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compared to Erdős-Rényi networks. . . . . . . . . . . . . . . . . . . 14
2.3 Graphical representation of a temporal network. . . . . . . . . . . . 15
2.4 The Copenhagen Network Study data present a daily-degree distri-

bution that is not power-law shaped. . . . . . . . . . . . . . . . . . 17
2.5 Scheme of a SEIRS compartmental model . . . . . . . . . . . . . . 21
2.6 Spatial spreading of a SI model on a 2D lattice. . . . . . . . . . . . 22
2.7 Effective infectiousness with circadian cyclic contacts. . . . . . . . . 26

3.1 The potential is shaped by the value of its parameters. . . . . . . . 30
3.2 Graphical representation of the algorithm for geometric graphs. . . 33

4.1 Fraction of isolated agents. . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Free Gaussian diffusion in 1D. . . . . . . . . . . . . . . . . . . . . . 38
4.3 Simulation of the motion of an agent free from confinements. . . . . 40
4.4 Numerical solution of the integral equation for the amplitude pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Distribution of the displacement modulus for an unconstrained walk. 42

5.1 Degree distributions for different aggregation windows. . . . . . . . 46
5.2 Degree distributions for different clock-times. . . . . . . . . . . . . . 47
5.3 Average number of encounters during a full day. . . . . . . . . . . . 48
5.4 Reachability fraction of some information spread on the contact

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Prevalence curves for different probabilities of infection. . . . . . . . 50
5.6 Prevalence curves for different probabilities of infection in a log-log

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.7 Instantaneous exponents of standard simulations . . . . . . . . . . . 53
5.8 Growth comparison of different network and epidemic models. . . . 55
5.9 The exploration range affects the epidemic growth. . . . . . . . . . 56
5.10 Temporal reachability for different exploration range. . . . . . . . . 57
5.11 Number of encounters for different duration of the exploration phase. 58
5.12 Temporal reachability for different duration of the exploration phase. 59

3



LIST OF FIGURES

5.13 The duration of the exploration phase affects the epidemic growth . 60
5.14 Epidemic growth near the phase transition. . . . . . . . . . . . . . . 61
5.15 The prevalence at equilibrium curve is a proxy to locate the phase

transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.16 The prevalence at equilibrium shows a similar behaviour to the

mean-field model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.17 The survival probability shows a different behaviour from mean-field

and directed percolation models. . . . . . . . . . . . . . . . . . . . . 64

B.1 The instantaneous exponents are a reliable metric to describe the
prevalence growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4



Chapter 1

Introduction

The 2020s decade opened with an invasive epidemic which quickly escalated in a
global pandemic. The pandemic led to a perturbation that impacted on all aspects
of human life, from economics and technology to society, culture and public health.
Despite the technological level reached by humans, pathogens and diseases are a
major threat to prosperity and stability. A deep understanding of causes and effects
of epidemics is extremely important to mitigate tragic casualties, and it involves
a broad set of disciplines, from social sciences to biochemistry, from medicine to
physics.

Physics provides theoretical frameworks to tackle some key aspects of epidemics,
at different scales [1]. At a small scale, it could provide models for the diffusion of
pathogen molecules in fluids, useful to understand the spreading mechanics and the
travelling capability of the pathogen [2]. These aspects are usually very dependent
on the local properties of the environment, so that it becomes convenient to coarse-
grain the results and obtain effective parameters that represent local details. More
general models arise with the aim to measure the number of individuals that are
infected or at risk in a community [3], and the propagation of the epidemic among
societies [4]. The complexity rises as more and more characteristics of the reality
are taken into account.

One of the most affirmed and solid landmarks in the development of more complex
models is the introduction of networks as underlying structures on which the
epidemics diffuse [5, 6]. Networks represent the ensemble of contacts that drive
the infection, they play the role of the topological space of the diffusive process, so
their properties can be very impactful on the epidemic dynamics. The analysis of
the network properties falls into the domain of network science, a discipline that
flourished in the last four decades, for purposes that extend well beyond the case
of theoretical epidemiology.

The deep understanding of the characteristics of the real contact networks relies
on data collection experiments, which can be challenging to perform for several
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reasons. The advancement in technology has given more powerful tools to address
the gathering process, like the recording of GPS positions and the bluetooth pairings
[7]. Though, it is still debated how accurate it is to use these metrics as proxies for
the epidemiological contact networks, often the data are limited in size and refer to
particular settings [8, 9], and experiments must undergo restrictions due to privacy
protection [10, 11].

This difficulty is a challenge for the research in epidemiology, so alternative routes
are also being explored to understand real contact networks, with the aim to
anticipate the epidemic spreading and adopt useful countermeasures. Generative
models are a tool to create synthetic data that should replicate some characteristics
of reality, so that analysis and simulations can provide information that can be
generalized to real scenarios. Most of the refined generative models for networks
used in theoretical epidemiology aim to recreate several statistical properties of
real data [12–14]. However real world is far too complex to be entirely reproduced,
especially when it comes to the mechanistic explanation of the properties observed.
In this respect, starting from simple and solid models, small elements have to be
introduced to incorporate more and more effects while keeping the causality under
control.

One important challenge to tackle comes from the temporal dimension, which
happens to be one main source of causal relations between events. Real human
behaviour is prominently dependent on time, as everyone’s life runs through an
overlap of several cyclic routines on different timescales. The alternation between
day and night is a daily cycle that affects the level of activity of an individual, the
summer holiday is a yearly cycle that affects the type of contacts of the individuals,
the attendance to big concerts increases the number of contacts of the individuals.
These are just few examples in a huge variety that show the complexity of the
human behaviour and its strict dependence on time [15]. It has been shown that
temporal inhomogeneities have important consequences on epidemic dynamics
[16–18], highlighting the importance to take them into consideration.

In this work, I try to address some of the challenges mentioned above, in particular
with a reference to the mechanistic interplay between space and time that produces
the contact networks, and its consequences on the physics of epidemics. I will
propose a generative model to construct the network of contacts, not based on
data driven considerations, but that relies on few first principles: an individual
mobility model that follows a circadian pattern to establish contacts between
individuals in an Euclidean spatial setting. The alternation between day and night
is embodied in a change in the individuals’ behaviour, that are free to explore
their neighbourhood during the day while remaining confined at home during the
night. I will then observe the consequences of such behaviour on the early epidemic
growth of a spreading disease and the universality class of the system close to its
dynamical phase transition. To contain the complexity of the model, I will consider
a very simplistic model for the epidemic, both concerning the transmission and the
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evolution of the disease, and I will neglect most of the social behavioural features
that might be extremely variable and hard to model properly.

To comprehensibly explain the results of this work, in chapter 2 I will give an
overview of the theoretical setting, starting with concepts of network science
and ending up with epidemiological models, pointing out all the milestones that
are a necessary conceptual prelude to this work. Equipped with the theoretical
foundations, in chapter 3 I will describe the conceptual details of the model adopted,
and discuss the motivations underlying the technical solutions implemented in the
numerical simulations. Chapter 4 will show all the analytical calculations used to
set meaningful values to the free parameters, and the effects that the parameters
project onto the system’s behaviour. This will drive us to chapter 5, where I
will discuss the importance of the relation between the spatio-temporal scales of
mobility and epidemic. The interplay between these scales will be shown to lead
to a super-quadratic epidemic growth and to a change of the universality class of
the absorbing phase transition. Finally, in chapter 6 I will summarize the findings
achieved and the possible improvements to increase the complexity of the model.
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Chapter 2

Theoretical Background

The understanding of the driving motivation and key results of this work require an
introductory chapter about the extensive surrounding scientific literature, with a
focus on the elements that will turn particularly useful for the following discussion.
The chapter is divided into three main sections. The first section will be devoted
to present some network models and their main properties. The fundamental role
of contact heterogeneity in the spreading of a disease is the reason why temporal
networks are a relevant framework to describe contacts between individuals. In
the second section I will discuss the causal relation between the mobility and the
contact network, as face-to-face contacts are inherently defined in a spatial setting,
in which individuals move and meet. In the third and last section, I will present
some phenomena that are observed when a disease spreads onto a network, with a
reference to the properties of the network models that have causally affected the
epidemic.

2.1 Network science
Every system composed by individual elements that have pairwise interactions
can be framed as a network. Network science is a discipline that was born at the
beginning of this century after some seminal works published by Albert-László
Barabási. As interestingly narrated in the author’s introduction of his book [19],
network science developed after realizing that real networks, independently from
the context, present a similar structure and show a common emergent behaviour
[20]. From there on, many scientists contributed to the topic, as the applications
are extremely versatile, covering a variety of very different subjects. Infrastructures,
intended as rail/road/naval or power grids, are naturally modelled as networks.
Also the financial structure of agencies providing loans and insurances can be
modelled as a network. So can be the connection structure of telecommunications,
or the machines in an IT infrastructure, or websites on the internet. Biologically
speaking, it is straightforward to mention the neural network, vital for animals;
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2.1. NETWORK SCIENCE

(a) Undirected network of phone calls among the subjects of the
Copenhagen Network Study [8].

(b) A comparison between a directed
(above) and undirected (below) network
edges.

(c) A comparison between a unweighted
(above) and weighted (below) network
edges.

Figure 2.1: Introductory examples of networks.

also in society, the network of social contacts is what defines the structure of the
society and of everyone’s life. All these different fields of application contribute to
make network science a blooming topic of research, and in the following sections I
will present some milestone concepts that will be useful for the thesis.

2.1.1 The general framework
Networks are composed of nodes, the individual elements of the system, and
links, the connections between different elements (Figure 2.1a). Depending on the
application context, nodes and links can embody different objects. The interest
for this kind of structure in mathematics was born long before the emergence of
network science, and is realized in a discipline called graph theory. Graph is the
mathematical term that describes the network, and nodes and links are called
vertices and edges.

9



2.1. NETWORK SCIENCE

The first taxonomic levels to classify networks are related to the properties of
them being directed/undirected and weighted/unweighted. Referring to the example
in Figure 2.1b, there is a link connecting two nodes A and B; this link can be
undirected (or bi-directed) if it only matters whether A and B are in contact or
not; or it can be directed if it matters which node affects the other A → B or
A← B. The whole network is defined directed if it has at least one directed link
and undirected if all links are undirected. An example of a directed network is
the network of phone calls, where there is a caller and a callee; an undirected
network can be an electrical scheme, where each device is connected to others
without any directionality. In principle, different links may represent bonds with
different intensities, as in the already-mentioned case of the phone calls. If node A
spends long time chatting with B and much less with C, this information might
be worth to keep in the network representation. So, it is convenient to associate
a weight to each link, proportional to the time spent calling, as exemplified in
Figure 2.1c. Thus, a network is defined weighted if all its links have a weight, while
it is unweighted if they all have the same weight (which gets usually normalized to
1). An example of unweighted network might be the network of scientific citations,
as there is no citation stronger or weaker than others.

Networks can be represented graphically as in Figure 2.1a, but computations make
use of two other common types of representations: edge lists and adjacency matrices.
An edge list is, as the name suggests, a list of edges, which are usually defined
as the structure (a, b, w), where a represents the identifier for the output node, b
the identifier for the input node and w the weight of the link connecting the two.
In case of an undirected unweighted network, the order of the identifiers does not
matter and the weight is usually omitted. An adjacency matrix can be seen as
the pivoted version of an edge list, where the pivoting occurs on the input node.
Thus, it is a N ×N matrix, where each entry wij is the weight of the link coming
out from node i and entering in node j. In the case of an undirected network, the
adjacency matrix is symmetric, and in case of an unweighted network, the matrix
is boolean. For sparse networks, an edge list representation is more efficient than
the adjacency matrix (that would be filled with 0s), while the adjacency matrix is
more intuitive and efficient when dealing with linear algebra operations.

2.1.2 Network metrics
As network science grew in late 20th century, much effort has been put in the
invention of metrics that could characterize networks [21]. In this subsection, I will
present a selection of metrics that will be useful to follow the later chapters. The
definitions could be extended for directed or weighted graphs, but for the sake of
simplicity I will stick to undirected unweighted networks relevant to this work.

Degree and degree distribution A first characterizing property of a network
is the collection of node degrees. The degree of a node i is the number of links
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2.1. NETWORK SCIENCE

that have i as partner ki = ∑︁
j∈Ni

1 where Ni is the set of neighbours of node i.
The higher the degree of a node, the easier its communication with the rest of the
network. The structure of the entire network is strongly influenced by the degree
distribution P (k), so are the processes occurring onto the network.

Distance and diameter Consider two nodes A and B in a network. A path
from A to B is a collection of contiguous edges that starts in A and finishes in B
without any discontinuity. The path length is the number of edges that compose the
path. Usually there are several ways to reach B from A, but the most interesting
metric is the shortest path from A to B. This gives an information about the
distance between these two nodes. In case there is no path connecting the two
nodes, the distance is considered infinite. It is possible to compute the distance
between every pair of nodes (it is usually an expensive computation as there are
N(N − 1) pairs in the network). So, the diameter of the network is defined to be
the largest distance between any two nodes in the network. It provides information
about the number of steps that some process have to cross before possibly reaching
all the nodes.

Connected components A network can be made of one or several connected
components. A connected component is a sub-graph (a portion of the entire graph)
containing nodes for which a path always exists. Using the notion of diameter, a
connected component is the sub-graph that has a finite diameter. The connected
components of a network is the collection of sub-graphs that have finite diameter,
have null intersection and which union is the full network. Usually it happens
that connected components are very unbalanced in their size, as the bigger one is,
the more chance it has to connect to another connected component. The largest
connected component is usually called giant component.

Connectivity and percolation threshold Consider the connectivity as the
coefficient 0 ≤ c ≤ 1 that represents the fraction of actual link in the network
over the possible ones c :=

∑︁
i

ki

2N(N−1) . For very low values of the connectivity, the
network is very likely to be divided in many small connected components; as the
connectivity increases, the connected components join into fewer and bigger ones.
The connected and disconnected phases are usually separated by a sharp transition,
which occurs at a connectivity value defined as the percolation threshold. More
specifically, the exact definition of the percolation threshold may rely on different
metrics: the transition can be referred to the number of connected components,
to their average diameter, to the size of the giant component. In the specific case
of this work, the definition of percolation threshold is the connectivity over which
only one giant component includes more than 50% of the nodes.

Clustering coefficient In real networks, especially in case of social networks,
a tendency to create closed groups is often observed. If nodes i and j are both
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2.1. NETWORK SCIENCE

linked to the same node m, it is more likely that i and j are also linked than if they
did not have any common neighbour. This property is called clustering. The local
clustering coefficient is a node-specific metric that represents amount of linkage
among its neighbours. If the heterogeneity of local clustering is not dominant, it
is possible to define a global clustering coefficient as the arithmetic average of the
local ones, definition which is also quite common in the literature

⟨C⟩ = 1
N

∑︂
i

Li

ki(ki − 1) (2.1)

where ki is the degree of the i-th node, and Li is the number of links between its
neighbours. More general definitions of global clustering coefficient account for
the fraction of triadic closures, but these technicalities go beyond the scope of this
work.

2.1.3 Lattices: a regular network from solid state physics
Lattices are widely studied in the field of solid-state physics as models to represent
the crystalline structures of matter. They can be seen as the most simple network
structure, where atoms embody the nodes of the network and the chemical interac-
tions among them embody the links. The defining properties of a lattice are the
size, the structure layout and the dimensionality, but in some cases also the order
of nearest neighbours that are interacting (usually only first nearest neighbours)
and the lattice spacing (usually normalized to a unit). Network science refers to
lattices as regular networks, as they present a translationally invariant pattern for
which all nodes share the same individual metrics, e.g. the degree ⟨k⟩ = ki ∀i. The
degree distribution of a lattice is simply P (k) = δ(k−⟨k⟩), where for a first nearest
neighbours hypercubic layout in d-dimension ⟨k⟩ = 2d.

A lattice model has the advantage of naturally including the dimensionality of the
space in its structure and naturally imposing a discretized representation of the
physical world. On the contrary, most of the metrics that characterize other types
of networks are less meaningful on lattices. Considering a first nearest neighbours
cubic lattice, the connectivity is extremely low c = 2dN

2N(N−1) ≈ 0 for large networks,
suggesting for a disconnected network, instead the connected component is only
one and includes the totality of the nodes. Also the clustering coefficient becomes
difficult to interpret when referred to a lattice: for a first nearest neighbours cubic
lattice in 2 dimensions, the local clustering coefficient Ci = 0 ∀i, but considering
second nearest neighbours it rises to Ci ≈ 0.45 ∀i and it quickly converges to 1
as more neighbours are linked to each node [22, 23]. The definition of clustering
coefficient on a lattice is seldom used, as the spatial locality given by the structure
layout favourites connections between neighbours of neighbours.

Another interesting metric to inspect is the diameter of the lattice, and in general
all the distances between nodes. These scale with the system size, specifically as
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2.1. NETWORK SCIENCE

N1/d, where d is the dimensionality of the lattice. Intuitively, this is due to the
number of steps that have to be taken when travelling from one point to another
in a spatial setting. This aspect, together with the extreme rigidity of the network
structure, are the major reasons of criticism to the description of social networks
through lattice models.

2.1.4 Other networks: some real aspects captured
Independently from the studies on solid-state physics, mathematicians developed
interest for graphs and, consequently, for generative models to build them. Erdős
and Rényi pioneered this field by proposing the first generative model and opening
the path to random graphs [24]. The generation relies on a Bernoulli process that
builds a network of N nodes and connects each possible pair with probability
p. The network so produced is an undirected unweighted graph, that has a low
variability between nodes, as it is only due to the stochastic fluctuation in the
Bernoulli process. Indeed, the degree distribution is the binomial distribution
P (k) =

(︂
N−1

k

)︂
pk(1− p)N−1−k, so the average degree is ⟨k⟩ = p(N − 1) and its

variance is var(k) = (N − 1)p(1− p), which indeed suggests low variability in
the individual connectivity between nodes. Erdős-Rényi networks show a small
diameter compared to lattices, since random connections very likely shorten the
paths between nodes creating ”shortcuts”. The characteristic of having small
distances compared to the system size is known as small-world, and it is a salient
characteristic of real networks [25]. Both the heterogeneity of node degrees and
the under-scaling of the distances may suggest Erdős-Rényi networks to be more
realistic models, compared to lattices, to describe real scenarios. Though, when
looking at the clustering coefficient, Erdős-Rényi networks perform low scores, as
the randomness in the link creation does not help in creating closures between
neighbours of neighbours. Such feature does not resemble real networks, where
clustering happens indeed more often than randomly.

The last aspect was the main driver for the development of the Watts-Strogatz
generative model [26]. This model is a form of ”interpolation” between the Erdős-
Rényi and the lattice models, as the starting point is a one-dimensional k-th nearest
neighbours lattice with periodic boundary conditions and it proceeds rewiring at
random only a fraction of the existing links. In this way, the high clustering of
the k-th nearest neighbours lattice model is preserved, but the rewiring creates
shortcuts in the structure that contain the increase of the distances between nodes.
Given the idea behind this model, the degree distribution of the generated network
is an interpolation between a delta distribution (given by the lattice) and a binomial
distribution (given by the Erdős-Rényi). The result is a distribution which has a
less-than-binomial variability on the node degrees, so a small heterogeneity.

Observing real networks in very different settings, Barabási and Albert found
a completely different scenario [20]: the node degrees follow a power-law tail
distribution. A comparison between binomial and power-law tail distributions is
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2.1. NETWORK SCIENCE

Figure 2.2: The degree distributions of real networks have a different shape
compared to Erdős-Rényi networks. The plots show the degree distributions
of Erdős-Rényi networks (in green) compared to real networks (in purple). The real
networks are observed in different contexts, but all present the same power-law tail:
straight lines in the log-log plot. Figure from [19].

shown in Figure 2.2. The authors proposed a new generative model, based on the
principle of preferential attachment, to build a network showing high variability
of node degrees [27]. The generative algorithm starts from a fully connected core
and adds nodes one by one, connecting them to the already existing nodes with
probability proportional to the degree; in this fashion, high degree nodes tend to
grow more and end up being hubs of the network. The discovery of structures
with many small nodes and few hubs in real networks from very different contexts
boosted the belief in an emergent behaviour. The networks with long-tailed degree
distributions are addressed as scale-free, meaning that the variance of the degree is
constrained only by the size of the network and it scales up as the network grows:
it is not an intrinsic property of the construction logic of the network. These type
of network has also small diameter, high clustering and high variability, so it has
been thought for long that they would well reproduce the statistics of the majority
of real cases, and several research works have used this model for the network
generation.

2.1.5 Temporal networks
Time is a fundamental dimension in all physical processes, especially because
it constrains causal relations. Causality can only apply forward in time, so a
temporal dimension in a model increases the information about the system. This
is especially true for system under continuous evolution, such as human activities,
for which some interesting phenomenon appear to be cyclic and bursty in time
[28–30]. The networks introduced in subsection 2.1.1 and the following ones are
static and completely lack the temporal dimension. So, temporal networks have
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5,6,
9

1,3

8,10,11
2,4

,7

Figure 2.3: Graphical representation of a temporal network. Two graphical
representations of temporal networks. The lower representation shows how informa-
tion can travel from node D to node A through B or C, but it is impossible vice-versa
from A to D, at least within the shown time-window. On a static network, both
directions would be allowed.

been introduced to properly describe dynamical systems [31, 32]. The presence
of time adds one dimension both in the graphical representation, as shown in
Figure 2.3, and in the analytical representation. Indeed, the adjacency matrix
becomes a N ×N × T matrix, with T the number of time-steps at which any link
realizes; the edge lists adds the time component (usually in the first place) to each
entry, assuming the structure (t, a, b, w), where t represents the time of occurrence
of the link.

Temporal networks can be represented as collections of static networks, named
graphlets or snapshots, each one that collects all the edges that share the same time
coordinate t. Usually the sampling timescale of raw data is much lower than the
timescale at which the phenomena of interest evolve, so it can be convenient to
coarse grain the temporal resolution and aggregate all the graphlets that lie in the
same time-window of length ∆t. The choice of ∆t is a delicate trade-off between
the loss of information given by the aggregation and the analysis difficulty of high
complexity datasets.

The introduction of the temporal dimension forces to rethink the metrics discussed
in subsection 2.1.2 valid for static networks [33]. Some of them, e.g. the degree
distribution, the clustering coefficient and the connectivity, may lose completely
their meaning on highly sparse graphlets, so aggregation is the way to proceed if
these metric are of some interest. Other metrics, e.g. the distance and the size of
the connected components, acquire second meaningful interpretations as temporal
quantities. The temporal distance between two nodes i and j, the latency, is the
duration of the path that starts in i and ends up in j, respecting the order of
links, that minimizes the arrival time. By this definition, the latency represents
the smallest time for information to propagate from node i to node j. Though,
this definition implies that the latency depends both on the starting and ending
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2.2. STATISTICAL MECHANICS FOR INDIVIDUAL MOBILITY

nodes but also on the starting time of the path, and this dependence has a saw-
tooth pattern difficult to keep under control [31]. The temporal analogous of the
connected component size is the temporal reachability ratio, defined as the fraction
of nodes that can be reached within time t by some information starting from
node i at t0. Similarly to the connected component sizes of static networks which
undergo a sharp transition around the percolation threshold, the reachability ratio
presents a transition in time.

2.2 Statistical mechanics for individual mobility
Naturally, when people meet face-to-face this happens in a spatial context. More-
over, individuals are rarely static in the environment for a long time, they move in
their surrounding. The advantage of mobility models over the generative network
models described in section 2.1 is that they naturally incorporate these mechanistic
effects into the network, and do not just recreate the statistics [34, 35]. Mobility
can be relevant both on large and small scales, depending on the subject of in-
terest, specifically within populations or among populations. At the population
level, meta-population models [36] and radiation models [37] took inspiration from
theoretical ecology to describe the effects of human commuting and migration.
Often, models for individual mobility find their roots in the realm of statistical
mechanics, where moving agents are intensively studied to describe the behaviour
of biological entities, as bacteria or animals [38]. I will begin this section reporting
some works that have shown mobility to be strictly related to the contact network
in real systems, and then I will describe some technical frameworks for the creation
of contacts and the motion in a spatial setting.

2.2.1 Network of real human contacts
Real networks of social contacts are extremely complex as composed by the overlap
of several sub-structures (private life, work, sports, school) and a strong dependence
on the individual characteristics of people. Analysing real world data, Alessandretti
et al. found a correlation between the strategies adopted by people in the spatial
and social domains [39]. The strategies are individual dependent and persistent in
time, and they define the balance between two opposite types of behaviour: the
exploration of new places and new social contacts, and the exploitation of known
and familiar locations and relationships.

Given the relation between spatial movement and social contacts, it results that
human mobility plays an important role in determining the features of social
networks. Several scientific works [40, 41] have observed power-law distributions in
the travel distances of human mobility, suggesting some scale-free phenomenon in the
underlying dynamics. Considering that human mobility is limited by distance and
time constraints, it should have a properly defined scale, so the scale-free behaviour
could be hard to interpret. For this reason, some recent works [42–46] have proposed
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a new interpretation based on theoretical evidences matured in the field of Complex
Systems [47, 48]: the aggregation of non-power-law distributions with ranges
sufficiently close one to each other results in a power-law-like distribution. In the
context of human mobility, it means that human mobility indeed has scales, one for
each type of mobility that, after aggregation, induce a scale-free effect on the ranges.
This may be true also for social contacts, considered the close relation discussed
before. Indeed, analyzing the data from the Copenhagen Network Study [49] in
Figure 2.4, the degree distribution that represents the number of daily contacts is
not a power-law.
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Figure 2.4: The Copenhagen Network Study data present a daily-degree
distribution that is not power-law shaped. The individual degree is computed
aggregating the temporal network over each day of sampling and then averaging over
all the 28 d of data availability. The degree in the left panel is the number of unique
contacts in 24 h; the weighted degree in the right panel is the fraction of time spent
being in contact with someone.

2.2.2 Geometric graphs
In subsection 2.2.1 and in several works that analyze real scenarios [50, 51], the
Euclidean spatial nature of direct human contacts as been proven to be an important
point to consider. The generative models for networks discussed in subsection 2.1.4
are able to recreate some of the features of real networks, but do not directly embed
any spatial causality in the network generation process. The only spatial model
treated so far is the lattice; though, also the mobility plays an important role for the
contact network, and lattices are static and inflexible frameworks. To work-around
both restrictions it is possible to build geometric graphs [52], which are spatial
networks in which the link between two nodes i and j exists if ∥x⃗i − x⃗j∥ < r. This
is especially meaningful in the case of airborne infectious diseases, as the spreading
happens mostly due to spatial proximity of an infectious and an healthy individual.

A generative model for a geometric graphs proceeds by randomly sampling the
d-dimensional positions of N nodes according to some probability density function
(uniform, unless differently specified), and then computing the mutual distances
between them. This last step may be computationally expensive O(N2) with a
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brute-force approach, but using a domain decomposition algorithm it gets reduced
to O(N1.3) [53]. This proceeds by dividing the d-dimensional space in smaller
sub-cubes of size l, and mapping each node to the sub-cube it belongs; then, the
distances ∥x⃗i − x⃗j∥ are computed only between nodes i and j which belong to
adjacent sub-boxes.

Random geometric graphs have been widely studied in percolation theory as
continuous non-rigid versions of lattice models [54]. The authors of [53] studied
some important metrics, useful also for this work. The framework is a d-dimensional
system of size L = 1 where N points are uniformly randomly located; the contact
distance r is the other free parameter. The excluded volume Vex is the volume to be
excluded from the system where to place a second node so that it lies at distance
≥ r from the firstly placed one. For the sake of brevity I will present the results
only in d = 2, as it is the dimensionality used for this work, where Vex = πr2 is the
”volume of influence” of each node. The average node degree (in [53] noted with α)
is related to the excluded volume as

⟨k⟩ = NVex

L2 (2.2)

To understand the reason behind this formula it is convenient to assume the point
of view of one node in the random geometric graph. Once its position is assigned,
there is a probability p = Vex

L2 that one other node is placed in its interaction
range. This is a Bernoulli trial which is repeated for all the N nodes of the graphs,
implying that the average degree is computed as in Equation 2.2 and that the
degree probability distribution is a binomial. The reasoning on the degree is the
same discussed in subsection 2.1.4 for the Erdős-Rényi model, but for the fact that
in this case the link probability p is not just a fundamental parameter: it has a
spatial interpretation. The most important difference between these two models is
the fact that random geometric graphs present a form of ”spatial locality”, that
can lead to the creation of sub-structures if by chance several nodes get placed
close to each other (which is likely to happen at high densities). Indeed, clustering
is a remarkable effect in random geometric graphs, and interestingly it does not
depend on any free parameter but the dimensionality. In 2D the global clustering
coefficient is computed as ⟨C⟩ = 3

√
3

4π
, which is indeed not negligible. The average

degree in Equation 2.2 is also related to the percolation threshold. From numerical
simulation, it has been found that for a 2D system the critical value above which
percolation happens is ⟨k⟩c ≈ 4.52.

2.2.3 Brownian motion
Individual human mobility is a complex phenomenon, and first-principles models
only provide a rough approximation of some of its features. Often, the theoretical
models used to emulate mobility are random walks, a general term that refers to
a class of motions which present some stochastic term in the equation of motion.
This class included a variety of models, like the Gaussian random walk [55–57] to
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the run-and-tumble [58]. I will here focus on the description of one specific model,
which is the one used in this work. The Gaussian random walk was introduced in
statistical physics to describe the Brownian motion, i.e. the motion of a particle
suspended in a static fluid at thermal equilibrium that undergoes random collisions
with the other particles. It is a stochastic process that formalizes the equation
of motion with a Langevin equation in the form mdv⃗

dt
= −λv⃗ + R⃗, where m is the

particle mass, λ is the friction coefficient and R⃗ is a Gaussian random variable with
correlation ⟨Ri(t), Rj(t′)⟩ = 2λκBTδijδ(t− t′). If the particle has negligible mass
compared to the involved forces, the left-hand-side term is ≈ 0, and the equation
simplifies to

dx⃗

dt
=
√

2Dη⃗ (2.3)

where D := κBT
λ

is the diffusion coefficient and η⃗ = R⃗√
2λκBT

is a vector of Gaussian
random variables ηi ∼ N (0, 1).

A free random walk has a diffusive nature which tends to spread indefinitely the
particle in the space. To prevent this dispersion, it is possible to confine the particle
under the action of a potential V . The particle is then randomly diffusing with
a bias given by the force exerted by the potential. The equation of motion for a
Browian motion in a potential becomes

dx⃗

dt
= −∇V +

√
2Dη⃗ (2.4)

which has the analytical form of the stochastic process named as Ornstein-Uhlenbeck.
This equation can be rewritten for convenience in its differential form, introducing
the concept of Wiener process. This is a discrete stochastic process W⃗ t such that the
increments are stationary, independent and normally distributed as W⃗ t+τ − W⃗ t ∼
N (0, τ). Consequently, dW⃗ t

dt
= η⃗(t) and dW⃗ t = η⃗(t)dt. Thus, Equation 2.3 can be

rewritten in the differential form dx⃗ =
√

2DdW⃗ , and analogously Equation 2.4
becomes

dx⃗ = −∇V dt +
√

2DdW⃗ (2.5)

2.2.4 Fokker-Planck equation
The mobility of an agent regards the full trajectory, which is obtained integrating
the equation of motion, using the tools of stochastic calculus. When dealing
with stochastic differential equation, it is meaningful to look at the probability
distribution of the random variable x⃗ instead of a specific realization of the process.
The probability distribution P (x⃗, t) of the d-dimensional position of the particle
at time t can be obtained by solving the Fokker-Planck equation. For an equation
of motion in the form dx⃗ = A⃗(x⃗, t)dt + b(x⃗, t)dW⃗ t, the associated Fokker-Planck
equation reads [59]

∂tP (x⃗, t) = −
d∑︂

i=1
∂xi

[Ai(x⃗, t)P (x⃗, t)] + 1
2

d∑︂
i=1

d∑︂
j=1

∂xi
∂xj

[Bij(x⃗, t)P (x⃗, t)] (2.6)
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where B = bbT represents the diffusion tensor, specifically a matrix noted with
the bold sign.

For the Brownian motion (Equation 2.3) A⃗ = 0 and bij =
√

2Dδij, and all dimen-
sions are independent from the others, so the Fokker-Planck equation simplifies
into d identical 1D equations ∂tP (x, t) = D∂2

xP (x, t). The solution to this equation
is well known to be

P (x, t) = 1√
4πDt

exp
(︄
− x2

4Dt

)︄
(2.7)

2.3 Epidemiology
The other fundamental ingredient for this work is the epidemic spreading. Epi-
demiology is the quantitative study of the occurrence of diseases in a population.
A population is generally a collection of individuals (not necessarily humans) at
various scales, from a small community of few people to the whole world-wide
population. Also diseases is a general term that includes several sub-categories,
which can be distinguished on the basis of their cause: genetic, environmental or
pathogenic. In the first two cases, the disease is non-infectious as the contraction
does not depend on any contact with other individuals, but just on some causes
that are external to the population. In this work, I will focus specifically on
infectious diseases, for which the pathogen (of whatever kind) is transmitted from
an infectious individual to a healthy one through a contact (that will be defined
later on). When a mathematical framework was first applied by Ross in 1911 to
understand the spreading of Malaria, the seeds of theoretical epidemiology were
planted [60]. This work aims to extend the understanding of the physics of disease
spreading, and to proceed I will present some important theoretical aspects that
will be later referenced in the description of this work.

2.3.1 Mean-field compartmental models
The simplest models for epidemic spreading are compartmental models [1]. They
are based on mutually exclusive compartments, that represent the status of the
individual with respect to the disease, i.e. the stage of the disease course at which
the individual is. Each individual is assigned to one compartment, and it can
transition from that to another according to some well defined rules. Disease stages
have been introduced with compartmental models, but they can be used in a wider
range of models to represent the core characteristics of each phase of the disease.
The most commonly used are:

1. susceptible S. This stage is occupied by healthy individuals who can be
infected by infectious ones during an infection.

2. exposed E. This stage is occupied by individuals who already got infected
but are still not able to infect others. It lasts on average for a latent period
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τlat.

3. infectious I. This stage is occupied by infected individuals who are already
able to infect others at a rate λ and spread the pathogen. It lasts on average
for an infectious period τinf .

4. removed R. This stage is occupied by recovered (or dead) individuals who are
immune to any infection and are not infectious anymore. It lasts on average
for an immunity period τimm.

S
suscep�ble

E
exposed

I
infec�ous

R
removed

𝝀−𝟏 𝝉𝐥𝐚𝐭 𝝉𝐢𝐧𝐟

𝝉𝐢𝐦𝐦

infec�on

Figure 2.5: Scheme of a SEIRS compartmental model

Compartmental models model the evolution of the system using a set of coupled
differential equations that rule the transitions of individuals between compartments.
The system dynamics is mathematically described as a chemical solution in which
reactions occur between substances (the compartments). This analogy has two
important implications: all the molecules are indistinguishable, meaning that no
individual characteristic is relevant for the system dynamics, i.e. a mean-field
approximation is applied; the system itself is well-mixed, meaning that there are no
sub-domains of prevalence of one substance and the whole solution is homogeneous.
This approach carries the great advantage to be extremely fast, as the differential
equations can be numerically integrated to obtain the evolution curves, and very
simple, as there are few parameters that have to be tuned to reproduce in first
approximation real data [61–67]. On the other side, it hardly captures phenomena
that are due to individuality or sub-structures.

Despite the limits just discussed, compartmental models show some interesting
spreading phenomena. In a pioneering work [68, 69], Kermack and McKendric dis-
covered that not all the pathogens are able to invade a fully-susceptible population:
there must be a sufficiently large infectious capability to prevent the epidemic from
dying out beforehand. The epidemic critical threshold is the value that determines
the transition between the absorbing phase (disease going extinct before spreading)
and the active phase (disease spreading). An epidemic is in the absorbing phase if
the infectiousness is so low that recoveries occur faster than infections, implying
that the average number of infectious individuals decreases over time. An important
parameter, related to the critical threshold, is the basic reproductive number R0,
that represents the average number of infections caused by a single individual in
the infectious stage in a fully susceptible population. When this value R0 > 1 there
is a sufficient number of secondary cases to sustain the epidemic and the disease is
in the active phase.
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An important aspect to analyze when dealing with disease spreading is the growth
of the prevalence I(t), i.e. the number of infected individuals at time t. In this
framework, R0 new cases are generated from one infectious individual, and each of
them will generate other R0 new ones, until a sensible fraction of non-susceptible
individuals occupies the system. This implies that the prevalence growth in a
compartmental model is exponential I(t) ∝ eR0t in the early stages. This fact is
validated by several empirical observations [70, 71], but exponential growth is very
delicate to identify [72] and it can lead to very unstable forecasts [73, 74] and fits.

2.3.2 Spatially diffusing diseases: lattice models
Mean-field compartmental models completely neglect any structure in the pop-
ulation, including the spatial domain. Most real diseases need a form of spatial
proximity between the infecting agent and the infected, and lattice models allow to
embed the spreading into a spatial setting, as already discussed in subsection 2.1.3.
As widely studied models of solid-state physics, lattices have been at the core of the
seminal works on epidemics diffusion [75, 76]. The first, great difference between
the spreading dynamics on lattice and the mean-field compartmental models is
the growth of the prevalence. In spite of being exponential in the early stages
of the epidemic, the prevalence increases as I(t) ∝ tα, where α depends on the
dimensionality of the system and the type of disease.

Consider a 2D lattice with one infectious node in a SI model, in which infectious
nodes never recover. The transmission rate determines the ”velocity” of diffusion
along every direction, so the spreading behaves as a ”front wave” that travels at
constant speed, as sketched in Figure 2.6. All the nodes within the front wave are
infectious, so I(t) is proportional to the area of the bubble which radius grows

Figure 2.6: Spatial spreading of a SI model on a 2D lattice. The image
sketches the diffusion of a SI-disease on a 2D lattice. The nodes in green are in the
susceptible stage and the red ones are in the infectious stage. The dashed red line is
a representation of the wavefront of infection.
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linearly, meaning αSI = 2. Generally, under the same assumptions, αSI = d
when neglecting finite size effects and stochastic fluctuations. When considering
an SIS disease, the exponent does not change αSIS = αSI even if not all nodes
within the front wave will be infectious. Indeed, the ”infection bubble” converges
to the equilibrium state with a fraction of S and I nodes that satisfies detailed
balance between new infections and recoveries, implying that I(t) differs only for a
multiplicative constant. The same reasoning does not apply to SIR diseases, as
equilibrium cannot be reached. In this case, the infectious nodes will be only on
the wavefront, which is in general a hypersurface with one less dimension than
the embedding space, implying that αSIR = αSI − 1. I point out that only the
final stage is relevant for the growth exponent α, as all intermediate stages are
absorbed by multiplicative constants. The difference between the power-law growth
on lattice and the exponential in compartmental models has important implications
for forecasts, due to the sensible difference in the prevalence growth at large times.

Diffusive processes on lattices have been intensively studied along with the birth of
the physics branch of complex systems. In particular, it was discovered that disease
spreading on lattices is a dynamical process that belongs to the universality class
of directed percolation [77, 78]. Universality classes are groups of mathematical
models that share the same scaling behaviour at criticality. The term ”universality”
stresses that the the system behaviour is independent of the contextual details,
and it only depends on the symmetry properties of the mathematical description
close to a phase transition. In particular, directed percolation describes the
percolation of a fluid in a d-dimensional porous medium along a preferred direction.
Epidemic spreading on a d-dimensional lattice show the same scaling behaviour of
a percolating fluid in a (d + 1)-dimensional medium, where the +1 refers to the
time dimension that happens to be preferred direction of percolation1. This result
implies that the scaling behaviour of several quantities are known providing that the
critical threshold mentioned in subsection 2.3.1 identifies the phase transition. Some
of these scaling laws are I∞(h) ∼ hβ and psurv(h) ∼ hβ′ , where I∞ := I(t =∞) is
the prevalence at equilibrium, psurv is the probability that an epidemic does not
go extinct, h := p− pc is the control parameter that determines the distance from
the phase transition, and β and β′ are the critical exponents, which for (2 + 1)D
directed percolation are evaluated β = β′ ≈ 0.5834 [79].

2.3.3 Epidemics on complex networks
The complexity of network models allow to capture more different aspects of
real networks compared to lattices, as discussed in subsection 2.1.4. Specifically,
some structural characteristics observed in empirical networks can have positive or

1I want to point out that directed percolation in (d + 1)-dimensions is sometimes referred to
as non-equilibrium directed percolation in d-dimensions, as non-equilibrium already includes time
in the assumptions. This use of similar definitions may lead to misunderstandings, so in this work
I will stick to the first one, considering the dimensionality augmented for time.
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negative impacts on the spreading velocity of the epidemic [80–82]. A network with
a small diameter, or generally small average distances between nodes, is a good
setting for a fast-spreading disease, because few infections are sufficient to largely
extend the area of infection. This setting is therefore similar to the well-mixed
system assumed by compartmental models, thus Erdős-Rényi, Watts-Strogatz and
Barabási-Albert networks all present an exponential growth of the prevalence in the
early stages [6]. Moreover, Barabási-Albert networks also have large hubs among
their nodes, which can act as super-spreaders for the epidemic thanks to their large
number of contacts. When these nodes get infected, they strongly enhance the
spreading speed overcoming the absorbing effects of the low-connected nodes, and
the super-spreading effect results to be dominating [83].

A very interesting aspect that emerges from the analysis of epidemics on networks is
the implication of the presence of clusters. Clusters form sub-structures where the
internal connectivity is above the average on the entire network. The high strength
of the links within the sub-structures implies that the sub-structures are more
loosely connected one another, for a given global connectivity. Under a spreading
point of view, this configuration enhances infection speed within the sub-structures,
but slows down and makes less stable the infection between sub-structures that
happens through less and more fragile links. The overall effect is to slow-down the
epidemic spreading, turning the exponential growth into a power-law [84, 85], at
least for the networks in which super-spreading and short-distance effects are less
relevant than clustering.

2.3.4 Epidemic diffusion on individual mobility models
As discussed in section 2.2, mobility models better incorporate spatial effects
into the contact network generation than network models, while providing more
flexibility and realism than lattice models. The authors in [55, 56] build a mobility
model that joins local random walks with stochastic long-distance jumps. They
observe that even with small jumping probability, the epidemic growth changes from
polynomial to exponential, resembling the growth of mean-field models. This effect
is due to the jumps that mix the system shuffling the positions of (some) walkers,
so the locality of the spreading gets more and more dispersed as the jumping
probability increases. Furthermore, being this a spatial model, the clustering is
high, so the local spreading of the disease is boosted, and the slow-down of the
spreading between clusters (discussed in subsection 2.3.3) is suppressed by the
jumps. In another work, Rodŕıguez et al. have studied the response of a similar
model, which approaches the mobility with the ”run-and-tumble” motion, to the
variation of the diffusion length of the agents [58]. Also in this case, the authors
obtain that the epidemic growth is similar to the one in a lattice for low mobility,
and tends to a mean-field compartmental model when the scales of mobility and
system size become comparable. They analyze the critical exponents to conclude
that the universality class corresponds to the one of mean-field models when
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mobility is sufficiently large, and obtain that the scaling laws are I∞(h) ∼ hβ and
psurv(h) ∼ hβ′ , where I∞ := I(t = ∞) is the prevalence at equilibrium, psurv is
the probability that an epidemic does not go extinct, h := p − pc is the control
parameter that determines the distance from the phase transition, and β and β′

are the critical exponents, which for the mean field are evaluated β = β′ = 1

2.3.5 The importance of time for epidemics
In subsection 2.1.5 I mentioned some features of human behaviour that only emerge
when the temporal dimension is taken into consideration [86]. The interesting
question to address is their impact on the epidemic spreading. It is known that
human activities are not uniformly distributed in time, indeed they tend to con-
centrate in short periods of very intense activity separated by long periods of very
low level [28, 30]. This feature is known as burstiness, and it appears an important
factor in the slowing-down of the spreading of an epidemic [87, 88]. The authors
hypothesize that, when an individual gets infected, its chances to re-transmit the
pathogen decrease when there is a high probability of a long waiting time before the
successive contact. This effect would win over the boost due to easy transmission
in the bursty phases. Such phenomenon would be the temporal analogy of the
slow-down due to spatial clustering effects discussed in subsection 2.3.3.

Another prominent temporal feature of human behaviour is the cyclical pattern of
the activities. These cyclic activities may regard the daily sleep routine, the weekly
weekend-trip routine, the yearly organization of the summer holidays, and so on.
All these cycles occur on specific timescales. Here I will focus on the circadian
cycle, the most evident alternation between two completely different attitudes:
highly active during the light hours, almost inactive during the night hours [29].
Zierenberg et al. [16] have studied the impact of the cyclic behaviour on the
epidemic spreading, finding out that the spreading can be boosted or suppressed
depending on the specific temporal characteristics of the disease. The idea is that
most contacts happen during the daylight hours, so an individual is more likely
infected in this time; after the infection, if it becomes infectious during the night
hours and recovers before the next day, there is a very low chance that secondary
cases are generated; on the contrary, if the infectiousness grows during the next
daylight hours, there is high chance to infect other individuals. In figure Figure 2.7
is shown that the cyclic contact activity can suppress down to 50% or boost up to
150% the infectiousness of diseases that differ only by the duration of the latency
stage and the infectious stage. An analogous result has been found by Kivela et
al. [88], confirming that temporal features are as important as spatial ones in the
understanding of spreading processes on networks.
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Figure 3. Real-world contact patterns modulate the pace of epidemic spread as a function of the latent period. (a) Absolute ninf
are periodically modulated with Tlat for human encounter trains but not for randomized (yellow). (b) ninf relative to randomized
reveals periodic modulations on both daily and weekly scale in the full (Tlat,Tinf)-plane. (c)Ψ(τ) features daily and weekly
modulations for non-Markovian human encounter trains but is constant for randomized encounter trains (yellow). Assuming the
initial encounter to be an infection, this explains the modulations of ninf by combinations of Tlat and Tinf for which the integral
(shaded areas) is dominated by valleys (blue) or peaks (red). (d) Continuous-time branching model, where encounter times are
generated fromΨ(τ) and infected with constant probability pinf. (e) Choosing an initial I0 = 100 random infections in
[−Tlat −Tinf,0) and pinf = 0.12, we demonstrate that the (average) number of infections grows exponentially. The growth rate λ
for time-independent encounter times in a fixed Tinf is expected to decrease trivially with Tlat. If not constant,Ψ(τ)modulates λ
and causes regimes of slower-than-random (blue) or faster-than-random (red) growth of infections.

statistics as our randomized encounter trains. In the following, we construct encounter trains with
non-Markovian statistics and identify three specific features of contact patterns that are necessary to
reproduce the relevant statistics of encounters. As a proof of principle, we showcase a novel tailored renewal
process that is constrained by data and reproduces all salient features (figure 4, top row):

i) Focusing on temporal statistics, the encounter rate ρ(t) averaged across individuals and weeks is
time-dependent but cyclostationary; ρ(t) repeats in a weekly cycle with differences between day and
night, and between weekdays and weekends (figure 4, first column). This can be captured by an
inhomogeneous Poisson process (figure 4, middle row), which reproduces the periodic modulation of
ninf (fourth column) andΨ(τ) (see supplemental figure S3).

ii) The distribution of inter-encounter intervals P(δt) has high probability for small δt and a heavy tail of
non-vanishing probability for large δt (second column). Because this tail corresponds to long periods
without any encounter, it causes the high probability of ninf ≈ 0 (last column) that strongly contributes
to the destabilization of epidemic outbreaks. P(δt) is dominantly shaped by the clustering of human
contacts and can be well approximated by a Weibull distribution [7, 27]. Accordingly, a Weibull-renewal
processes (last row) reproduces P(δt) and P(ninf) well, but it does not have a time-varying ρ(t) and
cannot reproduce the period modulations ofΨ(τ) and ninf.

iii) Encounter rates vary between individuals (third column). This variability can be attributed to intrinsic
differences in contact behavior (cf figure 2, gray vs yellow) and is partly captured by the degree
distribution of the contact network [28]. Recall that such across-individual variability is crucial to

5

Figure 2.7: Effective infectiousness with circadian cyclic contacts. The
figure shows the variation of the effective infectiousness for a disease with fixed
transmissibility and variable duration of the latency and the infectious stages. The
variation is normalized to a randomized model that shuffles the temporal coordinate
of the contacts. It is worth to notice that for infectious and latent periods that
correspond to multiples of the cycle period (1 d), the variation is very small, and it
is maximum in correspondence of half-cycle values. Figure provided by the authors
of [16].
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Chapter 3

Model

In chapter 2 I provided insights on the scientific context in which this work sets.
With this preamble in mind, I will now shift the focus on the actual project of this
Master thesis, starting from a detailed discussion on the driving motivation. Later
on, I will explain the assumptions and technical solutions that I implemented to
tackle my research problem, both concerning the model for the agents’ mobility
and the model for the disease.

This project relies on numerical simulations. The coding framework consists of two
different languages that interact with each other. The core routines that perform
the extensive computations are written in C++, allowing for a very fast execution
and efficient memory management. These routines are compiled and provided as
Python modules to the user, enhancing the usability of the library and favouring
the integration with the most common Python libraries for data analysis. The
binding code that allows for interoperability between C++ and Python is created
making use of the open library pybind11 [89].

3.1 Motivation
The importance of understanding disease spreading has been highlighted by re-
cent human history, but in general spreading processes are worth the attention
because they describe the mechanics at the core of a huge variety of real systems.
Humans are extremely complex agents to be modelled, motivating the reason why
human epidemics are one of the less understood spreading process. In chapter 1 I
already mentioned the ethical and technical difficulties of data collection on human
behaviour, due to privacy protection and data security. This has motivated the
choice to build a generative model for the contact network, instead of applying
other analysis on existing data.

Network of contacts are often created as random networks generated through
the models presented in subsection 2.1.4, and they well recreate some statistical
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features of real networks. Though, when narrowing the landscape to human
contact networks, some of these features are either absent or due to a superposition
of several undergoing processes, as discussed in subsection 2.2.1. There, I also
present some works which highlight the close relationship between the mobility
in the spatial domain and contact network. These considerations led me to avoid
common models for network generation, and, instead, resort to spatial models.
In subsection 2.1.3 I mentioned that lattice models have been largely used in the
19th century, but they provide no flexibility and, especially, cannot incorporate
the so important mobility. Therefore, I decided to join a mobility framework with
a geometrically generated network. Mobility is too complex to be fully-captured
by first principle models, so I decided to focus only on a simple representation of
the lowest level scale discussed in section 2.2. The geometric network generation
(subsection 2.2.2) provides the flexibility needed to account for the mobility and
allows to mechanistically incorporate the spatial dimension in the network.

The choice to include the spatial domain in the model has consequences on the
spreading processes, as extensively discussed in section 2.3. When fitting the
growth of the prevalence curve in the early stages of the epidemics, it can be
hard to distinguish between the exponential increment, given by homogeneous
mixing or random network models, and the polynomial growth, given by the spatial
ones, and this can lead to imprecise predictions. The mobility takes the role of
the hyper-parameter that allows to interpolate between these two extremes: for
very low mobility the physical behaviour of the system resembles the pure spatial
models (lattices), while for very high mobility it resembles the well-mixed systems,
as discussed in subsection 2.3.4. Though, those mobility models do not consider
any temporal aspect, which have been proven to be important for the spreading
processes in real scenarios (subsection 2.3.5). This work aims to fill this research
gap, embedding the temporal dimension through a circadian cyclic pattern for
the spatial mobility. The goal is to understand the consequences of the interplay
between space and time on the physics of epidemic spreading, regarding both the
growth of the prevalence and the universality class of the absorbing-active phase
transition.

3.2 Mobility
The setting of the model is a 2 dimensional squared environment of area L2 with
periodic boundary conditions that contains N agents. The choice of periodicity
has the aim to make spatial boundaries effects vanish also for small system sizes,
allowing for more scalability freedom. Moreover, the environment is translationally
invariant, and there is no intrinsic difference in the behaviour of the agents due
to their position in the environment. Each agent is assigned an initial position in
the environment, representing its resting place (or its home position), and this is
the only source of individuality in the model. The initial positions are uniformly
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drawn at random x⃗i
0 ∼ U(0, L)× U(0, L), where the index i ∈ [1, N ] represent the

i-th agent.

Each agent (later addressed also as walker or node or individual) moves in the
system according to the differential equation of motion

dx⃗i = −∇V i(x⃗, t)dt +
√

2DdW⃗ (3.1)

analogous to Equation 2.4. The stochastic term on the right is independent from i,
as all the agents undergo the same Gaussian random perturbation. The choice of a
Gaussian random walk is motivated by the difficulty to find in the literature a more
realistic model for individual mobility that would account for the spatial domain; in
this respect, Gaussian random walks are used in the literature for both animal and
human mobility (see section 3.2), and are very well studied in statistical physics.

The motion of each agent is solved independently through numerical simulation using
the Euler-Maruyama method for stochastic differential equations [90]. Equation 3.1
is solved iteratively by computing a Markov-chain that follows the rule

x⃗t+∆t = x⃗t −∇V (xt, t)∆t +
√

2D∆W⃗ t (3.2)

where ∆t is the time discretization and the subscript represents the time in
the simulation. I note that by definition of Wiener process, each component
∆Wt := Wt+∆t −Wt ∼ N (0, ∆t) is a Gaussian random variable which variance
scales as the time discretization. This is indeed correct, as the dispersion due to
noise over a large period x⃗t+T − x⃗t should be only proportional to the diffusion
parameter D and the length of the period T and not to the discretization ∆t taken.
Indeed, assuming ∇V = 0 and x0 = 0 for simplicity, the spatial dispersion over the
period T is x⃗T = ∑︁T

t=0
√

2D∆W⃗ t is a sum of rescaled Gaussian random variables
with variance σ2

∆W = ∆t. The sum of T
∆t

rescaled Gaussian random variables is
again a Gaussian random variable with variance equal to the rescaled sum of the
variances, thus

σ2
x = (2D) T

∆t
σ2

∆W = 2DT (3.3)

which correctly proves to be independent from any choice of the time-discretization
unit ∆t.

The individual attraction potential V i(t) in Equation 3.1 is introduced to constrain
each agent in a region close by its home (the random initial position). This is a
braking point with respect to the models described in subsection 2.3.4, where the
random walk is boundless and spans through the entire environment. The aim is
to allow for mobility while preserving the individuality of the agents, as the home
position is the only features that distinguishes them. The potential must fulfil
three main requirements: it must have a bell-shaped global minimum centered
on the home position, it must be differentiable so that the gradient exists, and
its gradient must be reasonably bounded within the domain of the environment
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so that the attractive force does not overwhelms the dynamics of motion. The
individual potentials have the same shape and only differ in their center, in formula

V i(x⃗, t) = A(t) 1
α

⎛⎜⎝−δα +
⎛⎝δγ +

⎛⎝
⃦⃦⃦
x⃗− x⃗i

0

⃦⃦⃦
β

⎞⎠γ⎞⎠
α
γ
⎞⎟⎠ (3.4)

where A(t) > 0 is the amplitude, α > 0 sets the long-range behaviour, β > 0 sets
the spatial scale, γ ∈ 2N sets the short-range behaviour and δ > 0 sets the scale to
distinguish short versus long range. I point out that the constraint imposed on the
parameter γ shapes the potential to be rotationally invariant with center on the
home position. In Figure 3.1 the effect of the variation of each parameter (excepts
β that is trivial) is shown for an easier intuition about their meaning. The choice
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3 2 1 0 1 2 3
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Figure 3.1: The potential is shaped by the value of its parameters. The
potential in Equation 3.4 is shown. In the left panel, the potential shows different
behaviours in the tails, where V (x) ∼ xα. In the central panel, the potential shows
different behaviours in the well, where V (x) ∼ xγ. In the right panel, the potentials
plotted have the same behaviour in the tails and in the central well, but the well has
different amplitude.

of the functional form of the potential is motivated by the extreme flexibility it
provides, which extends further the needs of this work, as discussed in Appendix C.
The explicit form of the gradient is

∇V i(x⃗, t) = A(t)β−γ
⃦⃦⃦
x⃗− x⃗i

0

⃦⃦⃦γ−1
⎛⎝δγ +

⎛⎝
⃦⃦⃦
x⃗− x⃗i

0

⃦⃦⃦
β

⎞⎠γ⎞⎠
α
γ

−1

(3.5)

The temporal heterogeneity is introduced in the mobility model through the
amplitude parameter of the potential A(t), which is the only parameter with a
time dependence. The basic idea is to create a circadian pattern that alternates
an exploratory phase and a confinement phase: the former to represent the active
daily routine during the day hours, the latter to represent the passive stay at home
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during the night hours. This translates into an attractive potential which is much
stronger during the night hours than during light hours. The functional profile
chosen to reproduce this effect is a rectangular function in the form

A(t) =
⎧⎨⎩Aday

1
2 −

e
2 + k ≤ t

1 d ≤
1
2 + e

2 + k

Anight elsewhere
∀k ∈ Z (3.6)

where Aday < Anight are the values constraining, respectively, the exploratory and
confinement phases, and e represents the fraction of time spent in the exploratory
phase in a day.

3.3 Epidemic
The relevance of the motion of the agents in the environment is the contact network
that emerges among them. Since the motion of the agents evolves in time, the most
proper representation of the contact network is a temporal network, with sampling
rate that matches the discretization of the agents’ motion. At each timestamp, if
two walkers i and j are in the condition such that

⃦⃦⃦
x⃗i

t − x⃗j
t

⃦⃦⃦
< r, they are defined

to be in contact. In other words, at each timestamp the snapshot of the temporal
network of contacts is a geometric graph modelled as in subsection 2.2.2. By
this definition, the duration of each contact equals the time-discretization unit
∆t chosen for the random walk. Since a geometric graph is generally very sparse,
especially at low densities, I choose to represent the temporal network of contacts
as a timed edge list.

The contact network is the topology underlying the epidemic spreading. In this work,
the epidemic is generally modelled as a SEIS disease, unless differently specified
and motivated. This model has been chosen so that an equilibrium solution is
reached after the epidemic spreads across the entire environment, and this is only
possible if the course of the disease forms a closed loop over the compartments.
The equilibrium is useful, if not necessary, for the analysis of the universality class
and the physical properties of the system. Any immunity is ignored in this model,
as it would augment the complexity of the model without adding any foreseeable
interesting effect. The exposed stage has been proven to have an important effect on
the spreading, as discussed in subsection 2.3.5, but it also slows down the growth of
the epidemic because of the delayed infections. This is a useful effect when dealing
when finite size systems, for which an early saturation would make impossible to
observe the growth of the spreading. Though, the most important consequence
of the existence of a latency between the moment of infection and the onset of
infectiousness is that it decouples the location of infection from the generation of
secondary cases: suppose that agent i infects agent j at position x⃗c and there is no
latent period; right after this infection, both i and j are still in the neighbourhood
of x⃗c, so all the other agents in that neighbourhood are likely infected by j other
than by i; on the contrary, if there is a latent period that lasts for 1− ed at least
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(the duration of the day hours), then the node j will return in the neighbourhood
of his home position x⃗j

0 before becoming infectious, so the secondary infections
generated by j will be only dependent on x⃗j

0. This coupling may or may not be
desirable in the model, but a deeper understanding would be required to perform
a conscious choice. In order to avoid uncontrolled effects, I choose to insert the
exposed stage in the model.

The transition from one stage to the other undergoes the following rules:

• S → E. The infection can happen only between two agents in contact, one
infectious and one susceptible. In such situation, the infection has probability
pinf to actually realize. The contacts have duration equal to ∆t, so the rate
of infection is λinf = pinf

∆t
. Since the dynamics of an epidemic is related to λinf ,

if one wants to change ∆t while preserving the same force of infection, then
pinf must be tuned accordingly.

• E → I. The onset of the infectiousness happens after a time tlat since the
infection, and this time is randomly drawn from the distribution P (tlat) when
the infection takes place.

• I → S. The recovery happens after a time tinf since the onset of the
infectiousness, and this time is randomly drawn from the distribution P (tinf)
when the onset takes place.

In all the runs presented in this work, the generality previously described is not
exploited. All simulations are performed with the same time-discretization, and
the sampling distributions are P (tlat) = δ(tlat − τlat) and P (tinf) = δ(tinf − τinf).
The choice of imposing single-valued transition rates to all the agents is operated
to avoid stochastic effects that would have hidden the interesting effects without
changing the average behaviour of the system. This is a first step that might be
relaxed in a follow-up work.

The evolution of the agent’ motion and the creation of the contact network happen
concurrently to the spreading of the disease. The simulations start by placing
the home positions of the agents uniformly at random in the environment, and
creating an empty queue of events. Each event is the transition of an agent from
one compartment to another, and it happens at a certain time te. The second step
of the algorithm is the seeding of the epidemic: one agent, drawn at random, gets
infected at a random time during the first day of simulation, and its transition is
added to the queue. Then, the algorithm proceeds looping over the time-steps,
indexed by t, as follows:

1. all the entries in the event queue that happen at a time te < t are removed
from the queue and the corresponding transitions are applied. If the event
agent is in the exposed stage, than E → E − 1 and I → I + 1, and an event
is appended in the queue for the same agent at time te = t + tinf . If the event
agent is in the infectious stage, than I → I − 1 and S → S + 1, and nothing
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is add to the event queue.

2. the positions of all the agents are updated according to Equation 3.1.

3. the contact list is computed onto the updated positions of the agents using
the algorithm for geometric graph discussed in subsection 2.2.2 and shown in
Figure 3.2. The sub-domains size is chosen to be l = r, so that each agent can
be in contact with other individuals that lie only in the adjacent sub-domains.
This solution allows to have a computational complexity O(N log N).

4. the contact list is parsed; for each contact, if one is in the infectious stage and
the other is in the susceptible stage, the infection happens with probability
pinf .

5. if the infection actually realizes, S → S − 1 and E → E + 1, and an event is
appended in the queue for the infected agent at time te = t + tlat.

6. the occupancy of each pool is recorded.

7. the algorithm advances by one time-step, and proceeds to the next iteration
only if the event queue is not empty and the maximum duration of the
simulation is not yet reached t < tmax.

In the case a SEIR model is needed, the transition from I → S becomes I → R
and nothing in the algorithm has to be changed; in the case of a SEI model, the
transition I → S has no effect and again nothing has to be changed.

Figure 3.2: Graphical representation of the algorithm for geometric graphs.
The outer box in the figure represents the 2D environment, the dotted lines the
boundaries of the sub-domains, and the gray points the agents. The circumferences
represent the contact range (of size r). The agent in black is the subject, and its
sub-domain is dark coloured, while its adjacent sub-domains are light gray. When
computing the distances between agents, for the agent in black only the ones from
the agents within the gray area are computed. For this purpose, the size of each
sub-domain equals the interaction range r.
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Chapter 4

Tuning the model

I explained in chapter 3 the ideas behind the model used in this work, mentioning
the relevant parameters and their meaning. This chapter is dedicated to the
discussion of the values to assign at those parameters, some of which require
extensive consideration. The analysis of the behaviour of the model will come along
with the first results obtained, with the aim to keep all the effects under control.
Some of the parameters have been kept fixed throughout all the simulations carried
out during this work; others have been varied to inspect their effects on the system’s
behaviour. Table 4.1 summarizes the values used in the simulations, to facilitate
the reader’s understanding of the results presented in chapter 5.

4.1 Epidemic parameters
The three epidemic parameters of the model are the probability of infection per
contact pinf , the latent period τlat and the infectious period τinf . The first one is
the subject of interest of most results, as it is the one that represents the force
of infection of the disease. In particular, it is the parameter which determines
the transition between the active phase (spreading) and the absorbing phase
(extinction). On the contrary, the other two parameters are fixed throughout the
whole project, as the implication of their variation is out of the scope of this work.
As discussed in section 3.3, the latent period is chosen to be larger than the period
of the cyclic behaviour of interest, i.e. τlat ≥ 1 d, so that the diffusion of the disease
only depends on the home positions of the agents. Since it is desirable to have a fast
epidemic to lower the computation power needed for the simulations, I set τlat = 1 d.
For what concerns the infectious period, the evolution of a SEIS epidemic presents
damped oscillations at equilibrium if τlat ≥ τinf . Since it is an undesirable effect
for this study, I set τinf = 2 d to disrupt the intrinsic oscillatory behaviour of the
system, so that shorter simulations are needed to ensure the equilibrium regime.
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Parameter Symbol Standard Value
agents N° N *105

agents density ρ *0.025 r−2

environment size L *
√

Nρ
discretization time ∆t 1 min

simulation time tmax *
contact range r 1

avg. displacement on exploration σfree *10 r−2

diffusion coefficient D *Equation 4.5
potential amplitude on exploration Aday 0
daily fraction of exploration phase e *0.5
avg. displacement on confinement σconf 1 r−2

potential coefficients α, β, γ, δ 1, 1, 4, 0.5
potential amplitude on confinement Anight *Equation 4.6

probability of infection pinf *
latent period τlat 1

infectious period τinf 2
initial N° of infected I0 1

Table 4.1: The meaning, symbol and value of the parameters are here collected. All
non-starred values are kept fixed in all the simulations. The starred values have been
used as the standard condition, and in the text it is explicitly stated when other
values are being used. The values of tmax and pinf are missing because they change
in the majority of the simulations.

4.2 Environmental parameters
The environmental parameters of the model are the contact range r, the number
of agents in the system N and the size of the environment L. The contact range
is chosen to be the spatial unit of measure, so that all the other quantities are
expressed in terms of interaction radii, meaning that r = 1. In real settings
with air-transmitted pathogens, the spatial proximity needed to define a contact
(thus a possible infection) is usually between 1 m and 2 m; this gives a sense of
the magnitude of the distances in my model. The number of agents is again a
parameter that is not fixed for all the simulations, as some cases require very
large systems and others only perform fast runs. Generally N = 104–105 unless
differently specified, so that system size is large enough to observe the interesting
phenomena while preserving a reasonable computation time.

The environment size L is not a directly meaningful parameter, its role is relevant
only because the agents’ density varies. Thus, I select this density ρ := N

L2 as a
model parameter, as it has a dominant effect on the system’s behaviour, implying
that L(N, ρ) turns into a derived quantity. The system must be dense enough so
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that the epidemic spreading is not arrested by the absence of contacts, but also
sparse enough so that the mobility (and not the over-density) plays the major role
as the spreading driver. In other words, if the agents were fixed into their home
positions, there should exist no relevant spreading, i.e. the system should be non-
percolating. For a random geometric graph, the density threshold for percolation is
computed inverting Equation 2.2. Inserting in the equation the definition of ρ := N

L2 ,
the excluded volume in 2D V = πr2 and the percolation threshold ⟨k⟩c = 4.52, the
system results being non-percolating if ρ≪ 4.52

πr2 ≈ 1.43 r−2. The lower-bound on
the agents’ density can only be checked a-posteriori: first a density value is set, then
the system is evolved and the contact traced, so to check if the temporal network
percolates. I arbitrarily set ρ = 0.025 r−2, and evolved the system with the lowest
mobility to capture the worst-case scenario. Then the temporal network obtained is
aggregated over the smallest time-windows ∆T that are relevant for the spreading,
i.e. the infectious period. Figure 4.1 shows that during ∆T = τinf most of the nodes
remain isolated, implying that the disease has a high chance to get extinct because
of the absence of contacts; but already during a ∆T = 2τinf the fraction of isolated
nodes significantly drops, implying that the spreading is not prevented by the
absence of contacts and it mostly depends on the epidemic parameters, namely the
force of infection. Hence, the proposed value ρ = 0.025 is indeed a good trade-off
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Figure 4.1: Fraction of isolated agents. The plot shows the distributions of the
fraction of isolated agents over 1000 runs. The colour coding represents the length
of the time-window over which the temporal network is aggregated. The aggregation
over 2τinf is already sufficient to have a percolating network.

and it is the default values for all the simulations run in this work. This observation
also suggests that the mobility is indeed crucial in this model, as it drives the
instantaneously-non-percolating geometric graph towards a percolating aggregated
network within timescales that are faster the epidemic spreading. I point out that
the unit of measure of the density is [ρ] = 1

r2 , so considering r = 2 m (as previously
discussed) the density value in real units becomes ρ = 6250 people/km2, which is of
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the order of the population density of large crowded cities (Wikipedia data report
ρMilan ≈ 7500 people/km2 and ρLondon ≈ 5600 people/km2). This is not an attempt
to pursue realism, as this model is meant to be purely theoretical, but it gives an
intuition about the scales of the quantities involved.

4.3 Analytical approaches
Solving analytically the equation of motion of each walker allows to reduce the
number of simulations needed to explore the mobility parameter space in search
for suitable values. Since all the walkers have identical behaviour and only differ
by their home position, all solutions are equal but translated. The equation of
motion is much easier to solve in the assumption of null attractive potential (here
addressed as free motion), meaning that the motion is purely noise-driven. In this
case, the noise is Gaussian and the probability density is given by Equation 2.7
that becomes for agent i

P i
free(x⃗, t) = 1

Z(t) exp

⎛⎜⎝−
⃦⃦⃦
x⃗− x⃗i

0

⃦⃦⃦2

4Dt

⎞⎟⎠ (4.1)

where Z(t) is the normalization constant. This solution is exactly Gaussian
only assuming a boundless environment, but it is approximately Gaussian if
the amplitude is much smaller than the environment size. The goodness of the
approximation can be checked computing Z(t) on the finite domain and estimating
the approximation needed for it to converge to the Gaussian normalization constant
ZG = 2πσ2. Using the periodicity of the boundary conditions I simplify x⃗− x⃗i

0 → x⃗
and defining σ(t) =

√
2Dt, the normalization constant becomes

Z(t) =
∫︂∫︂ L/2

−L/2
dxdy exp

(︄
x2 + y2

2σ2(t)

)︄
= 4

(︄∫︂ L/2

0
dx exp

(︄
x2

2σ2(t)

)︄)︄2

= 2πσ2(t)
(︄

erf
(︄

L

2
√

2σ(t)

)︄)︄2 (4.2)

where at the first step I have used the independence between x and y and the
Gaussian being an even function, and at the second step the definition of error
function

∫︁ x
0 exp(−ax′2)dx′ =

√
π

2
√

a
erf (
√

ax) and erf(x) = − erf(−x). Equation 4.2
shows that when L≪ σ ∝

√
Dt, then erf(x)→ 1 and Z(t)→ 2πσ2, meaning that

the profile of P i
free is well described by the Gaussian approximation. Considering

that erf(2)2 ≈ 0.991, if
√

Dt < L
8 the relative error is |Z(t)−ZG|

ZG
< 1%. Figure 4.2

shows the Gaussian functions for different values of D at fixed t and vice versa.
Considering the values of N and ρ discussed in section 4.2, the environment size
is always L > 500, meaning that the constraint on D and t to preserve a good
Gaussian approximation is not stringent.
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Figure 4.2: Free Gaussian diffusion in 1D. Marginalized probability density
function in Equation 4.1, parameterized with: D = 100r2/d in the left panel; t = 0.25d
in the right panel; x0 = 0 in both panels.

When the motion gets constrained by the attractive potential, analytical compu-
tations become more involved, indeed the Fokker-Planck equation can be hardly
solved analytically for arbitrary potential at arbitrary times. Though, the existence
of the potential enables the possibility for the motion to reach an equilibrium state,
instead of diffusing indefinitely in the whole environment. The equilibrium state
is usually convenient to study, because the probability density P (x⃗, t) → Peq(x⃗)
becomes stationary and the left-hand-side of the Fokker-Planck equation vanishes.
For the equilibrium state to be realized, the potential must fulfil two constraints.
First, the tails must not be exponentially suppressed, so that the containing force
is strong enough to counteract the diffusive tendency. Second, the potential itself
must have an equilibrium state to converge to. The potential in Equation 3.4
cannot fulfil the second constraint, as the amplitude parameter depends on time in
a cyclic fashion. Though, for this analytical calculation it is convenient to impose
a fixed value A(t) = const and study the equilibrium state. With these premises,
the equilibrium solution for the agent’s location probability density takes the form

P i
eq(x⃗) = 1

Z
exp

(︄
−V i(x⃗)

D

)︄
(4.3)

where Z is the normalization factor that can be analytically computed only for
particular choices of V , while in general is numerically obtained as Z =

∫︁∫︁
D P i

eq(x⃗)dx⃗.
The details of this calculation are shown in Appendix A. Now, if one wants to
reintroduce the periodic temporal dependency of the potential, specifically through
the Equation 3.6, then the equilibrium cannot be reached. Indeed, two different
equilibrium solutions could be separately computed P i

eq,night, and P i
eq,day, and the

probability density P (x⃗, t) oscillates between these two extremes. Hence, the
analytical calculation can be useful to constrain the parameters of motion, even if
it cannot fully capture its temporal evolution.

The analytical calculation carried out above allows also to open another work
branch. When all the probability densities P i(x⃗, t) are computed for all the agents
in the system (and I recall they only differ for the center), it is possible to compute
the contact probability between every pair of agents P c

ij(t). This can be obtained
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with the spatial convolution

P c
ij(t) =

∫︂∫︂ L/2

−L/2

∫︂ x1+r

x1−r

∫︂ x2+
√

r2−(x′
1−x1)2

x2−
√

r2−(x′
1−x1)2

dx⃗dx⃗′P i(x⃗, t)P j(x⃗′, t) (4.4)

This integral can only be solved numerically and the computation becomes rather
expensive because it must be carried out for all the N(N − 1) pairs {i, j} in each
realization of the system. It is much more convenient to introduce a second variable
h representing the distances between the centers of the distributions, i.e. the home
positions, and numerically compute P c(h, t) =

∫︁∫︁
D
∫︁∫︁
∥x⃗′−x⃗∥<r dx⃗dx⃗′P (x⃗, t)P ∗(x⃗′, t),

with P ∗(x⃗, t) := P (x⃗− hê1, t). The bivariate quantity P c(h, t) is very expensive to
compute but it can later be used for all the pairs {i, j} in all the realizations of
the system, interpolating the numerical estimation of P c(h, t) with h =

⃦⃦⃦
xi

0 − xj
0

⃦⃦⃦
.

Unfortunately, this approach can only be useful when the full P (x⃗, t) is known (at
least numerically), which does not happen to be the case for a potential shaped as
in Equations 3.4 and 3.6.

4.4 Mobility parameters
The parameters of mobility are the ones that determine the shape of the potential
and its amplitude, together with the diffusion coefficient that determines the
stochastic contribute. The exploratory phase of the motion is set to be a free
Gaussian diffusion, completely unconstrained Aday = 0, as shown in Figure 4.3.
The only free parameter in the exploratory phase is the explored area per unit
time, i.e. the diffusion parameter D. Inverting Equation 3.3 so that

D = σ2
free

2T
(4.5)

the diffusion parameter can be constrained by imposing an average range σfree
explored within a given time window T . This consideration becomes handy because
the scales of distances and time are easier to understand than the scale of the
diffusion constant. The value used for most of the simulations is D = 100 r2/d,
obtained fixing a σfree = 10 r in T = 0.5 d. I point out that σfree represents
the average projection along one axis (coordinate) of the agent’s position with
respect to a reference frame centered on its home position, and not the average
distance from home. The average distance from home is computed as ⟨rfree⟩(t) =∫︁∫︁

D ∥x⃗− x⃗0∥P (x⃗, t)dx⃗, which is conveniently rewritten in polar coordinates with
respect to the home position thanks to the rotational symmetry of the probability
density in Equation 4.1, so to obtain ⟨rfree⟩(t) =

√︂
π
2 σfree(t).

All the other mobility parameters are related to the attraction potential in Equa-
tion 3.4, specifically for what concerns the confinement phase (the night). The
coefficients α, β, γ, δ have been introduced for the sake of generality, but all the
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Figure 4.3: Simulation of the motion of an agent free from confinements.
The simulation of 105 unconstrained random walks with D = 25 r2/d is performed for
a time t = 0.5 d. The histogram of the final positions is compared to the analytical
solution in Equation 4.1. On the sides, the marginal distributions are shown.

results shown in this work have been obtained with the same set of values. For the
most trivial one, β, the value is set to be β = 1 in order to not alter the spatial
scale imposed by the contact range r. γ = 4 has been set so that the potential
well is flatter than for γ = 2. δ = 0.5 has been chosen so that the potential well
is narrow around the home position, allowing for a stringent confinement during
the night without needing the potential amplitude to explode. Finally, α = 1 is
set so that the agent undergoes a constant force when far away from home; values
α > 1 would have led to a divergence of the gradient and, eventually, meaningless
oscillations around the home position; values α < 1 would have led to a decreasing
force of attraction at large distances, which is somehow opposite to the realistic
scenario where people run back home faster when farther away.

The potential amplitude Anight is the most delicate parameter to set. The idea
is to proceed in a similar way as discussed above for D, i.e. to derive the value
from other more intuitive quantities. Assuming to wait long enough so that the
equilibrium probability density in Equation 4.3 is reached, the average confinement
range σconf can be fixed as constraint. The spreading σconf , as in the case of σfree,
is the standard deviation of the 1D projection of the position of the agent with
respect to the home position. It is then computed as σ2

conf =
∫︁

Dx1
x2

1Peq(x1)dx1,
where Peq(x1) is the equilibrium probability density of Equation 4.3 marginalized
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over x2. This leads to the integral equation

σ2
conf =

∫︂∫︂
D

x2
1 exp

(︄
−V (x⃗)

D

)︄
dx⃗

=
∫︂∫︂

D
x2

1 exp
(︄
−Anight

D

(︄
−0.5 +

(︃
0.54 +

⃦⃦⃦
x⃗− x⃗i

0

⃦⃦⃦4
)︃ 1

4
)︄)︄

dx⃗

(4.6)

where in the potential V (x⃗) the standard values (Table 4.1) of the coefficients
α, β, γ, δ have been inserted. Thus, the value of Anight can be constrained by
solving numerically this implicit integral equation. I point out that the choice
to marginalize over x2 and integrate over x1 could be switched, as the potential
is rotationally invariant. The equation above highlights that for fixed σconf one
gets Anight(D | σconf) ∝ D, whereas there is no analytical closed-form relation for
Anight(σconf | D). The numerical solution to Equation 4.6 is shown in Figure 4.4
for different values of the diffusion parameter. The plots shows a profile that
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Integral equation for L=1000
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Figure 4.4: Numerical solution of the integral equation for the amplitude
parameter. The numerical solutions to Equation 4.6 are shown for various D. The
green vertical lines delimit the range of linear behaviour of the solutions. The dotted
lines are the linear fits, which coefficients are shown in the legend.

is approximately linear in the central range, which luckily happens to be the
range of interest, so a linear fit is performed to look for the relation log(Anight) =
c0(D) + c1(D) log(σconf). Interestingly, c1 ≈ −0.55 independently on D, and c0
appears to grow as c0 ≈ log D + 0.42. Exponentiating both sides of the equation,
one gets

Anight ≈ 100.42D σ−0.55
conf (4.7)

which is consistent to the former observation Anight(D | σconf) ∝ D.

4.5 Discretized displacement
The Euler-Maruyama method relies on discretization to numerically solve the
stochastic differential equation of motion. Considerations about the size of time-
step may be important to avoid discretization issues and other uncontrolled effects.
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I start considering the unconstrained motion of the exploratory phase, imposing
V (x⃗, t) = 0 in Equation 3.2. First of all, I point out that the noise term ∆Wt

depends on time only when a specific realization of the stochastic process is
considered. The Wiener process is not time-dependent per se, it is stationary and
depends only on the time-discretization step, so the subscript can be dropped when
referring to the random variable. With a reasonable abuse of notation, here I will
refer to this random variable as ∆Wi ∼ N (0, ∆t), where the subscript i refers to
the i-th component of the vector. With no potential, the spatial displacement
∆x⃗ =

√
2D∆W⃗ is also random variable that does not depend on time, and it

is isotropically distributed so that ∆xi ∼ N (0, 2D∆t). The interesting quantity
here are not the single components of the displacement, rather its modulus, i.e.
the spatial step-size of the walk. The two components of the displacement are
independent and normally distributed with same variance, so the squared norm is
distributed according to a scaled chi-square distribution with two degree of freedom
∥∆x⃗∥2 1

2D∆t
∼ χ2(2). The modulus ∥∆x⃗∥

√︂
1

2D∆t
∼ χ(2) is distributed according to

the Rayleigh distribution, a particular case of the chi distribution with two degrees
of freedom. For this distribution, the mean is known to be ⟨χ(2)⟩ = σ

√︂
π
2 and the

median to be Med(χ(2)) = σ
√︂

2 log(2), where σ =
√

2D∆t is the scale parameter.
Thus, the mean and median displacements are

⟨∥∆x⃗∥⟩ =
√

πD∆t , Med (∥∆x⃗∥) =
√︂

4 log(2)D∆t (4.8)
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Figure 4.5: Distribution of the displacement modulus for an unconstrained
walk. The probability distributions P (∥∆x⃗∥) are shown for different values of the
discretization time, with the D fixed to the standard value. Mean and median values
of the distributions are computed as in Equation 4.8.

Figure 4.5 shows the distribution of the displacement magnitude for different values
of the diffusion coefficient. The goal of this analysis is to set the ∆t so that the
median displacement has the same order of magnitude of the contact range r,
for two main reasons. The first emerges when considering two agents that have
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intercepting trajectories: if the discretization is too large, the agents would likely
be too far apart to make a contact either at the step before and at the step after
the intersection, implying that no contact would be recorded. The smaller is the
discretization, the harder it becomes to end up in this situation. The second
reason is that it is impossible to confine the agents around their home positions
at distances smaller than the stochastic jumps. To contain these problems, the
time-discretization step is set to ∆t = 1 min, balancing the trade-off with the
increasing computation time needed for the simulations.

Performing the same analysis becomes much harder when dealing with the confine-
ment phase, i.e. when the agent undergoes the attraction of the potential. The
displacement is the vectorial sum of the stochastic and the deterministic terms in
Equation 3.2, so its square modulus is

∥∆x⃗∥2 = (∥∇V ∥∆t)2 + 2D
⃦⃦⃦
∆W⃗

⃦⃦⃦2
+ 2
√

2D∆t∥∇V ∥
⃦⃦⃦
∆W⃗

⃦⃦⃦
cos θ

where θ is the angle formed by ∇V and ∆W⃗ . It is evident that ∥∆x⃗∥ is a
random variable that cannot follow a known distribution, as neither ∥∆x⃗∥2 does.
Analyzing the right-hand-side in the equation, the first term is the pure deterministic
contribution, which is position dependent; the second term is the pure stochastic
contribution, and it is the same random variable discussed for the free walk
distributed as ∼ 2Dχ2(2); the third term is the mixed contribution, stochastic and
deterministic, and it is a random variable distributed as ∼ N

(︂
0, 8D(∆t∥∇V ∥)2

)︂
.

This last claim is motivated observing that a chi-squared distributed random
variable multiplied by the cosine of a uniformly distributed one represents the
1D projection of a bivariate uncorrelated Gaussian random variable. The relative
contributions of the three terms is spatially dependent, because the strenght of
the gradient modulates them differently. Given this comment, ∥∆x⃗∥2 is a random
variable which distribution is complex to compute (even numerically) and hard
to plot because dependent on all the variables and parameters of the potential.
Though, considering that in my mobility model the potential plays a role only in
the transition phase between the exploration and the confinement phase, meaning
when the walker is returning home, the uncontrolled effects on the contact network
are considered negligible.

A last interesting insight comes when dividing Equation 4.8 by ∆t, i.e. when
the average velocity of the agents is computed. Indeed, the velocity appears to
be dependent on the time-discretization step ∆t. Despite this fact might appear
non-trivial, it is due to setting the diffusion as a constant of motion. To better
explain it, I resort to an analogy with a thermodynamical system, such as the
diffusion in an ideal gas. According to the kinetic gas theory, the diffusion coefficient
D = 1

3ℓvT is related to the thermal velocity vT and the mean free path ℓ. The
mean free path is the average displacement without change of direction, meaning
ℓ = ⟨∆x⃗⟩ ∝

√
∆t. Since the diffusion coefficient is a constant of motion, vT ∝ ℓ−1,

so the thermal velocity scales inversely with respect to the squared discretization
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time, in agreement with our results. The physical intuition may come recalling
that in kinetic gas theory ℓ ∝ 1

n
, with n the number density of the gas: a smaller

time-discretization physically translates into a denser gas, where collisions are more
frequent. To ensure the same diffusion length within a denser gas, the particles
in the system must have a higher mobility, i.e. a higher thermal velocity, which
consequently cannot be a constant of motion.
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Chapter 5

Results and discussion

The two previous chapters presented the model and the meaning of its key parame-
ters. In this chapter I will illustrate the most interesting results obtained applying
the model through numerical simulations. In section 5.1, I will start by presenting
the characteristics of the contact network produced with the mobility model. Then,
in section 5.2, I will show the growth of the prevalence of the infectious disease,
which turns out to be unexpectedly super-quadratic. Hypothesis on the source
of this behaviour will be inspected and discussed with the help of the network
metrics introduced in section 5.1. The key role of the mobility with its spatial
and temporal features will be highlighted in section 5.3. Finally, in section 5.4, I
will discuss the absorbing phase transition of the disease spreading, observing that
the spatial setting together with the temporal cycle are sufficient for the model to
break the universality classes of directed percolation and mean-field.

5.1 Contact network characterization
The model used in this work for individual mobility has been largely discussed
in chapter 4 with its essential ingredients: the circadian alternation between an
exploratory phase and a confinement phase. When applied to all the agents in the
environment, it translates into a collective cyclic behaviour which has implications
on the contacts established between agents. I will not resort to any comparison
to real datasets because this work does not aim to reproduce reality in its full
complexity. This analysis has the aim to clearly understand the consequences of
the mobility principles onto the contact network, which are good to discuss before
tackling the epidemic spreading.

First of all, at each time-step the contact network is generated as a pure random
geometric graph, so, as explained in subsection 2.2.2, the degree distribution is a
binomial. Though, accounting for the standard values of the parameters used in
the simulations (Table 4.1), the average degree at each time-step is ⟨k⟩ ≈ 8× 10−2,
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5.1. CONTACT NETWORK CHARACTERIZATION

computed according to Equation 2.2. The extremely low connectivity makes it
useless to reason on single snapshots of the temporal network, and rather proceed
through temporal aggregations to look for interesting observables. To do so, the
temporal coordinate in the timed edge list is binned, and all the repeated contacts
between the same two nodes in the same bin are discarded. I point out that, on
one side, this procedure destroys the information about repeated contacts, at least
at time-scales smaller than the binning, but on the other side, it highlights the
information about the number of different agents that have been in contact. In
Figure 5.1 the degree distributions for different aggregation windows are shown.
The temporal aggregation has the obvious consequence to increase the degrees

0 6 12 18 24
agent degree

PD
F

Aggregation window
2 h
6 h

24 h
48 h

Figure 5.1: Degree distributions for different aggregation windows. The
distributions are obtained aggregating the temporal contact networks in time-windows
of specified amplitude. The distributions run over each agent, over each window, over
each realization of a standard system with N = 104. The dashed lines represent the
Gaussian distribution fitted on the data using the maximum likelihood estimation.

of the agents, because it sums all the unique contacts that each agent has. The
agent degree in each snapshot is a Poisson random variable, so, for the central limit
theorem, summing over different snapshots the degree should become a random
variable distributed in a Gaussian fashion. This was true if all contacts were
unique, which does not happen to be the case, as agents that get in contact are
also close to each other, and are likely to meet again. The result is a degree
distribution that is close to a Gaussian, but not exactly Gaussian, especially for
small aggregation windows. This might appear illogical, considering that the smaller
is the aggregation window, the less duplicate contacts are removed, but the real
reason is due to the cyclic behaviour of the agents’ mobility. Since the cycle period
is 1 d, all aggregations on larger time-windows smooth out the difference between
the exploration and the confinement phase. The net effect is that more duplicate
contacts are discarded, but in a more uniform way, so that the distribution preserves
its shape. For smaller aggregation windows, the distributions are distorted because
averaged over different phases.
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Figure 5.2: Degree distributions for different clock-times. The distributions are
obtained aggregating the temporal contact network in 3 h windows. The distributions
run over each agent, over each realization of a standard system with N = 104. The
dashed lines represent the Gaussian distribution fitted on the data using the maximum
likelihood estimation. The color coding refers to the daily phases, associated to the
night in blue and the day in yellow.

To understand the difference between the degree distributions obtained during the
exploratory and during the confinement phases, I plot them for different clock-times
in Figure 5.2. The degree distributions are here aggregated over a time window of
the same amplitude, but are averaged between different days only for corresponding
clock-times. The linear combination of these distributions would reproduce the ones
in Figure 5.1, so the non-Gaussian shape can be ascribed to the agents’ activity
during the confinement phase. Indeed, the good matching of the fit with the
exploration distributions suggests that during the day the majority of the contacts
that each agent has is unique, or at least they are homogeneously repeated. On the
contrary, at night there is a dominance of duplicated contacts, that alters the shape
of the distribution for low degrees. This is indeed a wanted effect, that reproduces
the higher social activity during the light hours compared to the night ones, when
people tend to isolate or preserve already existing contacts.

Another point of view of the same phenomenon is provided by the plot in Figure 5.3a.
The points represent the number of unique encounters per capita, which corresponds
to half the average degree. The profile clearly shows the difference in social activity
between the night hours and the day hours. It also shows an interesting pattern,
that is already visible in Figure 5.2 but less evident: an increase in the later stage of
the exploration phase and a slow decay in the early stage of the confinement phase.
To better inspect this effect, I resort to Figure 5.3b that presents a temporally
fine-grained version of the same plot.

The smaller aggregation window allows to observe that the increase in the number
of encounters happens exactly at the turning point between the day and the night.
This is probably due to the fact that the transition between the two phases happens
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Figure 5.3: Average number of encounters during a full day. Each point
represents the mean number of encounters per agent that are happening in the system
within a time-window. The average is computed over each day of simulation and
over each realization of the standard system with N = 104. The error bars describe
the central 95% confidence interval. The background color represents the mobility
phases, confinement in blue and exploration in yellow.

with a sharp activation of the attraction potential, that drives the agents back
home. The potential adds the deterministic contribution to the velocity of the
agents, which turn their motion from a random exploration to a directed walk.
This does not change the average number of contacts in each time-step, which I
recall remain a Poisson process, but it decreases the chance that the contacts are
repeated, as the agents quickly leave the meeting location right after the contact.
The slow decrease of the number of encounters is due to the coexistence of some
agents that are still returning home, contacting several different agents on the way,
and some agents that have already reached their home position, lowering their
social activity.

At night one might expect to see no encounters between agents, since they are
confined at their home position. Though, the random placement of the home
positions in the environment creates heterogeneous density regions, for which the
home positions can be closer to each other than the contact range. I will refer
to the kind of structures so formed as households, as they recall what happens
in real scenarios where different people share the same house or building. This
configuration has consequences on the epidemic spreading, as the probability that
an infectious agent infects a susceptible housemate is much higher than for any
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other agent, because of the extremely repeated contact happening at night.

Another interesting characteristic of the contact network is the temporal distance
between the agents, because it represents the minimum time needed by any kind of
information (in this case, the pathogen) to travel from one agents to the other. The
latency would be the perfect metric to measure this quantity, but it is expensive
to compute and very unstable with respect to stochastic effects, as mentioned in
subsection 2.1.5. For this reason, I resort to another metric to understand the
spreading velocity of the information on the network: the temporal reachability. It
is computed seeding the information on one agent and spreading it through all the
contacts that involved agents who already possess the information. It is possible to
introduce a waiting time between the instant in which the node is reached by the
information and the instant in which it becomes able to spread it to other agents.
The fraction of agents reached by the information at a certain time t after the
seeding is plotted in Figure 5.4. I point out that this metric exactly reproduces the

0 5 10 15 20
time [d]

0.0

0.5

1.0

re
ac

he
d 

fra
ct

io
n

Waiting time
1 min
1 h
6 h
24 h
48 h

Figure 5.4: Reachability fraction of some information spread on the contact
network. The curves show the fraction of nodes reached by some information
spreading onto the contact network for different waiting times. The solid lines
are obtained as the average over different realizations of the standard system with
N = 104, and the colored stripes represent the central 95% confidence interval.

epidemic spreading of a SEI model in which the waiting time corresponds to the
latent period τlat and each contact between a susceptible and an infectious agents
becomes an infection, meaning that pinf = 1. In other words, the reachability curve
represents the prevalence growth of the fastest possible epidemic with fixed τlat
on the contact network. This metric is useful as it highlights the spreading speed
limit imposed by the structure of the contact network. Observing the curves in
Figure 5.4, the first aspect that emerges is the oscillatory trend. The period of the
oscillation coincides with the period of the mobility cycle 1 d. The interpretation
is that the reachability grows faster during the exploration phase, because more
distinct contacts are established by the agents, while at night the growth slows
down because the contacts are mainly repeated. This observation has been already
presented in the previous paragraphs, but Figure 5.4 highlights the consequences
on the spreading process.
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5.2 Epidemic grows super-quadratically
Once the contact network is characterized and its relevant features are under control,
the focus can be shifted towards the real goal of this project: studying the effects
of the mobility on the epidemic spreading. In particular, one fundamental quantity
to observe is the prevalence, i.e. the number of agents in the infectious state I(t),
as it provides information about the amount of agents that are currently able to
spread the disease. The epidemic parameters pinf , τlat and τinf have an effect on the
scales of the I(t) curve, specifically, they all impact the steepness, but only pinf and
τinf have effect on the saturation value. At the beginning, the seeds of the epidemic
are possessed only by few agents, so the early stages are the moment in which the
epidemic is most vulnerable to stochastic fluctuations. If the epidemic survives
the early stages, then it unlikely gets extinct at later times. A survived epidemic
then converges towards the equilibrium condition, that is reached when the rate of
recoveries equals, on average, the rate of infections. Figure 5.5 shows some epidemic
curves for different infectiousness parameter pinf . The plot immediately shows that
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Figure 5.5: Prevalence curves for different probabilities of infection. Each
solid line represents the time-wise average ⟨I⟩(t) of different realizations of a standard
system with N = 104, and the colored stripes the 95% credibility interval.

the higher the infectiousness, the easier is the transmission from agent to agent,
so the spreading grows faster and reaches higher prevalence values at equilibrium.
Moreover, epidemics that are closer to the critical absorbing threshold are affected
by larger stochastic fluctuations, because the ”spreading force” is more effectively
counteracted by stochastic sparsity in the contact network.

The temporal and prevalence scales of the epidemic curve are not the only important
quantities to observe. When facing an epidemic spreading, it is important to
understand what is the functional form of growth that one has to expect. The
functional form is not dependent on the epidemic parameters, it is only dependent
on the characteristics of the topology onto which the spreading happens, i.e. the
contact network. Indeed, as discussed in section 2.3, the prevalence growth is
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Figure 5.6: Prevalence curves for different probabilities of infection in a
log-log plot. Each solid line represents the time-wise average ⟨I⟩(t) of different
realizations of a standard system with N = 104. The dashed blue line represents the
quadratic growth in the log-log plane.

exponential in an Erdős-Rényi network and polynomial on a lattice (quadratic
in 2D), and this difference is due to the discrete Euclidean topology induced on
the lattice by the metric of the Euclidean space. Since the contact network is
generated in a spatial setting, one might expect the prevalence growth to be similar
to the lattice case, but since contacts are built between mobile agents that wander
randomly in the environment, one might expect it to be similar to the mean-field
case. Spotting the functional form of the prevalence curve from Figure 5.5 is
rather hard, but luckily log-log plots come in handy when looking for power-laws,
which appear as straight lines with angular coefficient equal to the exponent of
the power-law. Figure 5.6 presents the same epidemic curves shown in Figure 5.5
in the log-log visualization. The first observation is that the prevalence present
the oscillatory trend already noted in Figure 5.4 that is caused by the day/night
alternation. Secondly, all curves but the one with lowest pinf (which is the closest
to the critical threshold) appear to be straight and parallel, implying power-law
growth with similar exponents. The third, most important, observation comes
from the comparison between the prevalence curves and the dashed line, which
represents a quadratic power-law, i.e. the growth observed on a lattice model. It is
quite evident how different is the slope of the quadratic power-law with respect to
all the simulations performed, suggesting that the prevalence growth observed in
these systems is for some reason super-quadratic. To measure the growth exponent
I resort to a linear least-square fit in the log-log plane, which produces the values
shown in Table 5.1. The fitting ranges are chosen looking at the log-log plots and
choosing the largest range in which the curve appears linear. The fitted values are
quite sensible to the choice of the fitting range, which must be chosen wisely. Even
though a more solid framework to compute the growth exponents and their relative
uncertainties would improve the reliability of this result, Figure 5.6 suggests that
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pinf exponent fit range
0.01 2.32 [50, 110]
0.02 2.46 [25, 55]
0.03 2.49 [20, 40]
0.04 2.36 [15, 40]
0.05 2.40 [12, 35]
0.06 2.47 [11, 32]
0.07 2.48 [10, 31]
0.08 2.37 [9, 30]
0.09 2.37 [9, 30]
0.1 2.38 [9, 30]

Table 5.1: The fit results show super-quadratic exponents. The values
obtained from the fitting routine are rounded to three significant figures and the
uncertainties are omitted because extremely small. The fitting ranges are arbitrarily
chosen observing the linear regime in the log-log plots.

the discrepancy between the simulated systems and the theory about 2D lattices is
too large to be only due to the poorness of the fitting procedure.

To cross-check the values obtained through the least-square fit, I follow also another
pathway to compute the growth exponents. The idea is to find the slope α(t) of
the tangent to the prevalence curve in the log-log plot, and letting it vary in time,
so to get rid of the problem to choose the fitting ranges. I call this quantity the
instantaneous exponent, which, considering I := log(I) and τ := log(t), is defined
as

α(t) := dI
dτ

= t

I

dI

dt
(5.1)

To better understand the meaning of this quantity, one can focus on the specific
value α∗ := α(t∗) computed from data. Rewriting Equation 5.1 in its differential
form in the neighbourhood of t∗ α∗ dt

t∗ = dI
I∗ and integrating both sides, one obtains

log(I∗) = α∗ log(t∗) + c, where c is the integration constant. Exponentiating both
terms, one gets I∗ = ct∗α∗ , which holds in the neighbourhood of t∗. This means that
computing the instantaneous exponent corresponds to finding the exponent of a
power-law in the form f(t) = c tα which is locally fitting the actual prevalence curve
I(t). The advantage of this procedure is that is parameter free, and no fitting range
should be arbitrarily provided; it is only necessary to filter the data, so to reduce
the stochastic noise and improve the readability of the results. In Appendix B
I provide some plots that confirm the stability of this method, proven with the
reconstruction of synthetic data that well match the original ones. In Figure 5.7 I
plot the values, numerically computed after averaging the prevalence curve over
a time window of 1 d. Looking at all the different simulations, one can notice
that the instantaneous exponent are definitely > 2 before the epidemic reaches the
equilibrium, and then suddenly drop to 0. The profile of α(t) seems to grow even
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Figure 5.7: Instantaneous exponents of standard simulations Each solid line
represents the instantaneous exponent numerically computed as in Equation 5.1 from
the data ⟨I⟩(t), obtained averaging over different realizations of a standard system
with N = 104. The dashed blue line represents the instantaneous exponent of a
perfectly quadratic curve. The dotted lines represent the values of the exponents
obtained with the linear fit.

above 3 in the early stages, at least for the most infectious diseases, and then flats
out towards a stable value. To understand what is the α(t) profile associated to
each functional form, it is possible to recall Equation 5.1. For an exponential curve
I(t) = c ekt, the instantaneous exponent becomes α(t) = t

c ekt c k ekt = kt, i.e. α(t)
grows linearly in time with some angular coefficient that depends on the epidemic
parameters. While for a power-law curve I(t) = c tk, the instantaneous exponent
becomes α(t) = t

c tk c k tk−1 = k, i.e. α(t) is constant. With this interpretation,
we can explain the very initial peak as an initial exponential growth proper of the
mean-field models, but then the growth slows down to a power-law behaviour that
is not purely quadratic as expected from the spatial models.

The causes of the observation of the super-quadratic growth deserve a further
discussion. There are three main hypothesis that might explain this phenomenon:
(i) the smallness of the system, (ii) the existence of disease-reservoirs, (iii) the
existence of mobility. The first hypothesis to address is that the growth would be
exponential as for mean-field models, but that the system considered is too small
and saturation effects kick in before the exponential pattern is able to emerge. To
evaluate this hypothesis, I increase the number of agents from 104 to 105 (value
that becomes the standard for simulations) while preserving all the other parameter
values. The second hypothesis is that the growth would be quadratic as for lattice
models, but the existence of households creates a ”disease-reservoir” effect that
further boosts the epidemic growth. The ”disease-reservoir” effect is given when
two or more agents that share the same household go through multiple alternated
reinfections: consider agent that gets infected during the day and returns home;
after τlat it become infectious and infects its housemates with extremely high

53



5.2. EPIDEMIC GROWS SUPER-QUADRATICALLY

probability, since they make lots of contacts at night; after τinf , it recovers and
becomes susceptible again, but, in the meantime, the housemates have become
infectious and reinfect the agent. The net effect on the system is that the household
becomes a ”disease reservoir” that enhances the spreading of the disease in the
neighbourhood. To evaluate this hypothesis, I simulate a system with different
epidemic models, an SEI and an SEIR, which, through the elimination of the
recovery and the introduction of the immunity, completely neutralize any ”disease
reservoir” effect. The third hypothesis to address is that the growth would be
quadratic as for lattice models, but the mobility of the agents introduces an effective
fractal dimension to the diffusion of the wavefront of infection. To evaluate this
hypothesis, I simulate a system in which all agents are static in their home positions,
removing any effect due to the mobility. This type of simulation requires some
further attention, because the contact network so produced is completely different
from the others obtained in this work, as it is a static random geometric graph
built on the home positions of the agents. To ensure the possibility for an epidemic
to spread in the system, such static network must have a much larger density than
the value used for the other simulations. Indeed, if the random geometric graph is
undesirable to be connected when mobility is present, it becomes essential when
dealing with this static network. Recalling Equation 2.2, the percolation threshold
for a random geometric graph is at ρc ≈ 1.43 r−2, and I set the agents’ density
value at ρ = 2 r−2 so that the giant component of the static random geometric
graphs includes almost all the agents in the system.

Figure 5.8 shows the comparison of the prevalence curves and the instantaneous
exponents of all the different models mentioned in the previous paragraph, with
the aim to understand what are the actual causes of the observed super-quadratic
growth. The system’s smallness hypothesis can be checked by comparing the ”SEIS”
and the ”SEIS-small” curves. It is straightforward to notice that the two almost
perfectly overlap, but for the fact that the epidemic grows for longer time in the
larger system. Both the prevalences and the instantaneous exponents present the
same behaviour, so it can be excluded that saturation effects are preventing the
spreading to show its exponential increment. Indeed, the growth can be assumed
to be a power-law, so this model does not present mean-field characteristics. To
check for the disease-reservoir hypothesis, one can compare the ”SEIS”, ”SEI”
and ”SEIR” curves. I recall, as discussed in subsection 2.3.2, that the growth
on spatial networks is quadratic for SEIS and SEI and linear for SEIR. For this
reason, SEIR is not directly comparable to SEIS and SEI, but all of them are
comparable to their reference exponent for a spatial model. SEIS and SEI show
a negligible difference for what regards the exponent growth, except for the early
stages where SEI seems to grow exponentially. In general, all these three epidemic
models present a steeper prevalence and higher instantaneous exponents compared
to their reference, implying that ”disease reservoir” effects do not alter the growth
exponent. The mobility hypothesis can be checked by comparing the ”static” curve
with the reference of the spatial model and with the ”SEIS” and ”SEI” curves.
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Figure 5.8: Growth comparison of different network and epidemic models.
In the left panel, the prevalence curves ⟨I⟩(t) averaged over all the realizations are
plotted in the log-log plane to highlight power-law trends. In the right panel, the
respective instantaneous exponents are numerically computed as in Equation 5.1. The
”SEIS-small” curve is obtained with standard parameters, N = 104 and pinf = 0.02,
and it is one of the curves in Figure 5.5. All the other ones are standard systems
with pinf = 0.02. The ”static” curve is obtained changing the density parameter to
ρ = 2 r−2. The ”ER” curve is obtained simulating the spreading of Erdős-Rényi
network. The dashed line emulates a purely quadratic growth, and the dash-dotted
line emulates a purely linear one.

The growth on the static network is almost perfectly quadratic, which implies that
mobility is the real cause of the change of the growth exponent.

5.3 Mobility scales and resetting
In section 5.2 I have shown that when the agents move in the environment, the
epidemic spreading grows with a larger exponent. It is now interesting to inspect
the consequences on the spreading of how the agents move. Some research works
mentioned in subsection 2.3.4 have shown that a system composed of highly mobile
agents presents an exponentially growing prevalence before saturation is reached,
meaning that the system is well-mixed and behaves as a mean-field model. This
exponential increment has not been observed in the simulations presented in
section 5.2, possibly because the mobility is too short-ranged and the agents do
not mix. So, I perform other simulations extending the range of the exploration
of the agents, letting them travel farther from their home position during the
day. The mobility during night is kept constrained in a close neighbourhood
around the home position, to check if the well-mixing condition can be obtained
just extending the exploration range. In Figure 5.9 are shown the prevalence
curves and the instantaneous exponents of simulations run with different values
of σfree. The prevalence curves exhibit the well discussed super-quadratic growth
for small exploration ranges, but it quickly becomes exponential as the range is
extended. Indeed, already for σfree = 25 r, it is possible to observe an exponential
behaviour in the early stages of the epidemic, when the instantaneous exponent

55



5.3. MOBILITY SCALES AND RESETTING

101 102

time [d]

101

102

103

104

105

pr
ev

al
en

ce

0 25 50
time [d]

0

2

4

6
free

10
25
50

75
100

Figure 5.9: The exploration range affects the epidemic growth. In the left
panel, the prevalence curves ⟨I⟩(t) are plotted in the log-log plane to highlight the
power-law trends. In the right panel, the respective instantaneous coefficients are
computed according to Equation 5.1. The simulations are run on standard systems
with pinf = 0.02. The dashed line is the quadratic growth of reference for a spatial
model.

grows linearly. After the early stage, the instantaneous exponent reaches a maximum
and decreases towards the super-quadratic value. On a much longer timescale,
the growth asymptotically decays towards the quadratic regime, which is not
reached because equilibrium is established suppressing the exponent down to 0.
Three regimes are so observed: exponential in the early stage, super-quadratic
in the mature stage and null at equilibrium. For large exploration ranges, the
intermediate regime is not even observed because the epidemic spreads so fast
that the equilibrium is reached right after the early stage. Looking at the scales
of mobility, the average displacement from the home position at the end of the
day is ⟨∥x⃗− x⃗0∥⟩ =

√︂
π
2 σ2

free (from the considerations in section 4.5). This means
that for the lowest values in the plot ⟨∥x⃗− x⃗0∥⟩ ≈ 12.5 r while for the highest
value ⟨∥x⃗− x⃗0∥⟩ ≈ 125 r. Comparing these values with the environment size, which
in these simulation is L = 2000 r, one understands that agents that explore on
average 1

16 of the environment are mobile enough to mix well the system. This
observation can be useful to apply in real scenarios, as it provides a scale above
which the spreading of an epidemic can be well represented by a mean-field model.
Analogously, if the exploration range is ≈ 1

160L or below, then spatial models would
better fit the spreading process.

The three regimes observed in Figure 5.9 deserve some further attention, particularly
the first one that shows the exponential growth. Recalling that exponential is
associated to well-mixing, the interesting question is why the system appears to be
well-mixed for large mobility ranges. Consider a portion of the environment with
size l. If l≪ σfree, the agents travel across the whole portion within the exploration
phase, so the contacts occur at random locations between random agents. The
epidemic spreads randomly in the portion, without any spatial reference, so the
portion happens to be well-mixed and the epidemic grows exponentially. Coarse-
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graining the size of the portion, when l≫ σfree the agents are not able to mix well
in the portion and remain confined in a small area, implying that contacts are more
localized and the epidemic spreads spatially. If the mobility range is comparable to
the size of the whole environment, this coarse-graining cannot be large enough to
appreciate the spatial regime. Hence the second regime in the curves with larger
mobility range is absent in Figure 5.9. If a larger system was simulated, this second
regime would have been observed also for σfree = 100 r. This explanation implies
that for all exploration ranges there should be an initial exponential spreading,
and one might wonder why that is not seen in all the curves. The answer is that
exponential growths starts with an instantaneous exponent that is low, and grows
linearly in time up to the moment when the epidemic has spread at the spatial
scale of exploration. If this scale is reached before infecting enough agents, the
exponential growth is still sub-quadratic, so the exponential regime is not observed
even if present. Indeed, if one boosts the infection rate, i.e. increases pinf , then all
growths should show the first regime of exponential increment. At the same time,
for fixed pinf , the larger is the exploration range, the longer lasts the exponential
regime, as Figure 5.9 confirms.

Provided that the ”level of mixing” of the system is determinant for the functional
form of the growth, it is useful to have some metrics that are capable of quantifying
this level. One possible choice is the temporal reachability of the contact network,
already discussed in section 5.1. Figure 5.10 shows the reachability curves of the
simulations considered in Figure 5.9. From the plot, it appears evident how the
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Figure 5.10: Temporal reachability for different exploration range. The
solid lines represent the temporal reachability for standard simulations with different
exploration ranges. The colored stripes represent the central 95% confidence interval
over multiple realization of the system. The waiting time for the reachability curves
presented is 1 d, so to match the latent period of the epidemic τlat.

timescale needed for the temporal percolation through the whole network change
when the exploration range changes. In particular, the increment in reachability
becomes extremely steep during the day for systems with high mobility, meaning
that in each day the exchange of information (i.e. possibly infections) reaches
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the majority of the agents. The effect is that the whole network is reached by
the information in less than 5 d, for the highest σfree in the plot. Comparing
this timescale to the one proper of the epidemic, it comes that in less than two
generations almost any agent in the system has some probability to get infected,
almost regardless of the distance of its home position from the source of infection.
This metric can be useful to provide information on the level of mixing of the
system, but it requires the full knowledge about the contact network, which is
impractical in real scenarios.

The previous paragraphs were devoted to the discussion and understanding of the
impact on the epidemic spreading of the mobility scale, precisely of the exploration
phase. This is the period of the day when most of the unique contacts between
agents are established, so the period when the epidemic can mostly diffuse in the
space. The interesting question that emerges is what happens if the duration
of the exploration phase changes, so I simulate a set of systems with standard
parameters except for e, which is the daily fraction of duration of the exploratory
phase. The first aspect to understand is how this change affects the characteristics
of the contact network. In Figure 5.11 are shown the number of encounters in
the systems for different values of e. The extreme values e = 0% and e = 100%
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Figure 5.11: Number of encounters for different duration of the exploration
phase. Each solid line shows the average number of encounters between agents in
the whole system over different realizations. The colored stripes represent the central
95% confidence interval. The simulations are obtained with different e and standard
parameters.

correspond to agents that are constantly in the confinement and in the exploration
phase respectively. In these settings, no temporal cycles are present and the system
becomes translationally invariant in time. The intermediate values present a trivial
linear interpolation in between the two extremes. Looking at these curves, one can
draw the same observations already discussed for Figure 5.3b. The only noticeable
difference between the curves is in the velocity of transition between the exploration
regime and the confinement one. Indeed, for e = 75% the transition is slower
than for e = 25%, but this is simply explained by considering that the longer the
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exploration phase, the farther is the agent from its home position, and the longer
it will take to return there. For e = 75%, the return home is so slow that the
encounter curve does not complete its transition towards the confinement level.
This can be interpreted as the fact that some of the nodes may still be on the way
before the night finishes, and they start the following exploration phase without
having reset their position.

The other interesting metric that one could look at is the temporal reachability,
shown in Figure 5.12. Comparing these curves with the ones plotted in Figure 5.10,
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Figure 5.12: Temporal reachability for different duration of the exploration
phase. The solid lines represent the temporal reachability for standard simulations
with different exploration ranges. The colored stripes represent the central 95%
confidence interval over multiple realization of the system. The waiting time for the
reachability curves presented is 1 d, so to match the latent period of the epidemic τlat.

one observes that the difference between different values of e does not affect much
the temporal reachability. The information takes 20 d to spread across a system in
which the agents are free to explore for the entire day; if the agents are confined at
home for half of the day, in the same time the information can spread in just half
of the system. Looking at the curves for e = 25% and e = 75% it is evident that
the relation between e and the fraction of agents reached by the information is not
exactly linear, but the approximating with a linear interpolation does not lead to
huge errors. This metric shows smaller differences between the simulations than
one might have expected from the previous observations.

Having checked the characteristics of the contact network, it is interesting to inspect
what are the effects on the epidemic spreading. Figure 5.13 shows the prevalence
and instantaneous exponents for the simulations with different exploration duration.
Surprisingly, the simulations obtained with e = 75% and especially e = 100%
definitely show the exponential regime in the early stages of the spreading. Despite
the reachability does not speed up much, the epidemic spreading has a great initial
boost compared the simulation with e = 50%, similarly to the growth observed in
the simulation with σfree = 25 r in Figure 5.9. In this case, the exponential growth
is due to the fact that for e = 100% there is no resetting of the agents’ position over
time, so they are free to explore indefinitely the environment and the system ends
up being well-mixed. Since the potential is never switched on, the agents perform
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Figure 5.13: The duration of the exploration phase affects the epidemic
growth In the left panel, the prevalence curves ⟨I⟩(t) are plotted in the log-log plane
to highlight the power-law trends. In the right panel, the respective instantaneous
coefficients are computed according to Equation 5.1. The simulations are run on
standard systems with pinf = 0.02. The dashed line is the quadratic growth of reference
for a spatial model.

a free Gaussian random walk, so the probability density to be at position x⃗ at time
t is the Gaussian distribution reported in Equation 4.1, which standard deviation
increases over time as

√
t. Since the motion is a Gaussian random walk and not a

directed motion, the absence of the resetting is neutralized after some time. Indeed,
the wavefront of infection grows linearly in t, and after some time it overruns the
exploration range of the agents, slowing down the epidemic growth towards the
super-quadratic regime. This effect is observed also for the curve obtained with
e = 75% because the potential is too weak, or the confinement phase lasts for
too short, to reset all the agents in their respective homes, as observed also in
Figure 5.11. In this case, the temporal reachability has not been a good estimator
to predict the regime of the epidemic growth. When increasing the exploration
range, the area explored by agents per unit time increases quadratically, and the
area explored is proportional to the number of unique contacts per agent. The
reachability is extremely sensible to the number of new contacts, so it increases
very steeply with σfree. On the contrary, when increasing the exploration duration,
the number of unique contacts per agent per unit time remains equal, so the
reachability does not increase much. Since the total number of contacts is constant
in time, having more unique contacts implies that less contacts are repeated, and
the repeated contacts are good pathways for infections. To sum up, reachability is
a good metric to look at when the epidemic spreading is mainly driven by unique
contacts (as in high mobility scenarios), while it is not very accurate when the
spreading is mainly driven by repeated contacts (as in low mobility scenarios). In
other words, a fast reachability curve is a sufficient but not necessary condition to
prelude exponential growth.
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5.4 Universality class of the phase transition
In sections 5.2 and 5.3 I presented the effects of the mobility model onto the
functional form of the prevalence. All the observations have been obtained on
epidemics in their active phase, so to observe the spreading features of diseases that
actually invade the system. One more interesting question to address is what is the
effect of the mobility model onto the transition between the active phase and the
absorbing phase. The absorbing phase is the region of the parameter space in which
the epidemic gets extinct before being able to invade the system. As discussed in
subsection 2.3.1, this happens when the rate of recoveries is faster than the rate
of infections, and on a contact network it depends on the network structure, on
pinf and on τinf . To simplify the study of the phase transition, in this section all
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Figure 5.14: Epidemic growth near the phase transition. The black curves
represent the prevalence I(t) of several realization of a standard system with N = 104,
obtained with pinf = 0.005. The red line is the time-wise average ⟨I⟩(t) computed
over the data in black.

the parameters but pinf will be fixed to their standard values, so to reduce the
dimensionality of the parameter space to sample. The critical threshold for the
control parameter is denoted as pc, meaning that it represents the probability of
infection at criticality.

The first relevant observation regarding the phase transition is the epidemic growth
close to criticality. A paragraph will be devoted further on to the explanation of
the procedure to compute the critical threshold pc, while I here assume that the
value is known so to discuss the growth near criticality. Figure 5.14 shows the
simulation of a system with pinf ≈ pc. The first important observation is that the
timescale of the growth is hugely increased compared to the simulations shown in
Figure 5.5. In this case, only less than 1% of the system is reached by the infection
in the tmax ≈ 200 d of simulation. The other evidence is that these simulation are
much more affected by stochastic noise compared to the ones farther away from
criticality. Both effects are expected to be shown by a critical system, and the
outcome is that the super-quadratic and the exponential regimes discussed in the
previous sections are completely destroyed.
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Figure 5.15: The prevalence at equilibrium curve is a proxy to locate the
phase transition. The black points identify the average prevalence at equilibrium
⟨I∞⟩ computed over different realizations of a standard system, varying pinf . Error
bars are obtained as the standard deviation of the data resampled with the bootstrap
method.

The critical threshold pc can be numerically estimated by sampling the parameter
space and plotting the prevalence at equilibrium, as done in Figure 5.15. The
active and absorbing phases can be easily seen from the plot, and the approximate
value of pc is located in between the two. It can either be computed through fits
or directly looking at the plots. For the purpose of this work, the value has been
selected by looking at the plots.

The curve plotted in Figure 5.15 is the first interesting quantity that character-
izes the universality class of the system. Universality classes are collections of
mathematical models that share the same symmetries The universality class of the
epidemic phase transition strongly depends on the symmetry of the topological
space of spreading, i.e. on the characteristics of the contact network. Depending
on the model used to construct the contact network, the universality class of the
phase transition will be different. As mentioned in section 2.3, random network
and homogeneous mixing models belong to the class of mean-field models, while
lattice and random geometric graph models are in the class of directed percolation.
The difference is strictly related to the spatial topology that is induced by the
underlying Euclidean space, which is absent for random networks and homogeneous
mixing. Mobility models are usually an ”interpolation” between these two classes,
where the closeness to one or the other depends on the mobility parameters: in
high-mobility settings, the universality class is reconstructed to be mean-field (see
subsection 2.3.4 for references).

All the models belonging to the same universality class share the same scaling
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Figure 5.16: The prevalence at equilibrium shows a similar behaviour to the
mean-field model. The black points identify the average prevalence at equilibrium
⟨I∞⟩ computed over different realizations of a standard system, varying the distance
from criticality pinf − pc. Error bars are obtained as the standard deviation of the
data resampled with the bootstrap method. The fitting procedure provides a value
β ≈ 0.95 for the critical exponent in Equation 5.2.

behaviour. Some canonical relations and the respective exponents are

I∞(h) ∼ hβ (5.2)
psurv(h) ∼ hβ′ (5.3)

where h := pinf − pc. I start inspecting the quantities in Equation 5.2, already
plotted in Figure 5.15. To measure the value of β, it is convenient to plot the
log-log plot the curve I∞(pinf − pc), so that β becomes the angular coefficient of
the fitting line. This is represented in Figure 5.16. The value obtained is β ≈ 0.95,
very close to the value of the mean-field class βMF = 1 and quite far from the value
of the directed percolation class βDP ≈ 0.58. This result suggests that the mobility
model adopted in this work drives the phase transition far from being related to
the spatial topology of the directed percolation class. The mobility seems mix the
system sufficiently well that the systems’ behaviour at criticality is close to be of
the mean-field type. Though, this observation is quite unexpected, as the epidemic
growth discussed extensively in section 5.2 shows a behaviour that is definitely not
mean-field like. There are two possible explanations to this apparent contradiction:
either there is some hidden effect to be yet understood, or the fitting procedure is
affected by some errors. The second explanation deserves some more discussion
to point out the weaknesses of the procedure. First of all, the fitting is performed
with a linear least-square method in the log-log plane, and the results is not stable
with respect to the choice of the fitting range. Secondly, the data are clearly not
linear for all pinf , they saturate at some point, and the fitting range may be hard
to choose correctly. Thirdly, the linear trend is strongly dependent on the choice
of pc, which then should be evaluated in a sophisticated manner. Finally, each
data point requires long simulations (as equilibrium must be reached, and close to
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criticality the timescale needed is extremely long) with several replications, so it
is expensive to obtain very accurate and dense data for the fit. Despite all these
comments, the aspect of the fit in Figure 5.16 seems to be reasonable, so I proceed
assuming that the value obtained is approximately reliable and there is some other
hidden cause underlying the contradiction.

To further inspect the scaling exponents related to the phase transition, I focus on
the other relevant quantity, that is the survival probability psurv of Equation 5.3,
i.e. the probability for an epidemic to be able to invade the system and reach
equilibrium. In order to obtain more reliable results, I want to perform the same
analysis both on SEIS and on SEIR epidemic models. The intuition is that the
scaling behaviour is only related to the symmetry properties of the contact network,
which is the same for the two cases, and not on the epidemic model. The biggest
difference is that the equilibrium condition is not defined for a SEIR model, so
is not the survival probability, as any SEIR epidemic will eventually go extinct.
Though, if one only considers early extinctions, it is possible to relax the definition
of survival probability as the probability for an epidemic to only be able to invade
the system, even without reaching equilibrium. This leads to the double advantage
of saving some simulation time also in the case of SEIS epidemics, as the simulation
can he halted before reaching the equilibrium. Attention must be paid in this
case, because this solution may introduce some systematical errors that lead to
overestimate the value of psurv. To contain such errors, I performed a preliminary
study to measure the extinction rate as a function of time, here omitted for the
sake of brevity. All the simulations have been run for the minimum time needed
to obtain a negligible extinction rate. The data are shown in Figure 5.17. SEIS
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Figure 5.17: The survival probability shows a different behaviour from
mean-field and directed percolation models. The black points identify the
survival probability of a standard system, while the gray points correspond to SEIR
simulations. Error bars are obtained as the standard deviation of the data resampled
with the bootstrap method. The fitting procedure provides a value β′ ≈ 0.48 for the
critical exponent in Equation 5.3.
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5.4. UNIVERSALITY CLASS OF THE PHASE TRANSITION

and SEIR present two different critical thresholds. This difference is due to the
presence of removed agents in the SEIR model, which counteract the epidemic
spreading forming an immunity barrier and reducing the susceptible population.
Despite the phase transition happens at larger pinf for SEIR, when entering the
active phase both SEIS and SEIR present the same scaling exponents, confirming
the intuition about the independence of the epidemic model. More importantly, the
values of both scaling exponents obtained with the fits are β′

SEIS ≈ β′
SEIR ≈ 0.48,

and they are much below the values for the mean-field class β′
MF = 1 and the

directed percolation class β′
DP = 0.58. Moreover, for both universality classes

βMF = β′
MF and βDP = β′

DP, while for the SEIS simulation β ̸= β′. Differently from
the previous comments about the measured β, the value of β′ cannot be explained
with any form of trivial interpolation. This mobility model imprints a topology
on the contact network which breaks the requirements of both the universality
classes that would describe its limiting cases. There are two main reasons that
may explain this phenomenon: the periodic resetting of the spatial configuration
and the change in the number of unique contacts between the exploratory and
confinement phases. My interpretation is that the key role is played by the latter,
because it breaks the temporal symmetry of the contact network system and so of
the spreading capability of the epidemic. In this respect, the alternated mobility
is a form of non-linear interpolation between a fully exploratory mobility and a
fully confining one, that alters the scaling laws at criticality, that is when the
system is most susceptible to stochastic effects. The check of this hypothesis could
be implemented by two new set-ups, one in which the mobility phases alternates
without resetting to the home positions, and the other in which the mobility is fully
exploratory but with instantaneous periodic resets to the home positions. This
implementation is deferred to a future work.
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Chapter 6

Conclusion

In this thesis I have addressed the question of the effects of individual mobility
on the epidemic dynamics. The mobility imprints the topological features of a
spatio-temporal domain on the structure of the contact network, which in turn
is the substratum of spreading for infectious diseases. Given the complexity of
human behaviour, it is impractical to aim at theoretical models that reconstruct
the full spectrum of its features, so here I have inspected the consequences of a
few elements: the spatial extension of the exploration area, its cyclic temporal
alternation with a confinement phase and the resetting of the spatial positions of
the agents. The mobility range determines the amplitude of the neighbourhood
that each agent often explores, determining how many different partners it gets
in contact with. The properties of systems that assume the two limiting values of
the mobility range are well studied: a null range corresponds to static geometric
graphs, and an infinite one corresponds to well-mixed systems.

Through the analysis presented in section 5.2 and 5.3, I have shown that the scale of
individual mobility can shape the functional form of the epidemic growth. Indeed,
until the epidemic is locally spreading in a region that is smaller or comparable
in size to the exploration range of the agents, the system behaves as well-mixed
and the growth is exponential. As soon as the region of spreading exceeds the
mobility scale, the growth quickly shifts towards a polynomial form with an effective
fractal exponents. The fractal contribution is due to the effect of the mobility,
that augments the spreading pathways with respect to the dimensionality of the
wavefront of infection, i.e. the dimensionality of the spatial environment. In
the infinite size limit, the ratio between the mobility scale and the environment
size becomes negligible, and so epidemic growth tends asymptotically to become
purely quadratic, as for static geometric models. Considering that all real systems
are finite in size, this is an important effect to be taken into consideration when
studying specific scenarios, especially if dealing with epidemic predictions. The
very early growth of a real epidemic can be hardly determined to be polynomial or
exponential, and the knowledge about the mobility scale could serve as a proxy to
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improve the prediction accuracy.

In section 5.3, I have shown that also resetting is relevant to consider for epidemic
growth. For agents that are never reset to their home positions, their neighbourhood
is a spatial region that travels through the environment at a pace dictated by the
mobility range; on the contrary, for agents that periodically return home, their
neighbourhood is a region that is geographically static in the environment, and
only its extension depends on the mobility range. Over several cycles, resetting is
responsible for attributing a spatial locality to the contacts between agents, thus
for preventing the system from becoming well-mixed and averting an exponential
epidemic growth.

In section 5.4 I shifted the focus to the behaviour close to the absorbing phase
transition. I have shown that the scaling exponents for the prevalence at the steady
state and for the survival probability do not belong to neither the mean-field nor
the directed percolation universality classes. These classes include, respectively,
the epidemics spreading on well-mixed systems and on static geometric graphs.
Despite the directed percolation class is rather flexible and inclusive of several
models studied in literature [91–97], this model generates a contact network which
topology breaks the symmetry requirements of this universality class. The potential
causes of the asymmetries are either the spatial periodic resetting of the agents’
position or to the cyclic pattern of the contact network, or to both simultaneously.
The result is that the few elements considered in this work have been shown to
alter the universality class of the epidemic dynamics close to the phase transition.

This project could be a starting point for some future scientific effort, as it opens
up some intriguing research paths. The universality class deserves further analysis,
especially concerning the two possible causes of the symmetry break mentioned
above. To uncover this question, one could implement: on one side, a temporally
homogeneous random walk with instantaneous periodic resets, similarly to what
has been done in [98]; on the other side, a random walk with cyclically alternated
exploration range. Furthermore, different sets of parameters could be testes with
the aim to recreate the limiting cases, and check if the corresponding universality
classes are reached with a smooth or a sudden transition.

One more feature of reality that would be nice to introduce is the directed motion.
In this model, individual mobility is build on a Gaussian random walk, which turn
useful to introduce non-deterministic effects but produces an unrealistically diffusive
motion. Human mobility is mostly aimed towards specific locations, and this effect
could be introduced through one (or multiple) meeting spot(s). Practically, this
target could be reached by summing other properly shaped potentials, common
for some agents, to the individual potential, as discussed in Appendix C. This
setting would also recreate high density regions where several contacts would be
established, that may represent working places or free-time activities. I expect
that the creation of these meeting spots should drive the system towards a higher
level of mixing. Alternatively, directed motion without meeting spots could be
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obtained by reversing the sign of the potential, turning it from attractive during
the confinement phase to repulsive during the exploration phase.

A third interesting extension to this work could be the addition of an attraction
potential between groups of agents. The contacts modelled in this work are
instantaneous, as they are established and broken randomly at each time-step.
Real contacts have a temporal duration which is rather heterogeneous. To recreate
this effect it could be possible to introduce an attraction potential that drives the
agents one towards another, and keeps them in contact for subsequent time-steps.
The attraction could also be weighted by some friendship coefficients, that would
determine an heterogeneous probability for an agent to meet one or another agent.
These elements would probably break even more the spatio-temporal symmetries
of the contact network, possibly with interesting implications on the epidemic
spreading.

To sum up, mobility is important to be adequately modelled when studying disease
spreading because of the dominant effects it has on the spreading velocity and
epidemic survival. Individual mobility is only one of the many aspects of the
complex human world, but it surely deserves further research investment for the
many open questions that are yet to be understood.
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Appendix A

Fokker-Planck equilibrium
solution

The equation of motion 3.1 is the differential form of a Langevin equation. Defining
A⃗(x⃗) := −∇V (x⃗) and b :=

√
2DI, where the bold indicates a matrix, the differential

equation of motion assumes the shape dx⃗ = A⃗(x⃗, t)dt + bdW⃗ . As discussed in
subsection 2.2.4, the probability density of the agent’s location evolves according
to the Fokker-Planck equation

∂tP (x⃗, t) = −
d∑︂

i=1
∂xi

[Ai(x⃗, t)P (x⃗, t)] + 1
2

d∑︂
i=1

d∑︂
j=1

∂xi
∂xj

[Bij(x⃗, t)P (x⃗, t)]

First of all, for this motion B = 2DI is independent on x⃗. Moreover, I am looking
for the equilibrium solution, which is independent on time and stationary, so the
left-hand-side ∂tPeq(x⃗) = 0. Thus the equation becomes

0 = −
d∑︂

i=1
∂xi

[Ai(x⃗)Peq(x⃗)] + D
d∑︂

i=1

d∑︂
j=1

∂xi
∂xj

Peq(x⃗)

The equation in this form can be conveniently rewritten in vectorial notation,
observing that the first term is a divergence and the second is a Laplacian. Thus

0 = −∇ ·
[︂
A⃗(x⃗)Peq(x⃗)

]︂
+ D∇2Peq(x⃗)

0 = −∇ ·
[︂
A⃗(x⃗)Peq(x⃗)−D∇Peq(x⃗)

]︂
All the probability densities that form a solenoidal vector field F⃗ := A⃗Peq + D∇Peq
are solutions to the Fokker-Planck equation. Since I am not interested in all the
solutions, rather in the simplest solution, then I want the particular solution P ∗

eq

that forms a null vector field F⃗ = 0 ∀x⃗. Thus, the equation becomes

A⃗(x⃗)P ∗
eq(x⃗)−D∇P ∗

eq(x⃗) = 0
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Writing it in components, this equation becomes is a system of two coupled partial
differential equations, and substituting A⃗ = −∇V one gets⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂x1P ∗
eq(x⃗) = −∂x1V

D
P ∗

eq(x⃗)

∂x2P ∗
eq(x⃗) = −∂x2V

D
P ∗

eq(x⃗)
(A.1)

The first equation can be solved by separation of variables and integrating over
domain section Dx1∫︂

Dx1

1
P ∗

eq(x⃗)
∂P ∗

eq(x⃗)
∂x1

dx1 = − 1
D

∫︂
Dx1

∂V (x⃗)
∂x1

dx1

log
(︂
P ∗

eq(x⃗)
)︂

= −V (x⃗)
D

+ c(x2) (A.2)

where c(x2) is an integration constant that might depend on x2. Deriving now the
equation for x2 one gets

∂

∂x2

[︂
log
(︂
P ∗

eq(x⃗)
)︂]︂

= ∂

∂x2

[︄
−V (x⃗)

D
+ c(x2)

]︄

1
P ∗

eq(x⃗)
∂P ∗

eq(x⃗)
∂x2

= − 1
D

∂V (x⃗)
∂x2

+ ∂c(x2)
∂x2

∂x2P ∗
eq(x⃗) = −∂x2

V (x⃗)
D

P ∗
eq(x⃗)− ∂x2c(x2)P ∗

eq(x⃗)

By comparison with the second equation in Equation A.1, one sets ∂c
∂x2

= 0, meaning
that c = const. Inserting this result into Equation A.2 and exponentiating both
sides one gets

P ∗
eq(x⃗) = ec exp

(︄
−V (x⃗)

D

)︄
(A.3)

Finally, one can define Z := e−c so to obtain the expression in Equation 4.3.
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Appendix B

Instantaneous exponents

In chapter 5 several results are discussed through the instantaneous exponent
defined as in Equation 5.1. Here I provide some proofs about the reliability of
this analysis. On one side, this metric is more robust with respect to a standard
fitting, because there is no fitting range or other parameters to be arbitrarily
chosen. On the other side, it only seems to be completely parameter free, even
if it is not. From the definition α := dI

dτ
, the variables I and τ could in principle

represent whatever quantities. It is when defining I := log(I) and τ := log(t) that
the meaning of α becomes the instantaneous exponent of a locally fitting curve in
the form f(t) = c tα(t). This definition is implicitly imposing the constraint that
I(0) = 0, which is in principle wrong, as the epidemic is seeded at 0 d ≤ tseed ≤ 1 d
with one infectious node I(tseed) = 1. Moreover, the discrete nature of the system
may introduce non-negligible discretization issues for low I in the early stages of
the spreading. This implies that a more robust functional form for the locally
fitting curve could be g(t) = c(t− a)α(t) + b, and it is not obvious that a = b = 0. If
this was not true, then the computed values α(t) would suffer of strong systematic
biases, thus would be not reliable.

To obtain the proof of reliability, I resort to the comparison of the measured data
with new synthetic data generated with the following procedure. I first compute
α(t) from the measured values I and t using the definition Equation 5.1. The, I
rewrite the equation as

α(t)
t

dt = 1
I

dI

Integrating both sides I get ∫︂ t

t0

α(t′)
t′ dt′ =

∫︂ I

I0

1
I ′ dI ′

Solving the integral in the right-hand-side and exponentiating both sides, I obtain

I = c exp
(︄∫︂ t

0

α(t′)
t′ dt′

)︄
(B.1)
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where c is a free scale parameter that comes from the integration constants t0
and I0. Computing the synthetic prevalence Is with equation Equation B.1, if
the synthetic data well approximate the measured data Is ≈ I, then the hidden
assumptions discussed in the previous paragraph are well justified. Figure B.1
shows the plots of the comparison between the measured data and the synthetic
data. From the plot, the match between the two appears to be very close, implying
that the instantaneous exponents are well defined and provide a useful tool for the
analysis of the results in chapter 5.
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Figure B.1: The instantaneous exponents are a reliable metric to describe
the prevalence growth. In the upper and lower-left panels a sub-sample of the
measured prevalence and its central 95% confidence interval is plotted along with
the synthetic prevalence computed as in Equation B.1. In the lower-right panel, the
instantaneous exponents of the respective data is reported for reference. The curves
here shown are some of the ones presented in Figure 5.5.
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Appendix C

Design of the potential

The functional shape of the potential in Equation 3.4 is rather complicated because
it is designed to be very versatile. If one desires to introduce a directed motion
towards a specific location in space, another potential must be added to the one
centered in the home position. This ”composite” potential should present two (or
more) local minima, so to allow the agent perform stochastic transitions from one
to the other, and the depth of the minima may vary in time, so that the preferred
location varies depending on the time of the day. To have a smooth transition from
one minimum to the other, there are some constraints that must be imposed on
the potential. The first is that the amplitude parameter A(t) must be continuous
in time. The second is the existence of two (or more) minima when two (or more)
potentials of the same functional form and different center are added. This second
constraint translates into the requirement for the potential to present an inflection
point so that the gradient in the tails is lower than the gradient near the central
well.

Mathematically this can be computed more easily by writing the potential in polar
coordinates, which is easy possible if γ ∈ 2N. The second derivative of the potential
along the radial direction (the only interesting component, since the rotational
invariance) is

d2V

dr2 = A(t)β−γrγ−2
(︄

δγ +
(︄

r

β

)︄γ)︄α
γ

−2(︄
(γ − 1)δγ − (1− α)

(︄
r

β

)︄γ)︄
(C.1)

where r := ∥x⃗− x⃗0∥ is the radial distance from the center of the potential. This
expression proves the presence of one inflection point at

r∗ = βδ γ

√︄
γ − 1
1− α

(C.2)

which exists only if α < 1, i.e. if the increment in the tails of the potential is
sub-linear. Considering for simplicity two potentials V1 and V2 with the same
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amplitude and centers in x⃗1
0 = 0 and x⃗2

0 = hê1, their sum will present two local
minima if h > 2r∗. In a more general case, the condition over h depends on the
ratio between the amplitude parameters of the two potentials. Thus, if one wants
to have a potential landscape that includes two local minima, provided appropriate
amplitude coefficients, it is sufficient to choose α < 1 and the centers of the minima
that are sufficiently far one from the other. If these conditions are not fulfilled, then
only one minima will be present and its center will be located in an intermediate
point.
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