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Abstract

High-resolution transcriptomic sequencing techniques are crucial to gain an
in-depth understanding of tumour biology, contributing to discovering new di-
agnostic and therapeutic insights in oncology. In particular, the single-cell
transcriptomic technology allows for the analysis of individual cells separately,
providing a detailed picture of cellular heterogeneity within the tumour. Addi-
tionally, it enables the identification of cellular subtypes, crucial in understand-
ing tumours, as cellular diversity can impact disease progression and treatment
response.
Here, I contributed to developing a new version of signifinder, an R package
that streamlines the computation of signature scores from transcriptomic data,
making it faster and more user-friendly. For the first time, I integrated differ-
ent public cancer expression signatures from single-cell RNA sequencing data
in the package. Thus, with this change, signifinder allows the users to com-
pute scores of cancer expression signatures from high-resolution transcriptomic
sequencing techniques in addition to the already-existing signatures from bulk
data.
I also provide an example of how to use signifinder with a single-cell RNA
sequencing dataset and how to interpret the signature scores.
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Chapter 1

Introduction

1.1 The problem of tumour heterogeneity
Tumour heterogeneity represents one of the most significant challenges in the
treatment efficacy of malignant tumours. The conversion from non-malignant
to malignant cells occurs through various events that alter the nature of the
cells. An accumulation of alterations that lead to cell proliferation, angiogene-
sis, evasion of cell death mechanisms, and uncontrolled growth can trigger this
process. The carcinogenic nature can, thus, be described as stochastic, and
even after the transformation of cells from healthy to malignant, a dynamic
and continuous evolution of the tumour is observed, which does not follow
a fixed mechanism: the genetic, transcriptomic, epigenetic, and phenotypic
changes that occur are different for each patient. This incessant development
leads to the generation of molecular heterogeneity of cancer, which consists
of characterising various expression signatures in different individuals who are
affected by the same tumour or within the cancer cells of the same individual.
Different levels of sensitivity to therapies can thus manifest.

Two types of tumour heterogeneity can be distinguished: intertumoural
heterogeneity and intratumoural heterogeneity. Intertumoural heterogeneity
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is defined when there is a difference between patients with the same histologi-
cal type of cancer, due to patient-specific factors. Intratumoural heterogeneity
can be identified among the tumour cells of a single patient: spatial intratu-
moural heterogeneity describes the distribution of genetically diverse tumour
subpopulations across different disease sites or within a single disease site. An-
other form of intratumoural heterogeneity can be temporal, meaning that the
genetic variations in the tumour occur over time. That is one of the reasons
why, despite good responses to therapy at the beginning, it is very common
for cancer to develop resistance to treatment over time (Fig. 1.1).

Figure 1.1: Spatial and temporal intratumoural heterogeneity (Dagogo et al.,
Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol
15, 81–94 (2018)).

The causes of intratumoral heterogeneity are multiple. To begin with,
genomic instability is one of these causes: this can range from the alteration
of a single base, such as a substitution, to the duplication of entire genomic
portions. This problem can result from exogenous mutagenic factors such
as UV radiation, risky behaviours like smoking, or even from anomalies in
endogenous processes such as mistakes in DNA replication or repair.

Furthermore, it should be considered that exposure to treatments such as
chemotherapy could partly increase the mutational spectrum of a tumour and
create further genomic instability or decrease it by killing the cancer cells that
respond better to therapy, thus promoting the selection of cells resistant to



treatment [1].

To address the complexity of tumour heterogeneity, researchers have devel-
oped approaches such as gene expression signatures.

1.2 What is a cancer gene expression signature?

Gene expression signatures represent a crucial tool in understanding and man-
aging cancer. When faced with a disease as complex and heterogeneous as
cancer, it is essential to be able to answer fundamental questions about the
nature of the tumour, whether it is possible to predict how the tumour may
progress, and whether the patient will respond positively to treatment. Gene
expression signatures offer a powerful way to address these questions. [2]

The cancer gene expression signatures are developed by studies in which
specific cancer processes or states are analysed. Some examples of these pro-
cesses are the epithelial-to-mesenchymal transition or the interferon response;
in some studies, instead, the researchers classify the tumour into different cellu-
lar states such as astrocyte-like, oligodendrocyte progenitor cell-like or neural
progenitor cell-like in glioblastoma. The result of these analyses is the identi-
fication of a specific set of genes, which are responsible for the tumour process
or state of interest. The combination of those genes’ expression, the score, is
unique and it is a sign of the presence of that biological function or cellular type
behaviour. The collection of genes is called “cancer gene expression signature”.
In addition, they offer the opportunity to interrogate other datasets of different
tumour samples to assess the amount to which a gene pattern identifying the
signature is present.

Sometimes these signatures also have a prognostic influence and they can
be used for instance to predict the patient’s response to a drug or therapy,
avoiding ineffective treatments. Moreover, gene signatures can be exploited to
identify new therapeutic targets [2].

New cancer gene expression signatures are detected and generated using
RNA sequencing technologies such as bulk RNA sequencing, single-cell RNA
sequencing, and spatial transcriptomics [3].

This study will focus on public signatures generated from single-cell RNA
sequencing data: this technology has paved the way for the discovery of pre-
viously unknown cell types and subtypes, to better understand intratumour
heterogeneity, or to better characterise cellular subpopulations in particular
biological responses. This is why it is crucial to develop new versions of tools



which can be able to exploit public signatures based on high-resolution tech-
nologies.

1.3 Single-cell RNA sequencing technology

Starting from the past two decades, RNA sequencing (RNA-seq) technology
has begun catching on and become increasingly prevalent in molecular bi-
ology. RNA-seq is especially exploited for the analysis of differential gene
expression (DGE), which allows users to measure quantitative changes in ex-
pression levels between experimental groups. In recent years, more advanced
RNA sequencing techniques have been developed, allowing for higher reso-
lution in expression-level analysis. In particular, single-cell RNA sequencing
(scRNA-seq) has emerged as the state-of-the-art approach to address the prob-
lem of heterogeneity and complexity of RNA transcripts within individual cells,
thereby revealing the composition of cell types and functions within tissues and
tumour organs [4].

In general, there are two important categories of single-cell RNA sequencing
methods: the full-length scRNA-seq, so cells are physically separated and then
sequenced; and the tag-based scRNA-seq, so cells are tagged with barcodes and
then their data are separated computationally(Fig. 1.2) [5].

A platform that uses the full-length scRNA-seq technology is the SMART-
seq2. The process begins with the isolation of single cells using techniques like
FACS (fluorescence-activated cell sorting) or microfluidic systems. After that,
the cells are lysed, and their RNA is reverse transcribed and converted into
cDNA.

A mechanism called "switching mechanism at the 5’ end of RNA template"
is employed to add a specific adapter sequence to the 5’ end of the cDNA,
improving the efficiency of capturing full-length transcripts.

The cDNA is then amplified by PCR without the need for tags, as in
SMART-seq2 each cell is treated individually. At this point, the cDNA is pre-
pared for sequencing by adding specific adapters to the ends of the fragments
[6].

After the sequencing process and its validation with specific tools, an out-
put is obtained. This is a matrix that represents the number of counts for each
gene in each cell.

The second technology is the tag-based scRNA-seq, like 10x Genomics
droplet-based single cell sequencing.

The main feature of this technique is that the single cells are placed into
little droplets together with some beads that have known barcodes attached.



Figure 1.2: SMARTseq2 and Drop-seq differences in library preparation steps
(Ziegenhain et al. “Comparative Analysis of Single-Cell RNA Sequencing
Methods”. Molecular Cell 65.4 (Feb. 2017), 631– 643.e4).



So, the beads are inserted through some microfluidics with the sample cells, and
they are partitioned together into the droplet. Since they are suspended in oil,
they do not recombine. So, they can be processed individually in downstream
reactions. At the end of the process, a library is created in which reads have
some identifiers attached to them, the most important ones are the already
mentioned 10x barcodes, which are strings of nucleotides that can identify
from which cell the sequence comes from; and the UMIs (unique molecular
identifiers): they are another type of barcode that is not cell specific, but it
gets amplified in PCR step and allows to differentiate between PCR duplicates
and actual gene copies [7].

After the read processing with quantitative and alignment tools, a count
matrix as output is obtained.

The count matrix is a table where rows represent genes and columns rep-
resent individual cells, with each cell containing a value indicating the number
of transcripts (or reads) detected for a specific gene in that cell. This matrix
is crucial for downstream analysis as it provides the quantitative data needed
to understand gene expression patterns at the single-cell level.

After the creation of the output, the matrix exhibits several issues, includ-
ing data quality: some cells may have an abnormal number of detected genes
or could be of low quality due to technical artefacts during sample preparation
or sequencing; and the presence of a sparse matrix: gene expression matrices
in scRNA-seq often contain many zeros due to dropout events, where some
transcripts are not detected in all cells. To address these problems the count
matrix has to be filtered to remove low-quality genes and cells. This involves
discarding genes that are expressed in very few cells and cells that have an
abnormal number of detected genes. This helps to ensure that the analysis
focuses on the most informative data, essential for managing the challenges
posed by scRNA-seq technology: its large datasets require significant com-
putational resources, and interpreting them is complex, especially in tumour
samples with high intra-sample cellular and transcriptomic heterogeneity [8].

In this scenario gene expression signatures are powerful tools to solve the
data complexity and simplify interpretations.

1.4 Gene expression signatures and the
signifinder package

Gene expression signatures have the potential to reveal ongoing cancer activ-
ities and guide therapeutic decisions, but they face several significant chal-
lenges. Despite numerous gene expression-based prognostic signatures being



reported in the literature, very few have been adopted in clinical practice. The
variability between patients and the complex relationships between tumours
and their microenvironment further complicate their application.

Calculating signature scores is a crucial task for identifying signatures in
new datasets or performing analyses. However, each signature has a specific
method of score calculation recommended by its developers, which cannot
be universally applied to other signatures. Additionally, there is a lack of
tools that standardise these computations, highlighting the need for a package
that can compile public gene expression signatures and automate their score
calculation [3].

signifinder is an open-source R package, part of the gene expression data
structures within the Bioconductor project.

Its purpose is to make public cancer gene expression signatures more repro-
ducible and user-friendly by automating the calculation of their scores, while
preserving the computation method provided by the signature developers. It
also offers the possibility to interpret and compare the scores through visuali-
sation methods.

For this reason, signifinder curates a comprehensive collection of signa-
tures from the literature, adhering to stringent selection criteria. These cri-
teria include the utilisation of cancer samples, availability of transcriptional
data, clarity and coherence of gene lists and the type of input expression data
required, and an unambiguous description of score calculation methods.

An R function for each signature, built according to the methodology elu-
cidated in the corresponding research articles, allows the computation of the
scores. Users can easily input, as an argument of the signature function, nor-
malised expression data derived from bulk, single-cell, or spatial transcrip-
tomics cancer samples. The input can be provided in the format of Sum-
marizedExperiment, SingleCellExperiment, or SpatialExperiment. These are
data structures usable in R that act as containers for biological data. The
SummarizedExperiment is used for bulk RNA sequencing data and includes
gene expression matrices and related annotations [9]. The SingleCellExperi-
ment is used for scRNA-seq data and, in addition to the expression matrices,
contains specific metadata related to biological or technical characteristics of
individual cells [10]. The SpatialExperiment is used to represent spatial data
obtained from molecular or spatial imaging techniques to study, for example,
the distribution of gene expression spots in tumour tissues [11].

The package allows the calculation regardless of the abundance metrics



required to compute the score, because signifinder has internal functions which
automatically transform the normalised expression counts of the input into the
necessary metrics, contributing to standardise the scoring process [3].

signifinder is also equipped with all necessary data components for each sig-
nature and facilitates automated data transformations whenever necessary to
be compliant with the signature’s original requirements. The functions return
signature scores into a section of a SummarizedExperiment, a SingleCellEx-
periment or a SpatialExperiment.

In addition, signifinder offers diverse visualisation tools for inspecting scores,
enabling users to gain comprehensive insights into the underlying data. Fur-
thermore, the package incorporates features to identify the top contributor
genes, furnishing users with valuable insights into the molecular drivers under-
pinning observed expression patterns.(Fig. 1.3) [3].



Figure 1.3: signifinder implementation and workflow.(Pirrotta et al., sig-
nifinder enables the identification of tumor cell states and cancer expression
signatures in bulk, single-cell and spatial transcriptomic data. Mar. 2023)





Chapter 2

The aim of the thesis

The goal of this thesis project is to enrich the signifinder package with new
cancer gene expression signatures generated from single-cell RNAseq, thus im-
proving the power of resolution on the biological complexity of the tumour.

The project is divided into three tasks. The first task involved researching
new cancer gene expression signatures from high-resolution data in the liter-
ature. To do this, I used the PubMed database and searched for terms like
"cancer", "gene expression signature", "single-cell RNA sequencing", "mod-
ules" or "hallmark" in the Advanced Search. In addition, I filtered the results
by date to find recent articles on this topic.

The second task was building a function in the programming language R
for each signature. This function computes the signature’s score following the
method specified in the article. I then add this function to the signifinder
package using Git and GitLab.

The third task was presenting a case study that demonstrates the applica-
bility of the new single cell signifinder functions.
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Chapter 3

Materials and Methods

3.1 Collection of public gene expression signa-
tures

As already stated in the thesis objective, the first step of the project is to
create a collection of public gene expression signatures from single cell RNA
sequencing data.

The signatures must be selected based on the following criteria:

1. The signatures must be related to a cancer topic;

2. They must be gene expression signatures, therefore related to transcrip-
tional data;

3. The type of expression in input must be clear, in my case, the data they
originate from must be single-cell RNA sequencing;

4. The list of genes characterising the signature must be clear and easily
accessible. Hence, the list must be provided through a table in an Excel
file or a PDF file.
Additionally, the genes should mostly be in official nomenclature or
should have nomenclature that can be translated into the official one.
For example, the gene might have an ENSEMBL ID but easily translat-
able into SYMBOL.

5. Finally, the method for calculating the signature score must be described
clearly and in detail, without ambiguity, within the paper. Even better
if the scoring method code is also made available [3].

To this purpose, PubMed was used: a database of biomedical literature
from MEDLINE, life science journals, and online books, curated by the NCBI
(National Center for Biotechnology Information). The search was conducted
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using various keywords such as “cancer”, “gene expression signature”, “single-
cell RNA sequencing”, “modules”, and “hallmark”, and the advanced search
mode was also employed.

The advanced search on PubMed allows the use of keywords as queries and
linking them with logical connectors such as AND or OR. It is also possible to
apply filters such as publication date to select only the most recent papers or
the type of paper to consult.

After selecting the papers of interest and ensuring they met the parameters
indicated above, it is necessary to summarise the characteristics of the signa-
ture and its score. To do this, I used a table (Table 3.1) with the following
entries:

• signature: The signature is named using a two-part name. The first
is a term that can quickly identify what the signature characterises. If
present, the same name provided by the author in the paper is used;
otherwise, an appropriate name is assigned. The second part is the name
of the first author of the article. This way, it is possible to recognise
when two signatures with the same characteristics from different papers,
with two different scoring computation methods, are included in the
package. For example, the name EMT_Barkley highlights a signature
that characterises an epithelial-to-mesenchymal transition in the cells
of the dataset where it is expressed (EMT, Epithelial-to-Mesenchymal
Transition), and “Barkley” is the name of the author of the paper from
which it was taken.

• scoreLabel : the name given to one or more scores calculated for a specific
signature.

• functionName: the name used to identify the function that calculates
the signature score in the signifinder package.

• topic: the field to which the signature belongs, such as “immune system”
or “epithelial-to-mesenchymal transition”.

• tumour : the tumour in which the signature score can be calculated.

• tissue: the specific tissue of a certain signature.

• cellType: the cell type in which the signature can be calculated.

• developedWith: the data from which the signatures were developed; in
my case, they are all signatures derived from scRNA-seq data.

• usableInput : the type of data that can be used with the signature.



• transformationStep: often, to calculate the score, it is necessary to first
transform the normalised expression values of the dataset of interest.
This information is contained in the score calculation method described
in the article.

• author : it indicates the first author of the article from which the signa-
ture is taken.

• reference: the article from which the signature is taken.

• description: a description of what the signature score is and how it can
be interpreted.

These characteristics are then reported in the signifinder package in the
"signatureTable" function, so that they can be accessible to users who can
consult it to find the signatures to calculate that best fit their dataset.
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3.2 The R language
R is a programming language and environment that is open-source and de-
signed for statistical analysis and graph visualisation. It has numerous ad-
vantages, which is why it was chosen to create the signifinder package and
conduct analyses in the presented case study. R is a versatile programming
language that offers a huge number of statistical techniques and visualisation
tools, making it ideal for filtering and optimising input data for the package
and integrating analyses performed using signifinder. It also provides a lot
of packages, particularly for biological studies built within the Bioconductor
project. Furthermore, R is user-friendly and the RStudio interface makes the
analysis easier.

R is also considered as a powerful tool for constructing tables and graphs
suitable for visualising data, as it is shown in signifinder. Lastly, it benefits
from a large and active community of users and developers who contribute to its
development, ensuring up-to-date documentation and various online tutorials.
Therefore, R is the perfect programming language for building the functions
of the signature scores and to conduct the analysis of the case-study [16].

3.3 Git and GitLab
A R package is an extension of the statistical programming language R, con-
taining a collection of standardised codes, data, and documentation that can
be installed by R users.
However, developing an R package is not easy, especially when multiple devel-
opers are working simultaneously to modify or update the data and information
within it.
It is also fundamental to consider that making changes can often lead to errors,
such as in a code, which could compromise the functioning of the package if
done directly on the main body without first testing it locally.
Therefore, the use of a development environment becomes necessary. This
environment allows cloning a copy of the package locally, designing, imple-
menting, and testing the changes while keeping track of them. It also provides
the ability to revert in case the changes lead to errors, or it allows multiple
developers to work simultaneously on the same file.

Git is an open-source distributed version control system (VCS), that tracks
changes during the R package development process. It builds a self-contained
repository around a set of folders and files, storing metadata about the files and
changes made to them in a hidden folder within the root folder. In particular,
Git allows cloning a repository from a remote location to one’s local machine,
enabling the creation of branches, which are copies of the master repository,



where the developers can make changes without risking modification of the
principal body. Git also allows updating the main repository stored locally
with a specific command: pull, saving a new version of the just made changes
with a name and description of the modifications; this operation is called a
commit. Finally, all commits made locally are uploaded to the remote location
with the push command [17].

The coordination of changes made by developers occurs through an official
repository stored on GitLab, an open-source DevOps platform based on Git.
Thus, it is a platform that utilises a software development methodology focused
on communication, collaboration, and integration among developers.

In other words, GitLab serves as a front-end for Git, providing a robust
interface for Git repositories stored on its server. Users create an account on
GitLab and associate an SSH (Secure Shell) key with their profile, which is an
identifying key allowing secure communication between two machines working
remotely connected to a public network. This enables working locally and
pushing changes remotely in an encrypted manner.

Users can then create or be invited to participate in Git repositories stored
on the GitLab server. GitLab offers additional features, including an issue
tracker, merge request tools, and an interface for reviewing changes before
their integration into the main branch of the repository [17].

3.4 The procedure to add a new signature in
signifinder by using R, Git and GitLab

Git and GitLab were essential in integrating the functions for calculating signa-
ture scores into the signifinder package. Firstly, it is necessary to activate the
SSH key in the Git Bash command shell using the commands ssh−agent bash
and ssh − add key_name. Then, clone the package repository locally by en-
tering the command git clone [url]. The [url] represents the URL link of the
repository in GitLab.

To keep the main repository unchanged, a branch of the repository is usu-
ally created with the command git branch branch_name. This procedure al-
lows modifications to the branch, and after ensuring everything works, it can be
merged into the main repository using the command git merge branch_name
(Fig. 3.1) [17].



Figure 3.1: Development branches in Git. (Engwall and Roe, Git and GitLab
in Library Website Change Management Workflows, The Code4Lib Journal 48
(May 2020))

Additionally, the SSH key can be associated with RStudio to facilitate content
modifications on the branch.

The procedure to add a new cancer gene expression signature in signifinder
generally includes the modification of multiple files in the original package
repository as described below. The first file to modify is the "SignatureFunc-
tion.R" file, which contains the collection of all the signature functions present
in signifinder. Here, the function for the score of the new signature is ap-
pended to the existing ones, or an existing signature is adapted to include the
newest signature. Additionally, a description of the new signature function for
the documentation manual is always provided at the beginning of each func-
tion, written using roxygen2, an R package that provides an easy and standard
way to document functions in the package [18].

Another file that has to be updated implementing a new signature is the
"UtilityFunction.R" file, which contains other functions essential for the com-
plete working of the package. Here, the score label of the new signature func-
tion is saved in the "SignatureNames” vector. Also, the ".GetGenes" function,
retrieving the genes characterising the signatures necessary for score calcula-
tion, is modified: the code lines for retrieving the genes of the new signature
are inserted here.



The ".GetGenes" function operates thanks to a project called "signature-
data_signifinder". This project contains an internal laboratory procedure to
prepare signifinder’s signature data. In particular, signature genes are re-
trieved from online resources found in the literature through a code in the
"signatureData.rmd" file, which subsequently inserts them into a data frame.
Therefore, a script to retrieve and save the genes of the new signature in a data
frame is attached to the code. At the beginning, the script should provide a
description with the name of the new signature, the function label for the score,
and the tissue where the signature was detected. Here, the link to the litera-
ture article and the online resource from where the genes were downloaded are
inserted. Then, the script consists of several steps. Firstly, the signature genes
are downloaded from a URL. Secondly, the downloaded data is read depending
on the type of file of the genes. At this point, a data frame is created with two
columns: "SYMBOLS", containing the gene symbols, and "class", indicating
the tumour states or subtypes to which each signature belongs.

Afterwards, the gene names’ presence is checked in "AnnotationDbi", en-
suring that other aliases are not employed and that the gene symbol is unam-
biguous, meaning it does not have more than one "entrez". This procedure is
run using an internal project function called "checkSignGenes". Subsequently,
the generally few genes that do not pass the automatic translation are manually
checked, in case the correct symbol is inserted, and genes with an ambiguous
symbol are deleted. Then, the gene symbols are updated in the data frame. Fi-
nally, the data frame is saved in a .rda file named "sysdata", which is imported
from "signaturedata_signifinder" into the signifinder package.

After all these steps, tests are created in the "test-SignatureFunctions.R"
file in signifinder. These tests ensure that the computation of the score function
of the new signature works correctly returning a SingleCellExperiment, for
instance, with the names of the states or subtypes present in "colData", or
that the number of score values is equal to the number of cells in the analysed
dataset. Finally, the command roxygen2 :: roxygenise() is executed to run
the function of the roxygen2 package and update the documentation manual
including the new parts [18].



Chapter 4

Results and Discussion

4.1 The public cancer gene expression signatures

I collected some public gene expression signatures of 11 different topics. These
signatures can be divided in 2 macro-categories: the signatures targeted to
infer specific cellular processes and signatures that are more related to infer
cell subtype identity. All the signatures that I implemented and that are
presented in the following paragraphs derive from single-cell RNA sequencing
data and their scores are supposed to be calculated only in malignant cells
(Table 4.1) [12, 13, 14, 15].

signature name tumor tissue reference macro-category
Epithelial-to-mesenchymal
transition signature pan-cancer pan-tissue [12] Cellular process

Hypoxia signature pan-cancer pan-tissue [12] Cellular process
Cell cycle signature pan-cancer pan-tissue [12] Cellular process
Stress response signature pan-cancer pan-tissue [12] Cellular process
Interferon response signature pan-cancer pan-tissue [12] Cellular process
Oxidative phosphorylation
signature pan-cancer pan-tissue [12] Cellular process

Metal response signature pan-cancer pan-tissue [12] Cellular process
Pan-cancer cellular
states signatures pan-cancer pan-tissue [12] Cell identity

Glioblastoma cellular
states signatures glioblastoma brain [13] Cell identity

Metastatic melanoma cellular
states signatures

metastatic
melanoma spleen, subcutaneous,

intramuscolar, skin
[14] Cell identity

Breast cancer cellular
subtypes signatures

breast
cancer breast [15] Cell identity

Table 4.1: The collection of scRNA-seq-derived signatures with their features.
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4.1.1 Epithelial-to-Mesenchymal transition pan-cancer sig-
nature

The first signature is constructed to infer the epithelial-to-mesenchymal tran-
sition. This process is characterised by the loss of epithelial cells’ features
like their shape or their tight arrangement given by cell-cell junctions; and
the acquisition of mesenchymal features like a more elongated shape and more
motility. Generally, in cancer cells, the epithelial-to-mesenchymal transition
(EMT), and therefore the mesenchymal phenotype, is connected with tumour
progression, metastasis formation. The EMT_Barkley signature scores can be
computed across all cancer types and all tissues, so I refer to this signature as
a “pan-cancer” one. It is composed of two modules: pEMT and cEMT.

The cEMT module represents a group of genes which can detect the cells
in which a complete epithelial-to-mesenchymal transition happens.

The pEMT module, or rather “partial epithelial to mesenchymal transition”,
represents a group of expressed genes that can detect a not finished EMT. In
effect, this signature does not have the canonical mesenchymal markers like
collagen genes.

When expressed, both EMT_Barkley_cEMT and EMT_Barkley_pEMT
indicate two pathways exhibiting mesenchymal differentiation behaviours in
tumour cells, influencing phenotypic properties such as migration or drug re-
sistance [12].

4.1.2 Hypoxia signature

Hypoxia is the condition in which the cells activate some survival mechanisms
due to an environment poor of oxygen. In tumours, this condition is quite
common: when there is rapid cancer growth, the level of oxygen required for
development exceeds the oxygen supplied by the blood vessels. This leads to a
state of hypoxia, which causes the activation of pathways for adaptation and
survival under these adverse conditions.

The Hypoxia_Barkley signature has a set of genes whose expression in
a tumour sample detects a cellular response to hypoxia. Its score can be
calculated in all cancers and tissues [12].

4.1.3 Oxidative phosphorylation signature

There is a signature related to another metabolic process: the oxidative phos-
phorylation (OXPHOS). This process plays a crucial role in the energy metabolism
of tumour cells and their ability to adapt and survive in adverse environments,



thereby influencing tumour progression and response to treatments. OXPHOS
is responsible for the production of the majority of ATP. A high energy sup-
ply in tumour cells could therefore indicate that the cancer is using a repro-
grammed metabolism that supports its proliferation and survival [19].

The Oxphos_Barkley signature score can detect an oxidative phosphory-
lation response in all cancer samples [12].

4.1.4 Cell cycle signature

The presence of actively cycling cells within a tumour is a significant factor in
tumour growth and progression. The main influences of actively cycling cells
on tumour dynamics are rapid proliferation due to uncontrolled cell division;
genetic instability caused by DNA replication errors that can occur during cell
division; and heterogeneity, as different cells are in different phases of the cell
cycle, leading to variations in gene expression, metabolism, and susceptibility
to treatments [20].

The CellCycle_Barkley signature score can capture the subset of cancer
cells in any tumour that is cycling [12].

4.1.5 Stress response signature

In the presence of tumours, cells can undergo various types of stress due to
an environment characterised by nutrient deficiency, low oxygen levels, or ex-
posure to drugs and treatments. This induces cells to activate pathways to
oppose this hostile condition.

The Stress_Barkley signature score can be computed in all cancers and it
identifies the expression of a group of genes involved in a response to a stress
condition [12].

4.1.6 Interferon response signature

In tumours, interferons play a significant role by activating a series of mech-
anisms that influence the tumour microenvironment and associated immune
responses. For instance, IFNα and IFNβ activate signalling pathways that
induce the expression of genes affecting cancer cell growth, proliferation, and
survival. They can exert anti-proliferative effects by promoting mechanisms
such as apoptosis or inhibiting angiogenesis. However, immune response in tu-
mours is complex, and chronic exposure to interferons may trigger mechanisms
of tumour resistance [21].



The Interferon_Barkley signature contains both canonical interferon-stimu-
lated genes and components of antigen presentation and its score can be cal-
culated for each pan-cancer study [12].

4.1.7 Metal response signature

The Metal_Barkley signature is composed of a set of metallothionein genes
and its score can be computed for all cancers. It may have a role in prolif-
eration and drug resistance [12]. In effect, the metal response is linked to
the expression of metallothioneins, which are crucial proteins in the regulation
of metal homeostasis in the body. Specifically, they regulate zinc and cop-
per, which are important for cellular proliferation and differentiation. They
are cofactors for enzymes involved in DNA replication and protein synthesis.
Metallothioneins also act as free radical scavengers, further contributing to the
survival of cancer cells. Their role in protecting cells from oxidative stress also
makes them a cause of tumour resistance to certain drugs [22].

Below I am going to present the signatures associated with cell identity
and cell subtypes.

4.1.8 Pan-cancer cellular states signature

The State_Barkley signature is composed of 8 modules which identify different
cellular types in cancer.

The first 4 modules are related to epithelial cell type markers: alveolar,
squamous, basal and glandular cell modules. As the name suggests, they mirror
the corresponding cellular type. Then, another module related to cellular
identity is proposed, that is the ciliated module, which is made of cilium-
related genes.

At the end, 3 neurological cancer-specific modules have been identified:
the astrocyte (AC)-like module; oligodendrocyte progenitor cell (OPC)-like
module and the neural progenitor cell (NPC)-like module. They are all linked
to cell types related to the nervous system [12].

All the above signatures are developed by Barkley et al in 2022, their scores
are included between 0 and 1 values. A signature is expressed if its score in
the cell is higher than 0.5 [12].

4.1.9 Glioblastoma cellular states signature

This signature was developed by Neftel et al. in 2019, and it is characterised
by six main cellular states of glioblastoma. This is very important because the



main therapeutic failures are due to glioblastoma heterogeneity, so this new
signature came very useful.

The signature explains four main cellular states that mirror four neural cell
types, anyway two of them can be divided into two subgroups: mesenchymal
1-like, mesenchymal 2-like, astrocyte-like, oligodendrocyte progenitor cell-like,
neural progenitor cell 1-like and neural progenitor cell 2-like states.

The first state which can diverge into two modules is associated with high
expression of mesenchymal related genes: MES1 (mesenchymal 1-like) module
and MES2 (mesenchymal 2-like) module.

The MES2 module is interesting because it is related to hypoxia-response,
stress and glycolytic genes; suggesting that in some tumours the mesenchymal
state is linked to hypoxia and the increasing glycolysis. This is why this module
is defined as an hipoxia-dependent signature.

On the other hand, the MES1 is just related to mesenchymal genes, so it
is called hypoxia-independent signature.

The other four modules are connected to neurodevelopmental genes; in
particular, the astrocyte-like module (AC), includes astrocytic markers; the
oligodendrocyte progenitor cells-like (OPC) has markers related to the oligo-
dendroglial lineage.

The neural progenitor cells (NPC)-like is the other state which can be
subdivided into two modules: the NPC1 and the NPC2.

The NPC1 includes OPC-related genes and reflects the potential of NPCs
to differentiate toward OPCs. The NPC2, instead, mirrors the potential of
NPCs to differentiate toward neurons as it includes neuronal lineage genes.

The State_Neftel signature returns six cellular states scores, the higher
is the score computed for each module in each cell, the higher that state is
present in that cell [13].

4.1.10 Metastatic melanoma cellular states signature

The State_Tirosh signature was developed by Tirosh et al. in 2016, it rep-
resents two transcriptional cellular states present in metastatic melanoma:
MITF-high and AXL-high.

The first module is called MITF, because it is composed of the MITF
gene (microphthalmia-associated transcription factor gene) and other MITF
target genes. The MITF gene is the most important melanocyte transcriptional
regulator and melanoma lineage survival oncogene.

The second module is called AXL, it is negatively correlated with the MITF
module. This module is composed by a set of genes in which there is also AXL,
that is linked to the resistance to various targeted therapies and the NGFR
marker, that is a putative melanoma cancer stem cell marker. In the Tirosh



et al.(2016) study, the expression of this module was found also in treatment-
naive patients, indicating the presence of dormant drug-resistant population
in some cell lines.

The signature cellular states scores can be computed, the higher is the score
in a cell, the higher is the presence of that module [14].

4.1.11 Breast cancer cellular subtypes signature

This signature was created by Wu et al. in 2022. The study investigates het-
erogeneity at the subtype level in breast cancer. Specifically, the aim was to
find a method compatible with the PAM50 signature, which classifies breast
cancer into different molecular subtypes based on bulk transcriptomics profil-
ing, starting from scRNA-seq data. Thus, the SCSubtype signature was con-
structed. It classifies cancer cells into four different breast cancer subtypes:
Basal, Her2E, LumA, and LumB [15].

LumA (luminal A) and LumB (luminal B) are two subtypes that both
express estrogen and progesterone receptors but have different levels of cell
proliferation. LumA is characterised by a low level of the cell proliferation
marker Ki-67 and the absence of human epidermal growth factor receptor 2
(HER2). In contrast, LumB may not express progesterone receptors, it has a
higher level of proliferation than LumA and may express HER2.

Her2E is characterised by the expression of HER2 and the general absence
of estrogen and progesterone receptors.

The basal-like subtype is so named because it expresses genes characteristic
of the basal myoepithelial cells of the breast. Basal-like tumours are negative
for estrogen receptors (ER), progesterone receptors (PR) and HER2, and they
exhibit a high level of expression of genes associated with cell proliferation. A
cell is assigned to a subtype if it has the highest score for that subtype [23].

4.2 Computation of the scores

Each signature can be computed thanks to a precise method indicated by the
authors in their paper.

4.2.1 The scoring method of the cellular processes signa-
tures and the pan-cancer cellular states signatures

All the signatures related to the cellular processes and the pan-cancer cellular
states signature have the same scoring method [12].

To calculate the score, it is necessary to have a SingleCellExperiment of a
tumour sample that includes a normalised matrix of expression values for each
gene in each cell.



For each signature, a thousand random lists of genes with similar expression
levels have to be generated [12].

To do this, I initially calculated the mean values for each gene in the
dataset, removing genes with null values. I then ordered them in ascending
order.

1 data.avg <- sort(rowMeans(x = dataset ,
2 na.rm = TRUE))

To each mean value, I added random variables that follow a normal distribution
as indicated in the article. This allowed me to obtain a scale of genes ordered
by their mean value. After that, I divided the gene list into 25 bins, that is,
25 groups with a roughly equal number of genes based on the mean expression
value of each gene.

1 data.cut <- cut_number(
2 x = data.avg + rnorm(n = length(data.avg))/1e

+30,
3 n = 25, labels = FALSE , right = FALSE)
4 names(x = data.cut) <- names(x = data.avg)
5 binned <- split(names(data.cut), data.cut)

Next, through a for loop, I took each gene from each module of the signature. If
the gene existed in the studied dataset, I checked which bin it was in, randomly
selected a gene from the same bin in the dataset, and inserted the gene into an
empty list called "new". If the gene was not present in the list, I moved on to
another gene in the module. After inserting the random gene into the empty
list, I recreated the same bin without the selected gene to avoid using the same
gene for that list. At this point, I repeated the same process a thousand times
to create a thousand random gene lists for each module.

1 rand <- lapply(names(mod), function(m){
2 lapply(seq_len (1000) , function(i){
3 used <- vector ()
4 unused <- binned
5 for (g in mod[[m]]){
6 pool <- data.cut[g]
7 if (!(is.na(pool))) {
8 new <- sample(unused [[pool]], 1)
9 used <- c(used , new)

10 unused [[pool]] <- setdiff(unused
[[pool]], new)}}



11 used}) })
12 names(rand) <- names(mod)

At this point, I took each random gene list for each module and calculated the
mean expression value for each cell using only the genes from each list.

1 ra <- sapply(rand[[m]], function(i){
2 colMeans(dataset[i, ], na.rm = TRUE) })

Next, I followed the same procedure for the gene list characterising the
module.

1 re <- colMeans(
2 dataset[rownames(dataset) %in% mod[[m]],],
3 na.rm = TRUE)

At this point, I took only the random geneset values greater than the module
geneset value, called p, and calculated −log10(p) [12].

1 p <- -log10(rowMeans(ra >= re))

I applied the score only to malignant cells, assigning a null value to the others.

1 s <- rep(NA, n)
2 s[isMalignant] <- p

If the logarithm yielded an infinite value, it was assigned a value of 1.
Finally, I used the "scale" function to rescale the score to a value between

0 and 1 [12].

1 scores[is.infinite(scores)] <- 4
2 scores <- scores/4
3 scores <- rescale(scores)

In conclusion, I have entered the code within the ’UtilityFunction’ file in the
signifinder package. For each Barkley signature, I created a function in ’Sig-
natureFunction’ of signifinder, that calls the function just described and calcu-
lates the score on the specific modules of each function. Finally, the computed
scores are saved within the SingleCellExperiment object of the dataset that
the user is studying.



4.2.2 The scoring method of glioblastoma and metastatic
melanoma cellular states signatures

Glioblastoma signature by Neftel et al. and the metastatic melanoma signature
by Tirosh et al. have the same algorithm [13, 14].

Firstly, an initial condition must be satisfied, without which it is impossible
to calculate the score: the study dataset must have at least 3000 genes for the
glioblastoma signature and 2500 genes for the metastatic melanoma signature.
That is because, as we will see later, to compute the signatures, it is necessary
to create lists one hundred times larger than the number of genes in the dataset
divided into 30 or 25 bins, respectively; so there must be at least the number
of bins multiplied by 100 [13, 14]. For simplicity, I will show the code for the
Neftel signature calculated with 30 bins; the code for the Tirosh signature is
available in the appendix (Code A.1).

1 if(nrow(dataset) <3000){stop(
2 "dataset must have at least 3000 genes to compute

the signature")}

Both signatures require the transformation of the normalised gene counts for
each cell into transcripts per kilobase million (TPM). I performed this step us-
ing an internal function of the signifinder package called "dataTransformation"
[13].

1 dataset <- .dataTransformation(
2 dataset , datasetm , "TPM", hgReference ,

nametype)
3 datasetm_n <- as.matrix(
4 assays(dataset)[["TPM"]])

The next step involves calculating the expression level for each gene i in each
cell j using the formula Ei,j = log2(TPMi,j/10 + 1) [13]:

1 exp_lev <- log2(datasetm_n/10+1)

At this point, I calculated the relative expression for each value in the dataset,
which is given by the difference between the gene expression level in the cell
and the average expression of the same gene in all cells of the dataset:



1 rel_exp <- exp_lev - rowMeans(exp_lev ,
2 na.rm = TRUE)

Subsequently, I computed the aggregate expression of each gene given by the
average of the log2-transformed values of the gene. I then sorted the gene
means and divided them into 30 bins, with this method I have 30 groups of
genes with similar expression values [13]. Finally, I retained only the gene
names within each bin, thus obtaining 30 lists of genes with similar expression
levels:

1 agg_exp <- log2(rowMeans(datasetm_n,
2 na.rm = TRUE)+1)
3 ea_bin <- split(
4 sort(agg_exp , na.last = TRUE), factor(
5 sort(round(x = rank(agg_exp) %% 30,
6 digits = 0))))
7 ea_bin <- lapply(ea_bin , function(x){names(x)})

Once the 30 bins were obtained, I proceeded to calculate the score, which is
given by the difference between the relative expression of the genes in each
module of the signature and the relative expression of the genes in a control
sample created based on the genes in the studied dataset. To construct the
control sample Gcont, I took the genes of each module of the signature one by
one and checked if they were present within a bin. If the gene was not there,
I moved on to the next gene; if it was present, I saved the index of the bin
containing the gene in an empty vector u. I then used this index to determine
the bin with the gene of interest and selected 100 random genes from the same
bin [13]. In this way, I created a control sample one hundred times larger than
the gene set of the signature, as stated in the two studies.

1 scores <- as.data.frame(
2 lapply(sign_list , function(x){
3 Gcont <- unlist(lapply(x, function(y){
4 u <- NULL
5 for (i in seq_along(ea_bin)) {
6 if (y %in% ea_bin[[i]]) {
7 u <- i
8 break}}
9 sample(ea_bin[[u]][!(ea_bin[[u]] %in% x)],

10 100)}))



After this, I assign a null value to all non-malignant cells in the dataset and
assign the score to the cancer cells given by the difference between the rel-
ative expressions, as previously mentioned: SCj(i) = average[Er(Gj, i)] −
average[Er(Gcont

j , i)], where SCj(i) is the score of gene set j in cell i; Er(Gj, i)
is the relative expression of the gene set of the signature for each cell, and
Er(Gcont

j , i) is the relative expression of the control gene set for each cell [13].

1 score <- rep(NA , ncol(dataset))
2 SC <- colMeans(
3 rel_exp[x,], na.rm = TRUE)-colMeans(
4 rel_exp[Gcont ,], na.rm = TRUE)
5 score[isMalignant] <- SC

Both signatures, along with the Barkley cellular states signature, have been in-
corporated into a single function in the "SignatureFunction" file of signifinder :
"stateSign". This function can calculate the signature of one of the three au-
thors by changing the input parameters.

To calculate the score, it is necessary to provide the "dataset", i.e. the
SingleCellExperiment object of the dataset being studied; the "nametype",
which is the type of nomenclature used for the genes in the dataset: the
three accepted parameters are "SYMBOL", "ENSEMBL", and "ENTREZ
ID"; the "author", to identify which of the three signatures to compute among
"Barkley", "Neftel", and "Tirosh"; "whichAssay" is a parameter indicating
which normalised matrix present in the "assays" of the SingleCellExperiment
to use. Finally, it is necessary to provide a boolean vector to the "isMalignant"
parameter, indicating which cells in the dataset are malignant and which are
not.

4.2.3 The scoring method of breast cancer subtypes sig-
nature

To compute the score of the breast cancer cellular subtypes, I constructed the
function "SCSubtypeSign" which calculates the average read counts for each
of the four modules for each cell [15]. To do this, I first transformed the
expression values of the dataset with a log2 transformation:

1 datasetm_n <- log2(datasetm + 1)

Secondly, I assigned a null value to all the cells in the dataset and saved it in
a variable s. For each gene set of each subtype, if the gene list has a length



greater than one, I then calculated the mean of the expression counts in each
cell of the dataset corresponding to the genes of the signature. Conversely, if
only one gene of a given subtype is present in the study dataset, the score will
be given only by that value [15]. At this point, I entered the scores into the
malignant cells of the dataset present in s.

1 scores <- as.data.frame(lapply(sign_list ,
function(x) {

2 s <- rep(NA, ncol(datasetm))
3 if (length(x) >1) {score colMeans(

datasetm_n[x,], na.rm = TRUE)}
4 else {score <- datasetm_n[x,]}
5 s[isMalignant] <- score
6 s }))

Finally, I entered this code too, into the function within the "SignatureFunc-
tion" file of signifinder, as I did with the previous signatures.

4.3 The case-study analysis

4.3.1 Case-study data

To test some of the public signatures I collected, I used signifinder on four
single cell RNA sequencing data from a patient with a diagnosis of stage IV
high grade serous ovarian cancer (HGSOC). The dataset is part of a collection
of samples from an AIRC-funded project called SHOwMEOVC: “Spatiotem-
poral HeterOgeneity in Multicellular Ecosystems of OVarian Cancer at single-
cell resolution.” This project is dedicated to studying the temporal, spatial,
and inter-patient heterogeneity of the tumour microenvironment (TME) of
HGSOC. It involves the collection and comparison of samples from different
metastatic sites in the abdominal cavity of the same patient, using scRNA-seq
technology [24].

The data chosen for my case study includes four samples from four pelvic
sites of a patient. The first sample is from a primary tumour, specifically in
the ovary, before the patient underwent neoadjuvant chemotherapy. The other
three samples were taken from metastatic sites: the omentum, paracolic guts,
and the peritoneal site. These three samples were collected after neoadjuvant
chemotherapy. This sampling approach allows us to understand how cancer
develops post-therapy [24].

My analysis started after the quality control, read alignment and quantifi-
cation and the construction of the four count matrices. Samples were provided



to me in the SingleCellExperiment data format. SingleCellExperiment data
format is a class of objects in R that allows the storage and management of
single-cell gene expression data. The SingleCellExperiment package, which
contains this class, is built around the Bioconductor project’s structures and
aims to facilitate the analysis and visualisation of scRNA-seq data. The Single-
CellExperiment object is organised into different compartments: for example,
it contains "colData," which consists of metadata related to the cells, such
as the cell type, labelled as "consensusTME" in my samples. It is also the
container where the signifinder score matrices will be saved.

Another interesting compartment is "assays", which contains one or more
matrices of expression data. In my case, the SingleCellExperiment contains
the raw counts matrix “counts”, the normalised data matrix “logcounts”, and
the matrix of counts transformed into TPM: “tpm”.

The study stated that the raw expression counts, after filtering, were nor-
malised using the deconvolution method. First, the cells were separated into
preliminary clusters based on gene expression using the “quickCluster” func-
tion from the scran R package. At this point, the values were rescaled to
compare the different clusters and were normalised by dividing each count by
the appropriate size factor. Finally, a logarithmic transformation was applied
using the “logNormCounts” function [24].

4.3.2 Computation of the signature scores with signifinder
of each sample

I will now present an analysis of the four samples taken from a patient with
HGSOV. The dataset is used to test how signifinder and the public scRNA-seq
signatures, I have included, can be used.

The calculation of scores for each dataset was done using the “multipleSign”
function of signifinder [3]. This function allows for the computation of multiple
signatures simultaneously. I chose all the signatures available in the package
that were developed from both bulk RNA sequencing and scRNA-seq, which
can be calculated in all tissue types. In the ovary sample, I also included all
the signatures that can be calculated in the ovary.

I built the following code for computing the signatures in the ovary sample
dataset. For the omentum, paracolic guts, and peritoneum samples, the code
is the same; the only difference is the parameter indicating the tissue in which
the signature scores can be calculated: I only included “pan-tissue” (all tissues)
and not “ovary”.



1 library(signifinder)
2 sce44 <- readRDS("../sce44_consensusTME.rds")
3 sce <- multipleSign(sce44 , nametype ="SYMBOL",
4 inputType = c("sc", "rnaseq"),
5 whichAssay = "logcounts",
6 tissue = c("ovary", "pan -tissue"),
7 isMalignant = sce44@colData@listData$

consensusTME == "Cancer_cells")

Firstly, the signifinder package is loaded into the R workspace and the Single-
CellExperiment, which is in a .rds file, is read using the "readRDS" function.
As previously stated, the signature scores are calculated with the "multiple-
Sign" function and will be saved in a numeric vector within the "colData"
section of the SingleCellExperiment. Once the data is saved, it is possible to
visualise the scores using some functions in signifinder.

4.3.3 Visualisation with signifinder R package

First of all, I can evaluate the quality of the signatures calculated in the studied
datasets and how well they fit the dataset using the "EvaluationSignPlot"
function [3].

In the graphs created for the datasets corresponding to the ovary, omentum,
paracolic gutters and peritoneum sites, some signatures were omitted, such
as those related to neurological cancers from Barkley’s "stateSign" function:
State_Barkley_NPC, State_Barkley_OPC, and State_Barkley_AC.

The "EvaluationSignPlot" provides a multipanel graph representing vari-
ous characteristics and functionalities. I will discuss the first panel later. In
the second panel, the package shows the percentage of genes used for score
calculation of each signature in the different samples. What can be observed
from the four plots, is that the thresholds for each gene are all above 80%, and
most are above 95%. The percentages of genes used are therefore good for all
signatures.

In the third panel, a box plot shows the percentage of zero values of the
signature genes for the cells in the dataset. This plot can help detect dropout
events: the loss of mRNA transcripts during sequencing or the low gene ex-
pression in a cell, leading to numerous zero values.

In the fourth section, signifinder presents a graph showing the correlation
between the score value and the number of zeros in blue, and the score value
and the total expression value in the cell in pink.

Finally, in the first panel, the goodness percentage of the signature can be
found, which combines the results of the three previously described panels,
providing a value that summarises the quality of the signature in the sample
[3].



What can be observed for the ovary sample dataset is that ten scRNA-seq
based signatures out of thirteen have a goodness percentage above 68%, from
which it can be deduced that they fit this dataset very well (Fig. 4.1).

The percentages related to this type of signature for the other three samples
are slightly less reliable. In particular, the goodness percentages are more
scattered, although for each dataset, more than half have a value above 60%
(Fig. 4.2, 4.3, 4.4).

Figure 4.1: Signature evaluation plot for the ovary sample.

Figure 4.2: Signature evaluation plot for the omentum sample.



Figure 4.3: Signature evaluation plot for the paracolic guts sample.

Figure 4.4: Signature evaluation plot for the peritoneum sample.

Among the explorative plots in signifinder we have the pairwise corre-
lation plot among signatures through the "correlationSignPlot" function [3].
The correlation matrix is composed of all the correlation coefficients between
all the possible pairs of signatures: the more negative the coefficient, the more
the values of the two signatures in all the cells anti-correlate; the more posi-
tive the coefficient, the more the values of the two signatures in all the cells
correlate. The coefficient values are also visually represented by an intense red
colour for positively correlated signatures, gradually changing to an intense
blue for anti-correlated signatures.

With the correlation matrix, it is possible to observe clusters of correlation
between the signatures. In the appendix the description of the corresponding
signature in the Table A.1.



Figure 4.5: Signature correlation plot for the ovary sample.

In figure 4.5, the correlation matrix of the ovary sample dataset is presented.
Compared to the other matrices, it predominantly has less evident correlation
coefficients.

In particular, a cluster of signatures with positive correlation can be de-
tected: ConsensusOV_Chen_MES, EMT_Mak, LRRC15CAF_Dominguez,
EMT_Barkley_cEMT and EMC_Chakravarthy_up. These signatures are
also negatively correlated with ConsensusOV_Chen_DIF.

Secondly, another cluster of positively correlated signatures can be identi-
fied: CellCycle_Barkley, CIN_Carter_70, CIN_Carter_25 and
CellCycle_Davoli.

Although no signatures based on scRNA-seq technology are present, it is
possible to observe the relationship between some signatures linked to the
immune response: IPS_Charoentong is positively correlated with
IPS_Charoentong_MHC, IPS_Charoentong_SC, and IPS_Charoentong_EC,
the latter two are also positively correlated with each other.

In the other three datasets, we predominantly have a greater number of



pairwise correlations, with larger clusters of signatures.

Figure 4.6: Signature correlation plot for the omentum sample.

In the omentum sample dataset (Fig. 4.6), five positively correlated clusters
can be identified:

1. ExpandedImmune_Ayers, ImmuneCyt_Rooney, IPS_Charoentong_SC,
IPS_Charoentong_EC, IPS_Charoentong and ImmuneCyt_Davoli.
These signatures are all related to the immune response.

2. EMT_Barkley_cEMT, State_Barkley_Alveolar, EMT_Barkley_pEMT,
ASC_Smith, CellCycle_Lundberg, EMT_Mak, EMC_Chakravarthy_up,
State_Barkley_Basal and EMC_Chakravarthy_down.

3. State_Barkley_Glandular, State_Barkley_Squamous, Metal_Barkley,
EMT_Barkley_pEMT, State_Barkley_Basal, Hypoxia_Barkley, Hy-
poxia_Buffa, EMC_Chakravarthy_up, ASC_Smith, VEGF_Hu, Cell-
Cycle_Lundberg and IFN_Ayers.

4. The signature CellCycle_Barkley is linked to the signatures Expanded-
Immune_Ayers, ImmuneCyt_Davoli, Oxphos_Barkley and MitoticIn-
dex_Yang.



The correlation matrix also shows a negative correlation between IPS_Cha-
roentong_SC and IPS_Charoentong_EC and the signatures State_Bark-
ley_Glandular, State_Barkley_Squamous, VEGF_Hu, Metal_Barkley,
IFN_Ayers and EMT_Barkley_pEMT.

Figure 4.7: Signature correlation plot for the paracolic guts sample.

In the matrix referring to the paracolic gutters sample (Fig. 4.7), it is also
evident that IPS_Charoentong_SC and IPS_Charoentong_EC are negatively
correlated with EMT_Barkley_pEMT, IFN_Ayers, State_Barkley_Glandu-
lar, State_Barkley_Squamous and State_Barkley_Basal.

Additionally, two positively correlated clusters are evident: the first con-
cerns EMT_Barkley_cEMT, EMT_Mak, EMC_Chakravarthy_down and
EMC_Chakravarthy_up; the second is related to EMT_Barkley_pEMT,
State_Barkley_Basal, State_Barkley_Glandular, State_Barkley_Squamous,
Interferon_Barkley and Oxphos_Barkley.

In the correlation plot of the peritoneum site sample (Fig. 4.8), it can
be observed that IPS_Charoentong_SC, IPS_Charoentong_EC and the gen-
eral signature IPS_Charoentong are positively correlated with each other and
negatively correlated with Hypoxia_Barkley, Stress_Barkley, IFN_Ayers, In-
terferon_Barkley, State_Barkley_Squamous, State_Barkley_Glandular,
EMT_Barkley_pEMT, State_Barkley_Basal, Hypoxia_Buffa, VEGF_Hu,
CellCycle_Lundberg, ASC_Smith and EMC_Chakravarthy_up, which also
tend to be positively correlated with each other.



Figure 4.8: Signature correlation plot for the peritoneum sample.

Finally, we can observe that, in this sample too, EMT_Barkley_cEMT,
EMT_Mak, EMC_Chakravarthy_down and State_Barkley_Alveolar are pos-
itively correlated.

In conclusion, I can observe that in the three metastatic samples there
is a recurrence of correlated clusters, such as some epithelial-to-mesenchymal
transition signatures, some immune response-related signatures and some sig-
natures related to a stress condition, like hypoxia, VEGF, stress or metal
response.

Additionally, these signatures which are linked to a condition of stress,
are anti-correlated with the immune-related signatures: this means that the
tumour microenvironment’s stress conditions may suppress immune activity,
potentially impacting the efficacy of the therapy in these groups of cells. So,
understanding these correlations and anti-correlations can provide valuable
insights into the tumour biology.

To observe how the expression of the above-mentioned signatures is dis-
tributed across cells, I decided to use t-SNE plots. t-SNE, or t-distributed
stochastic neighbour embedding, works using a dimensionality reduction al-
gorithm and helps to represent high-dimensional data in a two-dimensional
scatter plot [25].



To create and export the t-SNE plots as images, I used the R packages
scater, ggplot2, and gridExtra.

Regarding the four HGSOC samples, the t-SNE plots could be exploited
to confirm what has been defined with the correlation plots.

For example, the ConsensusOV_Chen_DIF signature indicates a differ-
entiated subtype of the tumour with high expression of HGSOC markers.
This subtype is usually associated with the longest progression-free survival
(PFS), a measure indicating the period of time in which the patient survives
without the disease aggravating [3]. Malignant cells classified as DIF have
lower expression of expression related to epithelial-to-mesenchymal transition,
as seen in the scores of the EMT signatures by Mak and even more clearly
in the cEMT by Barkley or a mesenchymal state captured by the Consen-
susOV_Chen_MES subtype, in effect, in the correlation matrix these sig-
natures were anti-correlated to ConsensusOV_Chen_DIF. Therefore, we can
identify cellular clusters, where mesenchymal tumour state expression prevails,
indicating cells more prone to dissemination, especially if compared to cells
where the differentiated subtype prevails (Fig. 4.9).



Figure 4.9: tSNE with cells coloured by signature. ConsensusOV_DIF is
compared to EMC_Chakravarthy_up, EMT_Barkley_cEMT, EMT_Mak,
ConsensusOV_Chen_MES and ConsensusOV_Chen_IMR.



Figure 4.10: tSNE with cells coloured by signature. Comparison between
EMT_Mak and EMT_Barkley_cEMT in all samples.

Continuing with EMT, it is also interesting to compare some signatures
based on single-cell RNA sequencing and bulk RNA sequencing.

In particular, by comparing the EMT signatures in the datasets, we can de-
duce that EMT_Barkley_cEMT clusters similarly to EMT_Mak, highlighting
the complete EMT transitions (Fig. 4.10).

Indeed, comparing the genes expressed in the Mak and complete Barkley
signatures using the "geneHeatmapSignPlot" function of signifinder (Fig.
4.11), we can see that the genes shared between the two signatures constitute
most of the EMT_Barkley_cEMT gene set.

Nevertheless, the scRNA-seq-based signature seems more efficient, showing
less homogeneous scores for each cell in the different clusters.

I also found it interesting to compare some cellular responses such as the
interferon response, hypoxic condition, and angiogenesis. From figure 4.12, it is
possible to observe a tendency for the expression of these signatures to overlap,
particularly in the three post-therapeutic metastatic datasets. It is well known
that the angiogenic response can be activated by hypoxic conditions, and the
presence of the Interferon_Barkley signature expression might indicate the
activation of mechanisms that promote the inhibition of angiogenesis.



Figure 4.11: Heatmap of the expression values of EMT_Mak and
EMT_Barkley_cEMT genes using geneHeatmapSignPlot function.



Figure 4.12: tSNE with cells coloured by signature. Comparison among an-
giogenic, hypoxic and interferon responses in all samples.

Finally, it is possible to visualise cellular expression through heatmaps.
signifinder has a specific function called “heatmapSignPlot” that allows com-
paring the scores of the signatures being studied [3]. The function standardises
the scores using a z-score transformation. It also allows dividing the heatmap
into columns by cell type. This function enables the use of all the parameters
of the "Heatmap" function from the R package ComplexHeatmap. Thanks to
this, I was able to group each signature by topic to observe similar signatures
more easily.

By comparing this type of plot for each dataset, I noticed that the expres-
sion of the signatures in the cells of the heatmap representing the ovary sample
(Fig. 4.13) is distributed more uniformly compared to the other three samples
(Fig. 4.14,4.15,4.16), making it less perceptible to identify cellular subgroups
with specific characteristics conferred by the signatures. In the metastatic
sample datasets, a clearer subdivision of cells expressing certain signatures
can be observed.

All three heatmaps tend to have similar gene expression patterns.

Firstly, in fibroblasts, a low expression of signatures related to an im-
mune response and a high profile for EMC_Chakravarthy signatures, linked
to cancer-associated ECM genes and the epithelial-to-mesenchymal transition,
can be observed. Additionally, some cells show a hypoxic state.



Conversely, in cytotoxic and NK cells, the expression profile highlights a
high immune response and a low expression of ECM and EMT-related signa-
tures.

In cancer cells, a more complex profile is evident, with certain groups of cells
showing a low immune score for IPS_Charoentong, IPS_Charoentong_SC,
and IPS_Charoentong_EC signatures, and a high level of scores related to
ECM, EMT, certain cellular states like State_Barkley_Glandular,
State_Barkley_Squamous, and State_Barkley_Basal, and cellular processes
signatures like hypoxia, angiogenesis, oxidative phosphorylation, and inter-
feron response. Other cellular groups, on the other hand, tend to have a
higher immune response.

Figure 4.13: Signature heatmap for the ovary sample.

Figure 4.14: Signature heatmap for the omentum sample.



Figure 4.15: Signature heatmap for the paracolic guts sample.

Figure 4.16: Signature heatmap for the peritoneum sample.

From all the plots shown so far, particularly from the correlation matrices
and gene expression profiles of the heatmaps, two main aspects can be deduced.
The first concerns a change in gene expression from the primary tumour in the
ovary to the metastatic sites sampled after chemotherapy treatment. The
tumour cells in the primary site dataset have more homogeneous and difficult-
to-characterise expression levels. The second aspect concerns the cellular ex-
pression of the three tumour sites subjected to neoadjuvant chemotherapy:
it is possible to identify cellular groups that have a low expression for all
signatures, presenting only a slightly higher immune response. Other cellu-
lar groups, however, show a profile in which signatures might be linked to
greater tumour complexity, due to the overlap of multiple cellular states; and
to attempts at cell survival and proliferation, such as angiogenesis and a high
mesenchymal potential.





Chapter 5

Conclusion

This thesis provides an insight into the impact that high-resolution technolo-
gies, such as single-cell RNA sequencing, could have on cancer research. In
particular, it presents a study highlighting the importance of scRNA-seq-based
signatures and the great need for a tool that can help users exploit them in
their studies.

Thanks to the implementation of new public gene expression signatures
created with high-resolution technologies in signifinder, it is now possible to
have an improved version of the package, which ensures more detailed and
precise analysis of users’ tumour samples.

The collection contains various signatures related to processes and cellular
states that can be detected in all tumours or in specific ones such as glioblas-
toma, metastatic melanoma, or breast cancer, thus allowing their use in a wide
variety of samples.

The functions for computing the scores that I built and incorporated into
signifinder, along with all the auxiliary functions of the package, have made it
possible to create an example analysis of a case study.

The results of the case study on some HGSOV samples highlighted tumour
development before and after chemotherapy, revealing cellular heterogeneity
both spatially and temporally. Spatial heterogeneity is identified within the
tumour samples where it is possible to observe cellular clusters showing pro-
files with resistance characteristics. Temporal heterogeneity is visible through
a comparison between the sample in the primary tumour site and those in
metastases; a less homogeneous distribution of expression profile scores can be
observed in metastatic sites, likely due to tumour changes caused by neoadju-
vant chemotherapy.

It was also possible to compare some signatures on the same topic created

49



with bulk sequencing and single-cell sequencing, This demonstrates that, al-
though applied to scRNA-seq data, the bulk-derived signature might reflect
an average profile across all the types of cells that could not fully capture the
heterogeneity of individual cells.

Therefore, single cell RNA sequencing derived signatures are indispensable
to fully characterise the tumour heterogeneity beyond the classification of cell
types. However, to properly work the single cell signature should cover many
and multiple cell biology aspects and should be representative and tested in a
large number of patients and this is currently far from the state-of-art scenario.

Increasingly developing and integrating signatures from high-resolution tran-
scriptome technologies into tools like signifinder will make the tumour char-
acterization easier and the signatures more accessible and usable for everyone.

Future perspectives for the signifinder package are promising and multi-
faceted. Continued efforts will focus on expanding the collection of both bulk
and scRNA-seq-based gene expression signatures to further enhance the pack-
age’s utility across a wider range of cancer types and research applications.
Additionally, integrating spatial transcriptomics signatures will be a key ob-
jective, as this technology allows for the preservation of spatial context within
the tumour microenvironment, providing an added layer of precision and in-
sight. By continually updating and enriching the database with these diverse
signatures, signifinder will become an even more powerful and indispensable
tool for researchers, enabling comprehensive analyses of tumour samples. This
ongoing development would facilitate deeper understanding of tumour biology
and could contribute to the advancement of personalised cancer therapies.



Appendix A

Supplementary material

Code A.1: Metastatic melanoma signature by Tirosh et al. scoring function.

1 stateSign <- function(
2 dataset , nametype = "SYMBOL", author = "Tirosh", whichAssay

= "norm_expr",
3 isMalignant = NULL , hgReference = "hg38") {
4

5 .consistencyCheck(nametype , "stateSign")
6 .isMalignantCheck(isMalignant , dataset)
7

8 if(nrow(dataset) <2500){stop(
9 "dataset must have at least 2500 genes to compute the

signature")}
10

11 datasetm <- .getMatrix(dataset , whichAssay)
12 dataset <- .dataTransformation(
13 dataset , datasetm , "TPM", hgReference , nametype)
14 datasetm_n <- as.matrix(assays(dataset)[["TPM"]])
15

16 sign_df <- State_Tirosh
17 sign_df$SYMBOL <- .geneIDtrans(nametype , sign_df$SYMBOL)
18

19 .percentageOfGenesUsed(
20 "stateSign", datasetm_n,
21 sign_df$SYMBOL[sign_df$class == "MITF"], "MITF")
22 .percentageOfGenesUsed(
23 "stateSign", datasetm_n,
24 sign_df$SYMBOL[sign_df$class == "AXL"], "AXL")
25

26 sign_df <- sign_df[sign_df$SYMBOL %in% rownames(datasetm_n),
]

27 sign_list <- split(sign_df$SYMBOL , sign_df$class)
28 names(sign_list) <- paste0("State_Tirosh_", names(sign_list))
29

30 datasetm_n <- datasetm_n[,isMalignant]
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31 exp_lev <- log2(datasetm_n/10+1)
32 rel_exp <- exp_lev - rowMeans(exp_lev , na.rm = TRUE)
33

34 agg_exp <- log2(rowMeans(datasetm_n, na.rm = TRUE)+1)
35 ea_bin <- split(
36 sort(agg_exp , na.last = TRUE), factor(
37 sort(round(x = rank(agg_exp) %% 25, digits = 0))))
38 ea_bin <- lapply(ea_bin , function(x){names(x)})
39

40 scores <- as.data.frame(lapply(sign_list , function(x){
41 Gcont <- unlist(lapply(x, function(y){
42 u <- NULL
43 for (i in seq_along(ea_bin)) {
44 if (y %in% ea_bin[[i]]) {
45 u <- i
46 break}}
47 sample(ea_bin[[u]][!(ea_bin[[u]] %in% x)], 100)}))
48 score <- rep(NA, ncol(dataset))
49 SC <- colMeans(
50 rel_exp[x,], na.rm = TRUE)-colMeans(rel_exp[Gcont ,], na.

rm = TRUE)
51 score[isMalignant] <- SC
52 score
53 }))
54

55 return (. returnAsInput(
56 userdata = dataset , result = t(scores), SignName = "",

datasetm))
57

58 }



Table A.1: Table with all the signatures based on scRNA-seq and all the
signatures based on bulk RNA sequencing used for the case study. The table
also offers a description of the score for each signature.

scoreLabel tumor developedWith description
EMT_Miow_Epithelial,
EMT_Miow_Mesenchymal

ovarian cancer microarray,
rnaseq

Double score obtained with ssGSEA to establish the epithelial- and the
mesenchymal-like status in ovarian cancer patients.

EMT_Mak pan-cancer microarray,
rnaseq

Score of the level of epithelial or mesenchymal status in cancer. Positive
score is correlated with mesenchymal while negative score with epithelial.

EMT_Barkley_cEMT,
EMT_Barkley_pEMT

pan-cancer sc

Two cancer module scores are detected and their expression defines re-
current cancer cell states related to epithelial-mesenchymal transition:
a complete mesenchymal module (cEMT) and a partial mesenchymal
module (pEMT) lacking canonical mesenchymal markers such as colla-
gen genes. The two modules may represent two pathways converging on
phenotypic properties conferred by mesenchymal differentiation includ-
ing migration and drug resistance. The expression level of each module
is scored in individual cells: if the score is higher than 0.5, the module is
considered expressed.

Pyroptosis_Ye ovarian cancer rnaseq
Score is based on risk coefficients and expression data of selected pyrop-
tosis genes selected for their association with survival in ovarian cancer
patients. Higher the score higher the risk.

Ferroptosis_Ye ovarian cancer microarray,
rnaseq

A ferroptosis-related prognostic gene signature for ovarian cancers. High
scores mean high-risk, poor overall survival and low immune cells infil-
tration.

LipidMetabolism_Zheng epithelial ovarian cancer rnaseq
A prognostic signature based on lipid metabolism for ovarian cancer pa-
tients. Higher the scores higher the risk and poorer the overall survival
of patients.

Hypoxia_Buffa pan-cancer microarray A highly prognostic signature. The score increasement reflects hypoxia
activity.

Hypoxia_Barkley pan-cancer sc

The module score expression defines a recurrent cancer cell state related
to hypoxia activity. The expression level of each module is scored in
individual cells: if the score is higher than 0.5, the module is considered
expressed.

ImmunoScore_Hao epithelial ovarian cancer microarray,
rnaseq

An immune related signature to investigate the in situ immune activity
in ovarian cancer and the response to chemotherapy. High immune score
displayed overall high expression of favorable prognostic genes.

ImmunoScore_Roh pan-cancer rnaseq

The score is based on expression of genes involved in cytolytic mark-
ers, HLA molecules , IFN-γ pathway genes, chemokines, and adhesion
molecules. It is used to investigate immune activation in tumor mi-
croenvironment, higher the score higher the immune system activation
on relation to tumor rejection.

ConsensusOV_Chen_IMR,
ConsensusOV_Chen_DIF,
ConsensusOV_Chen_PRO,
ConsensusOV_Chen_MES

high-grade serous ovarian
carcinoma

microarray,
rnaseq

It implements a consensus classifier of the four major subtype classifiers
for high-grade serous ovarian cancer as described by Helland et al. (PLoS
One, 2011), Bentink et al. (PLoS One, 2012), Verhaak et al. (J Clin
Invest, 2013), and Konecny et al. (J Natl Cancer Inst, 2014), thereby
providing reliable stratification of patients with high-grade serous ovarian
tumors of clearly defined subtype.

IPS_Charoentong
IPS_Charoentong_MHC,
IPS_Charoentong_CP,
IPS_Charoentong_EC,
IPS_Charoentong_SC

pan-cancer rnaseq

Five immune related scores are returned: the overall immune score (IPS),
the EC score for effector cells (activated CD8+/CD4+ T cells), the SC
score for immuno suppressive cells, the MHC score for antigen processing
molecules, the CP score for co-inhibitory and co-stimulatory molecules.

MitoticIndex_Yang pan-cancer rnaseq

The mitotic-index is constructed from genes that have been highly vali-
dated as being cell proliferation markers. The score reflects the fraction
of dividing cells in a sample and can be used as a predictors of normal/-
cancer status.

ImmuneCyt_Rooney pan-cancer microarray,
rnaseq

The score is a quantitative measure of immune cytolytic activity based on
transcript levels of two key cytolytic effectors, granzyme A and perforin.
High scores are associated with counter-regulatory immune responses and
improved prognosis.

IFN_Ayers pan-cancer rnaseq

IFN-γ Score based on genes related to IFN-γ predicts clinical response to
PD-1 checkpoint blockade. Higher scores are found in responders. Sig-
nature derives from patients undergoing treatment with Pembrolizumab
in clinical trials using multiple distinct tumor types. The score is higher
in responders.

ExpandedImmune_Ayers pan-cancer rnaseq

The score predict clinical response to PD-1 checkpoint blockade based
on genes associated with cytolytic activity, pro-inflammatory cytoki-
nes/chemokines, T cell markers, NK cell activity, antigen presentation
and T cell checkpoints. The score is higher in responders.

Tinflam_Ayers pan-cancer rnaseq

The score is derived by the expression of T cell–inflamed representing
genes and it predicts the response to Pembrolizumab across multiple
solid tumors. A T cell–inflamed phenotype is necessary for the clinical
activity of PD-1–/PD-L1–directed monoclonal antibodies. The score is
higher in responders.

CIN_Carter_25,
CIN_Carter_70

pan-cancer microarray

The score characterizes aneuploidy in tumor samples based on coordi-
nated aberrations in expression of genes localized to each chromosomal
region. Higher the score higher the total level of chromosomal aberra-
tion. Net overexpression of this signature was predictive of poor clinical
outcome in six cancer types.

CellCycle_Lundberg pan-cancer rnaseq It is a representative of general cell-cycle activity and could be applied
to any tissue sample. Higher scores represent a worse prognosis.

CellCycle_Davoli pan-cancer microarray,
rnaseq

Cell cycle signature score represents the expression of a set of genes con-
sidered molecular markers of proliferation. Higher the score higher the
proliferation. High level is associated with high level of SCNA (somatic
copy number alterations).

CellCycle_Barkley pan-cancer sc

The module score expression defines the subset of cancer cells that is
cycling at the time of the sampling. The expression level of each module
is scored in individual cells: if the score is higher than 0.5, the module is
considered expressed.



ASC_Smith pan-cancer microarray,
rnaseq

The adult stem cell (ASC) signature explores the relationship between
human stem cell and cancer transcriptional programs. Higher the scores,
aggressive the cancer, poorer the clinical outcome. The ASC signature
is associated with the presence of specific genomic and alterations and
methylation profiles.

ImmuneCyt_Davoli pan-cancer microarray,
rnaseq

Cytotoxic immune signature score represents the expression of a set of
genes considered molecular markers of cytotoxic CD8+ T cells and NK
cells. Higher score higher immune response. The score is associated with
arm and chromosome aneuploidy thus low level of SCNA (somatic copy
number alterations).

Chemokines_Messina pan-cancer microarray

Chemokine score to predict host immune reaction and the formation of
unique ectopic lymph node-like structures associated with better over-
all survival. Higher the score the more lymph node-like structures are
present better the prognosis in melanoma patients.

ECM_Chakravarthy_up,
ECM_Chakravarthy_down pan-cancer rnaseq

Two ECM ssGSEA scores are derived from cancer-associated extracel-
lular matrix (ECM) genes and predict response to immune checkpoint
blockade. Higher the ECM_up score and lower the ECM_down score
worst the prognosis. Scores are inversely correlated with tumor purity
and ECM_up directly correlated with CAFs presence and TGF-b acti-
vation.

HRDS_Lu ovarian cancer, breast can-
cer

microarray,
rnaseq

A score based on homologous recombination deficiency (HRD), higher
the score better the platinum response, the patient outcome, and higher
presence of BRCA mutations or inactivation.

VEGF_Hu pan-cancer microarray
VEGF profile is a prognostic score that correlates with glycolytic en-
zymes, hypoxia and vessel formation in distant metastasis, higher the
score worst the overall and relapse-free survival.

DNArep_Kang serous ovarian cystadeno-
carcinoma microarray

A DNA Repair based score for prediction of outcomes in ovarian cancer
treated with platinum-based chemotherapy. The higher the score the
better the prognosis.

IPSOV_Shen ovarian cancer microarray

Single sample gene set enrichment (ssGSEA) analysis was used for the
immune genes from ImmPort database to develop an immune-based prog-
nostic score for OV (IPSOV). IPSOV is a prognostic signature which
stratifyies patients into low- and high-immune risk score and could be
used to predict overall survival outcome in patients with ovarian cancer.
The patients with low IPSOV scores have longer survival time.

State_Barkley_Alveolar,
State_Barkley_Basal,
State_Barkley_Squamous,
State_Barkley_Glandular,
State_Barkley_Ciliated,
State_Barkley_AC,
State_Barkley_OPC,
State_Barkley_NPC

pan-cancer sc

Eight pan-cancer cellular states scores related to cell identity are re-
turned. AC, OPC and NPC are neurological cancer-specific modules.
The expression level of each module is scored in individual cells: if the
score is higher than 0.5, the module is considered expressed.

LRRC15CAF_Dominguez

pancreatic adenocarci-
noma, breast cancer, lung
cancer, ovarian cancer,
colon cancer, renal can-
cer, esophageal cancer,
stomach adenocarcinoma,
bladder cancer, head and
neck squamous cell carci-
noma

rnaseq

Signature characterizing a population of cancer associated fibroblasts
(CAFs) programmed by TGFB and expressing LRRC15 protein. This
population has been initially identified in the stroma of pancreatic duc-
tal adenocarcinoma, but it was also present in multiple cancer types from
TCGA. An increased expression of the signature was observed in patients
who fail to respond to ICB therapy specifically in immune-excluded tu-
mors.

Stress_Barkley pan-cancer sc

The module score expression defines a recurrent cancer cell state related
to stress respose. The expression level of each module is scored in in-
dividual cells: if the score is higher than 0.5, the module is considered
expressed.

Interferon_Barkley pan-cancer sc
The module score expression defines a recurrent cancer cell state related
to interferon. The expression level of each module is scored in individual
cells: if the score is higher than 0.5, the module is considered expressed.

Oxphos_Barkley pan-cancer sc

The module score expression defines a recurrent cancer cell state related
to oxidative phosphorylation. The expression level of each module is
scored in individual cells: if the score is higher than 0.5, the module is
considered expressed.

Metal_Barkley pan-cancer sc

The module score expression defines a recurrent cancer cell state related
to metal response. The expression level of each module is scored in
individual cells: if the score is higher than 0.5, the module is considered
expressed.

State_Neftel_MES1,
State_Neftel_MES2,
State_Neftel_AC,
State_Neftel_OPC,
State_Neftel_NPC1,
State_Neftel_NPC2

glioblastoma sc

Six glioblastoma cellular states scores are returned. MES2-like state is as-
sociated with high expression of mesenchymal-related, hypoxia-response,
stress and glycolytic genes. This is an evidence that in some tumors
the mesenchymal state is linked to hypoxia conditions and increased
glycolysis. MES1-like state is also associated with high expression of
mesenchymal-related genes, but it is hypoxia independent. The AC-like
state includes astrocytic markers. The OPC-like state includes oligo-
dendroglial markers. The NPC1-like state contains neural progenitor
markers; OPC-related genes are included and they reflect the potential
of NPCs to differentiate towards OPCs. The NPC2-like state also con-
tains neural progenitor markers; neuronal lineage genes are included and
they reflect the potential of NPCs to differentiate towards neurons.

State_Tirosh_MITF,
State_Tirosh_AXL

metastatic melanoma sc

Two metastatic melamoma cellular states are returned. MITF program
includes MITF and other MITF target genes. The second state is AXL
program. It includes genes related to AXL and it is linked to resistance
to various targeted therapies such as treatment with RAF and MEK
inhibitors.

SCSubtype_Wu_Basal,
SCSubtype_Wu_Her2E,
SCSubtype_Wu_LumA,
SCSubtype_Wu_LumB

breast cancer sc

The scores are the result of a developed single-cell method of intrinsic
subtype classification to reveal recurrent neoplastic heterogeneity. Four
scores are returned that describe two luminal-like subtypes, LumA and
LumB, a basal-like subtype (Basal), and and a human epidermal growth
factor receptor enriched subtype (Her2E). Each score is calculated for
each cell, the highest score value indicates the subtype to which the cell
belongs to.
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