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Chapter 1

Introduction

In planetary exploration space missions some of the most important tasks are

the estimation of the robot path and the mapping of an unknown environ-

ment. The former task can be ful�lled with the help of odometric evaluations

measuring the rotation of the wheels or by integrating the velocity history

of the robot provided by IMU measurements. Unfortunately, dead-reckoning

methods are prone to errors that grow without bound over time [13]. One of

the main sources of error is the wheel slippage: the path predicted by wheel

odometry can drift substantially from the actual path of the vehicle. More ro-

bust estimations of the motion are provided by visual odometry algorithms

where the displacement between matching image features over subsequent

frames are used to compute both the rotation and the traslation of the in-

board stereo-camera. Visual odometry is still prone to errors [12] even if in

a much less extent than wheel odometry errors. SLAM (Simultaneous Lo-

calisation and Mapping) algorithms can improve the motion estimates from

odometry by evaluating the correlation between the vehicle motion hypoth-

esis and the map of the environment measured by the on-board instruments

as RADARs, LiDARs, sonars or cameras. SLAM can therefore full�l both
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4 CHAPTER 1. INTRODUCTION

the estimation of the robot path and the reconstruction of the landscape in

which the robot is moving.

While SLAM algorithms can be implemented by using a wide variety

of sensors, visual SLAM is peculiar for great robustness in data association

and for the ability to acquire and update a dense map of landmarks using

relatively cheap hardware. Visual SLAM algorithms can be also implemented

in a wide variety of applications, from vehicle navigation to satellite docking

but also in medical application.

In this work both stereo and monocular SLAM formulations are imple-

mented to highlight the di�erence between the two paradigms in terms of

performance and �exibility. Chapter 2 will describe the characteristics of the

Simultaneous Localization and Mapping problem addressing the most famous

approaches to solve it. On chapter 3 a brief review of the state of the art in

SLAM implementation is made and in chapter 4 the algorithms developed in

this thesis work for both monocular and stereo FastSLAM are explained. Fi-

nally, the performances of the developed algorithms are presented in chapter

5.



Chapter 2

Overview on SLAM

2.1 Simultaneous Localisation and Mapping

The Simultaneous Localisation and Mapping (SLAM) problem asks if it is

possible for a mobile robot to be placed at an unknown location in an un-

known environment and for the robot to incrementally build a consistent map

of this environment while simultaneously determining its location within this

map. The genesis of the probabilistic SLAM problem occured at the end of

the 1980s thanks to the work of H. Durrant-Whyte, P. Cheeseman, R. Smith,

M. Self and others researchers who highlighted the correlations between the

estimations of landmarks location and the robot poses. Their work showed

that when a robot moves through an unknown environment taking relative

observations of landmarks, those estimations are necessatily correlated be-

cause of the common error in the knowledge of the robot pose. The idea of a

"net shaped" structure of correlations between the robot pose and the map

but also between the components of the map itself led to the formulation

of the EKF-SLAM solution where both the robot pose and the landmarks

coordinates are evaluated in a joint state formulation which is updated follow-

5



6 CHAPTER 2. OVERVIEW ON SLAM

ing every landmark observation through an Extended Kalman Filter update.

The strength of the probabilistic formulation of the SLAM problem can be

found in the following consideration: the work in [4] showed that (in a linear

Gaussian formulation) the correlation between landmark estimates increase

monotonically as more and more observations are made leading to the con-

vergence of the map regardless of the motion of the robot. This result can be

explained considering that simultaneous observations of di�erent landmarks

provide a high correlated measurement of the relative locations. As the robot

moves through the environment more measurements of relative locations of

landmarks are made, updating not only the position of the actual measured

landmarks but also the position of the highly correlated landmarks to the

ones that have been recently observed, therefore updating a bigger portion

of the estimated map.

2.1.1 Preliminaries

Before de�ning the parameters involved in the SLAM problem is necessary

to recall some de�nitions of the following terms:

• probability distribution: function that assigns a probability to each mea-

surable subset of the possible outcome of a random procedure. The

term is often used as a synonym of the more correct probability density

function.

• posterior probability distribution, P (A|B): probability distribution of a

random variable conditioned on the evidence obtained from previous

evidences.

• prior probability distribution, P (A): probability distribution of a ran-

dom variable before any evidence is taken into account.
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• joint probability distribution, P (A,B): probability distribution that as-

signs the probability of each (A,B) falling into a particular range or

subset

• Bayes Theorem: P (A|B) = P (B|A)P (A)
P (B)

Let the pose be de�ned as the euclidean position in which the robot is lo-

cated at time step t, st. The path of the robot is therefore de�ned as a set

of consequent pose starting from the initial position s0 which is arbitrarily

chosen.

s0:t = {s0, ..., sT}

Let also ut denote the input given to the robot to move from the current

pose to the next. This information can be provided by the actual commands

given to the motors but can also be obtained by the odometry of the wheels

or the integration of the robot velocity using the outputs of the IMU unit if

available. The history of the inputs is therefore:

u0:t = {u0, ...,uT}

Let now be de�ned the true location of the ith landmark, mi, and the ob-

servation of that landmark obtained at time step t, zi,k. The set of all the

landmarks is addressed as the "map":

M = {m1,m2, ...,mi}

Let also be de�ned the set of all landmark observations:

Z0:t = {z1, z2, ..., zi}

Solving the SLAM problem requires computing for every time step the fol-

lowing joint probability distribution:

P (st,m|Z0:t,U0:t, s0) (2.1)
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This means computing the posterior joint probability distribution of the pose

of the vehicle and the location of the observed landmark as a function of

knowledge of landmark measurements and inputs given to the robot at time

step t. The formulation is recursive, starting from an estimate of

P (st−1,m|Z0:t−1,U0:t−1, s0)

the distibution at time step t is computed using Bayes Theorem taking into

account the inputs ut and the observations zt. Let now be de�ned the mo-

tion model as the probability distribution of the pose st given the previous

location and the inputs given ut

P (st|ut, st−1)

The observation model is the posterior probability distribution of the land-

mark measurement zi,t when the actual landmark location mi and the pose

of the robot st are known.

P (zi,t|mi, st)

A two step prediction-update procedure now takes place to compute the

full posterior probability at time step t by using both the motion and the

observation models.

• Time update: being the pose only dependent on the inputs and the

last known pose of the robot, not on the map or the measurements,

the state transition described by the motion model is assumed to be a

Markov process. The joint prior distribution of (st,m) can therefore

be written as:

P (st,m|Z0:t−1,U0:t, s0) =
∫
P (st|ut, st−1) ∗ (2.2)

P (st−1,m|Z0:t−1,U0:t−1, s0)dst−1
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Note that the �rst term of the equation represents the probability dis-

tribution of (st,m) before any measurement at time step t is taken into

account. The knowledge of the path is then computed only as a func-

tion of the motion of the robot, which is known with an uncertainty

related to the odometry or to the inputs given.

• Measurement update: the observations obtained at time step t are now

taken into account to correct the full posterior computed in the pre-

diction step via Bayes Theorem:

P (st,m|Z0:t,U0:t, s0) =
P (zi,t|mi, st)P (st,m|Z0:t−1,U0:t, s0)

P (zk|Z0:t−1,U0:t)
(2.3)

Finding a solution to the probabilistic SLAM problem requires formulating

an appropriate representation for the motion and observation model that

allows an e�cient and consistent computation of the prior and posterior

distributions in eq. 2.2 and 2.3. In the most recent years quite a few solutions

of the problem have been formulated: EKF-SLAM, FastSLAM and Graph-

SLAM are the most famous in today's literature. In the following sections

every one of the three will be introduced.

2.1.2 EKF-SLAM

The algorithm based on extended Kalman �lters is acknowledged as the most

in�uential SLAM formulation and historically the earliest. The foundation

of the algorithm is the state-space formulation of all the variables involved:

the robot pose and the location of the landmarks in the map. An additive

Gaussian noise is added to the state vector in order to model the uncertainty

related to every component of the state. In the EKF-SLAM algorithm each

probability distribution is modeled as a Gaussian distribution and the motion



10 CHAPTER 2. OVERVIEW ON SLAM

and observation model are linearized. The Gaussian assumption is proven

to be e�ective only if small uncertainties are taken into account otherwise

the Kalman �lter update would introduce errors leading eventually to the

divergence of the �lter. The spring newtork analogy is a great representation

of the mechanism involved in the solution of the SLAM problem via EKF. Let

a network of springs describe the correlation between landmarks in the map.

The sti�ness of the springs is proportional to the correlation: the higher is

the correlation the higher is the sti�ness of the connecting spring. When the

robot moves through the environment the correlation or sti�ness between

simultaneously observed landmarks increases, propagating the correction in

the previously known map linked by springs to the observed region. The

basis of EKF-SLAM is to describe the vehicle motion in the form

P (st|ut, st−1)→ st = f(st−1,ut) + wt

where f(.) models the vehicle kinematics and wt models a zero mean white

additive Gaussian noise with covariance Qt. The observation model is de-

scribed as

P (zt|st,m)→ zt = h(st,m) + rt

where h(.) models the observation model and rt models a zero mean white

additive Gaussian noise with covariance Rt. The state vector, also addressed

as combined state vector, comprises both the robot pose and the map and is

de�ned as

yt = {s,m1,m2, ...mn}

If the robot moves on a plane and every landmark state has dimension 3 then

the combined state vector has dimension 3N + 3 where N is the number of



2.1. SIMULTANEOUS LOCALISATION AND MAPPING 11

landmarks.

yt = {sx, sy, φ,m1,x,m1,y,m1,z,m2,x,m2,y,m2,z, ...mn,z}

EKF-SLAM algorithm computes the posterior probability distribution

P (yt|Z0:t,U0:t)

where the state vector is represented by a Gaussian distribution of mean yt

and covariance Pt.

Pt =

Pss Psm

Pms Pmm


The recursive computation starts with an assumption for the initial position

of the robot s0 and the related covariance. Next the time update step takes

place, updating the path on the robot without any information about the

variation of the environment observed. The a priori knowledge of the new

state is (the symbol (-) will from now on address the knowledge of a variable

before any measurement correction)

st,(−) = f(st−1,ut) (2.4)

Pss,t,(−) = ∇f(st−1,ut)Pss,t−1∇f(st−1,ut)

where ∇f is the Jacobian of the function that models the motion of the robot

evaluated in (st−1,ut). The measurement update is used to correct the a

priori estimate for the robot pose taking into consideration the measurement

of the environment: the observed state of the landmark relative to the robot,

which is dependent on the new robot location, will now reduce the uncertainty

of the pose, rejecting the motion hypotesis that are highly unlikely. The time

update is computed only for the robot pose if the map is assumed to be static,
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SLAM in open environment with moving features is still an open research

topic and will not be addressed in this thesis work. The measurement update

is computed as follows

yt =

st,(+)

mt

 =

st,(−)

mt−1

+ Kt(zt − h(st,(−),mt−1)) (2.5)

Pt,(+) = Pt,(−) −HT
t StHt (2.6)

St = ∇hPt,(−)∇hT + Rt

Wt = Pt,(−)∇hTS−1t

where Wt is the Kalman gain, St is the innovation covariance and Rt is

the measurement covariance. Please note that the procedure explained in

eq. 2.4-2.6 is a simple Extended kalman Filter update. The EKF-SLAM

algorithm su�ers from some severe issues that compromise its reliability in a

lot of applications. Here follows a summary of the main weaknesses:

• Non-linearity : The EKF algorithms employs linearised models for the

motion and measurement models so the convergence is guaranteed only

in a linear case. High non linearity can rapidly lead to divergence of

the algorithm if any safety measure is adopted.

• Data Association: The association of the observed landmarks to the

known map is a very delicate procedure. Every time a landmark is

measured, the algorithm must relate it to the previously known map

to remember its previously known location. Incorrect associations lead

rapidly to �lter divergence especially in the case of EKF-SLAM where

the correlation between all the landmarks are taken into consideration.

In the paper [5] EKF-SLAM and FastSLAM are compared showing

that EKF su�ers from high sensibility on wrong associations.
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• Computational E�ort : The state space is subject to dimensional in-

crease as more new landmark are observed. As explained before, the

dimension of the state vector is 3N + 3 where N is the number of land-

marks. The covariance P associated to the mean y is a (3N + 3) ∗

(3N + 3) matrix so the computational cost grows quadratically with

the number of landmarks. EKF-SLAM is not suited for very dense map

computations.

2.1.3 FastSLAM

The FastSLAM approach [15] for solving the SLAM problem integrates par-

ticle �lters and extended Kalman �lters. The foundations of FastSLAM are

to be found in the work of Murphy [18]: features estimations are not cor-

related if the path of the robot is known with no uncertainty. This means

that the landmark estimation can be approached with a single EKF update

per-landmark which would require little computational cost as it require to

invert a 3x3 covariance matrix. The computational cost will then grow in

time logarithmic to the number of landmarks in the map. The trajectory

of the robot is of course known with some uncertainty but particle �lters

estimate a probability distribution sampling N values of the random variable

(in this case st) and assing to every one of them a weight proportional to

the likelihood of that particular value. On a per-particle basis the path is

therefore perfectly known. Murphy's observation allows to factor the estima-

tion of the full probability distribution in eq. 2.1 into two separate problems,

robot path and map computation:

P (st,m|Z0:t,U0:t, s0) = P (st|Z0:t,U0:t, s0)
N∏
n=1

P (m|Z0:t,U0:t, s0) (2.7)
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Figure 2.1: Bayesian network graphical depiction of the SLAM problem: the

robot moves from position st−1 to st+1 as a result of the inputs u observing through

the measurements zt−1, zt, zt+1 the state of the landmark m

The posterior is decomposed into N+1 recursive estimators, one over the

robot path and N over the landmark locations conditioned on the path esti-

mate. Figure 2.1 depicts graphically the data acquisition process in form of

a Bayesian network.

The prediction or time-update step is computed by a particle �lter which

estimates the posterior over robot path P (st|Z0:t,U0:t, s0) without assuming

any type of probability distribution, the Gaussianity assumption of EKF-

SLAM is infact an approximation and it represents by no means the actual

distribution of the robot pose at time step t. The non-linearity of the motion

model does not implicate any issue in a particle �lter scenario. A set of

particles is sampled by a proposed distribution which is just assumed before

any correction takes place. Each particle is in the form:

S
[m]
t =

〈
s
[m]
t , µ

[m]
1,t ,Σ

[m]
1,t , ..., µ

[m]
N,t,Σ

[m]
N,t,w

[m]
t

〉
(2.8)

where µ
[m]
j,t and Σ

[m]
j,t are respectively the mean and covariance associated to

the j-th landmark in the map known at time step t. Every particle contains

one trajectory hypotesis and one map hypotesis. w
[m]
t is the weight associated
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Robot pose Landmark 1 Landmark 2 ... Landmark N

Particle 1 {x, y, φ} {µ1,Σ1} {µ2,Σ2} ... {µN ,ΣN}

Particle 2 {x, y, φ} {µ1,Σ1} {µ2,Σ2} ... {µN ,ΣN}

... ... ... ... ... ...

Particle M {x, y, φ} {µ1,Σ1} {µ2,Σ2} ... {µN ,ΣN}

Table 2.1: Particles in FastSLAM

to the m-th particle, the role of the weight will be deeply explained later.

The �lter update is performed in the following steps:

1.Prediction step: sampling from the path posterior. Given the

input ut, the pose for the m-th particle is computed drawing a sample from

the motion posterior

s
[m]
t ∼ P (s|s[m]

t−1,ut)

where s
[m]
t−1 is the pose at time step t-1 according to the path hypotesis of the

m-th particle. The resulting sample is stored in a temporary set of particles

along with the path of previous poses. The motion model by no means have

to be formulated as a Gaussian distribution, in �gure 2.2 are depicted few

options on how to draw samples according to the motion of the robot and

the uncertainty associated with it but also on eventual a priori knowledge of

the scenario in which the robot is moving. The motion model can also take

into account not the input given to the robot but also the odometry data

coming from the wheels or from a GPS track if available or from the velocity

information given by an IMU unit. In the resampling step the most likely

trajectories are resampled to build a �nal set of particles, if no resampling is

performed the M path hypotesis diverge monotonically as depicted in �gure

2.3.
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2.Updating the landmark estimate Next, FastSLAM algorithm up-

dates the posterior over the landmark estimates that are observed at time

step t, represented by the mean x
[m]
t,j and the covariance Σ

[m]
t,j . The updated

values are then added to the temporary particle set, along with the new pose.

The non observed landmarks are not evaluated in this step. For the observed

features an extended Kalman �lter updated is performed. Being h(st,mj)

the measurement model and H(st,mj) its Jacobian evaluated for the current

pose and the j-th landmark

x
[m]
j,(+) = x

[m]
j,(−) + K

[m]
t,j (zj − h(st,x

[m]
j,(−)) (2.9)

Σ
[m]
(+),j = (I−K

[m]
t,j H

[m]T
t,j )Σ

[m]
(−),j

K
[m]
t,j = Σ

[m]
(−),jH

[m]
t,j S

[m]−1
t,j

S
[m]
t,j = H

[m]T
t,j Σ

[m]
(−),jH

[m]
t,j + Rt

Step 1 and 2 are repeated M times resulting in a set of M temporary particles.

3. Resampling In a �nal step, FastSLAM resamples this set of particles

drawing from this temporary set M particles with replacement, therefore a

single particle can be resampled multiple times until the set of M new par-

Figure 2.2: Depiction of the sampling process, according to the motion model of

the robot a set of N path samples is drawn.
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Figure 2.3: Sparsi�cation of the trajectories if no correction based on observation

is computed

ticles is complete. The new particle set will be distributed according to the

proper probability distribution of the poses which can di�er substantially

from the proposal distribution assumed to sample the temporary set of par-

ticles. The situation is illustrated in �gure 2.4 where the solid line is the

actual distribution and the dashed line is the proposal distribution, the sam-

ples drawed from the proposal are weighted during the landmark estimation

update to better approximate the actual distribution of the poses taking into

account the current observations of the robot. The higher the weight the

more likely is a particle to resemble the actual target distribution. The tem-

porary set of particles is then resampled (with replacement) according to the

weights or importance factors of the particles. Weigths are computed for

every landmark update as follows:

w
[m]
j =

1√
2π|S[m]

t,j |
exp{−1

2
(zj − ẑ

[m]
j )TS

[m]−1
t,j (zj − ẑ

[m]
j )}
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Samples from

proposal distribution

Weighted samples

Proposal

Target

Figure 2.4: Target and proposal distribution of the robot poses. Samples from

the proposal distribution are weighted according to eq 2.10

where S
[m]
t,j is the innovation covariance computed during the landmark esti-

mation update and ẑ
[m]
j is the result of the measurement model, that is the

measurement that the observer expect to take given a certain position and a

ceraint landmark.

2.1.4 Graph-SLAM

Graph-SLAM is another well known paradigm of the SLAM problem by S.

Thrun and M. Montemerlo [16]. The main idea behind GraphSLAM is that

robot motions and measurements can be represented by a graph where the

nodes are vehicle and landmarks positions and the edges linking each node are

costraints based on the negative log likelihood of each connected node. Those

likelihoods are directily computed using the motion and the measurement

models, the former is used to compute the costraint between consequent robot

poses while the latter is used to compute the costraint between a landmark

position and the robot pose from which the landmark was observed. The sum
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Figure 2.5: Graph representation of the robot pose and the map. The links from

pose to pose or pose to landmark are associated to a costraint in the position (i, j)

of the information matrix where the i-th row is related to the �rst node and the

j-th row is associated to the second node

of all the costraints leads to a least squares minimization problem, naively

the target function of GraphSLAM is to minimize this sum to get the most

likely map and the most likely robot path. Figure 2.5 depicts the graph

representation of the problem. The costraint between two robot poses is

(xt − g(xt−1,ut))
TQ−1t (xt − g(xt−1,ut))

where g is the motion model. The costraint between a robot pose and a

landmark location is

(zt,i − h(mi, st))
TR−1t (zt,i − h(mi, st))

The sum of all the costraints is

Jsum = xT0 Ω0x0 +

=
∑
t

(xt − g(xt−1,ut))
TQ−1t (xt − g(xt−1,ut)) +

=
∑
t

∑
i

(zt,i − h(mi, st))
TR−1t (zt,i − h(mi, st))

where Ω is the information matrix which contains the values of the costraints.

Let also be ξ the information vector which contains the values associated to
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the nodes. In the associated information matrix the o�-diagonal elements are

all-zero with few exceptions: a non-zero value will be located in (i, j) where

the i-th row is associated to a robot pose st−1 and the j-row is associated to

the next robot pose st, the link between those nodes represents the control

ut−1. The other non-zero elements are the links between a map feature

mj and the robot pose st from where the landmark is observed. After the

information matrix is assembled the path and the map can be obtained from

the linearization of Ω and ξ via the following equations where x is the map

estimate:

x = Σξ

Σ = Ω−1

If the landmark are observed only on a single time step each, the infor-

mation matrix can be reordered so it becomes a diagonal matrix, thus the

computational time required for the inversion is linear to the length of the

information vector. Normally every feature is observed over multiple time

steps with large time delays between every observation. The matrix is then

much more complex and the reordering can be di�cult. The GraphSLAM

algorithm employs a variable elimination algorithm to compute the informa-

tion matrix inversion to extract information just about a certain number of

elements in the information vector as the path of the robot instead of the

landmark state. Thinking about the graph as a mass and springs network,

the algorithm performs an elimination of some links establishing new ones

only between the requested nodes, mantaining invariant the total force ap-

plied to the masses. A much smaller matrix is now requested to be inverted

thus a signi�cant computational time reduction is obtained. An analogue
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procedure is then performed to extract map features from Ω and ξ.
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Chapter 3

Related Work

In this chapter a brief summary is provided about the most important and

in�uential works on the topic of vision based SLAM or SLAM implemented

using camera devices as sensors.

3.1 Monocular SLAM

One of the �rst implementations of real time monocular visual SLAM is

"MonoSLAM" by Davison (2007) [23]. The algorithm computes a sparse

map of very consistent features using the EKF paradigm to obtain real-time

30 Hz localization over a small area. The hardware used is a very inexpen-

sive IEEE 1394 webcam with a wide angle lens. From a single image no

information about depth can be obtained. The problem of localizing the ob-

served features tridimensionally is one of the main challenges in monocular

vision and many approaches have been employed in the following works. In

MonoSLAM every features is initialized as a 3D line starting from the camera

optical center and pointing towards the projection of the feature on the image

plane. A set of discrete depth hypotesys is distributed along this line and the

23
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likelihood of them to better resemble the actual depth is computed over the

following time steps on the approximation that the next observations only

carry information about the depth, not about the direction. When the prob-

ability distribution of the depth is su�ciently peaked the feature is converted

to fully initialized with a standard 3D Gaussian distribution. Feature detec-

tion is performed with the Shi and Tomasi detector and a very robust feature

matching algorithm is employed. To extend the viewing angle and scale from

which a feature can be recognized, for every featured detected a small image

window centered on it is stored. Given the estimated trajectory between

following time steps those little image portions are warped according to the

change in parallax and scale and then projected on the sensor plane. This

work showed that real time monocular SLAM is feasible even on inexpensive

hardware but the map obtained is very sparse and the drift-free tracking is

permitted by EKF-SLAM which can easily diverge from false data associa-

tion, more likely during dense map evaluations, and su�ers from quadratical

computational time increase in the number of landmarks acquired.

Kwok, Ha and Fang (2007) [6] developed a cost function based method for

data association in bearing-only visual SLAM. While in range and bearing

data acquisition the association of the observed landmarks can be performed

by Mahalanobis distance between the known and measured state to select the

most likely association, in bearing only SLAM within a measure no depth

information is obtained. During conventional data association, the Maha-

lanobis distance is computed on the innovation error, that is the di�erence

between the known state and the expected state of the landmark during a

measure, and the innovation covariance, which include the uncertainties on

the known state and on the measure. This work takes into account the un-

certainty on the state of the landmark and the uncertainty on the bearing
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which is the actual measure. The likelihood of an association is computed

for every landmark as a function of their predicted bearing in relation to

the camera displacement. A cost function is computed and an association is

declared between the candidates that give a minimal cost.

Kootstra, de Jong and D. Wedema (2009) [5] worked on a comparison

of EKF-SLAM and FastSLAM approaches to highlight the issues related to

the standard extended Kalman �lter paradigm. A Pioneer 2 DX robot with

a single camera was operated to repeatedly observe the same environment

moving on a loop. Two settings for the matching algorithm are considered,

an unreliable and a reliable one. The di�erence between those two sets is

the probability of establishing false data association purely on the visual

properties of the detections. A bu�er of a �xed number of images is stored,

only when a feature is been observed on a minimum number of frames it

is considered an actual measure. Depth information are obtained through

triangulation over the location of the feature in the image bu�er. The re-

sults of this work showed that FastSLAM outperformed EKF-SLAM both

on reliable and unreliable settings. EKF-SLAM was proven to su�er much

more than FastSLAM on wrong associations because of the single hypotesis

tracking. Every correction on landmark states propagates on the robot pose

over great distances therefore a wrong association induces an error over the

entire pose history of the robot. In the FastSLAM scenario the e�ect of a

false association is much more retained because the pose estimation relies on

sampling from a proposed particle cloud.

Solï¾1
2
, Monin Devy and Lemaire (2008) [8] investigated the topic of

undelayed initialization of landmarks in bearing-only SLAM. The main in-

tuition behind this approach is that when a new feature is observed, bearing

information can still be useful to recuce the uncertainty of the direction of
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the robot while they carry no information about the translations. The ap-

proach used is to formulate the landmark hypotesis as a series of Gaussians,

selecting the more likely ones in the following steps and then initializing the

landmark as a 3D Gaussian distribution.

A di�erent solution to undelayed initialization is given by J. Civera, A.

J. Davison and J. M. Martinez Mondiel (2008) [17]. In this work the

problem of extracting depth information while using the landmark measure-

ment to correct the robot pose and orientation is solved by using a di�erent

parametrisation for the state of the landmark. In this work it is proven that a

gaussian distribution doesn't accurately represent the actual probability dis-

tribution of a landmark at the time of the �rst acquisition because naively it

should lie on a cone centered on the landmark projection the camera sensor.

An inverse depth parametrization is proposed: landmark are described using

a 6 element vector which contains the euclidean pose of the optical center

at the time of the �rst acquisition, the two angles describing the landmark

direction and the depth. When a landmark is observed through a certain

parallax change (for example 3 degrees) the uncertainty about the landmark

resembles very well a Gaussian 3D covariance and then the landmark is con-

verted to an Euclidean parametrization. This conversion is not necessary but

can improve the computational time. While parametrized in inverse depth

landmarks can provide useful information about the orientation of the cam-

era.

M. Li, B. Hong, Z. Cai, R. Luo (2008) [11] formulated a variant of the

common particle �lter SLAM algorithm (as FastSLAM) where the predic-

tion step takes into account the current set of measurement to draw the

most likely particle before the landmark state update is performed re�ning

the initial particle sampling to better approximate the true distribution (a
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similar process is implemented in FastSLAM 2.0 by Thrun and Montemerlo).

Their results show not only a better pose estimate but also a more consistent

map acquisition.

C. Gamallo,M. Mucientes and C. Regueiro (2009) [22] investigated the

use of an omnidirectional camera (�sh-eye lens) in a monocular FastSLAM

environment. The approach used is based on FastSLAM 2.0 where the tem-

porary particle sampling is performed considering the current measurements

to obtain a more likely set of poses than the one obtained only sampling

from the motion model. The camera mounted on the robot is equipped with

a infrared �lter as the landmark observer are the lights on the ceiling. The

environment is a museum therefore the camera can observer a big portion of

the whole map having a 185◦�eld of view.

3.2 Stereo SLAM

One of the �rst work on robot localization and map building using stereo

vision is from S. Se, D. Lowe and J. Little (2006) [10]. SIFT feature

descriptor (Lowe, 1999) is used for the consistent performances in data asso-

ciation over high scale and view angle variations. Previous approaches were

based on Harris corner detector which is very sensitive to scale and therefore

is not suited for mapping algorithms. SIFT features are matched between

the two cameras satisfying the criteria of epipolar costraint, disparity and

orientation costraint (costraint based on the proximity of correct matches),

unique match costraint (ambiguous matches are discarded). In this early

work, landmark state prediction from robot odometry is employed to ob-

tain a more e�cient data association from feature descriptors, no method

is implemented to reduce the map uncertainty once landmarks are repeat-
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edly observed. A least-squares minimization is then employed to �nd the

robot motion that minimize the reprojection error of matching features. No

Kalman data fusion is employed to reduce the path uncertainty.

The �rst implementation of EKF-SLAM using a stereo camera mounted on a

robot is from Davison and Murray (2002) [19]. Their works addressed the

feasibility of real-time SLAM using active vision (ability to rotate the cam-

eras relatively to the robot), automatic map maintenance and goal-directed

steering. Landmarks are parametrized as 3D points in the reference frame

of the stereocamera and data association is performed searching candidate

landmarks in the uncertainty ellipsoid of the known map. Shi and Tomasi

detector is implemented (application of the Harris corner detector) to acquire

new visual features, matching is performed computing the sum of squared

di�erences between descriptors (SSD) and an epipolar costraint is applied

to discard wrong matches between the two images. Two failure modes are

observed, one arises from false data association and one arises from non-

linearities. When uncertainty in the map is very large, measurements can

induce unpredictable EKF updates which propagates on both path and map

estimations. Great attention is put into selecting consistent features since a

minimum number of two is su�cient for providing a fully-costrained robot

position estimate. Bad landmarks are deleted from the map if their detection

is considered a failure according to a set criteria. Robot automatic motion

and obstacle avoidance is then addressed.

Rao-Blackwellized particle �lters are commonly implemented to avoid the

unconsistency of traditional EKF-SLAM, Elinas and Little [9] developed

an algorithm called σSLAM that uses a particle �lter to re�ne the robot

pose and EKF to correct landmark positions in the map. The main di�er-

ence from the FastSLAM framework is related to the initial sampling of the
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temporary particle set. While in FastSLAM the proposal is sampled from

the motion model, in σSLAM the proposal is sampled from the output of a

visual odometry algorithm. A 2D occupancy grid map is also computed from

the stereo image set for path planning and obstacle avoiding.

A. Gil, O. Reinoso, M. Ballesta, D. Ubeda (2006) [21] developed a

SLAM algorithm based on Rao-Blackwellized particle �lters using a stereo

camera head. SIFT feature descriptors are used. A Mahalanobis distance

method for data association is proposed. Commonly, Mahalanobis distance is

implemented to evaluate the association between vectors with three-dimensional

covariance. This work showed that Mahalanobis distance can be employed

to improve the association between feature descriptors if the elements in the

128-dimensional vector are assumed to be independent. Roughly a 10% im-

prove is obtained.

More recent approaches on stereo SLAM implementations focuse on higher

data volume and map density to obtain a more complex and complete map

reconstruction. C. Brand, M. J. Schuster, H. Hirschmuller and m.

Suppa (2015) [24] developed an incremental graph-SLAM method where a

number of dense submaps are individually computed and fused together to

obtain a full environment representation. Features are extracted not only

according to their visual properties but also to geometric properties in order

to obtain a more robust association even on high viewpoint and scale varia-

tions.

Other approaches involve the evaluation of other image properties as pho-

toconsistency of high-contrast pixels, corners and edges rather than feature

properties. LDS-SLAM by J. Engel, J. Stuckler and D. Cremers (2015)

[3] estimates depth from pixels with high intensity gradient reconstructing

a semi-dense depth map real-time. Concurrently, it tracks the rigid-body
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motion through photometrix alignment of images based on the depth maps.



Chapter 4

FastSLAM implementation

In this chapter the structure of the stereo and mono algorithms are discussed

and the procedures of feature detection and matching, landmark triangula-

tion and data association are individually discussed with the help of pictures

and pseudocodes.

4.1 Preliminaries

A stereo system comprises two cameras denoted with the numbers 1 and 2 for

the left and right one respectively. Each camera has a corresponding frame

of reference with its z axis aligned to the optical axis, the origin coincident to

the optical center, the x and y axis parallel to the sensor plane and directed

according to the pixel enumeration order in the image, see �gure 4.1.

4.1.1 Pinhole model

Considering the model of each camera [1], the position of a point feature

comprised in the �eld of view of both cameras can be written as:

Xi = {X, Y, Z}T =i λi{xi, yi, 1}T = λixi (4.1)

31
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P

image plane

projection of P

zcam

ycam

xcam

1

{x',y'}

{X,Y,Z}

o

Figure 4.1: Camera reference frame

where i is 1 or 2 depending on which camera the landmark X is observed. xi

is the projection of the landmark on the image plane, which is parallel to the

camera sensor and displaced from the optical center by a unitary value. λi is

a scalar parameter associated with the depth of the feature. The relationship

between the Euclidean parametrization of a landmark and its projection on

the image plane is formulated according to the pinhole model. A thin lens is

a mathematical model de�ned by an optical axis, a focal plane perpendicular

to the axis and an optical center, the intersection between the plane and

the axis. Two parameters de�ne the thin lens: the focal length f and its

diameter D. Two properties emerge: the �rst is that all rays entering the lens

parallel to the optical axis intersect the axis at a distance f from the optical

axis. The second properties is that all rays intersecting the optical center are

unde�ected. The fundamental equation of the thin lens is

1

Z
+

1

z
=

1

f
(4.2)

If the aperture D of a thin lens decrease to zero, the only points that con-

tribute to the irradiace at a point on the camera sensor are on a line through
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the center of the lens. The relations between the Euclidean coordinates of a

feature and its projections on the image plane are:

x = f
X

Z
(4.3)

y = f
Y

Z

In literature, eq 4.3 is more often found with a negative sign in front of both

the fractions, that is because normally the image crossing a thin lense is

projected upside down. This e�ect can be neutralized simply �ipping the

image, this corresponds to placing the image plane in front of the optical

center. It is now necessary to establish a relationship between pixel and

metric coordinates. The �rst step is to de�ne a scaling matrix which takes

into account the metric pixel dimension to transform normalized coordinates

(x, y) into pixel coordinates.x′
y′

 =

Sx 0

0 Sy

x
y

 (4.4)

However x′ and y′ are related to a reference frame that has its origin in the

optical center while the pixel index count on an image (i, j) is conventionally

located in the upper left corner. A translation of the origin of the reference

Optical axis

Optical center

D

f

Z

p

z

Figure 4.2: Scheme of a thin lens
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frame is therefore needed. Omitting a few mathematical passages, the geo-

metric relationship between a point of coordinates {X, Y, Z} relative to the

camera frame and its projection coordinates in pixels {x′, y′, 1} is

λ


x′

y′

1

 =


Sxf 0 x0

0 Syf y0

0 0 1



X

Y

Z

 (4.5)

where the intrinsec parameters Sxf , Syf , x0 and y0 are obtained experimen-

tally via camera calibration. The matrix of the intrinsec parameters is often

referred as the calibration matrix.

4.1.2 Triangulation

A stereo setup is also characterized bt its extrinsic parameters. To perform

triangulation and determine 3D position of the scene points, the relative

position and rotation between the two cameras have to be known. There pa-

rameters are named extrinsic and should be experimentally evaluated before

any measurement with the stereo system can be performed. Triangulation

is implemented using the algorithm of the middle point as in [13]. Given

the preimage lines (the line that starts from the optical center of the camera

and project the 2D image feature to the 3D real landmark coordinates) of a

feature xi for both camera 1 and camera 2, the algorithm �nds the couple

of points {Xs,1,Xs,2} at the minimum distance from each line and computes

the middle point of the segment.

Being 1X1 and
2X2 the vectors representing the same point in the environ-

ment referred respectively to the reference of the �rst and the second camera,
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they can be expressed as follows:

1X1 = λ1x1 (4.6)

2X2 = λ2x2

where x1 and x2 are the projection of the point X on the image plane of

both cameras. It is now needed to refer both vectors to the same reference,

the �rst camera reference frame is choosen freely.

1X1 = λ1x1 (4.7)

1X2 = λ2R
1
2x2 +1 P21

where R1
2 is the rotation matrix from frame 2 to frame 1, and 1P21 is the

origin of frame 2 with reference to the origin of frame 1 and expressed in

frame 1. Points X1,s and X2,s are calculated minimizing the following cost

function:

g = ‖1X1 −1 X2‖2

The following values of λ1,s and λ2,s are obtained:

λ1,s = −(xT1R
1
2x2)(x

T
2

2P12) + (xT2 x2)(x
T
1

1P21)

(xT1 x1)(x
T
2 x2)− (xT1R

1
2x2)

2
(4.8)

λ2,s = −(xT1 x1)(x
T
2

2P12) + (xT1R
1
2x2)(x

T
1

1P21)

(xT1 x1)(x
T
2 x2)− (xT1R

1
2x2)

2

where 1P12 = −1P21.
2P12 is the origin of frame 1 with reference to the origin

of frame 2 and expresse in frame 2. Next the points of minimum distance

between the two preimage lines are computed as follows:

1X1,s = λ1,sx1 (4.9)

1X2,s = λ2,sR
1
2x1 +1 P21

1X1 =
1X1,s +1 X2,s

2
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4.1.3 Uncertainty estimation of triangulated landmarks

After the triangulation is computed it is necessary to estimate the uncertainty

on the 3D points. The following method is based on the assumption that

the distribution of 1X is Gaussian. Let be f the function that gives the

triangulated point in Euclidean coordinates:

1X = f(x1,x2,K1,K2,R
1
2,

1 P21) (4.10)

The uncertainty on extrinsic and intrinsic parameters can be evaluated by

stereo setup calibration and camera calibration respectively. On the assump-

tion that every input parameter on eq. 4.10 is independent from each other,

the input covariance matrix can be written as follows:

Pin =



σ2
u1 0 0 0 · · · 0

0 σ2
u2 0 0 · · · 0

0 0 σ2
v1 0 · · · 0

0 0 0 σ2
v2 · · · 0

...
...

...
...

... σ2
f


The matrix is diagonal because of the uncorrelation of the intrisic and ex-

trinsic parameters. The function f is non-linear therefore to propagate the

uncertainty on 1X it is needed to compute numerically the Jacobian matrix

of f using �nite di�erences to approximate the derivative of every component

of the function. The Jacobian matrix of f is a (3x18) matrix being 3 the

component of 1X and 18 the total input parameters.

J =


∂X
∂u1

∂X
∂u2

∂X
∂v1

∂X
∂v2

· · · ∂X
∂f

∂Y
∂u1

∂Y
∂u2

∂Y
∂v1

∂Y
∂v2

· · · ∂Y
∂f

∂Z
∂u1

∂Z
∂u2

∂Z
∂v1

∂Z
∂v2

· · · ∂Z
∂f


Ji,j is thus computed as follows:

Ji,j =
fi(x)− fi(x+ σj)

σj
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That means, two output of f(x) are computed, the �rst is computed on the

input for which the uncertainty has to be estimated, the second is sligthly

perturbated just on the value of the j-th parameter. Thus the covariance for

1X is

Pout = J Pin JT (4.11)

4.1.4 Epipolar costraint

Let be frame 1 and frame 2 a couple of reference frames associated to each

camera of a stereo setup or to the same camera evaluated on distinct time

steps. Frame 1 and 2 are oriented and positioned according to the Euclidean

transformation g = (R, t) ∈ SE(3). Let be X1 and X2 the 3D coordinates

of a point relative to camera frame 1 and 2. Now let be x1 and x2 the

homogeneous coordinates of the point projected in the two frames. From eq.

4.7 the two euclidean vectors can be related in the following equation:

λ2x2 = Rλ1x1 + t (4.12)

Let be the matrix T̂ be de�ned as:

T̂ =


0 −t3 t2

t3 0 −t1
−t2 t1 0


thus T̂x = t×x. Eq 4.12 can written eliminating the depths by premultipli-

cating both sides by T̂ .

λ2T̂x2 = T̂Rλ1x1

Since T̂x2 is perpendicular to x2, the dot product xT2 T̂x2 is equal to zero

therefore xT2 T̂Rλ1x1 is zero. Being λ1 a positive scalar value the following
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Figure 4.3: Projection of the point p in camera frames 1 and 2. The lines l1 and

l2 are called epipolar lines, the lines e1 and e2 which are the intersections of the

two image planes with the line (o1, o2) are called epipoles

result is proven:

xT2 T̂Rx1 = 0 (4.13)

where E = T̂R is referred to as the essential matrix which encodes the

relative position and orientation of the two camera poses and it is bilinear

in the coordinates x1 and x2. A representation of the epipolar geometry of

frames 1 and 2 is depicted in �gure 4.3. Since the projections x1 and x2

are known by their pixel coordinates in the camera sensor, from eq 4.5 the
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following equation can be written:

x′1 = K1x1 (4.14)

x′2 = K2x2

where x1 = 1
λ1

X1 and x2 = 1
λ2

X2 and K is the calibration matrix.

Substituting x = K−1x′ in eq 4.13 the following equation is obtained

x′T2 K−1,T2 T̂ R K−11 x′1 = 0

and if F = K−1,T2 T̂ R K−11 the equation can be written as

x′T2 F x′1 = 0 (4.15)

F is called the fundamental matrix and is also a function of the essential

matrix E by the relation F = K−1,T2 E K−11 .

The epipolar costraint expressed in terms of pixel coordinates (eq 4.15) will

be used to �lter the feature matches in a stereo camera implementation dis-

carding the ones that do not satisfy it.

4.1.5 RANSAC algorithm

RANSAC (RANdom SAmple Consensus) [2] is a paradigm for �tting a model

to sets of data which contain both inliers and outliers that are values respec-

tively represented by a unique mathematical model or not represented by

that model. RANSAC is a �exible approach to �nd the best �tting model to

a dense family of data which is the model that obtains the minimum error

computed on the whole set. Algorithm 1 summarizes a general implementa-

tion of the RANSAC paradigm.
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Algorithm 1 RANSAC generic implementation

1: data ← set of observed data . Inputs

2: model ← model to �t on data

3: n ← number of data to be �tted by the model

4: k ← number of iterations

5: t← threshold value to identify data represented by the computed model

6: d ← number of minimum inliers required to select a good model

7: iteration ← 0 . Main loop

8: best error ← Inf

9: best inliers ← empty

10: while iteration < k do

11: inliers ← random n values sampled from data

12: model ← model obtained by �tting inliers

13: for i = 1 : values in data not sampled before do

14: err fit ← error computed applying model to value(i)

15: if err fit < t then

16: add value(i) to inliers

17: end if

18: end for

19: if length(inliers) > d then

20: better model ← model parameters that satisfy the minimum con-

sensus

21: better error ← error computed applying better model to inliers

22: if better error < best error then

23: best error ← better error

24: best inliers← inliers

25: end if

26: end if

27: end while
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Data is a set of measurements or observations which should be described

by a mathematical model. model is known except for the numerical values

of its functional parameters. In Data are included inliers and outliers which

are returned from the algorithm at the end of the loop with the best �tting

model. The loop starts sampling a number of values from data to compute

a model which �ts them, the number of samples n is a function of the �tting

procedure: it can be �xed (as the number of variables in the model) or can

be higher than a minimum if a least squares estimation is employed. A

temporary inliers set is thus built. Next every other value in data which has

not been previously sampled is evaluated according to the estimated model, if

that value is su�ciently represented by the model it is considered as another

inlier and added to the temporary inliers set. If the number of temporary

inliers is higher than a minimum required consensus d (which can be de�ned

as a percentage of the total data length) the model becomes a candidate to

be selected as a representative one and the temporary inliers set becomes the

�nal inlier set. The error obtained applying the best model (which satis�es

the minimum consensus) to all the values in data is stored and every time

a new model returns a lower error the previous one is discarded and the

new one, with the inlier set, is stored. This error can be evaluated in many

ways according to the implementation of RANSAC. Algorithm 1 stops after a

number of iterations which can not be su�cient for a precise estimation of the

best �tting model or di�erently can be much higher using more computational

time that needed. The generic algorithm can be improved for instance by

comparing the best error to a threshold which de�nes the accepted error to

consider "good" a model. Thus the loop can stop after less iterations or

more.
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4.2 Feature Detection and Matching

In this sections are addressed the procedures for image features detection,

feature matching between the two image captured by the stereo camera setup

and association of the current detected features to the previously known set

of descriptors.

4.2.1 Feature detector

The process of feature detecting on an image is the basis for all feature-based

vision sensing algorithms. A feature detector must perform a consistent and

repeatable tracking of meaningful pixel regions given a set of images. One of

the �rst solution for e�cient feature detecting is from Harris & Stephens

(1988) [7]. The algorithms is an improvement of the previous Moravec's

corner detector and it functions evaluating the variations of image intensities,

denoted by I(x, y), on a �xed pixel region. The gradient of the image intensity

is expanded analitically about the shift origin as follows:

Ex,y =
∑
u,v

wu,v[I(x+ u, y + v)− I(x, y)]2

=
∑
u,v

wu,v[xX + yY +O(x2, y2)]2

where wu,v is a Gaussian function used to smooth the margins of the pixel

regions to get less noisy gradients and X, Y are the gradients of I computed

relatively on the directions u and v. For small shift, the gradient E can be

written as

E(x, y) = Ax2 +By2 + 2Cxy
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where

A = X2 ⊗ w

B = Y 2 ⊗ w

C = XY ⊗ w

Writing the equation for E in matrix form, the matrixM is de�ned as follows:

M =

A C

C B


Let be α and β the two eigenvalues of the matrix M, the values of them

is proportional to the magnitude of the gradient in the respective direction.

Three di�erent cases emerges:

• α� β or β � α denote the presence of an edge.

• α ∼ β ∼ 0 denote a �at region

• α, β � 0 denote the presence of a corner

Harris's corner detector is very fast to compute but su�ers greatly from scale

and rotation changes in the image. In a visual SLAM scenario it is required

for a detector to be able to recognize the same features over intense orienta-

tion and scale change.

SIFT (Scale Invariant Feature Detector) from Lowe (2004) [10] represents a

big step forward in the �eld of image processing and feature detecting. This

algorithm (which belongs to the family of DoG, di�erence of Gaussians) em-

ploys a cascade �ltering approach to select the most consistent set of feature

from the image. Four major stages of computations are used: �rst a di�er-

ence of Gaussians function is employed to identify potential interest points
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that are invariant to scale and orientation, then a detailed model is �t to rep-

resent each candidate image region. One or more orientations are assigned

to each keypoints base on local image gradient directions as to refer future

operations to the same scale and orientation, providing invariance to these

transformations. At the selected scale the image gradients are then computed

and transformed into the �nal representation. The �nal feature properties

are stored in a vector of dimension 128 referred to as the "descriptor", two

similar features shares a similar descriptor.

The detector implemented in this thesis work is the SURF (Speeded-up Ro-

bust Features) detector by Bay, Tuytelaars and Van Gool (2006) [25].

SURF algorithm provides a robust scale and rotation invariant image fea-

ture descriptor in order to obtain great repeatability and consistency while

mantaining a low computational cost, thus being more feasible in real-time

applications. Second order deformations as skew, anisotropic scaling and

perspective e�ects are not taken into account being their e�ect minor in re-

lation to scaling and rotation. Being also the two cameras used in this thesis

work optically calibrated, distortions are minimized, therefore the detector

should behave well. SURF relies on the Fast-Hessian Detector, computing

the follwing Hessian matrix for every point x = (x, y) in the image:

H(x, σ) =

Lxx Lxy

Lyx Lyy


where Lxx is the convolution of the Gaussian second order derivative ∂2

∂x2
g(σ)

with the image I(x, y). Convolution of the Gaussian with the image is re-

quested to minimize the noise: since the Gaussian acts like a low-pass �lter,

aliasing is reduced. When convoluted, the Gaussians are sampled so aliasing

can still occur and second order derivatives should induce even more aliasing

issues being their approximations in "box" shape ever more rough than the
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standar Gaussian. This e�ect is proven to not being too in�uential therefore

the increase in computational speed and e�ciency is more relevant in this

case. The maxima of the Hessian matrix determinant are chosen to be fea-

ture of interest in a pre-de�ned set of scales. To every feature detected now a

descriptor is computed. In order to obtain rotation invariance, an orientation

is assigned to every selected feature from the detector. The Haar-wavelet re-

sponse is computed in x ad y directions on a circular neighbourhood around

the feature of interest and weighted with a Gaussian. The wavelet responses

are represented as vectors parallel to both axes and the orientation of the

feature is a function of those two vectors.

The descriptor is then extracted following the next few steps: �rst a square

region is constructed centered on the feature and oriented along the di-

rection computed in the previous step. The region is then split in 4x4

square sub-regions and for reach subregions are sampled 5 equally spaced

points. The Haar wavelet response is computed for every subregion on

the sampled points and summed in both direction to generate the vector

v = {
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|}. The full descriptor is just the union of

this 4 element vector for each subregion resulting in a 64 element vector

which is the normalized to obtain contrast invariance.

4.2.2 Stereo matching

When two images are acquired from a stereo camera setup the �rst step is

feature detection. In this work the SURF detector is used because of the

very close performances to SIFT [14] and because of the low computational

time needed to perform a complete search for features. The two images are

then compared to �nd the matching features that represent the projections

of the same landmark in the two camera sensors. A matching feature must
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satisfy two costraints:

• Feature descriptors must be similar. If a landmark is located at a

su�cient distance from the cameras it should have very similar visual

properties. This is not a robust requirement because the same appear-

ance can be shared between a certain number of landmarks in the map,

especially if the detector is invariant to scale and rotation. If identi-

cal objects are located in the �eld of view of the cameras (like desks,

computers, etc) it is very likely that some visual features can not be

distinguished from di�erent objects.

• Epipolar costraint. For a couple of features detected in frame 1 and

frame 2 to correctly represent the projections of the same landmark

into the camera sensors, the epipolar costraint must be veri�ed. Thus

a match from two descriptors is rejected if it does not correctly satisfy

a geometrical costraint.

Those two steps are respectively operated by evaluating the distance between

feature descriptors and by a RANSAC �ltering.

1. Descriptor match The �rst step is to evaluate the distance between

all feature descriptors detected in frames 1 and 2. A SURF descriptor is a

1× 64 vector, a 128× 1 descriptor is also available but it is not employed in

this work because the improvement in the feature description accuracy isn't

needed. The distance can be evaluated as:

• SAD, sum of absolute di�erences. It is the sum of the absolute di�er-

ences of every position in two feature descriptors.

SAD =
n∑
i=1

|f1(i)− f2(i)|
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• SSD, sum of squared di�erences. It is the sum of the squared di�erences

of every position in two feature descriptors.

SAD =
n∑
i=1

(f1(i)− f2(i))2

For every feature descriptor in frame 1 the distance from all the descriptors

in frame 2 is computed. The closest couple of descriptors is considered as a

match if a threshold is satis�ed: de�ning a numerical value for a maximum

distance is a quick and straightforward approach even though it can be not a

�exible approach because the distance from correct matches is very situation-

dependent (changes in scales, rotation, illumination and e�ects of optical

distortions induce numerical variations in the descriptor).

Algorithm 2 Stereo feature matching

fcam1 ← {f1, f2, , ... , fn} . Descriptors from image 1

2: fcam2 ← {f1, f2, , ... , fm} . Descriptors from image 2

for i = 1 : n do

4: for j = 1 : m do

dj ← distance(fi − fj) . SAD or SSD distance

6: end for

[i, j, dj]← min(dj) . index of features 1 and 2 with minimum

distance

8: if dj > thresh then reject match

end if

10: end for

If the same descriptor is matched with more than one descriptors then the

ambiguity can be solved rejecting the matches with higher distances.
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2. RANSAC �ltering In this step the matches obtained by association of

the visual properties are �ltered employing the epipolar costraint. Matches

that do not satisfy the costraint are rejected since they do not represent the

projection of the same landmark in the environment. Being the extrinsec

parameters of the stereo setup known, the fundamental matrix F could be

easily computed to test the model described in eq. 4.15 on all the feature pixel

coordinates. Since the algorithm is not written to be implemented real-time,

a high computational cost is not an issue. A more complex computation is

performed: the RANSAC algorithm explained in alg. 1 is applied to estimate

the fundamental matrix from a set of random inliers, testing it on all the

matches and returning the most �tting model as well as the set of inliers and

outliers. The outliers, matches that do not satisfy the costraint, are rejected.

Since the fundamental matrix F , although 3×3, has only 7 degrees of freedom

[20], it can be estimated from at least 7 equations given a set of 7 matching

feature locations. The resulting system appears to be solvable by a lineear

least squares regression. Being

F =


f1 f2 f3

f4 f5 f6

f7 f8 f9


and being x1 = {u1, v1, 1} and x2 = {u2, v2, 1} eq. 4.15 can be written as

f1u1u2 + f2u1v2 + f3u1 + f4v1u2 + f5v1v2 + f6v1 + f7u2 + f8v2 + f9 = 0

This equation is linear in fi. Rather than ordinary least squares minimiza-

tion, orthogonal least squares is employed. Let be f = {f1, f2, ..., fp} a hy-

perplane to be �tted through a set of n points zi = {z1, z2, ..., zp} taking

the centroid of the data as origin. Assuming that the noise on the data is

Gaussian and that the elements of z have equal variance, the best �tting
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hyperplane is obtained minimizing the perpendicular sum of Euclidean dis-

tances from the given data

min

n∑
i=1

(fTzi)
2

Let Z be the n× p measurement matrix with rows zi and let be M the p× p

moment matrix with eigenvalues λi and the correspondent eigenvectors ui

for i = 1 : p forming an orthonormal system. The best �tting hyperplane is

given by the eigenvector ui corresponding to the minimum eigenvalue λi of

the moment matrix. Before computing the moment matrix, the measurement

matrix is centered subtracting to every row its mean value.

z = {u1u2, u1v2, u1, v1u2, v1v2, v1, u2, v2, 1}T (4.16)

Z =


z1

z2

...

zp


M = ZTZ

Now the eigenvalues of M are computed and the eigenvector correspondent

to the minimum eigenvalue is f so the fundamental matrix is obtained. This

procedure is summarized in alg. 3.

The full RANSAC algorithm to perform match �ltering is very similar to alg.

1. The di�erences lie on the conditions to stop the iterations. The loop stops

when besterror is lower than a threshold to ensure that no computational

time is wasted, if then besterror is not low enough after a signi�cant number

of iterations the minimum consensus required is lowered and the iteration

index is zeroed. The higher is the minimum consensus required to choose a
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Algorithm 3 Orthogonal least squares estimation of the fundamental matrix

l1 ← {u1(1), v1(1), 1;u1(2), v1(2), 1 ; ...;u1(n), v1(n), 1} . matrix

storing the pixel location of previously matched features

l2 ← {u2(1), v2(1), 1;u2(2), v2(2), 1 ; ...;u2(n), v2(n), 1}

for i = 1 : n do

Z(i, :)← [u1u2(i), u1v2(i), u1(i), v1u2(i), v1v2(i), v1(i), u2(i), v2(i), 1]

Z(i, :)← Z(i, :)−mean(Z(i, :)) . Centering

end for

M = ZTZ

[λ1, λ2, ..., λn], [u1, u2, ..., un]← eig(M)

[u, λ]← minimum eigenvalue and correlated eigenvector

f ← u

F ←


f1 f2 f3

f4 f5 f6

f7 f8 f9


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good model the lower is the chance to �nd a candidate. This can be explained

taking into consideration, for instance, a linear regression where the dataset

is a number of points scattered uniformly on a plane. If the threshold to

consider a point as an inlier is low, it is very likely that a minimum consensus

is never obtained.

In the algorithm, an error is computed as follows

εi = x1(i) F x2(i)

since the result of the computation for a perfect match should be zero and

better error is computed as the standard deviation of εi for i = 1 : n.

Algorithm 4 summarize the whole RANSAC �ltering procedure.

4.2.3 Data association

Data association is a crucial task in every SLAM environment: contrary to

visual odometry algorithms where no information about the map is stored, in

a SLAM implementation the knowledge of observed landmarks is improved

over time. The more a landmark is observed the higher is the accuracy on

his localization and the more signi�cant is its contribution to improve the

posterior knowledge over the robot path. In traditional implementations

where range and bearing sensors are used (like RADAR, LiDAR, etc.) ev-

ery landmark is distinguished from each other by its location in the map.

In order to associate an observation to a known landmark a criteria based

on geometric proximity is used computing the mahalanobis distance from

a measurement to every component of the known map. If a stereo-camera

is used as a sensor, visual properties of the measurements can be used for

data association. The use of feature descriptors for association purposes is

known for being much more robust than maximum likelihood estimators or
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Algorithm 4 Full RANSAC algorithm for stereo match �ltering

k ← 0 . interation index

d← minimum consensus to accept a candidate F

t← threshold value to identify an inlier

data← initial set of n matching feature coordinates {l1, l2}i, i = 1 : n

best error ← Inf

while best error > thresh do

if k > 1000 then

decrease d of a small amount

k ← 0

end if

inliers← sample more than 7 matching features from data

outliers← features in data that are not inliers

F ← compute F using alg. 3

for (x1,i,x2,i) ε outliers do

εi ← xT1,iFx2,i

if εi < t then

add (x1,i,x2,i) to inliers

end if

end for

if length(inliers) > d then

Fbetter ← compute F using the new set of inliers

better error ← error computed using Fbetter on inliers

if better error < best error then

best error ← better error

best inliers← inliers

end if

end if

k ← k + 1

end while
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mahalanobis distance computations on geometric properties of the map and

in monocular approaches is the only method available since a single camera

is a only-bearing sensor.

Mahalanobis distance Let be z a 3D measurement and ẑi the predicted

measurement for the i-th landmark known from previous observations. The

innovation error is the di�erence between an actual measurement and a

predicted measurement

νi = z− ẑi

Let also be Si the innovation covariance computed as a function of the un-

certainties associated to the i-th landmark state and to the current measure-

ment, see eq. 2.10. The mahalanobis distance is computed as follows

Di =
√
νTi S−1i νi

After being computed for all the known landmarks, a candidate match for

the current measurement is selected for the minimum value of Di. Being

the closest landmark does not translate into being the same landmark so a

threshold must be applied to discard a false association. A value for this

threshold is usually de�ned empirically. The importance of considering the

uncertainty in the process of �nding an appropriate match is depicted in �g.

4.4.

Maximum likelihood estimator Mahalanobis distance is also a negative

log likelihood. The classical solution to the data association problem is to

choose an index i, the 'name' of a landmark, that maximizes the likelihood

of the current sensor measurement

î = argmax
i

p(z|i, st, ut)
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Figure 4.4: E�ect of di�erent shapes of the innovation covariance S : landmarks

1 and 2 (red crosses) are associated with the current measurement (blue cross)

according to the innovation covariance which depends on the previous landmark

uncertainty and current measurement uncertainty

As explained in detail in [15], the likelihood is calculated in closed form as

follows

p(z|i, st, ut) =
1√

2π|Si|
e(−

1
2
νTi S

−1νi)

Visual data association Traditional data association based on nearest

neighbour methods (like Mahalanobis distance minimization) can fail in many

scenarios. If a dense set of landmarks is observed and the uncertainty associ-

ated to the measurement is su�ciently high, association can lead to ambigu-

ous results being unable to distinguish landmarks very close to each other.

Visual information about features detected in the image are uncorrelated

with the geometry of the environment or with the pixel coordinates of the

feature itself so even a very dense set of landmarks can be correctly recog-

nized. In this case the arguments of the data association algorithm are the

feature descriptors denoted by the letter f , which are 1×64 vectors for SURF
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detector. To every landmark in the map are associated its mean value and

covariance for the state assuming that the distribution is Gaussian but also

its visual descriptors {fi,1, fi,2, ..., fi,n}. Considering a landmark by just its

appearance has its strength and weaknesses o�ering a very consistent asso-

ciation over little robot displacements but losing the ability to recognize it

when it is observed from large viewpoint or scale changes. Previous results in

the literature suggest that the consistency of the association is more impor-

tant because, especially in EKF scenarios, poor associations can likely lead

to divergence of the �lter. Visual associations can be performed in two ways:

• Euclidean distance between descriptors. When a feature is returned by

the detection algorithm, the association to a previously known feature

is established by �nding the minimum of

DEucl =
√

(f − fi)T (f − fi)

where i is the index of a landmark in the map. If DEucl is higher than

a threshold empirically determined, the landmark is treated as a new

observation and its descriptor is stored and given a new index.

• Mahalanobis distance between descriptors [21]. When multiple obser-

vation of the i-th landmark have been performed and every descriptor

stored, a covariance matrix can be computed over those multiple ob-

servation of the same feature. To compute a covariance matrix the

assumption of Gaussian distribution for the values of the descriptors is

necessary. Just a few observations are not su�cient for obtaining a co-

variance matrix that is not ill-conditioned and that represent e�ciently

a Gaussian distribution. The covariance matrix is computed assuming

that all the elements in the descriptor are indepent so the matrix is
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diagonal. Then the following distance is computed

DMahal =
√

(f − fi,avg)T C
−1
i (f − fi,avg)

where fi,avg is the average descriptor associated to the i-th feature

tracked along consequent time steps and Ci is the covariance matrix

computed on those descriptors. Again, if DMahal is higher than a

threshold the feature is marked as a new observation.

4.3 Stereo FastSLAM implementation

In this section the algorithm for the SLAM implementation using a stereo-

camera as the only sensor is explained in detail. In the formulation for

FastSLAM algorithm, data association is performed on a per-particle basis

meaning that the association depends on the motion hypothesis for the robot

at the current time steps. That makes absolute sense if the arguments on

which data association is performed are the landmark poses in the known

map because mainly of two reasons: the measurement model is a function of

the robot pose at the current time step and for every particle an individual

map is associated and corrected according to the obserations inherent to a

particular pose hypotesis. In all the implementations for this thesis work,

data association is independent of the robot pose because it relies only on

visual properties of the features associated to the landmarks in the map.

Thus a loop for data association can be performed once for every time step

saving an computational time which is linear in the number of particles.

The main loop starts importing the two images correspondent to camera

1 and camera 2, then image features are computed employing SURF detec-

tor and a descriptor is associated to each feature. Stereo matching is then

performed to �nd the matching features in the left and right images and a
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RANSAC �ltering procedure is employed for discarding erroneous matches

which results in triangulations of non existing points.

Then data association is performed. For every matched feature in the two

images the average descriptor is computed as

fj =
fj,left + fj,right

2

and then a match for fj is searched computing the Euclidean distance or

the Mahalanobis distance from every other known descriptor associated to

any landmark in the map. If a match is found with a distance lower than

a threshold, an association for the j-th feature is found. A temporary array

stores the associations from the current observations to the map and it will

be used in the loop for landmark state update or initialization.

Triangulation of the observed landmarks is now performed. As stated be-

fore, the stereo-camera is used as a range and bearing sensor resulting as

a measurement a fully initialized Euclidean location x̂j with its associated

measurement covariance P̂j. It is made the assumption that the distribution

of the landmarks state is Gaussian.

Now the particle loop can start. The number of particles is choosen as an

input from the user. While a dense particle set is ideal to correctly approxi-

mate the exact posterior over robot poses, the computational time is linear

in the number of particles because for every particle taken into considera-

tion a full map update is computed according to a single motion hypothesis.

Previous work shows that a signi�cant increase in localization performance

is obtained from augmentation of the particle number from 100 to 102 but

for more than 102 particles no signi�cant improvement is achieved. For every
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particle a motion hypothesis is sampled from a proposed distribution:

ti−1i,i−1 ∼ p(ti−1i,i−1|si−1,ui) (4.17)

φi−1 ∼ p(φi−1|si−1,ui)

where ti−1i,i−1 is the displacement of the stereo-camera from step (i-1) to actual

step (i) in the reference frame of the camera at step (i-1) and φi−1 is the

angle of rotation expressed in the reference frame at step (i-1). The motion

model is represented as a multivariate Gaussian distribution of mean µ and

covariance Q where

µ =


tz

tx

φ

 (4.18)

Q =


σ2
z 0 0

0 σ2
x 0

0 0 σ2
φ


Then, according to the robot pose history, the total displacement and ro-

tation expressed in the global reference frame is computed as follows in an

iterative way:

t1i,1 = R1
i−1 ti−1i,i−1 + t1i−1,1 (4.19)

R1
i = R1

i−1 Ri−1
i

where the number 1 refers to the �rst reference frame as the global reference

frame and R is the rotation matrix computed from φ. Recall that RB
A is

the matrix that rotates frame B to frame A. The total displacement and
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rotation in the global reference from eq.4.20 will be used to relate current

measurements in the local frame to the global frame and viceversa in the

prediction step for the landmarks state.

Now all the triangulations or measurements are individually taken into ac-

count for landmark initialization or update. If the j-th observation is re-

lated to a new landmark, its coordinates and covariance are stored in a new

position in the map with its feature descriptor. A transformation from local

frame (i) to global frame (1) is performed. Being x̂ij and P̂i
j the Euclidean

coordinates and covariance for landmark j in the reference frame i,

x̂1
j = R1

i x̂ij + t1i,1 (4.20)

P̂1
j = R1

i P̂i
j R1T

i

If j-th measurement is associated to a landmark in the map, an EKF update

is performed. First, the latest information about state and covariance of this

landmark are recalled and the prediction step is performed.

Prediction step Let be x
1,[m]
j,last and P

1,[m]
j,last the last known state and covari-

ance for the landmark j. The superscript [m] denotes that the state is related

to the m-th particle, for all the other particles the state will di�er according

to the corrections made from slightly di�erent poses. According to the robot

path fot the m-th particle, the predicted measurement is obtained just re-

ferring landmark j to the current reference frame. This represents the prior

knowledge over the landmark state, that is the knowledge before any actual
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measurement is taken into account.

x
i,[m]
j,(−) = R

i,[m]
1 x

1,[m]
j,last + t

i,[m]
i,1 (4.21)

P
i,[m]
j,(−) = R

i,[m]
1 P

1,[m]
j,last R

i,[m]T
1

Update step The state of the landmark is now updated correcting the

predicted measurement with the actual measurement. Because of the equiv-

alence of state and measurement in this implementation, the measurement

model which is the function that returns the measurement known the state

of a landmark is trivial.

x̂j = h(x̂j | s[m]
i ,x

[m]
j ) = [1] x

i,[m]
j

Therefore both the prediction model, which is a rototraslation, and the mea-

surement model, which is an identity, are linear. The extended Kalman �lter

in this particular formulation is just a Kalman �lter. This way errors induced

by non-linearities are absent.

The innovation error is computed as

νj = x̂j − x
i,[m]
j,(−)

Then the innovation covariance Sj and the Kalman gain are computed as

S
[m]
j = P

i,[m]
j,(−) + P̂j (4.22)

K
[m]
j = P

i,[m]
j,(−) S

[m]−1
j

The Jacobian of the measurement function is omitted as it is the identity

matrix. Then the state of landmark j is updated as follows:

x
i,[m]
j,(+) = x

i,[m]
j,(−) + K

[m]
j νj
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Weigth The contribution of a landmark's state update to the weight of

particle m is computed as follows

w
[m]
j =

1√
2π|Si|

e(−
1
2
νTi S−1νi)

The weight in FastSLAM scenario should represent the likelihood of the

measurements, the more a particle is close to the actual location of the robot,

the more likely are the observations obtained. The set of measurements

should be a set of independent observations therefore if

w[m] ∼ p(z|st,ut)

by marginalizing the posterior distribution of the measure z

w[m] ∼ p(z1) p(z1) ... p(zn) (4.23)

=
n∏
j=1

w
[m]
j

An empirical approach is to compute the total weight of the particle by

a sum of all the contributions because being the value of w
[m]
j generally

low, computing a very dense map the total weight can lead to arithmetic

under�ow, so

w[m] =
n∑
j=1

w
[m]
j

Resampling When all the particles have been evaluated and their weight

computed, resampling takes place. To resample means picking from the old

particle set a new set of M particles where the likelihood for a particle to

be sampled is proportional to its weight. Resampling is performed "with

replacement", that means that a single particle can be picked more than

once.
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4.4 Mono FastSLAM implementation

While a stereo setup is a solution for range and bearing measurements,

monocular estimations are only capable of returning bidimensional infor-

mation about the environment as only a projection of the map is returned

by the camera. A single camera is therefore a bearing-only sensor. The

main challenge in mapping algorithms using monocular estimations is the

reconstruction of 3D properties of an observed environment from 2D mea-

surements. In this thesis two di�erent approaches are formulated, the main

di�erence is the way depth information are obtained from consequent obser-

vation of image features correspondent to landmarks in the map. The �rst

approach is to obtain depth information from an EKF update initializing a

landmark imposing a very weak prior on the �rst acquisition and then updat-

ing the Euclidean position in the map from bidimensional measurements as

the pixel coordinates in the image. When the uncertainty over a landmark

locations is su�ciently low, the landmark can contribute to improve pose

estimation. The other approach is to acquire depth information by triangu-

lation over consequent time steps. The history of measurements for every

landmark is stored in a bu�er and every time a landmark is observed the

parallax over the images on the bu�er is computed. When the parallax is

above a threshold depth is known by triangulation. Every following triangu-

lation of a landmark is used to update the state via a Kalman �lter update

similarly to the stereo implementation.

4.4.1 Visual Monocular SLAM

The procedure for image acquisition and feature detection is identical to the

stereo algorithm. This time only the images from one of the two cameras
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from the same dataset are stored, this way the computational time decreases

signi�cantly. Data association is performed as explained in section 4.2.3,

the only di�erence is that no average descriptor is computed because only

one feature descriptor per step is available. An interesting approach would

be computing an average descriptor over the multiple detections for every

landmark to extend the scale and viewpoint changes from which a feature

can be associated. Since the optical distortions of the images captured from

the cameras are corrected, feature tracking is precise and consistent over

relatively long distances so data association is performed well even in the

most straightforward approach. In the following chapter the advantages of

di�erent techniques in data association will be investigated. Data association

is performed outside the particle loop because of the pose-invariancy of the

visual associations.

The particle loop is articulated as in the stereo algorithm, camera motion

is modeled as in eq 4.18. In this work it is evaluated just the motion of

the left camera even in the stereo implementation as to perform the closest

comparison between the two algorithms.

Landmark initialization If a feature is seen for the �rst time, its image

descriptor is stored and a new index is assigned to the landmark. In order

for its Euclidean coordinates to be updated in the following observations, a

position in the map has to be initialized. In the main FastSLAM algorithm,

in order to initialize a landmark, the measurement function must be inverted

(if feasible). That means obtaining 3D information from a 2D measurement

which is, of course, a problem of in�nite solutions since every landmark

location that lie on a line from the camera optical center to the projection

on the image plane gives the same 2D measurement.
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To overcome this issue, which is intrinsec in every monocular mapping prob-

lem, a very weak prior about the landmark depth is assigned. This initial

distribution represent approximately the fact that the landmark must lie in

front of the camera. A default value for the depth as with a very high un-

certainty is assigned to the new landmark, then the projection function is

inverted and a full 3D location is known. The resulting 3D covariance can be

represented as a tight ellipsoid with two reasonably small and even semiaxis

and the major semiaxis much bigger and parallel to the preimage line of the

landmark. This permits the depth to be corrected in the next steps while

"locking" the landmark in the near region of the �rst preimage line. The

length of the small semiaxes is a function of the generally low uncertainties

over the intrinsic parameters. It should be noted that a single stereo mea-

surement returns a wider ellipsoid because it takes into account not only the

uncertainties on the extrinsic parameters but also the uncertainties over the

intrinsic parameters of both the cameras to which the triangulation error

depends.

Let be zj = {u, v}Tj the measure for landmark j and xj = {x, y, z}Tj its Eu-

clidean state. The measurement function or projection function, which is the

function that returns the projection on the image plane in pixel coordinates

of a landmark state in Euclidean coordinates, is modeled as follows:

u
v

 =

Sxf 0 u0

0 Syf v0



x
z

y
z

1

 (4.24)

Its Jacobian is therefore:

J =

 δuδx δu
δy

δu
δz

δv
δx

δv
δy

δv
δz

 =

Sxf

z
0 −Sxfx

z2

0
Syf

z
−Syfy

z2

 (4.25)

Eq 4.24 must be inverted to obtain a 3D location for landmark j when measure
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zj = {u, v}Tj is known. The �rst step is to assign a default value for zj that

can take into consideration the environment in which the camera is moving.

In this particular case a value of 5000 mm is chosen because it is a likely

depth for landmarks in a room of approximate length of 10 meters. By �xing

λ = zj eq 4.24 can be written in homogeneous coordinates as
u

v

1

 =


Sxf 0 u0

0 Syf v0

0 0 1



x
λ

y
λ

1


The inverse projection function is then written as follows:

x

y

z

 = λ


Sxf 0 u0

0 Syf v0

0 0 1


−1 

u

v

1

 (4.26)

The covariance Pj is computed by propagating the uncertainty on intrinsic

parameters as well as the user-assigned uncertainty on λ.

Landmark update If a landmark is already a part of the known map, an

EKF update is performed. Contrary to the stereo implementation, where the

update involves the computations of linear functions, this time the update

is performed using an actual extended Kalman �lter because of the non-

linearities that occur evaluating the measurement model (eq 4.24 and 4.25)

where the source of non-linearity is the normalization via the coordinate z.

First the last state and covariance x
[m]
j,last P

[m]
j,last for landmark j are recalled.

In order to compute an expected measurement for this landmark, a change

of reference frame from the global reference to the local is necessary. This

operation is performed on a per-particle basis so the path is known with-

out uncertainty. This allows the update to not take into consideration the

uncertainty on the robot pose to perform the reference change.
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Computing Ri
1 and ti1,i (the superscript [m] is omitted. Translations and

rotations are intrinsic to every particle involved in the computation.) the

values for x
i,[m]
j,last and P

i,[m]
j,last are obtained. By the means of equations 4.24 and

4.25 the expected measurement is computed as the projection on the image

plane in pixel coordinates that landmark j should return according to the

prior knowledge of its state.

expected = h(x
i,[m]
j,last)

Recalling the image coordinates returned from the detector for the image

feature correspondent to landmark j, the innovation error is computed as:

νj = zj − expected

Next, the Jacobian of the measurement model is computed over the cur-

rent landmark state. The Jacobian is then used to compute the innovation

covariance and Kalman gain to perform the update.

Jj = projectJac(x
i,[m]
j,last, camera param) (4.27)

Sj = JTj P
i,[m]
j,last Jj + Rj

Kj = P
i,[m]
j,last Jj S−1j

Where Rj is the estimated measurement covariance. Rj is a 2 × 2 matrix

where the dimensions are related to the pixel coordinates u and v.

Rj =

σ2
u 0

0 σ2
v


The state update is the performed as follows:

x
i,[m]
j,(+) = x

i,[m]
j,last + Kj νj (4.28)

P
i,[m]
j,(+) = ([I]−Kj JTj ) P

i,[m]
j,last
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Where the symbol (−) denotes the prior knowledge over the state and co-

variance.

4.4.2 Triangulation Based Visual Monocular SLAM

This approach in tridimensional feature estimations from bidimensional mea-

surements involves obtaining depth information by triangulation over follow-

ing time steps. In section 4.1.2 an algorithm for triangulating landmark

locations from projections on image planes of the cameras is explained. The

same algorithm can be implemented on di�erent images captured by the same

camera. The baseline from the two optical centers will be the rototranslation

from the two camera position therefore being heavily biased on the particles

involved. While in the stereo environment and in the vision based monocu-

lar algorithm measurements are not dependent to the pose hypotesis being

respectively triangulations from a �xed baseline and image feature detec-

tions, in this algorithm becase the baseline is dependent on the pose history

evaluated, the maps inherent in di�erent particles will di�er substantially.

When a feature is seen for the �rst time its descriptor is stored and no

computation is performed. In the following observations the parallax from

the �rst observation to the current one is computed and when su�ciently high

triangulation is performed. The parallax is the angle between two lines of

sight of a landmark. Being the preimage lines known by the feature locations

in the sensor, parallax is easily computed as follows.

Parallax computation Lets consider two camera poses denoted as 1 and

2 where a particular landmark is observed. The two optical centers are con-

nected by vector to1,o2 connects. It is made the assumption that the preimage

lines intersect on the landmark P so the points {o1, P, o2} are coplanar and
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P

x1

z1

x2

 

l1

l2

image plane

camera

landmark

z2

o2

o1

Figure 4.5: Triangle o1 o2 P . The preimage lines with its own directional vector

are highlighted with dashed lines. α, β, γ are the inner angles of this triangle, α

is the parallax. Vectors l1 and l2 connect the camera optical center to each feature

location in metric units. It is made the assumption that l1 and l2 are coplanar.
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de�ne a triangle. Let be α, β, γ the inner angles of this triangle where α

denotes the parallax. The following parameters are known: l11, l22, t11,o1, t11,o2,

R1
o1, R1

o2 which are respectively the directional vector of the preimage lines

in each reference frame, the translation and rotation from the initial position

of the camera to poses 1 and 2. α can be computed from

α + β + γ = π

But for β and γ the following relations can be written:

cos(β) =
l1 · to1,o2
|l1| · |to1,o2|

(4.29)

cos(γ) =
l2 · to1,o2
|l2| · |to1,o2|

Therefore, inverting the equations

β = arccos(
l1 · to1,o2
|l1| · |to1,o2|

) (4.30)

γ = arccos(
l2 · to1,o2
|l2| · |to1,o2|

)

The vectors involved in the computation are referred to the global reference

frame by the means of the following equations:

l1 = R1
o1 l11 (4.31)

l2 = R1
o2 l22

t112 = t11,o2 − t11,o1

Then α is known from

α = π − β − γ
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Landmark update When the parallax is above a threshold, landmark j

is triangulated. If it is the �rst time being triangulated then its state and

covariance are stored and the next landmark is evaluated. If otherwise a

triangulation has been previously performed, an Extended Kalman update

takes place by the same procedure explained in section 4.4.1.

4.5 Visual Odometry

Estimating camera rotations and displacements from consecutive images is

an e�cient way to perform odometry on a moving robot. Di�erently from

dead reckoning (integration of accelerations over time), visual odometry can

be performed on large robot displacements to reduce drifts and it is much

more reliable than wheel odometry. Visual odometry is actively performed

[13] on the martian rovers to correct odometry information and to improve

the ego-motion estimation through di�cut manouvers. Visual odometry is

still subject to drifts over time, especially if image features are tracked with

low parallax changes, so it is a viable option to correct visual odometry

information using a SLAM algorithm.

Stereo 3D-to-3D Visual Odometry After the feature points from left

and right images over two consecutive time steps are extracted, feature

matching takes place to �nd correspondences. It is necessary that every

feature involved in the computation is found in all 4 images therefore the rel-

ative motion of the Euclidean parametrized landmark can be evaluated. The

relationship between features is depicted in �g. 4.6. Let P1X denote that

the point is calculated with reference to the �rst camera when the stereo

setup is in the initial position P1. After the rototranslation from position

P1 to position P2 all the points are triangulated again. P2X refers to the
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Figure 4.6: Correlation of the image features on the stereo visual odometry

algorithm. im1 and im2 are the left and right images captured at time step t, im3

and im4 are the left and right images captured at time step t+1. After detecting

all the features, correlations between all the 4 images have to be found (dashed

lines).
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point location when the setup is in position P2. The following equation can

therefore be written:

P1Xi =P1
P2 RP2Xi +P1 PP2,P1

Where P1
P2R is the rotation matrix from frame 1 in the second position P2 to

frame 1 in the �rst position P1; P1PP2,P1 is the origin of frame 1 in P2 with

reference to the origin of frame 1 in P1 and expressed in P1. The rotation

matrix and translation vector are the information that have to be retrieved

to evaluated the motion.

A linear least squares approach is used to obtain the camera motion. Let be

ei =P1 Xi −P2
P1 RP2Xi −P1 PP2,P1

the error that is a function of the unknown motion parameters. The cost

function E is the function that has to be minimized

E =
n∑
i=1

|ei|2

In order to separate the evaluation of rotation and translation, the centers

of the two point clouds are de�ned:

P1X =
n∑
i=1

P1Xi

P2X =
n∑
i=1

P2Xi

And two new sets of 3D points are de�ned by:

P1X′ =P1 Xi −P1 X

P2X′ =P2 Xi −P2 X
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It can be demonstrated that the cost function E is minimized when the cost

function E' is minimized.

E =
n∑
i=1

|P1X′i −P2
P1 RP2X′i|2

Then, once the rotation has been evaluated, the following equation can be

used to obtain the translation

P1PP1,P2 =P1 X−P2
P1 R P2X

E' can be written as follows:

E ′ =
n∑
i=1

|P1X′i|2 +
n∑
i=1

|P2X′i|2 − 2
n∑
i=1

[
(P1

X′i
)T (P2

P1
RP2X′i

)
]2

which is minimum when the third term is maximum. Since

aTRb = Tr(RTab)

n∑
i=1

[
(P1

X′i
)T (P2

P1
RP2X′i

)
]2 = Tr(P2

P1R
TM)

M =
n∑
i=1

[
(P1

X′i
)(P2

X′i
)T

]2

The rotation matrix can then be computed as follows:

P2
P1R = M(MTM)

1
2

The matrix MTM is positive de�nite thus its eigenvalues are positive and it

can be expressed by the means of the following equation

P2
P1R = M(

3∑
i=1

1√
λi

ûiû
T
i )
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Chapter 5

Results and Analysis

Camera 1 (left) Camera 2 (right)

Sxf 1133.20108 1136.43126 [ pix
mm

]

Syf 1133.19673 1135.97654 [ pix
mm

]

x0 1058.25306 1056.95157 [pix]

y0 524.70888 542.00913 [pix]

f 6 6 [mm]

FOV 86x53 86x53 [◦]

Table 5.1: Intrinsec parameters for the two cameras

The cameras employed in this work capture images at the resolution of

2040x1086 pixels, two identical wide angle lenses are used. Cameras have

been calibrated via the Camera Calibration Toolbox1, the intrinsec parame-

ters as well as the lens speci�cations are summarized in the table 5.1. The

stereo setup baseline is approximately 0.5 m and axes z1 and z2 are almost

parallel, �gure 5.1 shows the experimental setup.

1http://www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 5.1: Picture of the stereo-camera setup

The algoritmhs for mono and stereo visual SLAM are �rst tested on the same

dataset containing pictures obtained on a translational motion of 1350mm.

The displacements of the stereo setup is approximately parallel to the z-axis

of the two cameras. Since no odometry information is available, the proposed

distribution of the camera pose and rotation is a multivariate Gaussian dis-

tribution centered on the expected camera position and orientation with an

extremely high noise. This way an in-depth analisys of the ability of the

two algorithms to reject bad motion hypotesys is performed. The proposed

distribution in the stereo scenario is:

N
(


0

∆z

θ

 ,

σx 0 0

0 σz 0

0 0 σθ

) = N
(


0 mm

50 mm

0◦

 ,


50/3 mm 0 0

0 50/3 mm 0

0 0 1◦

)

The frames employed for this analisys are captured approximately every

50mm so the noise imposed in the distribution involves sampling of null

motion hypotesys and displacements equals to double the real translation.

The noise added to the orientation is still very high causing to sample con-
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secutive rotations that spans between −3◦ and 3◦. A lesser ability to discard

bad motion hypotesys of the monocular algorithm required the motion to

be modeled with lower noise, so the proposed distribution employed for the

monocular scenario is:

N
(


0

∆z

θ

 ,

σx 0 0

0 σz 0

0 0 σθ

) = N
(


0 mm

100 mm

0◦

 ,


20 mm 0 0

0 20 mm 0

0 0 0.5◦

)

For the monocular algorithm frames are captured every 100mm translational

steps. The ability of the two algorithms to correctly compute the real path

and orientation of the stereo setup are investigated in relation to the num-

ber of particles employed. While the computational e�ort increases almost

linearly to the number of particles, the accuracy in modeling the most likely

path is proportional to the particle density. In the following �gures, the spar-

si�cation of the motion hypotesis which occurs without resampling is plotted

as a reference to highlight the ability of both the mono and stereo algorithms

to costrain the motion near the true path. Then maps computed are then

compared to highlight some of the strengths and issues related to both sce-

narios and to verify that the environment is correctly mapped resembling the

actual geometry of the map. SURF descriptor and detector is employed with

a threshold of 1000 which is low enough to detect from 150 to 250 features

per frame. While in the monocular implementation every feature is taken

into consideration for evaluating the parallax between frames and eventually

triangulating the landmark, in the stereo scenario features are �rst matched

between the left and right frames using their visual descriptors and then a

RANSAC re�nement takes place to eliminate matches that do not verify the

epipolar costraint.
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Stereo SLAM - Translational test The following results show the family

of particles that survived the resampling after the last frame. It is imple-

mented the strategy of performing the resampling step imposing a threshold

on the weigth trading particle sparsi�cation for path estimation accuracy.

Particle sparsi�cation is a prerequisite for loop closing procedures since par-

ticle �lters based SLAM algorithms perform loop closing sampling from a

given set of particles. If the robot returns to a previously known location,

the particles (or trajectory hypothesis) that returns the lowest innovation

errors are resampled while the others are discarded. If no particle intersects

the previous robot location because the sparsi�cation didn't extend as much

as needed then loop closure is not obtained. If though loop closure is not

expected to happen, a higher particle density can be obtained resampling

only particles that have a minimum importance weight to discard bad mo-

tion hypothesis so that the following pose estimate can be more accurate.

The results are obtained for no minimum weigth, 0.5 (normalized) minimum

weigth and 0.8 minimum weigth. It is clearly evident that when no mini-

mum weigth is set for resampling purposes, the sparsi�cation of the particles

remains relatively high and can more easily lead to a slow divergence of the

computed path from the ground truth. As the threshold is set higher, par-

ticles are denser and closer to the actual path of the robot. The table 5.2

summarizes the best results for the stereo implementation.

case 1 (wmin = 0) case 2 (wmin = 0.5) case 3 (wmin = 0.8)

particles 5000 1000 5000

εs [mm] 24.27 (1.80%) 17.38 (1.29%) 2.62 (0.19 %)

εθ [◦] 0.167 0.022 0.02

Table 5.2: Numerical examples of three best scenarios
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ground truth [mm]
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Table 5.3: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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ground truth [mm]
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Table 5.4: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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Table 5.5: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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ground truth [mm]
-200 0 200 400 600 800 1000 1200 1400

-500

-400

-300

-200

-100

0

100

200

300

400

500
Pose error - 500 particles

z error
x error

ground truth [mm]
-200 0 200 400 600 800 1000 1200 1400

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Orientation error - 500 particles

Orientation error

Table 5.6: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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ground truth [mm]
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Table 5.7: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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ground truth [mm]
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Table 5.8: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Oblique lines for odometry error bounds at 1 sigma.
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Table 5.9: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.10: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.11: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.12: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.13: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.14: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.15: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.16: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.17: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.18: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.19: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.20: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized).

Oblique lines for odometry error bounds at 1 sigma.
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Table 5.21: Averaged results for the mean pose estimated by the stereo algorithm

in 20 runs. The red line is the median, the boxes denote the 25-th and 75-th

percentiles, the whiskers extends from the lowest to the highest values and the red

crosses denote the outliers. For 1000 particles the �nal position error is lower that

2% of the total imposed displacement and the orientation error is less than 0.1 ◦

Figure 5.21 shows using a boxplot the averaged �nal position and orientation

errors for 20 runs of the stereo algorithm as a function of the number of

particles employed. The results show that the �nal error decreases as the

particle set is more and more dense reaching an asymptote for more than 1000

particles (similarly to [15]). The pose estimation accuracy increases more

quickly in relation to the orientation while the increment is less signi�cant

for the Euclidean position. That is because changes in viewpoint induce

higher innovation errors than changes in position, especially if the camera is

moving towards the landmarks.
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Mono SLAM - Translational test The monocular SLAM is performed

on the images captured by the left camera of the stereo setup. Features are

tracked computing the parallax accumulated on every feature to initialize

them by triangulation when a minimum parallax of 1◦ is reached. In litera-

ture various methods for delayed and undelayed landmark initialization can

be found, since this thesis work is focused on a precise evaluation of pose

and orientation estimation ability, robust initialization capabilities of the al-

gorithm are not taken into consideration. Landmark initialization is then

performed imposing the correct displacement of the camera for two steps

resulting the Euclidean coordinates of a minimum number of landmarks to

permit coherent weighting of the particles in the following steps. While in

the stereo setup feature triangulation result depth information about the

observed landmark, monocular feature estimations carry information only

when parallax is accumulated. In this translational motion scenario, features

located in front of the camera will not induce signi�cant innovation errors

if the motion hypotesis involves displacement in their direction because the

projection of the features will not change signi�cantly. The particle weigth-

ing is then very ine�cient in this case resulting in a frontal blindness that

can really degenerate the performance of both motion estimation and map

building. On the other hand, viewpoint changes are discriminated very pre-

cisely because the landmark projections in the camera sensor travels almost

independently to the depth of the points. Lateral movements too induces a

more peaked weighted distribution than longitudinal displacements. Being

one particle a sample from a multivariate Gaussian distribution, poses very

close to the actual location of the camera can be oriented on a wrong an-

gle resulting in a low particle weight. Contrary, poses located far from the

ground truth can be correctly oriented. Since the viewpoint orientation is
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more discriminative on the particle likelihood than the pose error, after the

resampling procedure a high planar sparsi�cation can occur while estimating

correctly the camera orientation. For those reasons a high particle density is

needed to estimate the path with a good accuracy.
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Table 5.22: Proposed distributions for orientation (black) and pose changes (red)

treated separately. It is evident on a quality level how the actual distribution of

the orientations is much more peaked than the distribution over the camera planar

poses. σθ = 1◦, σs = 50/3mm
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Looking at the results for the monocular translational test it is evident that

the algorithm is less e�cient than the stereo algorithm at costraining the

trajectory hypotesis over the true path. Because of the low weight variations

over the di�erent pose hypotesis, the pose estimation is poorer that the ori-

entation estimation as expected. The error over longitudinal translation is

higher that the error of the lateral movement estimation because of a few

reasons. First the innovation error of the frontal landmarks is quite indepen-

dent of longitudinal motion because the projection of the 3D points remain

unchanged. Secondly, being the uncertainty of the landmarks much higher

in the direction of the preimage line than over the orthogonal directions, the

innovation errors for reprojection errors parallel to the highest uncertainty

directions are smoothed. Considering the mean values of the planar location

and orientation of the particle families that survived the last resampling, the

table 5.27 summarizes the error achieved in the best simulation results for

this monocular algorithm.

case 2 (wmin = 0.5) case 3 (wmin = 0.8)

particles 500 1000

εs [mm] 11.68 (0.90%) 22.53 (1.29%)

εθ [◦] 0.012 0.012

Table 5.27: Best results for the monocular algorithm

While a EKF based SLAM is a deterministic computation, particle �lter

based SLAM algorithms return a stochastic result being the resampling steps

a chain of (weighted) casual choiches. The following boxplots show the vari-

ation of the mean value for planar error and orientation over 20 runs for the

monocular algorithm in relation to the number of particles. It is evident
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Table 5.23: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized)
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Table 5.24: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.5 (normalized)
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Table 5.25: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized)
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Table 5.26: Particles after the last resampling. Pose and orientation error vs

imposed displacement. Resampling with a minimum weigth of 0.8 (normalized)
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how the lowest errors can be achieved with a high particle number and how

the orientation accuracy improves much faster that the localization accuracy.

Figure 5.28 summarizes the number of detected and tracked (via data asso-

ciation) features as well as triangulated landmarks and updated landmarks

via EKF.
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Table 5.28: Number of features involved in the monocular algorithm computation.

SURF threshold = 5000.
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Table 5.29: Boxplots of pose and orientation error vs particle number. The results

are obtained averaging 20 runs in the translational test.



106 CHAPTER 5. RESULTS AND ANALYSIS

Stereo vs Mono map building The results of map building from the

monocular and stereo algorithms are now reported and compared. While

for stereoscopic landmark evaluations even a single observation can provide

reliable informations about the landmark Euclidean location, the monocular

algorithm has to correct the �rst initializations until the uncertainties over

the landmark poses are low enough. The locations would otherwise not

represent the actual landmark pose in the map giving misleading information

about the environment geometry. In the plotted monocular map can be seen

the landmarks with the lowest uncertainties. The room in which the image

dataset has been captured is approximately 6m wide and 3m tall. The map

build by both the algorithms is coherent to the knowledge of the environment

geometry. From the top view can be recognized the desks and the central

corridor between them. Landmarks are modeled as a Gaussian distribution,

the mean is plotted as a red cross and the uncertainty ellipsoid is plotted

for 1 sigma in black colour. The camera poses are plotted as blue dots and

the viewpoint direction is omitted being non distinguishable from a vector

parallel to the Z axis.

Figure 5.2: Glimpse of the viewpoint of the left camera. The blue crosses are

detected features and yellow lines are the associated features motion
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Table 5.30: Top view of the map build by the monocular algorithm over a single

translation. The frontal blindness of monocular estimations is particularly evident

in this image if compared to the stereo map
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Table 5.31: Top view of the map build by the stereo algorithm over a single

translation. This map is more complete than the one built by the monocular

algorithm but the �rst couple of desks is missing.
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Table 5.32: Frontal view of the map built by the stereo (top) and mono (down)

algorithms over a single translation
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Table 5.33: Side view of the map built by the stereo (top) and mono (down)

algorithms over a single translation
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Feature detection and matching for Visual Odometry The 3D to

3D visual odometry algorithm explained in section 4.5 returns the rotation

matrix and translation vector that describe the motion between two positions

in which a set of two images are captured (from left and right cameras). The

�rst task is to detect matching features in all 4 images (left and right for both

positions) from which the same points can be triangulated and the relative

motion of them estimated via a least squares algorithm. In a visual odometry

routine a key aspect is to correctly establish the correlation between feature

points via their visual properties, wrong associations leads to wrong motion

estimations. Just relying to visual descriptors is not a viable procedure to

correlate feature points because similar points can be observed repeatedly in

di�erent positions in the image, especially in arti�cial environments. Matches

in left and right images are �rst obtained by a descriptors distance evaluation

(see �g. 5.35) and then re�ned by a RANSAC procedure to �nd the best

�tting fundamental matrix on the set of correlations, dividing the initial set in

a subset of inliers and outliers. This procedure allows to reduce the number

of wrong matches to a minimum at the cost of discarding potential right

matches. This issue could be minimized imposing a high number of minimum

consensus for a model to be considered "good" and reducing it iteratively if

the minimum error accepted is not satis�ed, this would result in a very high

and variable computational e�ort. In �g. 5.36 the distinction of inliers and

outliers operated by the RANSAC algorithm is shown, while almost all the

bad matches are rejected, some right matches are also discarded. The �nal

matches set is obtained then �nding the ones in the two distinct time steps

that are present in both of them therefore referring to the same point in the

environment. The �nal set of matches are depicted in �g. 5.37. Finally some

heuristics are applied discarding from the �nal set the matches where the
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n points before RANSAC after RANSAC �nal

points a 2487 match ab 375 match ab 232 108

points b 2298 match cd 356 match ab 231

points c 2499 match ac 1639 match ab 1639

points d 2350

Table 5.34: Numerical example for a displacement of 50mm, longitudinal transla-

tion. Number of SURF points in the 4 images, number of matches after the visual

association and after the RANSAC re�nement. The �nal set is the number of cor-

relations used as the input to the visual odometry algorithm after the heuristics

have been applied.

distance in pixel from the coordinates of the point in image left position 1

and image left position 2 is very di�erent from the distance of the coordinates

of the matching point in image right position 1 and 2. That would be a wrong

match in the images at the same time step that survived the epipolar costraint

re�nement and where one of the points matched in the correlation from image

left and position 1 and 2 (green lines in �g. 4.6). The table 5.34 summarize

the number of feature points surviving every step of the matching process for

a set of images captured at a distance of 50mm. The procedure explained does

not guarantee the best performances of the algorithm: generally the more

matches are used the better would be the results. Increasing the number of

matches by for instance relaxing the thresholds for visual matching and point

detection could lead to more false matches which have a destructive in�uence

to the outcome of the computation. Finally, the absence of matching errors

does not guarantee good results because they tend to be wrong if little motion

of the points is observed.



113

Table 5.35: Superimposed images from left and right cameras and matching

features after association of visual descriptors over 50mm imposed displacement.

A signi�cant number of wrong association is visible.
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Table 5.36: Superimposed images from left and right cameras and matching

features after RANSAC re�nement of the �rst set of matches. Almost the totality

of wrong matches are discarded but also some correct matches are addressed as

outliers. Yellow lines and green crosses are the inliers and black lines and red

crosses are outliers.
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Table 5.37: Top �gure shows matching points from images captured by the left

camera over a 50mm displacement, some false visible matches will be discarded by

heuristics. The lower �gure shows the �nal set of matching feature points that can

be used as an input for the visual odometry algorithm.
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Stereo visual SLAM using Visual Odometry input While in the pre-

vious analysis the odometry information is simulated imposing a displace-

ment and viewpoint change with a high noise, in this section visual odometry

is employed to retrieve motion information for the camera to be corrected

by the SLAM algorithm. The SLAM algorithm used is exactly the same as

the one used before with the only di�erence in the motion input function.

The visual odometry algorithm is independent of the map relying only on

the relative motion of th etriangulated points in two consequent time steps.

The odometry information is therefore univocal and viable to be employed

indistinctively by every particle. The algorithm is evaluated on a single trans-

lational test where the ground reference for every captured frame is known.

The visual odometry algorithm is roughly implemented because no RANSAC

re�nement of the motion parameters on the landmarks reprojection is em-

ployed. This is done in order to give noisy inputs to the SLAM algorithm to

highlight the ability of choosing good motion hypotesis and therefore retain

a low error. The proposed distribution for the camera pose is obtained via a

Monte Carlo error propagation through the odometry algorithm. Figure 5.38

show the position and orientation errors accumulated by the visual odometry

algorithm alone and the error of the particles that survived the last resam-

pling. A signi�cant reduction of the �nal pose estimation error is obtained by

the SLAM implementation costraining the �nal error around 1.5%. Figure

5.39 show the map and mean trajectory evaluated by the SLAM algorithm

using VO as the only input. While the visual odometry alone does not di-

verge, the trajectory corrected by the SLAM algorithm appears signi�cantly

smoothed and more straight.
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Table 5.38: Pose errors comparison between the visual odometry algorithm alone

(dashed lines) and the SLAM algorithm using visual odometry as the only input.

Errorbars costrain the particle set around the mean trajectory. Final position

error is below 1.5% and the orientation error is below 0.1◦. The divergence of the

trajectory evaluated by the visual odometry algorithm alone is evident.
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Table 5.39: Top view and perspective view of the full map and trajectory of the

camera. Blue dots for the SLAM corrected trajectory and black dots for the tra-

jectory evaluated by the visual odometry algorithm. No ground thruth is available.
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Conclusions

The algorithms implemented and tested in this thesis work for particle �l-

ter based stereo and monocular visual SLAM have proven to be e�ective

in reducing the uncertainty associated to odometry information and cor-

rectly estimating the path of the cameras. Similar errors at the end of the

translational path involved in the analysis have been obtained by both the

algorithms but the monocular SLAM required a denser particle sparsi�cation

than the stereo SLAM algorithm. The environment observed by the cam-

eras represented a though challenge in path estimation for monocular vision

because of the little-to-none parallax changes in the tracking of the image

features. From the images of the map built by the monocular algorithm it

can be clearly seen the e�ect of frontal blindness that monocular vision suf-

fers from. The results obtained show that a greater scale implementation is

feasible for both wheeled vehicle exploration using a stereo camera or UAV

application using a ground facing camera. To deeply investigate the pros and

cons of using a monocular downward facing camera rather than a forward

facing camera further work is required to highlight variations in trajectory

estimation accuracy. Di�erent angles between the direction of motion and

119
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the optical axis should be evaluated, from the parallel direction of the optical

axis to the orthogonal direction as well as intermediate directions as 30◦and

60◦.

The results obtained from the SLAM implementation using Visual Odometry

as the source of prior motion estimates also shows that it is feasible to use

a stereo camera as the only sensor employed in a robot. By implementing

a more re�ned Visual Odometry algorithm it should be feasible for a robot

to correctly estimate the trajectory over a larger scale path and also per-

form loop closure (which is not addressed in this thesis work). For UAV

applications, monocular Visual Odometry should also be employed to build

a monocular visual SLAM algorithm using one camera as the only sensor.

Various tests should then be performed by implementing the algorithm on a

drone platform using a wide angle camera to localize the vehicle and map an

indoor GPS-denied environment or an outdoor natural environment.



Chapter 7

Appendix

In this chapter the pseudocodes for the implemented algorithms are incor-

porated. Algorithm 5 explain the structure of the visual stereo SLAM im-

plementation while algorithms 7 and 6 show the structure of the proposed

monocular implementations.
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Algorithm 5 Visual StereoSLAM

1: givecameraparamstereo()

2: giveparamuncertanty()

3: M ← nparticle . Number of particles

4: for i = 1 : nstep do . Main loop

5: [im1, im2]← imread(camera1, camera2)

6: [f1, f2]← SurfDetector(im1, im2)

7: [location1, location2]← RANSAC(f1, f2) . Matching and

RANSAC

8: for j = 1 : nfeati do . Visual Data Association

9: index← matchfeatures(favg,j, ftot) . Avg descr. cam1,cam2

10: end for

11: for j = 1 : nfeati do . Triangulation - measure

12: X̂ i
j ← tr(location1j, location2j, param)

13: P̂ i
j ← trinc(location1j, location2j, param, inc)

14: end for

15: for m = 1 : M do . Particle loop

16: [Ri
1, t

1
i1]
{m} ← motion([R, t]mean, noise) . Camera pos (SDR

world)

17: update pose history
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18: for j = 1 : nfeati do . Feature loop

19: if landmarkj new then . First acquisition

20: update ftot with fj

21: update X
[m]
struct,tot with X̂

1,[m]
j

22: update P
[m]
struct,tot with P̂

1,[m]
j

23: wj ← w0

24: else . EKF update

25: recall last X
1,[m]
j . SDR world

26: recall last P
1,[m]
j

27: X(−) ← X
i,[m]
j,last . landmark j; SDR i; particle m

28: P (−) ← P
i,[m]
j,last

29: z ← X̂j . Measure, line 12

30: S ← [I] ∗ P (−) ∗ [I] + Pj . Inn covariance, line 13

31: K ← P (−) ∗ [I] ∗ S−1

32: X
(+)
j = X

(−)
j +K ∗ (z −X(−)

j )

33: update X
[m]
struct,tot with X

(+),1,[m]
j

34: update P
[m]
struct,tot with P

(+),1,[m]
j

35: wj ∝ exp− ((z−X(−)
j )∗S−1∗(z−X(−)

j )T )

2

36: end if

37: end for

38: w[m] =
∑

j w
[m]
j

39: end for

40: Resampling : particlesnew ← datasample(particlesold, w
[m])

41: end for
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Algorithm 6 Visual MonoSLAM. Vision based EKF update

1: givecameraparam()

2: giveparamuncertanty()

3: M ← nparticle . Number of particles

4: for i = 1 : nstep do . Main loop

5: im← imread(camera)

6: [f, location]← SurfDetector(im) . descriptors and pix coord {u, v}

7: for j = 1 : nfeati do . Visual Data Association

8: index← matchfeatures(fj, ftot)

9: end for

10: for m = 1 : M do . Particle loop

11: [Ri
1, t

1
i1]
{m} ← motion([R, t]mean, noise) . Camera pos (SDR

world)

12: update trajectory

13: for j = 1 : nfeati do . Landmark loop

14: if landmarkj new then . First acquisition

15: λ← λ0 . Default depth

16: X
i,{m}
j ← projectInv(location, lambda, param)

17: P
i,{m}
j ← projectCov(location, lambda, param, inc)

18: update X
{m}
struct,tot with X

1,{m}
j

19: update P
{m}
struct,tot with P

1,{m}
j

20: update ftot with fj

21: wj ← w0
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22: else . EKF update

23: recall last X
1,{m}
j . SDR world

24: recall last P
1,{m}
j

25: X(−) ← X
i,{m}
j,last . landmark j; SDR i; particle m

26: P (−) ← P
i,{m}
j,last

27: z ← locationj . Measurement (uj, vj)

28: expected← project(X(−), param) . Projection on image

plane

29: J ← projectJac(X(−), param) . Jacobian of projection

function

30: S ← J ∗ P (−) ∗ J + Pj

31: K ← P (−) ∗ J ∗ S−1

32: X(+) = X(−) +K ∗ (z − expected)

33: P (+) = ([I]−KJT )P (−)

34: update X
{m}
struct,tot with X

(+),1,{m}
j

35: update P
{m}
struct,tot with P

(+),1,{m}
j

36: wj ∝ exp− ((z−X(−)
j )∗S−1∗(z−X(−)

j )T )

2

37: end if

38: end for

39: w{m} =
∑

j wj

40: end for

41: Resampling : particlesnew ← datasample(particlesold, w
{m})

42: end for
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Algorithm 7 Visual MonoSLAM. Triangulation based EKF update

1: givecameraparam()

2: giveparamuncertanty()

3: M ← nparticle . Number of particles

4: for i = 1 : nstep do . Main loop

5: im← imread(camera)

6: [f, location]← SurfDetector(im) . Descriptors and pixel

coordinatex {u, v}

7: for j = 1 : nfeati do . Visual Data Association

8: index← matchfeatures(fj, ftot)

9: end for

10: for m = 1 : M do . Particle loop

11: [Ri
1, t

1
i1]
{m} ← motion([R, t]mean, noise) . Camera pos (SDR

world)

12: update trajectory

13: for j = 1 : nfeati do . Landmark loop

14: if landmarkj new then . First acquisition

15: update ftot with fj

16: wj ← w0

17: else . Known feature

18: α← parallax(location(i0)j, location(i)j, R
i
i0
, ti0,i)
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19: if α > thresh then

20: if first time triangulated then

21: X
i,{m}
j ← tr(location(i0)j, location(i)j, param) .

Triang

22: P
i,{m}
j ← trinc(location(i0)j, location(i)j, param) .

State covariance

23: update X
{m}
struct,tot with X

1,{m}
j

24: update P
{m}
struct,tot with P

1,{m}
j

25: else

26: recall last X
1,{m}
j . SDR world

27: recall last P
1,{m}
j

28: X(−) ← X
i,{m}
j,last . landmark j; SDR i; particle m

29: P (−) ← P
i,{m}
j,last

30: z ← locationj . Measurement (uj, vj)

31: expected← project(X(−), param) . Projection on

image plane

32: J ← projectJac(X(−), param) . Jacobian of

projection function

33: S ← J ∗ P (−) ∗ J + Pj

34: K ← P (−) ∗ J ∗ S−1

35: X(+) = X(−) +K ∗ (z − expected)

36: P (+) = ([I]−KJT )P (−)

37: update X
{m}
struct,tot with X

(+),1,{m}
j

38: update P
{m}
struct,tot with P

(+),1,{m}
j
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39: wj ∝ exp− ((z−X(−)
j )∗S−1∗(z−X(−)

j )T )

2

40: i0j ← i

41: end if

42: end if

43: end if

44: end for

45: w{m} =
∑

j wj

46: end for

47: Resampling : particlesnew ← datasample(particlesold, w
{m})

48: end for
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