, int netChSeg, char *lMask,

int addr_first, int addr_last);
int SearchAdaptive(pointExp *pS, int netChSeg, char *lMask,

int addr_first, int addr_last);
protected:
// this is written in a thread-safe mode and can be called in parallel,
// using different data slots
Int_t Process(int slot = 0);
// this is not thread-safe and must be called sequentially
Int_t PostProcess(int slot = 0);

Int_t AlgoSpecificInitialise();
Int_t AlgoSpecificReset() { return 0; }

public:
PSAFilterGridSearch();
virtual ~PSAFilterGridSearch();

void SetHitSegThreshold(Float_t thres) {fHitSegThreshold = thres;}
Float_t GetHitSegThreshold() {return fHitSegThreshold;}

82

int WriteTraces(int slot);

private:
// this is needed to write traces in a thread-safe mode

// locally saved experimental trace
gs_type slot_fAmplitude[TCOUNT*TMODULO][NCHAN*WSAMP];

// locally saved "fitted" trace
gs_type slot_rAmplitude[TCOUNT*TMODULO][NCHAN*WSAMP];

};

#endif // ADF_PSAFILTERGRID_SEARCH_H
� �

83

A.2 IMPLEMENTATION FOR GPUS

A.2.1 PSAFilterGridSearch

This is the interface of the PSAFilterGridSearch class that is
not entirely reported due to its dimension. This is the modified
version of the GPU implementation.

It can be noticed that the modifications are quite conservative
and that the use of the GPU to accomplish the calculation can be
selected at compile time using the #define USEGPU switch.

Listing 9: PSAFilterGridSearch.h: interface of the PSAFilterGridSearch
library (include file)�

//! Implementation of a simple grid search method.
/**
Coded by Roberto Venturelli
Ported first to Narval by Joa Ljungvall
Modified and maintained by Dino Bazzacco
GPU Implementation added by Enrico Calore

*/

#ifndef ADF_PSAFILTERGRID_SEARCH_H
#define ADF_PSAFILTERGRID_SEARCH_H

#include "NarvalInterface.h"
#include "AgataFrameFactory.h"
#include "AgataKeyFactory.h"
#include "Trigger.h"

#include "commonDefs.h"

#include "PSAFilter.h"
#include "SignalBasis.h"

#ifdef _FromGRU_

//#include <TAttFill.h>
#include <TROOT.h>
#include <TApplication.h>
#include <TH1.h>
#include <GAcq.h>
#include <TCanvas.h>
#include <TGraph.h>
#include <TMultiGraph.h>
#include <TH3.h>
#include <TFile.h>
#include <GSpectra.h>
#include <TSystem.h>

#endif // _FromGRU_

#ifdef USEGPU
#include <CL/cl.h>

#endif // USEGPU

const int WCHAN = 42; // number of channels to write in the output waves
const int WSAMP = 60; // number of samples per channel in the output waves

class PSAFilterGridSearch : public PSAFilter

84

{
private:
Float_t fHitSegThreshold;
bool bDoSpec;
bool bDoMats;

SignalBasis fBasis;
float fMetrics[NMETRIC];
char hmask[NCHAN][NCHAN+1];

#ifdef LOCALSPECTRA
nDhist<unsigned int> *specEner;
nDhist<unsigned int> *specTzero;
nDhist<unsigned int> *specSigma;
nDhist<unsigned int> *matrXYZR;
nDhist<unsigned int> *matrSeg;

#endif //LOCALSPECTRA

std::string fnPsaTraces;
FILE *fpPsaTraces;

#ifdef _FromGRU_

GNetServerRoot *PSANetworkRoot;
GSpectra *PSASpectraDB;
TH1I *PSACCE_raw,*PSACCE1_raw, *PSACCE, *PSACCE1;
TH1I *PSAseg;
TH1F *PSAxy_xproje, *PSAxz_xproje, *PSAyz_xproje;
TH2F *PSAxy_Proje, *PSAxz_Proje, *PSAyz_Proje;
TH3F *PSAxyz;

#endif // _FromGRU_

#ifdef USEGPU

cl_context GPUContext;
cl_command_queue GPUCommandQueue;
cl_device_id* GPUDevices;
cl_kernel OpenCLMetrics;
cl_kernel OpenCLGridSearch;
cl_kernel OpenCLGridSearch2;
cl_kernel OpenCLGridSearch3;
int cl_err;

cl_mem fMetricsGPU;
cl_mem localMaskGPU;
cl_mem pSsAmplitudeGPU;
cl_mem numPtsGPU;
cl_mem fBasisGPU;
cl_mem chi2GPU;

char* load_program_source(const char *filename);
int device_stats(cl_device_id device_id);

#endif // USEGPU

void MakeSegmentMap(int neighbours);
void PrepareEvent (PsaData *pD, pointExp *pS);
void SetToSegCenter(PsaData *pD, pointExp *pS);
int SearchFullGrid(pointExp *pS, int netChSeg, char *lMask,

int addr_first, int addr_last);
int SearchAdaptive(pointExp *pS, int netChSeg, char *lMask,

int addr_first, int addr_last);
protected:
// this is written in a thread-safe mode and can be called in parallel,
// using different data slots

85

Int_t Process(int slot = 0);
// this is not thread-safe and must be called sequentially
Int_t PostProcess(int slot = 0);

Int_t AlgoSpecificInitialise();
Int_t AlgoSpecificReset() { return 0; }

public:
PSAFilterGridSearch();
virtual ~PSAFilterGridSearch();

void SetHitSegThreshold(Float_t thres) {fHitSegThreshold = thres;}
Float_t GetHitSegThreshold() {return fHitSegThreshold;}
int WriteTraces(int slot);

private:
// this is needed to write the traces in a thread-safe mode
// locally saved experimental trace
gs_type slot_fAmplitude[TCOUNT*TMODULO][NCHAN*WSAMP];
// locally saved "fitted" trace
gs_type slot_rAmplitude[TCOUNT*TMODULO][NCHAN*WSAMP];

};

#endif // ADF_PSAFILTERGRID_SEARCH_H
� �
Here are reported the code fragments common to all the ker-

nels discussed previously. They are needed to initialize the GPU
device (listing 10), to instantiate memory buffer inside the Global
memory and to load in it the basis database 11 on the next page.

As mentioned before, this code is executed only once by the
NARVAL data acquisition system.

Listing 10: PSAFilterGridSearch.cpp: initialization of the GPU device.�
#ifdef USEGPU

cl_platform_id platforms[3];
unsigned int numPlatforms;
cl_err = clGetPlatformIDs(3, platforms, &numPlatforms);
if (cl_err != CL_SUCCESS) cout << "CL_ERROR (clGetPlatformIDs): " <<

cl_err << endl;

cl_context_properties properties[] = { CL_CONTEXT_PLATFORM,
(intptr_t)platforms[0], 0 };

// Create a context to run OpenCL
GPUContext = clCreateContextFromType(properties, CL_DEVICE_TYPE_GPU, NULL,

NULL, &cl_err);

if (cl_err != CL_SUCCESS) cout << "CL_ERROR (clCreateContextFromType): "
<< cl_err << endl;

// Get the list of GPU devices associated with this context
size_t ParmDataBytes;
clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, 0, NULL,

&ParmDataBytes);
GPUDevices = (cl_device_id*)malloc(ParmDataBytes);
clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, ParmDataBytes,

GPUDevices, NULL);
// Create a command-queue on the first GPU device

86

GPUCommandQueue = clCreateCommandQueue(GPUContext, GPUDevices[0],
0, NULL);

#endif // USEGPU
� �
Listing 11: PSAFilterGridSearch.cpp building of the kernel source with

the JIT compiler, GPU memory buffer allocation and load
of the basis data in the GPU memory.�

#ifdef USEGPU
const char* filename ="PSA/openCL/gridsearch.cl";
char *OpenCLSource = load_program_source(filename);

// Create OpenCL program with source code
cl_program OpenCLProgram = clCreateProgramWithSource(GPUContext, 1,

(const char**)&OpenCLSource,
NULL, NULL);

// Build the program (OpenCL JIT compilation)
const char* cl_build_options = "-cl-no-signed-zeros -cl-finite-math-only

-cl-mad-enable";
cl_err = clBuildProgram(OpenCLProgram, 0, NULL, cl_build_options, NULL,

NULL);
if (cl_err != CL_SUCCESS) {

// Print some logs about the building process...
char logbuffer[2048];
clGetProgramBuildInfo(OpenCLProgram, *GPUDevices, CL_PROGRAM_BUILD_LOG,

sizeof(logbuffer), logbuffer,
NULL);

cout << cout << "CL_ERROR (building CL source): " << cl_err << endl <<
logbuffer << endl;

}

// Create handles to the compiled OpenCL functions (Kernels)
OpenCLMetrics = clCreateKernel(OpenCLProgram, "MetricsBuilder", NULL);
OpenCLGridSearch = clCreateKernel(OpenCLProgram, "GridSearch", NULL);
OpenCLGridSearch2 = clCreateKernel(OpenCLProgram, "GridSearch2", NULL);
OpenCLGridSearch3 = clCreateKernel(OpenCLProgram, "GridSearch3", NULL);

cout << "Allocating GPU memory to store the basis... ";

uint uSamples = USAMP;
uint time_first = TSHIFT;

localMaskGPU = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY, sizeof(char) *
NSEGS, NULL, NULL);

sgridIndFineGPU = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
sizeof(int) * MAXPTS, NULL, NULL);

pSsAmplitudeGPU = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
sizeof(gs_type) * NCHAN * NTIME,
NULL, NULL);

fBasisGPU = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY, sizeof(gs_type) *
NSEGS * uSamples * MAXPTS * NSEGS, NULL, NULL);

numPtsGPU = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
sizeof(int) * NSEGS, NULL, NULL);

chi2GPU = clCreateBuffer(GPUContext, CL_MEM_READ_WRITE, sizeof(float) *
MAXPTS, NULL, NULL);

clFinish(GPUCommandQueue);

cout << "Done." << endl << "Creating in the local RAM the basis buffer

87

to be copyed to GPU... ";

size_t byte_offset = 0;

fBasis_tmp = (char*)malloc(sizeof(gs_type) * NSEGS * uSamples * MAXPTS *
NSEGS);

for (int netChSeg = 0; netChSeg < NSEGS; netChSeg++) {
int nPts = fBasis.numPts[netChSeg];
for(int iPts = 0; iPts < nPts; iPts++) {
for(int iSegm=0; iSegm < NSEGS; iSegm++) {

byte_offset = ((netChSeg*MAXPTS + iPts)*NSEGS + iSegm)*uSamples*
sizeof(gs_type);

gs_type * baseTrace =
&fBasis.Pts[netChSeg][iPts].amplitude[iSegm][time_first];

memcpy((void*)(fBasis_tmp + byte_offset), (void*)baseTrace,
(size_t)(uSamples*sizeof(gs_type)));

} // end loop over the segments

} // end loop over the base points iPts

}

cout << "Done." << endl << "Copying the Basis file to GPU... ";

cl_err |= clEnqueueWriteBuffer(GPUCommandQueue, fBasisGPU, CL_TRUE, 0,
sizeof(gs_type) * NSEGS * uSamples * MAXPTS * NSEGS,
(void*)fBasis_tmp, 0, NULL,NULL);

free((void*)fBasis_tmp);

if (cl_err != CL_SUCCESS) cout << "CL_ERROR (EnqueueWriteBuffer writing
Basis

file to GPU): " << cl_err << endl;

clFinish(GPUCommandQueue);

cout << "Done." << endl;

#else //#ifdef USEGPU
� �
Here is reported the SearchFullGrid() function used to launch

the code in listing 6 on page 69. This function is called every time
a new event has to processed.
pS is an object containing the acquired experimental data,

netChSeg contains the number of the net-charge segment, lMask
is an array giving information about which are the segments
to be used for the FoM computation, while samp_first and
samp_last give information about the samples interval for ev-
ery segment to be used in the FoM calculation.

88

Listing 12: PSAFilterGridSearch.cpp: SearchFullGrid() function�
int PSAFilterGridSearch::SearchFullGrid(pointExp *pS, int netChSeg,

char *lMask, int samp_first,
int samp_last)

{

float *metrics = fMetrics + NMETRIC2;

// number of samples to use (is the minimum of experimental and basis)
#ifdef USEGPU
int uSamples = USAMP;
#else
int uSamples = min(samp_last-samp_first+1, NTIME-TSHIFT);
#endif

int time_first = TSHIFT; // start of basis
int bestPt = 0;

float chi2min = pS->chi2min;
float chi2 = 0;

int nPts = fBasis.numPts[netChSeg];

#ifdef USEGPU
//Load the local Mask on the GPU buffer
cl_err = clEnqueueWriteBuffer(GPUCommandQueue, localMaskGPU, CL_TRUE, 0,

sizeof(char) * NSEGS, (void*)lMask,
0, NULL, NULL);

gs_type * realTrace_tmp = (gs_type*)malloc(NSEGS*uSamples*sizeof(gs_type));

for (int i = 0; i < NSEGS; i++) {
memcpy((void*)&realTrace_tmp[i*uSamples],

(void*)(&pS->sAmplitude[i][samp_first]),
(size_t)(uSamples*sizeof(gs_type)));

}

cl_err |= clEnqueueWriteBuffer(GPUCommandQueue, pSsAmplitudeGPU,
CL_TRUE, 0, sizeof(gs_type) * uSamples *
NSEGS, (void*)realTrace_tmp, 0, NULL,
NULL);

free((void*)realTrace_tmp);

if (cl_err != CL_SUCCESS) cout << "CL_ERROR (EnqueueWriteBuffer): " <<
cl_err << endl;

cl_err |= clSetKernelArg(OpenCLGridSearch2, 0, sizeof(cl_mem),
(void*)&pSsAmplitudeGPU);

cl_err |= clSetKernelArg(OpenCLGridSearch2, 1, sizeof(cl_mem),
(void*)&localMaskGPU);

cl_err |= clSetKernelArg(OpenCLGridSearch2, 2, sizeof(cl_mem),
(void*)&fBasisGPU);

cl_err |= clSetKernelArg(OpenCLGridSearch2, 3, sizeof(cl_mem),
(void*)&chi2GPU);

cl_err |= clSetKernelArg(OpenCLGridSearch2, 3, sizeof(cl_mem),
(void*)&chi2GPUbis);

cl_err |= clSetKernelArg(OpenCLGridSearch2, 4, sizeof(float)*512, 0);
cl_err |= clSetKernelArg(OpenCLGridSearch2, 5, sizeof(int),

(void*)&netChSeg);
cl_err |= clSetKernelArg(OpenCLGridSearch2, 6, sizeof(int), (void*)&nPts);

if (cl_err != CL_SUCCESS) cout << "CL_ERROR (SetKernel2Args): " <<

89

cl_err << endl;

clFinish(GPUCommandQueue);

unsigned int SMs = 30; // Number of GPU’s SMs

// Launch the Kernel on the GPU (2 DIMENSIONs)

size_t GWsizeX = ((nPts%(SMs*3))==0) ? nPts : ((nPts - (nPts%(SMs*3)) +
(SMs*3)));

size_t GWsizeY = (size_t)NSEGS;

size_t LWsizeX = 3;
size_t LWsizeY = (size_t)NSEGS;

const size_t GlobalWorkSize[] = { GWsizeX, GWsizeY };
const size_t LocalWorkSize[] = { LWsizeX, LWsizeY };

cl_err = clEnqueueNDRangeKernel(GPUCommandQueue, OpenCLGridSearch2, 2, NULL,
GlobalWorkSize2, LocalWorkSize2,
0, NULL, NULL);

if (cl_err != CL_SUCCESS) cout <<
"CL_ERROR (EnqueueNDRangeKernel ’GridSearch2’): " << cl_err << endl;

// Wait the execution of the kernel to finish
cl_err = clFinish(GPUCommandQueue);

if (cl_err != CL_SUCCESS) cout <<
"CL_ERROR (clFinish after EnqueueNDRangeKernel ’OpenCLGridSearch2’): " <<

cl_err << endl;

float chi2_pts_array[nPts];

clEnqueueReadBuffer(GPUCommandQueue, chi2GPU, CL_TRUE, 0,
sizeof(float) * nPts, chi2_pts_array, 0, NULL, NULL);

float chi2min_gpu = chi2min;

for (int iPts = 0; iPts < nPts; iPts++) {
if (chi2_pts_array[iPts] < chi2min_gpu) {

bestPt = iPts;
chi2min_gpu = chi2_pts_array[iPts];

}
}

pS->bestdt = 0;
pS->bestPt = bestPt;
pS->chi2min = chi2min_gpu;

#else //USEGPU

[...]

#endif // USEGPU

return uSamples;

}
� �

90

A.2.2 OpenCL Kernels

Listing 13: gridsearch.cl: first rows common to all the kernels�
/*
* Implementation of a simple grid search method in OpenCL

* Based on the C++ version coded by Roberto Venturelli

*
* Created and maintained by Enrico Calore

*
*/

const float METRIC = 0.3f; // norm for the figure of merit
const int NMETRIC = 131072; // 2^17
const int NMETRIC2 = 65536; // 2^16
const int NSEGS = 36; // the 36 segments
const int NCHAN = 37; // including the Core (after the segm.)
const int USAMP = 48; // number of gs_type samples
const int USAMP4 = 12; // number of gs_type4 samples
� �

91

B I B L I O G R A P H Y

[1] IEEE standard for a versatile backplane bus: VMEbus, 1987.
(Cited on page 20.)

[2] GPFS V3.2.1 Concepts, Planning, and Installation Guide, 2008.
(Cited on page 24.)

[3] Intel 64 and IA-32 Architectures Optimization Reference Manual,
2009. (Cited on page 58.)

[4] The OpenCL Specification, v.1.0 rev.48 edition, 2009. (Cited
on page 37.)

[5] S. Badoer, L. Berti, M. Biasotto, E. Calore, S. Fantinel,
M. Gulmini, G. Maron, P. Molini, and N. Toniolo. AGATA
data storage system. LNL Annual Report 2008, INFN-LNL-
226:46, 2009. (Cited on pages 21 and 24.)

[6] D. Bazzacco. The advanced gamma ray tracking array
AGATA. Nuclear Physics A, 746:248c–254c, 2004. (Cited on
pages 1 and 4.)

[7] D. Bazzacco, B. Cederwall, J. Cresswell, G. Duchene,
J. Eberth, W. Gast, J. Gerl, W. Korten, I. Lazarus, R. M.
Lieder, J. Simpson, and D. Weißhaar. Technical proposal for
an advanced gamma tracking array. Technical report, Euro-
pean Gamma Spectroscopy Community, Sept. 2001. (Cited
on page 1.)

[8] D. Bazzacco and T. Kröll. Simulation and analysis of pulse
shapes from highly segmented hpge detectors for the γ-ray
tracking array MARS. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment, (463):227–249, 2001. (Cited on
pages 15 and 47.)

[9] D. Bazzacco and T. Kröll. A genetic algorithm for the de-
composition of multiple hit events in the gamma-ray track-
ing detector MARS. Nucl.Instr.Meth. A, 565:691, 2006.

[10] B. Bruyneel, P. Reiter, and G. Pascovici. Characterization of
large volume hpge detectors. part ii: Experimental results.
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 569:774–789, 2006. (Cited on page 47.)

93

[11] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for gpus. ACM Trans-
actions on Graphics, 23(3):777–786, 2004. (Cited on page 34.)

[12] E. Calore, E. Farnea, D. Mengoni, and N. Toniolo. Im-
plementation of on-line analysis library in NARVAL: the
PRISMA case. LNL Annual Report 2008, INFN-LNL-226:52,
2009.

[13] E. Calore and D. Mengoni. AGATA DAQ: a NARVAL pro-
totype installation and test. LNL Annual Report 2007, INFN-
LNL-222:197, 2008.

[14] F. Crespi, F. Camera, A. Bracco, B. Million, O. Wieland,
V. Vandone, F. Recchia, A. Gadea, T. Kröll, D. Mengoni,
E. Farnea, C. Ur, and D. Bazzacco. Application of the recur-
sive subtraction pulse shape analysis algorithm to in-beam
HPGe signals. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 604(3):604–611, 2009.

[15] F. Crespi, F. Camera, B. Million, M. Sassi, O. Wieland, and
A. Bracco. A novel technique for the characterization of a
hpge detector response based on pulse shape comparison.
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 593(3):440–447, 2008. (Cited on page 15.)

[16] J. Cresswell and X. Grave. AGATA PSA and tracking algo-
rithm integration. Technical report, University of Liverpool
& IPN Orsay, 2006. (Cited on page 28.)

[17] E. Farnea, A. Gadea, G. de Angelis, et al. Coupling of the
AGATA Demonstrator Array with the PRISMA Magnetic
Spectrometer. LNL Annual Report 2008, INFN-LNL-226:40,
2009.

[18] M. Flynn. Some computer organizations and their effective-
ness. IEEE Transactions on Computers, 100:21, 1972. (Cited
on page 33.)

[19] A. Gadea, J. Nyberg, F. Recchia, et al. First in-beam Com-
missioning Experiment of AGATA. LNL Annual Report 2008,
INFN-LNL-226:39, 2009.

[20] W. Gast, R. Lieder, L. Mihailescu, M. Rossewij, H. Brands,
A. Georgiev, J. Stein, T. Kroll, and F. GmbH. Digital signal

94

processing and algorithms for γ-ray tracking. IEEE Trans-
actions on Nuclear Science, 48(6):2380–2384, 2001. (Cited on
page 19.)

[21] A. Georgiev and W. Gast. Digital pulse processing in
high resolution, high throughput, gamma-ray spectroscopy.
IEEE Transactions on Nuclear Science, 40(4):770–779, aug 1993.
(Cited on page 19.)

[22] A. Görgen. The position sensitivity of the agata prototype
crystal analyzed using a database of calculated pulse shape.
Technical report, DAPNIA/SPhN, CEA Saclay, France, 2003.
(Cited on page 50.)

[23] X. Grave, R. Canedo, J.-F. Clavelin, S. Du, and E. Legay.
NARVAL a modular distributed data acquisition system
with ada 95 and rtai. IEEE-NPSS Real Time Conference, 0:65,
2005. (Cited on page 24.)

[24] L. Hildingsson, C. Beausang, D. Fossan, W. P. Jr., A. Byrne,
and G. Dracoulis. Transverse BGO compton suppression
shield. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 252(1):91–94, 1986. (Cited on page 8.)

[25] Instrumentation and Measurement Technology Conference.
A Simple Method for the Characterization of HPGe Detectors,
2005. (Cited on page 15.)

[26] H. Jung, H. Cho, J. Lee, and C. Lee. Improvement of
the compton suppression ratio of a standard bgo suppres-
sor system by a digital pulse shape analysis. Nuclear
Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment,
580(2):1016–1019, 2007. Imaging 2006 - Proceedings of
the 3rd International Conference on Imaging Techniques in
Subatomic Physics, Astrophysics, Medicine, Biology and In-
dustry. (Cited on page 9.)

[27] G. F. Knoll. Radiation detection and measurement. Wiley, New
York, 3rd edition, 2000.

[28] T. Kröll and D. Bazzacco. A genetic algorithm for the de-
composition of multiple hit events in the γ-ray tracking de-
tector MARS. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 565(2):691–703, 2006.

95

[29] T. Kröll, D. Bazzacco, R. Venturelli, P. Pavan, and C. Ur.
Pulse shape analysis by a genetic algorithm with the γ-ray
tracking detector MARS. LNL Annual Report 2004, LNL-
INFN-204:220–221, 2005.

[30] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
NVIDIA Tesla: A unified graphics and computing archi-
tecture. IEEE Micro-Institute of Electrical and Electronics Engi-
neers, 28(2):39–55, 2008. (Cited on pages 43 and 44.)

[31] A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz,
and J. Thibaud. γ-ray tracking algorithms: a comparison.
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 533(3):454–466, 2004.

[32] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. ACM Queue, 6(2), Mar.
2008. (Cited on pages 35 and 44.)

[33] NVIDIA. NVIDIA OpenCL Best Practices Guide. NVIDIA
Corporation, Santa Clara CA, 1.0 edition, Aug. 2009.

[34] NVIDIA. NVIDIA OpenCL JumpStart Guide. NVIDIA Cor-
poration, Santa Clara CA, 0.9 edition, Apr. 2009. (Cited on
page 37.)

[35] NVIDIA. OpenCL Programming Guide for the CUDA Architec-
ture. NVIDIA Corporation, 2.3 edition, Aug. 2009. (Cited
on page 37.)

[36] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[37] L. Pandola, C. Cattadori, and N. Ferrari. Neural net-
work pulse shape analysis for proportional counters events.
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 522(3):521–528, 2004.

[38] D. Patterson. The top 10 innovations in the new NVIDIA
Fermi architecture, and the top 3 next challenges, 2009.
(Cited on page 77.)

[39] F. Recchia. In-beam test and imaging capabilities of the AGATA
prototype detector. PhD thesis, Scuola di Dottorato di Ricerca

96

in Fisica Ciclo XX, Dipartimento di Fisica, Università degli
studi di Padova, Jan. 2008.

[40] F. Recchia, D. Bazzacco, E. Farnea, A. Gadea, R. Venturelli,
T. Beck, P. Bednarczyk, A. Buerger, A. Dewald, M. Dim-
mock, G. Duchêne, J. Eberth, T. Faul, J. Gerl, R. Gern-
haeuser, K. Hauschild, A. Holler, P. Jones, W. Korten,
T. Kröll, R. Krücken, N. Kurz, J. Ljungvall, S. Lunardi,
P. Maierbeck, D. Mengoni, J. Nyberg, L. Nelson, G. Pas-
covici, P. Reiter, H. Schaffner, M. Schlarb, T. Steinhardt,
O. Thelen, C. Ur, J. Valiente Dobon, and D. Weißhaar. Po-
sition resolution of the prototype AGATA triple-cluster de-
tector from an in-beam experiment. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 604(3):555–562, 2009.
(Cited on page 47.)

[41] M. C. Schlarb. Simulation and Real-Time Analysis of Pulse
Shapes from segmented HPGe-Detectors. PhD thesis, Fakultät
für Physik der Technischen Universität München Physik-
Department E12, Nov. 2009. (Cited on pages 14, 15, and 47.)

[42] G. J. Schmid, D. Beckedahl, J. J. Blair, A. Friensehner, and
J. E. Kammeraad. HPGe compton suppression using pulse
shape analysis. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 422(1-3):368–372, 1999. (Cited on
page 9.)

[43] J. Simpson, J. Nyberg, W. Korten, et al. AGATA technical
design report. Technical report, AGATA Collaboration, Dec.
2008. (Cited on page 1.)

[44] G. Suliman and D. Bucurescu. Fuzzy clustering algorithm
for gamma ray tracking in segmented detectors. Romanian
Reports in Physics, 62(1):27–36, 2010.

[45] S. E. Thompson and S. Parthasarathy. Moore’s law: the fu-
ture of si microelectronics. Materials Today, 9(6):20–25, 2006.
(Cited on page 31.)

[46] A. Triossi, B. Travers, C. Santos, G. Rampazzo, C. Oziol,
P. Medina, D. Linget, I. Lazarus, R. Isocrate, X. Grave,
R. Edelbruck, P. Coleman-Smith, D. Bortolato, L. Berti, and
M. Bellato. Global trigger and readout system for the
AGATA experiment. IEEE Trans.Nucl.Sci., 55(1):91, feb 2008.
(Cited on page 18.)

97

[47] R. Venturelli and D. Bazzacco. Adaptive grid search
as pulse shape analysis algorithm for γ-tracking and re-
sults. LNL Annual Report 2004, LNL-INFN-204:220–221,
2005. (Cited on page 47.)

[48] N. Warr, J. Eberth, G. Pascovici, H. G. Thomas, and
D. Weißhaar. MINIBALL: The first gamma-ray spectrom-
eter using segmented, encapsulated germanium detectors
for studies with radioactive beams. The European Physical
Journal A - Hadrons and Nuclei, 20(1):65–66, Apr. 2003. (Cited
on page 12.)

[49] O. Wieland, T. Kroll, D. Bazzacco, R. Venturelli, F. Cam-
era, B. Million, E. Musso, B. Quintana, C. Ur, M. Bellato,
R. Isocrate, C. Manea, R. Menegazzo, P. Pavan, C. Al-
varez, E. Farnea, A. Gadea, D. Rosso, R. Spolaore, A. Pul-
lia, G. Casati, A. Geraci, G. Ripamonti, and M. Descovich.
Gamma-ray tracking with segmented hpge detectors. Brazil-
ian Journal of Physics, 33(2):206–210, June 2003. (Cited on
page 6.)

[50] A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth,
D. Lersch, G. Pascovici, P. Reiter, and H.-G. Thomas. The
AGATA triple cluster detector. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 618(1-3):223–233, 2010.
(Cited on page 5.)

[51] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. The potential of the cell processor for scientific
computing. In Proceedings of the 3rd Conference on Computing
Frontiers, pages 9–20. ACM, 2006. (Cited on page 77.)

98

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity,
and especially because it produces objects of beauty.

— Donald E. Knuth

R I N G R A Z I A M E N T I

I would like to thank the whole AGATA Community and in partic-
ular the DAQ working group, in which I had the possibility to work
with wonderful people in the last years.

Ringrazio innanzi tutto la mia famiglia per avermi supporta-
to e sopportato in questi anni universitari e quindi per avermi
permesso di studiare fino ad arrivare a questo giorno.

Ringrazio il Prof. Carlo Ferrari in quanto Relatore per questo
lavoro di tesi.

Ringrazio Dino Bazzacco e Francesco Recchia per avermi sop-
portato pazientemente durante la redazione dello stesso, per il
tempo che hanno perso a correggere le mie contorte frasi inglesi,
per avermi sempre dato preziosi consigli e per avere creduto che
potessi veramente fare andare più veloce la PSA sulle schede vi-
deo. Ringrazio anche Enrico Farnea per le sue correzioni e per
la grande disponibilità.

Ringrazio Daniel Napoli per avermi sempre fatto da mentore
all’interno dei Laboratori di Legnaro, fin dal mio primo stage.

Ringrazio inoltre tutte le altre persone con cui ho avuto il
piacere di lavorare ai LNL ed in particolare Daniele Mengoni
con cui ho fatto le prime installazioni di NARVAL e Roberto
Venturelli per il suo GridSearch.

Ringrazio Francesco anche per avere contribuito, prima di me,
a mantenere in vita le aule studio Acquario e Pollaio del Dip. di
Fisica che per anni con i loro frequentatori hanno costituito per
me una seconda casa ed una seconda famiglia; permettendomi
inoltre di avvicinarmi all’affascinante mondo della Fisica e senza
delle quali forse questo lavoro di tesi non esisterebbe.

Mi scuso invece con i futuri studenti che, forse anche per la
mia colpa di non averlo difeso abbastanza strenuamente, potreb-
bero non trovare più in futuro un posto così incredibilmente

99

perfetto per studiare, socializzare e condividere le proprie cono-
scenze, nella più reale synusia platonica, all’interno della nostra
Università.

Colpevole dell’eventuale scomparsa di questo luogo, è mol-
to più però quella parte dei vertici dell’Ateneo che per scarse
vedute, pregiudizi o per la cattiva consuetudine di prendere de-
cisioni su argomenti che non si conoscono, hanno fatto di tutto
per ostacolarne la sopravvivenza.

Prima di infervorarmi e scadere nel linguaggio, torno ai rin-
graziamenti, rivolti a tutti quelli che invece, come me, nel Pol-
laio e nell’Acquario ci hanno creduto e li hanno vissuti; in or-
dine sparso: Paride, Diego, Anne, Beucco, il Marsigliese, Dima,
LucaNardo, LucaGuidetti, Marina & Francé, Marketto, Coma,
Annina, il Moro, Chosa, l’Anita, Jaleh, Fernando, il Doc, Mas-
similiano, Batta Mariachiara & figlio/a, Anna veterinaria, Alice
veterinaria, Gian, Nick fisico, Nick chimico, Sergio, Pippaccio,
Mario, Tonuzzo, la squadra di Pallavolo del Pollaio, la Casella,
Spalla, Nevenka, i Manzini, le sorelle DeMarchi e l’enormità di
altre persone che in questo momento mi sto dimenticando, ma
che mi torneranno in mente dopo avere stampato. Ringrazio an-
che Giovanni per i pochi momenti passati insieme prima che ci
lasciasse.

Ringrazio tutti quegli amici che mi sono sempre stati vicini
sin dalle superiori: Yargo, Manza, i Cani, l’Anzela, i Vercellesi,
la Dana e tutti gli altri.

Infine un ringraziamento speciale per la mia ragazza, Erica,
per essermi sempre stata vicina, per avermi aspettato tutte le
volte che sono arrivato in ritardo ed avermi quasi sempre per-
donato, per sorbirsi un sacco di discorsi da nerd su tutti i miei
invasi, ma anche per essersi fatta un po’ contaminare, per esse-
re venuta ad un HackMeeting, per usare Linux ed avere letto il
Neuromante.

La ringrazio per avere sempre cercato di darmi una mano nei
momenti difficili, per avere imparato a capirmi e per un milione
di altre cose, piccoli e grandi. Grazie Erica.

Padova, anno accademico 2009/2010

100

	Cover
	Sommario
	Abstract
	Contents
	1 The AGATA Project
	1.1 Introduction to Gamma-Spectroscopy
	1.1.1 Detector efficiency
	1.1.2 Spectral resolution

	1.2 AGATA working principles
	1.2.1 Gamma-ray Tracking
	1.2.2 High-fold segmented Ge detectors
	1.2.3 Pulse Shape Analysis
	1.2.4 Basis Database Production

	2 Data Acquisition System
	2.1 Overview
	2.1.1 Signals Digitization
	2.1.2 Pre-Processing
	2.1.3 Software Processing

	2.2 Computing Infrastructure
	2.3 Distributed DAQ: NARVAL
	2.3.1 Algorithms Integration
	2.3.2 NARVAL Emulator

	3 General-Purpose Computing on GPUs
	3.1 GPUs Architecture Model
	3.2 Programming API & Languages
	3.2.1 Compute Unified Device Architecture
	3.2.2 Open Computing Language

	3.3 Hardware Architecture
	3.3.1 NVIDIA Quadro FX 1700
	3.3.2 ASUS ENGTX 285
	3.3.3 SIMT Model

	4 PSA Algorithm Optimization
	4.1 GridSearch Algorithm
	4.1.1 GridSearch for CPU

	4.2 OpenCL GridSearch Implementation
	4.2.1 First Implementation
	4.2.2 Code Profiling
	4.2.3 Code Optimization
	4.2.4 Profiling and Occupancy Calculation

	5 Conclusion
	5.1 Benchmarks
	5.2 Considerations about Results
	5.3 Future code development
	5.4 Hardware improvement

	A Code fragments
	A.1 Original Implementation for CPUs
	A.1.1 libPSAFilter
	A.1.2 PSAFilterGridSearch

	A.2 Implementation for GPUs
	A.2.1 PSAFilterGridSearch
	A.2.2 OpenCL Kernels

	Ringraziamenti

