
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Dynamics of pendula hanging from a string

Relatore Laureanda

Prof. Francesco Fassò Sara Galasso

Correlatore

Prof. Antonio Ponno

Anno Accademico 2017/2018





a mia sorella e ai cielli





Abstract

This thesis aims to explain the phenomenon of the synchronization in mechanical –
discrete and continuous – systems as an outcome of damping contributions affecting the
normal modes of oscillation. We present and prove a result for finite-dimensional linear
mechanical systems asserting the existence – under suitable conditions – of an attractive
invariant undamped subspace in the phase space, on which the dynamics consists of small
oscillations. Thereafter, we construct a hybrid model composed of a homogeneous flexible
and elastic string, with fixed extremities, on which are suspended first one, and then
two, pendula. We include a dissipative contribution due to internal damping within the
string, modelling it as visco-elastic friction. The study, making use of the Lagrangian
formalism, provides a linear analysis based on the determination of the undamped and
damped normal modes of oscillation. Hence, we investigate beats and synchronization by
means of a numerical study as the parameters that characterise the system change.





Sommario

Lo scopo di questa tesi è spiegare il fenomeno della sincronizzazione in sistemi meccanici –
discreti e continui – in termini di selezione di modi normali dovuta al contributo dell’attrito
sul sistema. Viene dimostrato un teorema per sistemi lineari meccanici finito dimensionali
che asserisce l’esistenza – sotto certe ipotesi – di un sottospazio invariante e attrattivo
privo di smorzamento, sul quale la dinamica consiste di piccole oscillazioni. In seguito si
costruisce un modello ibrido composto da una corda omogenea, flessibile ed elastica, con
gli estremi fissati, sui quali sono appesi prima uno, poi due, pendoli. Si include un termine
di smorzamento interno alla corda, uniformemente distribuito nella stessa e modellato
come attrito visco-elastico. Utilizzando il formalismo Lagrangiano, se ne studiano i modi
normali smorzati e non, facendo un’analisi lineare attorno alla configurazione di equilibrio.
Quindi si ricercano fenomeni di battimenti e sincronizzazione, studiando numericamente
la dipendenza dai parametri del sistema.
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Introduction

In 1665 Christiaan Huygens noticed that two of his recently invented pendulum clocks,
when suspended on a common wood beam, exhibited a synchronous motion, namely
they swung with the same frequency and in opposite phase. Based on his observations,
he identified the small movements of the common support as the responsible for the
interaction between the two pendula and ultimately for the mutual adjustment of their
motion. Similar phenomena have been observed in nature, in which complex systems
might exhibit a tendency toward a collective coherent behaviour. Some well-known
examples in biology are the synchronization of fireflies in South-East Asia flashing in
unison (see [3]) and that of cardiac pacemaker cells (see [24]). An extended description
with various examples can be found in [20].

With regard to synchronization in mechanics, a lot of studies – both theoretical and
experimental – have attempted to give a description of this mechanism for pendulum
clocks (see e.g. [11]) and metronomes (see e.g. [18]). Despite specific details, most of
works on the subject present some common aspects. In particular:

1. a restoring force (e.g. the escapement mechanism of the clocks) and friction are
always included (see e.g. [14]), but a clear identification of elementary and universal
mechanisms that lead to synchronization is lacking;

2. the frame supporting the pendula is modelled as a one-degree-of-freedom rigid bar,
elastically fixed (see e.g. [2], [4]). Some studies have attempted to take into account
the flexibility of the support, discretising the rigid beam by means of a finite number
of masses (see e.g. [5], [19]), nonetheless it has always been neglected the continuous
nature of the coupling structure.

The aim of the dissertation is to take a first step in both directions. Specifically,

1. we investigate quantitatively the role of damping in the synchronization in finite-
dimensional mechanical systems;

2. we propose and study a model that accounts for the continuous and elastic nature
of the support that couples the pendula.

First, we consider a generic discrete linear damped mechanical system of the form
Mq̈+ Γq̇+Kq = 0. We shall prove that, under suitable conditions, the system admits an
invariant subspace in the phase space on which the system does not dissipate, motions
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2 Introduction

are undamped small oscillations and which is attractive for the dynamics. The main
concept is that in-phase and anti-phase synchronization are just particular manifestations
of patterns within the small oscillations (e.g. beats), as friction damps out other normal
modes.

We then study a hybrid mechanical system consisting of a heavy homogeneous flexible
and elastic string, with extremities fixed, on which – halfway – is hanged a pendulum. In
our model we do not include any external restoring forces. Through a linear analysis, it
will be investigated how the coupling affects the frequencies of oscillation of the string
and of the pendulum, and the normal modes of oscillation will be determined.

Thereafter, we add a dissipative contribution to the system, including an internal
damping term uniformly distributed within the string, of the type utxx. In presence of
friction only a finite number of “damped normal modes” has eigenvalues with a non-zero
imaginary part and is therefore oscillating, while the others extinguish exponentially.
Moreover, the model chosen produces decay rates strongly dependent on the frequency of
oscillation, which entails that the higher the frequency the quicker the decay, so that after
an initial transient the dynamics results in a small number of damped normal modes only.

Finally, this analysis will be repeated numerically in the case of two pendula suspended
on the string, demonstrating that our model is able to describe synchronization phenomena.

The thesis is divided into five chapters, organized as follows:

1. In Chapter 1 the mechanism of synchronization in discrete systems is investigated.
We recall the fundamental notion of normal mode of oscillation and its extension to
damped systems. A theorem will prove that, under suitable conditions, there exists
an invariant subspace in the phase space in which the dynamics consists of small
oscillations, and therefore the corresponding normal modes are not damped. Three
examples will illustrate how this can naturally lead to synchronization.

2. In Chapter 2 we construct a infinite-degree-of-freedom system consisting of a
pendulum hanging from a heavy elastic string, fixed at the extremities, and study
the small oscillations about the equilibrium configuration, describing the spectrum
of frequencies of the coupled system and the associated eigenfunctions.

3. In Chapter 3 the analysis made in the previous chapter is replicated taking into
account a damping force acting on the string. The eigenvalues are computed in
the regime of weak damping, at the first perturbative order with respect to the
damping coefficient.

4. In Chapter 4 we study the system consisting of two identical pendula suspended at
one-third and two-thirds along the string, respectively. The frequencies of oscillation
are determined numerically and the phenomenon of beats is checked.

5. In Chapter 5 the same dissipative contribution introduced in Chapter 3 is included
in the case of two pendula suspended on the string. Through a numerical analysis, it
is investigated the dependency on the parameters of the system and the possibility
of synchronization.



Chapter 1

Discrete systems: A first look at
synchronization

In this chapter we study the dynamics of n-dimensional mechanical systems, in the
approximation of small oscillations about a stable equilibrium. We shall show that in
presence of damping, synchronous motion of parts of the system can occur as a consequence
of the existence of invariant undamped subspaces in the phase space.

We first recall the linearisation of Lagrange equations about an equilibrium point
and the spectral analysis of the linearised system, with the definition of normal modes
of oscillation. We will follow the notation and contents of [6]. As an example of small
oscillation the phenomenon of beats is presented. We then extend the analysis to damped
mechanical systems and we show how synchronization is a manifestation of patterns
within the small oscillations, namely in-phase and anti-phase oscillations and beats. Some
simple examples will illustrate such mechanism.

1.1 Lagrangian formalism

A n-degree-of-freedom holonomic system is described by the configuration space Q and
the Lagrangian function L : TQ→ R, (q, q̇) 7→ L(q, q̇). The dynamics is determined by
the Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (1.1)

For conservative mechanical systems the Lagrangian is of the form

L(q, q̇) := T (q, q̇)− V (q), (1.2)

where T (q, q̇) = 1
2 q̇ ·A(q)q̇ is the kinetic energy of the system, with A(q) symmetric and

positive definite, and V (q) is the potential energy.

3



4 Chapter 1. Discrete systems: A first look at synchronization

1.1.1 Linearisation

Lagrange equations (1.1) are second-order differential equations in (q1, . . . , qn) ∈ Q. Let
us consider the linearisation of these equations about an equilibrium point.

Proposition 1.1. Consider the Lagrangian function L(q, q̇) = T (q, q̇)− V (q). The point
(q∗, 0) is an equilibrium of Lagrange equations (1.1) if and only if q∗ is a critical point of
the potential energy, i.e.

∂V

∂q
(q∗) = 0.

Proof. Lagrange equations can be written as( ∂2L

∂q̇∂q̇
q̈
)
i

=
∂L

∂qi
−

n∑
j=1

q̇j
∂2L

∂q̇i∂qj
.

For q̇ = 0, the second term vanishes iff ∂L
∂qi

(q∗, 0) = ∂V
∂q (q∗) = 0.

Proposition 1.2. Consider the Lagrangian function L(q, q̇) = 1
2 q̇ · A(q)q̇ − V (q), with

equilibrium (q∗, 0). The linearisation of Lagrange equations for L about (q∗, 0) is

A(q∗)q̈ + V ′′(q∗)(q − q∗) = 0, (1.3)

where V ′′(q) reads ∂2V
∂q∂q (q). (1.3) are the Lagrange equations for the “quadratised” La-

grangian

L∗(q, q̇) =
1

2
q̇ ·A(q∗)q̇ − 1

2
(q − q∗) · V ′′(q∗)(q − q∗). (1.4)

Proof. Compute the Taylor series expansion of the Lagrange equations d
dt
∂T
∂q̇ −

∂T
∂q + ∂V

∂q = 0
about the equilibrium (q∗, 0), keeping only the linear terms:

d

dt

∂T

∂q̇
= A(q)q̈ + O2

∂T

∂q
= O2

∂V

∂q
= V ′′(q − q∗) + O2,

denoting with Ok the terms of order at least k in (q − q∗) and q̇. Thus, A(q)q̈ =
−V ′′(q∗)(q − q∗) + O2, and, since A−1(q) = A−1(q∗) + O1, the linearised equations
are (1.3).

1.2 Undamped mechanical systems

1.2.1 Spectral analysis

Fixing q∗ = 0 through a translation of the coordinates, and renaming A(0) =: M and
V ′′(0) =: K, the linearised Lagrange equations (1.3) can be written as

Mq̈ +Kq = 0 (1.5)
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with q = (q1, . . . , qn) ∈ Rn, M such that M = MT and positive definite, and K such that
K = KT . In order for the equilibrium to be a minimum of the energy, we require that K
is positive semi-definite. As a first-order differential equation, (1.5) becomes

ẋ = Λx

where x = (q, q̇) ∈ R2n and

Λ =

(
0 I

−M−1K 0

)
. (1.6)

The eigenvalues of Λ can be determined in terms of the eigenvalues of M−1K. Since
M−1Ku = µu is equivalent to Ku = µMu, the eigenvalues of M−1K are the solutions
µ1, . . . , µn of

det(K − µM) = 0,

and the associated eigenvectors of M−1K satisfy

Ku = µMu.

In particular, the spectral theorem ensures that the n eigenvalues of M−1K are real
and there exist n linearly independent eigenvectors u1, . . . , un (see [17]). This property
is called “simultaneous diagonalization of two quadratic forms, one of which is positive
definite” (see e.g. [9]).

Proposition 1.3. If µ1, . . . , µn ∈ R are the eigenvalues of M−1K, each one repeated
many times as its multiplicity, then ±

√
−µ1, . . . ,±

√
−µn are the eigenvalues of Λ, each

one repeated many times as its multiplicity.

Proof.

det(Λ− rI) = det

(
−rI I

−M−1K −rI

)
= det

(
0 I

−M−1K − r2I −rI

)
= det(M−1K + r2I)
= (r2 + µ1) . . . (r2 + µn)

and, since det(M−1K − µI) = (µ− µ1) . . . (µ− µn), then

det(Λ− rI) = (r −
√
−µ1)(r +

√
−µ1) . . . (r −

√
−µn)(r +

√
−µn).

Since M is positive definite and K is positive semi-definite, the eigenvalue µj =
uTj Kuj

uTj Muj
≥ 0. If K is positive definite, then the equilibrium is stable and Λ has 2n imaginary

eigenvalues ±iω1, . . . ,±iωn, with ωj :=
√
µj > 0. ω1, . . . , ωn are called frequencies of the

small oscillations about the equilibrium.
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1.2.2 Normal modes of oscillation

The frequencies of the small oscillations ωj , j = 1, . . . , n, are the positive solutions of

det(K − ω2M) = 0, (1.7)

with associated eigenvectors u1, . . . , un given by

(K − ω2
jM)uj = 0. (1.8)

Definition 1.1. Assume that the eigenvalues are simple. The j-th normal mode of
oscillation about the equilibrium configuration is the two-parameter family of periodic
solutions of linear system (1.5)

qj(t; a, b) = (aj cos(ωjt) + bj sin(ωjt))uj (1.9)

with a, b ∈ R.

The normal mode (1.9) can also be written as

qj(t; c, η) = cj cos(ωjt+ ηj)uj ,

with parameters cj > 0, the amplitude, and ηj ∈ [0, 2π[, the initial phase. Hence, the
j-th normal mode represents a harmonic motion in which the n coordinates (q1, . . . , qn)
oscillate all with the same frequency, with period Tj = 2π/ωj , with the same initial phase
and with amplitudes determined by the components of the eigenvector uj . Each normal
mode spans the two-dimensional invariant subspace ENMj ⊂ R2n

ENMj = span
t∈R
{uj cos(ωjt);uj sin(ωjt)} . (1.10)

If all frequencies ω1, . . . , ωn are distinct, then the eigenvectors u1, . . . , un are unique; if
the algebraic multiplicity of ωi, alg(ωi), is greater than one for some i, then there is a
2× alg(ωi)-dimensional subspace associated to the repeated eigenvalue.

Proposition 1.4. Each integral curve of the linearised Euler-Lagrange equation (1.5),
called small oscillation, is a linear combination of the n normal modes of oscillation of
the system:

q(t; c, η) =

n∑
j=1

cj cos(ωjt+ ηj)uj , (1.11)

with cj ≥ 0 and ηj ∈ [0, 2π[.

Proof. To prove that (1.11) is a solution, it is sufficient to verify, through direct substitu-
tion, that it satisfies equation (1.5). Moreover, there always exist constants c, η such that
q(0; c, η) = q0 and q̇(0; c, η) = q̇0 for any choice of the initial conditions q0, q̇0.
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1.2.3 Beats

Consider now the simple case of a small oscillation which is the sum of two normal modes
with different frequencies ω1, ω2. If the initial phases are η1,2 = 0, then(

q1(t; c1, c2)
q2(t; c1, c2)

)
= c1 cos(ω1t)

(
u1,1

u1,2

)
+ c2 cos(ω2t)

(
u2,1

u2,2

)
.

qi(t; c1, c2) = c1 cos(ω1t)u1,i + c2 cos(ω2t)u2,i, i = 1, 2, can also be written in terms of
exponentials as the real part of

c1e
iω1tu1,i + c2e

iω2u2,i.

Factoring out the average frequency, we have

c1e
iω1tu1,i + c2e

iω2u2,i = ei
ω1+ω2

2
t(c1e

i
ω1−ω2

2
tu1,i + c2e

−iω1−ω2
2

tu2,i). (1.12)

In particular, if the two frequencies ω1,2 are slightly different, the resulting small
oscillation is an oscillation at the mean frequency with a modulation in the amplitude at
the lower frequency ω1−ω2

2 . This phenomenon is known as beats.

Example

As an example, consider the two-degree-of-freedom system consisting of two identical
pendula with mass m and length l connected by an ideal spring, with elastic constant k
(this model is studied, for example, in [1]). Let q1 and q2 be the angular displacements of
the pendula from the equilibrium. The total kinetic energy and the potential energy are,
respectively,

T =
1

2
ml2(q̇2

1 + q̇2
2),

V = −mgl(cos q1 + cos q2) +
1

2
kl2(sin q1 − sin q2)2.

The equilibrium configuration (q∗1, q
∗
2) is (0, 0). Therefore,

A(0, 0) =

(
ml2 0

0 ml2

)
, V ′′(0, 0) =

(
mgl + kl2 −kl
−kl2 mgl + kl2

)
.

The frequencies of the small oscillations and the eigenvectors of A−1V ′′ are the following:

• normal mode 1:

ω1 =

√
g

l
, u1 =

(
1
1

)
.

In this normal mode both pendula oscillate in-phase with proper frequency and the
spring is not stretched;
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• normal mode 2:

ω1 =

√
g

l
+ 2

k

m
, u1 =

(
1
−1

)
.

In this normal mode the pendula oscillate in anti-phase. The frequency is higher
than the previous one due to the action of the spring.

Hence, the small oscillation is

q1 = c1 cos(ω1t+ η1) + c2 cos(ω2t+ η2),

q2 = c1 cos(ω1t+ η1)− c2 cos(ω2t+ η2).

Let now the coupling due to the spring be weak, i.e. k
m �

g
l . Therefore, ω2 =√

g
l + 2 k

m ≈
√

g
l

(
1 + kl

mg

)
. Consider the initial conditions such that at t = 0 the first

pendulum has amplitude A and zero velocity, while the second one is at rest, i.e. q1(0) = A,
q̇1 = 0, q2(0) = 0, q̇2 = 0. Then, c1 = c2 = A

2 , η1 = η2 = 0 and the resulting small
oscillation is

q1 = A cos
(ω2 − ω1

2
t
)

cos
(ω2 + ω1

2
t
)
,

q2 = A sin
(ω2 − ω1

2
t
)

sin
(ω2 + ω1

2
t
)
.

Hence, with this choice of initial conditions, the second pendulum, which was initially at
rest, after a time π/(ω2−ω1) reaches its maximum amplitude A, while the first pendulum
is at rest in its equilibrium position. After a time 2π/(ω2 − ω1), the system will return to
the initial configuration.

1.3 Damped mechanical systems

We include now a dissipative contribution to the system, adding to equation (1.5) a
viscous damping force which is proportional to the velocity:

Mq̈ + Γq̇ +Kq = 0 (1.13)

with Γ a symmetric and positive semi-definite matrix of order n.

Remark 1.1. More in general, Γ = ΓS + ΓA, where ΓS is its symmetric non-negative part
and ΓA is its skew-symmetric one. Nonetheless, ΓA, which represents a gyroscopic term,
does not contribute to dissipation (see [15]). In the sequel, Γ = ΓS is assumed.

As a first-order differential equation, (1.13) becomes

ẋ = Λx

where x = (q, q̇) ∈ R2n and

Λ =

(
0 I

−M−1K −M−1Γ

)
. (1.14)
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1.3.1 Spectral analysis

For the spectral description of (1.13) we follow [16], to which the reader is referred for
greater details.

Let λ±1 , . . . , λ
±
n be the 2n eigenvalues of (1.14), with multiplicities counted and such

that if λ+
j /∈ R, then λ−j =

(
λ+
j

)∗. Let uj ∈ Cn, j = 1, . . . , n, satisfy

(Mλ2
j + Γλj +K)uj = 0,

and mj , γj , kj ∈ R be defined as

mj = u∗j ·Muj > 0, γj = u∗j · Γuj ≥ 0, kj = u∗j ·Kuj ≥ 0.

Then, if the matrix Mλ2
j + Γλj +K has rank n−alg(λj) ∀j, the characteristic polynomial

factorises in the product of n polynomials mjλ
2
j + γjλj + kj = 0, so that the eigenvalues

can be written as

λ±j =
−γj ±

√
γ2
j − 4mjkj

2mj
, j = 1, . . . , n, (1.15)

where “±
√
γ2 − 4mk” indicates the pair of complex square roots of the complex number

γ2 − 4mk.

Proposition 1.5. Let β1, . . . , βn be the eigenvalues of Γ with respect to M , i.e. the roots
of det(Γ − βM) = 0, ordered so that β1 ≤ · · · ≤ βn, and let ω01 ≤ · · · ≤ ω0n be the
frequencies of the small oscillations for Γ = 0. The eigenvalues (1.15) satisfy the following
properties.

1. If λ+
j =

(
λ−j
)∗
/∈ R:

−βn
2
≤Re

[
λ±j
]
≤ −β1

2
, (1.16a)

ω01 ≤ |λ±j | ≤ ω0n. (1.16b)

In particular, Re
[
λ±j
]
≤ 0. Moreover, if 0 < β1 < βn and 0 < ω01 < ω0n:

if
β1 > 2ω0n,

then all the eigenvalues are real,
if

βn < 2ω01,

then all the eigenvalues are complex with Re[λ] ≤ 0.

2. If λ±j ∈ R:

− βn
2
−

√(
βn
2

)2

− ω2
10 ≤ λ

±
j ≤ −

βn
2

+

√(
βn
2

)2

− ω2
10. (1.17)
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Proof. The simultaneous diagonalization result ensures that there exists an invertible
matrix R such that RTMR = I and RTKR =: C = diag(ω2

01, . . . , ω
2
0n). In the new

coordinates, r = R−1q:
r̈ +Gṙ + Cr = 0,

where G := RTΓR. The eigenvalues of G are β1, . . . , βn, in fact:

det(Γ− βM) = 0

= det(Γ− β(RRT )−1)

= det(RTΓR− βI)
= det(G− βI),

where the identity M−1 = RRT has been used.
Let û = R−1u satisfy

(λ2 +Gλ+ C)û = 0

and be such that, without loss of generality, û∗ · û = 1. Then, set g := û∗ ·Gû, c := û∗ ·Cû,
the eigenvalues are the roots of

λ2 + gλ+ c = 0. (1.18)
Since K and Γ are symmetric, C = CT and G = GT , and c, g ∈ R. The symmetry of C
and G allows to apply the following result, which we will not prove, known as “variational
characterization of the eigenvalues”:

Lemma 1.1. Let A be a real symmetric matrix of order n, with eigenvalues a1 ≤ · · · ≤ an,
with multiplicities counted. Then, for any vector x ∈ Cn for which x∗ · x = 1,

a1 ≤ x∗ ·Ax ≤ an. (1.19)

Proof. See [8].

1. If λ± = µ ± iω, with µ ∈ R, ω 6= 0: substituting into (1.18) and equating real and
imaginary parts to zero, one gets{

µ = −g
2

µ2 + ω2 = |λ|2 = c.

Thus, inequality (1.19) implies

β1 ≤ g ≤ βn and ω2
01 ≤ c ≤ ω2

0n

and ultimately (1.16).

2. If λ± = µ± ∈ R: substituting into (1.18) one gets

µ± = −g
2
±
√(g

2

)2
− k,

thus, inequality (1.19) implies (1.17).

Figure 1.1 shows an example of region in the plane (Re[λ], Im[λ]) where the complex
eigenvalues can be found, given by the intersection of the blue and orange portions.
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Figure 1.1: Spectrum region (Re[λ], Im[λ]).

1.3.2 Damped normal modes

The eigenvalues λ±1 , . . . , λ
±
n , each one counted as many times as its multiplicity, are the

solutions of
det(Mλ2 + Γλ+K) = 0, (1.20)

with associated eigenvectors u1, . . . , un given by

(Mλ2
j + Γλj +K)uj = 0. (1.21)

Definition 1.2. Assume the eigenvalues to be simple. The j-th damped normal mode of
oscillation of system (1.13) is the two-parameter family of solutions of the form

qj(t; c1, c2) = Re
[(
c1je

λ+j t + c2je
λ−j t
)
uj

]
(1.22)

with c1, c2 ∈ R.

If λ±j = µj ± iωj not real, the damped normal mode (1.22) can also be written as

qj(t; a, b) = aje
µjt cos(ωjt)Re[uj ] + bje

µjt sin(ωjt)Im[uj ],

with aj , bj ∈ R. Hence, each damped normal mode spans in the phase space the two-
dimensional invariant subspace EDNMj ⊂ R2n

EDNMj = span
t∈R

{
Re[uj ]eRe[λj ]t cos (Im[λj ]t) ; Im[uj ]e

Re[λj ]t sin (Im[λj ]t)
}
. (1.23)
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Definition 1.3. The centre subspace Ec is the direct sum of all the nc two-dimensional
invariant subspaces EDNMj associated to the purely imaginary eigenvalues:

Ec =
⊕

Re[λj ]=0

EDNMj . (1.24)

The centre subspace is invariant under the dynamics of the linear system, since
it is a combination of invariant subspaces. Similarly, one can define the stable and
unstable subspaces, as direct sum of invariant subspaces associated to eigenvalues with
negative – respectively positive – real parts (see e.g. [10]).

1.4 Invariant undamped subspaces: theorem

In presence of dissipation, in order for the small oscillations not to be soon damped out,
it is in general needed an external driving force to compensate the energy loss due to
friction. However, in some cases the system may have some normal modes which are not
damped. Therefore, whenever it oscillates in these normal modes, the system does not
dissipate. In the following sections we will investigate the conditions under which there
exist undamped invariant subspaces in the phase space, and how their presence can lead
to synchronization. We will then apply the results found to three samples, which allow to
understand intuitively this mechanism.

As above, we consider the n-degree-of-freedom linear mechanical system

Mq̈ + Γq̇ +Kq = 0, q ∈ Rn, (1.25)

with

M symmetric and positive definite,
Γ symmetric and positive semi-definite,
K symmetric.

Theorem 1.1. Let S ⊆ ker(M−1Γ) be a subspace and S⊥ its orthogonal complement in
Rn with respect to the ordinary scalar product. Consider the following conditions:

C1: (M−1K)S ⊆ S,

C2: q ·Kq|S is positive definite,

C3: S is maximal among the subspaces of ker(M−1Γ) which satisfy condition C1,

C4: q ·Kq|S⊥ is positive definite.

Then,

1. C1 implies that the tangent bundle TS is invariant under the flow of (1.25);
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2. C1 and C2 imply that TS is a subspace of the centre subspace and the dynamics on
it consists of small oscillations;

3. C1 - C4 imply that TS is attractive.

Proof. The result known as simultaneous diagonalization ensures the existence of an
invertible matrix P such that P TMP = I and P TΓP =: Γ̃ is diagonal. Reordering rows
and columns of P , Γ̃ can be written as

Γ̃ = diag(γ1, . . . , γp, 0, . . . , 0) =

(
R 0
0 0

)
,

with all γi > 0 and R a diagonal and positive definite matrix of order p.
In the new coordinates Q = P−1q, equation (1.25) becomes

Q̈+ Γ̃Q̇+ K̃Q = 0, (1.26)

with K̃ = P TKP symmetric. Define the subspace S̃ = P−1S. Since S ⊆ ker(M−1Γ) =
ker(Γ) because M is invertible, and, because det(P ) 6= 0, S̃ ⊆ P−1 ker(Γ) = ker(Γ̃). Let
us work with the following splitting, omitting to indicate the matrix of change of basis:

Rn = Im(Γ̃)⊕ Ũ ⊕ S̃ 3 (x, u, s),

where Ũ is the orthogonal complement of S̃ in ker(Γ̃), with respect to the scalar product
associated to M , i.e. y ·Mz, so that

Γ̃ =

R 0 0
0 0 0
0 0 0

 , K̃ =

 A Bu Bs
BT
u Du Dus

BT
s DT

us Ds

 ,

with certain matrices A, . . . ,Ds such that A = AT , Du = DT
u and Ds = DT

s .

1. Note that M = (PP T )−1. Thus, condition C1 becomes PP TKPS̃ ⊆ PS̃. Since
det(P ) 6= 0 and P TKP = K̃, this condition is

K̃S̃ ⊆ S̃. (1.27)

Therefore,

K̃

0
0
s

 =

 Bss
Duss
Dss

 ∈ S̃ ∀s ∈ Rns ,

with ns = dim S̃, namely Bs = 0, Dus = 0. Hence,

K̃ =

 A Bu 0
BT
u Du 0

0 0 Ds

 ,
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and equation (1.26) becomes 
ẍ+Rẋ+Ax+Buu = 0
ü+BT

u x+Duu = 0
s̈+Dss = 0.

(1.28)

The tangent bundle T S̃, in which x = ẋ = 0 and u = u̇ = 0, is therefore invariant.

2. In the new coordinates, condition C2 is

Q · K̃Q|
S̃
> 0, (1.29)

namely 0
0
s

 · K̃
0

0
s

 = s ·Dss > 0 ∀s ∈ Rns .

Thus, Ds is positive definite and, as a consequence, on T S̃ the dynamics consists of
small oscillations.

3. If S satisfies condition C3, then S̃ is largest subspace of ker(Γ̃) satisfying (1.27). Since A Bu 0
BT
u Du 0

0 0 Ds

0
u
s

 =

BuuDuu
Dss

 ,

it follows that ker(Bu)⊕ S̃ is a subspace of ker(Γ̃) which satisfies (1.27) and contains
S̃. Hence ker(Bu) = {0}.

4. The dynamics on Im(Γ̃)⊕ Ũ is described by{
ẍ+Rẋ+Ax+Buu = 0
ü+BT

u x+Duu = 0,
(1.30)

which can be written as (
ẍ
ü

)
+

(
Rẋ
0

)
+ K̂

(
x
u

)
=

(
0
0

)
with

K̂ =

(
A Bu
BT
u Du

)
.

The equilibrium configurations of (1.30) are zeros of K̂
(
x
u

)
, namely they are the

points in the kernel of K̂.



1.5. Examples 15

If C3 holds, then K̂ is positive definite. Therefore, the Lyapunov functionW(x, u, ẋ, u̇) =

1
2

(
ẋ · ẋ+ u̇ · u̇+

(
x
u

)
· K̂

(
x
u

))
defines a distance from T S̃. Hence,

dW

dt
= −ẋ ·Rẋ ≤ 0,

with the equality holding iff ẋ = 0, because R is positive definite. Since det K̂ 6= 0,
(x̄, ū) = (0, 0) is the only equilibrium configuration. By LaSalle-Krasovskii principle
(see e.g. [6]), if (0, 0) is the only complete orbit in the set such that dW

dt = 0, then it
is asymptotically stable. Let us thus show that the set {(x, u, 0, u̇)} does not contain
any complete orbit different from (0, 0). For ẋ = 0, from the first equation of (1.30),
u = −B−1

u Ax, because kerBu = {0} for the maximality of S̃. Substituting, the second
equation of (1.30) becomes

(
BT
u −DuB

−1
u A

)
x = 0, and since det(BT

u −DuB
−1
u A) =

det K̂ 6= 0, one gets x = x0 = 0 and u = u0 = 0. Therefore, (x̄, ū) = (0, 0) is the only
complete orbit in {(x, u, 0, u̇)} and T S̃ is attractive.

This theorem provides sufficient conditions for the existence of an attractive invariant
centre space TS in the phase space, and indicates how to compute it. The dimension
of the undamped bundle TS coincides with the number of purely imaginary eigenvalues

of the matrix Λ =

(
0 I

−M−1K −M−1Γ

)
associated to (1.25). In particular, if S is

one-dimensional, the motion in TS is a normal mode, therefore all the parts of the system
oscillate, without being damped, at the same frequency. This mechanism is referred to
as synchronization. More in general, S might be higher-dimensional, thus the motion
consists of a linear superposition of normal modes, leading for example to beats.

1.5 Examples

We apply now the results found to three simple mechanical systems, studying their
spectrum and determining the invariant undamped subspace. This analysis will show that
synchronization is not an unusual mechanism and that whether it occurs in anti-phase or
in phase depends on how friction acts on the system.

1.5.1 Example 1

Consider the model consisting of two identical heavy L-shaped rigid bars. They are
constrained so that one leg of each bar lays horizontally and with the extremities in
contact, while the other leg is free to rotate in a perpendicular plane. Assume that there
is friction in correspondence of the contact point between the two bars. Let m be the
mass of each hanging leg, l be their length and I their moment of inertia with respect to
the horizontal bars. Let then θ1 and θ2 be the angular displacements of the two hanging
legs.
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Figure 1.2: Example 1. In-phase synchronization model.

The undamped system is described by the Lagrangian

L =
1

2
I(θ̇2

1 + θ̇2
2) +mgl(cos θ1 + cos θ2).

For small oscillations, sin θ ' θ, and rescaling time t→
√

I
mgl t, the Lagrangian can be

written as
L =

1

2
(θ̇2

1 + θ̇2
2)− 1

2
(θ2

1 + θ2
2). (1.31)

It leads to the following Lagrange equations:{
θ̈1 + θ1 + γ(θ̇1 − θ̇2) = 0

θ̈2 + θ2 + γ(θ̇2 − θ̇1) = 0,
(1.32)

where it has been added the contribution of the viscous damping, proportional to the
difference between the angular velocities of the two bars, with γ > 0.

Invariant subspace

Equations (1.32) are of the form Mq̈ + Γq̇ +Kq = 0 with

M = K = I2, Γ =

(
γ −γ
−γ γ

)
.

The kernel of Γ is

ker(Γ) =

〈(
1
1

)〉
,

and it is invariant under the action of M−1K, since M−1K ker(M−1Γ) = ker(M−1Γ).

Thus, S ≡ ker(M−1Γ) = ker(Γ) and S⊥ ≡ Im(M−1Γ) =

〈(
1
−1

)〉
. The hypotheses

of theorem 1.1 are satisfied, therefore T ker Γ is invariant and attractive, and on it the
motion is given by the normal mode corresponding to the two bars swinging in phase.

Sprectrum

• Without damping: γ = 0.
The frequencies of the small oscillations are

ω0k = 1, k = 1, 2.
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• With damping: γ 6= 0.
The eigenvalues satisfy the characteristic equation

(λ2 + 1)(λ2 + 2γλ+ 1) = 0.

For γ < 1, the eigenvalues are

λ±1 = ±i,

λ±2 = −γ ± i
√

1− γ2.

For γ > 1, the eigenvalues are

λ±1 = ±i,

λ±2 = −γ ±
√
γ2 − 1.

For γ = 1, the eigenvalues are
λ±1 = ±i,
λ±2 = −γ.

Figure 1.3 shows the spectrum for the following values of γ: γ = 0, 0.5, 1, 1.5.

Figure 1.3: Example 1: Spectrum (Re[λ], Im[λ]).

(a) γ = 0. (b) γ = 0.5.

(c) γ = 1. (d) γ = 1.5.
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1.5.2 Example 2

Consider the system consisting of two identical pendula on a common rigid support,
which is constrained to move in one dimension horizontally and is connected to a spring.
Assume that there is friction in correspondence of the wheels of the base support. Let m
and l be the mass of the pendula and their length respectively, M the mass of the support
and k the elastic constant of the spring. Let φ1 and φ2 be the angular displacements of
the two pendula about their pivot points and X be the linear displacement of the support.

Figure 1.4: Example 2. Anti–phase synchronization model.

The undamped system is described by the Lagrangian

L=
1

2
(M+2m)Ẋ2+

m

2
l2(φ̇2

1+φ̇2
2)+mlẊ(φ̇1 cosφ1+φ̇2 cosφ2)+mgl(cosφ1+cosφ2)−k

2
X2.

For small oscillations, sinφ ' φ, rescaling X → lX, t →
√

l
g t and defining µ = M+2m

m

and α = kl
mg , the Lagrangian becomes

L =
1

2
µẊ2 +

1

2
(φ̇2

1 + φ̇2
2) + Ẋ(φ̇1 + φ̇2)− 1

2
(φ2

1 + φ2
2)− 1

2
αX2. (1.33)

It leads to the following Lagrange equations:
µẌ + γẊ + φ̈1 + φ̈2 + αX = 0

φ̈1 + Ẍ + φ1 = 0

φ̈2 + Ẍ + φ2 = 0,

(1.34)

where it has been added the contribution of the viscous damping to the common support,
proportional to its velocity, with γ > 0.
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Invariant subspace

Equations (1.34) are of the form Mq̈ + Γq̇ +Kq = 0 with

M =

µ 1 1
1 1 0
1 0 1

 , Γ =

γ 0 0
0 0 0
0 0 0

 , K =

α 0 0
0 1 0
0 0 1

 .

The kernel of Γ is

ker(Γ) =

〈0
1
0

 ,

0
0
1

〉 ,
the invariant subspace S ⊆ ker(Γ) and its orthogonal are

S =

〈 0
1
−1

〉 , S⊥ =

〈1
0
0

 ,

0
1
1

〉 .
The matrix P which diagonalizes simultaneously M and Γ is

P =


−1√
µ−2

0 0
1√
µ−2

1√
2
− 1√

2
1√
µ−2

1√
2

1√
2

 .

Therefore, P TMP = I, and Γ̃ = P TΓP and K̃ = P TKP are

Γ̃ =
γ

µ− 2

1 0 0
0 0 0
0 0 0

 , K̃ =


2+α
µ−2

√
2

µ−2 0√
2

µ−2 1 0

0 0 1

 .

The equations of motion, written in the form Q̈+Γ̃Q̇+K̃Q = 0, with Q = P−1q = (x, u, s),
become 

ẍ+ γ
µ−2 ẋ+ 2+α

µ−2x+
√

2
µ−2u = 0

ü+
√

2
µ−2x+ u = 0

s̈+ s = 0.

On the invariant subspace S̃ = P−1S =

〈0
0
1

〉 ⊆ ker Γ the motion is described by

s̈ + s = 0, which corresponds to the normal mode in which the two pendula swing in
anti-phase and the support is at rest.
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Sprectrum

• Without damping: γ = 0.
The frequencies of the small oscillations are

ω01 =

(
(α+ µ)−

√
(α+ µ)2 − 4α(µ− 2)

2(µ− 2)

) 1
2

,

ω02 = 1,

ω03 =

(
(α+ µ) +

√
(α+ µ)2 − 4α(µ− 2)

2(µ− 2)

) 1
2

.

• With damping: γ 6= 0.
The eigenvalues satisfy the characteristic equation

(λ2 + 1)
[
(λ2 + 1)(µλ2 + γλ+ α)− 2λ4

]
= 0.

The eigenvalues of Γ with respect to M , i.e. roots of det(Γ − βM) = 0, are
β1 = β2 = 0 and β3 = γ

µ+2 . Therefore,
if λ−j = (λ+

j )∗ /∈ R, then

−1

2

γ

µ+ 2
≤ Re[λ±j ] ≤ 0,

(
(α+µ)−

√
(α+µ)2−4α(µ−2)

2(µ−2)

) 1
2

≤ |λ±j | ≤

(
(α+µ)+

√
(α+µ)2−4α(µ−2)

2(µ−2)

) 1
2

;

if λ±j =∈ R, then
− γ

µ+ 2
≤ λ±j ≤ 0.

Figure 1.5 shows the spectrum for the following values of γ: γ = 0, 1, 1.5.

Figure 1.5: Example 2: Spectrum (Re[λ], Im[λ]) with µ = 3, α = 0.1.

(a) γ = 0. (b) γ = 0.5. (c) γ = 1.5.
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1.5.3 Example 3

Consider the system consisting of a chain of three identical masses, with mass m, and four
identical ideal springs, with elastic constant k. Assume there is friction in correspondence
of the mass in the middle. Let xi, i = 1, 2, 3, be the displacement of the i-th mass.

Figure 1.6: Example 3. Anti-phase synchronization model.

The undamped system is described by the Lagrangian

L =
1

2
m(ẋ2

1 + ẋ2
2 + ẋ2

3)− 1

2
kx2

1 −
1

2
k(x2 − x1)2 − 1

2
k(x3 − x2)2 − 1

2
kx2

3.

Rescaling t→
√

k
m t, the Lagrangian becomes

L =
1

2
(ẋ2

1 + ẋ2
2 + ẋ2

3)− 1

2
x2

1 −
1

2
(x2 − x1)2 − 1

2
(x3 − x2)2 − 1

2
x2

3. (1.35)

It leads to the following Lagrange equations:
ẍ1 + 2x1 − x2 = 0
ẍ2 − x1 + 2x2 − x3 + γẋ2 = 0
ẍ3 − x2 + 2x3 = 0,

(1.36)

where it has been added a viscous damping term to mass 2 proportional to its velocity,
with γ > 0.

Invariant subspace

Equations (1.36) are of the form Mq̈ + Γq̇ +Kq = 0 with

M = I3, Γ =

0 0 0
0 γ 0
0 0 0

 , K =

 2 −1 0
−1 2 −1
0 −1 2

 .

The kernel of the matrix Γ is the two-dimensional subspace

ker Γ =

〈1
0
0

 ,

0
0
1

〉 ,
the invariant subspace S ⊆ ker(Γ) and its orthogonal are

S =

〈 1
0
−1

〉 , S⊥ =

〈0
1
0

 ,

1
0
1

〉 .
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The hypotheses of theorem 1.1 are satisfied only by the one-dimensional subspace S, and
therefore TS is invariant and attractive. The motion on TS is given by the normal mode
corresponding to the external masses oscillating in opposite phase and the mass in the
middle at rest.

Sprectrum

• Without damping: γ = 0.
The frequencies of the small oscillations are

ω01 =

√
2−
√

2,

ω02 =
√

2,

ω03 =

√
2 +
√

2.

• With damping: γ 6= 0.
The eigenvalues satisfy the characteristic equation

(λ2 + 2)
[
(λ2 + 2)(λ2 + γλ+ 2)− 2

]
= 0.

The eigenvalues of Γ with respect to M , i.e. roots of det(Γ − βM) = 0, are
β1 = β2 = 0 and β3 = γ. Therefore,
if λ−j = (λ+

j )∗ /∈ R, then
−γ

2
≤ Re[λ±j ] ≤ 0,√

2−
√

2 ≤ |λ±j | ≤
√

2 +
√

2;

if λ±j ∈ R, then
−γ ≤ λ±j ≤ 0.

Figure 1.7 shows the spectrum for the following values of γ: γ = 0, 1, 3.

Figure 1.7: Example 3: Spectrum (Re[λ], Im[λ]).

(a) γ = 0. (b) γ = 1. (c) γ = 3.



Chapter 2

Pendulum hanging from a string

In this chapter we study the small oscillations about the equilibrium configuration of a
system composed of a pendulum suspended on a string. The Euler-Lagrange equations
for infinite-degree-of-freedom systems are first recalled, thus the Lagrangian for the string-
pendulum system is derived and the linearised system is analysed. Finally, the spectrum
and the eigenfunctions are computed in the case in which the pendulum is suspended in
the middle point of the string.

2.1 Infinite dimensional systems

The configuration space Q is the space of square-integrable real functions u on D ⊆ R3.
Let L be the Lagrangian functional L : TQ → R, (u, ut) 7→ L(u, ut), which can be
expressed in terms of a Lagrangian density L as

L(u, ut) =

∫
D
L(u, ut, ux) dx,

denoting the partial derivatives with the correspondent subscript. Analogously to the
finite-dimensional case, the equations of motion can be derived through the principle of
least action. Let

S(u) :=

∫ t2

t1

L(u, ut) dt

be the action functional. Then its critical points, solutions of dS(u) = 0, determine the
Euler-Lagrange equations for the Lagrangian L, with the notation of functional derivatives{

δL
δu = ∂L

∂u −
d
dx

∂L
∂ux

δL
δut

= ∂L
∂ut

.

Hence, the Euler-Lagrange equations for an infinite-dimensional system are

d

dt

δL

δut
− δL

δu
= 0. (2.1)

23
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2.2 Description of the system

The system consists of a heavy homogeneous flexible and elastic string with fixed ex-
tremities and a pendulum hanging from a point O1 of the string. We shall consider the
transverse displacements of the string (see [23]) and assume that the pendulum swings in
the vertical plane transverse to the string.

Let us choose a coordinate system with the origin on the left extremity of the string,
the x-axis horizontal and directed along the resting string and the y-axis directed as the
ascendant vertical.

Figure 2.1: Model: pendulum hanging from a string.

Let ψ be the horizontal transverse displacement of a point of the string from the
x-axis on the xz-plane and χ the vertical displacement from the x-axis on the xy-plane.
The string is thus described by the following embedding:

[0,Λ] 3 x 7→

 x
y(x, t) = χ(x, t)
z(x, t) = ψ(x, t)

 ∈ R3

with functions ψ, χ : [0,Λ] × R → R such that ψ(0, t) = 0 = ψ(Λ, t) and χ(0, t) = 0 =
χ(Λ, t) ∀t, and Λ the length of the string.

Let φ be the angular displacement of the pendulum measured from the descendant
y-axis on the yz-plane, let l be its length and let us denote with x1 the x-coordinate of
the suspension point O1. Therefore, the pendulum has coordinates

xp = x1

yp(t) = χ(x1, t)− l cosφ(t)
zp(t) = ψ(x1, t) + l sinφ(t).
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Hence, this model describes a hybrid dynamical system consisting of a one-degree-of-
freedom system (the pendulum) and of a continuous system (the string).

2.3 Lagrangian

We now derive the Lagrangian of the coupled system. Since the system is conservative,
the Lagrangian is the difference between the kinetic energy and the potential energy of
the system:

L(φ, φ̇, ψ, ψt, χ, χt) = T (φ, φ̇, ψ, ψt, χ, χt)− V (φ, ψ, χ),

where each term accounts both for the string and for the pendulum. Thus,

T =
m

2

[
l2φ̇2+ψ2

t (x1)+χ2
t (x1)+2lφ̇

(
ψt(x1) cos(φ)+χt(x1) sin(φ)

)]
+

∫ Λ

0

[ρ
2

(
ψ2
t +χ2

t

)]
dx,

V = mg
(
χ(x1)−l cos(φ)

)
+

∫ Λ

0

[τ
2

(
ψ2
x + χ2

x

)
+ ρgχ

]
dx,

where ρ is the linear mass density of the string, τ its tension, l is the length of the
pendulum and m its mass and g indicates the standard acceleration of gravity.

In terms of a Lagrangian density L, the Lagrangian is

L(φ, φ̇, ψ, ψt, χ, χt) =

∫ Λ

0
L(φ, φ̇, ψ, ψt, ψx, χ, χt, χx) dx.

Hence,

L =

∫ Λ

0

{[
1

2
ρ
(
ψ2
t + χ2

t

)
− 1

2
τ
(
ψ2
x + χ2

x

)
− ρgχ

]
+

[
1

2
m
(
ψ2
t + χ2

t + 2lφ̇
(
ψt cos(φ) + χt sin(φ)

))
−mgχ

]
δ(x− x1)

+

[
1

2
ml2φ̇2 +mgl cos(φ)

]
δ(x− x1)

}
dx. (2.2)

This Lagrangian can be written as sum of the following terms:

Lp =
1

2
ml2φ̇2 +mgl cosφ,

Ls =

∫ Λ

0

[
1

2
ρ
(
ψ2
t + χ2

t

)
− 1

2
τ
(
ψ2
x + χ2

x

)
− ρgχ

]
dx,

Li =

∫ Λ

0

[
1

2
m
(
ψ2
t + χ2

t

)
+mlφ̇ (ψt cosφ+ χt sinφ)−mgχ

]
δ(x− x1) dx,

where Lp describes a pendulum with fixed suspension point, Ls describes the string and
Li contains the terms due to the interaction between the pendulum and the string.
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Applying (2.1), the Lagrangian (2.2) gives the following Euler-Lagrange equations:
ml2φ̈(t) +mlψtt(x1, t) cos(φ(t)) +mlχtt(x1, t) sin(φ(t)) +mgl sin(φ(t)) = 0

ρψtt(x, t)+
(
mψtt(x, t)+mlφ̈(t) cos(φ(t))−mlφ̇2(t) sin(φ(t))

)
δ(x−x1)−τψxx(x, t)=0

ρχtt(x, t)+
(
mχtt(x, t)+mlφ̈(t) sin(φ(t))+mlφ̇2(t) cos(φ(t))

)
δ(x−x1)−τχxx(x, t)

+ρg +mgδ(x−x1)=0.

Let us look for the equilibrium state (φeq, ψeq(x), χeq(x)). The equilibrium coordinates
satisfy the conditions of extremum

δL

δφ
= 0,

δL

δψ
= 0,

δL

δχ
= 0,

and the boundary conditions

ψ(0, t) = ψ(Λ, t) = 0, χ(0, t) = χ(Λ, t) = 0, ∀t.

The computation of φeq and ψeq(x) is straightforward, while in order to determine χeq(x)
one has to solve the equation τχ′′(x) − ρg = mgδ(x − x1), which descends from the
condition δL

δχ = 0. The Dirac delta function can be handled in the following way: one
solves the equation independently on the left-hand side and on the right-hand side of the
discontinuity x1, so that χeq(x) = χ−(x)Θ(x1 − x) + χ+(x)Θ(x− x1); then one imposes,
together with the boundary conditions, the following interface conditions:{

χ−(x1) = χ+(x1)
χ′+(x1)− χ′−(x1) = mg

τ .

Thus, the equilibrium configuration, which is stable since it is a strict minimum of the
potential energy, is

φeq = 0
ψeq(x) = 0

χeq(x) = ρg
2τ x

2 + x
[mg
τ

(
x1
Λ − 1

)
− ρgΛ

2τ

]
+
[mg
τ (x− x1)

]
Θ(x− x1).

(2.3)

In order to make a linear analysis, we consider small oscillations about the stable
equilibrium state, namely 

φ(t) = φeq + φ′(t)
ψ(x, t) = ψeq(x) + ψ′(x, t)
χ(x, t) = χeq(x) + χ′(x, t).

In general, in doing so, the Lagrangian becomes quadratic in its variables. In fact, from
the expansion about the equilibrium, the Lagrangian can be written as

L = L0 + L1 + L2,
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where L0 is constant, thus does not influence the dynamics, L1 contains linear terms but
vanishes because of the extremum condition and L2 contains quadratic terms.

We relabel for convenience the displacements from the equilibrium, φ′, ψ′, χ′, omitting
the primes, i.e. φ′ 7→ φ, ψ′ 7→ ψ, χ′ 7→ χ. Therefore, to second order in the displacements,
the Lagrangian is

L =

∫ Λ

0

{[
1

2
ρ
(
ψ2
t + χ2

t

)
− 1

2
τ
(
ψ2
x + χ2

x

)]

+

[
1

2
m
(
l2φ̇2 + ψ2

t + χ2
t + 2lφ̇ψt

)
− 1

2
mglφ2

]
δ(x− x1)

}
dx.

Let us now rescale the variables in order to obtain an adimensional Lagrangian, as
follows:

x 7→ Λx, φ 7→ Λ

l
φ, ψ 7→ Λψ, χ 7→ Λχ, t 7→

√
ρΛ2

τ
t,

and let us define the following dimensionless parameters α, β > 0, which characterise the
geometry of the system:

α2 =
gρΛ2

lτ
, β =

m

ρΛ
. (2.4)

The definitive adimensional Lagrangian is

L =

∫ 1

0

{[
1

2

(
ψ2
t + χ2

t

)
− 1

2

(
ψ2
x + χ2

x

)]

+ β

[
1

2

(
φ̇2 + ψ2

t + χ2
t + 2φ̇ψt

)
− 1

2
α2φ2

]
δ(x− x1)

}
dx. (2.5)

Remark 2.1. In the quadratic Lagrangian (2.5), the only coupling between the pendulum
and the string is φ̇ψt, while there is not any terms proportional to φ̇χt. In fact, expanding
about the equilibrium the interaction terms in (2.2), φ̇ψt cosφ = φ̇ψt + o(φ2) while
φ̇χt sinφ = φ̇χtφ+ o(φ3), i.e. the second term is one order higher in φ with respect to
the first one and can therefore be neglected.

2.4 Equations of motion

The equations of motion are the Euler-Lagrange equations for infinite-dimensional systems:
d
dt
∂L
∂φ̇
− ∂L

∂φ = 0

d
dt

∂L
∂ψt
− ∂L

∂ψ + d
dx

∂L
∂ψx

= 0

d
dt

∂L
∂χt
− ∂L

∂χ + d
dx

∂L
∂χx

= 0.

Since Lagrangian (2.5) contains a discontinuity in x1, detectable from the presence of the
Dirac delta function δ(x− x1), in order to be able to derivate L, a weak formulation is
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required. Nonetheless, we neglect in this treatise that study, and we proceed deriving like
for usual functions, keeping in mind to define the interface conditions in x1 when needed.

The equations of motion of the linearised coupled system are
β
(
φ̈(t) + ψtt(x1, t) + α2φ(t)

)
= 0

ψtt(x, t) + β
(
ψtt(x, t) + φ̈(t)

)
δ(x− x1)− ψxx(x, t) = 0

χtt(x, t) + βχtt(x, t)δ(x− x1)− χxx(x, t) = 0,

(2.6)

with the boundary conditions {
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t)

(2.7)

for all t ∈ R.

2.5 Normal modes of oscillation

The equations of motion (2.6) are a linear system, therefore every solution, called small
oscillation, can be written as a linear superposition of solutions. In particular, we are
interested in periodic solutions in which every part of the system oscillates with the same
frequency, namely normal modes of oscillation. We will not be able to prove the unicity
of the solutions found, since this would require a weak formulation of the problem, with
the use of test functions. Nonetheless, we shall characterise solutions which are C0.

2.5.1 Spectrum of the vibrating string

Let us start considering the decoupled system. The first equation of (2.6), which describes
the motion of the pendulum, decouples from the others if ψ(x1, t) = 0 ∀t, that is when its
suspension point stands still. In this case, the pendulum swings periodically with proper
frequency ω = α (in rescaled time units).

The equation of the vibrating string is restored in the limit of β = 0. The equations
of motion (2.6) for the string, with the boundary conditions, become

ψtt(x, t)− ψxx(x, t) = 0
χtt(x, t)− χxx(x, t) = 0
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t).

(2.8)

Definition 2.1. The normal modes of oscillation of frequency ω of system (2.8) are
periodic solutions of the form:

Ψ(x, t) =

(
ψ(x, t)
χ(x, t)

)
= Ψ̂ω(x) cos(ωt+ η), (2.9)

with ω ∈ R, η ∈ [0, 2π[ and Ψ̂ω : [0, 1]→ R2, called eigenfunction associated to ω.
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Proposition 2.1. The frequencies of the normal modes of oscillation (2.9) are a countable
family {ω0

n : n ∈ N+} of degeneracy deg(ω0
n) = 2, with

ω0
n = nπ. (2.10)

Proof. The equations in ψ and in χ are decoupled. Let us seek solutions of system (2.8)
of the form

Ψ(x, t) =

(
f(x)
g(x)

)
cos(ωt+ η).

Then, f : [0, 1]→ R has to satisfy
f ′′(x) + ω2f(x) = 0
f(0) = 0
f(1) = 0.

(2.11)

The first equation of system (2.11) has solution f(x) = a cos(ωx)+b sin(ωx), with a, b, ω ∈
R; the boundary conditions give a = 0 and sin(ω) = 0, which implies solutions (2.10).
Analogously, g : [0, 1]→ R has to satisfy

g′′(x) + ω2g(x) = 0
g(0) = 0
g(1) = 0

(2.12)

which yields solution (2.10) as well. Therefore the frequency ω0
n has degeneracy two, for

every n.

The frequencies (2.10) are proportional to n, which labels the wave number. Hence,
the vibrating string has a linear dispersion relation (Figure 2.2).

Figure 2.2: Dispersion relation of the string: ω0
n.

Let us now compute the associated eigenfunctions.
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Proposition 2.2. For every n, the eigenfunction associated to ω0
n is

Ψ̂ω0
n
(x) =

(
an
bn

)
sin(ω0

nx), (2.13)

with an, bn ∈ R.

Proof. System (2.11) implies fn(x) = an sin(ω0
nx) and system (2.12) implies gn(x) =

bn sin(ω0
nx) with an, bn ∈ R, for every n.

Since ω0
n is degenerate, for every n, to each frequency is associated a plane of normal

modes
(
an
bn

)
, with an, bn fixed by the initial conditions.

2.5.2 Spectrum of the string with pendulum

Let us now consider the coupled system. The presence of the pendulum hanging from the
string modifies the spectrum of frequencies and breaks the degeneracy; such spectrum
will consist of “infinity-plus-one” eigenvalues. For simplicity, let us assume the suspension
point of the pendulum to be lying halfway on the string, i.e. x1 = 1

2 . For β 6= 0, the
equations of motion, with the boundary conditions, are

φ̈(t) + ψtt(x1, t) + α2φ(t) = 0

ψtt(x, t) + β
(
ψtt(x, t) + φ̈(t)

)
δ(x− x1)− ψxx(x, t) = 0

χtt(x, t) + βχtt(x, t)δ(x− x1)− χxx(x, t) = 0
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t).

(2.14)

Definition 2.2. The normal modes of oscillation of frequency ω of system (2.14) are
periodic solutions of the form:

Φ(x, t) =

 φ(t)
ψ(x, t)
χ(x, t)

 = Φ̂ω(x) cos(ωt+ η), (2.15)

with ω ∈ R, η ∈ [0, 2π[ and Φ̂ω : [0, 1]→ R3, called eigenfunction associated to ω.

Let us consider first the general case in which the parameter α is not a multiple of 2π.
For these special values of the parameter, in fact, one frequency of the coupled system
coincides with the one of the pendulum alone, leading to a different dynamics.

Proposition 2.3. For every β > 0 and α 6= 2πr with r ∈ N+, the frequencies of the
normal modes of oscillation (2.15) are three countable families and a special frequency:
{ωα,β2j : j ∈ N+}, {ωα,β2j−1 : j ∈ N+}, {ωβχ,2j−1 : j ∈ N+} and ω̂α,β, with the following
properties. Let s be an index, dependent on α, such that

s(α) =
⌈ α

2π

⌉
, (2.16)

where d·e indicates the ceiling function: dxe = min{n ∈ Z |n ≥ x}. Then,
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1. ωα,β2j = ω0
2j

1a) deg(ωα,β2j ) = 2,

2. ω0
2j−2 < ωα,β2j−1 < ω0

2j−1 for j < s

2a) |ωα,β2j−1 − ω0
2j−1| < |ω

α,β
2j+1 − ω0

2j+1|,

3. ω0
2j−1 < ωα,β2j−1 < ω0

2j for j > s

3a) ωα,β2j−1 − ω0
2j−1 > ωα,β2j+1 − ω0

2j+1,

4. ω0
2s−1 < ωα,β2s−1 < ω0

2s for (2s− 2)π < α < (2s− 1)π

4a) ωα,β2s−1 − ω0
2s−1 > ωα,β2s+1 − ω0

2s+1,

5. ω0
2s−2 < ω̂α,β < ω0

2s−1 for (2s− 2)π < α < (2s− 1)π,

6. ω0
2s−2 < ωα,β2s−1 < ω0

2s−1 for (2s− 1)π ≤ α < (2s)π

6a) |ωα,β2s−1 − ω0
2s−1| > |ω

α,β
2s−2 − ω0

2j−2|,

7. ω0
2s−1 < ω̂α,β < ω0

2s for (2s− 1)π ≤ α < (2s)π,

8. ω0
2j−2 < ωβχ,2j−1 < ω0

2j−1

8a) |ωα,βχ,2j−1 − ω0
χ,2j−1| < |ω

α,β
χ,2j+1 − ω0

χ,2j+1|.

Moreover, asymptotically
ωα,β2j−1 −−−→j→∞

ω0
2j−1

ωα,βχ,2j−1 −−−→j→∞
ω0

2j−2,

and for β → 0

ωα,βn −−−→
β→0

ω0
n

ω̂α,β −−−→
β→0

α

ωβχ,n −−−→
β→0

ω0
n.

Proof. Let us seek solutions of system (2.14) of the form

Φ(x, t) =

 A
f(x)
g(x)

 cos(ωt+ η),
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with A ∈ R and f, g : [0, 1] → R. In order to handle the Dirac delta function, we
determine independently the solutions on the left-hand side, f−, g−, and on the right-
hand side, f+, g+, of the discontinuity x1 and impose the interface conditions. Then,
f(x) = f−(x)Θ(x1 − x) + f+(x)Θ(x− x1) has to satisfy

(α2 − ω2)A− ω2f(x1) = 0
f ′′(x) + ω2f(x) = −ω2β(f(x) +A)δ(x− x1)
f−(0) = 0
f+(1) = 0
f−(x1) = f+(x1)
f ′+(x1)− f ′−(x1) = −ω2β(f(x1) +A)

(2.17)

and g(x) = g−(x)Θ(x1 − x) + g+(x)Θ(x− x1) has to satisfy
g′′(x) + ω2g(x) = −βω2g(x)δ(x− x1)
g−(0) = 0
g+(1) = 0
g−(x1) = g+(x1)
g′+(x1)− g′−(x1) = −βω2g(x1).

(2.18)

Let us start considering the first system. The second equation of (2.17) has solution
f±(x) = a± cos(ωx) + b± sin(ωx), a±, b±, ω ∈ R; the other five equations correspond to
the condition

det


α2 − ω2 −ω2 cos(ωx1) −ω2 sin(ωx1) 0 0

0 1 0 0 0
0 0 0 cos(ω) sin(ω)
0 cos(ωx1) sin(ωx1) − cos(ωx1) − sin(ωx1)
βα2 ω sin(ωx1) −ω cos(ωx1) −ω sin(ωx1) ω cos(ωx1)

 = 0,

where in the last raw it has already been substituted ω2(f(x1) + A) with α2A, from
the first equation in (2.17). The vanishing of this determinant, for x1 = 1

2 , leads to the
characteristic equation

F (ω) := −ω sin
(ω

2

) [
(α2 − ω2)2 cos

(ω
2

)
− α2βω sin

(ω
2

)]
= 0. (2.19)

It has two families of solutions, which are the roots of

F1(ω) := sin
(ω

2

)
= 0, (2.20a)

F2(ω) := (α2 − ω2)2 cos
(ω

2

)
− α2βω sin

(ω
2

)
= 0, (2.20b)

and can be written in the form

ωα,βn = ω0
n + δα,βn (2.21a)

ω̂α,β = α+ δ̂α,β (2.21b)
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with δα,β2j−1 and δ̂α,β satisfying, respectively,

[
α2−

(
(2j − 1)π + δα,β2j−1

)2
]

2 sin

(
δα,β2j−1

2

)
+α2β

(
(2j − 1)π + δα,β2j−1

)
cos

(
δα,β2j−1

2

)
= 0

(2.22)
and

(
2α+ δ̂α,β

)
2δ̂α,β cos

(
α+ δ̂α,β

2

)
+ α2β

(
α+ δ̂α,β

)
sin

(
α+ δ̂α,β

2

)
= 0. (2.23)

- Equation (2.20a) has roots ωα,β2j = (2j)π, j = 1, 2, . . . , which coincide with the even
roots of the string without pendulum (this proves the first part of 1.).

Equation (2.20b) can not be solved analytically, nonetheless the existence of its roots can be
determined through continuity and monotony arguments. Graphically, the roots of (2.20b)
can be visualized as intersection points between g(ω) := tan

(
ω
2

)
and h(ω) := 2

α2β
α2−ω2

ω

(Figure 2.3). Let us define the index s such that ωα,β2s−2 < α ≤ ωα,β2s , from which (2.16).

Figure 2.3: Plot g(ω), h(ω) with α = 17, β = 0.5; s = 3.

- For j < s, in every interval [(2j − 2)π, (2j − 1)π]:
F2((2j − 2)π) = (α2 − (2j − 2)2π2)2(−1)j−1 is positive for every odd j and negative
for every even j, and never vanishing for any j; vice versa, F2((2j − 1)π) = −α2β(2j −
1)π(−1)j−1 is negative for every odd j and positive for every even j, and never
vanishing for any j. Moreover, F2 is monotone, since F ′2(ω) = −4ω cos

(
ω
2

)
− (α2 −

ω2) sin
(
ω
2

)
− α2β sin

(
ω
2

)
− α2β ω2 cos

(
ω
2

)
, and F ′2 < 0 for j odd and F ′2 > 0 for j even.

Bolzano’s theorem ensures that there exists a unique root of F2 in ](2j− 2)π, (2j− 1)π[,
j = 1, 2, . . . , s− 1. It can be written in the form (2.21a) with δβ2j−1 < 0 and |δβ2j−1| < π.
Moreover, since g(ω) is increasing and 2π-periodic, and h(ω) is decreasing and positive
for j < s, then |δα,β2j−1| < |δ

α,β
2j+1| for every j < s. This proves 2.
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- For j > s, in every interval [(2j − 1)π, (2j)π]:
F2((2j−1)π) = −α2β(2j−1)π(−1)j−1 is negative for any odd j and positive for any even
j, and never vanishing for any j; vice versa, F2((2j)π) = (α2−(2j)2π2)2(−1)j is positive
for any odd j and negative for any even j, and never vanishing for any j. Moreover,
F2 is monotone, since F ′2 < 0 for j even and F ′2 > 0 for j odd. Bolzano’s theorem
ensures that there exists a unique root of F2 in ](2j − 1)π, (2j)π[, j = s+ 1, s+ 2, . . . .
It can be written in the form (2.21a) with δβ2j−1 > 0 and |δβ2j−1| < π. Moreover, since
g(ω) is increasing and 2π-periodic, and h(ω) is decreasing and negative for j > s, then
δα,β2j−1 > δα,β2j+1 for every j > s. This proves 3.

- For j = s, if α ∈](2s− 2)π, (2s− 1)π], in [(2s− 2)π, (2s− 1)π] and in [(2s− 1)π, (2s)π]:
F2((2s − 2)π) = (α2 − (2s − 2)2π2)2(−1)s−1 is positive if s is odd and negative if s
is even, and never vanishing; vice versa, F2((2s − 1)π) = −α2β(2s − 1)π(−1)s−1 is
negative if s is odd and positive if s is even, and never vanishing. Moreover, F2 is
monotone in [(2s−2)π, (2s−1)π], therefore Bolzano’s theorem ensures that there exists
a unique root of F2 in ](2s−2)π, (2s−1)π[. It can be labelled ω̂α,β , of the form (2.21b),
with δ̂α,β < 0 and |δ̂α,β| < π. Analogously, in ](2s− 1)π, (2s)π[ there is a unique root
of F2 of the form (2.21a) with δα,β2s−1 > 0 and δα,β2s−1 < π. This proves 4. and 5.

- For j = s, if α ∈ [(2s− 1)π, (2s)π[, in [(2s− 2)π, (2s− 1)π] and in [(2s− 1)π, (2s)π]:
F2((2s − 2)π) = (α2 − (2s − 2)2π2)2(−1)s−1 is positive if s is odd and negative if s
is even, and never vanishing; vice versa, F2((2s − 1)π) = −α2β(2s − 1)π(−1)s−1 is
negative if s is odd and positive if s is even, and never vanishing. Moreover, F2 is
monotone in [(2s−2)π, (2s−1)π], therefore Bolzano’s theorem ensures that there exists
a unique root of F2 in ](2s− 2)π, (2s− 1)π[. It can be written in the form (2.21a), with
δα,β2s−1 < 0 and |δα,β2s−1| < π. Analogously, in ](2s− 1)π, (2s)π[ there is a unique root of
F2, labelled ω̂α,β , of the form (2.21b) with δ̂α,β > 0 and δ̂α,β < π. This proves 6. and 7.
Note that if α = (2s− 1)π, since there is no unique choice, either one of the two roots
can be labelled as ω̂α,β .

An estimate of the modification of the odd spectrum of the string due to the presence
of the pendulum, δα,β2j−1, is given by the expansion in δα,β2j−1 of (2.22). Keeping only the
linear terms, one gets

δ
α,β(1)
2j−1 =

(2j − 1)πα2β

−α2 − α2β + (2j − 1)2π2
. (2.24)

In particular, δα,β(1)
2j−1 −−−→j→∞

0, therefore ωα,β2j−1 tend asymptotically to the odd roots of the

string without pendulum (Figure 2.4).
Let us consider now system (2.18). The first equation of (2.18) has solution g±(x) =

aχ,± cos(ωx) + bχ,± sin(ωx), aχ,±, bχ,±, ω ∈ R; the other four equations correspond to the
condition

det


1 0 0 0
0 0 cos(ω) sin(ω)
0 sin(ωx1) − cos(ωx1) − sin(ωx1)
0 −ω cos(ωx1) + βω2 sin(ωx1) −ω sin(ωx1) ω cos(ωx1)

 = 0.
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Figure 2.4: δα,β2j−1, with α = 17, β = 0.5; s = 3.

For x1 = 1
2 , it gives the following characteristic equation

G(ω) := −ω sin
(ω

2

) [
2 cos

(ω
2

)
− βω sin

(ω
2

)]
= 0. (2.25)

It has two families of solutions, which are the roots of

G1(ω) := sin
(ω

2

)
= 0, (2.26a)

G2(ω) := 2 cos
(ω

2

)
− βω sin

(ω
2

)
= 0, (2.26b)

and can be written as
ωβχ,n = ω0

n + δβχ,n, n = 1, 2, 3, . . . (2.27)

with δβχ,2j−1 satisfying

2 sin

(
δβχ,2j−1

2

)
+ β

[
(2j − 1)π + δβχ,2j−1

]
cos

(
δβχ,2j−1

2

)
= 0. (2.28)

- Equation (2.26a) has roots ωβχ,2j = (2j)π, j = 1, 2, . . . , which coincide with the even
roots of the string without pendulum, hence deg(ωα,β2j ) = 2, which proves 1a).

Equation (2.26b) can not be solved analytically, nonetheless the existence of its roots can be
determined through continuity and monotony arguments. Graphically, the roots of (2.26b)
can be visualized as intersection points between gχ(ω) := tan

(
ω
2

)
and hχ(ω) := 2

βω
(Figure 2.5).

- In every interval [(2j − 2)π, (2j − 1)π]:
F2((2j − 2)π) = 2(−1)j−1 is positive for any odd j and negative for any even j, and
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Figure 2.5: Plot gχ(ω), hχ(ω) with β = 0.5.

never vanishing; vice versa, F2((2j − 1)π) = −β(2j − 1)π(−1)j−1 is negative for any
odd j and positive for any even j, and never vanishing. Moreover, F2 is monotone in
[(2j − 2)π, (2j − 1)π], since F ′2(ω) = − sin

(
ω
2

)
(1 + β)− β ω2 cos

(
ω
2

)
, and F ′2 < 0 for j

odd and F ′2 > 0 for j even. Bolzano’s theorem ensures that there exists a unique root
of F2 in ](2j − 2)π, (2j − 1)π[, j = 1, 2, . . . . It can be written in the form (2.27) with
δβχ,2j−1 < 0 and |δβχ,2j−1| < π. Moreover, since gχ(ω) is increasing and 2π-periodic, and
hχ(ω) is decreasing and positive, then |δα,β2j−1| < |δ

α,β
2j+1| for every j ∈ N+. This proves 8.

An estimate of the modification of the odd spectrum of the string due to the dishomo-
geneity in x1 is given by the expansion of (2.28) in δβχ,2j−1. Keeping only the linear terms,
one gets:

δ
β(1)
χ,2j−1 =

4− β(2j − 1)π2

β(2j)π
−−−→
j→∞

−π.

Finally, in order to determine the behaviour of the frequencies for small values of the
parameter β, let us prove the following result:

Lemma 2.1. For every j, the displacement δα,β2j−1 of the eigenvalue (2.21a) from ω0
2j−1,

the displacement δβχ,2j−1 of the eigenvalue (2.27) from ω0
2j−1 and the displacement δ̂α,β of

the eigenvalue (2.21b) from α depend differentially on the parameter β, if α 6= 2πr with
r ∈ N+.

Proof. For n = 2j, δα,β2j = 0, j = 1, 2, . . . , for any value of β. For n = 2j − 1, δα,β2j−1 are
the roots of the function gn, defined as

gn(β, δα,β) :=
(
α2 − (ω0

n + δα,βn )2
)

2 sin

(
δα,βn

2

)
+ α2β(ω0

n + δα,βn ) cos

(
δα,βn

2

)
.

For every n = 1, 2, . . . , it satisfies

gn(0, 0) = 0, ∂δgn(0, 0) = (α2 − (ω0
n)2) 6= 0;
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Figure 2.6: δβχ,2j−1 with β = 0.5; s = 3.

Analogously, δβχ,2j = 0, for any value of β, and δβχ,2j−1 are the roots of the function gχ,n,
defined as

gχ,n(β, δβχ) := 2 sin

(
δβχ,n

2

)
+ β(ω0

n + δβχ,n) cos

(
δβχ,n

2

)
.

For every n = 1, 2, . . . , it satisfies

gχ,n(0, 0) = 0, ∂δgχ,n(0, 0) = 1 6= 0;

Dini’s theorem ensures that in a neighbour of β = 0, for α 6= 2πr with r ∈ N+, δα,β

and δβχ are differentiable functions of β implicitly defined by g
(
β, δα,β(β)

)
= 0 and

gχ
(
β, δβχ(β)

)
= 0 respectively. Similarly, δ̂α,β is root of the function h, defined as

h(β, δ̂α,β) :=
(

2α+ δ̂α,β
)

2δ̂α,β cos

(
α+ δ̂α,β

2

)
+ α2β

(
α+ δ̂α,β

)
cos

(
α+ δ̂α,β

2

)
,

which satisfies

h(0, 0) = 0, ∂
δ̂
h(0, 0) = 4α cos

(α
2

)
6= 0 for α 6= 2πr;

Dini’s theorem ensures that in a neighbour of β = 0, for α 6= 2πr with r ∈ N+, δ̂α,β is a
differentiable function of β implicitly defined by h(β, δ̂α,β(β)) = 0.

Therefore, for β → 0 the frequencies of the coupled system tend to those of the
unperturbed string and to the proper frequency of the pendulum.

The presence of the pendulum modifies the odd frequencies of the string, while it
leaves the even ones unchanged since the pendulum hangs from a node of the string. In
Figure 2.7 is plotted the dispersion relation compared with the one without pendulum;
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to the frequency ω̂α,β it has been conventionally assigned the index 2s− 1
2 . In general,

ωα,βn ≤ ω0
n for n ≤ 2s − 2 and ωα,βn ≥ ω0

n for n ≥ 2s. In particular, the frequencies
closer in value to the proper frequency of the pendulum are more strongly modified with
respect to the others. ωα,βχ,n ≤ ω0

n for every n, and ω̂α,β < α for (2s− 2)π < α < (2s− 1)π
while ω̂α,β > α for (2s− 1)π < α < (2s)π. For small values of the parameter β, which
physically correspond to a light pendulum with respect to the string, the spectrum of
the unperturbed string is slightly modified by the presence of the hanging pendulum and
ω̂α,β is close in value to the proper frequency of the pendulum.

Figure 2.7: Dispersion relation for the string with pendulum: ωα,βn , ωβχ,n and ω̂α,β with α = 17
and β = 0.5; s = 3.

Let us now compute the eigenfunctions of the normal modes.

Proposition 2.4. For every j, for α 6= 2πr with r ∈ N+, the eigenfunctions are the
following:

- the eigenfunction associated to ωα,β2j is

Φ̂
ωα,β2j

(x) =

 0
a2j

b2j

 sin
(
ωα,β2j x

)
, (2.29)

- the eigenfunction associated to ωα,β2j−1 is

Φ̂
ωα,β2j−1

(x) = a2j−1


(ωα,β2j−1)2

α2−(ωα,β2j−1)2
sin

(
ωα,β2j−1

2

)
sin
(
ωα,β2j−1x

)
Θ(x1 − x) + sin

(
ωα,β2j−1(1− x)

)
Θ(x− x1)

0

 , (2.30)

- the eigenfunction associated to ω̂α,β is
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Φ̂ω̂α,β (x) = â2j−1

 (ω̂α,β)2

α2−(ω̂α,β)2
sin
(
ω̂α,β

2

)
sin
(
ω̂α,βx

)
Θ(x1 − x) + sin

(
ω̂α,β(1− x)

)
Θ(x− x1)

0

 , (2.31)

- the eigenfunction associated to ωβχ,2j−1 is

Φ̂
ωβχ,2j−1

(x) = bχ,2j−1

 0
0

sin
(
ωβχ,2j−1x

)
Θ(x1 − x) + sin

(
ωβχ,2j−1(1− x)

)
Θ(x− x1)

 ,

(2.32)
with an, bn, â, bχ,n ∈ R.

Proof. From (2.17) and (2.18), in order to determine A, a±, b± and aχ,±, bχ,±, the following
eigenvector problems have to be satisfied:

α2 − ω2 −ω2 cos
(
ω
2

)
−ω2 sin

(
ω
2

)
0 0

0 1 0 0 0
0 0 0 cos(ω) sin(ω)
0 cos

(
ω
2

)
sin
(
ω
2

)
− cos

(
ω
2

)
− sin

(
ω
2

)
βα2 ω sin

(
ω
2

)
−ω cos

(
ω
2

)
−ω sin

(
ω
2

)
ω cos

(
ω
2

)



A
a−
b−
a+

b+

 =


0
0
0
0
0


with ω solution of (2.19), and

1 0 0 0
0 0 cos(ω) sin(ω)
0 sin

(
ω
2

)
− cos

(
ω
2

)
− sin

(
ω
2

)
0 −ω cos

(
ω
2

)
+ βω2 sin

(
ω
2

)
−ω sin

(
ω
2

)
ω cos

(
ω
2

)


aχ,−
bχ,−
aχ,+
bχ,+

 =


0
0
0
0


with ω solution of (2.25).

- For ωα,β2j : 
A = 0
a− = 0
a+ = 0
b+ = b−

and


aχ,− = 0
aχ,+ = 0
bχ,+ = bχ,−

which yields eigenfunction (2.29).

- For ωα,β2j−1: 

A =
(ωα,β2j−1)2

α2−(ωα,β2j−1)2
sin

(
ωα,β2j−1

2

)
b−

a− = 0

a+ = sin
(
ωα,β2j−1

)
b−

b+ = − cos
(
ωα,β2j−1

)
b−,

and


aχ,− = 0
aχ,+ = 0
bχ,− = 0
bχ,+ = 0

which yields eigenfunction (2.30).
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- For ω̂α,β : 
A = (ω̂α,β)2

α2−(ω̂α,β)2
sin
(
ω̂α,β

2

)
b−

a− = 0
a+ = − sin

(
ω̂α,β

)
b−

b+ = − cos
(
ω̂α,β

)
b−,

and


aχ,− = 0
aχ,+ = 0
bχ,− = 0
bχ,+ = 0

which yields eigenfunction (2.31).

- For ωβχ,2j−1: 
A = 0
a− = 0
a+ = 0
b− = 0
b+ = 0

and


aχ,− = 0

aχ,+ = sin
(
ωβχ,2j−1

)
bχ,−

bχ,+ = − cos
(
ωβχ,2j−1

)
bχ,−

which yields eigenfunction (2.32).

The normal modes found have the following physical interpretation. The family
associated to the even frequencies leaves the pendulum still, hanging from a node of the
wave described by the string and every combination of normal modes is still a periodic
solution, due to the degeneracy of ωα,β2j . In the normal modes associated to ωα,β2j−1 and to
ω̂α,β the pendulum and the transverse horizontal component of the string are in motion.
Lastly, for ωα,βχ,2j−1 the string oscillates only vertically and the pendulum is at rest. Note
that for the odd frequencies the string swings with different amplitudes on the two sides
with respect to the suspension point of the pendulum.

Let us now determine the normal modes of oscillation in the case in which the
parameter α is a multiple of 2π. For such values, ω̂α,β coincides with an even frequency of
the string, hence this configuration can be thought as a kind of resonance. Fixed α = 2πs,
the behaviour of the system is identical to the case considered above for all frequencies
except for ωα,β2s , for which the pendulum instead of being at rest oscillates with the string.

Proposition 2.5. For every β > 0 and α = 2πr with r ∈ N+, the frequencies of
the normal modes of oscillation (2.15) are three countable families: {ωα,β2j : j ∈ N+},
{ωα,β2j−1 : j ∈ N+}, {ωβχ,2j−1 : j ∈ N+}, with the following properties. Let s be such that
s = α

2π , then

1. ωα,β2j = ω0
2j

1a) deg(ωα,β2j ) = 2 if j 6= s

1b) deg(ωα,β2j ) = 3 if j = s,

2. ω0
2j−2 < ωα,β2j−1 < ω0

2j−1 for j ≤ s
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2a) |ωα,β2j−1 − ω0
2j−1| < |ω

α,β
2j+1 − ω0

2j+1|,

3. ω0
2j−1 < ωα,β2j−1 < ω0

2j for j > s

3a) ωα,β2j−1 − ω0
2j−1 > ωα,β2j+1 − ω0

2j+1,

4. ω0
2j−2 < ωβχ,2j−1 < ω0

2j−1

4a) |ωα,βχ,2j−1 − ω0
χ,2j−1| < |ω

α,β
χ,2j+1 − ω0

χ,2j+1|.

Moreover, asymptotically
ωα,β2j−1 −−−→j→∞

ω0
2j−1

ωα,βχ,2j−1 −−−→j→∞
ω0

2j−2.

Proof. The proof is analogous to the one of Proposition 2.3. In this case, ω̂α,β coincides
with ωα,β2s , therefore deg(ωα,β2s ) = 3.

Figure 2.8: Dispersion relation for the string with pendulum with double root: ωα,βn and ωβχ,n
with α = 6π and β = 0.5.

Finally, let us compute the corresponding eigenfunctions.

Proposition 2.6. For every j, for α = 2πs with s ∈ N+, the eigenfunctions are the
following:

- the eigenfunction associated to ωα,β2j , with j 6= s, is (2.29),

- the eigenfunction associated to ωα,β2s is
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Φ̂
ωα,β2s

(x) =


(−1)s

β(2s)π (a− a′)
a sin

(
ωα,β2s x

)
Θ(x1 − x) + a′ sin

(
ωα,β2s x

)
Θ(x− x1)

b sin
(
ωα,β2s x

)
 , (2.33)

- the eigenfunction associated to ωα,β2j−1 is (2.30),

- the eigenfunction associated to ωβχ,2j−1 is (2.32),

with a, a′, b ∈ R.

Proof. The proofs for ωα,β2j with j 6= s, for ωα,β2j−1 and for ωβχ,2j−1 are analogous to those
of Proposition 2.4.

- For ωα,β2s = (2s)π: 
A = (−1)s

β(2s)π (b− − b+)

a− = 0
a+ = 0

and


aχ,− = 0
aχ,+ = 0
bχ,+ = bχ,−

which yields eigenfunction (2.33).

For ωα,β2s the system exhibits a particular dynamics, in which both the pendulum and
the string oscillate. In particular, for certain initial conditions, that is for a = 0 or a′ = 0,
one half of the string can stand still, or swings only vertically, while the other half and
the pendulum are in motion.



Chapter 3

Pendulum hanging from a string
with damping

The system considered up to now is conservative since the total energy is preserved during
the motion. In this chapter we introduce a dissipative contribution to the string and
repeat the analysis made in Chapter 2. This time, in order to determine the frequencies
of oscillation, we will assume a weak damping and make an expansion of the eigenvalues
in terms of the damping coefficient.

As shown through simple examples in Chapter 1, friction plays a crucial role in
the selection of the normal modes of oscillation and, ultimately, in the evolution of the
dynamics of the system. Hence, we first present the main damping models, in order to
justify the choice of friction made.

3.1 Damping model

In analogy with n-dimensional systems, a damped infinite-dimensional system can be
written in the form

utt + Γut +Ku = 0, (3.1)

where u ∈ C∞(R,R), and Γ and K are positive self-adjoint operators.
Different choices of damping lead, in general, to different dynamics. A classification of

the types of friction can be done distinguishing between internal and external damping,
depending whether the dissipation of energy is due to elements within the system or not.
A physical interpretation of various models can be found e.g. in [23].

External damping. It accounts for the energy loss due to the interaction of the system
with external elements. The two main contributions are the following:

- Coulomb (or frictional) damping, for which the kinetic energy of the system is
transformed into heat as the system slides against another dry surface. Such
friction is proportional to the normal force and it opposes to the motion, but

43
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does not depend on the velocity of the system once in motion:

Fc = −µN.

- Viscous damping, which is due to the medium in which the system is immersed.
It produces a force proportional to the relative velocity of the system with respect
to the medium:

Fv = −γut.

Internal damping. It accounts for the dissipation within the system, which might be due,
for example, to the friction between particles and depends therefore on their relative
displacements and speeds. In the case of a string or a beam it is connected to the
rate of change of bending, and depends in general on the elastic properties of the
material. Two main models should be mentioned, which differ from one another for
the dependence of the damping rate on the frequency (see [22], [13]):

- Kelvin-Voigt (or visco-elastic) model, which introduces a damping term propor-
tional to the linear operator which describes the elastic force acting on the velocity
of the system:

Fkv = −γKut.

- Structural (or hysteretic) damping, which produces a damping rate proportional
to the frequency of oscillation of the system. The damping force is

Fs = −γK
1
2ut.

Let us compare the damping rates, namely the real part of the eigenvalues, for the
different models. Let ω2

j be the eigenvalues of K with φj the associated eigenvectors, and
let us seek solutions of the form uj = eλjtφj .

• Viscous damping: the equation of motion is

utt + γut +Ku = 0.

Inserting the expression of uj and solving the characteristic equation, one gets the
following eigenvalues:

λj =
−γ ±

√
γ2 − 4ω2

j

2
.

The real part of λj for weak damping is constant, therefore viscous damping yields
a uniform damping rate.

• Kelvin-Voigt damping: the equation of motion is

utt + γKut +Ku = 0,
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whose eigenvalues are

λj =
−γω2

j ±
√
γ2ω4

j − 4ω2
j

2
.

The damping rate is proportional to the frequency squared, hence there is a di-
chotomy of decay rates, in particular higher frequencies decay much faster than the
lower ones.

• Structural damping: the equation of motion is

utt + γK
1
2ut +Ku = 0,

whose eigenvalues are

λj =
−γωj ±

√
γ2ω2

j − 4ω2
j

2
.

The real part decays proportionally to the frequency.

Experimental studies (see e.g. [12]) show that for various materials and in a wide range
of frequencies, the damping rate depends linearly on the frequency of oscillation. The
most fitting model would therefore be structural damping, nonetheless it might present
some difficulties since, in general, if K is a differential operator, K

1
2 might not be such.

For a detailed description of frequency-dependent damping refer to [22]. However, when
the damping is light the predictions of the Kelvin-Voigt model and the structural one are
comparable, therefore in this dissertation we adopt the visco-elastic damping model. For
a string the elastic operator K is −c2 ∂2

∂x2
, therefore the dissipating force is given by

γ
∂3u

∂t∂x2
.

3.2 Equations of motion

Consider the system studied in Chapter 2, consisting of a pendulum hanging from a flexible
and elastic string with extremities fixed. Let us introduce a dissipating contribution to the
string, adding to the equations of motion of the string (2.6) a damping force proportional
to ψtxx and χtxx, namely a Kelvin-Voigt damping term. Let ν be the dimensionless
parameter that accounts for internal damping. In our model we neglected the friction
acting on the pendulum, such as, for example, viscous damping of the air, since it is
reasonable to assume that, in general, its contribution is secondary with respect to the
internal friction of the string. The equations of motion become

β
(
φ̈(t) + ψtt(x1, t) + α2φ(t)

)
= 0

ψtt(x, t) + β
(
ψtt(x, t) + φ̈(t)

)
δ(x− x1)− ψxx(x, t)− νψtxx(x, t) = 0

χtt(x, t) + βχtt(x, t)δ(x− x1)− χxx(x, t)− νχtxx(x, t) = 0,

(3.2)

where

α2 =
gρΛ2

lτ
, β =

m

ρΛ
,
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and with the boundary conditions{
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t)

for every t ∈ R.

3.3 Damped normal modes

The equations of motion (3.2) are a linear system, therefore every solution, called damped
small oscillation, is a linear combination of solutions. In particular, we look for harmonic
solutions with an exponentially decreasing amplitude.

3.3.1 Spectrum of the damped vibrating string

Let us consider first the decoupled system. The pendulum does not have a dissipative
component, therefore, when decoupled, its motion is unchanged. The eigenvalues of the
string are, instead, modified.

For β = 0, the equations of motion of the damped string, and its boundary conditions,
are 

ψtt(x, t)− ψxx(x, t)− νψtxx(x, t) = 0
χtt(x, t)− χxx(x, t)− νχtxx(x, t) = 0
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t).

(3.3)

Definition 3.1. The damped normal modes of eigenvalue λ of system (3.3) are solutions
of the form:

Ψ(x, t) =

(
ψ(x, t)
χ(x, t)

)
= Re

[
Ψ̂λ(x)eλt

]
, (3.4)

with λ ∈ C, Re[λ] < 0 and Ψ̂λ : [0, 1]→ C2, called eigenfunction associated to λ.

The real part of the eigenvalues, µ := Re[λ] is called decay rate, while its imaginary
part, ω := Im[λ] is the oscillation frequency. Let us denote “±

√
x+ iy ” the pair of

complex squared roots of the complex number x+ iy.

Proposition 3.1. The eigenvalues of the damped normal modes (3.4) are a countable
family {λ0±

n : n ∈ N+} of degeneracy deg(λ0±
n ) = 2 ∀n, with

λ0±
n =

−n2π2ν ± nπ
√
n2π2ν2 − 4

2
. (3.5)

Proof. The equations in ψ and in χ are decoupled. Let us seek solutions of system (3.3)
of the form

Ψ(x, t) =

(
f(x)
g(x)

)
eλt,
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of which only the real part has to be considered. Then, f : [0, 1]→ C has to satisfy
f ′′(x)− ξ2f(x) = 0
f(0) = 0
f(1) = 0

(3.6)

where ξ ∈ C, with Im[ξ] > 0, is defined by the dispersion relation:

ξ(λ) := ± λ√
1 + νλ

. (3.7)

The first equation of system (3.6) has solution f(x) = aeξx + be−ξx, with a, b, ξ ∈ C; the
boundary conditions give a+ b = 0 and sinh(ξ) = 0, which implies

ξ0
n = inπ. (3.8)

From inversion of (3.7):

λ± =
ξ2ν ±

√
ξ4ν2 + 4ξ2

2
. (3.9)

Substituting (3.8) into (3.9), one gets (3.5).
Analogously, g : [0, 1]→ C has to satisfy

g′′(x)− ξ2g(x) = 0
g(0) = 0
g(1) = 0

(3.10)

which yields solution (3.5) as well. Therefore the eigenvalues λ0±
n have degeneracy two,

for every n.

The spectrum presents therefore the following properties (Figure 3.1):

• For n ≥ nm :=
⌈

2
πν

⌉
, the eigenvalues λ0±

n are real. Therefore, for every ν 6= 0, there
is a finite number of oscillating solutions only. Moreover, λ0+

n tends to −1/ν, while
λ0+
n tends to −∞.

• For n < nm, the eigenvalues λ0
n lie on a circle centred at (−1/ν, 0) of radius 1/ν in the

plane (Re[λ], Im[λ]). The frequencies of oscillation, Im[λ0±] = nπ
√

4− n2π2ν2/2,
are lower with respect to those of the string without damping, ω0

n = nπ.

• λ0+
r and λ0−

r coincide for values of ν such that 2
πν = r ∈ N+, which corresponds to

the critical damping.

In Figure 3.2 are reported the real and imaginary parts of the dispersion relation. For
weak damping, namely for n < nm, the real part of the eigenvalues is negative and
monotonically decreasing, and there is a quadratic dependence of the decay rate on the
frequency of the undamped system, ω0

n = nπ.

Let us now compute the corresponding eigenfunctions.
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Figure 3.1: Spectrum of the damped string: λ0n with ν = 0.1.

Proposition 3.2. For every n, the eigenfunction associated to λ0±
n is

Ψ̂λ0±n
(x) =

(
a±n
b±n

)
sin(nπx), (3.11)

with a±n , b±n ∈ C.

Proof. System (3.6) implies fn(x) = an sinh(ξ0
nx) and system (3.10) implies gn(x) =

bn sinh(ξ0
nx) with an, bn ∈ C, for every n. Substituting (3.8) within, one gets (3.11).

Since λ0±
n are degenerate, for every n, to each eigenvalue is associated a plane of

normal modes
(
a±n
b±n

)
, with a±n , b±n fixed by the initial conditions.

3.3.2 Spectrum of the damped string with pendulum

Let us now consider the coupled system, assuming x1 = 1
2 . For β 6= 0, the equations of

motion in presence of damping, with the boundary conditions, are
φ̈(t) + ψtt(x1, t) + α2φ(t) = 0

ψtt(x, t) + β
(
ψtt(x, t) + φ̈(t)

)
δ(x− x1)− ψxx(x, t)− νψtxx(x, t) = 0

χtt(x, t) + βχtt(x, t)δ(x− x1)− χxx(x, t)− νχtxx(x, t) = 0
ψ(0, t) = 0 = ψ(1, t)
χ(0, t) = 0 = χ(1, t).

(3.12)
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Figure 3.2: Dispersion relation for the damped string: λ0n with ν = 0.1; nm = 7.

(a) Re[λ0
n] (b) Im[λ0

n]

Definition 3.2. The damped normal modes of eigenvalue λ of system (3.12) are solutions
of the form:

Φ(x, t) =

 φ(t)
ψ(x, t)
χ(x, t)

 = Re
[
Ψ̂λ(x)eλt

]
, (3.13)

with λ ∈ C, Re[λ] < 0 and Ψ̂λ : [0, 1]→ C3, called eigenfunction associated to λ.

Proposition 3.3. The eigenvalues of the damped normal modes (3.13) are three countable
families and two special ones: {λα,β±2j : j ∈ N+}, {λα,β±2j−1 : j ∈ N+}, {λβ±χ,2j−1 : j ∈ N+}
and λ̂α,β±, with the following properties.

1. λα,β±2j = λ0±
2j

1a) deg(λα,β±2j ) = 2,

2. λα,β±2j−1 = ±iωα,β2j−1 + εα,β(ωα,β2j−1)ν + O(ν2),

3. λ̂α,β± = ±iω̂α,β + εα,β(ω̂α,β)ν + O(ν2),

4. λβ±χ,2j−1 =
−(ωβχ,2j−1)2ν±

√
(ωβχ,2j−1)4ν2−4(ωβχ,2j−1)2

2 .

with εα,β(ω) = −
1
2
α2βω3+2ω(α2−ω2)+

2ω(α2−ω2)2

α2β

8ω+α2βω+
4(α2−ω2)

ω
+

4(α2−ω2)2
α2βω

< 0.

Proof. Let us seek solutions of system (3.12) of the form

Φ(x, t) =

 A
f(x)
g(x)

 eλt,

with A ∈ C and f, g : [0, 1]→ C, and the real part intended. In order to handle the Dirac
delta function, we determine independently the solutions on the left-hand side, f−, g−, and
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on the right-hand side, f+, g+, of the discontinuity x1 and impose the interface conditions.
Then, defined ξ as

ξ(λ) := ± λ√
1 + νλ

, (3.14)

f(x) = f−(x)Θ(x1 − x) + f+(x)Θ(x− x1) has to satisfy

A(α2 + λ2) + λ2f(x1) = 0
f ′′(x)− ξ2f(x) = ξ2β(f(x) +A)δ(x− x1)
f−(0) = 0
f+(1) = 0
f−(x1) = f+(x1)
f ′+(x1)− f ′−(x1) = ξ2β(f(x1) +A)

(3.15)

and g(x) = g−(x)Θ(x1 − x) + g+(x)Θ(x− x1) has to satisfy
g′′(x)− ξ2g(x) = βξ2g(x)δ(x− x1)
g−(0) = 0
g+(1) = 0
g−(x1) = g+(x1)
g′+(x1)− g′−(x1) = βξ2g(x1).

(3.16)

Let us start considering the first system. The second equation of (3.15) has solution
f±(x) = a±e

ξx + b±e
−ξx, a±, b±, ξ ∈ C; the other five equations correspond to the

condition

det


α2 + λ2 λ2eξx1 λ2e−ξx1 0 0

0 1 1 0 0
0 0 0 eξ e−ξ

0 eξx1 e−ξx1 −eξx1 −e−ξx1
α2β

1+νλ −ξeξx1 ξe−ξx1 ξeξx1 −ξe−ξx1

 = 0,

where in the last raw it has already been substituted λ2(f(x1) + A) with −α2A, from
the first equation in (3.15). The vanishing of this determinant, for x1 = 1

2 , leads to the
characteristic equation

F (λ) := βξ(λ) sinh

(
ξ(λ)

2

)[(
α2 + λ2

)
2 cosh

(
ξ(λ)

2

)
+ α2βξ(λ) sinh

(
ξ(λ)

2

)]
= 0.

(3.17)
It has two families of solutions, which are the roots of

F1(λ) := sinh

(
ξ(λ)

2

)
= 0, (3.18a)

F2(λ) :=
(
α2 + λ2

)
2 cosh

(
ξ(λ)

2

)
+ α2βξ(λ) sinh

(
ξ(λ)

2

)
= 0. (3.18b)

- Equation (3.18a) has roots ξα,β2j (λ) = i(2j)π, j = 1, 2, . . . , from which, inverting (3.14),

λα,β2j = −n2π2ν±nπ
√
n2π2ν2−4

2 , which coincide with the even roots of the damped string
without pendulum (this proves the first part of 1.).
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- In order to solve equation (3.18b), let us utilise Dini theorem to determine at the first or-
der in ν the roots of F2(ν, λ) =

(
α2 + λ2

)
2 cosh

(
λ

2
√

1+νλ

)
+α2β λ√

1+νλ
sinh

(
λ

2
√

1+νλ

)
=

0. Set λ = iω for ν = 0,

F2(0, iω) = (α2 − ω2)2 cos
(ω

2

)
− α2βω sin

(ω
2

)
= 0

∂λF2(0, iω) =
1

2
i cos

(ω
2

)[
8ω + α2βω +

4(α2 − ω2)

ω
+

4(α2 − ω2)2

α2βω

]
6= 0,

and

∂λF2(0, iω) =
ω

2
i cos

(ω
2

)[1

2
α2βω + 2(α2 − ω2) +

2(α2 − ω2)2

α2β

]
.

Hence, set ε = −∂νF2(0,iω)
∂λF2(0,iω) , at the linear order in ν, λα,β±2j−1 = ±iωα,β2j−1 + εα,β(ωα,β2j−1)ν +

O(ν2). Analogous proof holds for λ̂α,β±. This proves 2. and 3.

Let us consider now system (3.16). The first equation of (3.16) has solution g±(x) =
aχ,±e

ξx+bχ,±e
−ξx, aχ,±, bχ,±, ω ∈ C; the other four equations correspond to the condition

det


1 1 0 0
0 0 eξ e−ξ

eξx1 e−ξx1 −eξx1 −e−ξx1
−ξeξx1(1 + βξ) ξe−ξx1(1− βξ) ξeξx1 −ξe−ξx1

 = 0.

For x1 = 1
2 , it gives the following characteristic equation:

G(λ) := ξ(λ) sinh

(
ξ(λ)

2

)[
2 cosh

(
ξ(λ)

2

)
+ βξ(λ) sinh

(
ξ(λ)

2

)]
= 0. (3.19)

It has two families of solutions which are the roots of

G1(λ) := sinh

(
ξ(λ)

2

)
= 0, (3.20a)

G2(λ) := 2 cosh

(
ξ(λ)

2

)
+ βξ(λ) sinh

(
ξ(λ)

2

)
= 0. (3.20b)

- Equation (3.20a) has roots ξβχ,2j(λ) = i(2j)π, j = 1, 2, . . . , from which λβχ,2j = λ0
2j .

Therefore, deg(λα,β2j ) = 2 ∀j ∈ N+, which proves 1a).

- Equation (3.20b) can not be solved analytically, nonetheless, noticing that ξ is purely
imaginary, it can be written as ξ = iω, with ω ∈ R satisfying

2 cos
(ω

2

)
− βω sin

(ω
2

)
= 0.

This equation corresponds to (2.26b), therefore its roots are ωβχ,2j−1. Hence, ξ
β
χ,2j−1 =

iωβχ,2j−1, which, from inversion of (3.14), yields 4.
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For small values of the damping coefficient, at the linear order, the eigenvalues acquire
a negative real part with respect to the frequencies of the undamped system. Figure 3.3
and Figure 3.4 show the spectrum of the system and the dispersion relation, respectively,
compared with those of the unperturbed string. The even eigenvalues are unchanged,
while the odd ones are modified by the presence of the pendulum. Note that while the
eigenvalues λβχ,n still lie on a circle, λα,βn do not.

Figure 3.3: Spectrum of the damped string with pendulum: λα,βn , λ̂α,β , λβχ,n with α = 17, β = 0.1
and ν = 0.1.

Remark 3.1. In presence of damping the eigenvalue λ̂α,β does not ever coincide with
an eigenvalue of the unperturbed string, unlike for the undamped case. In fact, the
characteristic equation (3.17) does not admit double roots.
Remark 3.2. All the eigenvalues of the system have a non-vanishing real part, therefore,
there are no invariant undamped subspaces in the phase space. This means that every
small oscillation will be eventually damped out. Nonetheless, since we chose a model of
friction which leads to decay rates proportional to the square of the frequency, we expect
normal modes with high frequencies to vanish quickly and only a combination of a few
damped normal modes with low frequencies to survive for longer.

Finally, let us compute the associated eigenfunctions.

Proposition 3.4. For every j, the eigenfunctions are the following:

- the eigenfunction associated to λα,β±2j is
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Figure 3.4: Dispersion relation for the damped string with pendulum: λα,βn , λ̂α,β , λβχ,n with
α = 17, β = 0.1 and ν = 0.1. To the eigenvalue λ̂α,β has been assigned the arbitrary
index 3.5.

(a) Re[λ] (b) Im[λ]

Φ̂
λα,β±2j

(x) =

 0
a±2j
b±2j

 sinh(ξ(λα,β2j )x), (3.21)

- the eigenfunction associated to λα,β±2j−1 is

Φ̂
λα,β±2j−1

(x) = a±2j−1


− (λα,β2j−1)2

α2+(λα,β2j−1)2
sinh

(
ξ(λα,β2j−1)

2

)
sinh

(
ξ(λα,β2j−1)x

)
Θ(x1 − x) + sinh

(
ξ(λα,β2j−1)(1− x)

)
Θ(x− x1)

0

 ,

(3.22)

- the eigenfunction associated to λ̂α,β± is

Φ̂
λ̂α,β±

(x) = â±


− (λ̂α,β)2

α2+(λ̂α,β)2
sinh

(
ξ(λ̂α,β)

2

)
sinh

(
ξ(λ̂α,β)x

)
Θ(x1 − x) + sinh

(
ξ(λ̂α,β)(1− x)

)
Θ(x− x1)

0

 ,

(3.23)

- the eigenfunction associated to λβ±χ,2j−1 is

Φ̂
λβ±χ,2j−1

(x)=b±χ,2j−1

 0
0

sinh
(
ξ(λβχ,2j−1)x

)
Θ(x1 − x)+sinh

(
ξ(λβχ,2j−1)(1− x)

)
Θ(x− x1)

 ,

(3.24)
with a±n , b±n , â±, b±χ,n ∈ C.
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Proof. From (3.15) and (3.16), in order to determine A, a±, b± and aχ,±, bχ,±, the following
eigenvector problems have to be satisfied:

α2 + λ2 λ2e
ξ(λ)
2 λ2e

−ξ(λ)
2 0 0

0 1 0 0 0

0 0 0 eξ(λ) e−ξ(λ)

0 e
ξ(λ)
2 e

−ξ(λ)
2 −e

ξ(λ)
2 −e

−ξ(λ)
2

βα2

1+νλ −ξ(λ)e
ξ(λ)
2 ξ(λ)e

−ξ(λ)
2 ξ(λ)e

ξ(λ)
2 −ξ(λ)e−

ξ(λ)
2




A
a−
b−
a+

b+

 =


0
0
0
0
0


with λ solution of (3.17), and

1 1 0 0

0 0 eξ(λ) e−ξ(λ)

e
ξ(λ)
2 e

−ξ(λ)
2 −e

ξ(λ)
2 −e

−ξ(λ)
2

ξ(λ)e
ξ(λ)
2 (1+βξ(λ)) −ξ(λ)e

−ξ(λ)
2 (1−βξ(λ)) ξ(λ)e

ξ(λ)
2 −ξ(λ)e

−ξ(λ)
2



aχ,−
bχ,−
aχ,+
bχ,+

=


0
0
0
0


with λ solution of (3.19).

- For λα,β2j : 
A = 0
b− = −a−
b+ = −a+

a+ = a−

and


bχ,− = −aχ,−
bχ,+ = −aχ,+
aχ,+ = aχ,−

which yields eigenfunction (3.21).

- For λα,β2j−1:
A = −a−

(λα,β2j−1)2

α2−(λα,β2j−1)2

(
e
ξ(λ

α,β
2j−1

)

2 − e
−ξ(λα,β

2j−1
)

2

)
b− = −a−
b+ = −a+e

2ξ(λα,β2j−1)

a+ = −a−e−ξ(λ
α,β
2j−1),

and


aχ,− = 0
aχ,+ = 0
bχ,− = 0
bχ,+ = 0

which yields eigenfunction (3.22).

- For λ̂α,β : 
A = −a− (λ̂α,β)2

α2−(λ̂α,β)2

(
e
ξ(λ̂α,β)

2 − e
−ξ(λ̂α,β)

2

)
b− = −a−
b+ = −a+e

2ξ(λ̂α,β)

a+ = −a−e−ξ(λ̂
α,β),

and


aχ,− = 0
aχ,+ = 0
bχ,− = 0
bχ,+ = 0

which yields eigenfunction (3.23).
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- For λβχ,2j−1: 
A = 0
a− = 0
a+ = 0
b− = 0
b+ = 0

and


b− = −a−
b+ = −a+e

2ξ(λβχ,2j−1)

a+ = −a−e−ξ(λ
β
χ,2j−1)

which yields eigenfunction (3.24).





Chapter 4

Two pendula hanging from a string

In this chapter we extend the study made so far to the case in which there are two
pendula hanging from a string. The phenomenology in this configuration is ever richer;
in particular, we shall analyse the mutual interaction between the two pendula through
the string, which – under suitable values of the parameters – leads to beating phenomena.
Nonetheless, in absence of friction synchronization can not occur, therefore we have to
wait for the next chapter to study that mechanism.

The computation of the eigenvalues of the small oscillations is done here numerically,
assuming the two pendula to be identical and fixing their suspension points at one-third
and two-thirds along the string.

4.1 Description of the system

The model is the same as before, with the only difference that two pendula are hanging
from the string. The system consists of a homogeneous flexible and elastic string with fixed
extremities and two pendula hanging from points O1 and O2 of the string, respectively.

Let ρ be the linear density of the string, τ its tension and Λ its length; let then lk be
the length of the k-th pendulum and mk its mass, with k = 1, 2.

Since in Chapter 2 it emerged that, in the regime of small oscillations, the vertical
component of the string always decouples from the transverse horizontal one and the
pendulum, we assume now, without much loss of generality, that the string is constrained
to lay on a horizontal plane, and it is therefore not subjected to the action of its weight,
unlike the pendula. Let ψ be the horizontal transverse displacement of a point of the
string from the x-axis on the xz-plane. The cable is thus described now by the following
embedding:

[0,Λ] 3 x 7→

 x
0

z(x, t) = ψ(x, t)

 ∈ R3

with function ψ : [0,Λ]× R→ R such that ψ(0, t) = 0 = ψ(Λ, t) ∀t.
Let φk be the angular displacement of the k-th pendulum measured from the descendant

y-axis on the yz-plane and let us denote with xk the x-coordinate of the suspension point

57
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Ok. The coordinates of the pendula are therefore
xpk = xk
ypk(t) = −lk cosφk(t)
zpk(t) = ψ(xk, t) + lk sinφk(t),

with k = 1, 2.

Figure 4.1: Model: two pendula hanging from a string.

We initially consider the pendula having different masses and lengths and, for the
sake of simplicity, constrain the study of the normal modes of oscillations to the case of
two identical pendula.

4.2 Lagrangian

The system is described by a Lagrangian L, which is the difference between the kinetic
energy and the potential energy of the system

L(φ1, φ̇1, φ2, φ̇2, ψ, ψt) = T (φ1, φ̇1, φ2, φ̇2, ψ, ψt)− V (φ1, φ2, ψ),

where each term is sum of the contributions of the two pendula and of the string:

T =

2∑
k=1

mk

2

[
l2kφ̇

2
k + ψ2

t (xk) + 2lkφ̇kψt(xk) cos(φk)
]

+

∫ Λ

0

ρ

2
ψ2
t dx,

V = −
2∑

k=1

mkglk cos(φk) +

∫ Λ

0

τ

2
ψ2
x dx.
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As before, we work in the regime of small oscillations about the stable equilibrium
configuration (φ1,eq, φ2,eq, ψeq(x)) = (0, 0, 0). To second order in the displacements, the
Lagrangian is therefore the following:

L =

∫ Λ

0

{[
1

2
ρψ2

t −
1

2
τψ2

x

]
+

2∑
k=1

[
1

2
mk

(
l2kφ̇

2
k + ψ2

t +2lkφ̇kψt

)
− 1

2
mkglkφ

2
k

]
δ(x− xk)

}
dx.

Let us rescale the variables in order to obtain an adimensional Lagrangian, as follows:

x 7→ Λx, φk 7→
Λ

lk
φ, ψ 7→ Λψ, t 7→

√
ρΛ2

τ
t.

and let us define the following dimensionless parameters αk, βk > 0, k = 1, 2, which
characterise the geometry of the system:

α2
k =

ρgΛ2

lkτ
, βk =

mk

Λρ
. (4.1)

The definitive adimensional Lagrangian is

L =

∫ 1

0

{[
1

2
ψ2
t −

1

2
ψ2
x

]
+

2∑
k=1

βk

[
1

2

(
φ̇2
k + ψ2

t + 2φ̇kψt

)
− 1

2
α2
kφ

2
k

]
δ(x− xk)

}
dx,

(4.2)
which can be written in terms of Lagrangian density L:

L(φ1, φ̇1, φ2, φ̇2, ψ, ψt) =

∫ 1

0
L(φ1, φ̇1, φ2, φ̇2, ψ, ψt, ψx) dx.

4.3 Equations of motion

The equations of motion of the coupled system, for β1, β2 6= 0, are
φ̈1(t) + ψtt(x1, t) + α2

1φ1(t) = 0

φ̈2(t) + ψtt(x2, t) + α2
2φ2(t) = 0

ψtt(x, t) +
∑2

k=1 βk

(
ψtt(x, t) + φ̈k(t)

)
δ(x− xk)− ψxx(x, t) = 0,

(4.3)

with the boundary conditions

ψ(0, t) = 0 = ψ(1, t) (4.4)

for all t ∈ R.
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4.4 Normal modes of oscillation

The equations of motion (4.3) are a linear system, therefore every solution, called small
oscillation, can be written as a linear superposition of solutions. In particular, we are
interested in periodic solutions in which every part of the system oscillates with the same
frequency, namely normal modes of oscillation. As before, we will not be able to prove the
unicity of the solutions found, since this would require a weak formulation of the problem
with use of test functions. Nonetheless, we shall characterise solutions which are C0.

In the computation of the normal modes we assume the two pendula to be identical,
namely α1 = α2 ≡ α and β1 = β2 ≡ β, and we set x1 = 1

3 and x2 = 2
3 .

Definition 4.1. The normal modes of oscillation of frequency ω of system (4.3) are
periodic solutions of the form:

Φ(x, t) =

 φ1(t)
φ2(t)
ψ(x, t)

 = Φ̂ω(x) cos(ωt+ η), (4.5)

with ω ∈ R, η ∈ [0, 2π[ and Φ̂ω : [0, 1]→ R3, called eigenfunction associated to ω.

Proposition 4.1. The frequencies of the normal modes of oscillation (4.5), for x1 = 1
3

and x2 = 2
3 , are the roots of the characteristic equation

F (ω) := −ω2 sin
(ω

3

)[
(α2 − ω2)22 cos2

(ω
3

)
+ α4β2ω2 sin2

(ω
3

)
+ (α2 − ω2)2 cos

(
2ω

3

)
− 2ωα2β(α2 − ω2) sin

(
2ω

3

)]
= 0. (4.6)

Proof. Seek solution of system of (4.3) of the form

Φ(x, t) =

 A1

A2

f(x)

 cos(ωt+ η),

with A1, A2 ∈ R and f : [0, 1] → R. In order to handle the Dirac delta functions,
we determine independently the solutions on the left-hand side and on the right-hand
side of each discontinuity. Then, f(x) = fI(x)Θ(x1 − x) + fII(x)Θ(x− x1)Θ(x2 − x) +
fIII(x)Θ(x− x2) has to satisfy

(α2 − ω2)A1 − ω2f(x1) = 0
(α2 − ω2)A2 − ω2f(x2) = 0

f ′′(x) + ω2f(x) = −βω2
∑2

k=1(f(x) +Ak)δ(x− xk)
fI(0) = 0
fIII(1) = 0
fI(x1) = fII(x1)
fII(x2) = fIII(x2)
f ′II(x1)− f ′I(x1) = −βω(f(x1) +A1)
f ′III(x2)− f ′II(x2) = −βω(f(x2) +A2).

(4.7)
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The third equation of (4.7) has solution fK(x) = aK cos(ωx) + bK sin(ωx), aK , bK ∈ R,
K = I, II, III, ω ∈ R; the other eight equations correspond to the condition

det



α2 − ω2 0 −ω2c1 −ω2s1 0 0 0 0
0 α2 − ω2 0 0 −ω2c2 −ω2s2 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 c s
0 0 c1 s1 −c1 −s1 0 0
0 0 0 0 c2 s2 −c2 −s2
βα2 0 ωs1 −ωc1 −ωs1 ωc1 0 0

0 βα2 0 0 ωs2 −ωc2 −ωs2 ωc2


= 0,

where c = cos(ω), s = sin(ω), ck = cos(ωxk), sk = sin(ωxk), k = 1, 2, and where in the
last two raws it has already been substituted ω2(f(xk) +Ak) with α2Ak. The vanishing
of this determinant, for x1 = 1

3 and x2 = 2
3 , leads to the characteristic equation (4.6).

The frequencies can be determined solving numerically equation (4.6). For every β > 0
and α 6= 3πr, with r ∈ N+, there are two countable families of frequencies, consisting
respectively of those which are multiple of 3π and those which are not, and two special
ones: {ωα,β3j : j ∈ N+}, {ωα,β3j−2, ω

α,β
3j−1 : j ∈ N+} and ω̂α,β1 , ω̂α,β2 . Analogously to the

case of the single pendulum, ωα,βn ≤ ω0
n for n ≤ 3s− 1 and ωα,βn ≥ ω0

n for n ≥ 3s, with
s(α) = d α3π e (Figure 4.2).

Figure 4.2: Dispersion relation for the string with two pendula: ωα,βn and ω̂α,β1,2 with α = 17 and
β = 0.5; s = 2. To the frequencies ω̂α,βk it has been assigned the arbitrary indices
3s− k

3 , with k = 1, 2.

Let us now compute the eigenfunctions of the normal modes.

Proposition 4.2. For every j, β > 0 and α 6= 3πr, with r ∈ N+, the eigenfunctions are
the following:

- the eigenfunction associated to ωα,β3j is
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Φ̂
ωα,β3j

(x) =

 0
0
a3j

 sin(3jπx), (4.8)

- the eigenfunction associated to ωα,β3j−k is

Φ̂
ωα,β3j−k

(x) = a3j−k


(ωα,β3j−k)2

α2−(ωα,β3j−k)2
sin

(
ωα,β3j−k

3

)
(ωα,β3j−k)2

α2−(ωα,β3j−k)2
sin

(
ωα,β3j−k

3

)[
2 cos

(
ωα,β3j−k

3

)
− α2βωα,β3j−k

α2−(ωα,β3j−k)2
sin

(
ωα,β3j−k

3

)]
BΘ(x1 − x) + CΘ(x− x1)Θ(x2 − x) +DΘ(x− x2)

 ,

(4.9)
with k = 1, 2 and

B = sin
(
ωα,β3j−kx

)
C = sin

(
ωα,β3j−kx

)
+

α2βωα,β3j−k

α2 − (ωα,β3j−k)
2

sin

(
ωα,β3j−k

3

)
sin

(
ωα,β3j−k

3
− ωα,β3j−kx

)

D =

(
2 cos

(
ωα,β3j−k

3

)
−

α2βωα,β3j−k

α2 − (ωα,β3j−k)
2

sin

(
ωα,β3j−k

3

))
sin
(
ωα,β3j−k − ω

α,β
3j−kx

)
,

- the eigenfunction associated to ω̂α,βk , is

Φ̂
ω̂α,βk

(x) = âk


(ω̂α,βk )2

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)
(ω̂α,βk )2

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)[
2 cos

(
ω̂α,βk

3

)
− α2βω̂α,βk

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)]
B̂Θ(x1 − x) + ĈΘ(x− x1)Θ(x2 − x) + D̂Θ(x− x2)

 , (4.10)

with k = 1, 2 and

B̂ = sin
(
ω̂α,βk x

)
Ĉ = sin

(
ω̂α,βk x

)
+

α2βω̂α,βk

α2 − (ω̂α,βk )2
sin

(
ω̂α,βk

3

)
sin

(
ω̂α,βk

3
− ω̂α,βk x

)

D̂ =

(
2 cos

(
ω̂α,βk

3

)
−

α2βω̂α,βk

α2 − (ω̂α,βk )2
sin

(
ω̂α,βk

3

))
sin
(
ω̂α,βk − ω̂α,βk x

)
,

with an, âk ∈ R.

Proof. From (4.7), in order to determine Ak, aK , bK , k = 1, 2, K = I, II, III, the
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following eigenvector problems have to be satisfied:



α2 − ω2 0 −ω2c1 −ω2s1 0 0 0 0
0 α2 − ω2 0 0 −ω2c2 −ω2s2 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 c s
0 0 c1 s1 −c1 −s1 0 0
0 0 0 0 c2 s2 −c2 −s2
βα2 0 ωs1 −ωc1 −ωs1 ωc1 0 0

0 βα2 0 0 ωs2 −ωc2 −ωs2 ωc2





A1

A2

aI
bI
aII
bII
aIII
bIII


=



0
0
0
0
0
0
0
0



with ω solution of (4.6).

- For ωα,β3j : 
A1 = 0
A2 = 0
aI = aII = aIII = 0
bI = bII = bIII

which yields eigenfunction (4.8).

- For ωα,β2j−k, k = 1, 2:



A1 =
(ωα,β2j−k)2

α2−(ωα,β2j−k)2
sin

(
ωα,β2j−k

3

)
bI

A2 = A1

[
2 cos

(
ωα,β2j−k

3

)
− α2βωα,β2j−k

α2−(ωα,β2j−k)2
sin

(
ωα,β2j−k

3

)]
aI = 0

aII =
α2βωα,β2j−k

α2−(ωα,β2j−k)2
sin2

(
ωα,β2j−k

3

)
bI

aIII = sin
(
ωα,β2j−k

)[
2 cos

(
ωα,β2j−k

3

)
− α2βωα,β2j−k

α2−(ωα,β2j−k)2
sin

(
ωα,β2j−k

3

)]
bI

bII =

[
1− α2βωα,β2j−k

α2−(ωα,β2j−k)2
sin

(
ωα,β2j−k

3

)
cos

(
ωα,β2j−k

3

)]
bI

bIII = cos
(
ωα,β2j−k

)[
2 cos

(
ωα,β2j−k

3

)
− α2βωα,β2j−k

α2−(ωα,β2j−k)2
sin

(
ωα,β2j−k

3

)]
bI

which yields eigenfunction (4.9).
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- For ω̂α,βk , k = 1, 2:

A1 =
(ω̂α,βk )2

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)
bI

A2 = A1

[
2 cos

(
ω̂α,βk

3

)
− α2βω̂α,βk

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)]
aI = 0

aII =
α2βω̂α,βk

α2−(ω̂α,βk )2
sin2

(
ω̂α,βk

3

)
bI

aIII = sin
(
ω̂α,βk

)[
2 cos

(
ω̂α,βk

3

)
− α2βω̂α,βk

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)]
bI

bII =

[
1− α2βω̂α,βk

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)
cos

(
ω̂α,βk

3

)]
bI

bIII = cos
(
ω̂α,βk

)[
2 cos

(
ω̂α,βk

3

)
− α2βω̂α,βk

α2−(ω̂α,βk )2
sin

(
ω̂α,βk

3

)]
bI

which yields eigenfunction (4.10).

The normal modes found have the following physical interpretation. The family
associated to the frequencies multiple of 3π leaves the pendula still, hanging from two
nodes of the wave described by the string. In the normal modes associated to ωα,β2j−k and
to ω̂α,βk , k = 1, 2, both pendula and the string are in motion.

Let us now determine the normal modes of oscillation in the case in which the
parameter α is a multiple of 3π. For such values, ω̂α,β1 = ω̂α,β2 and they coincide with a
frequency of the string. Fixed α = 3πs, the behaviour of the system is identical to the
case considered above for all frequencies except for ωα,β3s , for which the pendula instead of
being at rest oscillate with the string.

For every β > 0 and α = 3πr, with r ∈ N+, there are two countable families of
frequencies, consisting respectively of those which are multiple of 3π and those which are
not: {ωα,β3j : j ∈ N+}, {ωα,β3j−2, ω

α,β
3j−1 : j ∈ N+}, and, fixed α = 3πs, deg(ωα,β3s ) = 3.

Finally, let us compute the associated eigenfunctions.

Proposition 4.3. For every j, β > 0 and α = 3πs, the eigenfunctions are the following:

- the eigenfunction associated to ωα,β3j , with j 6= s, is (4.8),

- the eigenfunction associated to ωα,β3s is

Φ̂
ωα,β3s

(x) =


(−1)s

β(3s)π (a− a′)
1

β(3s)π (a′ − a′′)
sin(3sπx)

(
aΘ(x1 − x) + a′Θ(x− x1)Θ(x2 − x) + a′′′Θ(x1 − x)

)
 ,

(4.11)
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Figure 4.3: Dispersion relation for the string with two pendula with double root: ωα,βn with
α = 6π and β = 0.5.

- the eigenfunction associated to ωα,β3j−k is (4.9),

with a, a′, a′′ ∈ R.

Proof. The proofs for ωα,β3j with j 6= s and for ωα,β3j−k are analogous to those of Proposi-
tion 4.2.

- For ωα,β3s = (3s)π: 
A1 = (−1)s

β(3s)π (bI − bII)
A2 = 1

β(3s)π (bII − bIII)
aI = aII = aIII = 0

which yields eigenfunction (4.11).

When the system oscillates with a frequency equal to ωα,β3s , depending on the initial
conditions, the following scenarios are possible:

- both pendula and the string are in motion,
- the string oscillates, while both pendula are at rest,
- one pendulum stand still, while the other one and the string oscillate,
- the two pendula swing, while segments of string are at rest,
- one pendulum and segments of string stand still, while the other one oscillates.

4.5 Beats

In the configurations in which two, or more, frequencies are close to each other one
expects to find beating phenomena. Let us consider the situation in which the first two
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frequencies are close and – neglecting the contribution of higher frequencies – study the
motion of the coupled system.

From a numerical computation of A1 and A2, it emerges that either A1 = A2 in the
first normal mode and A1 = −A2 in the second one, or vice versa – depending on the
parameters α and β.

Let us choose the initial conditions such that, at t = 0, one pendulum has amplitude
A and zero velocity, while the other one is at rest in its equilibrium position:

φ1(0) = A
φ2(0) = 0

φ̇1(0) = 0

φ̇1(0) = 0.

(4.12)

The small oscillation, sum of the first two normal modes, is therefore{
φ1(t) = c1 cos(ω1 + η1) + c2 cos(ω2 + η2)
φ2(t) = c2 cos(ω1 + η1)− c2 cos(ω2 + η2),

(4.13)

which satisfies the initial conditions chosen for c1 = c2 = A
2 , η1 = η2 = 0. By substituting

these values into (4.13), the small oscillation can be written asφ1(t) = A cos
(
ω2−ω1

2 t
)

cos
(
ω2+ω1

2 t
)

φ2(t) = A sin
(
ω2−ω1

2 t
)

sin
(
ω2+ω1

2 t
)
,

(4.14)

which represent oscillations of the average frequency ω2+ω1
2 and modulated amplitude

(Figure 4.4).

Remark 4.1. The choice of considering only the contribution of the first two normal modes
will be justified with the introduction of an appropriate damping force, which produces
damping rates dependent on the frequency of oscillation.
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Figure 4.4: Beats: φ1(t), φ2(t) with α = 0.1 and β = 25.

(a) φ1(t) with ω1. (b) φ2(t) with ω1.

(c) φ1(t) with ω2. (d) φ2(t) with ω2.

(e) φ1(t) with ω1, ω2. (f) φ2(t) with ω1, ω2.





Chapter 5

Two pendula hanging from a string
with damping

In this chapter we add to the system, consisting of two pendula hanging from a flexible and
elastic string, the same dissipative contribution as in Chapter 3 . We fix the suspension
point of each pendula at one-third and two-thirds of the string, respectively, and study
the small oscillations about the equilibrium configuration. The eigenvalues of the damped
oscillations have been numerically determined and a qualitative analysis of the dependence
on the parameters is presented. Thus, we investigate the role of damping in the possible
synchronization of the two pendula.

5.1 Equations of motion

The equations of motion of the linearised damped coupled system, for β1, β2 6= 0, are
φ̈1(t) + ψtt(x1, t) + α2

1φ1(t) = 0

φ̈2(t) + ψtt(x2, t) + α2
2φ2(t) = 0

ψtt(x, t) +
∑2

k=1 βk

(
ψtt(x, t) + φ̈k(t)

)
δ(x− xk)− ψxx(x, t)− ν ψtxx(x, t) = 0,

(5.1)

where

α2
k =

ρgΛ2

lkτ
, βk =

mk

Λρ
, k = 1, 2,

and with the boundary conditions

ψ(0, t) = 0 = ψ(1, t) (5.2)

for all t ∈ R.

5.2 Damped normal modes

In the computation of the damped normal modes we assume the two pendula to be
identical, namely α1 = α2 ≡ α and β1 = β2 ≡ β, and we set x1 = 1

3 and x2 = 2
3 .

69



70 Chapter 5. Two pendula hanging from a string with damping

Definition 5.1. The damped normal modes of eigenvalue λ of system (5.1) are solutions
of the form:

Φ(x, t) =

 φ1(t)
φ2(t)
ψ(x, t)

 = Re
[
Φ̂λ(x)eλt

]
, (5.3)

with λ ∈ C, Re[λ] < 0, and Φ̂λ : [0, 1]→ C3, called eigenfunction associated to λ.

Proposition 5.1. The eigenvalues of the damped normal modes (5.3), for x1 = 1
3 and

x2 = 2
3 , are the roots of the characteristic equation

F (λ) := ξ2(λ) sinh

(
ξ(λ)

3

)[
(α2 + λ2)22 cosh2

(
ξ(λ)

3

)
+ α4β2ξ2(λ) sinh2

(
ξ(λ)

3

)
+ (α2 + λ2)2 cosh

(
2ξ(λ)

3

)
+ 2ξ(λ)α2β(α2 + λ2) sinh

(
2ξ(λ)

3

)]
= 0, (5.4)

where ξ ∈ C, Im[ξ] > 0, is defined by the dispersion relation

ξ(λ) := ± λ√
1 + νλ

. (5.5)

Proof. Seek solution of system of (5.1) of the form

Φ(x, t) =

 A1

A2

f(x)

 eλt,

with A1, A2 ∈ C and f : [0, 1]→ C, and the real part intended. In order to handle the
Dirac delta functions, we determine independently the solutions on the left-hand side and
on the right-hand side of each discontinuity. Then, f(x) = fI(x)Θ(x1 − x) + fII(x)Θ(x−
x1)Θ(x2 − x) + fIII(x)Θ(x− x2) has to satisfy



(α2 + λ2)A1 + λ2f(x1) = 0
(α2 + λ2)A2 + λ2f(x2) = 0

f ′′(x)− ξ2f(x) = βξ2
∑2

k=1(f(x) +Ak)δ(x− xk)
fI(0) = 0
fIII(1) = 0
fI(x1) = fII(x1)
fII(x2) = fIII(x2)
f ′II(x1)− f ′I(x1) = ξ2β(f(x1) +A1)
f ′III(x2)− f ′II(x2) = ξ2β(f(x2) +A2).

(5.6)

The third equation of (5.6) has solution fK(x) = aKe
ξx + bKe

−ξx, with aK , bK ∈ C,
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K = I, II, III, ξ ∈ C; the other eight equations correspond to the condition

det



α2 + λ2 0 λ2eξx1 λ2e−ξx1 0 0 0 0
0 α2 + λ2 0 0 λ2eξx2 λ2e−ξx2 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 eξ e−ξ

0 0 eξx1 e−ξx1 −eξx1 −e−ξx1 0 0
0 0 0 0 eξx2 e−ξx2 −eξx2 −e−ξx2
βα2

1+νλ 0 −ξeξx1 ξe−ξx1 ξeξx1 −ξe−ξx1 0 0

0 βα2

1+νλ 0 0 −ξeξx2 ξeξx2 ξeξx2 −ξe−ξx2


= 0,

where in the last two raws it has already been substituted λ2(f(xk) +Ak) with −α2Ak.
The vanishing of this determinant, for x1 = 1

3 and x2 = 2
3 , leads to the characteristic

equation (5.4).

The frequencies can be determined solving numerically equation (5.4). For every
β > 0 and α > 0, there are two countable families of frequencies, consisting respectively
of those which are multiple of 3π and those which are not, and two couples of special ones:
{λα,β±3j : j ∈ N+}, {λα,β±3j−2 , λ

α,β±
3j−1 : j ∈ N+} and λ̂α,β±1 , λ̂α,β±2 . Figure 5.1 and Figure 5.2

show the spectrum of the coupled system and the dispersion relation, respectively,
compared with those of the unperturbed string. Frequencies which are multiple of 3π are
unchanged, with the others are modified by the presence of the pendula.

Figure 5.1: Spectrum of the damped string with two pendula: λα,βn , λ̂α,β1,2 with α = 17, β = 0.1
and ν = 0.1.
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Figure 5.2: Dispersion relation for the damped string with two pendula: λα,βn , λ̂α,β1,2 with α = 17,
β = 0.1 and ν = 0.1. To the eigenvalues λ̂α,β1,2 it has been assigned the arbitrary
indices 3.3 and 3.7, respectively.

(a) Re[λ]. (b) Im[λ].

Let us finally compute the associated eigenfunctions.

Proposition 5.2. For every j, the eigenfunctions are the following:

- the eigenfunction associated to λα,β±3j is

Φ̂
λα,β±3j

(x) =

 0
0
a±3j

 sin (3jπx) , (5.7)

- the eigenfunction associated to λα,β±3j−k is

Φ̂
λα,β±3j−k

(x) = a±3j−k


− (λα,β3j−k)2

α2+(λα,β3j−k)2
sinh

(
ξ(λα,β3j−k)

3

)
A1

[
α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
sinh

(
ξ(λα,β3j−k)

3

)
+

sinh
(

2
3
ξ(λα,β3j−k)

)
sinh

(
1
3
ξ(λα,β3j−k)

)
]

BΘ(x1 − x) + CΘ(x− x1)Θ(x2 − x) +DΘ(x− x2)

 , (5.8)

with k = 1, 2 and

A1 = −
(λα,β3j−k)

2

α2 + (λα,β3j−k)
2

sinh

(
ξ(λα,β3j−k)

3

)
B = sinh

(
ξ(λα,β3j−k)x

)
C = sinh

(
ξ(λα,β3j−k)x

)
+

α2βξ(λα,β3j−k)

α2 + (λα,β3j−k)
2

sinh

(
ξ(λα,β3j−k)

3

)
sinh

(
ξ(λα,β3j−k)

(
x− 1

3

))

D =

 α2βξ(λα,β3j−k)

α2 + (λα,β3j−k)
2

sinh

(
ξ(λα,β3j−k)

3

)
+

sinh
(

2
3ξ(λ

α,β
3j−k)

)
sinh

(
1
3ξ(λ

α,β
3j−k)

)
 sinh

(
ξ(λα,β3j−k)(1− x)

)
,
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- the eigenfunction associated to λ̂α,β±k is

Φ̂
λ̂α,β±k

(x) = â±3j−k


− (λ̂α,βk )2

α2+(λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
Â1

[
α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
+

sinh
(

2
3
ξ(λ̂α,βk )

)
sinh

(
1
3
ξ(λ̂α,βk )

)
]

B̂Θ(x1 − x) + ĈΘ(x− x1)Θ(x2 − x) + D̂Θ(x− x2)

 , (5.9)

with k = 1, 2 and

Â1 = −
(λ̂α,βk )2

α2 + (λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
B̂ = sinh

(
ξ(λ̂α,βk )x

)
Ĉ = sinh

(
ξ(λ̂α,βk )x

)
+

α2βξ(λ̂α,βk )

α2 + (λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
sinh

(
ξ(λ̂α,βk )

(
x− 1

3

))

D̂ =

 α2βξ(λ̂α,βk )

α2 + (λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
+

sinh
(

2
3ξ(λ̂

α,β
k )

)
sinh

(
1
3ξ(λ̂

α,β
k )

)
 sinh

(
ξ(λ̂α,βk )(1− x)

)
,

with a±n , â±n ∈ C.

Proof. From (5.6), in order to determine Ak, aK , bK , k = 1, 2, K = I, II, III, the
following eigenvector problems have to be satisfied:

det



α2+λ2 0 λ2e
ξ
3 λ2e−

ξ
3 0 0 0 0

0 α2+λ2 0 0 λ2e
2ξ
3 λ2e−

2ξ
3 0 0

0 0 1 1 0 0 0 0
0 0 0 0 0 0 eξ e−ξ

0 0 e
ξ
3 e−

ξ
3 −e

ξ
3 −e−

ξ
3 0 0

0 0 0 0 e
2ξ
3 e−

2ξ
3 −e

2ξ
3 −e−

2ξ
3

βα2

1+νλ 0 −ξe
ξ
3 ξe−

ξ
3 ξe

ξ
3 −ξe−

ξ
3 0 0

0 βα2

1+νλ 0 0 −ξe
2ξ
3 ξe

2ξ
3 ξe

2ξ
3 −ξe−

2ξ
3





A1

A2

aI
bI
aII
bII
aIII
bIII


=



0
0
0
0
0
0
0
0


with λ solution of (5.4).

- For λα,β±3j : 
A1 = 0
A2 = 0
bI = −aI
aI = aII = aIII
bI = bII = bIII

which yields eigenfunction (5.7).



74 Chapter 5. Two pendula hanging from a string with damping

- For λα,β±2j−k , k = 1, 2:

A1 = −aI
(λα,β3j−k)2

α2+(λα,β3j−k)2
2 sinh

(
ξ(λα,β3j−k)

3

)
A2 = A1

[
α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
sinh

(
ξ(λα,β3j−k)

3

)
+

sinh
(

2
3
ξ(λα,β3j−k)

)
sinh

(
1
3
ξ(λα,β3j−k)

)
]

bI = −aI

aII = aI

[
1 +

α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
e
−ξ(λα,β

3j−k)
3 sinh

(
ξ(λα,β3j−k)

3

)]

bII = −aI

[
1 +

α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
e
ξ(λ

α,β
3j−k)
3 sinh

(
ξ(λα,β3j−k)

3

)]

aIII = −aIe−ξ(λ
α,β
3j−k)

[
α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
sinh

(
ξ(λα,β3j−k)

3

)
+

sinh
(

2
3
ξ(λα,β3j−k)

)
sinh

(
1
3
ξ(λα,β3j−k)

)
]

bIII = aIe
ξ(λα,β3j−k)

[
α2βξ(λα,β3j−k)

α2+(λα,β3j−k)2
sinh

(
ξ(λα,β3j−k)

3

)
+

sinh
(

2
3
ξ(λα,β3j−k)

)
sinh

(
1
3
ξ(λα,β3j−k)

)
]

which yields eigenfunction (5.8).

- For λ̂α,β±k , k = 1, 2:

A1 = −aI
(λ̂α,βk )2

α2+(λ̂α,βk )2
2 sinh

(
ξ(λ̂α,βk )

3

)
A2 = A1

[
α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
+

sinh
(

2
3
ξ(λ̂α,βk )

)
sinh

(
1
3
ξ(λ̂α,βk )

)
]

bI = −aI

aII = aI

[
1 +

α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
e
−ξ(λ̂α,β

k
)

3 sinh

(
ξ(λ̂α,βk )

3

)]

bII = −aI

[
1 +

α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
e
ξ(λ̂

α,β
k

)

3 sinh

(
ξ(λ̂α,βk )

3

)]

aIII = −aIe−ξ(λ̂
α,β
k )

[
α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
+

sinh
(

2
3
ξ(λ̂α,βk )

)
sinh

(
1
3
ξ(λ̂α,βk )

)
]

bIII = aIe
ξ(λ̂α,βk )

[
α2βξ(λ̂α,βk )

α2+(λ̂α,βk )2
sinh

(
ξ(λ̂α,βk )

3

)
+

sinh
(

2
3
ξ(λ̂α,βk )

)
sinh

(
1
3
ξ(λ̂α,βk )

)
]

which yields eigenfunction (5.9).

The eigenfunctions found have the following interpretation: those associated to
eigenvalues multiple of 3π correspond to the situation in which the pendula hang from
nodes of the string, and are therefore at rest; in the other damped normal modes, instead,
both pendula and the string are in motion.
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5.3 Synchronization

In this final section we make a qualitative numerical study in order to investigate the
possibility of synchronization between the two pendula.

The generic damped small oscillation is given by a linear superposition of the damped
normal modes: φ1(t)

φ2(t)
ψ(x, t)

 =

+∞∑
n=1

Re
[
Φ̂
λα,β+n

(x)eλ
α,β+
n t + Φ̂

λα,β−n
(x)eλ

α,β−
n t

]

+

2∑
k=1

Re
[
Φ̂
λ̂α,β+k

(x)eλ̂
α,β+
k t + Φ̂

λ̂α,β−k
(x)eλ̂

α,β−
k t

]
. (5.10)

The damping model chosen produces eigenvalues whose damping rates depend strongly
on the frequency of oscillation, therefore every normal mode is damped with a different
intensity and – after a transient – one expects that the motion is given by a combination
of a few low-frequency damped normal modes only. Since the eigenvalues depend on the
parameters α and β (from characteristic equation (5.4)), we confront now the damping
rates for different values of the parameters.

5.3.1 Dependency on the parameters

Recalling that

α2 =
ρgΛ2

lτ
, β =

m

Λρ
,

the physical meaning of the possible combinations of values of the parameters is the
following:

a. low values of α and high values of β correspond to small ρ and Λ, and large m and
l, namely, a short and light string with long and massive pendula;

b. high values of α and low values of β correspond to large ρ and Λ, and small m and
l, namely, a long massive string with short and light pendula;

c. low values of α and β correspond to large τ , and small m and large l, namely, a
stretched string with light long pendula;

d. high values of α and β correspond to small τ , and large m and small l, namely a
sagged string with massive and short pendula.

Qualitatively, the eigenvalues with frequency of oscillation closer to α are more strongly
modified with respect to the values of the vibrating string and the perturbation increases
as β increases. Figure 5.3 shows the damping rates of the first eigenvalues for the four
different cases. The first two modes are always less damped with respect to the others,
but the most interesting cases are those where β is large (a., d.), and the presence of the
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Figure 5.3: Dispersion relation for the damped string with two pendula with ν = 0.1 for different
values of the parameters α, β.

(a) α = 1, β = 25. (b) α = 25, β = 0.1.

(c) α = 1, β = 0.1. (d) α = 25, β = 25.

pendula affects significantly the motion of the string. In these circumstances the splitting
of the first two damping rates from the others is large.

In Figure 5.4 is presented the evolution of the angular displacements φ1 and φ2 of
the two pendula for the first four damped normal modes of oscillation. While the first
two normal modes are weakly damped, those with higher frequencies decay after a few
oscillations. We are therefore justified to consider the damped small oscillation of φ1 and
φ2 as the sum of just the first two damped normal modes.

Below, Figures 5.5 - 5.8 illustrate – for different values of the parameters α, β – the
temporal evolution of the displacements of the pendula as sum of the first two damped
normal modes. The simulations have been made choosing the following initial conditions:

φ1(0) = A
φ2(0) = 0
ψ(x, 0) = 0

φ̇1(0) = 0

φ̇2(0) = 0
ψt(x, 0) = 0.

The initial evolution depends strongly on the parameters: small values of α lead to beats,
while for large values, most of the initial impulse of the first pendulum is transferred to
the second one within the first oscillation. However, in all cases, only the first damped
normal mode survives at long times and eventually synchronization occurs.
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Figure 5.4: φ1(t) and φ2(t) for the first four damped normal modes with α = 1, β = 25.

(a) φ1(t) with λ1. (b) φ2(t) with λ1.

(c) φ1(t) with λ2. (d) φ2(t) with λ2.

(e) φ1(t) with λ3. (f) φ2(t) with λ3.

(g) φ1(t) with λ4. (h) φ2(t) with λ4.
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Figure 5.5: φ1(t), φ2(t) with λ1, λ2, with α = 0.1, β = 25.

(a) φ1(t) for t ∈ (0, 5000). (b) φ1(t) for t ∈ (150000, 200500).

(c) φ2(t) for t ∈ (0, 5000). (d) φ2(t) for t ∈ (150000, 200500).

Figure 5.6: φ1(t), φ2(t) with λ1, λ2, with α = 25, β = 0.1.

(a) φ1(t). (b) φ2(t).
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Figure 5.7: φ1(t), φ2(t) with λ1, λ2, with α = 1, β = 0.1.

(a) φ1(t). (b) φ2(t).

Figure 5.8: φ1(t), φ2(t) with λ1, λ2, with α = 25, β = 25.

(a) φ1(t). (b) φ2(t).





Conclusions

In this thesis we have studied mechanisms of synchronization in finite-dimensional sys-
tems and in continuous systems coupled with discrete ones. In particular, it has been
investigated the role of damping in the selection of some normal modes with respects to
others and original results have been found.

We first considered a generic linear mechanical discrete system with a viscous damping
term and proved that – under some hypotheses – the system admits an invariant subspace
S in the configuration space such that its tangent bundle is the invariant centre space and it
is attractive. On it the motion consists therefore of small oscillations, linear combinations
of normal modes which do not dissipate, and the system tends asymptotically to this
configuration. This property can lead to synchronization or beats, depending whether S
is one-dimensional or higher-dimensional with frequencies close in values, respectively.
The examples proposed showed this mechanism in the case of three simple models, which
highlighted also that the type of synchronization, that is in-phase or anti-phase, depends
on the particular system but it descends from the same mechanism.

As a natural continuation of this study, the case in which the damping matrix Γ has
a trivial kernel but some of its eigenvalues are significantly smaller with respect to the
others should be studied. In this configuration the system has a trivial centre space,
nonetheless, one expects the existence of invariant subspaces in the phase space in which
the damped normal modes are weakly damped.

Thereafter, we constructed a system consisting of a pendulum hanging from a heavy
homogeneous flexible and elastic string, with extremities fixed. A linear analysis about
the equilibrium configuration has been made and the study of the spectrum of frequencies,
which is composed of a countable number of values plus an additional one, showed that the
frequencies below the proper frequency of the pendulum are smaller with respect to the
ones of the vibrating string, and, vice versa, are larger those above the proper frequency.
Moreover, for certain values of the parameters, the special frequency might coincide with
one of the unperturbed string, leading to normal modes in which half of the string is
at rest, while the other half and the pendulum oscillate. We then added a dissipative
contribution to the string, including an internal damping term, of Kelvin-Voigt type. This
choice of friction, which studies showed to be in good agreement with experimental data,
produces a splitting of the damping rates, which in the case of the vibrating string are

81
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proportional to the frequency squared. The eigenvalues of the coupled system have been
computed in the limit of weak damping, through a linear series expansion with respect to
the damping coefficient.

Since the spectrum of the system depends on the model of friction chosen, it might
be interesting to employ alternative damping terms – for example, it may be realistic
the inclusion of friction restricted to the extremities of the string – and to compare how
different contributions affect the dynamics.

Finally, in the last two chapters we extended the study to the case in which there are
two identical pendula suspended on the string. Such system accounts for the continuous
nature of the support – unlike similar models in literature, which consider the pendula
coupled through a rigid frame, elastically fixed, or discretise the beam by means of a finite
number of masses. We determined the spectrum of the system numerically, both in the
case of the undamped system and in the damped one, and we investigated qualitatively
the dependence on the parameters which characterise the model. It emerged that the
first two damped normal modes are significantly less damped with respect to those with
higher frequencies, thus, after a transient, the motion is given by a linear superposition
of the two of them only, and eventually the two pendula synchronise when only the less
damped normal mode has not completely vanished.
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