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Abstract

This thesis addresses the problem of learning dynamic factor models generated
by zero-mean Gaussian moving avarage (MA) processes.

Factor models boast a long tradition and find natural application in many
engineering and scientific disciplines, including, for example, psychology, econo-
metrics, system engineering, machine learning and statistics. In general, the at-
tention for this kind of models is motivated by their effectiveness in complex-data
representation. Indeed they allow the compression of the information contained
in a high dimensional data vector into a small number of common factors, based
on the assumption of underlying latent non-observed variables influencing all the
observations.

In this thesis, we propose an extension of factor analysis to MA processes
in order to extract the compressible information from them. To robustly esti-
mate the number of factors, we construct a confidence region centered in a finite
sample estimate of the underlying model which contains the true model with a
prescribed probability. In this confidence region, the problem, formulated as a
rank minimization of a suitable spectral density, is efficiently approximated via
a trace norm convex relaxation.
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1
Introduction

In modern society, the great development of technology has led to a frenetic in-
crease of the quantity of available data; the interpretation and understanding of
the information contained in these data is, on the one hand, an extremely chal-
lenging task and, on the other, a crucial step for any engineering application. For
this reason, the research literature has recently witnessed an increasing interest in
developing efficient methods to organize the available data in suitable structured
models and to provide a concise and parsimonious representation of them or, in
other words, to extract meaningful information from the data.

One of the classical methods for this purpose is based on factor models. Factor
models are a statistical tool used to describe the variability among observed, cor-
related variables in terms of a potentially lower number of unobserved variables.
Even though, in principle, they are a pure mathematical construction, the atten-
tion for this kind of models is motivated by their effectiveness in complex-data
representation. Indeed, if high-dimensional vectors of observed variables can be
explained in terms of a smaller number of common relevant factors, the statistical
description of the phenomenon significantly simplifies. It is therefore clear that
factor analysis provides a powerful tool for data dimensionality reduction, with
attractive applications in many disciplines.

In its simplest form, the factor analysis problem may be formulated in mathe-
matical terms as follows. A covariance matrix Σ must be additively decomposed
as the sum of two positive semi-definite matrices: D and L, where D is diagonal,
and L has the lowest possible rank. The matrix D models the covariance of the
idiosyncratic noise (i.e. a noisy component affecting each channel of the obser-
vations independently of the others), while L accounts for the common latent
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factors that explain the available data. Clearly, this problem can be generalized
to the dynamic case by considering a “low-rank plus diagonal decomposition” of
spectral densities of stationary stochastic processes.

In this thesis the attention is focused on moving average (MA) Gaussian pro-
cesses; although the estimation of a MA process is relatively simple, it would be
interesting to extract the compressible information from it. To this purpose, this
thesis proposes an extension of factor analysis to moving average processes. In
particular, considerable effort is devoted to deriving an identification procedure
which guarantees robustness on the complexity of the estimated model (especially
in terms of the number of factors) with respect to the finiteness of the data. This
has a strong motivation on the fact that, in realistic situations, only a finite sam-
ple estimate of the power spectral density to be decomposed is actually available.
In these cases, even if the underlying process is truly low rank, the minimum rank
solution of the factor analysis problem rapidly degrades when a certain degree of
uncertainty affects the estimation.

The contribution of this thesis can be summarized as follows. Given a finite
sample estimate Φ̂ of the power spectral density of a MA process, the proposed
procedure takes into account the uncertainty in the estimation by computing a
“neighborhood” of Φ̂ containing the true model with a prescribed probability. In
this neighborhood, we search for the factor model that provides the description
of the phenomenon in terms of the minimum number of factors. To do that,
we formulate the problem as a trace minimization problem, which represents a
convex relaxation of the corresponding minimum rank problem. The designed
objective induces a low rank plus diagonal decomposition of the power spectral
density, thus ensuring a small number of latent variables and hence a parsimo-
nious representation of the observed data. In order to obtain a numerically viable
procedure for solving the problem, as a first step, we provide a finite dimensional
matrix parametrization of it; the latter is then analyzed by resorting to the La-
grange duality theory. The dual analysis is delicate to carry over, but it allows to
prove the existence of a solution to the problem and it is efficiently exploited to
show the equivalence of the original problem, stated in terms of power spectral
densities, and its matricial formulation. Because of the zero duality gap between
the primal and the dual problem, it is also possible to easily recover a solution
to the primal optimization problem from a dual optimal value. We hasten to
remark that solving the dual problem is not an easy task. We try to exploit an
alternating direction method of multiplier (ADMM) algorithm which, however,
does not produce the desired result.
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1.1 Outline of the Thesis

This thesis is organized as follows.
Chapter 2 provides an introductory survey on factor models: it starts by

motivating their importance and then illustrates the classical mathematical for-
mulation of the factor analysis problem, as well as some of the numerous variants
in which it is proposed in literature.

In Chapter 3 we review the Lagrangian duality theory, which plays a cen-
tral role in convex optimization and finds sensible applications in the proposed
identification procedure.

Chapter 4 serves as a background on the alternating direction method of
multipliers, an iterative algorithm which solves convex optimization problems by
“breaking” them into smaller subproblems, easier to handle.

In Chapter 5 we consider the robust dynamic factor analysis problem of MA
Gaussian processes.

Finally, Chapter 6 draws some conclusions and suggests possible future lines
of study.

At the end of this thesis, Appendix A covers basic definitions, concepts and
results concerning stationary stochastic processes that are omitted from the main
text, while Appendix B presents a review of the necessary mathematical back-
ground on convex analysis and convex optimization problems. To avoid interrup-
tion in the flow, many of the proofs of Section 5.3.3 are deferred to Appendix
C.

3
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2
Factor Analysis

Factor models are a statistical tool used to compress the information contained
in a high dimensional data vector into a much smaller number of non-observed
variables, called common factors, that influence all the observations.
Such models were initially developed at the beginning of the last century by
Spearman [1] in the framework of the so-called mental tests as an attempt to
explain the relations among a group of test scores. From this first seed, the interest
for this kind of models has grown rapidly, also outside the psychology community,
and analysis for factor models, or factor analysis, has become an important tool
in several engineering and science disciplines, among which systems and control
theory, computer science, statistics, econometry and biology.

The main idea in factor analysis is that in several practical situations we have
a large number of observed variables (or processes) and each of these can be
modelled as the sum of a component depending on a small number of common
factors and of an idiosyncratic noise, i.e. a noisy component affecting each of the
variable independently of the others. The typical visual representation of this
situation is that of a flock of birds where the trajectory of each single bird is
determined by the “average” trajectory of the flock and by a variation proper to
the individual bird.

2.1 Static factor analysis

In its simplest form, a factor model is a m-dimensional static linear model

y = WLu+WDw (2.1)
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where WL ∈ R
m×r , with r ≪ m, and WD ∈ R

m×m diagonal; u :=
[

u1 . . . ur

]⊤

and w :=
[

w1 . . . wm

]⊤

are Gaussian random vectors of dimension r and m, re-
spectively, with zero mean and covariance equal to the identity. Moreover, u and
w are independent, that is

E{uw⊤} = 0. (2.2)

In (2.1), the m-dimensional random vector y is called observed vector; WL is the
factor loading matrix, u represents the (independent) latent factors and WLu is
the latent variable; finally w corresponds to the idiosyncratic component.

From (2.1), it is easy to see that

yi =
r
∑

j=1

[WL](ij)uj + [WD](ii)wi (2.3)

which explains the reason why (2.1) is referred to as a factor model: the i-th
observed variable yi is generated by the r independent common factors u1, . . . , ur

and by the specific factor wi.
In view of (2.1) and (2.2), the covariance matrix Σ of y is given by

Σ = L+D (2.4)

where L := WLW
⊤
L is a low-rank matrix - with rank equal to r - and D :=

WDW
⊤
D is diagonal. The matrix D models the covariance of the idiosyncratic

noise affecting each channel of the observations, while L accounts for the common
latent factors that explain the available data.

The purpose of factor analysis consists in characterizing the common factors,
representing the compressed information, and the idiosyncratic noise. In mathe-
matical terms, this problem may be formulated as that of additively decomposing
a covariance matrix Σ as in (2.4). Clearly, the rank of L must be as small as
possible in order to provide a description of the phenomenon in terms of the
minimum number of factors, thus leading to the minimum rank factor analysis
(MRFA) problem:

min
L,D∈Qm,

rank(L)

subject to L,D ⪰ 0

D diagonal
L+D = Σ.

(2.5)

Starting from this basic formulation, countless variations of factor analysis prob-
lems have been studied over the years; see for example [2] and [3] for an extensive
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discussion on the numerous variants in which the problem may be formulated.
It is important to remark that, in general, minimizing the rank of L turns out

to be extremely hard because of the non-convexity of the rank function, so that a
widely used alternative considers the convex relaxation of (2.5). The latter, known
as minimum trace factor analysis (MTFA) problem, implies the minimization of
the trace norm of L in place of the rank:

min
L,D∈Qm,

tr(L)

subject to L,D ⪰ 0

D diagonal
L+D = Σ.

(2.6)

The relation between the minimum trace and the classic minimum rank factor
analysis problem has been first studied in [4]; it turns out that, even though prob-
lem (2.5) and (2.6) are in general not equivalent, (2.6) is a very good approxima-
tion that often returns, with a reasonable computation burden, a decomposition
(2.4) where L has indeed the minimum possible rank.

One substantial difficulty in deriving a good “low-rank plus diagonal decom-
position” is that, in practice, we only see data and we do not actually know the
covariance matrix Σ that needs to be decomposed. The first idea to address this
issue is to estimate the covariance matrix from the available data and then per-
form the required decomposition. However, this procedure has poor performances
because the decomposition problem is ill-posed, so that a small error in the es-
timated spectral density Σ̂ may have disastrous consequences in the number of
factors.

A viable strategy to deal with the problem of robustly estimating the number
of factor is presented in [5]: the authors compute the covariance matrix Σ = L+D

in such a way that the trace of L is minimized under a constraint limiting the
Kullback-Leibler divergence 1 between Σ and Σ̂ to a prescribed tolerance. This

1The Kullback-Leibler (KL) divergence measures the deviance among probability densities.
If p and q are two probability densities on R

m, the KL divergence from q to p is defined to be

DKL(p||q) :=
∫

Rm

p log(
p

q
).

When p and q are two zero-mean Gaussian densities with positive covariance matrices P and
Q, respectively, then DKL(p||q) can be easily computed as

DKL(p||q) =
1

2
(log |P−1Q|+ tr(Q−1P )−m).

We should mention that DKL is not a true metric because it does not obey the triangle inequality
and the symmetric property.
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tolerance must depend on the precision of the estimate Σ̂ and it is reliably chosen
on the basis of the data numerosity N and of the data dimension m by exploiting
a scale invariance property of the Kullack-Leibler pseudo-distance.

2.2 Dynamic factor analysis

Whereas the initial approach to factor analysis was oriented to data originat-
ing from independent, identically distributed random variables, the idea has been
further generalized to data originate from stochastic processes.
As shown in [6], the natural extension of (2.1) to the dynamic case is:

yt = ΓLut + ΓDwt, t ∈ Z, (2.7)

where ΓL and ΓD are transfer functions in the form

ΓL(e
iϑ) =

+∞
∑

k=−∞

WL,ke
−iϑk, WL,k ∈ R

m×r (2.8)

ΓD(e
iϑ) =

+∞
∑

k=−∞

WD,ke
−iϑk, WD,k ∈ R

m×m diagonal (2.9)

and u = {ut, t ∈ Z} and w = {wt, t ∈ Z} are i.i.d. Gaussian processes of
dimension r and m, respectively, with zero mean and covariance equal to the
identity. Moreover, u and w are such that

E{utw
⊤
s } = 0 ∀t, s ∈ Z. (2.10)

From (2.10), it immediately follows that y = {yt, t ∈ Z} is a zero mean Gaussian
process with power spectral density

Φ = ΦL + ΦD (2.11)

where ΦL = ΓLΓ
∗
L ⪰ 0 and ΦD = ΓDΓ

∗
D ⪰ 0. By construction, rank(ΦL) = r, and

ΦD is diagonal. Therefore, y represents a factor model if its spectral density can
be decomposed as “low rank plus diagonal” as in (2.11).

Different approaches have been considered to tackle the corresponding minimum-
rank problem. For instance, in [7] the spectral density is approximated by a piece-
wise constant function and the factor analysis is then performed piecewise; in [8],
[9] and [10] the authors consider the factor analysis problem in the special case
in which the common (dynamic) factors are only combined in a static way.

It is worth remarking that, as in the static case, the minimum-rank factor
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analysis problem is NP-hard, thus it is convenient to relax it in order to obtain
a tractable convex-optimization problem. In [11] the function tr

∫ +π

−π
ΦL(e

iθ) dθ
2π

is
proposed as an adequate approximation of rank(ΦL). The effectiveness of this
approximation is justified by the following result:

Proposition 2.2.1. Let Am be the linear space of Cm×m-valued analytic functions
on the unit circle. Let Φ ∈ Am be an arbitrary analytic function such that Φ ⪰ 0.
Define the following restricted rank function

rank′(Φ) :=







rank(Φ), ∥ Φ ∥≤ 1

+∞, otherwise.
(2.12)

Then, the convex hull of rank′(Φ) is

co rank′(Φ) :=







tr
∫ +π

−π
Φ(eiθ) dθ

2π
, ∥ Φ ∥≤ 1

+∞, otherwise.
(2.13)

This result has been exploited in [12], where the factor analysis for moving
average processes is formulated as a rank-minimization problem, and then approx-
imated via the trace norm relaxation. The estimated decomposition, however, is
good only provided that the number of data points is sufficiently large.

As already observed for the static case, in the realistic situation in which
only a finite sample estimate Φ̂ of the spectral density Φ to be decomposed is
available, the accuracy in the estimation may severely affect the goodness of
the decomposition (2.11). An interesting approach to guarantee robustness of
performances is presented in [13], where the authors face the problem of robustly
identifying latent variable auto-regressive (AR) dynamic graphical models from a
given finite sample estimate Φ̂ of the spectral density of the underlying process.
In a similar spirit to [5], they introduce a confidence region for the spectral density
which contains the true model with a prescribed probability; the “radius” of this
set reflects the accuracy in the estimation, and it is computed by leveraging on a
scale invariant property of the Itakura-Saito divergence. 2

2The Itakura-Saito divergence measures the distance between two spectra Φ,Ψ ∈ S+
m [14]:

SIS(Φ||Ψ) :=

∫ +π

−π

{

log |Φ−1(eiθ)Ψ(eiθ)|+ tr(Ψ−1(eiθ)Φ(eiθ))− Im
} dθ

2π
.

Notice that SIS is not a true metric, since it is not symmetric and it does not fulfill the triangle
inequality.
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3
Duality Theory

This chapter covers Lagrangian duality, which plays a central role in constrained
convex optimization.
After defining the Lagrange dual problem, whose solution provides a lower bound
to the solution to the primal (minimization) problem, we illustrate the saddle
point interpretation of duality and we state the classical Karush-Kuhn-Tucker
conditions for optimality. For simplicity, throughout the chapter the attention is
narrowed to real-valued functions defined on the Euclidean space R

n.

Notice that the main part of the results reported below are taken from [15, chap-
ter 5] and this reference will be omitted; we refer the reader to Appendix B
for a review of the necessary background on convex analysis and mathematical
optimization.

3.1 The Lagrange dual problem

Consider an optimization problem in the standard form (see Appendix B.3)

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p.

(3.1)

with fi : R
n → R for i = 0, ...,m and hi : R

n → R for i = 1, ..., p.

We hasten to remark that we do not assume convexity of the problem.
Let

D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

dom hi

11



be the domain of the optimization problem, which we supposed non-empty, and
let p∗ be the optimal value of (3.1).

The basic idea in Lagrangian duality is to take the constraints in (3.1) into
account by augmenting the objective function with a weighted sum of the con-
straints functions. Accordingly, we define the Langrangian function as follows:

Definition 3.1.1 (Lagrangian function). Given the vectors λ = [λ1, . . . , λm] and
ν = [ν1 . . . , νp], called dual variables or Lagrange multiplier vectors associated
with the problem (3.1), we define the Lagrangian function L : Rn×R

m×R
p → R

as

L(x, λ, ν) := f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (3.2)

with dom L = D × R
m × R

p.

The value of the Lagrangian function L(x, λ, ν) depends on the original vari-
able x as well as the dual variables (λ, ν). By minimizing the Lagrangian over x,
thus by solving un unconstrained optimization problem, we obtain the so-called
dual function:

Definition 3.1.2 (Dual function). The Lagrange dual function, or just dual func-
tion, g : Rm × R

p → R associated with the problem (3.1) is defined as

g(λ, ν) := inf
x∈D

L(x, λ, ν) = inf
x∈D

(

f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)
)

(3.3)

with domain
dom g = {(λ, ν) | g(λ, ν) > −∞}. (3.4)

Proposition 3.1.1. The dual function g is concave.

Proof. The dual function (3.3) is the pointwise infimum of a family of affine (so
concave) functions of (λ, ν). Consequently, it is concave (cf. Proposition B.2.4).

It is important to remark that the dual function g is always concave, indepen-
dently of the original problem (3.1).

Another important observation is that, by construction, the dual function
yields lower bounds on the optimal values p∗ of the original problem (3.1) since

12



for any λ ≥ 0 and any ν it holds:

g(λ, ν) ≤ p∗. (3.5)

This important property is easily verified. Let x̃ be any feasible point for the
problem (3.1), i.e. fi(x̃) ≤ 0 and hi(x̃) = 0; then

L(x̃, λ, ν) = f0(x̃) +
m
∑

i=1

λifi(x̃) +

p
∑

i=1

νihi(x̃) ≤ f0(x̃) (3.6)

since each term in the first sum is non-positive, and each term in the second sum
is zero.
Hence

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ f0(x̃); (3.7)

since (3.7) holds for every feasible point x̃, (3.5) immediately follows.
By (3.5), for each pair (λ, ν) with λ ≥ 0, the dual function g(λ, ν) provides a
lower bound on the optimal value p∗ which depends on the parameters λ and ν.
Notice that such a bound is vacuous when g(λ, ν) = −∞ : in order to have a non
trivial lower bound on p∗ we require a pair (λ, ν) with λ ≥ 0 and g(λ, ν) > −∞,

i.e. (λ, ν) ∈ dom g.
Now, a natural question is: what is the best lower bound that we can obtain

from the dual function? The answer leads to the following optimization problem:

max
λ,ν

g(λ, ν)

subject to λ ≥ 0.
(3.8)

This problem is called Lagrange dual problem associated with the problem (3.1).
In this context, the latter is usually referred to as primal problem. We say that
a pair (λ, ν) with λ ≥ 0 and g(λ, ν) > −∞ (i.e. (λ, ν) ∈ dom g) is dual feasible.
We refer to (λ∗, ν∗) as dual optimal or optimal Lagrange multipliers if they are
solution for problem (3.8), and we denote d∗ the optimal value of the Lagrange
dual problem.

It is important to remark that the Lagrange dual problem (3.8) is always a
convex optimization problem, whether or not the primal problem (3.1) is convex.
Indeed, problem (3.8) concerns the maximization of a concave function g over a
convex set (that it equivalent to minimize the convex function −g over a convex
set).

The optimal value d∗ of the Lagrange dual problem is, by definition, the
best lower bound on p∗ that we can obtain from the Lagrangian dual function g.
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Clearly, by (3.5) we have
d∗ ≤ p∗, (3.9)

which holds even when the original problem is not convex. This simple but
important property is called weak duality.
The weak duality inequality (3.9) still holds when d∗ and p∗ are infinite: if the
primal problem is infeasible, we have by definition p∗ = ∞ and d∗ = ∞, so
that (3.9) is verified. Conversely, if the primal problem is unbounded below, i.e.
p∗ = −∞, we get d∗ = −∞, and (3.9) is verified even in this situation.

The nonnegative difference p∗−d∗ is named optimal duality gap of the original
problem. If the duality gap is zero, then

d∗ = p∗, (3.10)

and we say that strong duality holds.
Conditions for strong duality to hold are very important for the purpose of

solving (3.1). In general, strong duality is not satisfied; however if the primal
problem (3.1) is convex, we usually (not always) have strong duality. Slater’s
condition is a sufficient condition for strong duality to hold for a convex optimiza-
tion problem:

Proposition 3.1.2 (Slater’s condition). If (3.1) is a convex optimization problem
and there exists x ∈ relint D 1 such that

fi(x) < 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p, (3.11)

then strong duality hold. (3.11) is called Slater’s condition. Moreover, if the
inequality constraint functions fi, i = 1, . . . , k, k ≤ m are affine functions, Slater’s
condition can be refined as follows: strong duality holds if there exists an x ∈
relint D such that

fi(x) ≤ 0, i = 1, . . . , k

fi(x) < 0, i = k + 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

(3.12)

1The relative interior of a set C, denoted as relint C, is the interior relative to the affine
hull of C aff C := {α1x1 + · · ·+ αnxn | n ∈ N, xi ∈ C,αi ∈ R s.t.

∑n

i=1
αi = 1}, i.e.

relint C := {x ∈ C | B(x, r) ∩ aff C ⊆ C for some r > 0}

where B(x, r) is the ball of radius r and center x in any norm (all norms define the same relative
interior).
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In other words, Slater’s condition for convex programming states that strong
duality holds if there exists an x such that x is strictly feasible, namely it satisfies
all the constraints of the problem (3.1), and in particular the nonlinear inequality
constraints with strict sign.

Slater’s condition (and its refinement) not only implies strong duality for
convex problems, it also implies that there exists a dual feasible (λ∗, ν∗) with
g(λ∗, ν∗) = d∗ = p∗ (and in particular d∗ > −∞).

3.2 Saddle-point interpretation

In this section we provide a saddle point formulation of the optimality condi-
tions for the primal and the dual optimization problems. For the sake of simplicity,
we assume that there are no equality constraints in the primal problem (3.1). It
is easy to extend the results to cover them.

Consider the following problem:

sup
λ≥0

L(x, λ) = sup
λ≥0

(

f0(x) +
m
∑

i=1

λifi(x)

)

Clearly, if x is not feasible, fi(x) > 0 for some i, so that supλ≥0 L(x, λ) = +∞,

as can be seen by choosing λj = 0, j ̸= i and λi → ∞. On the other hand, if x is
feasible, i.e. fi(x) ≤ 0 for i = 1, . . .m, then the optimal choice of λ is λ = 0 and
supλ≥0 L(x, λ) = f0(x). In view of this consideration,

sup
λ≥0

L(x, λ) =







f0(x) fi(x) ≤ 0, i = 1, . . . ,m

+∞ otherwise.

This means that we can express the optimal value of the primal problem as

p∗ = inf
x
sup
λ≥0

L(x, λ).

Moreover, by definition of dual function, we have

d∗ = sup
λ≥0

inf
x
L(x, λ).

As a consequence, weak duality can be expressed as

sup
λ≥0

inf
x
L(x, λ) ≤ inf

x
sup
λ≥0

L(x, λ) (3.13)

15



and strong duality becomes

sup
λ≥0

inf
x
L(x, λ) = inf

x
sup
λ≥0

L(x, λ). (3.14)

Actually (3.13) does not depend on any properties of the Lagrangian function;
it is a general result that holds for any function f :

Theorem 3.2.1 (max-min inequality). Let W ⊆ R
n and Z ⊆ R

m. For any f :

W × Z → R the max-min inequality holds:

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z). (3.15)

When equality holds, i.e.

sup
z∈Z

inf
w∈W

f(w, z) = inf
w∈W

sup
z∈Z

f(w, z), (3.16)

one says that f (and W and Z) satisfies the strong max–min property or the
saddle-point property.

We provide the following definition of saddle point:

Definition 3.2.1 (Saddle point). A pair (w̃, z̃) ∈ W × Z is called a saddle point
for f if

f(w̃, z) ≤ f(w̃, z̃) ≤ f(w, z̃) ∀w ∈ W, ∀z ∈ Z. (3.17)

In other words, (w̃, z̃) is a saddle point if w̃ minimizes f(w, z̃) over W and z̃

minimizes f(w̃, z) over Z. The following result can be proved [16]:

Proposition 3.2.1. The pair (w̃, z̃) is a saddle point for f : W × Z → R if and
only if the max-min equality (3.16) holds and

w̃ ∈ argmin
w∈W

sup
z∈Z

f(w, z), z̃ ∈ argmax
z∈Z

inf
w∈W

f(w, z). (3.18)

Returning to our discussion of Lagrange duality, we see that if x∗ and λ∗ are
primal and dual optimal points for a problem in which strong duality holds, they
form a saddle point for the Lagrangian. The converse is also true: if (x, λ) is a
saddle point for the Lagrangian, then x is primal optimal, λ is dual optimal and
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the duality gap is zero.

3.3 Optimality conditions

Suppose that the primal and dual optimal values are attained, x∗ be a primal
optimal and (λ∗, ν∗) be a dual optimal point. Assume that strong duality holds.
This means that

f0(x
∗) = g(λ∗, ν∗)

= inf
x

(

f0(x) +
m
∑

i=1

λ∗
i fi(x) +

p
∑

i=1

ν∗
i h(x)

)

≤ f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗
i hi(x

∗)

≤ f0(x∗)

where the first line states the zero duality gap and the second line is the definition
of the dual function. The third line follows from the observation that the infimum
of the Lagrangian over x is less or equal to its value at x = x∗. Finally the
last inequality follows from λ∗

i ≥ 0, fi(x
∗) ≤ 0, i = 1, . . . ,m and hi(x

∗) = 0,

i = 1, . . . , p. We conclude that the two inequalities in this chain hold with
equality, from which we can draw some interesting conclusions.

For example, since the inequality in the last line is an equality, i.e.

f0(x
∗) = f0(x

∗) +
m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗
i hi(x

∗),

we can conclude that
m
∑

i=1

λ∗
i fi(x

∗) = 0.

Then, since each term in this sum is nonpositive, it follows that

λ∗
i fi(x

∗) = 0, i = 1, . . . ,m. (3.19)

This condition is known as complementary slackness condition and it holds for
any primal optimal x∗ and any dual optimal (λ∗, ν∗) as soon as strong duality
holds. The complementary slackness conditions means that

λ∗
i > 0 =⇒ fi(x

∗) = 0
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or, equivalently,
fi(x

∗) < 0 =⇒ λ∗
i = 0.

In other words, the ith optimal Lagrange multiplier is zero unless the ith con-
straint is active at the optimum, i.e. fi(x

∗) = 0.
Moreover, since the inequality in the third line is an equality

inf
x

(

f0(x) +
m
∑

i=1

λ∗
i fi(x) +

p
∑

i=1

ν∗
i hi(x)

)

= f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗
i hi(x

∗)

we conclude that x∗ minimizes L(x, λ∗, ν∗) over x (the Lagrangian can have other
minimizers, x∗ is simply a minimizer).

Assume now that the functions f0, . . . fm and h1, . . . , hp are differentiable (and
therefore they have open domains), so that the Lagrangian is a differentiable
function. Since x∗ minimizes L(x, λ∗, ν∗) over x, its gradient must vanish at x∗,
i.e.

∇f0(x
∗) +

m
∑

i=1

λ∗
i∇fi(x

∗) +

p
∑

i=1

ν∗
i ∇hi(x

∗) = 0.

We introduce the following definition::

Definition 3.3.1 (Karush-Kuhn-Tucker conditions). We say that the points x∗

and (λ∗, ν∗) satisfy the so-called Karush-Kuhn-Tucker (KKT) conditions for the
problem (3.1) with fi, i = 1, . . . ,m and hi, i = 1, . . . , p differentiable if

fi(x
∗) ≤ 0, i = 1, . . . ,m (3.20)

hi(x
∗) ≤ 0, i = 1, . . . , p (3.21)
λ∗
i ≥ 0, i = 1, . . . ,m (3.22)

λ∗
i fi(x

∗) = 0, i = 1, . . . ,m (3.23)

∇f0(x
∗) +

m
∑

i=1

λ∗
i∇fi(x

∗) +

p
∑

i=1

ν∗
i ∇hi(x

∗) = 0. (3.24)

The first two conditions assures the feasibility of point x∗, while the third
condition expresses the nonnegativity of the Lagrange multipliers associated with
the inequality constraints. The equation (3.23) is the complementary slackness
condition and finally (3.24) says that x∗ is a stationary point for the Lagrangian
at (λ∗, ν∗).

The previous observations lead to the following result:
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Proposition 3.3.1. For any optimization problem (3.1) with differentiable objec-
tive and constraint functions for which strong duality obtains, any pair of primal
and dual optimal points must satisfy the KKT conditions (3.20) - (3.24).

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal:

Proposition 3.3.2. If (3.1) is a convex optimization problem with differentiable
objective and constraint functions, if x∗, λ∗ and ν∗ are any points that satisfy the
KKT conditions (3.20) - (3.24), then x∗ and (λ∗, ν∗) are primal and dual optimal,
respectively, with zero duality gap.

Proof. (3.20) - (3.21) state that x∗ is primal feasible. Since λ∗
i ≥ 0, fi, i =

1, . . . ,m are convex and hi, i = 1, . . . , p affine, the function L(x, λ∗, ν∗) = f0(x) +
∑m

i=1 λ
∗
i fi(x) +

∑p
i=1 ν

∗
i hi(x) is convex in x. The last KKT condition states that

the gradient of L(x, λ∗, ν∗) vanishes at x∗, so that, by convexity, x∗ minimizes
L(x, λ∗, ν∗) over x. We can conclude

g(λ∗, ν∗) = inf
x
L(x, λ∗, ν∗)

= L(x∗, λ∗, ν∗)

= f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗
i hi(x

∗)

= f0(x
∗)

where in the last equality we have used (3.21) and (3.23). This shows that x∗ and
(λ∗, ν∗) have zero duality gap, and therefore they are primal and dual optimal.

Remark 1. If (3.1) is a convex optimization problem with differentiable objective
and constraint functions satisfying the Slater’s condition, then the KKT con-
ditions become necessary and sufficient optimality conditions. Indeed, Slater’s
condition implies that the optimal duality gap is zero and the dual optimum is
attained, so x is optimal if and only if there exist (λ, ν) that, together with x,
satisfy the KKT conditions.
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4
Alternating Direction Method of

Multipliers

This chapter serves as a background on the Alternating Direction Method of Mul-
tipliers (ADMM), a simple but powerful iterative algorithm well-suited to dis-
tributed convex optimization, especially to some large-scale problems arising in
statistics, machine learning and related area. It takes the form of a decomposition-
coordination procedure, in which the solutions to small local sub-problems are
coordinated to find a solution to a large global problem.
The method was developed in the 1970s, with roots in the 1950s, and then pop-
ularized by the work of Stephen Boyd [17], to which we refer throughout the
chapter; this reference will be omitted.

4.1 Algorithm

In its most general form, ADMM can solve convex optimization problem in
the form

min
x,z

f(x) + g(z)

subject to Ax+Bz = c
(4.1)

where the optimization variables are x ∈ R
n , z ∈ R

m and the functions f : Rn →
R and g : Rm → R are convex. Here A ∈ R

p×n, B ∈ R
p×m and c ∈ R

p.
We suppose that problem (4.1) has at least one solution and p∗ is the optimal
value. In addition, we assume that f and g are differentiable, with gradients
∇f(x) and ∇g(z), respectively.
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It is important to remark that in problem (4.1) we have two sets of optimization
variables, x and z, and the objective function is separable across the splitting.

In order to introduce the ADMM algorithm, we have to define the so-called
augmented Lagrangian for (4.1), which is

Lρ(x, z, y) := f(x) + g(z) + y⊤(Ax+Bz − c) +
ρ

2
∥ Ax+Bz − c ∥22 (4.2)

where y is the dual variable and ρ ≥ 0 is the so-called penalty term.
Note that (4.2) differs from the commonly used Lagrangian function (3.2) for the
addition of the penalty term ρ

2
∥ Ax+Bz− c ∥22. The purpose of the penalty term

is to ensure that the optimization algorithm is, at all times, close to satisfying
the linear constraint Ax+By = c.
It is worth remarking that the augmented Lagrangian can be viewed as the (unaug-
mented) Lagrangian associated with the problem

min
x,z

f(x) + g(z) +
ρ

2
∥ Ax+Bz − c ∥22

subject to Ax+Bz = c,
(4.3)

which is clearly equivalent to the original problem (4.1), since for any feasible
(x, z) the term added to the objective is zero.

The ADMM algorithm is defined by the iteration of the following three steps:

xk+1 := argmin
x

Lρ(x, z
k, yk) (4.4)

zk+1 := argmin
z

Lρ(x
k+1, z, yk) (4.5)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c). (4.6)

The equation (4.4) is an x-minimization step, (4.5) is a z-minimization step, and
finally (4.6) is a dual variable update with step size equal to the augmented
Lagrangian parameter ρ.
Note that, instead of jointly solving for x and z, ADMM alternates the update of
x and z, which accounts for the term alternating direction.

4.2 Convergence

There are many convergence results for ADMM discussed in the literature.
Boyd [17] shows that if the following two assumptions hold:

1. the (extended-real-valued) functions f : Rn → R ∪ {+∞} and g : Rm →
R ∪ {+∞} are closed, convex and proper;
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2. the unaugmented Lagrangian L0 (that is the augmented Lagrangian with
ρ = 0) has a saddle point, namely there exists (x∗, z∗, y∗), not necessarily
unique, for which

L0(x
∗, z∗, y) ≤ L0(x

∗, z∗, y∗) ≤ L0(x, z, y
∗)

holds for all x, z and y;

then the ADMM iterates satisfy the following properties:

• Residual convergence: the residual rk := Axk + Bzk − c → 0 as k → ∞.
This means that the iterates approach feasibility.

• Objective convergence f(xk) + g(zk) → p∗ as k → ∞, i.e. the objective
function approaches the optimal value.

• Dual variable convergence: yk → y∗ as k → ∞, where y∗ is a dual optimal
point.

Note that xk and zk need not to converge to optimal values, although such results
can be shown under additional assumptions.

In literature there are also other less restrictive convergence proofs, with dif-
ferent penalty terms or inexact minimization.

4.3 Optimality conditions ans stopping criterion

In order to define a stopping criterion for the algorithm, we start analyzing
optimality conditions for (4.1). Necessary and sufficient optimality conditions are
primal feasibility,

Ax∗ +Bz∗ − c = 0 (4.7)

and dual feasibility

0 = ∇f(x∗) + A⊤y∗ (4.8)
0 = ∇g(z∗) + B⊤y∗. (4.9)

The last condition (4.9) always holds for (xk+1, zk+1, yk+1) : since zk+1 minimizes
Lρ(x

k+1, z, yk) by definition, we have

0 = ∇g(zk+1) + B⊤yk + ρB⊤(Axk+1 +Bzk+1 − c)

= ∇g(zk+1) + B⊤
(

yk + ρ(Axk+1 +Bzk+1 − c)
)

= ∇g(zk+1) + B⊤yk+1,
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where in the last equality we have exploited the definition of the dual update
(4.6). This means that zk+1 and yk+1 always satisfy (4.9), hence optimality boils
down to satisfying (4.7) and (4.8).

The residuals for the conditions (4.7) and (4.8) can be defined as follows:

rk+1 := Axk+1 +Bzk+1 − c (4.10)

is the primal residual at the iteration k + 1, while the quantity

sk+1 := ρA⊤B(zk+1 − zk) (4.11)

is the dual residual at iteration k + 1.
While the choice of the primal residual rk+1 is intuitive, it is necessary to motivate
the choice of sk+1 as the residual for the dual feasibility condition (4.8). To this
aim, we immediately notice that, since xk+1 minimizes Lρ(x, z

k, yk) by definition,
we have

0 = ∇f(xk+1) + A⊤yk + ρA⊤(Axk+1 +Bzk − c)

= ∇f(xk+1) + A⊤
(

yk + ρ(Axk+1 +Bzk − c)
)

= ∇f(xk+1) + A⊤
(

yk + ρ(Axk+1 +Bzk+1 − c+Bzk − Bzk+1)
)

= ∇f(xk+1) + A⊤
(

yk + ρ(Axk+1 +Bzk+1 − c) + ρ(Bzk − Bzk+1))
)

= ∇f(xk+1) + A⊤yk+1 + ρA⊤B(zk − Bzk+1)

where the last equality follows from (4.6). Equivalently,

∇f(xk+1) + A⊤yk+1 = ρA⊤B(zk+1 − zk) (4.12)

and, by comparing (4.12) with (4.8), it is clear that the quantity sk+1 = ρA⊤B(zk+1−
zk) can be viewed as a residual for the optimality condition (4.8).

Now, in order to define the stopping criterion for the ADMM, we can relate
the residuals rk+1 and sk+1 to a bound on the objective suboptimality of the
current point, i.e. to the quantity f(xk) + g(zk)− p∗. In particular, it is possible
to show that if the residuals rk and sk are small, then the objective suboptimality
must be small as well. This suggests that a reasonable termination criterion is

∥ rk ∥≤ ϵpri

and
∥ sk ∥≤ ϵdual
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where ϵpri > 0 and ϵdual > 0 are the feasibility tolerances for optimality conditions
(4.7) and (4.8), respectively. These tolerances can be chosen using an absolute
and relative criterion, such as

ϵpri =
√
pϵabs + ϵrel max

{

∥ Axk ∥, ∥ Bzk ∥, ∥ c ∥
}

(4.13)
ϵdual =

√
nϵabs + ϵrel ∥ A⊤yk ∥ (4.14)

where ϵabs > 0 is an absolute tolerance and ϵrel > 0 is a relative tolerance.
The factors √

p and
√
n account for the fact that the norms are taken in R

p and
R

n, respectively.
A reasonable value for ϵrel might be 10−3 or 10−4, depending on the application,
while the choice of an absolute stopping criterion ϵabs depends on the scale of the
typical variable values.

4.4 Extension and variations

Many variations of the classic ADMM algorithm have been explored in litera-
ture. Here, we briefly discuss two interesting variants that we will exploit in our
factor analysis problem.

A first standard extension concerns the penalty parameters ρ. Experience on
applications has shown that the number of ADMM iterations depends significantly
on the value of the penalty parameter as it influences the decreasing speed of
rk and sk to zero. As a matter of fact, from the definition of the augmented
Lagrangian (4.2) and the ADMM update equations (4.4)-(4.6), it is clear that
large values of ρ place a large penalty on violations of primal feasibility and so
tend to produce small primal residuals. On the contrary, the definition (4.11) of
sk suggests that small values of ρ tend to reduce the dual residual, but at the
expense of reducing the penalty on primal feasibility, which may result in a larger
primal residual.
These observations originate the idea of using a variable penalty parameter, with
the goal of improving the convergence in practice, as well as making performance
less dependent on the initial choice of the penalty parameter.
Though it can be difficult to prove the convergence of ADMM when ρ varies by
iteration, the standard ADMM theory still applies if we assumes that ρ becomes
fixed after a finite number of iterations.

Another extension of the ADMM is related to the x and z-minimization
steps. It is possible to prove that ADMM will converge even when the x- and
z-minimization steps are not carried out exactly, provided certain suboptimality
measures in the minimization satisfy appropriate conditions. This result is ex-

25



tremely important in the situations in which it is not possible to solve problems
(4.4) in closed form: it allows to use iterative methods and solve the minimizations
only approximately at first, and then more accurately as the iterations progress.
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5
Robust Factor Analysis of MA Processes

In this chapter we face the problem of developing a robust identification proce-
dure for the dynamic factor analysis of moving average (MA) processes.
First, we formulate the problem as a trace norm minimization of a suitable spec-
tral density. Then, in order to provide a numerically viable procedure for solving
it, we exploit a finite dimensional matrix parametrization of the problem. The
latter is analysed by resorting to the Lagrange duality theory, which allows to
prove the existence of a solution. In addition, we show how to recover the solu-
tion to the primal problem provided that a solution to the dual one is available.
Finally, the last part of the chapter is devoted to developing a numerical algo-
rithm to solve the dual problem by employing the alternating direction method
of multipliers.

5.1 Problem formulation

Consider the moving average (MA) factor model:

yt = ΓLut + ΓDwt (5.1)

where
ΓL(e

iϑ) =
n
∑

k=0

WL,ke
−iϑk, WL,k ∈ R

m×r

ΓD(e
iϑ) =

n
∑

k=0

WD,ke
−iϑk, WD,k ∈ R

m×m diagonal,
(5.2)
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and u = {ut, t ∈ Z} and w = {wt, t ∈ Z} are normalized white Gaussian noises
of dimension r and m, respectively, such that

E{utw
⊤
s } = 0 ∀t, s. (5.3)

The aforementioned model has the following interpretation: u is the process which
describes the r factors, with r ≪ m, not accessible to observation; ΓL is the
factor loading transfer matrix; ΓLut is the latent variable; ΓDwt is idiosyncratic
noise. By rewriting the m-dimensional Gaussian stationary stochastic process
y = {yt, t ∈ Z} as

yt =
[

ΓL ΓD

]





ut

wt



 ,

and noticing that, in view of (5.3), [ut wt]
⊤ has covariance equal to the iden-

tity, from the Wiener-Kintchine formula it immediately follows that yt has power
spectral density

Φ = ΦL + ΦD (5.4)

with ΦL := ΓLΓ
∗
L ⪰ 0 and ΦD := ΓDΓ

∗
D ⪰ 0. Moreover, from (5.2), we have

ΦL =

(

n
∑

k=0

WL,ke
−iϑk

)(

n
∑

k=0

WL,ke
−iϑk

)∗

,

ΦD =

(

n
∑

k=0

WD,ke
−iϑk

)(

n
∑

k=0

WD,ke
−iϑk

)∗

;

thus, ΦL, ΦD and Φ belong to the finite dimensional space:

Qm,n =

{

n
∑

k=−n

Rke
−iϑk, Rk = RT

−k ∈ R
m×m

}

. (5.5)

By construction, rank(ΦL) = r, where rank denotes the normal rank, and ΦD

is diagonal. Therefore, y represents a factor model if its spectral density can be
decomposed as “low rank plus diagonal” as in (5.4).

Assume to collect a finite length realization of y, say yN = { y1 . . . yN }. We
want to to estimate the corresponding factor model, that is the decomposition in
(5.4), as well as the number of factors r.

To this aim, given our data yN , we first compute the sample covariance lags

28



R̂j as

R̂j =
1

N

N−j
∑

t=1

y(t+ j)y(t)⊤, j = 0 . . . n (5.6)

where n is fixed by the user. Then, the estimate Φ̂ of Φ is obtained by the
truncated periodogram:

Φ̂ =
n
∑

k=−n

R̂ke
iϑk. (5.7)

Notice that Φ̂ could be not positive definite for all ϑ. In that case, it is possible
to use the periodogram properly smoothed using a windowing method [18].
On the other hand, Φ̂ may not admit a low rank plus diagonal decomposition.
Thus, we estimate directly the two terms ΦL and ΦD of the decomposition (5.4)
by solving the following optimization problem

min
Φ,ΦL,ΦD∈Qm,n

tr

∫

ΦL

subject to ΦL + ΦD = Φ,

Φ ≻ 0 a.e., ΦL,ΦD ⪰ 0,

ΦD diagonal,
SIS(Φ||Φ̂) ≤ δ.

(5.8)

Notice that, when omitted, the integrals are always defined from −π to π with
respect to the normalized Lebesgue measure dθ/2π.
Here, the objective function induces low-rankness on ΦL, see [11]. The first three
constraints impose that ΦL and ΦD provide a genuine spectral density decompo-
sition of type (5.4). The last constraint, in which SIS(Φ||Φ̂) is the Itakura-Saito
divergence defined by

SIS(Φ||Φ̂) :=
∫

log |Φ̂Φ−1|+ tr[Φ̂−1Φ− Im], (5.9)

imposes that this spectral density belongs to a set “centered” in the nominal
spectral density Φ̂ and with prescribed tolerance δ.

Notice that ΦD is univocally determined by Φ and ΦL. Thus, problem (5.8)
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can be rewritten by removing ΦD:

(Φ̂L, Φ̂D) = argmin
Φ,ΦL∈Qm,n

tr

∫

ΦL

subject to Φ ≻ 0 a.e., ΦL,Φ− ΦL ⪰ 0,

Φ− ΦL diagonal,
SIS(Φ||Φ̂) ≤ δ.

(5.10)

5.2 The Choice of δ

Before solving our problem, two important considerations are in order on
the choice of the tolerance parameter δ appearing in the constraint of (5.10).
This choice should reflect the accuracy of the estimation Φ̂ of Φ. This can be
accomplished by choosing a desired probability α ∈ (0, 1) and considering a ball
of radius δα (in the Itakura-Saito topology) centered in Φ̂ and containing the true
spectrum Φ with probability α. To estimate δα we proceed in two steps.

First, we consider the periodogram in (5.7) of Φ and we rely on a scale in-
variance property of the Itakura-Saito divergence. To introduce this property we
define R̂j as the estimator corresponding to R̂j, namely the random matrix defined
analogously to (5.6), but taking the Gaussian random variables in place of the
corresponding realization yt. In a similar way, Φ̂ and Φ̂ denotes the periodogram,
understood as estimator and estimate, respectively.

Lemma 5.2.1. Let y = {y(t) : t ∈ Z} be a zero mean, stationary, full rank,
Gaussian process with spectral density Φ. Let Φ̂ be the truncated periodogram
based on a sample of y of length N . Then, SIS(Φ||Φ̂) is a random variable whose
distribution depends only on the numerosity N of the sample, on the dimension
m and the order n of the process.

Proof. We use arguments similar to the ones in proof of [13, Lemma 4.1].
Let W (eiϑ) be the minimum phase spectral factor of Φ; define the process ỹ =

{ỹ(t), t ∈ Z} as ỹ(t) := W (eiϑ)−1y(t). Clearly, ỹ(t) is the normalized white

30



Gaussian noise process. Then we have

Φ̂(eiϑ) =
k=n
∑

k=−n

(

1

N

N−k
∑

t=1

y(t+ k)y(t)⊤

)

e−ikϑ

=
k=n
∑

k=−n

(

1

N

N−k
∑

t=1

W (eiϑ)ỹ(t+ k)ỹ(t)⊤W (eiϑ)∗

)

e−ikϑ

= W (eiϑ)
k=n
∑

k=−n

(

1

N

N−k
∑

t=1

ỹ(t+ k)ỹ(t)⊤

)

e−ikϑW (eiϑ)∗

= W (eiϑ)Ω̂N(e
iϑ)W (eiϑ)∗

where Ω̂N(e
iϑ) :=

∑k=n
k=−n

(

1

N

∑N−k
t=1 ỹ(t + k)ỹ(t)⊤

)

e−ikϑ is the truncated peri-

odogram (understood as estimator) based on a sample of the normalized white
Gaussian noise ỹ of length N . Hence, the Itakura-Saito divergence between Φ

and Φ̂ is

SIS(Φ||Φ̂) =

∫

log |Φ̂Φ−1|+ tr[Φ̂−1Φ− Im]

=

∫

log |W Ω̂NW
∗W−∗W−1|+ tr[W−∗Ω̂−1

N W−1WW ∗]−m

=

∫

log det(Ω̂N) + tr(Ω̂−1
N )−m (5.11)

where we have exploited the fact that Φ = WW ∗.

(5.11) results also in the case we consider a smoothed version of the periodogram
obtained by a windowing method, [19]. In this case, Ω̂N must be understood as
the smoothed periodogram of the normalized white noise.

In view of this result, we can easily generate a realization of the random
variable SIS(Φ||Φ̂) from a realization of the normalized white Gaussian noise
process. Accordingly, we can compute numerically δα such that Pr(SIS(Φ||Φ̂) ≤
δα) = α by a standard Monte Carlo procedure.

The second consideration is the following. If the chosen α is too large with
respect to the data length N , the resulting δα may be too generous yielding to
a diagonal Φ obeying SIS(Φ||Φ̂) ≤ δα. In this case problem (5.10) admits the
trivial solution ΦL = 0 and ΦD = Φ diagonal. To rule out this trivial case, δ in
(5.10) must be be strictly smaller than the upper bound

δmax := min
Φ∈S+

m

Φ diagonal
SIS(Φ||Φ̂)
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where S+
m denotes the family of bounded and coercive functions defined on the

unit circle and taking values in the cone of positive definite m × m Hermitian
matrices. This problem can be easily solved as follows. Since Φ must be diagonal,
by denoting as ϕi and by γ̂i the i-th element in the diagonal of Φ and of Φ̂−1,
respectively, we have

δmax = min
Φ∈S+

m

Φ diagonal

∫

log |Φ̂Φ−1|+ tr[Φ̂−1Φ− Im]

= min
Φ∈S+

m

Φ diagonal

∫

log |Φ̂
(

diag2(Φ̂−1)
)(

diag2(Φ̂−1)
)−1

Φ−1|+ tr[Φ̂−1Φ− Im]

= min
Φ∈S+

m

Φ diagonal

∫

log |
(

diag2(Φ̂−1)
)−1

Φ−1|+ tr[Φ̂−1Φ− Im] +

∫

log |Φ̂ diag2(Φ̂−1)|

= min
Φ∈S+

m

Φ diagonal

∫

log(
m
∏

i=1

γ̂−1
i ϕ−1

i ) +
m
∑

i=1

γ̂iϕi −m+

∫

log |Φ̂ diag2(Φ̂−1)|

=

[

m
∑

i=1

min
φi∈S

+
1

∫

log(γ̂−1
i ϕ−1

i ) + γ̂iϕi − 1

]

+

∫

log |Φ̂ diag2(Φ̂−1)|

=

[

m
∑

i=1

min
φi∈S

+
1

SIS(ϕi||γ̂−1
i )

]

+

∫

log |Φ̂ diag2(Φ̂−1)|

where diag2(·) is the (orthogonal projection) operator mapping a square matrix
M into a diagonal matrix of the same size having the same main diagonal of
M . Therefore, since the Itakura-Saito divergence is non-negative, the solution
corresponds to ϕopt

i (eiϑ) = (γ̂i(e
iϑ))−1, i = 1, ...,m for which SIS(ϕ

opt
i ||γ̂−1

i ) = 0.
Accordingly,

δmax =

∫

log |Φ̂ diag2(Φ̂−1)|. (5.12)

A more generous upper bound can be derived by assuming that Φ is the spectrum
of an MA process of order n. However, numerical experiments showed that δmax ≫
δα even in the case that N is relatively small.

5.3 Problem solution

5.3.1 Matricial parametrization of the problem

To study problem (5.10) it is convenient to introduce a matricial parametrization
for Φ,ΦL and Φ−ΦL. To this end, we first introduce the so-called shift operator
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∆(eiθ), defined as

∆(eiϑ) := [Im eiϑIm . . . einϑIm], (5.13)

and the space Qm(n+1) of symmetric block-matrices with (n+1)× (n+1) square
blocks of dimension m×m; if X ∈ Qm(n+1), Xij is the block in position i, j with
i, j = 0, . . . , n, so that

X =

















X00 X01 . . . X0n

X⊤
01 X11 . . .

...
... ... ... ...

X⊤
0n X⊤

1n . . . Xnn

















.

Moreover, we will use Mm,n to denote the vector space of matrices of the form

Y := [Y0 Y1 ... Yn], Y0 ∈ Qm, Y1, ..., Yn ∈ R
m×m, (5.14)

and the linear mapping T : Mm,n → Qm(n+1) which constructs a symmetric
block-Toeplitz matrix from its first block row so that if Y is given by (5.14),

T (Y ) =

















Y0 Y1 . . . Yn

Y ⊤
1 Y0

. . . ...
... . . . . . . Y1

Y ⊤
n . . . Y ⊤

1 Y0

















.

The adjoint of T is a mapping D : Qm(n+1) → Mm,n defined by D(X) =

[[D(X)]0 . . . [D(X)]n] with

[D(X)]0 =
n
∑

h=0

Xhh, [D(X)]j = 2

n−j
∑

h=0

Xh h+j, j = 1, ..., n.

Given X ∈ Qm(n+1), by direct computation we obtain

∆X∆∗ = [D(X)]0 +
1

2

n
∑

j=1

e−ijϑ[D(X)]j + eijϑ[D(X)]⊤j , (5.15)
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thus ∆X∆∗ ∈ Qm,n. Conversely, since D is a surjective map, any element in
Qm,n may be parametrized as (5.15). We conclude that

Qm,n = {∆X∆∗ s.t. X ∈ Qm(n+1)} (5.16)

and we introduce the following matrix parametrization for Φ,ΦL and Φ− ΦL:

Φ = ∆X∆∗ ∈ Qm,n

ΦL = ∆L∆∗ ∈ Qm,n

Φ− ΦL = ∆(X − L)∆∗ ∈ Qm,n

(5.17)

with X and L matrices in Qm(n+1).
Next, the objective is to provide a more convenient formulation of Problem

(5.10) in terms of X and L. To this end, we have to take into account the following
points.

1. Positivity Constraints Φ ≻ 0 a.e. and ΦL,Φ− ΦD ⪰ 0:
It can been shown (see, for example, [11, Appendix A]) that, for any Ψ ∈
Qm,n, Ψ ⪰ 0 if and only if there exists a matrix P ∈ Qm(n+1) such that
Ψ = ∆P∆∗ and P ⪰ 0. Therefore, we replace the conditions ΦL ⪰ 0 with
L ⪰ 0 and the condition Φ−ΦL ⪰ 0 with X − L ⪰ 0. Note that the latter
only guarantees X ⪰ 0 and thus Φ to be positive semidefinite, however we
will show that this is sufficient to guarantee that Φ ≻ 0 a.e. at the optimum.

2. Constraint Φ− ΦL diagonal:
Let ofd : R

m×m → R
m×m denote the linear operator such that, given

A ∈ R
m×m, ofd(A) is the matrix in which each off-diagonal element is equal

to the corresponding element of A and each diagonal element is zero. We
define the “block ofd” linear operator ofdB : Mm,n → Mm,n as follows.
Given Z = [Z0 Z1 . . . Zn ] ∈ Mm,n, then

ofdB(Z) = [ ofd(Z0) ofd(Z1) . . . ofd(Zn) ]. (5.18)

It is not difficult that ofdB is a self-adjoint operator, since ofd is self-adjoint
as well. Then, it is easy to see that, in view of (5.15), the condition Φ−ΦL

diagonal is equivalent to the condition [D(X−L)]j diagonal for j = 0, . . . , n,
that is ofdB(D(X − L)) = 0.

3. The Low Rank Regularizer:
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We have

tr

∫

ΦL = tr

∫

∆L∆∗ = tr

(

L

∫

∆∗∆

)

= tr(L)

where we exploited the cyclic property of the trace and the fact that
∫

eijϑ =

1 if j = 0, and
∫

eijϑ = 0 otherwise.

4. The Divergence Constraint:
A convenient matrix parameterization of the Itakura-Saito divergence SIS(Φ||Φ̂)
can be obtained by making use of the following facts.

First, since Φ = ∆X∆∗ with X ⪰ 0, there exists A ∈ R
m×m(n+1) such that

X = A⊤A. This can be easily seen by noticing that Φ ∈ Qm,n such that
Φ ⪰ 0 admits the spectral factorization Φ = ΓΓ∗ where Γ := ∆A⊤ and
A ∈ Rm×m(n+1). Hence, from Φ = ∆X∆∗ = ∆A⊤A∆∗ we conclude that
X = A⊤A.
Then, by using the Jensen-Kolmogorov formula we obtain

∫

log |Φ| =
∫

log |∆A⊤A∆∗| = log |A⊤
0 A0| = log |X00|, (5.19)

which holds provided that X00 ≻ 0.

Strictly speaking, (5.19) is valid when Φ is free from zeros over the unit
circle. However, as we will show in Lemma 5.3.1, (5.19) can be extended
by continuity to the case in which Φ ⪰ 0 has some zeros on the unit circle.
The proof of the Lemma exploits the celebrated Beppo Levi’s monotone
convergence theorem which is reported in the following:

Theorem 5.3.1 (Beppo Levi’s monotone convergence theorem for Lebesgue
integral). Let (X,Σ, µ) be a measure space, and X ∈ Σ. Consider a point-
wise non-decreasing sequence {fk}∞k=1 of measurable non-negative functions
fk : X → [0,+∞], i.e. for every k ≥ 1 and every x ∈ X

0 ≤ fk(x) ≤ fk+1(x) ≤ +∞.

Set the pointwise limit of sequence {fk} to be f . That is, for every x ∈ X,

f(x) := lim
k→∞

fk(x).
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Then, f is measurable and

lim
k→∞

∫

X

fkdµ =

∫

X

fdµ.

Lemma 5.3.1. Consider a power spectral density Φ ∈ Qm,n, such that Φ ⪰ 0

with Φ singular for some ϑ ∈ [−π,+π]. Let X ∈ Qm(n+1), X ⪰ 0 such that
Φ = ∆X∆∗. Then

∫

log |Φ| = log |X00|.

Proof. As previously notice, since Φ = ∆X∆∗ with X ⪰ 0, there exists
A ∈ R

m×m(n+1) such that X = A⊤A. The matrix A is such that Φ ⪰ 0

admits the spectral factorization Φ = ΓΓ∗ where Γ := ∆A⊤.
Introduce Φn := Φ + 1

n
I with n ∈ N. Let Γn := ∆An with An ∈ R

m×m(n+1)

be a spectral factor of Φn, i.e. Φn = ΓnΓ
∗
n.

Clearly, limn→+∞ Φn = Φ; accordingly limn→+∞ Γn = Γ and limn→+∞ An =

A.
Moreover, Φn ≻ 0 ∀ϑ; therefore, we can exploit (5.19) to obtain

∫

log |Φn| = log |A⊤
n0
An0 |.

Then, applying the limit operator to both sides, we have

lim
n→+∞

∫

log |Φn| = lim
n→+∞

log |A⊤
n0
An0 |

= log |A⊤
0 A0| = log |X00|.

To conclude the proof, it remains to show that in the left side of the previous
equation it is possible to interchange the limit and the integral operators,
so that

lim
n→+∞

∫

log |Φn| =
∫

lim
n→+∞

log |Φn| =
∫

log |Φ|.

To this aim, we introduce the sequence of functions {fn}+∞
n=1 where

fn(θ) := log |Φn(ϑ)| = log |Φ(ϑ) + 1

n
I|

with limit f(ϑ) := limn→+∞ fn(t) = log |Φ(ϑ)|.
Observe that, since the interval of integration [−π, π] is bounded and f1(ϑ) <
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+∞ for any ϑ ∈ [−π, π], we have
∫

f1(ϑ)dϑ < +∞.

Now, consider a new sequence {gn}+∞
n=1 with gn(ϑ) := fn(ϑ)− f1(ϑ) and let

g(ϑ) := limn→+∞ gn(ϑ). {gn} is a a pointwise non-increasing sequence of
measurable non-positive functions,

· · · ≤ g2(ϑ) ≤ g1(ϑ) ≤ 0, for every ϑ ∈ [−π,+π] .

converging to g(ϑ) from above. Clearly, {gn} satisfies all the hypotheses of
Beppo-Levi’s monotone convergence theorem 5.3.1 (applied with opposite
signs), from which it immediately follows that

lim
n→+∞

∫

gn(ϑ) =

∫

g(ϑ). (5.20)

Therefore,

lim
n→+∞

∫

fn(ϑ) = lim
n→+∞

∫

fn(ϑ)− f1(ϑ) +

∫

f1(ϑ)

= lim
n→+∞

∫

gn(ϑ) +

∫

f1(ϑ)

=

∫

g(ϑ)dt+

∫

f1(ϑ). (5.21)

But now, since f1(ϑ) < +∞ for all ϑ,

g(ϑ) := lim
n→+∞

gn(ϑ) = f(ϑ)− f1(ϑ). (5.22)

Finally, plugging (5.22) into (5.21), we obtain

lim
n→+∞

∫

fn(ϑ) =

∫

f(ϑ), (5.23)

concluding the proof.

A second observation in order to conveniently parametrize the Itakuro-Saito
divergence constraint is that, by exploiting the cyclic property of the trace,

∫

tr(Φ̂−1Φ) =

∫

tr(Φ̂−1∆X∆∗)

= tr

(

X

∫

∆∗Φ̂−1∆

)

= ⟨X,T (P̂ )⟩,
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where T (P̂ ) is defined as follows. Consider the following expansion of Φ̂−1:

Φ̂−1 =
∞
∑

k=−∞

P̂ke
−iϑk; (5.24)

by construction, since
∫

eijϑ = 1 if j = 0 and
∫

eijϑ = 0 otherwise, we have

∫

∆∗Φ̂−1∆ =

∫

















Φ−1 eiθΦ−1 . . . einθΦ−1

e−iθΦ−1 Φ−1 . . . ...
... . . . . . . eiθΦ−1

e−inθΦ−1 . . . e−iθΦ−1 Φ−1

















=

















P̂0 P̂1 . . . P̂n

P̂−1 P̂0
. . . ...

... . . . . . . P̂1

P̂−n . . . P̂−1 P̂0

















=

















P̂0 P̂1 . . . P̂n

P̂⊤
1 P̂0

. . . ...
... . . . . . . P̂1

P̂⊤
n . . . P̂⊤

1 P̂0

















= T (P̂ )

where P̂ := [P̂0 . . . P̂n].

Summing up, we get the following matrix re-parametrization of Problem
(5.10):

(X̂, L̂) = argmin
X,L∈Qm(n+1)

tr(L)

subject to X00 ≻ 0, L ⪰ 0, X − L ⪰ 0,

ofdB(D[X − L]) = 0,

− log |X00|+
∫

log |Φ̂|+ ⟨X,T (P̂ )⟩ −m ≤ δ.

(5.25)

We remark once again that to prove the equivalence between (5.10) and (5.25) we
still need to show that Φ ≻ 0 a.e. at the optimum: this fact will be established
after the variational analysis.

5.3.2 The dual problem

We reformulate the constrained minimization problem in (5.25) as an uncon-
strained problem by means of Duality Theory.
If we use V, U ∈ Qm(n+1), V, U ⪰ 0 as the multipliers associated with the con-
straints on the positive semi-definiteness of X−L and L, respectively; Z ∈ Mm,n
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as the multiplier associated with the constraint ofdB(D(X − L)) = 0 and λ ∈
R, λ ≥ 0, as the multiplier associated with the Itakura-Saito divergence, then the
Lagrangian of problem (5.25) is

L(X,L, λ, U, V, Z) = tr(L)− ⟨V,X − L⟩ − ⟨U,L⟩+ ⟨Z, ofdB(D(X − L))⟩

+ λ
(

− log |X00|+
∫

log |Φ̂|+ ⟨X,T (P̂ )⟩ −m− δ
)

= ⟨L, I⟩ − ⟨V,X − L⟩ − ⟨U,L⟩+ ⟨T (ofdB(Z)), X − L⟩+ ⟨X, λT (P̂ )⟩

− λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)

= ⟨L, I⟩ − ⟨V,X⟩+ ⟨V, L⟩ − ⟨U,L⟩+ ⟨T (ofdB(Z)), X⟩ − ⟨T (ofdB(Z)), L⟩

+ ⟨X, λT (P̂ )⟩ − λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)

= ⟨L, I − U + V − T (ofdB(Z))⟩+ ⟨X,T (ofdB(Z))− V + λT (P̂ )⟩

− λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)

, (5.26)

where in the first equality we exploited the fact that the operator ofdB is self-
adjoint and the mappings T and D are adjoints, so that ⟨Z, ofdB(D(X − L))⟩ =
⟨ofdB(Z), D(X − L))⟩ = ⟨T (ofdB(Z)), X − L⟩.
Note that we have not included the constraint X00 ≻ 0 because, as we will show
later on, this condition is automatically met by the solution of the dual problem.

The dual function is defined as the infimum of L(X,L, λ, U, V, Z) over X and
L. Thanks to the convexity of the Lagrangian, we rely on standard variational
methods to characterize the minimum.

• Partial minimization with respect to L: L depends on L only through ⟨L, I−
U + V − T (ofdB(Z))⟩ which is bounded below only if

I − U + V − T (ofdB(Z)) = 0. (5.27)

Thus, we get that

inf
L
L =



















⟨X,T (ofdB(Z))− V + λT (P̂ )⟩+
−λ
(

log |X00| −
∫

log |Φ̂|+m+ δ
)

if (5.27)
−∞ otherwise.

• Partial minimization with respect to X: L depends on X00 through the
terms

⟨X00,
[

T (ofdB(Z))− V + λT (P̂ )
]

00
⟩ − λ

(

log |X00|
)

.
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which are unbounded below unless
[

T (ofdB(Z))− V + λT (P̂ )
]

00
≻ 0. (5.28)

If (5.28) holds, then, by taking convexity into account, the matrix X00

achieving the minimum is easily obtained by imposing the optimality con-
dition δL(X00; δX00) = 0 ∀δX00 ∈ Qm. This is equivalent to

δL(X00; δX00) = tr
(

[

T (ofdB(Z))− V + λT (P̂ )
]

00
δX00

)

− λ tr
(

X−1
00 δX00

)

= ⟨
[

T (ofdB(Z))− V + λT (P̂ )
]

00
− λX−1

00 , δX00⟩ = 0

for any δX00, from which it follows that
[

T (ofdB(Z))− V + λT (P̂ )
]

00
− λX−1

00 = 0

and so
X00 =

([

T (P̂ ) + λ−1(T (ofdB(Z))− V )
]

00

)−1

. (5.29)

provided that λ > 0.

The Lagrangian is linear in the remaining variables Xlh, for (l, h) ̸= (0, 0),
and therefore bounded below only if

[

T (ofdB(Z))− V + λT (P̂ )
]

lh
= 0 ∀(l, h) ̸= (0, 0). (5.30)

Summarizing, the minimization of the Lagrangian with respect to X and L is
finite if and only if (5.27), (5.28), and (5.30) hold in which case

min
X,L

L = ⟨
([

λ−1(T (ofdB(Z))− V ) + T (P̂ )
]

00

)−1

,
[

T (ofdB(Z))− V + λT (P̂ )
]

00
⟩

− λ
(

− log
∣

∣

[

T (P̂ ) + λ−1(T (ofdB(Z))− V )
]

00

∣

∣−
∫

log |Φ̂|+m+ δ
)

= λm− λ
(

− log
∣

∣

[

T (P̂ ) + λ−1(T (ofdB(Z))− V )
]

00

∣

∣−
∫

log |Φ̂|+m+ δ
)

= −λ
(

− log
∣

∣

[

T (P̂ ) + λ−1(T (ofdB(Z))− V )
]

00

∣

∣−
∫

log
∣

∣Φ̂
∣

∣+ δ
)

.

Otherwise the Lagrangian has no minimum and its infimum is −∞.
In order to simplify the notation, let us define the vector space O as:

O := {Z ∈ Mm,n : ofdB(Z) = Z}.

Since Z always appears in the form ofdB(Z), we can replace it with Z ∈ O.
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We can now formulate the dual problem for the Lagrangian (5.26) as

sup
(λ,U,V,Z)∈C̃

J̃ (5.31)

where
J̃ := λ

(

log
∣

∣

[

T (P̂ ) + λ−1(T ( Z)− V )
]

00

∣

∣+

∫

log |Φ̂| − δ
)

and the feasible set C̃ is given by:

C̃ := {(λ, U, V, Z) : U, V ∈ Qm(n+1), U, V ⪰ 0, Z ∈ O, λ ∈ R, λ > 0,

I − U + V − T (Z) = 0, [λT (P̂ ) + T (Z)− V ]00 ≻ 0,

[λT (P̂ ) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}.

Note that, constraints I − U + V − T (Z) = 0 and U ⪰ 0 are equivalent to the
constraint I + V − T (Z) ⪰ 0. Thus, we can eliminate the redundant variable U ;
moreover, by changing the sign to the objective function J̃ and observing that
[

T (P̂ ) + λ−1(T (Z)− V )]00 = P̂0 + λ−1(Z0 − V00), we can rewrite (5.31) as:

min
(λ,V,Z)∈C

J (5.32)

where
J := λ

(

− log
∣

∣P̂0 + λ−1(Z0 − V00)
∣

∣−
∫

log |Φ̂|+ δ
)

.

and the corresponding feasible set C is:

C := {(λ, V, Z) : V ∈ Qm(n+1), V ⪰ 0, Z ∈ O, I + V − T (Z) ⪰ 0, λ ∈ R, λ > 0,

[λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}.

Next we address existence of solutions to (5.32).

5.3.3 Existence of solutions

The aim of this subsection is to show that (5.32) admits solution. The set C is not
compact, as it is neither closed nor bounded. Our strategy consists in showing
that we can restrict the set C to a compact set over which the minimization is
equivalent. Then, since the objective function is continuous over C (and hence
over the restricted compact set), we can use Weierstrass’s Theorem to conclude
that the problem does admit a minimum.

The first step consists in showing that, similarly to [13, Proposition 6.1], we
can restrict C to a subset where λ ≥ ε with ε > 0 a positive constant.
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Proposition 5.3.1. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C such
that

lim
k→∞

λ(k) = 0. (5.33)

Then, such a sequence cannot be an infimizing sequence.

The proof can be found in Appendix C.
As a consequence, minimizing the dual functional over the set C is equivalent

to minimize it over the set:

C1 :={(λ, V, Z) : V ∈ Qm(n+1)V ⪰ 0, Z ∈ O, I + V − T (Z) ⪰ 0, λ ∈ R, λ ≥ ε,

[λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}.

Next we show that we can restrict the search for the optimal solution to a
subset of C1 in which both (T (Z)− V ) and λ cannot diverge.

Proposition 5.3.2. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C1 such
that either

lim
k→∞

∥ T (Z(k))− V (k) ∥= +∞ (5.34)

or
lim
k→∞

λ(k) = +∞ (5.35)

or both. Then, such a sequence cannot be an infimizing sequence.

The proof can be found in Appendix C.
It follows from the previous result that there exists β ∈ R with | β |< ∞ such

that
T (Z)− V ⪰ βI

and 0 < γ < ∞ such that λ ≤ γ. Therefore, the set C1 can be further restricted
to the set:

C2 := {(λ, V, Z) : V ∈ Qm(n+1), V ⪰ 0, Z ∈ O, βI ⪯ T (Z)− V ⪯ I, λ ∈ R,

γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}.

In addition, we show that it is not possible for V and Z to diverge while
keeping finite the difference T (Z)− V . Accordingly, we can further restrict C2 to
a subset C3 in which neither V nor Z can diverge:
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Proposition 5.3.3. Let (λ(k), V (k), Z(k))k∈N be a sequence of elements in C2 such
that

lim
k→∞

∥ V (k) ∥= +∞ (5.36)

or
lim
k→∞

∥ Z(k) ∥= +∞ (5.37)

or both. Then, such a sequence cannot be an infimizing sequence.

The proof can be found in Appendix C.
Thus, the minimization over C2 is equivalent to the minimization over the

subset:

C3 := {(λ, V, Z) : V ∈ Qm(n+1), αI ⪰ V ⪰ 0, Z ∈ O, βI ⪯ T (Z)− V ⪯ I, λ ∈ R,

γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] ≻ 0, [λ(T (P̂ )) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}.

for certain α > 0 positive constant.
Finally, we consider a sequence (λ(k), V (k), Z(k))k∈Z ∈ C3 such that [(λ(k))−1

(

[Z(k)]0−
[V (k)]00

)

+P̂0] tends to be singular as k → ∞. This implies that |(λ(k))−1
(

[Z(k)]0−
[V (k)]00

)

+ P̂0| tends to zero and hence J → +∞. Thus, such a sequence cannot
be an infimizing sequence.
Therefore, the final set CC is :

CC := {(λ, V, Z) : V ∈ Qm(n+1), αI ⪰ V ⪰ 0, Z ∈ O, βI ⪯ T (Z)− V ⪯ I, λ ∈ R,

γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] ⪰ µI, [λ(T (P̂ )) + T (Z)− V ]lh = 0, ∀(l, h) ̸= (0, 0)}

where α, β, γ, ε and µ such that |α|, |β|, |γ|, |ε| and |µ| < +∞.

Theorem 5.3.2. Problem (5.32) is equivalent to

min
(λ,V,Z)∈CC

J(λ, V, Z)

and it admits solution.

Proof. Equivalence of the two problems has already been proven by the previous
arguments.
Since CC is clearly closed and bounded, hence compact, and J is continuous over
CC , by the Weierstrass’s Theorem the minimum exists.
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5.4 Solution to the original problem

In this section we prove that the primal problem (5.10) and its matrix refor-
mulation (5.25) are equivalent and we show how to recover the solution of the
original problem.

Let (λ◦, V ◦, Z◦) be a solution of (5.32) and (X◦, L◦) be the corresponding so-
lution of (5.25).
First observe that the primal problem (5.25) satisfies the refined Slater’s con-
ditions. Indeed, pick for instance X = L = T (R̂): (X,L) is feasible, and the
divergence constraint holds with strict inequality. From convex duality, strong
duality holds, namely the value of the primal objective at (X◦, L◦) is equal to the
value of the dual objective evaluated at (λ◦, V ◦, Z◦). By strong duality and the
existence of a dual optimal solution (λ◦, V ◦, Z◦), it also follows that the primal
optimal point (X◦, L◦) is a minimizer of L(X,L;λ◦, V ◦, Z◦). In particular, review-
ing the derivation of the dual problem, we see that X◦ minimizes the Lagrangian
only if

X◦
00 =

(

P̂0 + (λ◦)−1(Z◦
0 − V ◦

00)
)−1

≻ 0. (5.38)

We are now ready to prove that (5.10) and (5.25) are equivalent. Since X◦
00

is positive definite, log |X◦
00| is finite. By Lemma 5.3.1, at the optimum

∫

log |Φ|
must be finite as well; this implies that at most Φ(eiϑ), ϑ ∈ [−π,+π] may be
singular on a set of zero measure, or, in other terms, ∆X◦∆∗ ≻ 0 a.e.. This
observation leads to the following proposition:

Proposition 5.4.1. Let (X◦, L◦) be a solution of (5.25). Then ∆X◦∆∗ ≻ 0 a.e..
Accordingly, (5.10)) and (5.25) are equivalent.

In the following we show how to recover the solution of the primal problem
from an optimal solution (λ◦, V ◦, Z◦) of the dual problem; to this aim we need
the following result, see [20].

Lemma 5.4.1. Let Z ∈ Mm,n and W ∈ Qm. If W ≻ 0 is such that

T (Z) ⪰





W 0

0 0



 (5.39)

then T (Z) ≻ 0.
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Exploiting the constraints [λ(T (P̂ )) + T (Z) − V ]lh = 0, ∀(l, h) ̸= (0, 0) and
[λP̂0 + Z0 − V00] ≻ 0, it is not difficult to see that

V ◦ = λ◦T (P̂ ) + T (Z◦)−





W ◦ 0

0 0



 (5.40)

where

W ◦ := Z◦
0 − V ◦

00 + λ◦P̂0 ≻ 0. (5.41)

Since V ◦ ⪰ 0 and in view of Lemma 5.4.1, we have that λ◦T (P̂ ) + T (Z◦) ≻ 0.
Hence, V ◦ has rank at least equal to mn.

Since the duality gap between (5.25) and (5.32) is equal to zero, from con-
vex duality we know that the primal and dual optimal solutions are related by
the complementary slackness conditions. In particular, for the optimal Lagrange
multiplier V ◦ associated with the inequality X − L ⪰ 0, we have that

⟨V ◦, X◦ − L◦⟩ = 0. (5.42)

Since V ◦, X◦ − L◦ ⪰ 0, (5.42) implies

V ◦(X◦ − L◦) = 0. (5.43)

Indeed, by the positive semi-definiteness of the two matrices, there exist V 1/2 and
D1/2 ∈ Qm(n+1) such that V ◦ = V 1/2V 1/2 and X◦ − L◦ = D1/2D1/2. Thus, by
exploiting the cyclic property of the trace, (5.42) can be rewritten as

0 = tr
(

V ◦(X◦ − L◦)
)

= tr(V 1/2V 1/2D1/2D1/2)

= tr(V 1/2D1/2D1/2V 1/2)

= tr(V 1/2D1/2(V 1/2D1/2)⊤)

which implies
V 1/2D1/2 = 0.

Finally, premultiplying by V 1/2 and postmultiplying by D1/2 the last equality, we
get (5.43).

Recalling that rank(V ◦) ≥ mn , in view of (5.43) we have that X◦ − L◦ has
rank at most equal to m. Let rank(X◦ − L◦) = m̃ with m̃ ≤ m. There exists
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a full-row rank matrix A ∈ R
m̃×m(n+1) such that X◦ − L◦ = A⊤A. By (5.43), it

follows that

V ◦A⊤ = 0. (5.44)

This means that Im(A⊤) ⊆ ker(V ◦). Let us denote by YD := [vo v1 ... vl] ∈
R

m(n+1)×l the matrix whose columns vo, v1, ..., vl form a basis of kerV ◦. Note that
the dimension l of the null space of V ◦ is al least m̃ because Im(A⊤) ⊆ ker(V ◦)

and rank(A⊤) = m̃, and also l ≤ m because rank(V ◦) ≥ mn.
Writing now the columns of A⊤ as a linear combination of the vectors vo, v1, ..., vl,
we obtain:

A⊤ = YDS (5.45)

where S ∈ Rl×m̃. Accordingly,

X◦ − L◦ = A⊤A = YDSS
⊤Y ⊤

D ,

thus

X◦ − L◦ = YDQDY
⊤
D , (5.46)

where the matrix QD := SS⊤ ∈ Ql is unknown.
In a similar fashion, by the zero duality gap between (5.25) and (5.32), the

complementary slackness condition for the multiplier associated to the positive
semi-definiteness of L reads as

⟨U◦, L◦⟩ = 0 (5.47)

which in turn implies

U◦L◦ = 0. (5.48)

In the previous expressions, we remember that from (5.27) it follows

U◦ = I + V ◦ − T (Z◦).

Repeating the same reasoning as before, it can be seen that, if the dimension of
the null space of U◦ is r̃ with r̃ ≥ r and YL := [uo u1 ... ur̃] ∈ R

m(n+1)×r̃ is a
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matrix whose columns form a basis of kerU◦, then L◦ can be written as

L◦ = YLQLY
⊤
L (5.49)

with QL ∈ Qr̃ unknown. Plugging (5.49) into (5.46), we then obtain

X◦ − YLQLY
⊤
L = YDQDY

⊤
D . (5.50)

Assume now that each block of X◦ − L◦ is diagonal, namely

ofd(
[

YDQDY
⊤
D

]

hk
) = 0 h, k = 0, ..., n. (5.51)

Remark 2. We can make the previous assumption without loss of generality. In-
deed, let Φ̂, Φ̂L be the solutions of the original problem (5.10) and Φ̂D = Φ̂− Φ̂L;
let X, L and D := X − L in Qm(n+1) be any matrices such that Φ̂ = ∆X∆∗,
Φ̂L = ∆L∆∗ and ΦD = ∆D∆∗. We can always consider a different matrix
parametrization (X̃, L̃, D̃) for Φ̂, Φ̂L and Φ̂D as follows. Let δX ∈ Qm(n+1) such
that ∆δX∆∗ = 0 and X̃ := X + δX satisfies (5.29). Moreover, there always
exists a matrix D̃ with all diagonal blocks such that Φ̂D = ∆D̃∆∗; in other words,
there always exists δD ∈ Qm(n+1) such that ∆δD∆∗ = 0 and D̃ := D + δD

satisfies ofd(
[

D̃
]

hk
) = 0 for h, k = 0, ..., n.. Let L̃ := X̃ − D̃ = X −D+ δL where

δL := δX − δD. It is easy to see that Φ̂ = ∆X̃∆∗ and Φ̂L = ∆L̃∆∗, thus (X̃, L̃)

represents a solution of (5.25). This allows us to restrict to solutions (X◦, L◦) of
problem (5.25) for which (5.51) holds.

Applying the ofd operator to both sides of (5.50) and exploiting (5.51), it is
not difficult to derive:

ofd(
[

YLQLY
⊤
L

]

00
) = ofd(X◦

00) (5.52)

which is a system of m(m−1)/2 linear equations in the r̃(r̃+1)/2 unknowns QL.
Finally, once L◦ is computed, in order to retrieve QD, we first exploit (5.51) to
reduce its dimension; then the remaining unknowns of QD are obtained from the
following system of m(m+ 1)/2 linear equations:

[

YDQDY
⊤
D

]

00
= X◦

00 − L◦
00. (5.53)

In virtue of the fact that both the dual and the primal problem admit solution,
the resulting systems of equations (5.52) and (5.53) admit solutions.
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5.5 The proposed algorithm

In this section we propose an algorithm to solve numerically the dual problem.
To start with, as observed in Section 5.4, we rewrite (5.32) in a different fashion

by getting rid of the slack variable V ∈ Qm(n+1). This is done by introducing a
new variable W ∈ Qm defined, similarly to (5.41), as

W := Z0 − V00 + λP̂0 ≻ 0 (5.54)

such that, equally to (5.40), the variable V can be expressed as

V = λT (P̂ ) + T (Z)−





W 0

0 0



 . (5.55)

Therefore, the constraint V ⪰ 0 of problem (5.32) reads as

λT (P̂ ) + T (Z)−





W 0

0 0



 ⪰ 0,

and the constraint I + V − T (Z) ⪰ 0 as

I + λT (P̂ ) + T (Z)−





W 0

0 0



− T (Z) = I + λT (P̂ )−





W 0

0 0



 ⪰ 0.

Consequently, the dual problem (5.32) can be stated in terms of the variables
λ, W and Z as follows:

min
(λ,W,Z)∈C

J (5.56)

where
J := λ

(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

.

and the corresponding feasible set C is:

C := {(λ,W,Z) : W ∈ Qm,W ≻ 0, Z ∈ O, λ ∈ R, λ > 0,

λT (P̂ ) + T (Z)−





W 0

0 0



 ⪰ 0, I + λT (P̂ )−





W 0

0 0



 ⪰ 0}.

We can further simplify our problem as follows.
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First, we observe that the constraint

V = λT (P̂ ) + T (Z)−





W 0

0 0



 ⪰ 0 (5.57)

implies

λT (P̂ ) + T (Z) ⪰





W 0

0 0





and then, by Lemma 5.4.1, λT (P̂ ) + T (Z) ≻ 0.
Now, recalling the characterization of a symmetric positive semi-definite ma-

trix using the Schur complement (see Proposition C.0.3), we can easily rewrite the
constraint V ⪰ 0 by computing the Schur complement of the south-east block of V.
To this aim, it is convenient to introduce the linear operators T0,0 : Mm,n → Qm,

T0,1:n : Mm,n → Mm,n−1 and T1:n,1:n : Mm,n → Qmn that, for a given matrix
H ∈ Mm,n construct a symmetric block-Toeplitz matrix and extract the blocks
in position (0, 0), (0, 1 : n) and (1 : n, 1 : n), respectively. With this notation, we
have

T (Z + λP̂ ) =





T0,0(Z + λP̂ ) T0,1:n(Z + λP̂ )

T⊤
0,1:n(Z + λP̂ ) T1:n,1:n(Z + λP̂ )





and the constraint (5.57) is equivalent to require:

W ⪯ T0,0(Z + λP̂ )− T0,1:n(Z + λP̂ )T−1
1:n,1:n(Z + λP̂ )T⊤

0,1:n(Z + λP̂ ). (5.58)

Denoting by Q(λ, Z) the function of the dual variables (λ, Z)

Q(λ, Z) := T0,0(Z + λP̂ )− T0,1:n(Z + λP̂ )T−1
1:n,1:n(Z + λP̂ )T⊤

0,1:n(Z + λP̂ ),

(5.58) becomes
W ⪯ Q(λ, Z). (5.59)

Notice that, since Q(λ, Z) is the Schur complement of the positive definite matrix
T (Z) + λT (P̂ ), it takes values in the cone of positive definite m ×m symmetric
matrices.

Consider now the constraint

I + λT (P̂ )−





W 0

0 0



 ⪰ 0; (5.60)

by noticing that I + λT (P̂ ) ≻ 0 and computing the Schur complement of the
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south-east block, the latter can be equivalently expressed as

W ⪯ I + T0,0(λP̂ )− T0,1:n(λP̂ )
(

I + T1:n,1:n(λP̂ )
)−1

T⊤
0,1:n(λP̂ ). (5.61)

To simplify the notation, let us define the function of the variable λ

R(λ) := I + T0,0(λP̂ )− T0,1:n(λP̂ )
(

I + T1:n,1:n(λP̂ )
)−1

T⊤
0,1:n(λP̂ )

which, being the Schur complement of the positive definite matrix I+λT (P̂ ), takes
values in the cone of positive definite m ×m symmetric matrices; the condition
(5.60) reads as

W ⪯ R(λ). (5.62)

Summing up, problem (5.32) can be stated as

min
(λ,W,Z)∈C

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

. (5.63)

where

C := {(λ,W,Z) : Z ∈ O, λ ∈ R, λ > 0,W ∈ Qm,

W ≻ 0,W ⪯ Q(λ, Z), W ⪯ R(λ)}.

Finding a descending direction (λ,W,Z) for J(λ,W,Z) satisfying simultane-
ously the constraints W ⪯ Q(λ, Z) and W ⪯ R(λ) may be a difficult task. There-
fore, the idea is to implement an Alternating Direction Method of Multipliers
(ADMM) algorithm to decouple such constraints.

Actually, three different algorithms based on the ADMM are presented in
the following: Algorithm 1 and Algorithm 2 represent the first failed attempts
at solving problem (5.63); as we will observe, they contain wrong considerations
and implications. Then, the procedure has been reexamined and corrected in
Algorithm 3. However, as we will see, in this third formulation of the problem
we are not able to numerically solve the first minimization step required by the
ADMM.

Before proceeding, we state the following result that we will exploit in the
three algorithms:

Proposition 5.5.1. Let A = UDU⊤ be the eigenvalue decomposition of A ∈ Qm

with D = diag(d11, . . . dmm). Let ΠQ
+
m

be the projection operator onto the cone
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of symmetric positive semi-definite m×m matrices Q+
m, defined by

ΠQ
+
m
: Qm → Q+

m

ΠQ
+
m
(A) = argmin

S∈Q+
m

∥ S − A ∥2 .

Then
ΠQ

+
m
(A) = U diag(f(d11), . . . f(dmm))U

⊤

where

f(di) :=







di if di ≥ 0

0 otherwise.

Proof. Let S ∈ Q+
m be a m×m symmetric positive semi-definite matrix. Let dij

denote the element of D in position (i, j), with dij = 0 for i ̸= j, and let ui denote
the i-th column of the orthogonal matrix U .
Since the Frobenius norm of a matrix is invariant to the change of basis we have,

∥ A− S ∥2 =∥ U⊤(A− S)U ∥2

=∥ U⊤AU − U⊤SU ∥2

=∥ D − U⊤SU ∥2

=
m
∑

i=1

m
∑

j=1

|dij − u⊤
i Suj|2

=
m
∑

j=1

|djj − u⊤
j Suj|2 +

m
∑

i=1

m
∑

j=1

|u⊤
i Suj|2.

Since S ⪰ 0, then necessarily u⊤
j Suj ≥ 0; therefore, the matrix S minimizing the

Frobenius distance from A is such that

u⊤
j Suj = f(djj)

and
u⊤
i Suj = 0 for i ̸= j.

In a compact way, at the optimum

U⊤SU = diag(f(d11), . . . f(dmm)),
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from which it follows

S = U diag(f(d11), . . . f(dmm))U
⊤.

5.5.1 Algorithm 1

To begin with, we reformulate problem (5.63) in a suitable format for ADMM
implementation. This is achieved by introducing a new variable Y ∈ Qm defined
as

Y = W

subject to
Y ⪯ R(λ).

The reformulated problem is

min
(λ,W,Z)∈Cλ,W,Z ,Y ∈CY

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

subject to Y = W

(5.64)

where

Cλ,W,Z := {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0, W ⪯ Q(λ, Z)}
CY := {Y : Y ∈ Qm : Y ⪯ R(λ)}

Notice now that, since J = λ(− log |λ−1W |−
∫

log |Φ̂|+δ), at the optimum W

is necessarily equal to Q(λ, Z). Indeed, given that the logarithm is a monotonic
function and λ > 0, in order to minimize J(λ,W,Z), W must have the largest
possible determinant. In view of this observation, we can eliminate the reduntant
variable W , obtaining:

min
(λ,Z)∈Cλ,Z ,Y ∈CY

F = λ
(

− log
∣

∣λ−1Q(λ, Z)
∣

∣−
∫

log |Φ̂|+ δ
)

subject to Y = Q(λ, Z)

(5.65)

where

Cλ,Z := {(λ, Z) : λ ∈ R, λ > 0, Z ∈ O, Q(λ, Z) ≻ 0}
CY := {Y ∈ Qm : Y ⪯ R(λ)}
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The augmented Lagrangian for (5.65) is:

Lρ(λ, Z, Y,M) := λ
(

− log
∣

∣λ−1Q
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M,Y −Q⟩+ ρ

2
∥ Y −Q ∥2

where M ∈ Qm is the Lagrange multiplier, and ρ > 0 is the penalty parameter.
Accordingly, given the initial guesses λ(0), Z(0), Y (0) and M (0), the ADMM

updates are:

(λ(k+1), Z(k+1)) = argmin
(λ,Z)∈Cλ,Z

Lρ(λ, Z, Y
(k),M (k)) (5.66)

Y (k+1) = argmin
Y ∈CY

Lρ(λ
(k+1), Z(k+1), Y,M (k)) (5.67)

M (k+1) = M (k) + ρ
(

Y (k+1) −Q(λ(k+1), Z(k+1))
)

(5.68)

Problem (5.66) does not admit a closed form solution, therefore we approximate
the optimal solution by a gradient projection step:

λ(k+1) = λ(k) − tk∇λLρ(λ
(k), Z(k), Y (k),M (k))

Z(k+1) = ΠO

(

Z(k) − tk∇ZLρ(λ
(k), Z(k), Y (k),M (k))

)

where:

• ∇λLρ(λ, Z, Y,M) denotes the gradient of the augmented Lagrangian with
respect to λ.

• ∇ZLρ(λ, Z, Y,M) denotes the gradient of the augmented Lagrangian with
respect to Z.

• ΠO denotes the projector onto O.
We immediately see that ΠO : Mmn → O is given by

ΠO(A) = ofdB(A)

• the step-size tk is determined at each step k in an iterative fashion: we
start by setting tk = 1 and we decrease it progressively of a factor β with
0 < β < 1 until the conditions λ(k+1) > 0 and Q(λ(k+1), Z(k+1)) ≻ 0 are met
and the so-called Armijo condition [15] is satisfied.

On the other hand, Problem (5.67) admits a closed form solution which can
be easily computed as follows.

First notice that, by performing the change of variable

Ỹ := R(λ(k+1))− Y, (5.69)
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the constraint Y ⪰ R(λ) is equivalent to Ỹ ⪰ 0 (i.e. Ỹ ∈ Q+
m ). Rewriting the

augmented Lagrangian as a function of Ỹ , the problem (5.67) can be stated in
terms of Ỹ as

Ỹ (k+1) = argmin
Ỹ ∈Q+

m

λ(k+1)
(

− log
∣

∣(λ(k+1))−1Q(λ(k+1), Z(k+1))
∣

∣−
∫

log |Φ̂|+ δ
)

+

+ ⟨M (k), R(λ(k+1))− Ỹ −Q(λ(k+1), Z(k+1))⟩+
+

ρ

2
∥ R(λ(k+1))− Ỹ −Q(λ(k+1), Z(k+1)) ∥2 .

(5.70)
Since the argmin operator is invariant under addition of a constant and mul-

tiplication by a positive constant, it holds:

argmin
Ỹ ∈Q+

m

λ
(

− log
∣

∣λ−1Q
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M,R− Ỹ −Q⟩+

+
ρ

2
∥ R− Ỹ −Q ∥2=

argmin
Ỹ ∈Q+

m

⟨M,−Ỹ ⟩+ ρ

2
∥ R−Q− Ỹ ∥2=

argmin
Ỹ ∈Q+

m

2

ρ
⟨M,−Ỹ ⟩+ ∥ R−Q− Ỹ ∥2=

argmin
Ỹ ∈Q+

m

2

ρ
⟨M,−Ỹ ⟩+ ∥ R−Q− Ỹ ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M,R−Q⟩ =

argmin
Ỹ ∈Q+

m

∥ R−Q− Ỹ ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M,R−Q− Ỹ ⟩ .

Therefore, problem (5.70) is equivalent to

Ỹ (k+1) = argmin
Ỹ ∈Q+

m

∥ R(λ(k+1))−Q(λ(k+1), Z(k+1)) +
1

ρ
M (k) − Ỹ ∥2 . (5.71)

If ΠQ
+
m

denotes the projection operator onto the cone Q+
m of symmetric positive

semi-definite matrices of size m×m,

ΠC
Ỹ
: Qm → Q+

m

defined as
ΠQ

+
m
(A) := argmin

∈Q+
m

∥ A− S ∥2, (5.72)

from (5.71) it immediately follows that the update Ỹ (k+1) is given by

Ỹ (k+1) = ΠQ
+
m

(

R(λk+1)−Q(λ(k+1), Z(k+1)) +
1

ρ
M (k)

)

.
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Accordingly, the solution to problem (5.67) is

Y (k+1) = R(λk+1)− Ỹ (k+1)

= R(λk+1)− ΠQ
+
m

(

R(λk+1)−Q(λ(k+1), Z(k+1)) +
1

ρ
M (k)

)

.

We remind that we can compute ΠQ
+
m
(·) by exploiting Proposition 5.5.1.

Remark 3. As already mentioned, algorithm 1 is incorrect: problem (5.63) and
(5.65) are not equivalent. As a matter of fact, in (5.65) we are searching the
solution over

C̃ := {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0, W = Q(λ, Z) ⪯ R(λ)},

that is a subset of the feasible set

C = {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0, W ⪯ Q(λ, Z), W ⪯ R(λ)}

of problem (5.63); however it is not true that the optimal solution of (5.63) nec-
essarily belong to C̃. The error is in the transition from (5.64) to (5.65), where
we have erroneously carried out the optimization of the objective function J with
respect to W without taking into account the constraint Y = W , and, in doing
so, we have eliminated the dual variable W by setting W = Q(λ, Z).
The first idea to solve the issue is to maintain the dual variable W and apply the
ADMM directly to (5.64). However, this approach would lead to the augmented
Lagrangian

Lρ(λ,W, Y,M) := λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+δ
)

+⟨M,Y −W ⟩+ ρ

2
∥ Y −W ∥2

which does not depend on Z, so that it would be not possible to update the
variable Z through a gradient projection step. In algorithm 2 we then propose
a different formulation of the dual problem (5.63) with the aim of obtaining an
augmented Lagrangian which is also function of the variable Z.

There is also another issue in the above procedure: it is not correct to apply
the ADMM to solve problem (5.65) because it is not appropriately formulated
in a suitable fashion for the ADMM implementation. As a matter of fact, the
feasible sets Cλ,Z and CY are coupled since the dual variable λ appears in both
of them. Hence, it is not possible to split the minimization over (λ, Z) and Y

as requested by the ADMM algorithm. We reveal in advance that an analogous
problem will arise in Algorithm 2.
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5.5.2 Algorithm 2

Consider again Problem (5.63):

min
(λ,W,Z)∈C

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

where

C := {(λ,W,Z) : Z ∈ O, λ ∈ R, λ > 0,W ∈ Qm,

W ≻ 0,W ⪯ Q(λ, Z), W ⪯ R(λ)}.

We recall that

Q(λ, Z) := T0,0(Z + λP̂ )− T0,1:n(Z + λP̂ )T−1
1:n,1:n(Z + λP̂ )T⊤

0,1:n(Z + λP̂ )

and

R(λ) := I + T0,0(λP̂ )− T0,1:n(λP̂ )
(

I + T1:n,1:n(λP̂ )
)−1

T⊤
0,1:n(λP̂ ).

The aim is to formulate Problem (5.63) in a suitable format for ADMM imple-
mentation to decouple the constraint W ⪯ R(λ) and W ⪯ Q(λ, Z) . This is
achieved by introducing a new variable Y ∈ Qm defined as

Y = Q(λ, Z)

subject to
Y ⪰ W.

Then, Problem (5.63) can be stated as

min
(λ,W,Z)∈Cλ,W,Z ,Y ∈CY

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

subject to Y = Q(λ, Z)

(5.73)

where

Cλ,W,Z := {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0, W ⪯ R(λ)}
CY := {Y : Y ∈ Qm : Y ⪰ W}.

We attack (5.73) by implementing an ADMM algorithm.
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The augmented Lagrangian for (5.73) is:

Lρ(λ,W,Z, Y,M) := λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M,Y −Q(λ, Z)⟩+

+
ρ

2
∥ Y −Q(λ, Z) ∥2

where M ∈ Qm is the Lagrange multiplier, and ρ > 0 is the penalty parameter.

Accordingly, given the initial guesses λ(0),W (0), Z(0), Y (0) and M (0), the ADMM
updates are:

(λ(k+1),W (k+1), Z(k+1)) = argmin
(λ,W,Z)∈Cλ,W,Z

Lρ(λ,W,Z, Y (k),M (k)) (5.74)

Y (k+1) = argmin
Y ∈CY

Lρ(λ
(k+1),W (k+1), Z(k+1), Y,M (k)) (5.75)

M (k+1) = M (k) + ρ
(

Y (k+1) −Q(λ(k+1), Z(k+1))
)

. (5.76)

We first consider Problem (5.74).
We immediately observe that W appears in the augmented Lagrangian Lρ only
in the logarithmic term. Then, since the logarithm is a monotonic function and
λ > 0, in order to minimize Lρ the variable W must assume the largest possible
determinant in Cλ,W,Z , so that W is necessary equal to R(λ) at the optimum. In
view of this observation, we can eliminate the variable W , and reformulate the
augmented Lagrangian as:

L̃ρ(λ, Z, Y,M) := λ
(

− log
∣

∣λ−1R(λ)
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M,Y −Q(λ, Z)⟩+

+
ρ

2
∥ Y −Q(λ, Z) ∥2

with

(λ, Z) ∈ Cλ,Z := {(λ, Z) : λ ∈ R, λ > 0, Z ∈ O}
Y ∈ CY := {Y : Y ∈ Qm, Y ⪰ R(λ)}.

The ADMM updates become:

(λ(k+1), Z(k+1)) = argmin
(λ,Z)∈Cλ,Z

L̃ρ(λ, Z, Y
(k),M (k)) (5.77)

Y (k+1) = argmin
Y ∈CY

L̃ρ(λ
(k+1), Z(k+1), Y,M (k)) (5.78)

M (k+1) = M (k) + ρ
(

Y (k+1) −Q(λ(k+1), Z(k+1))
)

. (5.79)
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Problem (5.77) does not admit a closed form solution, therefore we approximate
the optimal solution by a gradient projection step:

λ(k+1) = λ(k) − tk∇λL̃ρ(λ
(k), Z(k), Y (k),M (k))

Z(k+1) = ΠO

(

Z(k) − tk∇ZL̃ρ(λ
(k), Z(k), Y (k),M (k))

)

where:

• ∇λL̃ρ(λ, Z, Y,M) denotes the gradient of the augmented Lagrangian L̃ρ

with respect to λ.

• ∇ZL̃ρ(λ, Z, Y,M) denotes the gradient of the augmented Lagrangian L̃ρ

with respect to Z.

• ΠO denotes the projector onto O, which, as already observed in Algorithm
1, is given by

ΠO(A) = ofdB(A).

• the step-size tk is determined at each step k in an iterative fashion: we
start by setting tk = 1 and we decrease it progressively of a factor β with
0 < β < 1 until the condition λ(k+1) > 0 is met and the Armijo condition
[15] is satisfied.

Concerning (5.75), a closed form solution to the problem can be easily com-
puted as follows. We first perform the change of variable

Ỹ := Y −R(λ), (5.80)

and notice that the constraint Y ⪰ R(λ) is equivalent to Ỹ ⪰ 0 (i.e. Ỹ ∈ Q+
m ).

Then, we state Problem (5.75) in terms of the variable Ỹ as

Ỹ (k+1) = argmin
Ỹ ∈Q+

m

λ(k+1)
(

− log
∣

∣(λ(k+1))−1R(λ(k+1))
∣

∣−
∫

log |Φ̂|+ δ
)

+

+ ⟨M (k), Ỹ +R(λ(k+1))−Q(λ(k+1), Z(k+1))⟩
+

ρ

2
∥ Ỹ +R(λ(k+1))−Q(λ(k+1), Z(k+1)) ∥2 .

(5.81)

Since the argmin operator is invariant under addition of a constant and multipli-
cation by a positive constant, it holds:

argmin
Ỹ ∈Q+

m

λ
(

− log
∣

∣λ−1R
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M, Ỹ +R−Q⟩+

+
ρ

2
∥ Ỹ +R−Q ∥2=
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argmin
Ỹ ∈Q+

m

⟨M, Ỹ ⟩+ ρ

2
∥ Ỹ +R−Q ∥2=

argmin
Ỹ ∈Q+

m

2

ρ
⟨M, Ỹ ⟩+ ∥ Ỹ +R−Q ∥2=

argmin
Ỹ ∈Q+

m

2

ρ
⟨M, Ỹ ⟩+ ∥ Ỹ +R−Q ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M,R−Q⟩ =

argmin
Ỹ ∈Q+

m

∥ Ỹ +R−Q ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M, Ỹ +R−Q⟩ =

argmin
Ỹ ∈Q+

m

∥ Ỹ +R−Q+
1

ρ
M ∥2 .

Therefore, Problem (5.81) is equivalent to

Ỹ (k+1) = argmin
Ỹ ∈Q+

m

∥ Ỹ −
(

−R(λ(k+1)) +Q(λ(k+1), Z(k+1))− 1

ρ
M (k)

)

∥2 . (5.82)

Now, recalling that the projection operator ΠQ
+
m

onto the cone Q+
m of symmetric

positive semi-definite matrices of size m×m is defined as

ΠQ
+
m
(A) := argmin

S∈Q+
m

∥ A− S ∥2, (5.83)

from (5.82) it immediately follows that the update Ỹ (k+1) is given by

Ỹ (k+1) = ΠQ
+
m

(

Q(λ(k+1), Z(k+1))−R(λ(k+1))− 1

ρ
M (k)

)

.

Here, ΠQ
+
m

can be computed by exploiting Proposition 5.5.1.
Then, the solution to Problem (5.75) is given by

Y (k+1) = R(λ(k+1)) + Ỹ (k+1)

= R(λ(k+1)) + ΠQ
+
m

(

Q(λ(k+1), Z(k+1))−R(λ(k+1))− 1

ρ
M (k)

)

.

Remark 4. As previously said, Algorithm 2 does not represent a right strategy to
attack Problem (5.63). This is because Problem (5.73) is not properly formulated
in a suitable fashion for the ADMM implementation: the feasible sets Cλ,W,Z and
CY are coupled because of the presence of the dual variable W in both of them.
Consequently, it is not possible to split the minimization over (λ,W,Z) and Y ,
and thus to successfully apply the ADMM algorithm.
Algorithm 3 overcomes this problem by rewriting (5.63) in a different format in
which both the objective function and the feasible sets are decoupled.
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5.5.3 Algorithm 3

We recall that we want to solve Problem (5.63):

min
(λ,W,Z)∈C

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

.

where

C := {(λ,W,Z) : Z ∈ O, λ ∈ R, λ > 0,W ∈ Qm,

W ≻ 0,W ⪯ Q(λ, Z), W ⪯ R(λ)}

and the functions Q(λ, Z) and R(λ) are defined as:

Q(λ, Z) := T0,0(Z + λP̂ )− T0,1:n(Z + λP̂ )T−1
1:n,1:n(Z + λP̂ )T⊤

0,1:n(Z + λP̂ )

R(λ) := I + T0,0(λP̂ )− T0,1:n(λP̂ )
(

I + T1:n,1:n(λP̂ )
)−1

T⊤
0,1:n(λP̂ ).

The aim is to formulate Problem (5.63) in a suitable format for ADMM im-
plementation to decouple the constraint W ⪯ R(λ) and W ⪯ Q(λ, Z) . This is
achieved by introducing a new variable Y ∈ Qm defined as

Y = Q(λ, Z)−W

subject to
Y ⪰ 0.

Then, Problem (5.63) can be stated as

min
(λ,W,Z)∈Cλ,W,Z ,Y ∈Q+

m

J = λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

subject to Y = Q(λ, Z)−W

(5.84)

where

Cλ,W,Z := {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0, W ⪯ R(λ)}.

Remark 5. Problem (5.84) is formulated in a suitable format for ADMM imple-
mentation; in particular, differently from algorithm 1 and 2, here the feasible sets
for (λ,W,Z) and Y , i.e. Cλ,W,Z and Q+

m, are actually decoupled.
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The augmented Lagrangian for (5.84) is:

Lρ(λ,W,Z, Y,M) := λ
(

− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ
)

+ ⟨M,Y −Q(λ, Z) +W ⟩

+
ρ

2
∥ Y −Q(λ, Z) +W ∥2

where M ∈ Qm is the Lagrange multiplier, and ρ > 0 is the penalty parameter.
Accordingly, given the initial guesses λ(0),W (0), Z(0), Y (0) and M (0), the ADMM

updates are:

(λ(k+1),W (k+1), Z(k+1)) = argmin
(λ,W,Z)∈Cλ,W,Z

Lρ(λ,W,Z, Y (k),M (k)) (5.85)

Y (k+1) = argmin
Y ∈Q+

m

Lρ(λ
(k+1),W (k+1), Z(k+1), Y,M (k)) (5.86)

M (k+1) = M (k) + ρ
(

Y (k+1) −Q(λ(k+1), Z(k+1)) +W (k+1)
)

. (5.87)

We start considering Problem (5.86), which can be easily solved as follows.
First, by exploiting the invariance of the argmin operator under addition of a
constant and multiplication by a positive constant, we have that

argmin
Y ∈Q+

m

λ(− log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ) + ⟨M,Y −Q+W ⟩+ ρ

2
∥ Y −Q+W ∥2

= argmin
Y ∈Q+

m

⟨M,Y ⟩+ ρ

2
∥ Y −Q+W ∥2

= argmin
Y ∈Q+

m

2

ρ
⟨M,Y ⟩+ ∥ Y −Q+W ∥2

= argmin
Y ∈Q+

m

2

ρ
⟨M,Y ⟩+ ∥ Y −Q+W ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M,−Q+W ⟩

= argmin
Y ∈Q+

m

∥ Y −Q+W ∥2 + 1

ρ2
∥ M ∥2 +2

ρ
⟨M,Y −Q+W ⟩

= argmin
Y ∈Q+

m

∥ Y −Q+W +
1

ρ
M ∥2

= argmin
Y ∈Q+

m

∥ Y − (Q−W − 1

ρ
M) ∥2 .

This allows to rewrite Problem (5.86) as

Y (k+1) = argmin
Y ∈Q+

m

∥ Y −
(

Q(λ(k+1), Z(k+1))−W (k+1) − 1

ρ
M (k)

)

∥2 . (5.88)

Now, recalling that the projection operator ΠQ
+
m

onto the cone Q+
m of symmetric
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positive semi-definite matrices of size m×m

ΠQ
+
m
: Qm → Q+

m

is defined as
ΠQ

+
m
(A) := argmin

S=S⊤⪰0

∥ S − A ∥2, (5.89)

from (5.88) it immediately follows that the update Y (k+1) is given by

Y (k+1) = ΠQ
+
m

(

Q(λ(k+1), Z(k+1))−W (k+1) − 1

ρ
M (k)

)

.

Here, in order to compute ΠQ
+
m

we can exploit Proposition 5.5.1.
On the other hand, Problem (5.85) does not admit a closed form solution.

It is also difficult to approximate the optimal solution by a gradient projection
step because a closed-form expression of the projector onto the set Cλ,W,Z is not
available. Consequently, we try to perform the (λ,W,Z)-update exploiting some
heuristics.

The first idea is to initially perform a gradient projection step by considering
that (λ,W,Z) belongs to the set {(λ,W,Z) : λ ∈ R, λ > 0, Z ∈ O, W ≻ 0} (that
is, we do not take the constraint W ⪯ R(λ) into account for the moment). Then,
in order to guarantee that the new point satisfies also the constraint W ⪯ R(λ), we
consider λ fixed and we project W onto the convex cone {S : S ∈ Qm, S ⪯ R(λ)}.
More precisely, we perform the following operations:

λ(k+1) = λ(k) − tk∇λLρ(λ
(k),W (k), Z(k), Y (k),M (k))

Z(k+1) = ΠO

(

Z(k) − tk∇ZLρ(λ
(k), Z(k), Y (k),M (k))

)

W (k+1) = Π
(

W (k) − tk∇WLρ(λ
(k),W (k), Z(k), Y (k),M (k))

)

where:

• ∇λLρ(λ,W,Z, Y,M) denotes the gradient of the augmented Lagrangian
with respect to λ. By standard computation we get

∇λLρ = − log
∣

∣λ−1W
∣

∣−
∫

log |Φ̂|+ δ − λ tr
(

λW−1(−λ−2W )
)

− tr(M∇λQ)− ρ tr
(

(Y −Q+W )∇λQ
)

= − log |λ−1W | −
∫

log |Φ̂|+ δ + tr(I)− tr(M∇λQ)

− ρ tr
(

(Y −Q+W )∇λQ
)

= − log |λ−1W | −
∫

log |Φ̂|+ δ +m− tr
(

(

M + ρ(Y −Q+W )
)

∇λQ
)
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where ∇λQ denotes the gradient of the function Q(λ, Z) with respect to λ.
Introducing the convention that, whenever the argument of the operators
T0,1:n and T1:n,1:n is omitted, it is intended to be equal to (Z + λP̂ ), and
recalling the definitions T := T ([P̂0, . . . , P̂n−1]) and K := [P̂1, . . . , P̂n] given
in Section 5.3.3, we get

∇λQ(λ, Z) = P̂0−KT−1
1:n,1:nT

⊤
0,1:n+T0,1:nT

−1
1:n,1:nT T−1

1:n,1:nT
⊤
0,1:n−T0,1:nT

−1
1:n,1:nK⊤.

• ∇ZLρ(λ,W,Z, Y,M) denotes the gradient of the augmented Lagrangian
with respect to Z.
Computing the first variation of Lρ along the direction δZ we get:

Lρ(δZ) := Lρ(λ,W,Z, Y,M ; δZ)

= − tr(MδQ)− ρ tr
(

(Y −Q+W )δQ
)

= tr
(

(

−M − ρ(Y −Q+W )
)

δQ
)

. (5.90)

Here, δQ denotes the first variation of Q(λ, Z) along th direction δZ:

δQ := δQ(λ, Z; δZ) = T0,0(δZ)− T0,1:n(δZ)T
−1
1:n,1:nT

⊤
0,1:n+

+ T0,1:nT
−1
1:n,1:nT1:n,1:n(δZ)T

−1
1:n,1:nT

⊤
0,1:n − T0,1:nT

−1
1:n,1:nT

⊤
0,1:n(δZ) (5.91)

with the usual convention for the arguments of the operators T0,1:n and
T1:n,1:n. Therefore, plugging (5.91) into (5.90) and exploiting the cyclic
property of the trace, it is easy to get

Lρ(δZ) = tr

(

A
(

T0,0(δZ)− T0,1:n(δZ)T
−1
1:n,1:nT

⊤
0,1:n+

+ T0,1:nT
−1
1:n,1:nT1:n,1:n(δZ)T

−1
1:n,1:nT

⊤
0,1:n − T0,1:nT

−1
1:n,1:nT

⊤
0,1:n(δZ)

)

)

= tr
(

AT0,0(δZ)− AT0,1:nT
−1
1:n,1:nT

⊤
0,1:n(δZ)

)

+

+ tr
(

− T−1
1:n,1:nT

⊤
0,1:nAT0,1:n(δZ) + T−1

1:n,1:nT
⊤
0,1:nAT0,1:nT

−1
1:n,1:nT1:n,1:n(δZ)

)

= tr
(





A −AT0,1:nT
−1
1:n,1:n

−T−1
1:n,1:nT

⊤
0,1:nA T−1

1:n,1:nT
⊤
0,1:nAT0,1:nT

−1
1:n,1:n



T (δZ)
)

= tr
(





Im

−T−1
1:n,1:nT

⊤
0,1:n



A
[

Im −T0,1:nT
−1
1:n,1:n

]

T (δZ)
)

where, for simplicity, we have denoted with A the expression (−M − ρ(Y −
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Q+W )).
Then, since T and D are adjoint operators, we get

Lρ(δZ) = tr
(

D
(





Im

−T−1
1:n,1:nT

⊤
0,1:n



A
[

Im −T0,1:nT
−1
1:n,1:n

]

)

δZ
)

,

from which it immediately follows

∇ZLρ = D
(





Im

−T−1
1:n,1:nT

⊤
0,1:n



 (−M−ρ(Y−Q+W ))
[

Im −T0,1:nT
−1
1:n,1:n

]

)

• ∇WLρ(λ,W,Z, Y,M) denotes the gradient of the augmented Lagrangian
with respect to W .
By computing the first variation of Lρ along the direction δW we get:

Lρ(δW ) := Lρ(λ,W,Z, Y,M ; δW )

= −λ tr
(

λW−1(λ−1δW )
)

+ tr (MδW ) + ρ tr ((Y −Q+W )δW )

= tr
(

(−λW−1 +M + ρ(Y −Q+W ))δW
)

.

Therefore,
∇WLρ = −λW−1 +M + ρ(Y −Q+W ).

• ΠO denotes the projector operator onto O.
We immediately see that ΠO : Mmn → O is given by

ΠO(A) = ofdB(A)

• Π denotes the projector operator onto the convex cone {S : S ∈ Qm, S ⪯
R(λk+1)} which is defined as:

Π(A) = argmin
S∈Qm,S⪯R(λk+1)

∥ S − A ∥2 . (5.92)

In order to find an explicit expression for Π, we perform the change of
variable

S̃ := R(λk+1)− S (5.93)

and we notice that the condition S ⪯ R(λk+1) reads as S̃ ⪰ 0. Then,

64



Problem (5.92) can be stated in terms of S̃ as

argmin
S̃∈Q+

m

∥ R(λk+1)− S̃ − A ∥2= argmin
S̃∈Q+

m

∥ S̃ − (R(λk+1)− A) ∥2 . (5.94)

By exploiting the definition of the projector ΠQ
+
m

provided in Proposition
5.5.1, the optimal S̃ is given by

S̃ = ΠQ
+
m
(R(λk+1)− A).

Finally, from (5.93) we get

Π(A) = R(λk+1)− ΠQ
+
m
(R(λk+1)− A). (5.95)

• the step-size tk is determined at each step k in an iterative fashion: we
start by setting tk = 1 and we decrease it progressively of a factor β with
0 < β < 1 until the conditions λ(k+1) > 0 and W (k+1) ≻ 0 are met and the
so-called Armijo condition [15] is satisfied:

Lρ

(

λ(k+1),W (k+1),Z(k+1), Y (k),M (k)
)

≤ Lρ(λ
(k),W (k), Z(k), Y (k),M (k))+

+ α(λ(k+1) − λ(k))∇λLρ(λ
(k),W (k), Z(k), Y (k),M (k))+

+ α⟨W (k+1) −W (k),∇WLρ(λ
(k),W (k), Z(k), Y (k),M (k))⟩+

+ α⟨Z(k+1) − Z(k),∇ZLρ(λ
(k),W (k), Z(k), Y (k),M (k))⟩

with 0 < α < 1 .

Remark 6. Numerical simulations reveal that this approach is not able to guar-
antee that the ADMM iterates reach the optimal solution of Problem (5.84).

An alternative strategy is the following. As before, we perform a gradient
projection step by considering that (λ,W,Z) belongs to the set {(λ,W,Z) : λ ∈
R, λ > 0, Z ∈ O, W ≻ 0}. This time, however, in order to satisfy the con-
straint W ⪯ R(λ), we consider W fixed and we progressively increase λ until the
condition considered condition is met.

Remark 7. Again, numerical simulations reveal that this heuristic does not achieve
the desired outcome.
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6
Conclusion

In this thesis we have faced the problem of developing a robust identification
procedure for factor analysis of moving average processes.

In the first chapters we developed the necessary theoretical background on
factor analysis and two important tools of convex mathematical optimization:
the Lagrangian duality theory and the ADMM.

Then, the original contribution of this thesis was proposed in Chapter 5. Here,
we first provided a formal mathematical statement of the MA factor analysis prob-
lem. The difficulty related to the non-convexity of the minimum-rank problem
was overcome by considering the trace norm relaxation of the latter. Moreover,
robustness on the complexity of the estimated model (especially in terms of the
number of factors) was accomplished by searching the optimal solution on a confi-
dence set about a finite sample estimate of the underlying spectral density. Such
set contains the true model with a prescribed probability and its radius (in the
Itakura-Saito topology) depends only on the numerosity of the sample and the
order of the MA process. We then proposed a finite-dimensional matricial re-
formulation of the problem and, by means of the duality theory, we proved the
equivalence between the original problem and its matricial parametrization, as
well as the existence of a solution. Solving the dual problem turned out to be
an extremely challenging task. The idea of exploiting the alternating direction
method of multipliers to decouple its constraints and split the problem into smaller
subproblems didn’t return the desired result.

For future work, we plan to find an alternative strategy for numerically solving
our MA factor analysis problem. Then, the efficiency of procedure will be tested
in numerical simulations with synthetic data generated by a known “true” model:
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after defining suitable metrics, a comparison between the true model and the
model estimated from the data will be carried over. It would be also interesting
to develop a second test with real data from a concrete example. The idea is to
use data extracted from international daily stock markets in order to model the
variability of some financial indicators commonly used in portfolio selection. This
is indeed a case where the amount of data is enormous and there is evidence in
the relevant literature supporting the assumption that a relatively small number
of factors explains most of data variability. Moreover, there are many studies
and analysis that propose models for these data so that this appears an ideal
benchmark to assess the performance of the procedure and compare the results
with competing methods.
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A
Basics on Stochastic Processes

In this section, we provide miscellaneous information about stationary stochastic
processes.

A.1 Stationary stochastic processes

The intuitive idea behind stochastic processes is the randomness. Briefly
speaking, this means that we are not able to predict exactly the variation of
such a signal outside the observed interval. More formally, a stochastic process
can be defined as a collection of random variables that is indexed by a variable t,
usually representing time.

The signals dealt with in the thesis are multidimensional, real-valued, discrete-
time stochastic processes. Such signals are commonly obtained by sampling a
continuous-time signal so that t ∈ Z is usually measured in units of the sampling
interval.

Let y = {y(t), t ∈ Z} be a stochastic process. Throughout this work, we
assume that y is zero-mean, i.e.

E{y(t)} = 0 ∀t. (A.1)

The covariance function of y is assumed to depend only on the lag k between any
two samples so that it can be defined as

R(k) := E{y(t)y(t− k)⊤} t, k ∈ Z. (A.2)

The two assumptions (A.1) and (A.2) imply that y is a second-order stationary
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stochastic process 1.

Example 1. The stochastic process y = {y(t), t ∈ Z} is a Gaussian process if
for every t1, . . . , tn ∈ Z the collection of random variables {y(t1), . . . , y(tn)} has
Gaussian distribution.

Example 2. The stochastic process e = {e(t), t ∈ Z} is a white Gaussian noise if it
is a zero-mean Gaussian process and it is independent and identically distributed
(i.i.d.), namely e(t) and e(s) have the same distribution and E{e(t)e(s)⊤} = 0 for
any t, s ∈ Z with t ̸= s.

It is well-known (see, for example, [29, p.193-194]) that the function R(·)
enjoys these simple but important properties:

R(k) = R(−k)⊤, (A.3)

and the block-Toeplitz matrix

E





























y(0)
...

y(N)











[

y(0)⊤ . . . y(N)⊤
]



















=

















R(0) R(−1) . . . R(−N)

R(1) R(0)
. . . ...

... . . . . . . R(−1)

R(N) . . . R(1) R(0)

















(A.4)

is symmetric, positive semi-definite for any N ∈ N. In particular, R(0) = R(0)⊤ ⪰
0.

A.2 Power Spectral Density

The power spectral density (PSD) of a zero-mean stationary stochastic process
y = {y(t), t ∈ Z} is defined as the discrete-time Fourier transform (DTFT) of
the covariance sequence:

Φ(eiθ) :=
∞
∑

k=−∞

R(k)e−iθk. (A.5)

1The second-order stationarity will be simply called “stationarity”
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We assume that the Fourier transform exists as an integrable function in [−π, π],
i.e.

∫ π

−π

Φ(eiθ)dθ < ∞.

Example 3. The power spectral density of a white Gaussian noise with covariance
equal to the identity I is Φ(eiθ) = I, θ ∈ [−π, π].

We should also mention that we can recover {R(k)} from Φ by exploiting the
inverse DTFT:

R(k) =
1

2π

∫ π

−π

Φ(θ)eiθkdθ.

We recall that the power spectral density of a real process is a real-valued
function satisfying the following properties (see for example [29, p.194-195]):

Φ(eiθ) = Φ(e−iθ)⊤ ∀θ ∈ [−π, π]. (A.6)

and
Φ(eiθ) ⪰ 0 ∀θ ∈ [−π, π]. (A.7)

For a power spectral density Φ, we define the norm as

∥ Φ ∥:= max
θ∈[−π,π]

σ1(Φ(e
iθ)),

where σ1(Φ(e
iθ)) denotes the largest singular value of Φ(eiθ) at θ, and the (normal)

rank as
rankΦ := max

θ∈[−π,π]
rank(Φ(eiθ)).

Next, we present a useful result which concerns the transformation of a PSD
through a linear system [29, p.195]:

Proposition A.2.1 (Wiener-Kintchine formula). Consider a linear time-invariant
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BIBO stable system 2 with Z-transform

H(z) =
∞
∑

k=−∞

hkz
−k.

Let x be the stationary input to the system with spectrum Φx, and let y be the
corresponding output. Then, y is a stationary process with PSD

Φy(e
iθ) = H(eiθ)Φx(e

iθ)H(eiθ)∗ θ ∈ [−π, π], (A.8)

where H(eiθ) = H(z)|z=eiθ . The relation (A.8) is known as Wiener-Kintchine
formula.

A.3 Signals with rational spectra

An important class of signals is represented by the ones with rational spectral
density (i.e. the PSD is expressed as the ratio of two (matricial) polynomials in
eiθ). The following result holds [30, p.110]:

Theorem A.3.1. Let y = {y(t), t ∈ Z} be a m-dimensional process with ratio-
nal power spectral density Φ. Suppose rankΦ(eiθ) = p ≤ m. Then, Φ admits
factorization

Φ(eiθ) = W (eiθ)W (eiθ)∗ (A.9)

where W (eiθ) is a rational function of dimension m × p such that W (z) - with
z = eiθ - has all the poles strictly inside the unit circle. The function W (eiθ) is
called spectral factor.

Note that it is always possible to choose W (eiθ) in the decomposition (A.9)
minimum phase, i.e. with all the zeros in the region {|z| ≤ 1} (see [30, p.92]).

In view of Theorem A.3.1, if y is a stochastic process with rational spectral
2We say that a linear time-invariant system with Z-transform H(z) =

∑

∞

k=−∞
hkz

−k is
BIBO-stable if its impulsive response is absolutely summable, i.e.

∞
∑

k=−∞

|hk| < ∞.

This is equivalent to require that all the poles of H(z) are strictly inside the unit circle, i.e. in
the region {|z| < 1}.
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density Φ, it admits the spectral factor W (z) := B(z)
A(z)

where

A(z) = I +

q
∑

k=1

Akz
−k, B(z) =

n
∑

k=0

Bkz
−k

and A(z) has all the zeros in {|z| < 1}. As a consequence, y can be represented as
the output of a linear system with transfer function W (z) driven by the normalized
white noise e(t):

y(t) =
B(z)

A(z)
e(t), (A.10)

or equivalently,

y(t) +

q
∑

k=1

Aky(t− k) = B0e(t) +
n
∑

k=1

Bke(t− k). (A.11)

A signal y satisfying equation (A.11) is called autoregressive moving average
(ARMA) signal. In particular, if n = 0, then y is said to be an autoregressive
(AR) signal, while, if q = 0, it is a moving average (MA) signal.

Notice that for a MA process of order n

y(t) = B0e(t) +
n
∑

k=1

Bke(t− k) (A.12)

it holds that R(k) = 0 for |k| > n. In view of this simple observation, the PSD
of a MA signal turns into the finite-dimensional summation:

Φ =
n
∑

k=−n

R(k)e−iθk. (A.13)

Hence, given a finite-length realization yN = { y1 . . . yN } of the MA process y, a
simple estimator of its spectrum is obtained by inserting the estimates of {R(k)}
in (A.13):

Φ̂ =
n
∑

k=−n

R̂(k)e−iθk. (A.14)

In the previous formula, a standard way to compute the sample covariance is

R̂(k) =
1

N

N
∑

t=k+1

y(t)y(t− k)⊤ 0 ≤ k ≤ p. (A.15)
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B
Convex Analysis and Optimization

This Appendix contains different notions regarding convex analysis and convex
optimization problems, focusing the attention on real-valued functions defined on
the Euclidean space R

n.

A valid reference for this part is [15]; this reference will be omitted.

B.1 Convex sets

Definition B.1.1 (Convex set). A set C ⊆ R
n is called convex if for all x1, x2 ∈ R

n

the whole segment [x1, x2] ⊆ C, where

[x1, x2] := {z = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1}. (B.1)

In other terms, a set C is convex if the line segment between any two points
in C lies in C. We can easily prove the following characterization of convex sets:

Proposition B.1.1. Let C ⊆ R
n and x1, . . . , xn ∈ C. A point of the form λ1x1 +

· · · + λnxn where λ1 + · · · + λn = 1 and λi ≥ 0, i = 1, . . . , n is called convex
combination of x1, . . . , xn. The set C is convex if and only if it contains every
convex combination of its points.

It is worth noticing that convexity is preserved under intersection:

Proposition B.1.2. Let {Cα, α ∈ I} be a (possibly uncountable) collection of
convex subsets of Rn. Then C :=

⋂

α∈I Cα is convex.
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By proposition B.1.2, given any subset C ⊆ R
n it is possible to define the

smallest convex set containing C as the intersection of all such sets; it is called
convex hull and denoted convC.

Example 4. The empty set ∅, any singleton {x0} and the whole Euclidean space
R

n are the simplest cases of convex subsets of R
n. The hyperplane, defined as

H := {x ∈ R
n | a⊤x = b} with a ∈ R

n, a ̸= 0 and b ∈ R is another convex set of
R

n.

An important class of convex sets is represented by the so-called convex cones:

Definition B.1.2 (Convex cone). A set C is called cone if for every x ∈ C and
λ ≥ 0, λx ∈ C. A set C is a convex cone if it is convex and a cone, which means
that

λ1x1 + λ2x2 ∈ C ∀x1, x2 ∈ C and ∀λ1, λ2 ≥ 0. (B.2)

Example 5. If we denote by Qn the set of symmetric n×n matrices Qn := {X ∈
R

n×n | X = X⊤}, which is a vector space of dimension n(n + 1)/2, then the set
Q+

n of symmetric positive semidefinite n× n matrices Q+
n := {X ∈ Qn | X ⪰ 0}

is a convex cone in Qn. This follows directly from the definition of positive
semidefiniteness: for any x ∈ R

n, A,B ⪰ 0 and λ1, λ2 ≥ 0, we have

x⊤(λ1A+ λ2B)x = λ1x
⊤Ax+ λ2x

⊤Bx ≥ 0,

that is (λ1A+ λ2B) ∈ Q+
n .

The interior of Q+
n consists of the positive definite matrices: Q++

n := {X ∈
Qn | X ≻ 0}.

B.2 Convex functions

Definition B.2.1 ((Strictly) Convex and Concave function). Let C be a convex
subset of Rn. A function f : C → (−∞,+∞] is called convex if it satisfies

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), ∀x1, x2 ∈ C, ∀λ ∈ [0, 1]. (B.3)

It is called strictly convex if strict inequality holds in (B.3).
We say that f is concave if −f is convex, and strictly concave if −f is strictly
convex.
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Geometrically, (B.3) means that the secant line of a convex function through
(x1, f(x1)) and (x2, f(x2)) always lies above the graph of the function.

Observe that for an affine function 1 we always have equality in (B.3), so all
affine (and therefore also linear) functions are both convex and concave. Con-
versely, it is possible to prove that any function that is both convex and concave
is affine.

The basic inequality (B.3) is easily extended to convex combinations of more
than two points, as shown in the following theorem:

Theorem B.2.1 (Jensen 1906). Let C ⊆ R
n convex and f : C → (−∞,+∞]. f

is convex if and only if for all n ∈ N, for all x1, . . . , xn ∈ Cn, for all λ1, . . . , λn ∈
[0, 1]n such that

∑n
i=1 λi = 1, it holds

f
(

n
∑

i=1

λixi

)

≤
n
∑

i=1

λif(xi) (B.4)

The inequality (B.4) is sometimes called Jensen’s inequality, and it extends
to infinite sums, integrals, and expected values.

Convex functions give rise to convex sets in an important way:

Proposition B.2.1. For any convex function f : Rn → R and any α ∈ R, the
α-sublevel set Cα := {x ∈ dom f | f(x) ≤ α} is a convex set.

Proof. The statement immediately follows from the definition of convexity: if
x, y ∈ Cα then f(x) ≤ α and f(y) ≤ α. Let z = λx+ (1− λ)y; by convexity of f

f(z) ≤ λf(x) + (1− λ)f(y) ≤ λα + (1− λ)α ≤ α.

Thus, z ∈ Cα.

However, the converse is not always true: a function can have all its sublevel
sets convex, even if it is not a convex function. For example, f(x) = e−x is not
convex on R (indeed, it is strictly concave) but all its sublevel sets are convex.

The link between convex sets and convex functions is via the epigraph of a
function. As the name suggests - ’epi’ means ’above’ - the epigraph is ’above the
graph’ of the function. More formally,

1A function f : C → (−∞,+∞] is affine if f(λx1 + (1 − λ)x2) = λf(x1) + (1 − λ)f(x2) for
any x1, x2 ∈ C and λ ∈ R
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Definition B.2.2 (Epigraph). Let C ⊆ R
n convex, and f : C → (−∞,+∞]. Then

the epigraph of f is defined as

epif = {(x, α) ∈ (C × R) | f(x) ≤ α}.

Proposition B.2.2. Let C ⊆ R
n convex and f : C → (−∞,+∞]. Then, f is

convex if and only if epif is convex.

Next, we provide a useful characterizations of convex function.

Theorem B.2.2. Let f be a twice differentiable function, that is its Hessian matrix
(or second derivative) H(i,j)(x) :=

∂2f
∂xi∂xj

(x) exists at each point in dom f , which
is open. Then f is convex if and only if dom f is convex and its Hessian is
positive semidefinite, i.e.

H(x) ⪰ 0 ∀x ∈ dom f. (B.5)

From a geometric viewpoint, (B.5) can be interpreted as the requirement that
the graph of f has positive curvature at x.
Strict convexity can be only partially characterized by second-order conditions:
if ∇2f ⪰ 0 for all x ∈ dom f , then f is strictly convex. The converse, however,
is not true: for example the function f(x) = x2 is strictly convex, but it has zero
second derivative at x = 0.

Example 6. We have already mentioned that all linear and affine functions are
convex (and concave). The exponential f(x) = eax is convex on R for any a ∈ R.
The logarithm f(x) = log x is concave on dom f = {x ∈ R | x > 0}. The
log-determinant function f(X) = log detX is concave on dom f = Q++

n .

It is important to establish what operations preserve the precious property of
convexity, or allow us to construct new convex and concave functions.

Proposition B.2.3. The nonnegative weighted sum of convex functions f1, . . . , fn

f = w1f1 + · · ·+ wnfn, wi ≥ 0, i = 1, . . . , n

is convex.
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Proof. The fact that convexity is preserved under nonnegative scaling and ad-
dition is easily verified directly, or can be stated in terms of the associated
epigraphs.

Proposition B.2.4. The pointwise supremum of an arbitrary collection of convex
functions is convex. On the other hand, the pointwise infimum of an arbitrary
collection of concave functions is a concave function.

Proof. Assume that for each y ∈ I, f(x, y) is convex in x, and consider g(x) :=

supy∈I f(x, y). In terms of epigraph, the pointwise supremum of functions corre-
sponds to the intersection of epigraph, i.e.

epig =
⋂

y∈I

epif(·, y),

so that the result immediately follows from Proposition B.1.2.
In analogous fashion, it is possible to prove the second part of the statement.

We conclude this section providing some useful definitions:

Definition B.2.3 (Closed function). A function f : Rn → R is said to be closed if
for each α ∈ R, the α-sublevel set {x ∈ dom f | f(x) ≤ α} is a closed set.

This condition is equivalent to require that the epigraph of the function is
closed. The definition of closed function is general, but it is usually only applied
to convex functions.

Definition B.2.4 (Proper convex function). A proper convex function f is a convex
function f : Rn → R∪ {+∞} taking value in the extended real number line such
that f(x) < +∞ for at least one x and f(x) > −∞ for every x. 2

Definition B.2.5 (Convex hull). Given f : C → [−∞,+∞], the convex hull co f
is the greatest convex function such that co f(x) ≤ f(x) ∀x ∈ C. 3

It is clear that the convex hull provides the tightest convex lower approxima-
tion of a nonconvex function.

2[31, p.24].
3[31, p.36].
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B.3 Convex optimization problems

An optimization problem concerns the minimization (or maximization) of a
real-valued function f0 over an admissible set C. Here, we concentrate on prob-
lems in finitely many variables, in which case C is a subspace of the vector space
R

n. Accordingly, an optimization problem can be formulated as

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p.

(B.6)

The vector x = [x1, ..., xn]
⊤ is the optimization variable, the function f0 : R

n → R

is the objective function or cost function; the inequalities fi(x) ≤ 0, i = 1, ...,m

are called inequality constraints and fi : R
n → R, i = 1, ...,m inequality constraint

functions; the equations hi(x) = 0, i = 1, ..., p are called equality constraints and
the functions hi : R

n → R, i = 1, ..., p equality constraint functions. If there are
no constraints, namely m = p = 0, then problem (B.6) is said to be unconstrained.

The domain of the optimization problem (B.6) is given by the set of points
for which the objective and all the constraint functions are defined, namely

D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

dom hi.

A point x ∈ D is feasible if it satisfies all the constraints fi(x) ≤ 0, i = 1, ...,m

and hi(x) = 0, i = 1, ..., p. The problem is said to be feasible if there exists at
least one feasible point, infeasible otherwise. The set of all feasible points is called
feasible set.

The optimal value p∗ of problem (B.6) is defined as

p∗ = inf
x∈D

{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

We allow p∗ to assume the extended values ±∞ with the following convention: if
the problem is infeasible, we have p∗ = +∞, while if there are feasible points xk for
which f0(xk) → −∞, then p∗ = −∞. In the latter case we say that problem (B.6)
is unbounded below. A vector x∗ is called optimal, or a solution of the problem
(B.6), if it has the smallest objective value, i.e. f0(x∗) = p∗, among all the feasible
points. The set of optimal points is the optimal set Xopt. If there exists at least
one optimal point, we say the optimal value is attained and the problem (B.6)
is solvable; on the contrary, if Xopt is empty, we say that the optimal value is
not attained (notice that the latter situation always occur when the problem is
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unbounded below).
If x is feasible and fi(x) = 0 we say that the ith inequality constraint fi(x) ≤ 0

is active at x, while if fi(x) < 0 then fi(x) ≤ 0 is inactive. Of course, the equality
constraint are always active at all feasible points. We say that a constraint is
redundant if deleting it doesn’t change the feasible set.

A special class of mathematical optimization is convex optimization, character-
ized by the convexity of both the objective function and the feasible set. Formally,
a convex optimization problem is formulated as

min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

a⊤i x = bi, i = 1, ..., p.

(B.7)

where f0, . . . , fm are convex functions. Comparing (B.7) with the general standard
form problem (B.6), it is easy to see that convex problem has three additional
requirements:

• the objective function must be convex

• the inequality constraint functions must be convex

• the equality constraint functions hi(x) = a⊤i x− bi must be affine.

From (B.7) we immediately see that the feasible set of a convex optimization
problem is indeed convex, since it is the intersection of the domain of the problem

D =
m
⋂

i=0

dom fi

which is a convex set (fi are convex), with m convex sublevel sets {x | fi(x) ≤ 0}
and p hyperplanes {x | a⊤i x = bi}.

One of the main reason why convex optimization plays a central role in math-
ematical optimization is that any locally optimal point is also globally optimal:

Proposition B.3.1. For a convex optimization problem (B.7) any locally optimal
point is also globally optimal. Moreover, if the objective function f0 is strictly
convex, then the problem has at most one optimal point.
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C
Proofs of Section 5.3.3

To establish the results in Section 5.3.3 we need the following preliminary results
(see [13, Appendix C]).

Lemma C.0.1. Let Ψ(z) be the spectral density of a second-order, zero-mean,
purely non-deterministic process y and let Ri := E[y(t + i)y⊤(t)] be the i-th
covariance lag of y. Finally, let Tn = T ([R0 . . . Rn−1]) and Kn := [R1 . . . Rn].
Then,

log |R0 −KnT −1
n K⊤

n | ≥
∫

log |Ψ|.

Moreover, if y is AR of order n, then the previous formula holds with equality.

Lemma C.0.2. Let

M =















M00 M01 . . . M0n

M⊤
01 M11 . . . M1n

... . . . . . .
...

M⊤
0n . . . . . . Mnn















∈ Qm(n+1)

be a symmetric and positive (semi-) definite matrix partitioned in blocks Mjl of
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dimension m×m . Let Mjl,d := diag2(Mjl) for all j, l = 0, ..., n and

Md :=















M00,d M01,d . . . M0n,d

M⊤
01,d M11,d . . . M1n,d

... . . . . . .
...

M⊤
0n,d . . . . . . Mnn,d















.

Then Md is positive (semi-) definite.

In addition, it is useful to recall the Schur complement characterization for
positive definiteness and positive semi-definiteness:

Lemma C.0.3. For any symmetric matrix M of the form

M =





A B

B⊤ C





Then

• M ≻ 0 if and only if C ≻ 0 and the Schur complement of C in M is positive
definite, i.e. A− BC−1B⊤ ≻ 0

• if C ≻ 0, then M ⪰ 0 if and only if the Schur complement of C in M is
positive semidefinite, i.e. A− BC−1B⊤ ⪰ 0.

C.1 Proof of Proposition 5.3.1

The proof exploits arguments similar to [13, Proposition 6.1].
We consider two possible scenarios separately.
1) Let (λ(k), V (k), Z(k))k∈N be such that, besides (5.33), we have ∥ (λ(k))−1([Z(k)]0−

[V (k)]00) ∥→ +∞. Since we are dealing with symmetric matrices, this is equiv-
alent to the fact that the maximum of the absolute values of the eigenvalues of
(λ(k))−1([Z(k)]0 − [V (k)]00) diverges:

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

)

|α(k)| = +∞. (C.1)
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The next step is to show that (C.1) implies

lim
k→∞

min
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

)

α(k) = −∞. (C.2)

Indeed, (C.1) implies that at least one of the two conditions (C.2) and

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1([Z(k)]0−[V (k)]00

)

α(k) = +∞. (C.3)

holds. To show now that (C.3) implies (C.2), notice that, since V (k) ⪰ 0 and
λ(k) > 0 ∀k, max{α(k) : α(k) ∈ σ

(

(λ(k))−1[Z(k)]0
)

} is non-smaller than the argu-
ment of the limit in the left-side of (C.3). Thus (C.3) implies

lim
k→∞

max
α(k)∈σ

(

(λ(k))−1[Z(k)]0

)

α(k) = +∞. (C.4)

But (λ(k))−1[Z(k)]0 is traceless ∀k, so the sum of its eigenvalues is zero, and thus
so we have

lim
k→∞

min
α(k)∈σ

(

(λ(k))−1[Z(k)]0

)

α(k) = −∞. (C.5)

By the same argument as before, V (k) ⪰ 0 and λ(k) > 0 imply that ∀k min{α(k) :

α(k) ∈ σ
(

(λ(k))−1[Z(k)]0
)

} is non-smaller than the argument in the left side of
(C.2). This fact, together with (C.5), leads to (C.2). By (C.2), we obtain that for k
sufficiently large [Z(k)]0−[V (k)]00+λ(k)P̂0 = (λ(k))

(

(λ(k))−1([Z(k)]0−[V (k)]00)+P̂0

)

has at least a negative eigenvalue, so the sequence (λ(k), V (k), Z(k)) is not in C.
2) Consider now a sequence (λ(k), V (k), Z(k))k∈N for which, besides (5.33), we

have ∥ (λ(k))−1([Z(k)]0 − [V (k)]00) ∥→ c with 0 ≤ c < ∞. Then, it can be seen
that ∀ε > 0, ∃k̄ such that J(λ(k), V (k), Z(k)) > −ε for all k > k̄. Indeed, since
∥ (λ(k))−1([Z(k)]0 − [V (k)]00) ∥ is bounded, there exists a real constant l such that
for all k it holds

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0 ⪯ lIm

Then, since for any two matrices A,B ∈ Qm , if 0 ⪯ A ⪯ B then det(A) < det(B),
we have:

|(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0| ≤ lm

log |(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0| ≤ m log l

− log |(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0| ≥ −m log l

− log |(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0| −
∫

log |Φ̂|+ δ ≥ −m log l −
∫

log |Φ̂|+ δ.
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Therefore, we can define a second real constant l1 := −m log l−
∫

log |Φ̂|+ δ, and
∀k it holds J(λ(k), V (k), Z(k)) ≥ λ(k)l1. Since l1 is constant, λ(k)l1 → 0 so that, by
definition, ∀ε > 0, ∃k̄ such that

J(λ(k), V (k), Z(k)) ≥ λ(k)l1 > −ε, ∀k > k̄

Now, it is sufficient to find a triple (λ̄, V̄ , Z̄) ∈ C with J(λ̄, V̄ , Z̄) strictly negative
to conclude that such a sequence is not an infimizing sequence.
To this purpose, let us consider λ̄ sufficiently small, but striclty greater than zero.
Moreover, let Z̄j = −λ̄ ofd(P̂j) for all j = 0, . . . , n. Finally, we need to define
V̄ . To this end, let P̂j,d := diag2(P̂j), j = 0, . . . , n, P̂d := [P̂0,d| . . . |P̂n,d] and
Tn+1,d := T (P̂d) . Observe that Tn+1,d is defined from T (P̂ ) by the same “block by
block diagonalization” procedure defined in Lemma C.0.2, so it is positive definite.
Now we partition Tn+1,d as follows:

Tn+1,d =





P̂0,d Kd

K⊤
d Tn,d





which defines the matrices Kd and Tn,d. We now set

V̄ := λ̄





KdT −1
n,d K⊤

d Kd

K⊤
d Tn,d



 .

As already noticed, in view of Lemma C.0.2, Tn,d is positive definite (and hence
invertible), so that V̄ is positive semi-definite by Lemma C.0.3.
It is not difficult to check that the triple (λ̄, V̄ , Z̄) just defined is in C for λ̄ suffi-
ciently small. It remains to show that J(λ̄, V̄ , Z̄) is negative.
By linearity, diag2(Φ̂−1) is the power spectral density of the process whose covari-
ance lags are P̂d,j, so that, in view of Lemma C.0.1, we have

J(λ̄, V̄ , Z̄) = −λ̄ log |P̂0,d −KdT −1
n,d K⊤

d | − λ̄

∫

log |Φ̂|+ λ̄δ

≤ −λ̄

∫

log | diag2(Φ̂−1)| − λ̄

∫

log |Φ̂|+ λ̄δ

= λ̄

(

δ −
∫

log |Φ̂ diag2(Φ̂−1)|
)

= λ̄(δ − δmax)

< 0,

where in the last equality we have taken into account the expression (5.12) while
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the last inequality follows from the assumption δmax > δ.

This suffices to conclude the proof. Indeed, the only possible remaining case
is that for which limk→∞ ∥ (λ(k))−1([Z(k)]0 − [V (k)]00) ∥ does not exist. However,
in this case it is always possible to consider a subsequence (λ(kj), V (kj), Z(kj)) for
which the limit exists (finite or infinite) and we can therefore reduce to one of the
previous cases.

C.2 Proof of Proposition 5.3.2

The first part of the proof aims to show that (5.34) holds if and only if (5.35)
holds as well. We are assuming that the estimated model has a non-trivial dy-
namic, i.e. there exists i ̸= 0 such that P̂i ̸= 0. Hence, there exists (l̄, h̄) ̸= (0, 0)

such that [T (P̂ )]l̄h̄ ̸= 0. From the condition

[λ(k)T (P̂ ) + T (Z(k))− V (k)]l̄h̄ = 0

(which is one of the conditions for the sequence to be in C1), the condition (5.35)
holds if and only if [T (Z(k))− V (k)]l̄h̄ diverges.
Since (5.34) holds if and only if [T (Z(k)) − V (k)]lh diverges for some (l, h), it
remains to show that if

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥= +∞, (C.6)

then (5.35) holds. Notice that (C.6) implies that at least one eigenvalue of
([Z(k)]0 − [V (k)]00) tends to −∞ as k → ∞. As a matter of fact, since we are
dealing with symmetric matrices, (C.6) is equivalent to the fact that the max-
imum of the absolute values of the eigenvalues of ([Z(k)]0 − [V (k)]00) diverges:

lim
k→∞

max
α(k)∈σ

(

([Z(k)]0−[V (k)]00

)

|α(k)| = +∞. (C.7)

(C.7) implies that at least one of the two conditions

lim
k→∞

min
α(k)∈σ

(

([Z(k)]0−[V (k)]00

)

α(k) = −∞. (C.8)

and
lim
k→∞

max
α(k)∈σ

(

[Z(k)]0−[V (k)]00

)

α(k) = +∞. (C.9)

holds. To show now that (C.9) implies (C.8), notice that, since V (k) ⪰ 0 ∀k,
max{α(k) : α(k) ∈ σ

(

[Z(k)]0
)

} is non-smaller than the argument of the limit in the
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left-side of (C.9). Thus (C.9) implies

lim
k→∞

max
α(k)∈σ

(

[Z(k)]0

)

α(k) = +∞. (C.10)

But [Z(k)]0 is traceless ∀k, so the sum of its eigenvalues is zero and thus we have

lim
k→∞

min
α(k)∈σ

(

[Z(k)]0

)

α(k) = −∞. (C.11)

By the same argument as before, V (k) ⪰ 0 implies that ∀k min{α(k) : α(k) ∈
σ
(

(λ(k))−1[Z(k)]0
)

} is non-smaller than the argument in the left side of (C.8).
This fact, together with (C.11), leads to (C.8). As a consequence, since P̂0 is
fixed, (C.6) implies that the constraint (λ(k)P̂0 + [Z(k)]0 − [V (k)]00) ≻ 0 can hold
∀k only if (5.35) holds.

So far we have seen the equivalence between (5.34) and (5.35) and the fact
that (C.6) implies (5.35). We now show that (5.35) implies not only (C.6), but
the stronger condition

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥
λ(k)

̸= 0. (C.12)

In fact, we assume by contradiction that (C.12) does not hold, namely

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥
λ(k)

= 0.

We show that the corresponding sequence does not belong to C1 as the constraint
on the positive semi-definiteness of (I + V (k) − T (Z(k))) fails for k sufficiently
large. Indeed a symmetric matrix is positive semidefinite if and only if every
principal minor is non-negative. Thus, let us consider the principal minor of
order 2 obtained as follows. Select a block P̂h with h ̸= 0 and an element in
position (p, q) such that [P̂h](p,q) ̸= 0 . Note that it is always possible to find such
an element because we are assuming that the process has non-trivial dynamic.
Then, consider the following 2× 2 sub-matrix of (I + V (k) − T (Z(k))) :





1 +
[

[V (k)]00 − [Z(k)]0
]

(p,p)
λ(k)[P̂h](p,q)

λ(k)[P̂⊤
h ](q,p) 1 + λ(k)[P̂0](q,q)





=





1 +
[

[V (k)]00 − [Z(k)]0
]

(p,p)
λ(k)[P̂h](p,q)

λ(k)[P̂h](p,q) 1 + λ(k)[P̂0](q,q)





(C.13)
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where [P̂0](q,q) ≥ 0 and where we have expolited the constraint [λ(k)T (P̂ ) +

T (Z(k)) − V (k)]lh = 0 for (l, h) ̸= (0, 0). Since we are assuming (by contradic-
tion) that limk→∞

∥[Z(k)]0−[V (k)]00∥

λ(k) = 0, the determinant of (C.13) is negative for k
sufficiently large. Indeed we immediately see that the determinant of (C.13) is

(

1 +
[

[V (k)]00 − [Z(k)]0
]

(p,p)

)(

1 + λ(k)[P̂0](q,q)
)

−
(

λ(k)[P̂h](p,q)
)2

=

(λ(k))2

{

( 1

λ(k)
+

[

[V (k)]00 − [Z(k)]0
]

(p,p)

λ(k)

)( 1

λ(k)
+ [P̂0](q,q)

)

− [P̂h]
2
(p,q)

}

and it diverges to −∞ as k → +∞.
Therefore, the constraint on the positive semi-definiteness of (I + V (k) − T (Z(k)))

fails for k sufficiently large. Thus, the proof reduces to ruling out the following
two possible cases:

1) Consider the case of a sequence (λ(k), V (k), Z(k))k∈N such that, besides
(5.35), we also have

lim
k→∞

∥ [Z(k)]0 − [V (k)]00 ∥
λ(k)

= +∞.

We can repeat the same reasoning of the Proof of Proposition 5.3.1 to conclude
that at least one eigenvalue of (λ(k))−1([Z(k)]0 − [V (k)]00) tends to −∞ as k → ∞.
This implies that for k sufficiently large the positivity of [Z(k)]0−[V (k)]00+λ(k)P̂0 =

λ(k)
(

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0

)

fails, which rules out this case.
2) Finally, consider a sequence (λ(k), V (k), Z(k))k∈N in C1 for which ∥ [Z(k)]0−

[V (k)]00 ∥→ ∞ at the same speed of λ(k) and ∥ [T (Z(k)) − V (k)]lh ∥. Note that,
since

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0 ⪰ 0,

it holds that

(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0 = C(k)

(λ(k))−1([Z(k)]0 − [V (k)]00) = C(k) − P̂0

[V (k)]00 − [Z(k)]0 = λ(k)(P̂0 − C(k)) (C.14)

for a certain C(k) ⪰ 0.
By (C.14) and [λ(k)T (P̂ ) + T (Z(k))− V (k)]lh = 0 for (l, h) ̸= (0, 0), we get

(λ(k))−1(V (k) − T (Z(k))) =





P̂0 − C(k) K
K⊤ T
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with K := [P̂1 . . . P̂n] and T := T ([P̂0 . . . P̂n−1]); therefore, since ((λ(k))−1I) tends
to zero as 1/λ(k), we have that

(λ(k))−1(I + V (k) − T (Z(k))) =





P̂0 − C(k) K
K⊤ T



+ (λ(k))−1I

=





P̂0 − C(k) K
K⊤ T



+O(
1

λ(k)
).

Since T is positive definite and (λ(k))−1(I + V (k) − T (Z(k)) ⪰ 0 , by using the
Schur complement, we get

P̂0 − C(k) −KT −1K⊤ +O(
1

λ(k)
) ⪰ 0,

thus
C(k) ⪯ C(k)

max

with
C(k)

max := P̂0 −KT −1K⊤ +O(
1

λ(k)
).

Therefore
P̂0 + (λ(k))−1([Z(k)]0 − [V (k)]00) ⪯ C(k)

max.

Hence,

J (k) := J(λ(k), V (k), Z(k))

= λ(k)
(

− log
∣

∣P̂0 + (λ(k))−1([Z(k)]0 − [V (k)]00)
∣

∣−
∫

log |Φ̂|+ δ
)

≥ λ(k)
(

− log
∣

∣C(k)
max

∣

∣−
∫

log |Φ̂|+ δ
)

= λ(k)
(

− log
∣

∣C(k)
max

∣

∣+

∫

log |Φ̂−1|+ δ
)

.

(C.15)

Notice that Φ̂−1 =
∑∞

k=−∞ P̂ke
−iϑk is the power spectral density of an AR process

of order n, then by using Lemma C.0.1 which holds with equality, from (C.15) we
get

J (k) ≥ λ(k)
(

− log
∣

∣C(k)
max

∣

∣+ log
∣

∣P̂0 −KT −1K⊤
∣

∣+ δ
)

= λ(k)
(

δ +O(
1

λ(k)

)

→ +∞ as k → ∞.

Thus (λ(k), V (k), Z(k)) cannot be an infimizing sequence.
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C.3 Proof of Proposition 5.3.3

Consider a sequence (λ(k), V (k), Z(k))k∈N in C2.
We first show that [Z(k)]0 cannot diverge. Indeed, assume by contradiction

that limk→∞ ∥ [Z(k)]0 ∥= +∞. Since it is a symmetric and traceless matrix, this
implies

lim
k→∞

min
α(k)∈σ

(

[Z(k)]0

)

α(k) = −∞. (C.16)

In view of (C.16), since λ(k)P̂0 is bounded and V (k) positive semidefinite ∀k, then
(λ(k)P̂0 + [Z(k)]0 − [V (k)]00) has at least a negative eigenvalue for k sufficiently
large, so that the sequence (λ(k), V (k), Z(k)) is not in C2. We conclude that

lim
k→∞

∥ [Z(k)]0 ∥< ∞. (C.17)

As a consequence, since βI ⪯ T (Z(k)) − V (k) ⪯ I (which is one of the condition
for the sequence to be in C2 ), and [T (Z(k))]hh = [Z(k)]0 by construction, it holds
that ∀k

∥ [V (k)]hh ∥< ∞, h = 0, . . . , n. (C.18)

Then, since V (k) ⪰ 0, it follows that also the off-diagonal blocks of V (k) must be
bounded ∀k, i.e.

∥ [V (k)]hl ∥< ∞, l ̸= h, l, h = 0, . . . , n. (C.19)

Finally, by the boundeness of (T (Z(k))− V (k)) and (C.19), we obtain that ∀k

∥ [Z(k)]h ∥< ∞ h = 1, .., n, (C.20)

concluding the proof.

91



92



References

[1] C. Spearman, ““General Intelligence,” Objectively Determined and Mea-
sured,” The American Journal of Psychology, vol. 15, pp. 201–292, 1904.

[2] L. Ning, T. T. Georgiou, A. R. Tannenbaum, and S. P. Boyd, “Linear
models based on noisy data and the frisch scheme,” SIAM Review, vol. 57,
no. 2, p. 167–197, 2015.

[3] D. Bertsimas, M. S. Copenhaver, and R. Mazumder, “Certifiably optimal
low rank factor analysis,” Journal of Machine Learning Research, vol. 18,
no. 29, pp. 1–53, 2017.

[4] G. Della Riccia and A. Shapiro, “Miminum rank and minimum trace of
covariance matrices,” Psychometrika, vol. 47, pp. 443–448, 12 1982.

[5] V. Ciccone, A. Ferrante, and M. Zorzi, “Factor models with real data: A ro-
bust estimation of the number of factors,” IEEE Transactions on Automatic
Control, vol. 64, no. 6, pp. 2412–2425, June 2019.

[6] M. Deistler and C. Zinner, “Modelling high-dimensional time series by gen-
eralized linear dynamic factor models: An introductory survey,” Commu-
nications in Information & Systems, vol. 7, no. 2, pp. 153–166, 2007.

[7] J. F. Geweke, “The dynamic factor analysis of economic time series models,”
in Latent variables in Socio-Economic Models. North-Holland, 1977, pp.
365–383.

[8] D. Peña and G. Box, “Identifying a simplifying structure in time series,”
Journal of The American Statistical Association, vol. 82, pp. 836–843, 09
1987.

[9] W. Watson and F. Engle, “Alternative algorithms for the estimation of
dynamic factor, mimic, and varying coefficient regression models,” Journal
of Econometrics, pp. 385–400, 1983.

[10] R. Engle and M. Watson, “A one-factor multivariate time series model of
metropolitan wage rates,” Journal of the American Statistical Association,
pp. 774–781, 1981.

93



[11] M. Zorzi and R. Sepulchre, “AR identification of latent-variable graphical
models,” IEEE Transactions on Automatic Control, vol. 61, no. 9, pp. 2327–
2340, Sept 2016.

[12] M. Zorzi and R. Sepulchre, “Factor analysis of moving average processes,”
in European Control Conference (ECC), Linz, 2015, pp. 3579–3584.

[13] V. Ciccone, A. Ferrante, and M. Zorzi, “Learning latent variable dynamic
graphical models by confidence sets selection,” Submittted, 2019.

[14] A. Ferrante, M. Pavon, and C. Masiero, “Time and spectral domain relative
entropy: A new approach to multivariate spectral estimation,” IEEE Trans.
Aut. Contr., vol. 57, October 2012.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, United
Kingdom: Cambridge University Press, 2004.

[16] B. Dimitri, “Convex analysis and optimization, Spring 2004. Lecture 9,”
June 2004. [Online]. Available: https://dspace.mit.edu/bitstream/handle/
1721.1/70523/6-253-spring-2004/contents/lecture-notes/lec_9.pdf

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan.
2011. [Online]. Available: http://dx.doi.org/10.1561/2200000016

[18] P. Stoica and R. L. Moses, Spectral analysis of signals. Pearson Prentice
Hall Upper Saddle River, NJ, 2005, vol. 1.

[19] P. Stoica and R. Moses, Introduction to spectral analysis. Prentice hall
Upper Saddle River, NJ, 1997.

[20] J. Songsiri, J. Dahl, and L. Vandenberghe, “Graphical models of autore-
gressive processes,” Convex optimization in signal processing and commu-
nications, pp. 89–116, 2010.

[21] J. Songsiri and L. Vandenberghe, “Topology selection in graphical models
of autoregressive processes,” Journal of Machine Learning Research, vol. 11,
no. Oct, pp. 2671–2705, 2010.

[22] V. Ciccone, A. Ferrante, and M. Zorzi, “Factor analysis with finite data,” in
56th IEEE Conference on Decision and Control (CDC), Melbourne, 2017.

94



[23] V. Ciccone, A. Ferrante, and M. Zorzi, “Robust identification of “sparse plus
low-rank” graphical models: An optimization approach,” in Proceedings of
the 57th IEEE Conference on Decision and Control (CDC), Miami Beach,
FL, USA, 2018.

[24] L. V. Ahlfors, Complex analysis: an introduction to the theory of analytic
functions of one complex variable. McGraw-Hill, New York, 1953.

[25] C. Vercellis, Ottimizzazione. Teoria, metodi, applicazioni. McGraw-Hill
Companies, 2008.

[26] M. Pavon, “Lectures on mathematical methods for information engineering,”
June 2020, Dipartimento di Matematica “Tullio Levi-Civita”, Università di
Padova.

[27] C. Burt, “Experimental tests of general intelligence,” British Journal of
Psychology, 1904-1920, vol. 3, no. 1‐2, pp. 94–177, 1909.

[28] R. Kalman, Identifiability and problems of model selection in econometrics.
Cambridge, United Kingdom: Cambridge University Press, 1983.

[29] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, ser. Prentice-Hall
information and system sciences series. Prentice Hall, 2000.

[30] G. Picci, Filtraggio statistico (Wiener, Levinson, Kalman) e applicazioni.
Progetto Libreria, 2007.

[31] R. T. Rockafellar, Convex analysis, ser. Princeton Mathematical Series.
Princeton, N. J.: Princeton University Press, 1970.

95


	Abstract
	List of Symbols
	Introduction
	Outline of the Thesis

	Factor Analysis
	Static factor analysis
	Dynamic factor analysis

	Duality Theory
	The Lagrange dual problem
	Saddle-point interpretation
	Optimality conditions

	Alternating Direction Method of Multipliers
	Algorithm
	Convergence
	Optimality conditions ans stopping criterion
	Extension and variations

	Robust Factor Analysis of MA Processes
	Problem formulation
	The Choice of 
	Problem solution
	Matricial parametrization of the problem
	The dual problem
	Existence of solutions

	Solution to the original problem
	The proposed algorithm
	Algorithm 1
	Algorithm 2
	Algorithm 3


	Conclusion
	Appendix Basics on Stochastic Processes
	Stationary stochastic processes
	Power Spectral Density
	Signals with rational spectra

	Appendix Convex Analysis and Optimization
	Convex sets
	Convex functions
	Convex optimization problems

	Appendix Proofs of Section ??
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??

	References

