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Abstract

In this thesis work, we will carry out the renormalization group equations
(RGEs) program in the context of theories with axion-like particles (ALPs).
After specifying the ALP Effective Field Theory, in the first part of this
thesis we will evaluate the relevant RGEs through standard one-loop calcu-
lations based on Feynman diagram techniques. Instead, the second part of
the thesis, which represents an original contribution of the present work, is
devoted to reproduce the ALP RGEs via on-shell amplitude methods, which
have been proven to be quite powerful to study the ultraviolet properties
of quantum field theories. The results of this thesis represent a crucial step
towards the development of a two-loop RGEs program for ALP theories,
which is missing so far in the literature.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been validated down to
scales close to 10−16 cm. Despite of its success, the SM fails to account for
several observations, such as dark matter, neutrino masses and the cosmo-
logical matter-antimatter asymmetry, which are indications that the present
theory requires further extensions. Additionally, the unnatural smallness of
some parameters, as for example the CP violating angle of quantum chro-
modynamics (QCD) and the value of the cosmological constant cannot be
explained in a satisfactory way within the SM framework.

Axion-like particles (ALPs) are light scalar or pseudoscalar spinless sin-
glets of the SM gauge group that naturally arise in theories where an unspec-
ified U(1) global symmetry is both anomalous and spontaneously broken at
high energy. Indeed, their lightness, relative to the scale Λ of new physics
from which they stem, can be ascribed to their pseudo Nambu-Goldstone
boson nature. They represent well motivated relics of new physics in a va-
riety of explicit extensions of the SM. Their name is derived from the QCD
axion, which was introduced by Peccei, Quinn et al. to address the strong
CP problem. While the physical parameters of the QCD axion – its mass
and decay constant – are closely related to each other, the ones associated
to ALPs are arbitrary parameters to be determined or bounded by exper-
iments. In this respect, ALPs can be regarded as a generalization of the
QCD axion that are motivated by a wealth of other arguments, and they
have often been suggested as possible particle physics solutions to the SM
open problems briefly outlined before.

The phenomenology of ALPs at low energies can be described by ef-
fective operators. The leading-order interactions with SM fields can be pa-
rameterized in terms of the Wilson coefficients of dimension-five operators,
suppressed by 1/Λ. The ALP Effective Field Theory (EFT) considered in
this thesis work has been introduced in Ref. [31] and it violates the CP sym-
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2 Introduction

metry, regardless of the scalar or pseudoscalar nature of the ALP. From the
experimental point of view, these CP violating interactions have an impact
on the permanent electric dipole moments (EDMs) of particles, nucleons,
nuclei and molecules, with contributions that are expected to be by far
dominant with respect to those predicted by the SM. Due to the lack of any
significant SM background, flavor-diagonal CP violating observables, such
as the permanent EDMs, represent indeed a very promising opportunity to
probe these new physics scenarios. A fundamental point is that these observ-
ables are measured at very low energies, whereas the ALP EFT is defined
around the electroweak scale. In this framework, the renormalization group
equations (RGEs), which describe the evolution of the Wilson coefficients of
the ALP EFT as functions of the energy scale, play a crucial role, and their
calculation at one-loop order is the objective of this thesis.

This calculation can be performed in several ways. The standard one
is based on Feynman diagrams and allows to extract the RGEs for any
given operator from the divergences of the integrals associated to each loop
diagram. However, this approach requires the computation of complicated
mathematical objects which are not individually gauge invariant and involve
off-shell intermediate states in internal propagators. Yet, other methods for
computing the RGEs exist which allow to circumvent such unnecessary com-
plications; among these are for instance those based on on-shell amplitudes.
These are by construction gauge invariant quantities which only know about
on-shell degrees of freedom. They are especially advantageous for dealing
with massless particles with spin, such as gluons, where the focus on the
two physical helicities eliminates the need to introduce gauge redundan-
cies, removing at the same time intricate cancellations among large num-
bers of Feynman diagrams. The most natural language to deal with on-shell
massless particles is provided by the spinor-helicity formalism [33], in which
Poincaré covariance is efficiently implemented.

This thesis work is structured as follows. In Chapter 2, some of the most
important open problems in particle physics are outlined, with a particular
attention to the strong CP problem, which led to the formulation of the
QCD axion solution. In Chapter 3 we review the renormalization program
of EFTs, while in Chapter 4 we describe the specific CP violating ALP EFT
considered in this thesis. Then, in Chapter 5 we perform the calculation
at one-loop order of the RGEs corresponding to the Wilson coefficients of
the theory with the standard Feynman diagrammatic approach, concluding
the first part of the thesis. The objective of the second part is to reproduce
the results of the RGEs through on-shell amplitude methods. In particu-
lar, in Chapter 6 we lay the foundations of such methods introducing the
spinor-helicity formalism and analyzing the symmetry properties of scatter-
ing amplitudes. Additionally, the BCFW recursion relation is introduced
and the relevant three-particle amplitudes involving the ALP and SM par-
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ticles are reported. Finally, in Chapter 7, we discuss the on-shell method of
form factors [22], which is based on the unitarity of the S-matrix. We then
apply it to obtain the RGEs of the CP violating ALP EFT and we com-
pare them to the ones computed with the standard Feynman diagrammatic
approach.





Chapter 2

Motivations for axion physics

Our current understanding of elementary particle physics is described by
the Standard Model (SM), a renormalizable quantum field theory (QFT)
that has been corroborated by a number of astonishing accurate predictions,
e.g. the measurement of the magnetic dipole moment of the electron, that
culminated with the discovery of a scalar boson with a mass of 125 GeV in
2012 at LHC: the Higgs boson. However, despite these successes, there are
extremely good reasons to believe it is not complete and that several efforts
are needed in order to obtain a reasonable answer to some of the problems
that are left unsolved. Finding a suitable extension of the SM is now the
main challenge of particle physics.

In this Chapter we will outline the fundamental open questions that
the SM is not able to answer, with a particular emphasis to the strong
CP problem, reviewed in Section 2.2. The most compelling solution to
this problem is represented by the QCD axion, a new hypothetical spinless
elementary quantum field originally postulated by Peccei and Quinn in 1977,
which is described in Section 2.3. Finally, in Section 2.4, we see how the QCD
axion can be generalized through the introduction of axion-like particles,
whose mass and decay constant are arbitrary parameters to be measured or
bounded by experiments, which are able to solve other open problems.

2.1 Open problems in particle physics

2.1.1 Observational problems

The first class of open questions in particle physics arises from experimental
observations, primarily in astrophysics and cosmology, which lack a coher-
ent or satisfactory explanation within the SM. These "external" problems
necessitate the presence of new physics beyond the SM to account for the
observed phenomena.
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6 Motivations for axion physics

Neutrino masses: experiments studying neutrino oscillations have demon-
strated that at least two out of the three known left-handed neutrino
families must have a non-vanishing mass. To explain this, several
mechanisms have been proposed, and the two most popular ones in-
volve the introduction of new sterile fermion fields. The first mech-
anism suggests that the left-handed SM neutrinos acquire their mass
through a Dirac mass term by interacting with new light right-handed
neutrino fields. Alternatively, the see-saw mechanism proposes that
the left-handed SM neutrinos are coupled with new heavy neutrino
fields, resulting in the SM neutrinos having a small mass while the
sterile ones possess a much larger mass. In the latter case, neutrinos
would be considered as Majorana particles.

Dark matter abundance: extensive evidence strongly suggests that more
than 95% of the total matter in the Universe does not emit any sizeable
radiation and is not composed of baryonic matter. This non-emitting
and non-baryonic matter, known as dark matter, represents a perplex-
ing mystery that drives the search for physics beyond the SM. Indeed,
the cosmological abundance of dark matter cannot be accounted for
by any particle within the SM framework. These new particles must
be stable, very weakly interacting, and non-relativistic. Several can-
didates have been proposed, such as the axion, which can provide the
observed amount of cold DM through the misalignment mechanism.
Other candidates are present in supersymmetric extensions of the SM,
such as gravitinos and neutralinos.

Matter-antimatter asymmetry: the matter-antimatter asymmetry ob-
served in the Universe cannot be adequately explained within the
framework of the SM. The level of CP violation introduced by SM
interactions is insufficient to support an efficient baryogenesis mecha-
nism. To address this issue, various proposals have been put forward to
dynamically generate the matter-antimatter asymmetry from an ini-
tial symmetric state. Many of these solutions involve the introduction
of new physical fields. Interestingly, the observed dominance of matter
over antimatter could potentially be explained through a leptogenesis
mechanism, driven by the decay of new heavy leptonic states such as
the heavy neutrinos of the see-saw mechanism.

Cosmological inflation: in the field of cosmology, the inflationary epoch
during the early stages of the Universe is widely regarded as essen-
tial for resolving fundamental issues within the standard cosmological
model. These issues include the horizon problem, the flatness problem,
and the relic problem. By introducing a non-SM scalar field that drives
an accelerated period of inflationary expansion in the early Universe,
it becomes possible to address all of these problems simultaneously.



2.1 Open problems in particle physics 7

Along with them, one should also take into account the recently confirmed
discrepancy between the theoretically predicted and the observed value of
the anomalous magnetic moment of the muon, as well as the so-called B
flavor anomalies, from which we observed some hints of the breaking of
lepton universality in the b quark decays.

2.1.2 Theoretical problems

This category of open questions in particle physics arises from theoretical
concerns originating from the SM formulation itself, and thus can be viewed
as "internal" problems. Typically, these issues revolve around the character-
istics of coupling constants or the masses of SM fields.

Hierarchy problem: it revolves around the mass of the Higgs field. In
absence of any protective symmetry, the Higgs boson mass is subject
to quantum corrections that are proportional to the square of the
next new physics scale beyond the electroweak scale. Therefore, the
hierarchy problem involves explaining why the mass of the Higgs boson
is significantly smaller than the Planck mass MPl ≈ 1019 GeV, which
is the next known new physics scale above which we cannot neglect
the contribution of gravity and the predictions of SM are no longer
valid.

Flavor problem: it pertains to the values attributed to masses and mix-
ing parameters within the fermion sector of the SM. These parameters
exhibit a wide range of values, spanning nearly five orders of mag-
nitude. This is evident when considering the significant disparity in
mass between the lightest measured fermion (me = 511 keV) and the
heaviest one (mt ≈ 173 GeV). Accommodating such substantial differ-
ences poses challenges within the framework of the Higgs mechanism,
which assigns fermions a mass determined by the product of the Higgs
vacuum expectation value and the entries of the Yukawa matrices. In-
deed, one would typically expect these entries to be of a similar order
of magnitude.

Strong CP problem: the structure of the QCD vacuum brings a new term
into the SM Lagrangian: the θ-term

LSM ⊃ θ
g2s

32π2
GaµνG̃a

µν , (2.1)

which violates the combination of charge (C) and parity (P) symmetry,
with θ being a dimensionless parameter. We then expect some CP
violating phenomena in the QCD sector. However, the measurements
of the electric dipole moment of the neutron lead to the bound |θ| .
10−10. This situation is analogous to the hierarchy problem, where
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again, the SM does not have any mechanism to explain why the θ
parameter is so tiny. This problem is analyzed more in detail in the
next Section.

2.2 Strong CP problem
With the development of quantum chromodynamics (QCD) in the 1970s, a
puzzling problem arose. The QCD Lagrangian density for N quark flavors

LQCD = −1

4
Ga

µνG
aµν +

N∑
i=1

q̄i(i /D −mi)qi , (2.2)

where

Ga
µν = ∂µA

a
ν − ∂νAa

µ + gsf
abcAb

µA
c
ν (2.3)

is the QCD field strength tensor and the covariant derivative acting on the
quark field is defined as

Dµqi = (∂µ + igsT
aAa

µ)qi , (2.4)

is invariant under the global symmetry

U(N)V × U(N)A = SU(N)L × SU(N)R × U(1)V × U(1)A (2.5)

in the limit in which the quarks are massless. Since mu and md are much
lighter than the QCD scale ΛQCD ≈ 150 MeV, this approximate symmetry
is realized at least for N = 2. Indeed, the fact that the vector symmetry
corresponding to isospin times baryon number U(2)V = SU(2)I × U(1)B is
a good approximate symmetry of nature is experimentally confirmed by the
appearance of nucleon and pion multiplets in the spectrum of hadrons.

2.2.1 U(1) problem

However, the axial symmetry is spontaneously broken by the dynamical
formation of quark condensates 〈q̄q〉 6= 0, and the four pseudo Nambu-
Goldstone bosons associated with the spontaneous breakdown of U(2)A are
expected to emerge in the hadronic spectrum. Despite the lightness of pions,
there is no sign of another light state in the hadronic spectrum, as m2

η � m2
π,

which suggests that U(1)A might not be a symmetry of strong interactions.
This is known as the U(1) problem [69]. On the other hand, the absence of
strong CP violation was believed to be one of the main successes of QCD.

After a few years, a new perspective emerged with the discovery of
Yang-Mills instantons [10] and the non-trivial QCD vacuum structure [21,
46], which contradicted the previous viewpoint. The solution of the U(1)
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problem resulted in the emergence of the strong CP problem, which was an
unexpected outcome.

The chiral anomaly for axial currents [3, 11, 6] provides a possible solu-
tion to the U(1) problem. Indeed, while at classical level and in the massless
quark limit ∂µJµ

5 = 0, the divergence of the axial current Jµ
5 gets a non-zero

contribution at quantum level from the triangle diagrams SU(3)2cU(1)A

Jµ
5

which connects it to two gluon fields with quarks running inside the loop:

∂µJ
µ
5 =

g2sN

32π2
Ga

µνG̃
aµν , (2.6)

where

G̃aµν =
1

2
εµνρσGa

ρσ (2.7)

is the QCD dual field strength tensor. Hence, the global U(1)A transforma-
tion acting on the quark wavefunctions as

qi −→ eiαγ5/2qi , (2.8)

with i = 1, . . . , N , shifts the action by a quantity equal to

δS = α

∫
d4x ∂µJ

µ
5 = α

g2sN

32π2

∫
d4xGa

µνG̃
aµν . (2.9)

This is a pure surface integral because the pseudoscalar density Ga
µνG̃

aµν can
be expressed as the divergence of a four-vector Kµ, known as Chern-Simons
current

Ga
µνG̃

aµν = ∂µK
µ = ∂µ[ε

µνρσAa
ν(G

a
ρσ −

gs
3
fabcAb

ρA
c
σ)] , (2.10)

and, as a consequence, it bears no effects in perturbation theory. However,
there exist classical configurations, which are topologically non-trivial, such
that the effects of this term cannot be ignored.

2.2.2 Yang-Mills instanton solutions

By going to Euclidean space E4 by means of a Wick rotation and using
Gauss’s theorem, we can write∫

d4xGa
µνG̃

a
µν =

∫
d4x ∂µKµ =

∫
S3

dσµKµ , (2.11)
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where S3 is the three-sphere at infinity and dσµ is an element of its hypersur-
face. If we use the naive boundary conditions for the gauge field Aa

µ|S3 = 0
at infinity, we realize that the variation of the action δS vanishes and U(1)A
appears to be a symmetry again. However, if we instead apply a gauge
transformation on the connection

Aµ = Aa
µT

a −→ A′
µ = A′a

µ T
a = SAµS

−1 +
i

gs
(∂µS)S

−1 , (2.12)

resulting in

Gµν = Ga
µνT

a −→ G′
µν = G′a

µνT
a = SGµνS

−1 , (2.13)

we observe that, while G′
µν |S3 = 0 so that the variation of the action is

still finite, A′
µ is a pure gauge at infinity, i.e. A′

µ|S3 = ig−1
s (∂µS)S

−1. With
these modified boundary conditions, it turns out that there are gauge con-
figurations for which δS 6= 0, and thus U(1)A is not a symmetry of QCD.
In particular, this is achieved if S cannot be continuously deformed into
the identity in group space. Considering the subgroup SU(2) of SU(3)
and restricting the connection to this subgroup, the gauge potentials pro-
vide a mapping S3 → S3, being S3 the group space of SU(2). Indeed, if
M ∈ SU(2), then it can be written as

M = a1 + i~b · ~σ , (2.14)

with the real coefficients a and ~b satisfying a2 + |~b|2 = 1, which is the
equation of a three-sphere S3 ⊂ E4. It can be shown that, for mappings of
non-trivial topology, the integral in Eq. (2.11) counts the number of times
the hypersphere at infinity is wrapped around the group manifold S3. More
precisely,

ν =
g2s

32π2

∫
d4xGa

µνG̃
a
µν ∈ Z (2.15)

is called winding number or Pontryagin index. As a consequence, in Eu-
clidean space SU(2) field configurations of finite action fall in homotopy
classes of different winding number, whose value cannot be modified by
means of a deformation of the gauge configuration that maintains the ac-
tion finite. Concerning SU(3) gauge configurations, they can be classified
in the same SU(2) homotopy classes because any mapping from S3 into any
simple Lie group G can be continuously deformed into a mapping to a SU(2)
subgroup of G, hence with no change of homotopy class.

Solutions of the classical equations of motion in Euclidean space with
non-trivial winding number are called instantons, because they are localized
in all the four dimensions, and represent an interpolation between a vacuum
state |n〉 (pure gauge) with homotopy class n at t = −∞ and another vacuum
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state |m〉 with homotopy class m at t = +∞. Indeed, returning to the
physical Minkowski space and choosing the temporal gauge Aa

0 = 0 so that
Ki = 0, we can write the Pontryagin index in Eq. (2.15) as

ν =
g2s

32π2

∫
d4x ∂0K

0 =
g2s

32π2

∫
d3xK0

∣∣t=+∞
t=−∞ = m− n , (2.16)

and the tunnelling amplitude, in the semiclassical WKB approximation, is
of the order of the exponential of the instanton action exp(−Sν), with Sν =
8π2|ν|/g2s : the transition amplitude between vacua belonging to different
homotopy classes is not null.

2.2.3 QCD θ-vacua

Given that in the theory there are infinite minima in the potential, the
vacuum is infinitely degenerate. This implies that the ground state can be
written as the superposition of all the vacua:

|θ〉 =
∑
n∈Z

einθ |n〉 , (2.17)

where θ is a global fundamental constant characterising the boundary con-
dition on the wavefunction and that can be interpreted as an angle, be-
cause the previous expression is left invariant if θ → θ + 2π. Vacua satis-
fying Eq. (2.17) are called θ-vacua, and the presence of the factor exp(inθ)
ensures the invariance of |θ〉 under gauge transformations. Indeed, under
the action of a large gauge transformation realized by the unitary operator
U(gν) = U(g1)

ν , which cannot be continuously deformed to the identity, the
n-vacuum is shifted:

|n〉 −→ U(gν) |n〉 = |n+ ν〉 , (2.18)

resulting in

|θ〉 −→ U(gν) |θ〉 = e−iνθ |θ〉 ∼ |θ〉 , (2.19)

where the last step is the equivalence relation between vacua, which are
equivalent if they differ by a phase. This means that |θ〉 is an eigenstate
of the unitary operator of the gauge transformation and is physically well-
defined. Each |θ〉 is the ground state of an independent sector of the Hilbert
space. In fact, given the observable O, it must be gauge invariant, and, in
particular, it must commute with any gauge group element:

[O, U(gν)] = 0 . (2.20)

Taking two different vacua θ 6= θ′, this implies that

0 = 〈θ|[O, U(gν)]|θ′〉 = (e−iνθ′ − eiνθ) 〈θ|O|θ′〉 , (2.21)



12 Motivations for axion physics

so the only possibility is

〈θ|O|θ′〉 = 0 , (2.22)

which is a superselection rule between vacua. This means that the Hilbert
space is divided in different sectors which cannot communicate with each
other: any observable connecting two different vacua would give zero.

The vacuum-to-vacuum transition amplitude can be computed using
Eq. (2.17):

〈θ+|θ−〉 =
∑

n,m∈Z
ei(n−m)θ 〈m+|n−〉 =

∑
ν∈Z

eiνθ
∑
m∈Z
〈m+|(ν +m)−〉 , (2.23)

and, exploiting the definition of the winding number in Eq. (2.15), the phase
factor exp(iνθ) can be replaced by an effective contribution to the QCD
action. Indeed, using the path integral formulation, we can write the above
transition amplitude as

〈θ+|θ−〉 =
∑
ν∈Z

∫
D[A, q, q̄] eiSeff[A,q,q̄]δ

(
ν− g2s

32π2

∫
d4xGaµνG̃a

µν

)
, (2.24)

where

Seff[A, q, q̄] = SQCD[A, q, q̄] + θ
g2s

32π2

∫
d4xGaµνG̃a

µν . (2.25)

The resolution of the U(1) problem, by recognizing the complicated
nature of the QCD vacuum, effectively adds an extra term to the QCD
Lagrangian

Lθ = θ
g2s

32π2
GaµνG̃a

µν , (2.26)

which violates both parity (P) and time reversal (T) symmetries, and hence,
because of CPT theorem, it violates CP. The most sensitive flavor-diagonal
CP violating observable is the neutron electric dipole moment (EDM), which
is defined in terms of the non-relativistic Hamiltonian

HNR = −dn ~E · Ŝ (2.27)

and that can be written as the following Lorentz invariant dimension-five
Lagrangian density

L = −dn
i

2
n̄σµνγ5nFµν . (2.28)

Calculations based on QCD sum-rules [65] yield

|dn| = 2.4(1.0)× 10−16|θ| e cm , (2.29)
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which, compared to the current experimental limit [2]

|dexp
n | < 1.8× 10−26 e cm (90% CL) , (2.30)

implies the bound

|θ| . 10−10 . (2.31)

Understanding the smallness of θ consists in the so-called strong CP prob-
lem.

Actually, if one considers the effect of chiral transformations on the θ-
vacuum, the problem is even worse. In fact, because of the chiral anomaly
in Eq. (2.6), the θ-vacuum is shifted under the application of a chiral trans-
formation:

|θ〉 −→ eiαQ5 |θ〉 = |θ + α〉 . (2.32)

Then, if one considers a general complex quark mass matrix M , as in the
case where weak interactions are included, so that the mass term is given
by

Lmass =

N∑
i,j=1

q̄iRMijqjL + h.c. , (2.33)

then only the combination

θ̄ = θ + arg detM (2.34)

is left invariant under a global axial transformation, and hence physically
observable. Now the problem is understanding the reason why the sum of
these two uncorrelated coefficients should amount to such a small, fine-tuned
value. Indeed, θ and M have completely different and independent origins,
and one would expect, in absence of any symmetry, θ̄ to be of order one.

Additionally, if the value of θ̄ is not protected by any symmetry, it
can receive radiative corrections from the interactions of quarks and gluons.
However, it has been shown that in the SM the radiative corrections to θ̄
are extremely small, due to the fact that the leading contribution to the
radiatively induced θ̄ arises at seven-loop level, and it is of the order of
10−33 log ΛUV [32], where ΛUV is an ultraviolet (UV) cutoff. Therefore, if
the tree-level value of θ̄ is small at the UV scale, it will remain radiatively
small when we run down to the QCD scale.

2.2.4 Possible solutions

Several solutions to the strong CP problem have been proposed. In the
following, some of them are outlined.
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Massless quark solution: if one of the quarks had no mass, then the con-
tribution arg detM would always be zero. This would mean that we
could rotate the quark fields without any consequence, and the amount
of CP violation, measured by the angle θ̄, would be unphysical and
could be changed arbitrarily. However, nowadays we know that there
are no massless quarks in nature by experimental matching with lattice
calculations, so this option can be disregarded.

Soft P (CP) breaking: it is possible that either P or CP are symmetries
of the high-energy theory, which would make the θ̄ term equal to zero.
This idea was first suggested by Nelson [58] and Barr [7] and later
discussed in the context of grand-unified models. Now, P has to be
broken at some point to explain the chiral structure of the SM, and
CP needs to be broken to generate the CKM phase. In these scenarios,
the θ̄ term can be calculated, and the main challenge is to create the
observed CP violation in the quark sector without causing the θ̄ term
to be too large. This can be achieved, but it might require some fine-
tuning or a somewhat unusual model building approach.

QCD solutions: the resolution to the strong CP problem could lie hid-
den in the infrared dynamics of QCD. However, efforts to explore this
possibility by manipulating the topology of spacetime to trivialize the
QCD vacuum [48] or through the use of confinement-induced screen-
ing [66] have often failed to provide a comprehensive solution to both
the strong CP problem and the associated U(1) problem.

Axion solutions: a new pseudoscalar degree of freedom – the QCD axion
– is introduced in such a way that the θ̄ term is dynamically driven
to zero [63, 62]. In the next Section we will outline this idea, which,
among the other solutions, is the most compelling one, and can be
experimentally tested at low energies.

2.3 QCD axion
The QCD axion has been proposed by Peccei and Quinn (PQ) [63, 62] in
order to address the strong CP problem. The solution is based on the in-
troduction of an approximate U(1)PQ global chiral symmetry, called PQ
symmetry, realized at high energies. This symmetry necessarily has to pos-
sess the following characteristics:

• it is spontaneously broken at some high energy scale fa;

• it is anomalous under strong interactions.

From Goldstone’s theorem, for every spontaneously broken generator
of a continuous internal symmetry, a new massless particle – a Goldstone
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boson – appears. Hence, the first property ensures the existence of a massless
pseudoscalar field: the QCD axion a(x). The action of the symmetry group
U(1)PQ effectively shifts the value of the axion field by a constant term

a(x) −→ a(x) + κfa , (2.35)

where fa is called axion decay constant, while the SM fields are left un-
changed.

On the other hand, with the second property, which tells us that the PQ
symmetry is not exact but is rather broken at quantum level, the QCD axion
field ceases to be a pure Goldstone boson and instead becomes a pseudo
Nambu-Goldstone boson (pNGB). This fact allows the axion to develop a
non-null mass term and the interaction with the gluon field needed to cancel
the θ̄ parameter. Indeed, if the shift symmetry transformation in Eq. (2.35)
leaves the action invariant up to the term

δS =
g2sκ

32π2

∫
d4xGa

µνG̃
aµν , (2.36)

the axion develops the anomalous coupling

a

fa

g2s
32π2

Ga
µνG̃

aµν . (2.37)

The axion effective Lagrangian is then

La =
1

2
(∂µa)(∂

µa) + L

(
∂a

fa
, ψ

)
+

a

fa

g2s
32π2

Ga
µνG̃

aµν (2.38)

and, since the parameter κ is arbitrary, it can be chosen in such a way
that the θ̄ term is driven to zero. This is indeed achieved simply by setting
κ = −θ̄. Additionally, the Vafa-Witten theorem, which states that parity
cannot be spontaneously broken in QCD, ensures that the axion potential
has a CP preserving minimum for 〈a〉 = 0. Therefore, the QCD axion
field naturally evolves towards the CP preserving minimum of the scalar
potential generated by the pseudoscalar density GG̃, solving in a dynamical
fashion the strong CP problem. This mechanism is known as Peccei-Quinn
mechanism. Moreover, the same scalar potential provides a non-vanishing
mass term that satisfies the relation

mafa =

√
mumd

mu +md
mπfπ , (2.39)

which implies

ma ≈ 5.7

(
1012 GeV

fa

)
µeV (2.40)
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and makes the axion a compelling DM candidate.

The QCD axion can can develop not only anomalous couplings to the
pseudoscalar densities of vector bosons, but also derivative interactions with
the fermion axial current. Its effective Lagrangian then reads

La =
1

2
(∂µa)(∂

µa)+
∂µa

2fa
cijf f̄iγ

µγ5fj+
a

fa

g2s
32π2

Ga
µνG̃

aµν+
1

4
gaγaFµνF̃

µν ,

(2.41)

where a sum over the fermions f is understood and i, j are flavor indices.

We can conclude this Section by highlighting the fact that the QCD
axion solution to the strong CP problem does not depend on the specific
UV completion of the chosen axion model. The crucial requirement is the
existence of a spontaneously broken global U(1)PQ symmetry at high ener-
gies, which is anomalous under strong interactions. This appealing property
forms the foundation for various QCD axion models developed over the
years, as well as the extensions of axions to ALPs.

2.4 Axion-like particles
Physicists have been driven to explore the potential of addressing additional
unresolved issues within the SM by proposing the presence of axion-like par-
ticles (ALPs), thanks to the adaptability and straightforwardness of axion
models.

ALPs are light scalar or pseudoscalar spinless bosons that originate from
the spontaneous breaking of an unspecified U(1) global symmetry at high
energy that is both anomalous and spontaneously broken. As the QCD
axion, ALPs are pNGBs associated with this symmetry, which implies the
lightness of their mass compared to the energy scale at which the global
symmetry gets broken. However, their physical quantities – the mass and
the decay constant, as well as the couplings to other particles – are arbitrary
parameters to be determined or bounded by experiments and that do not
have to satisfy the strict relation in Eq. (2.39). Indeed, with this regard,
ALPs can be understood as a generalization of the QCD axion.

Among the several ALP model that have been suggested to dynamically
address some of the unresolved issues in particle physics, we can mention,
excluding the QCD axion, the following two proposals.

Relaxion: this ALP is able to address the hierarchy problem by directly
interacting with the Higgs field and influencing its evolution during
the early stages of the Universe [42]. Specifically, the ALP potential
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enables the Higgs field to explore various values of its vacuum expec-
tation value across a wide range of energy scales, eventually settling
at the electroweak scale.

Flaxion: the objective of this ALP solution is to provide an explanation
for the flavor structure of the SM. Alternatively, certain flaxion mod-
els [39] introduce a new complex field, where the angular component
behaves as the axion, while the radial degree of freedom can serve as
the inflaton during the early stages of the Universe.

Furthermore, various anomalies can be solved by the ALPs, for example
the longstanding discrepancy of the anomalous magnetic moment of the
muon [55] or the excess in excited Beryllium decays 8Be∗ → 8Be+e+e− [50].

The explicit ALP effective Lagrangian considered in this thesis work is
described in Chapter 4, only after having outlined the general concept of
Effective Field Theories and their renormalization program.





Chapter 3

Renormalization of Effective
Field Theories

In this Chapter we will introduce the concept of Effective Field Theories
(EFTs), which represent a powerful tool to describe the behaviour of a sys-
tem at a certain energy scale. In particular, they provide a general frame-
work to study new physics effects in a systematic way.

An EFT is the simplest field theory characterized by a certain number
of degrees of freedom, some symmetries and a set of expansion parameters,
allowing computation of physical effects to a given precision in terms of a
finite set of parameters directly deducible from experiments.

3.1 EFT expansion
If the scale separation between the SM and new physics is sufficiently large,
it is then possible to consider the SM as a leading order approximation in the
EFT expansion of a new fundamental theory. In the EFT framework, it is
legitimate to parametrize new physics effects in terms of effective operators
without referring to any UV model. Therefore, we can write the effective
Lagrangian as

LEFT = LSM +
∑
n>4

∑
i

c
(n)
i

Λn−4
O

(n)
i , (3.1)

where Λ is the energy scale above which the EFT ceases to be valid. The
effective operators O

(n)
i have a mass dimension that is equal to n

[O
(n)
i ] = n (3.2)

19
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and must respect the postulated symmetries, such as Lorentz invariance and
gauge invariance. An infinite set of such operators exist, but importantly
there exists only a finite set of operators for each dimension n. On the other
hand, c(n)i are the corresponding dimensionless Wilson coefficients. The
scale Λ has been factored out since LEFT has to be treated as an expansion
in powers of 1/Λ.

The EFT Lagrangian represent a bridge that connects the UV theory at
the high-energy scale with experimental measurements at low-energy scales.
This connection can be exploited in both directions.

Bottom-up approach: the philosophy of this approach is to parametrize
the EFT Lagrangian without any assumption of specific UV theory. By
considering power counting arguments, described in the next Section,
it is possible to truncate the EFT expansion, keeping only the relevant
terms that are expected to give significant deviations from the SM. In
this way, the truncated EFT will coincide with the low-energy limit of
the UV model.

Top-down approach: the spirit of this approach is to study the implica-
tions at low-energy scales of the specific UV theory. The procedure to
construct this connection consists of three steps.

1. Firstly, we can separate the light degrees of freedom of the sys-
tem, denoted with ϕ`, from the heavy ones ϕh, namely those
that cannot go on-shell at low-energies. Then the UV generating
functional reads

ZUV[J`, Jh] =

∫
D[ϕ`, ϕh] exp

[
i

∫
d4x(LUV(ϕ`, ϕh) + J`ϕ` + Jhϕh)

]
(3.3)

and fully characterizes the UV theory. However, in the EFT we
only need the correlators of ϕ`, hence we want to integrate out
the heavy degrees of freedom. We can thus identify the effective
generating functional as

ZEFT[J`] = ZUV[J`, Jh = 0] , (3.4)

which is associated with an EFT Lagrangian, defined by

ZEFT[J`] =

∫
Dϕ` exp

[
i

∫
d4x(LEFT(ϕ`) + J`ϕ`)

]
. (3.5)

In general, the resulting LEFT is non-local, but can be approxi-
mated by a local Lagrangian exploiting the expansion in powers
of 1/Λ. This step is called matching.
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2. The second step, named running, consists in evolving the Wilson
coefficients from the UV scale down to lower energy scales where
experimental measurements are performed, using the renormal-
ization group equations (RGEs).

3. In the third step (mapping) we can finally compute physical quan-
tities of interest considering the EFT Lagrangian at these low-
energy scales.

These two approaches are complementary: with the bottom-up approach
we can obtain model-independent constraints for the values of the Wilson
coefficients from precision measurements, while the top-down approach can
help us understand which EFT operators have significant contributions.

3.2 Power counting
The contributions of the effective operators to any observable are suppressed
by powers of (v/Λ)n−4 relative to the contributions of the SM operators, if
the relevant energies in the process of interest are of order the electroweak
scale v. In order to understand this point we can follow Ref. [54] and consider
a scattering amplitudeM in four spacetime dimensions. Working at a given
energy scale E, the insertion of a single operator of dimension n gives a
contribution to the amplitude of order

M∼
(
E

Λ

)n−4

(3.6)

by dimensional analysis, since the operator has a coefficient of mass dimen-
sion 1/Λn−4. This means that the insertion of a set of higher dimension
operators leads to an amplitude

M∼
(
E

Λ

)N

, (3.7)

where

N =
∑
i

(ni − 4) (3.8)

and the sum is over all the inserted operators. This equation is known as
EFT power counting formula and tells us how to organize the calculation:
at leading order we can only use LSM; corrections of order E/Λ are given
by diagrams with a single insertion of a dimension-five operator; (E/Λ)2

corrections are provided by diagrams with a single insertion of a dimension-
six operator or two insertions of dimension-five operators, and so on.

This means that, at loop-level, if a diagram with two insertions of O(5)

operators is divergent, we must need a counterterm which is a O(6) operator.
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Its Wilson coefficient might vanish for a specific value of the renormalization
scale µ, but in general it evolves with µ by the RGEs. Continuing in this
way, we generate the infinite series of term of the EFT expansion of Eq. (3.1).
Indeed, we can generate operators of arbitrarily high dimension by multiple
insertions of operators with dimension n > 4. For this reason EFTs are
referred to as non-renormalizable theories, because an infinite number of
higher dimension operators are needed to renormalize the theory. However,
as long as we are interested to corrections at a given accuracy, there are only
a finite number of operators that contribute.

3.3 Anomalous dimension matrix
When we construct the effective Lagrangian, we dissociate the contributions
stemming from virtual particles into short- and long-distance modes:∫ ∞

0

dω
ω

=

∫ ∞

Λ

dω
ω

+

∫ Λ

0

dω
ω
, (3.9)

where the Wilson coefficients c(n)i (Λ) absorb the contributions of the first
term since they are sensitive to the UV physics, while the second term is
sensitive to IR physics and is absorbed into the matrix elements of the
effective operators 〈O(n)

i (Λ)〉 [59]. If we perform a measurement at a char-
acteristic energy scale E (with v � E ≤ Λ), then we can integrate out the
high-energy fluctuations of the light SM fields, namely those with frequen-
cies ω > E, from the generating functional, as shown in Eq. (3.4). The
effective operators O

(n)
i are the same of before since the degrees of freedom

are not changed, but in general the resulting effective Lagrangian is differ-
ent. Indeed, now the Wilson coefficients c(n)i (E) absorb the contributions of
the high-energy modes

∫∞
E dω/ω and correspondingly the low-energy modes∫ E

0 dω/ω are absorbed into the operator matrix elements 〈O(n)
i (E)〉. The

key point is that the matrix elements of the effective Lagrangian

LEFT = LSM +
∑
n>4

∑
i

c
(n)
i (µ)

Λn−4
O

(n)
i (µ) (3.10)

are, by construction, independent of the arbitrary factorization scale µ, with
v ≤ µ ≤ Λ, which separates high-energy from low-energy contributions.
Here c(n)i (µ) are the renormalized Wilson coefficients and O

(n)
i (µ) the cor-

responding renormalized composite operators, while µ is at the same time
the renormalization scale of these quantities.

In analogy with the standard renormalization procedure for renormal-
izable theories, we can write the bare operators of dimension n in terms of
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the renormalized ones as

O
(n)
i,0 = Z

(n)
ij (µ)O

(n)
j (µ) , (3.11)

where Z(n) is a matrix in the space of the operators that takes into account
operator mixing effects. It contains the wavefunction renormalization pa-
rameters Z1/2

Φ associated with each component field Φ in O
(n)
i , as well as

the renormalization parameters absorbing the UV divergences of the loop
corrections to the operator matrix elements. From the fact that the bare
operators are scale independent, we can write

0 =
dO

(n)
i,0

d log µ
=

dZ
(n)
ij (µ)

d log µ
O

(n)
j (µ) + Z

(n)
ij (µ)

dO
(n)
j (µ)

d log µ
, (3.12)

which can be solved setting

dO
(n)
j (µ)

d log µ
= −γ(n)ij (µ)O

(n)
i (µ) , (3.13)

where

γ
(n)
ij (µ) = (Z−1)

(n)
jk (µ)

dZ
(n)
ki (µ)

d log µ
. (3.14)

On the other hand, if we exploit the scale independence of the effective
Lagrangian, we find

0 =
d

d log µ

(
c
(n)
i (µ)O

(n)
i (µ)

)
=

(
dc

(n)
i (µ)

d log µ
δij − c(n)i (µ)γ

(n)
ji (µ)

)
O

(n)
j (µ) ,

(3.15)

namely

dc
(n)
i (µ)

d log µ
= γ

(n)
ij (µ)c

(n)
j (µ) . (3.16)

These are the RGEs for the renormalized Wilson coefficients, which describe
their evolution as the energy scale changes. The matrix γ(n)ij is called anoma-
lous dimension matrix and implicitly depends on the renormalization scale
µ through the renormalized marginal couplings.





Chapter 4

Effective Field Theory for
CP violating axion-like
particles

In Chapter 2 we have outlined the main open problems in particle physics.
In particular, we have analyzed the strong CP problem. Its most compelling
solution, the QCD axion, is extremely simple and elegant since it only relies
on the existence of a U(1) global symmetry at high energies that is both
anomalous and spontaneously broken at the energy scale fa. When have
outlined in Section 2.4 the fact that the QCD axion has been generalized in
order to address additional unresolved problems in particle physics, such as
the hierarchy problem or the flavor problem, with the introduction of ALPs.

ALPs can display a limited range of interactions, which include anoma-
lous couplings to gauge boson pseudoscalar densities, derivative interac-
tions with matter fields, and non-derivative interactions with SM fields that
slightly break their shift symmetry. Additionally, ALPs do not need to
adhere to any accidental symmetries of the SM, making them capable of
generating tree-level flavor-changing neutral currents effects. This charac-
teristic makes ALPs particularly intriguing for experimental investigations
aimed at detecting them.

A new line of research studies the possibility to probe ALPs through CP
violating effects that would translate in observable permanent electric dipole
moments (EDMs) of molecules, atoms, nuclei and nucleons. The ALP EFT
considered in this thesis work has been introduced by Di Luzio, Gröber and

25
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Paradisi [31] and reads

Lφ = e2
Cγ

Λ
φFµνFµν + g2s

Cg

Λ
φGaµνGa

µν +
v

Λ
yijS φf̄ifj

+ e2
C̃γ

Λ
φFµνF̃µν + g2s

C̃g

Λ
φGaµνG̃a

µν + i
v

Λ
yijP φf̄iγ5fj ,

(4.1)

which is the most general SU(3)c × U(1)em gauge invariant effective La-
grangian containing operators up to dimension-five. Here

Fµν = ∂µAν − ∂νAµ , F̃µν =
1

2
εµνρσF

ρσ , (4.2)

Ga
µν = ∂µA

a
ν − ∂νAa

µ + gsf
abcAb

µA
c
ν , G̃a

µν =
1

2
εµνρσG

a ρσ , (4.3)

are the EM and QCD field strengths and their respective dual tensors
(ε0123 = +1), while f ∈ {e, u, d} denotes the SM fermions in the mass
basis and i, j are flavor indices that appear in the Hermitian matrices yS
and yP .

The second line of this Lagrangian correspond to the shift symmetry
invariant sector, since the pseudoscalar Yukawa interactions between the
ALP and fermions can be written as ∂µφ

Λ f̄iγ
µγ5fj by integrating by parts

and exploiting the equations of motion. This is a dimension-five operator
that is explicitly shift invariant.

On the other hand, the first line correspond to the sector that breaks
explicitly the shift symmetry. The normalization factor v/Λ associated with
the scalar Yukawa interaction is justified by the fact that, in the unbroken
phase of the SM, scalar interactions can be written as φHf̄i ,L(R)fj ,R(L).

This effective Lagrangian is assumed to arise from integrating out some
some new heavy particles at a scale Λ of global symmetry breaking, which
is far above the electroweak scale v = 246 GeV and is typically assumed to
be greater than 1 TeV. The Wilson coefficients, starting from this scale Λ,
evolve at lower-energy scales according to their RGEs, whose derivation at
one-loop level is the goal of this thesis work. Their renormalization is medi-
ated by QED and QCD interactions, while weak interactions are neglected
in a first approximation.

Moreover, the mass of the ALP φ is assumed to be mφ & few GeV,
which means that, in the following, QCD can be treated perturbatively.
The reason why we have factored out the gauge couplings e2 and g2s in front
of the interactions between the ALP and the gauge bosons is given by the
fact that, as we will see extensively, the couplings Ca and C̃a, with a = γ, g,
turn out to be scale invariant at one-loop order.

As previously mentioned, this effective Lagrangian violates the CP sym-
metry. This is evident if we specialize to the interaction with photons:



27

FµνF
µν = 2| ~B|2 − 2| ~E|2 is CP even, while FµνF̃

µν = −4 ~E · ~B is CP odd.
Therefore, we cannot assign any CP transformation prescription to the ALP
which is able to preserve the CP symmetry in both sectors of the Lagrangian.
However, it is important to highlight that the two sectors do not violate CP
individually, but is only their copresence that is CP violating. Indeed, the
set of the Jarlskog invariants of the ALP EFT, namely those rephasing-
invariant parameters that provide a measure of the CP violation, are given
by products of the Wilson coefficients belonging to the two sectors:

CaC̃b , yiiS C̃a , yiiPCa , yiiSy
jj
P , yikS y

kk
SMy

kj
P , (4.4)

where a, b = γ, g and ykkSM are the SM Yukawa couplings in the diagonal
basis.

From the phenomenological point of view, the most important signa-
tures of a CP violating ALP are provided by EDMs. In general, the intrinsic
angular momentum of a particle couples to external electric and magnetic
fields, with strengths characterized by the electric and magnetic dipole mo-
ments, respectively. For a spin-1/2 fermion f , the non-relativistic Hamilto-
nian describing these interactions reads

HNR =
afeQf

2mf
~σ · ~B − df~σ · ~E , (4.5)

where ~σ is the vector of Pauli matrices and af and df are the magnetic and
EDMs of the fermion, while Qf and mf are its charge and mass. From this
classical expression we can already deduce the transformation properties of
the magnetic and EDMs, respectively, under CP: if the theory is invariant
under CP, the only term which is allowed is the coupling to the magnetic
field. The corresponding relativistic Lagrangian is

L = −
afeQf

4mf
f̄σµνfFµν −

i

2
df f̄σ

µνγ5fFµν , (4.6)

where the first term is CP even and the second one is CP odd due to the
presence of the γ5 matrix. The SM predictions for the EDMs of the elec-
tron and the neutron are loop suppressed are respectively given by |dSMe | .
10−44 e cm and |dSMn | . 10−34 e cm, while their experimental bounds are
|dexpe | . 10−29 e cm and |dexpn | . 10−26 e cm. We can now understand the
reason why the permanent EDMs of molecules, atoms, nuclei and nucleons
could represent CP violating signatures of ALPs. Examples of diagrams con-
tributing to the fermion EDMs induced by ALP interactions are represented
in Figure 4.1.
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FIG. 1. Leading contributions to the semi-leptonic nucleon-electron operators. The combination of light-blue and purple blobs
refer to CPV e↵ective interaction vertices.

In particular, the full set of Jarlskog invariants of our
ALP EFT reads

CaC̃b, y
ii
S C̃a, y

ii
P Ca, y

ii
S y

jj
P , y

ik
S y

kk
SM y

ki
P , (8)

where a, b = �, g and y
kk
SM denotes a SM Yukawa coupling

in the diagonal basis. Notice that only the last invariant
of eq. (8) is sensitive to flavor-violating e↵ects. More-
over, as we will see, at the two-loop level all the above
invariants will be generated.

III. EFFECTIVE LAGRANGIAN FOR EDMS

The leading low-energy CPV Lagrangian relevant for
EDMs of molecules, atoms, nuclei and nucleons reads [26]

LCPV =
X

i,j=u,d,e

Cij(f̄ifi)(f̄ji�5fj) + ↵sCGe GG ēi�5e

+ ↵sCG̃e GG̃ ēe�
i

2

X

i=u,d,e

dif̄i(F ·�)�5fi

�
i

2

X

i=u,d

gsd
C
i f̄i(G·�)�5fi +

dG

3
f
abc

G
a
G̃

b
G

c
, (9)

where we omitted color-octet 4-quark operators (as they
are induced only at one-loop level in the ALP framework)
and the dim-4 GG̃ operator. The latter is assumed to
be absent thanks to a UV mechanism solving the strong
CP problem. Within our EFT, Cij , CGe and CG̃e are
generated by the Feynman diagrams of fig. 1 and read

Cij '
v
2

⇤2

y
ii
S y

jj
P

m
2
�

, CGe =
4⇡

m
2
�

v

⇤2
Cgy

ee
P , (10)

while CG̃e $ CGe via the replacement Cgy
ee
P $ C̃gy

ee
S .

The last term of eq. (9) refers to the Weinberg operator
which is generated by the representative diagrams shown
in fig. 2. The related Wilson coe�cient dG reads

dG '
gs↵s

(4⇡)3

X

i=t,b

v
2

⇤2

y
ii
S y

ii
P

4m2
i

h(xq) +
3gs
⇡2

g
4
sCgC̃g

⇤2
log

⇤

m�
(11)

where the first term refers to the two-loop diagram and
h(0) = 1 [23]. Instead, the second term of eq. (11) arises
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FIG. 2. Leading contributions to the Weinberg operator.
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FIG. 3. Leading contributions to the fermionic (C)EDMs.

from the one-loop diagrams of fig. 2 and enjoys a very
large enhancement factor with respect to the naive di-
mensional analysis expectation. As a result, we antici-
pate that dG will provide the by far dominant e↵ects to
EDMs as induced by CgC̃g.

Finally, we analyse the fermionic (C)EDMs induced by
ALP interactions. The leading contributions stem from
the Feynman diagrams reported in fig. 3 and read

di

e
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X

k
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16⇡2

mk
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Re(yikS y

ki
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Figure 4.1: Examples of loop diagrams contributing to the EDMs of
fermions induced by the ALP interactions. From Ref. [31].



Chapter 5

Renormalization of ALP
EFT via Feynman diagrams

This Chapter is devoted to the computation at one-loop level of the anoma-
lous dimension matrix of the ALP EFT previously defined in Chapter 4,
through the standard techniques based on Feynman diagrams.

5.1 Dimensional regularization
The UV divergences that are present when computing loop diagrams only
appear in the intermediate steps of the calculations. Indeed, when the coun-
terterms are added to the Lagrangian density order by order in perturbation
theory, these divergences cancel in all predictions for physical observables.
In order to isolate the UV divergences, a regularization scheme is required.
Ideally, it should respect all the symmetries of the theory, such as Lorentz
and gauge invariance, and should not spoil the analytic structure of scat-
tering amplitudes. The dimensional regularization scheme [1] preserves all
these properties. Additionally and most importantly, it does not spoil the
EFT expansion in powers of 1/Λ at loop-level. It consists in replacing the
four-dimensional loop integrals by d-dimensional ones∫ d4k

(2π)4
−→

∫ ddk

(2π)d
, (5.1)

where d = 4− ε and ε is an infinitesimal parameter. In this way, as we will
see, UV singularities show up as 1/ε` pole terms, and, when the counterterms
are added, these pole terms cancel and we can take the limit ε→ 0.

29
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5.1.1 The issue of γ5 and the BMHV scheme

It was soon realized that the three common properties valid in d = 4

{γ5, γµ} = 0 , (5.2)
Tr(γµγνγργσγ5) = −4iεµνρσ , (5.3)
Tr(AB) = Tr(BA) , (5.4)

are inconsistent in d 6= 4. Indeed, this statement follows from the fact that
the combination of these three properties leads to

dTr(γµγνγργσγ5) = (8− d)Tr(γµγνγργσγ5) , (5.5)

heance, either d = 4 or the trace must vanish. This means that, in d = 4− ε
dimensions, we must renounce at least one of them.

The Breitenlohner-Maison-’t Hooft-Veltman (BMHV) scheme [1, 18] is
mathematically well-defined and consistent. This scheme gives up the anti-
commutation property of γ5. In particular, the d-dimensional Minkowski
spacetime is regarded as a direct sum of two orthogonal subspaces: one that
is four-dimensional and the other of dimension d− 4. Concerning the Dirac
gamma matrices, they can thus be decomposed as

γµ︸︷︷︸
d-dim.

= γ̄µ︸︷︷︸
4-dim.

+ γ̂µ︸︷︷︸
(d−4)-dim.

, (5.6)

which satisfy

{γ̂µ, γ̄ν} = 0 , γµγ̄
µ = 41 , γµγ̂

µ = (d− 4)1 , γ̄µγ̂
µ = 0 . (5.7)

On the other hand, the definition of γ5 is intrinsically four-dimensional:

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ̄

µγ̄ν γ̄ργ̄σ . (5.8)

In this way, the modified anti-commutation relations read

{γ5, γµ} = {γ5, γ̂µ} = 2γ5γ̂
µ , {γ5, γ̄µ} = 0 , [γ5, γ̂

µ] = 0 . (5.9)

Only the original four-dimensional γ̄µ fully anti-commute with γ5.

5.2 Dimensional analysis
The starting point of the renormalization procedure consists in observing
that, if we use dimensional regularization, which lowers the number of space-
time dimensions from 4 to d = 4 − ε, then the mass dimensions of the
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fields change. Indeed, requiring the action to remain dimensionless, the
Lagrangian density must have a mass dimension equal to d:

0 = [S] =

[ ∫
ddxL

]
=

[ ∫
ddx

]
+ [L ] = −d+ [L ] . (5.10)

Therefore, from the kinetic term of each field species, we can obtain the new
mass dimensions. In particular

• for spin-0 fields

d = [(∂µφ)(∂
µφ)] = 2[∂] + 2[φ] = 2 + 2[φ] (5.11)

implies

[φ] =
d− 2

2
=

2− ε
2

; (5.12)

• for spin-1/2 fields

d = [ψ̄ /∂ψ] = [∂] + 2[ψ] = 1 + 2[ψ] (5.13)

leads to

[ψ] =
d− 1

2
=

3− ε
2

; (5.14)

• for spin-1 fields

d = [(∂νVµ)(∂
νV µ)] = 2[∂] + 2[Vµ] = 2 + 2[Vµ] (5.15)

implies as for the scalar case

[Vµ] =
d− 2

2
=

2− ε
2

. (5.16)

Accordingly, the mass dimensions of the ALP EFT composite operators are
modified.

Regarding the bare ALP effective Lagrangian, we can write it as

L 0
φ = e20

Cγ,0

Λ
φ0F

µν
0 F0,µν + g2s,0

Cg,0

Λ
φ0G

aµν
0 Ga

0,µν +
v0
Λ
yijS,0φ0f̄i,0fj,0

+ e20
C̃γ,0

Λ
φ0F

µν
0 F̃0,µν + g2s,0

C̃g,0

Λ
φ0G

aµν
0 G̃a

0,µν + i
v0
Λ
yijP,0φ0f̄i,0γ5fj,0 ,

(5.17)

where the bare Wilson coefficients have a mass dimension that explicitly
depends on ε. Indeed, from

[φ0F
µν
0 F0,µν ] = [φ0F

µν
0 F̃0,µν ] = 5− 3

2
ε , (5.18)
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[φ0G
aµν
0 Ga

0,µν ] = [φ0G
aµν
0 G̃a

0,µν ] = 5− 3

2
ε , (5.19)

[φ0f̄i,0fj,0] = [iφ0f̄i,0γ5fj,0] = 4− 3

2
ε , (5.20)

it follows that

[e20Cγ,0] = [e20C̃γ,0] =
ε

2
, (5.21)

[g2s,0Cg,0] = [g2s,0C̃g,0] =
ε

2
, (5.22)

[yijS,0] = [yijP,0] =
ε

2
. (5.23)

5.3 Renormalized effective Lagrangian
The next step consists in writing the bare effective Lagrangian in Eq. (5.17)
in terms of renormalized fields and coefficients. This is achieved with the
introduction of the renormalization parameters: regarding the fields we can
set

φ0 = Z
1/2
φ φ , Aµ,0 = Z1/2

γ Aµ , (5.24)

Aa
µ,0 = Z1/2

g Aa
µ , fi,0 = Z

1/2
f fi , (5.25)

while the bare Wilson coefficients can be written in terms of the renormalized
ones through

e20Cγ,0 = ZCγe
2Cγµ

ε/2 , e20C̃γ,0 = Z
C̃γ
e2C̃γµ

ε/2 , (5.26)

g2s,0Cg,0 = ZCgg
2
sCgµ

ε/2 , g2s,0C̃g,0 = Z
C̃g
g2s C̃gµ

ε/2 , (5.27)

v0y
ij
S,0 = Zik

S vy
kj
S µ

ε/2 , v0y
ij
P,0 = Zik

P vy
kj
P µ

ε/2 , (5.28)

where the renormalization scale µ, with [µ] = 1, has been introduced to
keep the renormalized Wilson coefficients dimensionless. Once we have de-
fined the renormalization parameters, we can write the bare Lagrangian in
Eq. (5.17) as

L 0
φ = ZCγZγe

2Cγ

Λ
µε/2φFµνFµν + ZCgZgg

2
s

Cg

Λ
µε/2φGaµνGa

µν

+ Zik
S Zf

v

Λ
ykjS µ

ε/2φf̄ifj + Z
C̃γ
Zγe

2 C̃γ

Λ
µε/2φFµνF̃µν

+ Z
C̃g
Zgg

2
s

C̃g

Λ
µε/2φGaµνG̃a

µν + iZik
P Zf

v

Λ
ykjP µ

ε/2φf̄iγ5fj .

(5.29)

Note that we have neglected the renormalization parameter Zφ associated
with the ALP wavefunction. This is justified by the fact that the ALP
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propagator can receive loop corrections from diagrams containing at least
two effective vertices, each of which is of order 1/Λ

3.3 d-dimensional Feynman rules 17

Aa

µ,0 = Z1/2
g Aa

µ , fi,0 = Z1/2
f

fi , (3.16)

while the bare Wilson coe�cients can be written in terms of the renormalized
ones through

e20C�,0 = ZC�e
2C�µ

"/2 , e20 eC�,0 = Z eC�
e2 eC�µ

"/2 , (3.17)

g2s,0Cg,0 = ZCgg
2
sCgµ

"/2 , g2s,0 eCg,0 = Z eCg
g2s eCgµ

"/2 , (3.18)

yij
S,0 = Zik

S ykj
S
µ"/2 , yij

P,0 = Zik

P ykj
P
µ"/2 , (3.19)

where the renormalization scale µ, with [µ] = 1, has been introduced to
keep the renormalized Wilson coe�cients dimensionless. Once we have de-
fined the renormalization parameters, we can write the bare Lagrangian in
Eq. (3.8) as

L
0
�
= ZC�Z�e

2C�

⇤
µ"/2�Fµ⌫Fµ⌫ + ZCgZgg

2
s

Cg

⇤
µ"/2�Gaµ⌫Ga

µ⌫

+ Zik

S Zf

v

⇤
ykj
S
µ"/2�f̄ifj + Z eC�

Z�e
2
eC�

⇤
µ"/2�Fµ⌫ eFµ⌫

+ Z eCg
Zgg

2
s

eCg

⇤
µ"/2�Gaµ⌫ eGa

µ⌫ + iZik

P Zf

v

⇤
ykj
P
µ"/2�f̄i�5fj .

(3.20)

Note that we have ignored the renormalization parameter Z� associated to
the ALP wavefunction. This is justified by the fact that the ALP propagator
can receive loop corrections from diagrams containing at least two e�ective
vertices, each of which is of order 1/⇤

� � = O(⇤�2) (3.21)

and consequently Z� = O(⇤�2).

3.3 d-dimensional Feynman rules
�f̄f operator

�

f̄j

fi

= i
v

⇤
yij
S
µ"/2 (3.22)

= O(Λ−2) (5.30)

and consequently Zφ = 1 + O(Λ−2). Thus, it becomes relevant only when
operators of dimension greater than five are taken into account. For the same
reason, the renormalization parameters associated with the wavefunctions
of fermion, photon and gluon fields are computed within the SM, namely
without considering loop corrections mediated by ALP interactions.

The bare Lagrangian in Eq. (5.29) can now be written as a sum of two
structurally identical Lagrangians

L 0
φ = L ren.

φ + L ct
φ , (5.31)

where

L ren.
φ = e2

Cγ

Λ
µε/2φFµνFµν + g2s

Cg

Λ
µε/2φGaµνGa

µν +
v

Λ
yijS µ

ε/2φf̄ifj

+ e2
C̃γ

Λ
µε/2φFµνF̃µν + g2s

C̃g

Λ
µε/2φGaµνG̃a

µν + i
v

Λ
yijP µ

ε/2φf̄iγ5fj

(5.32)

denotes the renormalized Lagrangian, and

L ct
φ = (ZCγZγ − 1)e2

Cγ

Λ
µε/2φFµνFµν + (ZCgZg − 1)g2s

Cg

Λ
µε/2φGaµνGa

µν

+ (Zik
S Zf − δik)

v

Λ
ykjS µ

ε/2φf̄ifj + (Z
C̃γ
Zγ − 1)e2

C̃γ

Λ
µε/2φFµνF̃µν

+ (Z
C̃g
Zg − 1)g2s

C̃g

Λ
µε/2φGaµνG̃a

µν + i(Zik
P Zf − δik)

v

Λ
ykjP µ

ε/2φf̄iγ5fj

(5.33)

is the counterterm one. As we will see, order by order in the perturbative
expansion, these counterterms give rise to additional Feynman rules, which
have the effects of cancelling the UV divergences stemming from Feynman
diagrams constructed with the renormalized vertices. In the minimal sub-
traction scheme, the requirement

loop amplitude + counterterm = + = finite
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(5.34)

fixes the counterterms Zi− 1 to be proportional to the divergent terms 1/ε`

as ε→ 0

Zi − 1 =
∞∑
`=1

Z
(`)
i

ε`
, (5.35)

where the coefficients Z(`)
i do not depend on ε and can be written as a

perturbative expansion in the couplings. At one-loop level (` = 1), we will
actually use the modified minimal subtraction (MS) scheme, which exploit
the freedom of adding the constant term log(4π)− γE to the counterterms

Zi − 1 ∝ ∆ε =
2

ε
− γE + log(4π) , (5.36)

where γE ≈ 0.57721 is the Euler-Mascheroni constant.

5.3.1 d-dimensional Feynman rules

The d-dimensional Feynman rules associated with the renormalized effective
operators in L ren.

φ read as follows

φf̄f operator:

φ

f̄j

fi

= i
v

Λ
yijS µ

ε/2 ; (5.37)

iφf̄γ5f operator:

φ

f̄j

fi

= − v
Λ
yijP µ

ε/2γ5 ; (5.38)

φFF operator:

p

q

φ

µ

ν

= 4ie2
Cγ

Λ
µε/2(qµpν − p · qgµν) ; (5.39)
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φFF̃ operator:

p

q

φ

µ

ν

= 4ie2
C̃γ

Λ
µε/2εµναβpαqβ ; (5.40)

φGG operator:

p

q

φ

µ; a

ν; b

= 4ig2s
Cg

Λ
µε/2(qµpν − p · qgµν)δab ; (5.41)

p1
p2

p3

φ µ; a

ν; b

ρ; c

= 4g3s
Cg

Λ
µεfabc[gµν(p1 − p2)ρ

+ gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ] ;

(5.42)

φ

µ; a
ν; b

ρ; c
σ; d

= 4ig4s
Cg

Λ
µ3ε/2[fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)
+ fadef bce(gµνgρσ − gµρgνσ)] ;

(5.43)

φGG̃ operator:

p

q

φ

µ; a

ν; b

= 4ig2s
C̃g

Λ
µε/2εµναβpαqβδ

ab ; (5.44)
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p1
p2

p3

φ µ; a

ν; b

ρ; c

= 4g3s
C̃g

Λ
µεfabcεµνρα(p1 + p2 + p3)α .

(5.45)

The interaction vertex involving four gluons and the ALP induced
by the operator φGG̃ has a Feynman rule that is proportional to
fabef cde+f caef bde+f bcefade, which is zero due to the Jacobi identity.

5.4 One-loop 1PI Feynman diagrams
The general prescription to calculate d-dimensional one-loop integrals con-
sists of five main steps.

1. Exploit the Feynman parametrization to write the denominator of the
loop integral, which is given by the product of the internal propagators,
as a sum

1

D1 · · ·Dn
= Γ(n)

∫ 1

0
dx1· · ·

∫ 1

0
dxn

δ(x1 + · · ·+ xn − 1)

(x1D1 + · · ·+ xnDn)n
, (5.46)

where xi are the Feynman parameters.

2. Since the denominators Di are at most quadratic polynomials in the
loop momentum k, it is useful to complete the square of x1D1 + · · ·+
xnDn by introducing a shifted loop momentum `

x1D1 + · · ·+ xnDn = `2 − C + iε , (5.47)

where

`µ = kµ +
∑
i

ci(x1, . . . , xn)p
µ
i , (5.48)

pi are the momenta of the external particles of the diagram and ci
are linear functions of the Feynman parameters. After performing the
shift also in the numerator of the integral, it can be generically written
as ∫ dd`

(2π)d
N0 +N1`

µ +N2`
µ`ν + · · ·

(`2 − C + iε)n
, (5.49)

where the coefficients Ni do not depend on `.



5.4 One-loop 1PI Feynman diagrams 37

3. We can then use Lorentz invariance in order to reduce tensor integrals
to scalar ones. Indeed the following identities∫

dd` f(`2)`µ1 · · · `µ2n+1 = 0 , (5.50)∫
dd` f(`2)`µ`ν =

gµν

d

∫
dd` f(`2)`2 (5.51)

hold for every scalar function f(`2). We can then directly substitute
in the numerator of the integral `µ`ν with gµν`2/d and neglect tensors
constructed with an odd number of insertions of `µ.

4. The remaining scalar integrals can be computed according to the mas-
ter formula

Im,n =

∫ dd`

(2π)d
(`2)m

(`2 − C + iε)n

= i
(−1)m−n

(4π)
d
2

Cm−n+ d
2
Γ(m+ d

2)Γ(n−m−
d
2)

Γ(n)Γ(d2)
,

(5.52)

which makes use of a Wick rotation and of the residue theorem.

5. The final step consists in performing the integrals over the Feynman
parameters xi, either before or after a Laurent expansion about ε = 0.
For this purpose, the following formula

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+

n∑
k=1

1

k
− γE

]
+O(ε) , (5.53)

valid for n = 0, 1, 2, . . . , can be useful to expand the gamma function
around negative integer values.

In order to renormalize the theory, it is sufficient to consider only the
one-particle irreducible (1PI) diagrams, namely the connected Feynman di-
agrams that cannot be disconnected by cutting an internal line, since re-
ducible diagrams are products of the integrals corresponding to their ir-
reducible parts. Accordingly, the renormalization of the external legs is
conducted separately in Appendix A.

5.4.1 φFF anomalous dimension

The only two 1PI diagrams of order 1/Λ contributing to the one-loop cor-
rection of the φFµνF

µν vertex are mediated by the operator φf̄ifj and are
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related by inverting the loop fermion line direction
Contents 1

p

q

p�

µ

⌫

� = iM(1)
γS (pφ, p, q) , (5.54)

2 Contents

p

q

p�

µ

⌫

� = iM(2)
γS (pφ, p, q) . (5.55)

As shown in Appendix B, both diagrams do not develop an UV divergence

iM(1)
γS (pφ, p, q)|div. = iM(2)

γS (pφ, p, q)|div. = 0 , (5.56)

and, as a consequence, the relevant counterterm

L ct
φ ⊃ (ZCγZγ − 1)e2

Cγ

Λ
µε/2φFµνFµν , (5.57)

whose Feynman rule is

p

q

φ

µ

ν

= 4i(ZCγZγ − 1)e2
Cγ

Λ
µε/2(qµpν − p · qgµν) , (5.58)

is fixed by requiring

0 = [iM(1)
γS (pφ, p, q) + iM(2)

γS (pφ, p, q)]|div.

+ 4i(ZCγZγ − 1)e2
Cγ

Λ
µε/2(qµpν − p · qgµν)ε∗µ(p)ε∗ν(q)

(5.59)

and does not need to cancel any divergence

ZCγZγ = 1 . (5.60)
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This implies that ZCγ = Z−1
γ and thus the bare Wilson coefficient from

Eq. (5.26) reads
e20Cγ,0 = Z−1

γ e2Cγµ
ε/2 . (5.61)

On the other hand, we know from Appendix A that the bare electric charge
satisfies

e0 = Z−1/2
γ eµε/2 , (5.62)

which leads to
e20Cγ,0 = e20Cγµ

−ε/2 . (5.63)
We can now differentiate this expression with respect to logµ

0 =
d

d log µ
(e20Cγ,0) =

d

d log µ
(e20Cγµ

−ε/2)

= e20
dCγ

d log µ
µ−ε/2 − ε

2
e20Cγµ

−ε/2 ,

(5.64)

where the µ-independence of e0 has been used, to find that
dCγ

d log µ
=
ε

2
Cγ

ε→0−−−→ 0 . (5.65)

This proves that the Wilson coefficient e2Cγ scales exactly as e2 at one-loop
order.

5.4.2 φFF̃ anomalous dimension

The only two 1PI diagrams of order 1/Λ contributing to the one-loop cor-
rection of the φFµνF̃

µν vertex are mediated by the operator iφf̄iγ5fj and
are related by inverting the loop fermion line direction
Contents 3

p

q

p�

µ

⌫

� = iM(1)
γ̃P (pφ, p, q) , (5.66)

4 Contents

p

q

p�

µ

⌫

� = iM(2)
γ̃P (pφ, p, q) . (5.67)
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As in the previous case, both diagrams are UV finite

iM(1)
γ̃P (pφ, p, q)|div. = iM(2)

γ̃P (pφ, p, q)|div. = 0 , (5.68)

and, as a consequence, the relevant counterterm

L ct
φ ⊃ (Z

C̃γ
Zγ − 1)e2

C̃γ

Λ
µε/2φFµνF̃µν , (5.69)

whose Feynman rule is

p

q

φ

µ

ν

= 4i(ZCγZγ − 1)e2
Cγ

Λ
µε/2εµναβpαqβ , (5.70)

is fixed by requiring

0 = [iM(1)
γ̃P (pφ, p, q) + iM(2)

γ̃P (pφ, p, q)]|div.

+ 4i(Z
C̃γ
Zγ − 1)e2

C̃γ

Λ
µε/2εµναβpαqβε

∗
µ(p)ε

∗
ν(q)

(5.71)

and does not need to cancel any divergence

Z
C̃γ
Zγ = 1 . (5.72)

Following the same steps as before, we can conclude that also the Wilson
coefficient e2C̃γ scales exactly as e2 at one-loop order:

dC̃γ

d log µ
=
ε

2
C̃γ

ε→0−−−→ 0 . (5.73)

5.4.3 φGG anomalous dimension

Concerning the interaction vertex between the ALP and two gluons corre-
sponding to φGa

µνG
aµν , the one-loop 1PI diagrams that contribute to its

correction at order 1/Λ are mediated by the operators φf̄ifj and φGa
µνG

aµν

and read
Contents 5

p

q

p�

µ; a

⌫; b

� = iM(1)
gS (pφ, p, q) , (5.74)
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p

q

p�

µ; a

⌫; b

� = iM(2)
gS (pφ, p, q) , (5.75)

Contents 7

p�

q

p

�

⌫; b

µ; a

= iM(1)
gg (pφ, p, q) , (5.76)

8 Contents

p�
q
p�

⌫; b

µ; a

= iM(2)
gg (pφ, p, q) , (5.77)

Contents 9

p�

q

p

�

⌫; b

µ; a

= iM(3)
gg (pφ, p, q) , (5.78)
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p�

p

q

�

µ; a

⌫; b

= iM(4)
gg (pφ, p, q) , (5.79)

Contents 11

p

q

p�

µ; a

⌫; b

� = iM(5)
gg (pφ, p, q) . (5.80)

In the Feynman-’t Hooft gauge, their divergent parts, as explicitly computed
in Appendix B, are respectively given by

iM(1)
gS (pφ, p, q)|div. = iM(2)

gS (pφ, p, q)|div. = 0 , (5.81)

iM(1)
gg (pφ, p, q)|div. = 0 , (5.82)

iM(2)
gg (pφ, p, q)|div. =

i

24π2
CAg

4
s

Cg

Λ
µε/2(pνqµ + 13p · qgµν)δab

× εa∗µ (p)εb∗ν (q)∆ε ,
(5.83)

iM(3)
gg (pφ, p, q)|div. = iM(4)

gg (pφ, p, q)|div.

=
3i

8π2
CAg

4
s

Cg

Λ
µε/2(−pνqµ + p · qgµν)δab

× εa∗µ (p)εb∗ν (q)∆ε ,

(5.84)

iM(5)
gg (pφ, p, q)|div. =

i

24π2
CAg

4
s

Cg

Λ
µε/2(29pνqµ − 43p · qgµν)δab

× εa∗µ (p)εb∗ν (q)∆ε ,
(5.85)

so that, when summed together, they provide

iMg(pφ, p, q)|div. =
i

2π2
CAg

4
s

Cg

Λ
µε/2(pνqµ − p · qgµν)δabεa∗µ (p)εb∗ν (q)∆ε ,

(5.86)

where CA = Nc = 3 is the Casimir of the adjoint representation of SU(Nc).
It is important to notice that both diagrams iM(3)

gg and iM(4)
gg are also
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infrared divergent. The sum iMg has the correct Lorentz structure that
can be subtracted by the counterterm

L ct
φ ⊃ (ZCgZg − 1)g2s

Cg

Λ
µε/2φGaµνGa

µν , (5.87)

whose Feynman rule is

p

q

φ

µ; a

ν; b

= 4i(ZCgZg − 1)g2s
Cg

Λ
µε/2(qµpν − p · qgµν)δab , (5.88)

despite the fact that the individual diagrams iM(2)
gg and iM(5)

gg have a dif-
ferent Lorentz structure. From the condition

0 = iMg(pφ, p, q)|div.+4i(ZCgZg−1)g2s
Cg

Λ
µε/2(qµpν−p·qgµν)δabεa∗µ (p)εb∗ν (q)

(5.89)

we then obtain

ZCgZg = 1− g2s
8π2

CA∆ε . (5.90)

Therefore, from Eq. (5.27), the bare Wilson coefficient is given by

g2s,0Cg,0 =

(
1− g2s

8π2
CA∆ε

)
Z−1
g g2sCgµ

ε/2 . (5.91)

On the other hand, the bare gauge coupling gs,0, as shown in Appendix A,
satisfies

gs,0 = ZgsZ
−1/2
g Z−1

f gsµ
ε/2 , (5.92)

where the renormalization parameters read

Zgs = 1− 1

16π2
[g2s(CA + CF c

2
f ) + e2Q2

f ]∆ε , (5.93)

Zf = 1− 1

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε , (5.94)

and CF = (N2
c − 1)/(2Nc) = 4/3 is the Casimir of the fundamental repre-

sentation of SU(Nc). We can then isolate

Z−1
g g2s = Z−2

gs Z
2
fg

2
s,0µ

−ε (5.95)
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and substitute it in Eq. (5.91) to obtain

g2s,0Cg,0 =

(
1− g2s

8π2
CA∆ε

)
Z−2
gs Z

2
fg

2
s,0Cgµ

−ε/2 . (5.96)

Remarkably, these renormalization parameters cancel each other at lowest
order in the gauge couplings(
1− g2s

8π2
CA∆ε

)
Z−2
gs Z

2
f = 1− g2s

8π2
CA∆ε +

1

8π2
[g2s(CA + CF c

2
f ) + e2Q2

f ]∆ε

− 1

8π2
(e2Q2

f + CF g
2
sc

2
f )∆ε +O(e4, g4s)

= 1 +O(e4, g4s) ,
(5.97)

so that we are left with

g2s,0Cg,0 = g2s,0Cgµ
−ε/2 . (5.98)

We can now differentiate this expression with respect to logµ and exploit
the µ-independence of gs,0 to find

0 =
d

d log µ
(g2s,0Cg,0) =

d

d log µ
(g2s,0Cgµ

−ε/2)

= g2s,0
dCg

d log µ
µ−ε/2 − ε

2
g2s,0Cgµ

−ε/2 ,

(5.99)

namely
dCg

d log µ
=
ε

2
Cg

ε→0−−−→ 0 . (5.100)

This proves that the Wilson coefficient g2sCg scales exactly as g2s at one-loop
order.

5.4.4 φGG̃ anomalous dimension

Concerning the interaction vertex between the ALP and two gluons corre-
sponding to φGa

µνG̃
aµν , the one-loop 1PI diagrams that contribute to its cor-

rection at order 1/Λ are mediated by the operators iφf̄iγ5fj and φGa
µνG̃

aµν

and read
12 Contents

p

q

p�

µ; a

⌫; b

� = iM(1)
g̃P (pφ, p, q) , (5.101)
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p

q

p�

µ; a

⌫; b

� = iM(2)
g̃P (pφ, p, q) , (5.102)

14 Contents

p�
q
p�

⌫; b

µ; a

= iM(1)
g̃g̃ (pφ, p, q) , (5.103)

Contents 15

p�

q

p

�

⌫; b

µ; a

= iM(2)
g̃g̃ (pφ, p, q) , (5.104)

16 Contents

p�

p

q

�

µ; a

⌫; b

= iM(3)
g̃g̃ (pφ, p, q) , (5.105)

Contents 17

p

q

p�

µ; a

⌫; b

� = iM(4)
g̃g̃ (pφ, p, q) . (5.106)
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In the Feynman-’t Hooft gauge, their divergent parts, as explicitly computed
in Appendix B, are respectively given by

iM(1)
g̃P (pφ, p, q)|div. = iM(2)

g̃P (pφ, p, q)|div. = 0 , (5.107)

iM(1)
g̃g̃ (pφ, p, q)|div. = 0 , (5.108)

iM(2)
g̃g̃ (pφ, p, q)|div. = iM(3)

g̃g̃ (pφ, p, q)|div.

= − 3i

8π2
CAg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abεa∗µ (p)εb∗ν (q)∆ε ,

(5.109)

iM(4)
g̃g̃ (pφ, p, q)|div. =

5i

4π2
CAg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abεa∗µ (p)εb∗ν (q)∆ε ,

(5.110)

where iM(2)
g̃g̃ and iM(3)

g̃g̃ are also infrared divergent. The UV divergence of
the sum

iMg̃(pφ, p, q)|div. =
i

2π2
Ncg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abεa∗µ (p)εb∗ν (q)∆ε (5.111)

is absorbed by the counterterm

L ct
φ ⊃ (Z

C̃g
Zg − 1)g2s

C̃g

Λ
µε/2φGaµνG̃a

µν , (5.112)

whose Feynman rule is

p

q

φ

µ; a

ν; b

= 4i(ZCgZg − 1)g2s
Cg

Λ
µε/2εµνρσpρqσδ

ab . (5.113)

From the condition

0 = iMg̃(pφ, p, q)|div. +4i(ZCgZg − 1)g2s
Cg

Λ
µε/2εµνρσpρqσδ

abεa∗µ (p)εb∗ν (q)

(5.114)

we then obtain

Z
C̃g
Zg = 1− g2s

8π2
CA∆ε , (5.115)

and following the exact same steps of the previous case, namely from Eq. (5.90)
to (5.100), we can note that the same cancellation occurs, since ZCg = Z

C̃g
,

and conclude that also the Wilson coefficient g2s C̃g scales exactly as g2s at
one-loop order:

dC̃g

d log µ
=
ε

2
C̃g

ε→0−−−→ 0 . (5.116)
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5.4.5 φf̄f anomalous dimension

Regarding the interaction vertex between the ALP and two fermions cor-
responding to the Yukawa operator φf̄ifj , the one-loop diagrams that con-
tribute to its correction at order 1/Λ are mediated by the operators φFµνF

µν ,
φGa

µνG
aµν and φf̄ifj itself and read

Contents 19

p

q

p�

fi

f̄j

� = iMSγ(pφ, p, q) , (5.117)

20 Contents

p

q

p�

fi

f̄j

� = iMSg(pφ, p, q) , (5.118)

Contents 21

p

q

p�

fi

f̄j

� = iM(γ)
SS(pφ, p, q) , (5.119)

22 Contents

p

q

p�

fi

f̄j

� = iM(g)
SS(pφ, p, q) . (5.120)

In the Feynman-’t Hooft gauge, their divergent parts, as explicitly computed
in Appendix B, are respectively given by

iMSγ(pφ, p, q)|div. = −
3i

4π2
e4Q2

f

Cγ

Λ
miδ

ijµε/2ūi(p)vj(q)∆ε , (5.121)
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iMSg(pφ, p, q))|div. = −
3i

4π2
CF g

4
sc

2
f

Cg

Λ
miδ

ijµε/2ūi(p)vj(q)∆ε , (5.122)

iM(γ)
SS(pφ, p, q))|div. =

i

4π2
e2Q2

f

v

Λ
yijS µ

ε/2ūi(p)vj(q)∆ε , (5.123)

iM(g)
SS(pφ, p, q))|div. =

i

4π2
CF g

2
sc

2
f

v

Λ
yijS µ

ε/2ūi(p)vj(q)∆ε . (5.124)

The divergence of their sum

iMS(pφ, p, q))|div. =
i

4π2Λ

[
vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 3miδ
ij(e4Q2

fCγ + CF g
4
sc

2
fCg)

]
µε/2ūi(p)vj(q)∆ε

(5.125)

is absorbed by the counterterm

L ct
φ ⊃ (Zik

S Zf − δik)
v

Λ
ykjS µ

ε/2φf̄ifj , (5.126)

whose Feynman rule is

φ

f̄j

fi

= i(Zik
S Zf − δik)

v

Λ
ykjS µ

ε/2 . (5.127)

From the condition

0 = iMS(pφ, p, q))|div. + i(Zik
S Zf − δik)

v

Λ
ykjS µ

ε/2ūi(p)vj(q) (5.128)

we then obtain

Zik
S Zfvy

kj
S = vyijS −

1

4π2

[
vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 3miδ
ij(e4Q2

fCγ + CF g
4
sc

2
fCg)

]
∆ε ,

(5.129)

and, recalling the expression for Zf in Eq. (5.94), we can expand at lowest
order in the Wilson coefficients and gauge couplings to find

Zik
S vy

kj
S = vyijS +

vyijS
16π2

(e2Q2
f + CF g

2
sc

2
f )∆ε −

1

4π2

[
vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 3miδ
ij(e4Q2

fCγ + CF g
4
sc

2
fCg)

]
∆ε

= vyijS −
1

16π2

[
3vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 12miδ
ij(e4Q2

fCγ + CF g
4
sc

2
fCg)

]
∆ε .
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(5.130)

At this point we can exploit the µ-independence of the bare Wilson coeffi-
cient to write

0 =
d

d log µ
(v0y

ij
S,0) =

d

d log µ
(Zik

S vy
kj
S µ

ε/2)

=
d

d log µ
(Zik

S vy
kj
S )µε/2 +

ε

2
Zik
S vy

kj
S µ

ε/2 ,

(5.131)

where

d

d log µ
(Zik

S vy
kj
S ) =

d(vyijS )

d log µ
− 1

16π2

[
3
d(vyijS )

d log µ
(e2Q2

f + CF g
2
sc

2
f )

+ 3vyijS

(
de2

d log µ
Q2

f + CF
dg2s

d log µ
c2f

)
− 12

dmi

d log µ
δij(e4Q2

fCγ + CF g
4
sc

2
fCg)

− 12miδ
ij

(
d(e4Cγ)

d log µ
Q2

f + CF
d(g4sCg)

d log µ
c2f

)]
∆ε .

(5.132)

From the calculations carried out in Appendix A, and in particular from
Eqs. (A.40), (A.72) and (A.89), we know that

1

mi

dmi

d log µ
= O(e2, g2s) , (5.133)

1

g2s

dg2s
d log µ

= −ε+O(g2s) , (5.134)

1

e2
de2

d log µ
= −ε+O(e2) , (5.135)

which, combined with Eqs. (5.100) and (5.116), allow us to compute the
following quantities

d(e4Cγ)

d log µ
= 2e2

de2

d log µ
Cγ + e4

dCγ

d log µ

= 2e2[−εe2 +O(e4)]Cγ + e4
ε

2
Cγ

= −3

2
εe4Cγ +O(e6Cγ) ,

(5.136)

d(g4sCg)

d log µ
= 2g2s

dg2s
d log µ

Cg + g4s
dCg

d log µ

= 2g2s [−εg2s +O(g4s)]Cg + g4s
ε

2
Cg

= −3

2
εg4sCg +O(g6sCg) .

(5.137)
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Inserting these expression in Eq. (5.132) we obtain

d

d log µ
(Zik

S vy
kj
S ) =

d(vyijS )

d log µ
− 1

16π2

[
3
d(vyijS )

d log µ
(e2Q2

f + CF g
2
sc

2
f )

− 3vyijS (e
2Q2

f + CF g
2
sc

2
f )ε

+ 18miδ
ij(e4Q2

fCγ + CF g
4
sc

2
fCg)ε

]
∆ε

=
d(vyijS )

d log µ

[
1− 3

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε

]
+

3

8π2
vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 9

4π2
miδ

ij(e4Q2
fCγ + CF g

4
sc

2
fCg) .

(5.138)

On the other hand, from Eqs. (5.130) and (5.131) we know that this quantity
is also equal to

d

d log µ
(Zik

S vy
kj
S ) = −ε

2
Zik
S vy

kj
S

= −ε
2
vyijS +

3

16π2
vyijS (e

2Q2
f + CF g

2
sc

2
f )

− 3

4π2
miδ

ij(e4Q2
fCγ + CF g

4
sc

2
fCg) ,

(5.139)

so that, comparing Eqs. (5.138) and (5.139), we can write

d(vyijS )

d log µ

[
1− 3

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε

]
= −ε

2
vyijS

− 3

16π2
vyijS (e

2Q2
f + CF g

2
sc

2
f ) +

3

2π2
miδ

ij(e4Q2
fCγ + CF g

4
sc

2
fCg)

(5.140)

and isolate the beta function of the Wilson coefficient vyijS by expanding at
lowest order in the gauge couplings and finally taking the limit ε→ 0:

d(vyijS )

d log µ
= −ε

2
vyijS −

3

8π2
vyijS (e

2Q2
f + CF g

2
sc

2
f )

+
3

2π2
miδ

ij(e4Q2
fCγ + CF g

4
sc

2
fCg)

ε→0−−−→ − 3

8π2
vyijS (e

2Q2
f + CF g

2
sc

2
f ) +

3

2π2
miδ

ij(e4Q2
fCγ + CF g

4
sc

2
fCg)

= − 3

8π2
vyijS

(
e2Q2

f +
4

3
g2sc

2
f

)
+

3

2π2
miδ

ij

(
e4Q2

fCγ +
4

3
g4sc

2
fCg

)
.

(5.141)
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5.4.6 iφf̄γ5f anomalous dimension

Regarding the interaction vertex between the ALP and two fermions cor-
responding to the Yukawa operator iφf̄iγ5fj , the one-loop diagrams that
contribute to its correction at order 1/Λ are mediated by the operators
φFµνF̃

µν , φGa
µνG̃

aµν and iφf̄iγ5fj itself and read
Contents 23

p

q

p�

fi

f̄j

� = iMP γ̃(pφ, p, q) , (5.142)

24 Contents

p

q

p�

fi

f̄j

� = iMP g̃(pφ, p, q) , (5.143)

Contents 25

p

q

p�

fi

f̄j

� = iM(γ)
PP (pφ, p, q) , (5.144)

26 Contents

p

q

p�

fi

f̄j

� = iM(g)
PP (pφ, p, q) . (5.145)

In the Feynman-’t Hooft gauge, their divergent parts, as explicitly computed
in Appendix B, are respectively given by

iMP γ̃(pφ, p, q)|div. = −
3

4π2
e4Q2

f

C̃γ

Λ
miδ

ijµε/2ūi(p)γ5vj(q)∆ε , (5.146)
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iMP g̃(pφ, p, q)|div. = −
3

4π2
CF g

4
sc

2
f

C̃g

Λ
miδ

ijµε/2ūi(p)γ5vj(q)∆ε ,

(5.147)

iM(γ)
PP (pφ, p, q)|div. = −

1

4π2
e2Q2

f

v

Λ
yijP µ

ε/2ūi(p)γ5vj(q)∆ε , (5.148)

iM(g)
PP (pφ, p, q)|div. = −

1

4π2
CF g

2
sc

2
f

v

Λ
yijP µ

ε/2ūi(p)γ5vj(q)∆ε . (5.149)

The divergence of their sum

iMP (pφ, p, q)|div. = −
1

4π2Λ

[
vyijP (e

2Q2
f + CF g

2
sc

2
f )

+ 3miδ
ij(e4Q2

f C̃γ + CF g
4
sc

2
f C̃g)

]
µε/2ūi(p)γ5vj(q)∆ε

(5.150)

is absorbed by the counterterm

L ct
φ ⊃ i(Zik

P Zf − δik)
v

Λ
ykjP µ

ε/2φf̄iγ5fj , (5.151)

whose Feynman rule is

φ

f̄j

fi

= −(Zik
P Zf − δik)

v

Λ
ykjP µ

ε/2γ5 . (5.152)

From the condition

0 = iMP (pφ, p, q))|div. − (Zik
P Zf − δik)

v

Λ
ykjP µ

ε/2ūi(p)γ5vj(q) (5.153)

we then obtain

Zik
P Zfvy

kj
P = vyijP −

1

4π2

[
vyijP (e

2Q2
f + CF g

2
sc

2
f )

+ 3miδ
ij(e4Q2

f C̃γ + CF g
4
sc

2
f C̃g)

]
∆ε .

(5.154)

At this point we can follow the exact same steps as the previous case, namely
from Eq. (5.129) to (5.141), keeping in mind that the relative sign of the
term proportional to the mass mi is changed. Therefore, we can conclude
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that the beta function of the Wilson coefficient vyijP is given by

d(vyijP )

d log µ
= −ε

2
vyijP −

3

8π2
vyijP (e

2Q2
f + CF g

2
sc

2
f )

− 3

2π2
miδ

ij(e4Q2
f C̃γ + CF g

4
sc

2
f C̃g)

ε→0−−−→ − 3

8π2
vyijP (e

2Q2
f + CF g

2
sc

2
f )−

3

2π2
miδ

ij(e4Q2
f C̃γ + CF g

4
sc

2
f C̃g)

= − 3

8π2
vyijP

(
e2Q2

f +
4

3
g2sc

2
f

)
− 3

2π2
miδ

ij

(
e4Q2

f C̃γ +
4

3
g4sc

2
f C̃g

)
.

(5.155)

We can then summarize the results of the renormalization group running
at one-loop order of the Wilson coefficients of the ALP EFT as follows:

d

d log µ

 Cγ

Cg

vyijS

 = γ

 Cγ

Cg

vyijS

 ,
d

d log µ

 C̃γ

C̃g

vyijP

 = γ̃

 C̃γ

C̃g

vyijP

 , (5.156)

where the anomalous dimension matrices corresponding to the shift sym-
metry breaking and shift symmetry invariant sectors of the ALP EFT are
respectively given by

γ =

 0 0 0
0 0 0

3e4

2π2miδ
ijQ2

f
2g4s
π2 miδ

ijc2f − 3
8π2 (e

2Q2
f + 4

3g
2
sc

2
f )

 , (5.157)

γ̃ =

 0 0 0
0 0 0

− 3e4

2π2miδ
ijQ2

f −2g4s
π2 miδ

ijc2f − 3
8π2 (e

2Q2
f + 4

3g
2
sc

2
f )

 . (5.158)





Chapter 6

On-shell amplitudes

In this Chapter we will lay the foundations for the computation of the
ALP RGEs through on-shell amplitude methods, which will be conducted
in Chapter 7. Firstly, in Section 6.1 we introduce the spinor-helicity formal-
ism [33, 43], which provides the natural language to deal with amplitudes of
on-shell massless particles. In Section 6.3 we show how three-particle ampli-
tudes can be constructed without any reference to the Lagrangian density
and how their form is completely fixed by their symmetry properties, de-
scribed in Section 6.2. Finally, in Section 6.5 we derive the BCFW recursion
formula, which allows us to construct any tree-level multi-particle scattering
amplitude starting from lower-point ones, bypassing the expansions in terms
of Feynman diagrams.

6.1 Spinor-helicity formalism
The spinor-helicity formalism is a powerful tool for calculating scattering
amplitudes in gauge theories. It is based on the idea of representing the
momenta of particles in terms of spinors, which are mathematical objects
that describe the intrinsic angular momentum of particles: the spin ~S.

6.1.1 Helicity of massless particles

The projection of the spin onto the axis of the three-momentum of the
particle is a quantity known as helicity

h =
~p · ~S
|~p|

. (6.1)

If the particle is massless, then h is a Lorentz invariant quantity because
the particle travels at the speed of light and no Lorentz boost can invert the
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direction of propagation. Additionally, for a massless spin-s particle, the
helicity can only take the extremal values h = ±s.

According to Wigner’s classification, the scattering state of a particle is
characterized by the on-shell momentum p and its helicity h: |p, h〉. In this
thesis, we will only focus on particles with spin lower or equal to 1.

Spin-1/2: fermions

The Dirac equations in momentum space for the positive and negative energy
bispinors are respectively given by

(/p−m)u(p) = 0 , (/p+m)v(p) = 0 . (6.2)

In the massless case they coincide, since /pu(p) = /pv(p) = 0. By applying
the projectors (1± γ5)/2, one can obtain states with definite helicity:

u±(p) =
1

2
(1± γ5)u(p) , v∓(p) =

1

2
(1± γ5)v(p) , (6.3)

and if m = 0 we can identify u±(p) = v∓(p). Spin-1/2 on-shell states are
labeled by |p,±1/2〉.

Spin-1: gauge bosons

Gauge fields carry helicities h = ±1 and are described by the polarization
four-vectors ε(±)

µ (p), which obey the transversality condition

p · ε(±)(p) = 0 , (6.4)

as well as the following relations

ε(±)(p) · ε(±)(p) = 0 , (6.5)
ε(+)(p) · ε(−)(p) = −1 , (6.6)
(ε(±)

µ (p))∗ = ε(∓)
µ (p) . (6.7)

Spin-1 on-shell states are labeled by |p,±1〉.

6.1.2 Helicity spinors

Now we can introduce the spinor-helicity formalism for the description of
scattering amplitudes for massless particles. It provides an uniform descrip-
tion of the on-shell degrees of freedom for the scattering states of all helic-
ities of massless particles and renders the analytic expressions of scattering
amplitudes in a more compact form compared to the standard four-vector
notation.
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The first step consists in mapping the four-momentum of an on-shell
state onto a 2× 2 matrix in spinor indices

pµ = (p0, ~p) −→ pα̇α = σ̄α̇αµ pµ =

(
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)
, (6.8)

where σ̄µ α̇α = (1,−~σ)α̇α and ~σ = (σ1, σ2, σ3) are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.9)

The transformation in Eq. (6.8) explicitly implements the local isomor-
phism between the complexified four-dimensional Lorentz group SO(1, 3)
and SL(2,C) × SL(2,C)∗. The mass-shell condition can be rewritten as a
determinant condition on the matrix pα̇α:

m2 = pµpµ = (p0)2 − |~p|2 = det
(
pα̇α
)
. (6.10)

Any 2 × 2 matrix has at most rank two and therefore can be written as
pα̇α = λ̃α̇λα+ µ̃α̇µα, where λ, µ and λ̃, µ̃ are commuting Weyl spinors in the
(1/2, 0) and (0, 1/2) representations of the Lorentz group respectively. If we
now specialize to massless particles, we have

det
(
pα̇α
)
= 0 , (6.11)

meaning that pα̇α has a vanishing eigenvalue (the other one is 2p0), thus its
rank is one and its decomposition over the eigenspectrum looks as

pα̇α = 2p0ψ̃α̇ψα = λ̃α̇λα , (6.12)

where

λα =
√
2p0ψα λ̃α̇ =

√
2p0ψ̃α̇ (6.13)

are known as helicity spinors.

If we require the four-momentum to be real, the matrix pα̇α is Hermitian
and its eigenvectors satisfy

(λα)∗ = ±λ̃α̇ , (6.14)

where the sign is the same as that of the energy p0, namely p0 > 0 for
outgoing particles and p0 < 0 for incoming ones. An explicit realization of
the helicity spinors is given by

λα =
1√

p0 + p3

(
p0 + p3

p1 + ip2

)
, λ̃α̇ =

1√
p0 + p3

(
p0 + p3

p1 − ip2
)
. (6.15)
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If instead we extend the definition of the four-momentum into the com-
plex plane, then the spinors λ and λ̃ are independent. An important point
is that the momentum bispinor in Eq. (6.12) is invariant under a little group
transformation

λ −→ ρ−1λ , λ̃ −→ ρλ̃ , (6.16)

where ρ ∈ C. For real four-momentum, this transformation reduces to a
phase redefinition, or a U(1) transformation, since |ρ| = 1.

For negative momenta, we will define

λ̄ = λ ,
¯̃
λ = −λ̃ , (6.17)

in such a way that p̄α̇α = (−p)α̇α =
¯̃
λα̇λ̄α.

Spinor indices are raised and lowered with the invariant anti-symmetric
spinor metric tensors, defined as

εαβ = εα̇β̇ =

(
0 1
−1 0

)
, εαβ = εα̇β̇ =

(
0 −1
1 0

)
. (6.18)

The epsilon symbols with undotted and dotted indices respectively satisfy

εαβε
γδ = −δγαδδβ + δδαδ

γ
β , εα̇β̇ε

γ̇δ̇ = −δγ̇α̇δ
δ̇
β̇
+ δδ̇α̇δ

γ̇

β̇
, (6.19)

from which it respectively follows that

εαβε
βγ = εγβεβα = δγα , εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇ . (6.20)

With these conventions, in order to raise or lower an index of a spinor
quantity, adjacent spinor indices are summed over when multiplied on the
left by the appropriate epsilon symbol:

λα = εαβλ
β , λα = εαβλβ , (6.21)

λ̃α̇ = εα̇β̇λ̃
β̇ , λ̃α̇ = εα̇β̇λ̃β̇ . (6.22)

Moreover, if we define

σµαα̇ = εαβεα̇β̇σ̄
µ β̇β = (1, ~σ)αα̇ , (6.23)

we can write the completeness relations as

σµαα̇σ
µ

ββ̇
= 2εαβεα̇β̇ , σ̄α̇αµ σ̄µ β̇β = 2εαβεα̇β̇ . (6.24)
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Additionally, the identity

σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇ (6.25)

holds and the normalization condition is given by

Tr(σ̄µσν) = εαβεα̇β̇σ̄
α̇α
µ σ̄β̇βν = εαβεα̇β̇σµαα̇σν ββ̇ = 2gµν . (6.26)

Using these relations, it is easy to show that, given the map between
Lorentz four-vectors V µ and bispinors V α̇α

V µ −→ V α̇α = σ̄α̇αµ V µ (6.27)

as the one introduced in Eq. (6.8), its inverse is provided by

V α̇α −→ V µ =
1

2
σµαα̇V

α̇α . (6.28)

Similarly, the inverse of

V µ −→ Vαα̇ = σµαα̇V
µ (6.29)

is given by

Vαα̇ −→ V µ =
1

2
σ̄µ α̇αVαα̇ . (6.30)

6.1.3 Angle and square inner products

In the spinor-helicity formalism, a general scattering amplitude involving
massless particles is a function of the set of helicity spinors {λi, λ̃i}, with
the index i running all ingoing and outgoing external legs. From now on,
in order to uniformize the description, we will take all particles as outgoing,
namely p0i > 0 for i = 1, . . . , n.

Starting from the helicity spinors, we can construct Lorentz invariant
quantities through the angle 〈· ·〉 and square [· ·] inner products, defined as

〈i j〉 = 〈λi λj〉 = λαi λj α = εαβλ
α
i λ

β
j , (6.31)

[i j] = [λi λj ] = λ̃i α̇λ̃
α̇
j = −εα̇β̇λ̃

α̇
i λ̃

β̇
j , (6.32)

with i, j = 1, . . . , n, where we have introduced the NW-SE ↘ (SW-NE ↗)
contraction rule for the undotted (dotted) Weyl indices. Since the helicity
spinors are bosonic and the Levi-Civita tensors are antisymmetric, the an-
gular and square brackets are antisymmetric as well under the exchange of
their entries:

〈i j〉 = −〈j i〉 , [i j] = −[j i] . (6.33)
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As a consequence, we have that 〈i i〉 = 0 = [i i].

The Mandelstam invariants can be written in terms of these brackets in
a simple way

sij = (pi + pj)
2 = 2pi · pj = λαi λj αλ̃j α̇λ̃

α̇
i = 〈i j〉[j i] (6.34)

and this expression can be inverted for real momenta as

〈i j〉 =
√
|sij |eiφij = [j i]∗ , [j i] =

√
|sij |e−iφij = 〈i j〉∗ , (6.35)

where the phases φij ∈ R follow from the momenta pi and pj as

cosφij =
p1i (p

0
j + p3j )− p1j (p0i + p3i )√
|sij |(p0i + p3i )(p

0
j + p3j )

, (6.36)

sinφij =
p2i (p

0
j + p3j )− p2j (p0i + p3i )√
|sij |(p0i + p3i )(p

0
j + p3j )

. (6.37)

6.1.4 Useful formulae

Schouten identities

Any three two-component spinors have to be linearly dependent, so they
must satisfy

c1λ
α
1 + c2λ

α
2 + c3λ

α
3 = 0 . (6.38)

where at least one coefficient ci is different from zero. Projecting both sides
onto λ3α and taking into account that 〈λ3 λ3〉 = 0 we obtain

c1 〈λ1 λ3〉+ c2 〈λ2 λ3〉 = 0 , (6.39)

which leads to

c2 = −
〈λ1 λ3〉
〈λ2 λ3〉

c1 =
〈λ3 λ1〉
〈λ2 λ3〉

c1 . (6.40)

In a similar manner, the projection of Eq. (6.38) onto λ2α gives

c1 〈λ1 λ2〉+ c3 〈λ3 λ2〉 = 0 , (6.41)

meaning that

c3 = −
〈λ1 λ2〉
〈λ3 λ2〉

c1 =
〈λ1 λ2〉
〈λ2 λ3〉

c1 . (6.42)
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Substituting Eqs. (6.40) and (6.42) inside Eq. (6.38) and dividing by c1 6= 0
we obtain

λα1 〈λ2 λ3〉+ λα2 〈λ3 λ1〉+ λα3 〈λ1 λ2〉 = 0 , (6.43)

known as Schouten identity. The contraction with an arbitrary spinor λaα
leads to

〈1 2〉 〈3 a〉+ 〈2 3〉 〈1 a〉+ 〈3 1〉 〈2 a〉 = 0 . (6.44)

Clearly, the same steps can be repeated for the conjugate spinors, and
the identities in Eqs. (6.43) and (6.44) respectively become

λ̃α̇1 [λ2 λ3] + λ̃α̇2 [λ3 λ1] + λ̃α̇3 [λ1 λ2] = 0 , (6.45)
[1 2][3 a] + [2 3][1 a] + [3 1][2 a] = 0 . (6.46)

Momentum conservation

This identity makes use of the total momentum conservation in scattering
amplitudes. If all the particles involved are considered as outgoing, the total
momentum conservation reads

n∑
i=1

pµi = 0 , (6.47)

which can be translated in terms of the helicity spinors:
n∑

i=1

λαi λ̃
α̇
i = 0 . (6.48)

Then, if we contract the previous identity with two arbitrary spinors λaα
and λ̃b α̇ we obtain

n∑
i=1

〈a i〉[i b] = 0 . (6.49)

Levi-Civita contraction

We finally quote two identities [34] that will be very useful in order to express
the contraction of the Levi-Civita tensor with four null four-vectors in terms
of angle and square inner products:

〈a b〉[b c]〈c d〉[d a] = Tr

(
1− γ5

2
/pa/pb/pc/pd

)
=

1

2
(sabscd − sacsbd + sadsbc − 4iε(a, b, c, d))

(6.50)
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and similarly

[a b]〈b c〉[c d]〈d a〉 = Tr

(
1 + γ5

2
/pa/pb/pc/pd

)
=

1

2
(sabscd − sacsbd + sadsbc + 4iε(a, b, c, d)) ,

(6.51)

where ε(a, b, c, d) = εµνρσp
µ
apνbp

ρ
cpσd .

6.1.5 Fermion polarization states

Helicity spinors solve the Dirac equation in the massless limit. If we exploit
the chiral or Weyl representation of the Dirac gamma matrices, in which
they take the form

γµ =

(
0 σµαα̇

σ̄µ β̇β 0

)
, (6.52)

we can write /p as

/p = pµγ
µ =

(
0 pαα̇

pβ̇β 0

)
=

(
0 λαλ̃α̇

λ̃β̇λβ 0

)
, (6.53)

where pαα̇ is given by the contraction of pµ with σµαα̇:

pαα̇ = pµσµαα̇ = λαλ̃α̇ . (6.54)

Now, setting

u+(p) = v−(p) =

(
λα
0

)
= |p〉 , (6.55)

u−(p) = v+(p) =

(
0

λ̃α̇

)
= |p] , (6.56)

using the convenient bra-ket notation with angle |·〉 and square |·] brackets,
we note that the Dirac equations in the massless limit

/p |p〉 = 0 , /p|p] = 0 (6.57)

are automatically satisfied, since 〈λλ〉 = 0 = [λλ].

On the other hand, concerning the Dirac adjoint of the spinor field ψ,
defined as ψ̄ = ψ†γ0, we can write

ū+(p) = v̄−(p) =
(
(λα)

∗ 0
)(0 1

1 0

)
=
(
0 λ̃α̇

)
= [p| , (6.58)

ū−(p) = v̄+(p) =
(
0 (λ̃α̇)∗

)(0 1
1 0

)
=
(
λα 0

)
= 〈p| , (6.59)
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where we have exploited Eq. (6.14) with the plus sign since the particles are
considered as outgoing.

Using this notation, we can immediately see that

〈k|γµ|p〉 = 0 = [k|γµ|p] , (6.60)

while

〈p|γµ|p] = λασµαα̇λ̃
α̇ = 2pµ (6.61)

and similarly

[p|γµ|p〉 = λ̃α̇σ̄
µ α̇αλα = 2pµ . (6.62)

More generically, for an arbitrary four-vector qµ, we have the following re-
lations

[i|/q|j〉 = λ̃i α̇q
α̇αλj α , 〈j|/q|i] = λαj qαα̇λ̃

α̇
i , (6.63)

which imply the identity

[i|γµ|j〉 = 〈j|γµ|i] . (6.64)

Additionally, by exploiting the completeness relations of sigma matrices
in Eq. (6.24), the Fierz identity takes the form

[i|γµ|j〉〈l|γµ|k] = 2[i k]〈l j〉 . (6.65)

In this way we have expressed the polarization degrees of freedom of
external massless fermion states by means of the helicity spinors λ and λ̃.

6.1.6 Gauge boson polarization states

The gauge boson polarization vectors ε(±)
µ (p) can be expressed as bispinors

through

ε
(±)
αα̇ = σµαα̇ε

(±)
µ , (6.66)

with the negative helicity bispinor given by

ε
(−)
αα̇ =

√
2
λαξ̃α̇
[λ ξ]

(6.67)

and the positive helicity one by

ε
(+)
αα̇ =

√
2
ξαλ̃α̇
〈ξ λ〉

. (6.68)
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Here ξ and ξ̃ are arbitrary reference spinors, with the only condition that
they are not parallel to λ and λ̃, so that 〈ξ λ〉 and [ξ λ] are different from
zero. Their nature corresponds to the freedom of performing gauge trans-
formations and, as a consequence, they will drop out of any final expression
for a scattering amplitude. Indeed, if we consider an infinitesimal shift of
the reference spinor ξ → ξ + δξ, the corresponding variation of ε(+)

αα̇ is pro-
portional to the momentum bispinor pαα̇:

δε
(+)
αα̇ =

√
2
δξαλ̃α̇
〈ξ λ〉

−
√
2ξαλ̃α̇

〈δξ λ〉
〈ξ λ〉2

=
√
2
〈ξ λ〉δξα − 〈δξ λ〉ξα

〈ξ λ〉2
λ̃α̇

=
√
2
〈δξ ξ〉λα
〈ξ λ〉2

λ̃α̇

=
√
2
〈δξ ξ〉
〈ξ λ〉2

pαα̇ ,

(6.69)

where in the second step we have used the Schouten identity in Eq. (6.43)
to write 〈ξ λ〉δξα−〈δξ λ〉ξα as 〈δξ ξ〉λα. We note that the variation of ε(+)

αα̇ is
proportional to the associated momentum, and thus this can be understood
as a gauge transformation.

Exploiting the inverse relation of Eq. (6.66)

ε(±)
µ =

1

2
σ̄α̇αµ ε

(±)
αα̇ , (6.70)

we can show that the properties in Eqs. (6.4), (6.5), (6.6) and (6.7) that
must be satisfied by the polarization vectors are actually fulfilled. Indeed

p · ε(h)(p) = 1

2
λ̃α̇λαε

(h)
αα̇

=

{
〈λλ〉/

√
2 if h = −

[λλ]/
√
2 if h = +

= 0

(6.71)

as a consequence of the anti-symmetry of the angular and square spinor
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products, while

ε(+)(p) · ε(+)(p) =
1

4
σ̄α̇αµ σ̄µ β̇βε

(+)
αα̇ ε

(+)

ββ̇

=
1

2
εαβεα̇β̇ε

(+)
αα̇ ε

(+)

ββ̇

= εαβεα̇β̇
ξαξβλ̃α̇λ̃β̇
〈ξ λ〉2

=
[λλ]〈ξ ξ〉
〈ξ λ〉2

= 0

(6.72)

and analogously

ε(−)(p) · ε(−)(p) =
[ξ ξ]〈λλ〉
[ξ λ]2

= 0 (6.73)

follow for the same reason. On the other hand, the scalar product between
polarization vectors of different helicities gives

ε(+)(p) · ε(−)(p) =
1

4
σ̄α̇αµ σ̄µ β̇βε

(+)
αα̇ ε

(−)

ββ̇

=
1

2
εαβεα̇β̇ε

(+)
αα̇ ε

(−)

ββ̇

= εαβεα̇β̇
ξαλ̃α̇λβ ξ̃β̇
〈ξ λ〉[λ ξ]

=
〈ξ λ〉[ξ λ]
〈ξ λ〉[λ ξ]

= −1

(6.74)

as required.

For the following calculations, it is helpful to write the polarization
four-vectors in terms of the Dirac matrices in the chiral representation: the
positive helicity one takes the form

ε(+)
µ (p) =

1

2
σ̄α̇αµ ε

(+)
αα̇

=
1

2
σ̄α̇αµ
√
2
ξαλ̃α̇
〈ξ λ〉

=
1√
2

[λ|γµ|ξ〉
〈ξ λ〉

=
1√
2

〈ξ|γµ|λ]
〈ξ λ〉

,

(6.75)
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while the negative helicity one can be written as

ε(−)
µ (p) =

1

2
σ̄α̇αµ ε

(−)
αα̇

=
1

2
σ̄α̇αµ
√
2
λαξ̃α̇
[λ ξ]

= − 1√
2

〈λ|γµ|ξ]
[ξ λ]

= − 1√
2

[ξ|γµ|λ〉
[ξ λ]

,

(6.76)

where he have exploited the identity in Eq. (6.64).

In this way we have expressed the polarization degrees of freedom of
external massless gauge boson states by means of the helicity spinors λ and
λ̃.

6.2 Symmetries of scattering amplitudes
The utility of spinor-helicity variables flows from the fact that they linearly
realize the symmetries of the system, and, in particular, of scattering am-
plitudes.

Scattering amplitudes are defined as on-shell matrix elements of the
S-matrix

Snm(p1, . . . , pn; p
′
1, . . . , p

′
m) = 〈p1, . . . , pn|S|p′1, . . . , p′m〉

= out 〈p1, . . . , pn|p′1, . . . , p′m〉 in
(6.77)

where |p′1, . . . , p′m〉 and 〈p1, . . . , pn| are asymptotic multi-particle on-shell
states, obtained by applying creation operators to the vacuum∣∣p′1, . . . , p′m〉 = a†Φ(p

′
1) . . . a

†
Φ(p

′
m) |0〉 , (6.78)

〈p1, . . . , pn| = 〈0| aΦ(p1) . . . aΦ(pn) , (6.79)

and Φ denotes all fields. This m → n scattering process, illustrated in
Figure 6.1, can be traded for a 0→ n+m process, where all the particles are
regarded as outgoing, by making use of crossing symmetry, which consists
of changing the sign of the momenta of the ingoing particles, and allowing
them to have negative energy. Therefore, in the following, we will focus on
n-particle scattering amplitudes of the form

iMn(1
h1 , . . . , nhn) = 〈1h1 , . . . , nhn |S|0〉 (6.80)

without loss of generality, where we have specified the helicity hi for each
particle and omitted the label p of the momenta.
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Figure 6.1: Scheme of a scattering process.

6.2.1 Helicity operator

From the Dirac equations

0 = /p|p〉 = pµσ̄α̇αµ λα = (p0 + ~p · ~σ)λ , (6.81)
0 = /p|p] = pµσµαα̇λ̃

α̇ = (p0 − ~p · ~σ)λ̃ , (6.82)

where we have replaced σµ = (1, ~σ) and σ̄µ = (1,−~σ), we can actually show
that the helicity spinors λ and λ̃ are associated with half-integer values of
the helicity. Indeed, for massless particles we can write the helicity as

h =
~p · ~σ
2p0

, (6.83)

from which it follows that

hλ = −1

2
λ , hλ̃ = +

1

2
λ̃ , (6.84)

or equivalently hλ = −1/2 and hλ̃ = +1/2. Thus, the fermion states u+(p) =
v−(p) = |p〉 and ū−(p) = v̄+(p) = 〈p| carry helicity (−1/2), while u−(p) =
v+(p) = |p] and ū+(p) = v̄−(p) = [p| carry helicity (+1/2).

The dependence of scattering amplitudes on λ and λ̃ enters through
the wavefunctions of particles, and, as a consequence, amplitudes should be
polynomials in the helicity spinors. This property can be expressed in a
compact form by introducing the helicity operator

Hi = −
1

2
λαi

∂

∂λαi
+

1

2
λ̃i α̇

∂

∂λ̃i α̇
, (6.85)

which gives back the helicity of the particle i when it acts on an arbitrary
polynomial in λ and λ̃. As an example, we can verify that the polarization
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bispinors of the gauge bosons given by Eqs. (6.67) and (6.68) are eigenvectors
of the helicity operator associated with the correct eigenvalues:

Hε
(+)

ββ̇
=

(
− 1

2
λα

∂

∂λα
+

1

2
λ̃α̇

∂

∂λ̃α̇

)√
2
ξβλ̃β̇
〈ξ λ〉

= (+1)ε
(+)

ββ̇
, (6.86)

Hε
(−)

ββ̇
=

(
− 1

2
λα

∂

∂λα
+

1

2
λ̃α̇

∂

∂λ̃α̇

)√
2
λβ ξ̃β̇
[λ ξ]

= (−1)ε(−)

ββ̇
. (6.87)

Therefore, the scattering amplitude of particles with momenta pi and
helicities hi has to satisfy the homogeneity condition

HiMn(1
h1 , . . . , nhn) = hiMn(1

h1 , . . . , nhn) (6.88)

for each i = 1, . . . , n, or equivalently, under local little group transformations
acting of the helicity spinors as

λi −→ ρ−1
i λi , λ̃i −→ ρiλ̃i , (6.89)

the amplitude should transform as

Mn(1
h1 , . . . , nhn) −→ ρ2hi

i Mn(1
h1 , . . . , nhn) . (6.90)

6.2.2 Angular momentum operators

The invariance under translations implies the conservation of the total mo-
mentum, so that we can write

iMn(1
h1 , . . . , nhn) = (2π)4δ(4)

( n∑
i=1

pi

)
iMn(1

h1 , . . . , nhn) , (6.91)

where Mn is the reduced amplitude.

On the other hand, scattering amplitudes should be invariant also under
Lorentz transformations. Their action on the helicity spinors looks as

δλα = ωαβλβ , δλ̃α̇ = ω̄α̇β̇λ̃
β̇ , (6.92)

where ω and ω̄ are symmetric matrices. As an example, we can easily verify
that the inner products 〈i j〉 and [i j] are actually Lorentz invariant:

δ〈i j〉 = 〈δi j〉+〈i δj〉 = 〈δi j〉−〈δj i〉 = ωαβλi βλj α−ωαβλj βλi α = 0 (6.93)

since ωαβ = ωβα, and similarly

δ[i j] = [δi j] + [i δj] = [δi j]− [δj i] = ω̄α̇β̇λ̃
β̇
i λ̃

α̇
j − ω̄α̇β̇λ̃

β̇
j λ̃

α̇
i = 0 (6.94)

due to ω̄α̇β̇ = ω̄β̇α̇.
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The transformations in Eq. (6.92) are respectively generated by the
differential operators ωαβMαβ/2 and ω̄α̇β̇M̄

ᾱβ̄/2, where he have defined the
angular momentum operators as

Mαβ =

n∑
i=1

(
λi α

∂

∂λβi
+ λi β

∂

∂λαi

)
, (6.95)

M̄ α̇β̇ =
n∑

i=1

(
λ̃α̇i

∂

∂λ̃i β̇
+ λ̃β̇i

∂

∂λ̃i α̇

)
. (6.96)

The invariance of scattering amplitudes under Lorentz transformations tran-
slates to the property that the reduced amplitude depends on the momenta
only through the brackets 〈i j〉 and [i j]

Mn =Mn({〈i j〉, [i j]}) (6.97)

and the condition for the particle i to have helicity hi becomes

Mn({(ρiρj)−1〈i j〉, ρiρj [i j]}) =
( n∏

i=1

ρ2hi
i

)
Mn({〈i j〉, [i j]}) . (6.98)

6.2.3 Dilatation operator

From the definition of the scattering amplitude

iMn = 〈p1, . . . , pn|S|0〉 = (2π)4δ(4)
( n∑

i=1

pi

)
iMn (6.99)

we can compute its mass dimension. Indeed, since an asymptotic one-
particle on-shell state 〈pi| = 〈0| a(pi) has dimension (−1) (which can be seen
from the commutation relations, e.g. for scalars [a(p), a†(k)] = (2π)32p0δ(3)(~p−
~k)), we deduce that

[Mn] = −n , (6.100)

and, as a consequence, the reduced amplitude has dimension

[Mn] = 4− n . (6.101)

On the other hand, recalling that pα̇α = λ̃α̇λα, the helicity spinors have
dimension

[λ] = [λ̃] =
1

2
[p] =

1

2
. (6.102)

Therefore, under a rescaling of the spinors associated with each particle

λi −→ ρ1/2λi , λ̃i −→ ρ1/2λ̃i , (6.103)
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the amplitude should transform as

Mn −→ ρ4−nMn . (6.104)

The dilatation operator generating these transformations is

D =
1

2

n∑
i=1

(
λαi

∂

∂λαi
+ λ̃i α̇

∂

∂λ̃i α̇

)
(6.105)

and the corresponding restriction on the amplitude takes the form

DMn = (4− n)Mn . (6.106)

6.3 Three-particle amplitudes
In this Section we show, following Ref. [13], how the constraints coming from
locality, Poincaré invariance and dimensional analysis uniquely fix the form
of three-particle on-shell scattering amplitudes.

We start noticing that, according to momentum conservation,

p1 + p2 + p3 = 0 , (6.107)

which implies for massless on-shell particles

0 = p21 = s23 = 〈2 3〉[3 2] , (6.108)
0 = p22 = s31 = 〈3 1〉[1 3] , (6.109)
0 = p23 = s12 = 〈1 2〉[2 1] . (6.110)

From the last line, we deduce that if 〈1 2〉 6= 0, then [1 2] = 0. Further-
more, applying Eq. (6.49) with a = 1 and b = 3, we find that 〈1 2〉[2 3] =
−〈1 1〉[1 3] − 〈1 3〉[3 3] = 0, so [2 3] = 0. Repeating this procedure cycli-
cally, we conclude that [1 2] = [2 3] = [3 1] = 0. On the other hand, as-
suming [1 2] 6= 0 and following the same line of reasoning, we would find
〈1 2〉 = 〈2 3〉 = 〈3 1〉 = 0.

To summarize, three-particle amplitudes have support on two possible
kinematic configurations:

• the holomorphic configuration, which corresponds to the case in which
all square brackets are vanishing

[1 2] = [2 3] = [3 1] = 0 (6.111)

implying λ̃1 ∝ λ̃2 ∝ λ̃3;
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• the anti-holomorphic configuration, which corresponds to the case in
which all angle brackets are vanishing

〈1 2〉 = 〈2 3〉 = 〈3 1〉 = 0 (6.112)

implying λ1 ∝ λ2 ∝ λ3.

Both of them require λi and λ̃i to be independent variables, meaning that
〈i j〉 6= [j i]∗ and the Mandelstam invariants are not real.

Recalling that amplitudes are polynomials in the helicity spinors, we can
consider the following ansatz for the three-particle amplitude of particles
with helicities hi:

M3(1
h1 , 2h2 , 3h3) =MH

3 (〈1 2〉, 〈2 3〉, 〈3 1〉)+MA
3 ([1 2], [2 3], [3 1]) , (6.113)

where

MH
3 (〈1 2〉, 〈2 3〉, 〈3 1〉) = gH〈1 2〉a〈2 3〉b〈3 1〉c (6.114)

MA
3 ([1 2], [2 3], [3 1]) = gA[1 2]

−a[2 3]−b[3 1]−c (6.115)

are the holomorphic and anti-holomorphic parts respectively and gH and
gA are the corresponding coupling constants. Matching the helicity of each
particle with the exponents a, b and c by means of the homogeneity condition
in Eq. (6.98), we obtain a simple system of three equations in three variables

a+ c = −2h1 , (6.116)
a+ b = −2h2 , (6.117)
b+ c = −2h3 , (6.118)

whose solution is given by

a = h3 − h1 − h2 , (6.119)
b = h1 − h2 − h3 , (6.120)
c = h2 − h3 − h1 . (6.121)

These exponents are integers, since fermions always appear in pairs. Impos-
ing the amplitude to have the right mass dimension [M3] = 4 − 3 = 1 we
obtain

1 = [gH ] + a+ b+ c = [gH ]− h1 − h2 − h3 , (6.122)
1 = [gA]− a− b− c = [gH ] + h1 + h2 + h3 , (6.123)

leading to

[gH ] = 1 + h1 + h2 + h3 = 1 + h , (6.124)
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[gA] = 1− h1 − h2 − h3 = 1− h , (6.125)

where h = h1 + h2 + h3. The final step consists in requiring that the three-
particle amplitude has the correct physical behavior in the limit of real
momenta, namely M3 should vanish when 〈i j〉 and [i j] go to zero. It is
straightforward to verify that if a+b+c = −h > 0, then we must set gA = 0
in order to avoid an infinity, and similarly, if a+b+c = −h < 0, then gH = 0
follows for the same reason.

To summarize, we can distinguish two cases depending on the sign of
the total helicity h:

• if h < 0, then the three-particle amplitude is given by its holomorphic
configuration

M3(1
h1 , 2h2 , 3h3) = gH〈1 2〉h3−h1−h2〈2 3〉h1−h2−h3〈3 1〉h2−h3−h1 ,

(6.126)

where the coupling constant gH has dimension [gH ] = 1 + h < 1;

• if h > 0, then the three-particle amplitude is given by its anti-holomor-
phic configuration

M3(1
h1 , 2h2 , 3h3) = gA[1 2]

−h3+h1+h2 [2 3]−h1+h2+h3 [3 1]−h2+h3+h1 ,

(6.127)

where the coupling constant gA has dimension [gA] = 1− h < 1.

By noticing that the coupling constants must have dimension lower than 1
in both cases, we can ascertain the fact that the three-particle amplitude has
the correct physical behaviour in the limit of real momenta is equivalent to
require the theory to be local. Indeed, a three-particle amplitude with [g] > 1
would originate from an operator O with mass dimension [O] = 4− [g] < 3
containing three fields. If this were the case, negative powers of derivatives
would be involved, ensuring the non-locality of the operator.

In the following Subsection we will explore some relevant examples,
including the interactions of an ALP with SM fields.

6.3.1 Gauge interactions

The interaction between a gauge boson and two fermions is generated at the
Lagrangian level by the promotion of a partial derivative ∂µ to a covariant
one Dµ inside the fermion kinetic term:

if̄γµ∂µf −→ if̄γµDµf = if̄γµ(∂µ + ieQfAµ + igscfT
aAa

µ)f . (6.128)
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Since the gauge couplings are dimensionless, the three-particle amplitudes
with one gauge boson v = γ, g and two fermions

iM3(1
h1
v , 2

h2
f , 3

h3

f̄
) (6.129)

are non-vanishing if and only if [g] = 1∓h = 0, namely the sum of the three
helicities h is ±1. This, combined with the fact that |h1| = 1, implies that
f and f̄ must have opposite helicities h2 = −h3 = ±1/2. From Eqs. (6.126)
and (6.127) we then expect to find the following structures

iM3(1
∓
v , 2

−
f , 3

+
f̄
) ∝

{
〈1 2〉2〈2 3〉−1

[1 3]2[2 3]−1
. (6.130)

In order to evaluate the coefficients multiplying the spinor products, we can
rely on Feynman rules.

QED interaction

The Feynman rule for the QED interaction vertex is given by

µ

f̄j

fi

= −ieQfδ
ijγµ , (6.131)

and, in order to obtain the corresponding three-particle amplitudes, we can
contract it with the photon polarization vector and the fermion spinors.
Therefore, considering the holomorphic configuration, in which the photon
has negative helicity, we have

iM3(1
−
γ , 2

−
fi
, 3+

f̄j
) = −ieQfδ

ij ū−(p2)γ
µv+(p3)ε

(−)
µ (p1)

= ieQfδ
ij〈2|γµ|3] 1√

2

[ξ|γµ|1〉
[ξ 1]

=
√
2ieQfδ

ij〈2 1〉 [ξ 3]
[ξ 1]

.

(6.132)

From the total momentum conservation we can write [ξ 1]〈1 2〉+ [ξ 3]〈3 2〉 =
0, from which follows

[ξ 3]

[ξ 1]
=
〈1 2〉
〈2 3〉

, (6.133)

leading to

iM3(1
−
γ , 2

−
fi
, 3+

f̄j
) = −

√
2ieQfδ

ij 〈1 2〉2

〈2 3〉
. (6.134)
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Similarly, the three-particle amplitude in the anti-holomorphic configura-
tion, namely with positive photon helicity, reads

iM3(1
+
γ , 2

−
fi
, 3+

f̄j
) = −ieQfδ

ij ū−(p2)γ
µv+(p3)ε

(+)
µ (p1)

= −ieQfδ
ij〈2|γµ|3] 1√

2

〈ξ|γµ|1]
〈ξ 1〉

= −
√
2ieQfδ

ij [3 1]
〈ξ 2〉
〈ξ 1〉

= −
√
2ieQfδ

ij [1 3]
2

[2 3]
,

(6.135)

where in the last line [3 1]〈1 ξ〉+ [3 2]〈2 ξ〉 = 0 has been used. Clearly, both
results agree with Eq. (6.130).

QCD interaction

The Feynman rule for the QCD interaction vertex is given by

µ; a

f̄Jj

f Ii

= −igscfδijT a
IJγ

µ , (6.136)

and, in order to obtain the corresponding three-particle amplitudes, we can
follow the same steps of the QED case: the spinorial structure does not
change and the only difference is provided by the prefactor. Therefore, the
three-particle amplitudes in the holomorphic and anti-holomorphic configu-
rations are respectively given by

iM3(1
−
ga , 2

−
fI
i
, 3+

f̄J
j
) = −

√
2igscfδ

ijT a
IJ

〈1 2〉2

〈2 3〉
, (6.137)

iM3(1
+
ga , 2

−
fI
i
, 3+

f̄J
j
) = −

√
2igscfδ

ijT a
IJ

[1 3]2

[2 3]
. (6.138)

Three-gluon amplitudes

For the case of identical vectors the helicities are hi = ±1, which imply that
the exponents a, b and c are odd integers. As a consequence, the three-
vector amplitude is odd under the exchange of any two external particles,
and must identically vanish in order to preserve Bose symmetry. This is
indeed what happens for photons: any three-photon amplitude is vanishing
by charge conjugation symmetry. However, this argument does not forbid
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an interaction between vectors carrying different colors, as in the case of
gluons.

We expect the three-gluon amplitude to be proportional to gs, since it is
the only coupling constant in QCD, and, from the fact that it is dimension-
less [gs] = 0, we can infer that the amplitude is non-vanishing if and only if
the sum of the three helicities h is equal to ±1. Concerning the holomorphic
configuration (h = −1), from the general formula in Eq. (6.126) we then
expect the three-gluon amplitude to take the form

iM3(1
−
ga , 2

−
gb
, 3+gc) ∝ gsfabc

〈1 2〉3

〈2 3〉〈3 1〉
, (6.139)

where the insertion of the structure constants fabc is essential in order to
restore Bose symmetry. Indeed, without them the amplitude would be anti-
symmetric under the exchange of particle 1 with particle 2. Similarly, for
the anti-holomorphic configuration (h = 1), we expect from Eq. (6.127)

iM3(1
+
ga , 2

+
gb
, 3−gc) ∝ gsfabc

[1 2]3

[2 3][3 1]
. (6.140)

In order to find the exact values of the coefficients in front of the an-
gular and square brackets, we can rely on Feynman rules. The three-gluon
Feynman rule reads

p1

p2

p3

µ; a

ν; b ρ; c

= −gsfabc[gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+ gρµ(p3 − p1)ν ] ,
(6.141)

which stems from the operator −Ga
µνG

aµν/4, where the convention used is
Ga

µν = ∂µA
a
ν − ∂νAa

µ + gsf
abcAb

µA
c
ν . In order to obtain the amplitude, we

can then contract this Feynman rule with the polarization vectors ε(±)
µ (pi) =



76 On-shell amplitudes

ε
(±)
i µ . Therefore, for the holomorphic configuration we have

iM3(1
−
ga , 2

−
gb
, 3+gc) = −gsfabc[ε

(−)
1 · ε(−)

2 (p1 − p2) · ε(+)
3

+ ε
(−)
2 · ε(+)

3 (p2 − p3) · ε(−)
1

+ ε
(+)
3 · ε(−)

1 (p3 − p1) · ε(−)
2 ]

= −gsfabc[ε(−)
1 · ε(−)

2 (p1 − p2) · ε(+)
3

+ ε
(−)
2 · ε(+)

3 (p1 + 2p2) · ε(−)
1

− ε(+)
3 · ε(−)

1 (2p1 + p2) · ε(−)
2 ]

= −gsfabc[ε(−)
1 · ε(−)

2 (p1 − p2) · ε(+)
3

+ 2ε
(−)
2 · ε(+)

3 p2 · ε(−)
1 − 2ε

(+)
3 · ε(−)

1 p1 · ε(−)
2 ] ,

(6.142)

where the momentum conservation p3 = −p1 − p2 and the transversality
conditions pi · ε(±)

i = 0 have been used. The calculation is more manageable
if we choose the same reference momentum ξ for the three polarization
vectors:

ε
(−)
1 · ε(−)

2 =
1

2

[ξ|γµ|1〉
〈ξ 1〉

[ξ|γµ|2〉
〈ξ 2〉

=
〈1 2〉[ξ ξ]
〈ξ 1〉〈ξ 2〉

= 0 ; (6.143)

ε
(−)
1 · ε(+)

3 = −1

2

[ξ|γµ|1〉
[ξ 1]

〈ξ|γµ|3]
〈ξ 3〉

= −〈1 ξ〉[3 ξ]
[1 ξ]〈3 ξ〉

; (6.144)

ε
(−)
2 · ε(+)

3 = −1

2

[ξ|γµ|2〉
[ξ 2]

〈ξ|γµ|3]
〈ξ 3〉

= −〈2 ξ〉[3 ξ]
[2 ξ]〈3 ξ〉

; (6.145)

p2 · ε(−)
1 = − 1

2
√
2
〈2|γµ|2] [ξ|γµ|1〉

[ξ 1]
=

1√
2

〈1 2〉[2 ξ]
[1 ξ]

; (6.146)

p1 · ε(−)
2 = − 1

2
√
2
〈1|γµ|1] [ξ|γµ|2〉

[ξ 2]
= − 1√

2

〈1 2〉[1 ξ]
[2 ξ]

. (6.147)

Inserting this contractions in the expression for the amplitude we obtain

iM3(1
−
ga , 2

−
gb
, 3+gc) =

√
2gsf

abc 〈1 2〉[3 ξ]
〈3 ξ〉

(
〈2 ξ〉
[1 ξ]

+
〈1 ξ〉
[2 ξ]

)
= −
√
2gsf

abc 〈1 2〉[3 ξ]
〈3 ξ〉

〈ξ 2〉[2 ξ] + 〈ξ 1〉[1 ξ]
[1 ξ][2 ξ]

= −
√
2gsf

abc 〈1 2〉[3 ξ]
〈3 ξ〉

〈ξ|p1 + p2|ξ]
[1 ξ][2 ξ]

=
√
2gsf

abc 〈1 2〉[3 ξ]
〈3 ξ〉

〈ξ 3〉[3 ξ]
[1 ξ][2 ξ]

= −
√
2gsf

abc〈1 2〉 [3 ξ]
[1 ξ]

[3 ξ]

[2 ξ]
.

(6.148)
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In order to eliminate ξ, we can exploit once again the total momentum
conservation and write the identities

[ξ 3]〈3 2〉+ [ξ 1]〈1 2〉 = 0 , [ξ 3]〈3 1〉+ [ξ 2]〈2 1〉 = 0 , (6.149)

which respectively lead to

[3 ξ]

[1 ξ]
=
〈1 2〉
〈2 3〉

,
[3 ξ]

[2 ξ]
=
〈1 2〉
〈3 1〉

. (6.150)

Finally we can write the three-gluon amplitude in the holomorphic configu-
ration as

iM3(1
−
ga , 2

−
gb
, 3+gc) = −

√
2gsf

abc 〈1 2〉3

〈2 3〉〈3 1〉
. (6.151)

The calculation of the anti-holomorphic three-gluon amplitude is completely
analogous and we omit it. It follows that

iM3(1
+
ga , 2

+
gb
, 3−gc) =

√
2gsf

abc [1 2]3

[2 3][3 1]
. (6.152)

These results are clearly in perfect agreement with our expectations based
on symmetry arguments.

If we instead take all-plus or all-minus helicities, from Eqs. (6.126) and
(6.127) we can write

iM3(1
−
ga , 2

−
gb
, 3−gc) ∝ fabc〈1 2〉〈2 3〉〈3 1〉 (6.153)

iM3(1
+
ga , 2

+
gb
, 3+gc) ∝ fabc[1 2][2 3][3 1] (6.154)

and by power counting we can see that these amplitudes can be solely gen-
erated by dimension-six irrelevant operators of the form TrG3.

6.3.2 ALP interactions

Concerning the interactions between an ALP φ and the SM particles, it
is more useful to compute form factors instead of scattering amplitudes.
The reason for that will be unfolded in the next Chapter. The form factor
associated with a local and gauge invariant operator O(x) is defined as the
matrix element between the operator evaluated at x = 0 (this does not lose
generality by translational invariance) and the multi-particle asymptotic on-
shell state

FO(1
h1 , . . . , nhn) = out 〈1h1 , . . . , nhn |O(0)|0〉 . (6.155)

We will specialize to the case in which FO is a minimal form factor, namely
the lowest order form factor that does not vanish in the free theory limit.
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Minimal form factors share with n-particle amplitudes the property of being
polynomials in the kinematic variables, and as a consequence, for the case
n = 3, the general formulae in Eqs. (6.126) and (6.127) are valid also for
them. We then expect to find

FO(1
h1 , 2h2 , 3h3) =

{
κH〈1 2〉h3−h1−h2〈2 3〉h1−h2−h3〈3 1〉h2−h3−h1 if h < 0

κA[1 2]
h1+h2−h3 [2 3]h2+h3−h1 [3 1]h3+h1−h2 if h > 0

(6.156)

with κH , κA ∈ C.

φV V operators

The operators φV V and φV Ṽ – with V = F,G – that mediate the interaction
between the ALP and the gauge bosons have mass dimension equal to 5.
This means that the three-particle amplitudes

iM3(1
h1
v , 2

h2
v , 3φ) (6.157)

are proportional to a Wilson coefficient gφvv with dimension [gφvv] = −1 =
1 ∓ h, implying h = h1 + h2 = ±2, since hφ = 0. By symmetry arguments
and power counting, we have found that the ALP couples with two gauge
bosons having the same helicities h1 = h2 = ±1. According to Eqs. (6.126)
and (6.127), for the three-particle amplitudes the two possible cases are

iM3(1
∓
v , 2

∓
v , 3φ) ∝

{
gφvv〈1 2〉2

gφvv[1 2]
2

. (6.158)

In order compute the minimal form factors associated with each operator, we
can start from the Feynman rules, divide them by i times the corresponding
Wilson coefficient and contract with the polarization vectors.

Regarding the operator φFµνF
µν , its Feynman rule is provided by

p1

p2

φ

µ

ν

= 4ie2
Cγ

Λ
(pµ2p

ν
1 − p1 · p2gµν) , (6.159)

which, once it is divided by ie2Cγ/Λ and contracted with the photon po-
larization vectors, can lead to the form factor Fγ , graphically denoted as
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3φ

1h1
γ

2h2
γ

= Fγ(1
h1
γ , 2

h2
γ , 3φ) . (6.160)

Considering the configuration with h1 = h2 = −1, we have

Fγ(1
−
γ , 2

−
γ , 3φ) = 〈1−γ , 2−γ , 3φ|φFµνF

µν |0〉

= 4(pµ2p
ν
1 − p1 · p2gµν)ε(−)

µ (p1)ε
(−)
ν (p2)

= 2(pµ2p
ν
1 − p1 · p2gµν)

[ξ1|γµ|1〉
[ξ1 1]

[ξ2|γν |2〉
[ξ2 2]

= 2
[ξ1 2]〈2 1〉[ξ2 1]〈1 2〉 − 〈1 2〉[2 1]〈1 2〉[ξ2 ξ1]

[ξ1 1][ξ2 2]

= −2 〈1 2〉2

[ξ1 1][ξ2 2]
([ξ1 2][ξ2 1] + [2 1][ξ2 ξ1])

(6.161)

and if we take the same reference momentum ξ1 = ξ2 the last expression
reduces to:

Fγ(1γ− , 2γ− , 3φ) = −2〈1 2〉2 . (6.162)

We can repeat the same steps for the operator φGa
µνG

aµν , since it is
sufficient to consider the form factors with the least number of particles.
The Feynman rule with two gluons reads

p1

p2

φ

a; µ

b; ν

= 4ig2s
Cg

Λ
δab(pµ2p

ν
1 − p1 · p2gµν) , (6.163)

which leads to the corresponding form factor Fg:

3φ

1−ga

2−
gb

= Fg(1
−
ga , 2

−
gb
, 3φ)

= 〈1−ga , 2−gb , 3φ|φG
c
µνG

c µν |0〉

= −2δab〈1 2〉2 .

(6.164)
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φV Ṽ operators

The calculation of the form factors associated with the φV Ṽ operators is
not as straightforward as it was for φV V . The reason is that it involves the
contraction between four null vectors with the Levi-Civita tensor.

The Feynman rule for the operator φFµνF̃
µν is

p1

p2

φ

µ

ν

= 4ie2
C̃γ

Λ
εµνρσp1 ρp2σ , (6.165)

from which the form factor Fγ̃ evaluated for negative photon helicities can
be computed as

3φ

1−γ

2−γ

= Fγ̃(1
−
γ , 2

−
γ , 3φ)

= 〈1−γ , 2−γ , 3φ|φFµνF̃
µν |0〉

= 4εµνρσε(−)
µ (p1)ε

(−)
ν (p2)p1 ρp2σ .

(6.166)

Since the polarization vectors and the momenta are null, we can apply the
identity in Eq. (6.50), which can be rewritten isolating the Levi-Civita con-
traction as

4ε(a, b, c, d) = 2i〈a b〉[b c]〈c d〉[d a]− i〈a b〉[b a]〈c d〉[d c] + i〈a c〉[c a]〈b d〉[d b]
− i〈a d〉[d a]〈b c〉[c b] ,

(6.167)

so that we can write Eq. (6.166) as

Fγ̃(1
−
γ , 2

−
γ , 3φ) = 2i

2〈1 2〉[ξ2 1]〈1 2〉[2 ξ1]
[1 ξ1][2 ξ2]

− i2〈1 2〉[ξ2 ξ1]〈1 2〉[2 1]
[1 ξ1][2 ξ2]

− i2〈1 2〉[2 ξ1]〈2 1〉[1 ξ2]
[1 ξ1][2 ξ2]

=
2i〈1 2〉2(2[ξ2 1][2 ξ1]− [ξ2 ξ1][2 1] + [2 ξ1][1 ξ2])

[1 ξ1][2 ξ2]

= − 2i〈1 2〉2

[1 ξ1][2 ξ2]
([1 ξ2][2 ξ1] + [ξ2 ξ1][2 1]) .

(6.168)
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Then, if we take ξ1 = ξ2 the last expression reduces to

Fγ̃(1
−
γ , 2

−
γ , 3φ) = −2i〈1 2〉2 . (6.169)

Concerning the operator φGa
µνG̃

aµν , we recall that its Feynman rule for
the interaction with two gluons is given by

p1

p2

φ

a; µ

b; ν

= 4ig2s
C̃g

Λ
δabεµνρσp1 ρp2σ , (6.170)

and repeating the same steps of Eq. (6.168) we can write the corresponding
form factor Fg̃ as

3φ

1−ga

2−
gb

= Fg̃(1
−
ga , 2

−
gb
, 3φ)

= 〈1−ga , 2−gb , 3φ|φG
c
µνG̃

c µν |0〉

= −2iδab〈1 2〉2 .

(6.171)

Yukawa operators

The Yukawa operators φf̄ifj and iφf̄iγ5fj effectively mediate the interaction
between the ALP and SM fermions. They have mass dimension equal to 4,
implying the corresponding three-particle amplitudes

iM3(1
h1
f , 2

h2

f̄
, 3φ) (6.172)

and form factors to be non-vanishing if and only if h = h1 + h2 = ±1,
namely h1 = h2 = ±1/2. Not only gauge bosons, but also fermions, in order
to interact with the ALP at the level of the EFT considered, must have
the same helicities. The form factors can be straightforwardly computed
contracting the fields with the corresponding external states. Regarding the
φf̄ifj operator and negative helicity fermion states, we can write its form
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factor FS as

3φ

1−fi

2−
f̄j

= FS(1
−
fi
, 2−

f̄j
, 3φ)

= 〈1−fi , 2
−
f̄j
, 3φ|φf̄ifj |0〉

= ū−(p1)v−(p2) =
(
λα1 0

)(λ2α
0

)
= 〈1 2〉 .

(6.173)

On the other hand, the form factor FP , associated with the operator iφf̄iγ5fj
and computed for negative helicity fermion states, is given by

3φ

1−fi

2−
f̄j

= FP (1
−
fi
, 2−

f̄j
, 3φ)

= 〈1−fi , 2
−
f̄j
, 3φ|iφf̄iγ5fj |0〉

= iū−(p1)γ5v−(p2) = i
(
λα1 0

)(−1 0
0 1

)(
λ2α
0

)
= −i〈1 2〉 ,

(6.174)

since, in the Weyl basis, γ5 = iγ0γ1γ2γ3 = diag(−1,−1, 1, 1).

All the minimal form factors involving the ALP φ found in Eqs. (6.162),
(6.164), (6.169), (6.171), (6.173) and (6.174) are in agreement with Eq. (6.156)
and are summarized in Table 6.1.
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Operator Minimal form factor

φFµνF
µν Fγ(1

−
γ , 2

−
γ , 3φ) −2〈1 2〉2 3φ

1−γ

2−γ

φGc
µνG

c µν Fg(1
−
ga , 2

−
gb
, 3φ) −2〈1 2〉2δab 3φ

1−ga

2−
gb

φFµνF̃
µν Fγ̃(1

−
γ , 2

−
γ , 3φ) −2i〈1 2〉2 3φ

1−γ

2−γ

φGc
µνG̃

c µν Fg̃(1
−
ga , 2

−
gb
, 3φ) −2i〈1 2〉2δab 3φ

1−ga

2−
gb

φf̄ifj FS(1
−
fi
, 2−

f̄j
, 3φ) 〈1 2〉 3φ

1−fi

2−
f̄j

iφf̄iγ5fj FP (1
−
fi
, 2−

f̄j
, 3φ) −i〈1 2〉 3φ

1−fi

2−
f̄j

Table 6.1: Minimal form factors – with the least number of particles, taken
with negative helicities – corresponding to the effective operators mediating
the interaction between the ALP φ and the SM particles.
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6.4 Color decomposition
Concerning gauge field theories, there exists a very useful technique that is
able to disentangle the color and kinematical degrees of freedom in a scat-
tering amplitude. In order apply it, it is convenient to rescale the generators
T a of the gauge group SU(Nc) as

ta =
√
2T a . (6.175)

In this way, these rescaled generators are normalized as

Tr(tatb) = δab (6.176)

and satisfy the commutation relation

[ta, tb] = i
√
2fabctc . (6.177)

With these conventions the structure constants take the form

fabc = − i√
2

Tr(ta[tb, tc]) (6.178)

and the Fierz-type identity reads

taIJ t
a
KL = δILδKJ −

1

Nc
δIJδKL . (6.179)

A key observation is that the color dependence of a generic diagram
is given by terms involving contractions of the generator matrices ta and
the structure constants fabc. Indeed, the three-gluon vertex carries one
structure constant fabc, the four-gluon interaction a product of two fabc

and the interaction between a gluon and a quark anti-quark pair comes
with a generator taIJ . Thus, we can exploit the trace formula in Eq. (6.178)
to replace the dependence on the structure constants fabc of the generic
graph by products of the generators ta, with open and contracted indices.
Open fundamental indices correspond to quark lines in the diagram, while
open adjoint indices to the external gluon states. Additionally, applying
Eq. (6.179), we can perform the contractions over the adjoint indices. As a
consequence, we can infer that the color dependence of any diagram can be
reduced entirely to traces and strings of the generators taIJ .

Concerning a pure-gluon tree-level amplitude, its color degrees of free-
dom reduce to a single-trace structure for the generator matrices and can
be brought into the color-decomposed form

iMn(1
h1
ga1 , . . . , n

hn
gan ) =

∑
σ∈Sn/Zn

Tr(taσ1 · · · taσn )iMn((σ1)
hσ1
g , . . . , (σn)

hσn
g ) ,
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(6.180)

where Sn/Zn is the set of all non-cyclic permutations of n elements and is
equivalent to Sn−1, while Mn is called partial or color-ordered amplitude
and carry all kinematic information that is now separated from the colour
degrees of freedom. It is simpler than the full amplitude, since it only receive
contributions from a fixed cyclic ordering of the gluons: its poles can indeed
appear only in channels of adjacent momenta (pi+ · · ·+pi+s)

2 → 0. We can
consider as an example the case n = 4:

iMabcd
4 = iM4(1ga , 2gb , 3gc , 4gd)

= iM4(1g, 2g, 3g, 4g)Tr(tatbtctd) + iM4(1g, 2g, 4g, 3g)Tr(tatbtdtc)
+ iM4(1g, 3g, 2g, 4g)Tr(tatctbtd) + iM4(1g, 3g, 4g, 2g)Tr(tatctdtb)
+ iM4(1g, 4g, 2g, 3g)Tr(tatdtbtc) + iM4(1g, 4g, 3g, 2g)Tr(tatdtctb) .

(6.181)

Regarding QCD amplitudes with one fermion line at tree-level, they
take the form

iMn+2(1
h1
ga1 , . . . , n

hn
gan , (n+ 1)

hn+1

fI , (n+ 2)
hn+2

f̄J ) =
∑
σ∈Sn

(taσ1 · · · taσn )IJ

× iMn+2((σ1)
hσ1
g , . . . , (σn)

hσn
g , (n+ 1)

hn+1

f , (n+ 2)
hn+2

f̄
) , (6.182)

which, for the case n = 2, reads

iM4(1ga , 2gb , 3fI , 4f̄J ) = iM4(1g, 2g, 3f , 4f̄ )(t
atb)IJ

+ iM4(2g, 1g, 3f , 4f̄ )(t
bta)IJ .

(6.183)

Color-ordered amplitudes are gauge invariant and enjoy general proper-
ties which considerably reduce the number of independent amplitudes.

Cyclicity:

iMn(1g, 2g, . . . , ng) = iMn(2g, . . . , ng, 1g) (6.184)

directly follows from the definition of the color-ordered amplitude in
Eq. (6.180).

Parity:

[iMn(1
h1
g , . . . , n

hn
g )]∗ = iMn(1

−h1
g , . . . , n−hn

g ) . (6.185)

Charge conjugation:

iMn(1f , 2f̄ , 3g, . . . , ng) = −iMn(1f̄ , 2f , 3g, . . . , ng) , (6.186)

namely flipping the helicity on a fermion line changes the amplitude
up to a sign.
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Reflection:

iMn(1g, 2g, . . . , ng) = (−1)niMn(ng, (n− 1)g, . . . , 1g) (6.187)

follows from the anti-symmetry of color-ordered gluon vertices.

Photon decoupling:∑
σ∈Zn−1

iMn((σ1)g, . . . , (σn−1)g, ng) = 0 , (6.188)

where the elements σ = {σ1, σ2, . . . , σn−1} are cyclic permutations of
the set {1, 2, . . . , n−1}. It follows from the fact that pure-gluon ampli-
tudes in the U(Nc) theory containing a U(1) photon must vanish since
f0ab = 0, where we have defined the U(1) generator t0IJ = δIJ/

√
Nc.

6.5 BCFW recursion relation
The Britto-Cachazo-Feng-Witten (BCFW) recursion relation [19, 20] pro-
vides a systematic way to compute scattering amplitudes by recursively re-
lating them to simpler ones. Its key idea is to use the power of complex
analysis, in particular Cauchy’s integral theorem and residue theorem, and
exploit the analytic properties of on-shell scattering amplitudes. In partic-
ular, they are analytic functions of the kinematic variables and it should
be possible to reconstruct them knowing their behavior in singular limiting
kinematics.

We start considering a tree-level and color-ordered n-particle amplitude
iMn(1, . . . , n) and deforming the helicity spinors of the particles i and n:

λ1 −→ λ̂1(z) = λ1 − zλn , λ̃1 −→ λ̃1 , (6.189)

λn −→ λn , λ̃n −→ ˆ̃
λn(z) = λ̃n + zλ̃1 , (6.190)

where z ∈ C. This transformation is known as [n, 1〉 shift. Correspondingly,
the two momenta are deformed as

pα̇α1 −→ p̂α̇α1 (z) = λ̃α̇1 (λ1 − zλn)α , (6.191)
pα̇αn −→ p̂α̇αn (z) = (λ̃n + zλ̃1)

α̇λαn , (6.192)

but the total momentum conservation is not spoiled since p̂α̇α1 (z)+ p̂α̇αn (z) =
pα̇α1 + pα̇αn , and the on-shell conditions still hold: p̂21(z) = p̂2n(z) = 0. The
amplitude that is function of these shifted momenta is called deformed am-
plitude

iM̂n(z) = iMn(1̂(z), 2, . . . , n− 1, n̂(z)) (6.193)
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and it is the analytic continuation of the original one, which can be found
setting z = 0: iMn = iM̂n(0).

Cauchy’s integral theorem states that if we consider a function f =
f(x) defined on the real axis that admits an analytical continuation to the
complex plane and that is holomorphic in x, then f(x) can be computed as

f(x) =

∮
γ

dz
2πi

f(z)

z − x
, (6.194)

where γ is an infinitesimal circumference around x. Blowing up the integra-
tion contour, as illustrated in Figure 6.2, we can write

f(x) = −
∑
k

Res
z=zk

f(z)

z − x
+

∮
|z|=∞

dz
2πi

f(z)

z − x
(6.195)

due to residue theorem, where zk are the poles of f(z). Additionally, if f(z)

Figure 6.2: Deformation of the integration contour γ.

goes to zero fast enough for |z| → ∞ so that the residue of f(z) at infinity is
null, f(x) can be evaluated just by knowing the behaviour of its analytical
continuation around the singularities:

f(x) = −
∑
k

Res
z=zk

f(z)

z − x
. (6.196)

This result can be applied to the n-particle amplitude, provided that it is
computed at tree-level. Indeed, at tree-level the amplitude iMn is singular
when a multi-particle channel corresponding to the Feynman propagator
i/P 2

i goes on-shell, namely when P 2
i = 0, where Pi = p1+· · ·+pi is the sum of

adjacent momenta, since the amplitude is color-ordered, and i = 2, . . . , n−2.
Therefore, concerning the deformed amplitude iM̂n(z), it has n− 3 isolated
poles located at z = zi, which can be found imposing P̂ 2

i (zi) = 0, where

P̂i(z) = p̂1(z) + p2 + · · ·+ pi , (6.197)
P̂ 2
i (z) = P 2

i − z〈n|Pi|1] = −〈n|Pi|1](z − zi) . (6.198)



88 On-shell amplitudes

Thus, the n− 3 poles of iM̂n(z) are located at

zi =
P 2
i

〈n|Pi|1]
. (6.199)

We also need to know what the residues at the poles are. As we approach a
pole zi, which is simple since P̂ 2

i (z) is linear in z, the deformed amplitude
iM̂n(z) factorizes into a product of two causally disconnected amplitudes
with fewer legs, since the intermediate state that connects them is on its
mass shell and can therefore propagate an arbitrary distance:

iM̂n(z) ∼
1

z − zi
−i

〈n|Pi|1]
∑
h

iMi+1(1̂(zi), 2, . . . , i,−P̂−h
i (zi))

× iMn−i+1(P̂
h
i (zi), i+ 1, . . . , n− 1, n̂(zi)) ,

(6.200)

where h runs over all possible helicity states propagating between the am-
plitude on the left side iMi+1(1̂(zi), 2, . . . , i,−P̂−h

i (zi)) and the one on the
right side iMn−i+1(P̂

h
i (zi), i+1, . . . , n− 1, n̂(zi)). This is schematically rep-

resented in Figure 6.3. Therefore, the residues can be computed as

∑
h

"1(𝑧&) '𝑛(𝑧&)

2

𝑖 𝑖 + 1

𝑛 − 1

"𝑃&(𝑧&)−ℎ ℎ

Figure 6.3: Factorization of the deformed color-ordered amplitude iM̂n(z)
near the pole zi.

Res
z=zi

iM̂n(z) = lim
z→zi

(z − zi)iM̂n(z)

=
−i

〈n|Pi|1]
∑
h

iMi+1(1̂(zi), 2, . . . , i,−P̂−h
i (zi))

× iMn−i+1(P̂
h
i (zi), i+ 1, . . . , n− 1, n̂(zi))

(6.201)

and, if we assume that iM̂n(z)→ 0 as |z| → ∞ so that the residue at infinity
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is zero∮
|z|=∞

dz
2πi

iM̂n(z)

z
= 0 (6.202)

(in which case the shift is said to be valid or good), we can apply Eq. (6.196)
to reconstruct the original amplitude as

iMn(1, . . . , n) = iM̂n(0) = −
n−2∑
i=2

1

zi
Res
z=zi

iM̂n(z) . (6.203)

Finally, plugging in Eqs. (6.199) and (6.201), we can conclude that

iMn(1, . . . , n) =
n−2∑
i=2

∑
h

iMi+1(1̂(zi), 2, . . . , i,−P̂−h
i (zi))

i

P 2
i

× iMn−i+1(P̂
h
i (zi), i+ 1, . . . , n− 1, n̂(zi)) .

(6.204)

This is the BCFW recursion formula.

This relation is valid in any spacetime dimension d and is constructive,
since the amplitudes appearing on the right hand side have lower multiplicity
than iMn. Hence, with the seed three-particle amplitudes we can use this
formula to construct all n-particle amplitudes at tree-level without using
Feynman diagrams.

6.5.1 Example: Parke-Taylor formula

A straightforward application of the BCFW recursion formula concerns the
calculation of the tree-level scattering amplitude involving n gluons. The
three-gluon color-ordered amplitudes in the holomorphic and anti-holomor-
phic configuration can be respectively derived from Eqs. (6.151) and (6.152)

iM3(1
−
g , 2

−
g , 3

+
g ) = igs

〈1 2〉3

〈2 3〉〈3 1〉
, (6.205)

iM3(1
+
g , 2

+
g , 3

−
g ) = −igs

[1 2]3

[2 3][3 1]
. (6.206)

These two are the only non-vanishing amplitudes at tree-level for n = 3.

A general n-gluon tree amplitude, with n > 3, must depend on the n
polarization vectors involved εi µ = εµ(pi), which have to be contracted with
themselves (εi · εj) or with the external momenta (εi · pj). Moreover, in
general it can be written as a sum of terms, each of which contains at least
one one polarization contraction εi · εj . This implies that if the gluons have
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all the same helicity, all the terms are proportional to ε
(±)
i · ε(±)

j , which is
zero if they share the same reference momentum (ξi = ξj)

ε
(±)
i · ε(±)

j =

{
〈ξi ξj〉[j i]〈i ξi〉−1〈j ξj〉−1

〈i j〉[ξj ξi][i ξi]−1[j ξj ]
−1

= 0 , (6.207)

leading to

iMn(1
±
g , . . . , n

±
g ) = 0 . (6.208)

Similarly, the gluon tree-level amplitude with one flipped helicity state van-
ishes

iMn(1
∓
g , 2

±
g , . . . , n

±
g ) = 0 (6.209)

by choosing ξ1 6= p1 and ξ2 = · · · = ξn = p1. Indeed, in this way all the
terms containing a contraction ε

(±)
i · ε(±)

j = 0, with i, j = 2, . . . , n, vanish,
and at the same time

ε
(±)
i · ε(∓)

1 =

{
〈1 ξi〉[ξ1 i]〈i ξi〉−1[1 ξ1]

−1

〈i ξ1〉[ξi 1]〈1 ξ1〉−1[i ξi]
−1

= 0 (6.210)

for each i = 2, . . . , n, since ξi = p1.

Therefore, the first non-vanishing pure-gluon tree-level amplitudes are
the ones with two flipped helicities, of the form

iMn(1
−
g , 2

+
g , . . . , (n− 1)+g , n

−
g ) , (6.211)

which are known as maximally helicity violating (MHV) gluon amplitudes.
Eq. (6.205) is the first of this family of amplitudes, and, for any n, they are
expressed through the Parke-Taylor formula [60]

iMn(1
−
g , 2

+
g , . . . , (n−1)+g , n−g ) = ign−2 〈1n〉4

〈1 2〉〈2 3〉 · · · 〈(n− 1)n〉〈n 1〉
. (6.212)

We can prove it inductively applying the BCFW recursion formula, since it
is already valid for n = 3. The [n, 1〉 shift, which reads

λ1 −→ λ̂1(z) = λ1 − zλn , λ̃1 −→ λ̃1 , (6.213)

λn −→ λn , λ̃n −→ ˆ̃
λn(z) = λ̃n + zλ̃1 , (6.214)

can be proven to yield a deformed color-ordered amplitude iM̂n(z) that has a
large-z falloff as z−1, thus the residue at infinity is zero and the shift is valid.
This holds since the gluons 1 and n are in the same helicity configuration
(h1 = hn). If the two helicities were different (h1 6= hn), we would have

iM̂n(z) ∼

{
z−1 if h1 = +1, hn = −1
z3 if h1 = −1, hn = +1

(6.215)
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as |z| → ∞, so that for the second case the shift would be forbidden. The
MHV amplitude has only one factorization channel, which is given, keeping
in mind Figure 6.3, by a left hand side amplitude

iM3(1̂
−
g (z), 2

+
g ,−P̂+

g (z)) (6.216)

and a right hand side amplitude

iMn−1(P̂
−
g (z), 3+g , . . . , (n− 1)+g , n̂

−
g (z)) , (6.217)

where P̂ (z) = p̂1(z)+p2. The first one is provided by Eq. (6.206) by applying
the cyclicity property

iM3(1̂
−
g (z), 2

+
g ,−P̂+

g (z)) = iM3(2
+
g ,−P̂+

g (z), 1̂−g (z))

= −igs
[2 (−P̂ (z))]3

[1̂(z) 2][(−P̂ (z)) 1̂(z)]
,

(6.218)

while the second one is a (n−1)-gluon MHV amplitude, which, by induction
hypothesis, reads

iMn−1(P̂
−
g (z), 3+g , . . . , (n− 1)+g , n̂

−
g (z)) = ign−3

s

× 〈n̂(z) P̂ (z)〉3

〈P̂ (z) 3〉〈3 4〉 · · · 〈(n− 1) n̂(z)〉
. (6.219)

The pole associated with this factorization is located at

zP =
(p1 + p2)

2

〈n|(p1 + p2)|1]
=
〈1 2〉[2 1]
〈n 2〉[2 1]

=
〈1 2〉
〈n 2〉

, (6.220)

and the following relations hold

[1̂(z) ∗] = [1 ∗] , (6.221)
〈n̂(z) ∗〉 = 〈n ∗〉 , (6.222)
〈n P̂ (z)〉[P̂ (z) 2] = 〈n 1̂(z)〉[1 2] = 〈n 1〉[1 2] , (6.223)
〈3 P̂ (z)〉[P̂ (z) 1] = 〈3 2〉[2 1] . (6.224)
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Therefore, exploiting the BCFW recursion formula, we obtain

iMn(1
−
g , 2

+
g , . . . , (n− 1)+g , n

−
g )

= iM3(1̂
−
g (zP ), 2

+
g ,−P̂+

g (zP ))
i

s12
iMn−1(P̂

−
g (zP ), 3

+
g , . . . , (n− 1)+g , n̂

−
g (zP ))

= −ign−2
s

[2 P̂ (zP )]
3

[1̂(zP ) 2][P̂ (zP ) 1̂(zP )]

1

〈1 2〉[2 1]
〈n̂(zP ) P̂ (zP )〉3

〈P̂ (zP ) 3〉〈3 4〉 · · · 〈(n− 1) n̂(zP )〉

= ign−2
s

〈n 1〉3[1 2]3

[1 2]〈3 2〉[1 2]〈1 2〉[2 1]〈3 4〉 · · · 〈(n− 1)n〉

= −ign−2
s

〈n 1〉3

〈3 2〉〈1 2〉〈3 4〉 · · · 〈(n− 1)n〉

= ign−2
s

〈n 1〉4

〈1 2〉〈2 3〉 · · · 〈(n− 1)n〉〈n 1〉
,

(6.225)

which is exactly the Parke-Taylor formula. It can be straightforwardly gen-
eralized to the case in which the only two gluons having negative helicities
are labelled by i and j simply by changing the numerator as

iMn(1
+
g , . . . , i

−
g , . . . , j

−
g , . . . , n

+
g ) = ign−2

s

〈i j〉4

〈1 2〉〈2 3〉 · · · 〈(n− 1)n〉〈n 1〉
.

(6.226)

However, for the following calculations we will only need the four-gluon
MHV amplitude, which reads

iM4(1
−
g , 2

−
g , 3

+
g , 4

+
g ) = ig2s

〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
(6.227)

and can be used to derive the full colored amplitude through Eq. (6.181):

iM4(1
−
ga , 2

−
gb
, 3+gc , 4

+
gd
) = −2ig2s〈1 2〉4

[
fabef cde

〈1 2〉〈2 3〉〈3 4〉〈4 1〉

+
facef bde

〈1 3〉〈3 2〉〈2 4〉〈4 1〉

]
. (6.228)



Chapter 7

Renormalization of ALP
EFT via on-shell amplitudes

Arrived at this point, we have introduced the spinor-helicity formalism, de-
scribed the symmetries of scattering amplitudes and exploited them to com-
pute the relevant three-particle amplitudes, as well as the minimal form
factors involving the ALP. Additionally, we have glimpsed the true power of
on-shell methods, which allow us to recursively obtain tree-level amplitudes
starting from lower-point ones. We now want to know how to calculate the
anomalous dimension matrix of composite operators within this framework
without performing loop integrals, and ultimately reproduce the RGEs of
the ALP EFT obtained with the standard Feynman diagrammatic approach
in Chapter 5.

The anomalous dimension of an operator can be computed using a num-
ber of different methods. The method outlined in this Chapter has been
proposed by Caron-Huot and Wilhelm [22] and adopted by Miró, Ingoldby
and Riembau [36] for the calculation of the anomalous dimensions of SM
EFT dimension-six operators.

The central role is played by the form factors FO previously defined in
Eq. (6.155) and that can be written in a more compact notation as

FO(~n) = out 〈~n|O(0)|0〉 , (7.1)

where 〈~n| = 〈1, . . . , n| denotes a n-particle asymptotic on-shell state. Their
calculation in perturbation theory involves the regularization of both ultra-
violet (UV) and infrared (IR) divergences. Thus, in dimensional regular-
ization they acquire a dependence on the ’t Hooft scale µ and satisfy the
Callan-Symanzik equation(

∂

∂ logµ
+ γ − γIR + βg

∂

∂g

)
FO(~n;µ) = 0 . (7.2)

93
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Here, γ is the anomalous dimension matrix, γIR is the IR anomalous di-
mension and βg collectively denotes the beta functions of the couplings in
the theory. Additionally, form factors are closely related to the S-matrix
elements

Snm = 〈~n|S|~m〉 = out 〈~n|~m〉 in (7.3)

through an equation that will be derived following Ref. [36].

7.1 S-matrix and dilatation operator
By Lorentz invariance, form factors must depend on the Mandelstam invari-
ants sij = 2pi · pj = 〈i j〉[j i], i.e. FO = FO({sij + iε}), and are not real
because the Feynman prescription adds the small positive imaginary part
given by iε. However, they can be related to their complex conjugates in
two different ways.

• The first one is based on the analyticity of form factors: the complex
conjugation of FO amounts to complex conjugating the time-ordered
propagators, with denominators of the form sij + iε, into anti-time-
ordered propagators, whose denominators are given by sij − iε. Thus,
under complex conjugation, {sij+ iε} are effectively replaced by {sij−
iε}, and the analyticity relation reads

F ∗
O({sij − iε}) = FO({sij + iε}) . (7.4)

• The second one consists in analytically continuing all the momenta pi
to the complex plane and rotate them along a counter-clockwise circle
with a common phase α:

pi −→ eiαpi . (7.5)

Correspondingly, the Mandelstam invariants are rotated by 2α and the
form factors are transformed as

FO −→ eiαDFO , (7.6)

where D is the dilatation operator, which is the generator of the trans-
formation and is defined as

D =
∑
i

pµi
∂

∂pµi
. (7.7)

For α = π, as illustrated in Figure 7.1, the Mandelstam invariants are
back to their original values, but with the opposite imaginary part.
Therefore, the change of sign of all outgoing momenta leads to the
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Figure 7.1: Transformation of the analytically continued Mandelstam in-
variants sij under the action of the dilatation operator D. For α = π their
infinitesimal imaginary part ε changes sign.

following relation between the form factors evaluated at {sij + iε} and
at {sij − iε}:

FO({sij − iε}) = eiπDFO({sij + iε}) , (7.8)

which, combined with the analyticity relation in Eq. (7.4), implies

e−iπDF ∗
O({sij + iε}) = FO({sij + iε}) . (7.9)

Next, we can exploit unitarity in the form of the completeness relation
satisfied by multi-particle asymptotic states |~n〉

1 =
∑
~n

∫
dΠ~n |~n〉 〈~n| , (7.10)

where

dΠ~n =
1

k!

n∏
i=1

d3pi
(2π)3

1

2Ei
(7.11)

is their Lorentz invariant phase space element, and the factor 1/k! accounts
for k identical particles. We can exploit this relation to rewrite a generic
form factor FO as

FO(~n) = out 〈~n|O(0)|0〉

=
∑
~m

∫
dΠ~m out 〈~n|~m〉 in in 〈~m|O(0)|0〉 . (7.12)
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The final ingredient is provided by CPT theorem. CPT is a discrete
symmetry transformation that is represented in the Hilbert space by an
anti-linear and anti-unitary operator. It relates ingoing and outgoing states
when inserted in the inner product and acts on local operators O(x) as

CPTO(x)[CPT]−1 = O†(−x) . (7.13)

Therefore, it follows that

out 〈~m|O(0)|0〉 = 〈0|[CPT]−1CPTO†(x)[CPT]−1CPT|~m〉 in

= 〈0|O†(0)|~m〉 in ,
(7.14)

which implies for a Hermitian operator O†(x) = O(x)

in 〈~m|O(0)|0〉 = 〈0|O(0)|~m〉 out = ( out 〈~m|O(0)|0〉)∗ = F ∗
O(~m) . (7.15)

Thus, we can rewrite Eq. (7.12) as

FO(~n) =
∑
~m

∫
dΠ~m SnmF

∗
O(~m) (7.16)

and combine this result with Eq. (7.9) to obtain

e−iπDF ∗
O(~n) =

∑
~m

∫
dΠ~m SnmF

∗
O(~m) . (7.17)

This is the central equation we were seeking that relates form factors and
S-matrix elements. Its interpretation consists in identifying the dilatation
operator as minus the phase of the S-matrix, divided by π.

On the other hand, the dilatation operator is also closely related to
the renormalization group evolution. Indeed, at energies much higher than
any mass or equivalently if all the particles are massless, we can infer by
dimensional analysis that FO can depend only on dimensionless ratios sij/µ2,
and consequently D =

∑
i pi · ∂/∂pi can be traded by −µ∂/∂µ. Thus, the

Callan-Symanzik equation yields

DFO = − ∂

∂ logµ
F

(1)
O =

(
γ − γIR + βg

∂

∂g

)(1)

F
(0)
O , (7.18)

where the super-index (1) on the right hand side denotes the coefficients of
the leading single logµ that typically arises at one-loop order, while F (0)

O are
the minimal form factors, which have been defined in Section 6.3. Expanding
Eq. (7.17) in powers of D at first non-trivial order we obtain

−iπDFO(~n) =
∑
~m

∫
dΠ~m (SnmFO(~m))(0) , (7.19)
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which, combined with Eq. (7.18), gives

−iπ(γ − γIR)(1)F (0)
O (~n) =

∑
~m

∫
dΠ~m (SnmFO(~m))(0) , (7.20)

where we have neglected the action of ∂/∂g on F
(0)
O since minimal form

factors do not depend on the couplings of the theory as shown previously.
From now on we will omit the super-indices (0) and (1). This is a ma-
trix equation in the space of all local operators accounting for all possible
RG mixing effects; we can then explicitly write their indices and note that
the IR anomalous dimension is diagonal if the operators are kinematically
independent, since it is due to soft and collinear emission of particles:

−iπ(γij − γiIRδij) 〈~n|Oi|0〉 = 〈~n|S ⊗ Oj |0〉 , (7.21)

where the symbol "⊗" denotes the convolution operation, i.e. the insertion
of the completeness relation in Eq. (7.10).

At one-loop level, the right hand side of this equation involves a tree-
level form factor and a tree-level scattering amplitude, contracted with a
two-particle phase space integral. This is effectively illustrated by

〈~n|S ⊗ O|0〉 =
n∑

k=2

∑
h1,h2

1
2

𝑘

𝑘 + 1

𝑘 + 2

𝑛

1′!!

2′!"

.

.

.

.

.

.

+ permutations of external particles

=

n∑
k=2

∑
h1,h2

1

2

∫ 2∏
i=1

d3p′i
(2π)32E′

i

(2π)4δ(4)(p1 + · · ·+ pk − p′1 − p′2)

× iMk+2(1, . . . , k; 1
′h1 , 2′h2)FO(1

′h1 , 2′h2 , k + 1, . . . , n)

+ permutations of external particles ,
(7.22)

where the arrows denote the direction of the momenta.

Our computations will involve only 2 → 2 scattering amplitudes of
the form iM4(1, 2; 1

′h1 , 2′h2). In this case, the integrals in Eq. (7.22) can
be performed expressing the amplitudes and the form factors in terms of
the helicity spinors and exploiting the following parametrization [70] of the
internal spinor variables λ′1, λ′2 in terms of the external ones λ1, λ2(

λ′1
λ′2

)
=

(
cos θ − sin θeiφ

sin θe−iφ cos θ

)(
λ1
λ2

)
, (7.23)
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and similarly for the complex conjugate spinors λ̃′1, λ̃′2(
λ̃′1
λ̃′2

)
=

(
cos θ − sin θe−iφ

sin θeiφ cos θ

)(
λ̃1
λ̃2

)
. (7.24)

We can easily check that this parametrization satisfies the total momentum
conservation p1 + p2 = p′1 + p′2:

(p′1 + p′2)
α̇α = (cos θλ̃1 − sin θe−iφλ̃2)

α̇(cos θλ1 − sin θeiφλ2)
α

+ (sin θeiφλ̃1 + cos θλ̃2)
α̇(sin θe−iφλ1 + cos θλ2)

α

= cos2 θλ̃α̇1λ
α
1 − sin θ cos θ(eiφλ̃α̇1λ

α
2 + e−iφλ̃α̇2λ

α
1 ) + sin2 θλ̃α̇2λ

α
2

+ sin2 θλ̃α̇1λ
α
1 + sin θ cos θ(eiφλ̃α̇1λ

α
2 + e−iφλ̃α̇2λ

α
1 ) + cos2 θλ̃α̇2λ

α
2

= (cos2 θ + sin2 θ)(λ̃α̇1λ
α
1 + λ̃α̇2λ

α
2 )

= (p1 + p2)
α̇α .

(7.25)

Additionally, the two-particle Lorentz invariant phase space integral be-
comes an integral over the solid angle dΩ2 and reduces to

1

2

∫ 2∏
i=1

d3p′i
(2π)32E′

i

(2π)4δ(4)(p1 + p2 − p′1 − p′2) =
1

16π

∫ dΩ2

4π
, (7.26)

as explicitly derived in Ref. [36], where the angular integration measure has
been defined as∫ dΩ2

4π
=

∫ 2π

0

dφ
2π

∫ π/2

0
2 sin θ cos θ dθ . (7.27)

Therefore, we can express Eq. (7.21) at one-loop level and for four-
particle scattering amplitudes as

−iπ(γij − γiIRδij)FOi
(1, . . . , n) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1, 2; 1

′h1 , 2′h2)

× FOj
(1′h1 , 2′h2 , 3, . . . , n)

+ permutations of external particles .
(7.28)

7.2 Anomalous dimensions of ALP EFT
In order to evaluate the anomalous dimensions associated with the ALP
EFT operators, it is sufficient to consider the minimal form factors with the
least number of particles, which is equal to three for all operators.
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Additionally, since we are working at order 1/Λ, we can discard the
contributions on the right hand side of Eq. (7.28) stemming from the con-
volution of four-particle amplitudes and minimal form factors that share an
internal ALP state. Indeed, these convolutions would contribute at order
1/Λ2, since both iMn(φ, {SM particles}) and FO(φ, {SM particles}) are of
order 1/Λ:

= O(Λ−2) . (7.29)

Therefore, concerning this specific case, Eq. (7.28) can be rewritten as

−iπ(γij − γiIRδij)FOi
(1, 2, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1, 2; 1

′h1 , 2′h2)

× FOj
(1′h1 , 2′h2 , 3φ) ,

(7.30)

where the amplitudes iM4 are built of SM interactions. This is the cen-
tral formula we will exploit to compute the anomalous dimension matrix
elements for the ALP EFT, defined by

d

d log µ

e2Cγ

g2sCg

vyijS

 =

γγγ γγg γγS
γgγ γgg γgS
γSγ γSg γSS

e2Cγ

g2sCg

vyijS

 , (7.31)

d

d log µ

e2C̃γ

g2s C̃g

vyijP

 =

γγ̃γ̃ γγ̃g̃ γγ̃P
γg̃γ̃ γg̃g̃ γg̃P
γP γ̃ γP g̃ γPP


e2C̃γ

g2s C̃g

vyijP

 . (7.32)

Moreover, throughout the text we will choose to perform the calculations
with the minimal form factors on the left hand side of Eq. (7.30) evaluated
for negative helicity configurations. This yields the same results that could
be obtained considering positive helicity configurations due to CPT theorem.

The final observation before the computation of the anomalous dimen-
sions is that, as can be seen from Table 6.1, minimal form factors associated
with Hermitian operators that transform in an opposite way under a CP
transformation differ in a phase i, and, since the anomalous dimension ma-
trix elements must be real, we can ignore the mixing of such operators at
lowest order in 1/Λ.
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7.2.1 φFF anomalous dimension

Considering the operator φFµνF
µν , its anomalous dimension can receive

contributions from the operators φGa
µνG

aµν , φf̄ifj and φFµνF
µν itself.

γγg

The anomalous dimension matrix element γγg can be computed starting
from Eq. (7.30) with i = γ and j = g

−iπγγgFγ(1
−
γ , 2

−
γ , 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
γ , 2

−
γ ; 1

′h1
ga , 2

′h2

gb
)

× Fg(1
′h1
ga , 2

′h2

gb
, 3φ) ,

(7.33)

and, since Fg(1
′h1
ga , 2

′h2

gb
, 3φ) = Fg(1

′±
ga , 2

′±
gb
, 3φ) holds, we can write

−iπγγgFγ(1
−
γ , 2

−
γ , 3φ) =

1

16π

∫ dΩ2

4π

[
iM4(1

−
γ , 2

−
γ ; 1

′+
ga , 2

′+
gb
)Fg(1

′+
ga , 2

′+
gb
, 3φ)

+ iM4(1
−
γ , 2

−
γ ; 1

′−
ga , 2

′−
gb
)Fg(1

′−
ga , 2

′−
gb
, 3φ)

]
,

(7.34)

which can be schematically represented as in Figure 7.2.

Chapter 1

On-shell methodology

1.1 anomalous dimensions

1.1.1 ALP EFT anomalous dimensions

�i⇡��g 3�

1��

2��

= 3�

10+ga

20+
gb

1��

2��

+ 3�

10�ga

20�
gb

1��

2��

.

(1.1)

1

Figure 7.2: Contributions to the anomalous dimension matrix element γγg.

This case is particularly simple because, within the SM, it is impossible
to construct a tree-level four-particle amplitude involving two gluons and
two photons with any helicity configuration

iM4(1ga , 2gb , 3γ , 4γ) = 0 . (7.35)
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Thus γγg = 0.

γγS

The anomalous dimension matrix element γγS can be computed starting
from Eq. (7.30) with i = γ and j = S

−iπγγSFγ(1
−
γ , 2

−
γ , 3φ) =

∑
f

1

16π

∑
h1,h2

∫ dΩ2

4π

×
[
iM4(1

−
γ , 2

−
γ ; 1

′h1
fi
, 2′h2

f̄j
)FS(1

′h1
fi
, 2′h2

f̄j
, 3φ)

+ iM4(1
−
γ , 2

−
γ ; 2

′h2
fi
, 1′h1

f̄j
)FS(2

′h2
fi
, 1′h1

f̄j
, 3φ)

]
,

(7.36)

where he have symmetrized over the internal fermions, and, since FS(1
′h1
fi
, 2′h2

f̄j
, 3φ) =

FS(1
′±
fi
, 2′±

f̄j
, 3φ) holds, we can write

−iπγγSFγ(1
−
γ , 2

−
γ , 3φ) =

∑
f

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
γ , 2

−
γ ; 1

′+
fi
, 2′+

f̄j
)FS(1

′+
fi
, 2′+

f̄j
, 3φ)

+ iM4(1
−
γ , 2

−
γ ; 1

′−
fi
, 2′−

f̄j
)FS(1

′−
fi
, 2′−

f̄j
, 3φ)

+ (1′ ←→ 2′)

]
,

(7.37)

which can be schematically represented as in Figure 7.3.

Also this case is particularly simple because, within the SM, it is impos-
sible to construct a tree-level four-particle amplitude involving two fermions
with the same helicity and two photons with any helicity

iM4(1
±
f̄i
, 2±fj , 3γ , 4γ) = 0 . (7.38)

This can be understood from the fact that the QED interaction couples two
fermions with opposite helicities, and if we try to construct the four-particle
amplitude

±

∓ ±

∓

we can see that we are forced to assign opposite helicities to the external
outgoing fermions. Thus γγS = 0.



102 Renormalization of ALP EFT via on-shell amplitudes

2 On-shell methodology
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(1.2)
Figure 7.3: Contributions to the anomalous dimension matrix element γγS .

γγγ

The anomalous dimension matrix element γγγ can be computed starting
from Eq. (7.30) with i = j = γ

−iπ(γγγ − γγIR)Fγ(1
−
γ , 2

−
γ , 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
γ , 2

−
γ ; 1

′h1
γ , 2′h2

γ )

× Fγ(1
′h1
γ , 2′h2

γ , 3φ) ,

(7.39)

and, since Fγ(1
′h1
γ , 2′h2

γ , 3φ) = Fγ(1
′±
γ , 2

′±
γ , 3φ) holds, we can write

−iπ(γγγ − γγIR)Fγ(1
−
γ , 2

−
γ , 3φ) =

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
γ , 2

−
γ ; 1

′+
γ , 2

′+
γ )Fγ(1

′+
γ , 2

′+
γ , 3φ)

+ iM4(1
−
γ , 2

−
γ ; 1

′−
γ , 2

′−
γ )Fγ(1

′−
γ , 2

′−
γ , 3φ)

]
,

(7.40)

which can be schematically represented as in Figure 7.4.
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1.1 anomalous dimensions 3
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(1.3)Figure 7.4: Contributions to the anomalous dimension matrix element γγγ .

Also this case is trivial because, within the SM, it is impossible to con-
struct a tree-level four-photon amplitude with any helicity configuration

iM4(1γ , 2γ , 3γ , 4γ) = 0 . (7.41)

Thus γγγ = γγIR, where the IR anomalous dimension γγIR corresponding to
the operator φFµνF

µν will be computed in Section 7.3.

Therefore, we can summarize the results obtained for the φFµνF
µν op-

erator as

γγg = 0 , (7.42)
γγS = 0 , (7.43)
γγγ = γγIR . (7.44)

7.2.2 φFF̃ anomalous dimension

The anomalous dimensions associated with the φFµνF̃
µν operator can re-

ceive contributions from the operators φGa
µνG̃

aµν , iφf̄iγ5fj and φFµνF̃
µν

itself. Their calculation is completely analogous to the one we have just
trivially performed for φFµνF

µν , thus we can just report the schemes in
Figures 7.5, 7.6 and 7.7.

Since all these four-particle amplitudes are vanishing, we can summarize
the anomalous dimensions of the operator φFµνF̃

µν as

γγ̃g̃ = 0 , (7.45)
γγ̃P = 0 , (7.46)



104 Renormalization of ALP EFT via on-shell amplitudes

4 On-shell methodology
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(1.4)

Figure 7.5: Contributions to the anomalous dimension matrix element γγ̃g̃.

1.1 anomalous dimensions 5
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(1.5)
Figure 7.6: Contributions to the anomalous dimension matrix element
γγ̃P .

γγ̃γ̃ = γγ̃IR , (7.47)

where the IR anomalous dimension γγ̃IR corresponding to the operator φFµνF̃
µν

will be computed in Section 7.3.
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6 On-shell methodology
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(1.6)Figure 7.7: Contributions to the anomalous dimension matrix element γγ̃γ̃ .

7.2.3 φGG anomalous dimension

Considering the operator φGa
µνG

aµν , its anomalous dimension can receive
contributions from the operators φFµνF

µν , φf̄ifj and φGa
µνG

aµν itself.

γgγ

The anomalous dimension matrix element γgγ can be computed starting
from Eq. (7.30) with i = g and j = γ

−iπγgγFg(1
−
ga , 2

−
gb
, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
ga , 2

−
gb
; 1′h1

γ , 2′h2
γ )

× Fγ(1
′h1
γ , 2′h2

γ , 3φ) ,

(7.48)

and, since Fγ(1
′h1
γ , 2′h2

γ , 3φ) = Fγ(1
′±
γ , 2

′±
γ , 3φ) holds, we can write

−iπγgγFg(1
−
ga , 2

−
gb
, 3φ) =

1

16π

∫ dΩ2

4π

[
iM4(1

−
ga , 2

−
gb
; 1′+γ , 2

′+
γ )Fγ(1

′+
γ , 2

′+
γ , 3φ)

+ iM4(1
−
ga , 2

−
gb
; 1′−γ , 2

′−
γ )Fγ(1

′−
γ , 2

′−
γ , 3φ)

]
,

(7.49)

which can be schematically represented as in Figure 7.8.

These amplitudes, as mentioned previously, are vanishing, and conse-
quently γgγ = 0.
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1.1 anomalous dimensions 7
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Figure 7.8: Contributions to the anomalous dimension matrix element γgγ .

γgS

The anomalous dimension matrix element γgγ can be computed starting
from Eq. (7.30) with i = g and j = S

−iπγgSFg(1
−
ga , 2

−
gb
, 3φ) =

∑
f

1

16π

∑
h1,h2

∫ dΩ2

4π

×
[
iM4(1

−
ga , 2

−
gb
; 1′h1

fi
, 2′h2

f̄j
)FS(1

′h1
fi
, 2′h2

f̄j
, 3φ)

+ iM4(1
−
ga , 2

−
gb
; 2′h2

fi
, 1′h1

f̄j
)FS(2

′h2
fi
, 1′h1

f̄j
, 3φ)

]
,

(7.50)

and, since FS(1
′h1
fi
, 2′h2

f̄j
, 3φ) = FS(1

′±
fi
, 2′±

f̄j
, 3φ) holds, we can write

−iπγgSFg(1
−
ga , 2

−
gb
, 3φ) =

∑
f

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
ga , 2

−
gb
; 1′+fi , 2

′+
f̄j
)FS(1

′+
fi
, 2′+

f̄j
, 3φ)

+ iM4(1
−
ga , 2

−
gb
; 1′−fi , 2

′−
f̄j
)FS(1

′−
fi
, 2′−

f̄j
, 3φ)

+ (1′ ←→ 2′)

]
,

(7.51)

which can be schematically represented as in Figure 7.9.

Also these amplitudes are vanishing, as in the QED case. Indeed, the
seed QCD three-particle amplitude involving two fermions and one gluon
vanishes if the two fermions have the same helicity, leading to

iM4(1
±
fi
, 2±

f̄j
, 3ga , 4gb) = 0 (7.52)
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8 On-shell methodology
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(1.8)
Figure 7.9: Contributions to the anomalous dimension matrix element γgS .

and consequently γgS = 0.

γgg

The anomalous dimension matrix element γgg can be computed starting
from Eq. (7.30) with i = j = g

−iπ(γgg − γgIR)Fg(1
−
ga , 2

−
gb
, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
ga , 2

−
gb
; 1′h1

gc , 2
′h2

gd
)

× Fg(1
′h1
gc , 2

′h2

gd
, 3φ) ,

(7.53)

and, since Fg(1
′h1
gc , 2

′h2

gd
, 3φ) = Fg(1

′±
gc , 2

′±
gd
, 3φ) holds, we can write

−iπ(γgg − γgIR)Fg(1
−
ga , 2

−
gb
, 3φ) =

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
ga , 2

−
gb
; 1′+gc , 2

′+
gd
)Fg(1

′+
gc , 2

′+
gd
, 3φ)

+ iM4(1
−
ga , 2

−
gb
; 1′−gc , 2

′−
gd
)Fg(1

′−
gc , 2

′−
gd
, 3φ)

]
,
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(7.54)

which can be schematically represented as in Figure 7.10.

1.1 anomalous dimensions 9
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20�
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(1.9)Figure 7.10: Contributions to the anomalous dimension matrix element
γgg.

The first amplitude can be written in terms of outgoing gluons as

iM4(1
−
ga , 2

−
gb
; 1′+gc , 2

′+
gd
) = iM4(1

−
ga , 2

−
gb
, 1̄′−gc , 2̄

′−
gd
) (7.55)

and it can be proven to vanish, as shown in Subsection 6.5.1, since the
outgoing gluons are all in the same helicity configuration. On the other
hand, the second amplitude is provided by the Parke-Taylor formula

iM4(1
−
ga , 2

−
gb
; 1′−gc , 2

′−
gd
) = iM4(1

−
ga , 2

−
gb
, 1̄′+gc , 2̄

′+
gd
)

= −2ig2s〈1 2〉4
[

fabef cde

〈1 2〉〈2 1̄′〉〈1̄′ 2̄′〉〈2̄′ 1〉

+
facef bde

〈1 1̄′〉〈1̄′ 2〉〈2 2̄′〉〈2̄′ 1〉

]
,

(7.56)

which, multiplied by Fg(1
′−
gc , 2

′−
gd
, 3φ) = −2δcd〈1′ 2′〉2 and recalling that we

adopt the convention λ̄i = λi, yields

4iCAg
2
sδ

ab〈1′ 2′〉2 〈1 2〉4

〈1 1′〉〈1′ 2〉〈2 2′〉〈2′ 1〉
, (7.57)

where facef bdeδcd = CAδ
ab has been exploited and CA = Nc denotes the

Casimir of the adjoint representation of SU(Nc). From the parametrization
of the spinor variables in Eq. (7.23), it follows that

〈1′ 2′〉 = 〈1 2〉 cos2 θ − 〈2 1〉 sin2 θ = 〈1 2〉 , (7.58)
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〈1 1′〉 = −〈1 2〉 sin θeiφ , (7.59)
〈1 2′〉 = 〈1′ 2〉 = 〈1 2〉 cos θ , (7.60)
〈2 2′〉 = −〈1 2〉 sin θe−iφ , (7.61)

leading to

iM4(1
−
ga , 2

−
gb
; 1′−gc , 2

′−
gd
)Fg(1

′−
gc , 2

′−
gd
, 3φ) = −4ig2sCAδ

ab 〈1 2〉2

cos2 θ sin2 θ
. (7.62)

We can insert this expression inside Eq. (7.54) and obtain

2iπ(γgg − γgIR)δ
ab〈1 2〉2 = − 1

16π

∫ dΩ2

4π
4ig2sCAδ

ab 〈1 2〉2

cos2 θ sin2 θ
, (7.63)

namely

γgg = γgIR −
1

8π2
g2sCA

∫ dΩ2

4π

1

cos2 θ sin2 θ
. (7.64)

This integral is divergent, but it is cured by the IR anomalous dimension
γgIR associated with the operator φGa

µνG
aµν , which will be calculated in

Section 7.3.

Therefore, we can summarize the results obtained for the φGa
µνG

aµν

operator as

γgγ = 0 , (7.65)
γgS = 0 , (7.66)

γgg = γgIR −
1

8π2
g2sCA

∫ dΩ2

4π

1

cos2 θ sin2 θ
. (7.67)

7.2.4 φGG̃ anomalous dimension

The anomalous dimensions associated with the φGa
µνG̃

aµν operator can re-
ceive contributions from the operators φFµνF̃

µν , iφf̄iγ5fj and φGa
µνG̃

aµν

itself. Their calculation is completely analogous to the one we have just per-
formed for φGa

µνG
aµν , thus we can just report the schemes in Figures 7.11,

7.12 and 7.13 and the results.

The results for these anomalous dimension matrix elements are respec-
tively given by

γg̃γ̃ = 0 , (7.68)
γg̃P = 0 , (7.69)

γg̃g̃ = γ g̃IR −
1

8π2
g2sCA

∫ dΩ2

4π

1

cos2 θ sin2 θ
. (7.70)
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10 On-shell methodology
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Figure 7.11: Contributions to the anomalous dimension matrix element
γg̃γ̃ .

1.1 anomalous dimensions 11
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(1.11)
Figure 7.12: Contributions to the anomalous dimension matrix element
γg̃P .
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12 On-shell methodology
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(1.12)Figure 7.13: Contributions to the anomalous dimension matrix element
γg̃g̃.

7.2.5 φf̄f anomalous dimension

Considering the operator φf̄ifj , its anomalous dimension can receive contri-
butions from the operators φFµνF

µν , φGa
µνG

aµν and φf̄ifj itself.

γSγ

The anomalous dimension matrix element γSγ can be computed starting
from Eq. (7.30) with i = S and j = γ

−iπγSγFS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
fi
, 2−

f̄j
; 1′h1

γ , 2′h2
γ )

× Fγ(1
′h1
γ , 2′h2

γ , 3φ) ,

(7.71)

and, since Fγ(1
′h1
γ , 2′h2

γ , 3φ) = Fγ(1
′±
γ , 2

′±
γ , 3φ) holds, we can write

−iπγSγFS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∫ dΩ2

4π

[
iM4(1

−
fi
, 2−

f̄j
; 1′+γ , 2

′+
γ )Fγ(1

′+
γ , 2

′+
γ , 3φ)

+ iM4(1
−
fi
, 2−

f̄j
; 1′−γ , 2

′−
γ )Fγ(1

′−
γ , 2

′−
γ , 3φ)

]
,

(7.72)

which can be schematically represented as in Figure 7.14.

As discussed previously for the case of γγS , these amplitudes are van-
ishing since the external fermions are in the same helicity configuration.
Therefore γSγ = 0.
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1.1 anomalous dimensions 13
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(1.13)

Figure 7.14: Contributions to the anomalous dimension matrix element
γSγ .

γSg

The anomalous dimension matrix element γSg can be computed starting
from Eq. (7.30) with i = S and j = g

−iπγSgFS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π
iM4(1

−
fi
, 2−

f̄j
; 1′h1

ga , 2
′h2

gb
)

× Fg(1
′h1
ga , 2

′h2

gb
, 3φ) ,

(7.73)

and, since Fg(1
′h1
ga , 2

′h2

gb
, 3φ) = Fg(1

′±
ga , 2

′±
gb
, 3φ) holds, we can write

−iπγSgFS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∫ dΩ2

4π

[
iM4(1

−
fi
, 2−

f̄j
; 1′+ga , 2

′+
gb
)Fg(1

′+
ga , 2

′+
gb
, 3φ)

+ iM4(1
−
fi
, 2−

f̄j
; 1′−ga , 2

′−
gb
)Fg(1

′−
ga , 2

′−
gb
, 3φ)

]
,

(7.74)

which can be schematically represented as in Figure 7.15.

As discussed previously for the case of γgS , these amplitudes are van-
ishing since the external fermions are in the same helicity configuration.
Therefore γSg = 0.
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14 On-shell methodology
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(1.14)

Figure 7.15: Contributions to the anomalous dimension matrix element
γSg.

γSS

The anomalous dimension matrix element γSg can be computed starting
from Eq. (7.30) with i = j = S

−iπ(γSS − γSIR)FS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∑
h1,h2

∫ dΩ2

4π

×
[
iM4(1

−
fi
, 2−

f̄j
; 1′h1

fi
, 2′h2

f̄j
)FS(1

′h1
fi
, 2′h2

f̄j
, 3φ)

+ iM4(1
−
fi
, 2−

f̄j
; 2′h2

fi
, 1′h1

f̄j
)FS(2

′h2
fi
, 1′h1

f̄j
, 3φ)

]
,

(7.75)

and, since FS(1
′h1
fi
, 2′h2

f̄j
, 3φ) = FS(1

′±
fi
, 2′±

f̄j
, 3φ) holds, we can write

−iπ(γSS − γSIR)FS(1
−
fi
, 2−

f̄j
, 3φ) =

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
fi
, 2−

f̄j
; 1′+fi , 2

′+
f̄j
)FS(1

′+
fi
, 2′+

f̄j
, 3φ)

+ iM4(1
−
fi
, 2−

f̄j
; 1′−fi , 2

′−
f̄j
)FS(1

′−
fi
, 2′−

f̄j
, 3φ)

+ (1′ ←→ 2′)

]
,

(7.76)

which can be schematically represented as in Figure 7.16.
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1.1 anomalous dimensions 15
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(1.15)Figure 7.16: Contributions to the anomalous dimension matrix element
γSS .

The amplitudes on the left hand side are vanishing since they correspond
to four-fermion amplitudes with the outgoing fermions in the same helicity
configuration

iM4(1
±
fi
, 2±

f̄j
, 3±

f̄i
, 4±fj ) = 0 . (7.77)

Indeed, as already mentioned, this is a consequence of the fact that the seed
QED and QCD three-particle amplitudes couple fermions having different
helicities. On the other hand, the amplitudes on the right hand side are
non-vanishing and, for a color-singlet in the initial state, are derived from
the ones reported in Appendix C through crossing symmetry and read

iM4(1
−
fi
, 2−

f̄j
; 1′−fi , 2

′−
f̄j
) = −2i(e2Q2

f + CF g
2
sc

2
f )
〈1 2〉[1′ 2′]
〈1 1′〉[1′ 1]

= 2i(e2Q2
f + CF g

2
sc

2
f )

1

sin2 θ
,

(7.78)

iM4(1
−
fi
, 2−

f̄j
; 2′−fi , 1

′−
f̄j
) = −2i(e2Q2

f + CF g
2
sc

2
f )
〈1 2〉[2′ 1′]
〈1 2′〉[2′ 1]

= −2i(e2Q2
f + CF g

2
sc

2
f )

1

cos2 θ
,

(7.79)
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where we have parametrized the internal helicity spinors as in Eqs. (7.23)
and (7.24), and CF = (N2

c − 1)/(2Nc) is the Casimir of the fundamental
representation of SU(Nc): T a

IKT
a
KJ = CF δIJ . We can insert these expression

inside Eq. (7.76) and exploit

FS(1
′−
fi
, 2′−

f̄j
, 3φ) = −FS(2

′−
fi
, 1′−

f̄j
, 3φ) = 〈1′ 2′〉 = 〈1 2〉 = FS(1

−
fi
, 2−

f̄j
, 3φ)

(7.80)

to find

−iπ(γSS−γSIR)〈1 2〉 =
1

16π

∫ dΩ2

4π
2i(e2Q2

f+CF g
2
sc

2
f )〈1 2〉

(
1

sin2 θ
+

1

cos2 θ

)
,

(7.81)

which leads to

γSS = γSIR −
1

16π2
(e2Q2

f + CF g
2
sc

2
f )

∫ dΩ2

4π

2

cos2 θ sin2 θ
. (7.82)

Again, this is a divergent integral, but it is cured by the IR anomalous
dimension γSIR associated with the operator φf̄ifj , which will be calculated
in Section 7.3.

Therefore, we can summarize the results obtained for the φf̄ifj operator
as

γSγ = 0 , (7.83)
γSg = 0 , (7.84)

γSS = γSIR −
1

16π2
(e2Q2

f + CF g
2
sc

2
f )

∫ dΩ2

4π

2

cos2 θ sin2 θ
. (7.85)

7.2.6 iφf̄γ5f anomalous dimension

The anomalous dimensions associated with the iφf̄iγ5fj operator can receive
contributions from the operators φFµνF̃

µν , φGa
µνG̃

aµν and iφf̄iγ5fj itself.
Their calculation is completely analogous to the one we have just performed
for φf̄ifj , thus we can just report the schemes in Figures 7.17, 7.18 and 7.19
and the results.

The results for these anomalous dimension matrix elements are respec-
tively given by

γP γ̃ = 0 , (7.86)
γP g̃ = 0 , (7.87)

γPP = γPIR −
1

16π2
(e2Q2

f + CF g
2
sc

2
f )

∫ dΩ2

4π

2

cos2 θ sin2 θ
. (7.88)
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16 On-shell methodology
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2�
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.

(1.16)

Figure 7.17: Contributions to the anomalous dimension matrix element
γP γ̃ .

1.1 anomalous dimensions 17

�i⇡�P g̃ 3�

1�fi

2�
f̄j

= 3�

10+ga

20+
gb

1�fi

2�
f̄j

+ 3�

10�ga

20�
gb

1�fi

2�
f̄j

.

(1.17)

Figure 7.18: Contributions to the anomalous dimension matrix element
γP g̃.

7.3 Infrared structure
The final task consists in the evaluation of the IR anomalous dimensions.
Indeed, not only UV singularities, but also IR singularities emerge in per-
turbative results for on-shell scattering amplitudes of theories with massless
fields. This implies that form factors need to be renormalized also in the IR
limit and that the IR anomalous dimension must be taken into account in
the Callan-Symanzik equation.
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18 On-shell methodology
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(1.18)

1.1.2 Infrared structure

The final task consists in the evaluation of the IR anomalous dimensions.
Indeed, not only UV singularities, but also IR singularities emerge in per-
turbative results for on-shell scattering amplitudes of theories with massless
fields. This implies that form factors need to be renormalized also in the IR
limit and that the IR anomalous dimension must be taken into account in
the Callan-Simanzik equation.

IR singularities originate from loop-momentum configurations where
particle momenta become either soft or collinear, and, as stated by the
Kinoshita-Lee-Nauenberg theorem [empty citation], physical observables
are insensitive to these, since

which originate from loop-momentum configurations where particle mo-
menta become soft or collinear. These singularities cancel in physical ob-
servables, which also include real radiation and are insensitive to soft and
collinear emissions

Figure 7.19: Contributions to the anomalous dimension matrix element
γPP .

IR singularities originate from loop-momentum configurations where
particle momenta become either soft or collinear, and, as stated by the
Kinoshita-Lee-Nauenberg theorem [49, 52], physical observables are insensi-
tive to these, since they cancel against the singularities stemming from the
real emission of soft and collinear particles. They are universal and depend
only on the particles that are involved in the process.

A key result [9] is that in any gauge theory the IR anomalous dimension
is a function of the external states that – at least at one-loop level – takes
the form

γIR({sij};µ) =
g2

4π2

∑
i<j

T a
i T

a
j log

µ2

−sij
+
∑
i

γcoll.i , (7.89)

where T a
i is the generator of the gauge group acting on particle i and γcoll.i

is its the collinear dimension. In general, this equation can be exploited in
Eq. (7.28) in order to extract the anomalous dimension matrix element γij
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as

γijFOi
(1, . . . , n) = − 1

16π2

∑
h1,h2

∫ dΩ2

4π

[
M4(1, 2; 1

′h1 , 2′h2)FOj
(1′h1 , 2′h2 , 3, . . . , n)

+ permutations of external particles

+
2g2T a

1 T
a
2

cos2 θ sin2 θ
FOj

(1, . . . , n)

]
+ FOj

(1, . . . , n)
∑
k

γcoll.k ,

(7.90)

provided that the collinear dimensions of each particle are known.

However, we can obtain the IR anomalous dimensions in a different and
more practical way, without knowing a priori the values of the collinear
dimensions of the particles. This method relies on the fact that the conser-
vation of the stress-energy tensor

Tµν(x) =
∑
Φ

∂L

∂(∂µΦ(x))
∂νΦ(x)− gµνL (x) , (7.91)

where the sum runs over all the fields Φ of the theory, holds at quantum
level and that it does not develop an UV anomalous dimension. We can
thus substitute the generic operator O in Eq. (7.21) with the stress-energy
tensor in spinor indices Tαβ α̇β̇, defined as

Tαβ α̇β̇ = σαα̇µ σββ̇ν Tµν , (7.92)

obtaining that the IR anomalous dimension associated with the multi-particle
external state 〈~n| can be computed through

iπγIR 〈~n|Tαβ α̇β̇|0〉 = 〈~n|S ⊗ Tαβ α̇β̇|0〉 . (7.93)

This equation is particularly simple for n = 2, since in this case we can avoid
the explicit calculation of the stress-energy tensor and obtain its minimal
form factor exploiting the symmetries of the problem. In particular, we
require 〈1Φ|Tαβ α̇β̇|1Φ〉 to return the momentum of the particle Φ

〈1Φ|Tαβ α̇β̇|1Φ〉 = 2pαα̇1 pββ̇1 (7.94)

and we impose 〈1h1
Φ , 2

h2
Φ |Tαβ α̇β̇|0〉 to be orthogonal to (p1 + p2), since the

stress-energy tensor is conserved, and to obey the homogeneity conditions

〈1h1
Φ , 2

h2
Φ |T

αβ α̇β̇|0〉 −→ ρ2hi
i 〈1

h1
Φ , 2

h2
Φ |T

αβ α̇β̇|0〉 (7.95)
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under the action of the little group transformations acting of the helicity
spinors as

λi −→ ρ−1
i λi , (7.96)

λ̃i −→ ρiλ̃i , (7.97)

for each i = 1, 2. In this way, the minimal form factors associated with
the stress-energy tensor are uniquely fixed and take the following forms
depending on the particle species.

Photons:

1−γ

2+γ

= 〈1−γ , 2+γ |Tαβ α̇β̇|0〉 = 2λα1λ
β
1 λ̃

α̇
2 λ̃

β̇
2 . (7.98)

Gluons:

1−ga

2+
gb

= 〈1−ga , 2+gb |T
αβ α̇β̇|0〉 = 2δabλα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 . (7.99)

Fermions:

1−f

2+
f̄

= 〈1−f , 2
+
f̄
|Tαβ α̇β̇|0〉

=
1

2
(λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
2 + λα1λ

β
1 λ̃

β̇
1 λ̃

α̇
2 − λα1λ

β
2 λ̃

α̇
2 λ̃

β̇
2 − λ

β
1λ

α
2 λ̃

α̇
2 λ̃

β̇
2 ) .

(7.100)

Now, we can proceed to the calculation of the IR anomalous dimensions
of the ALP EFT. Since they depend only on the particles in the final state,
we have that the operators in the shift symmetry invariant and shift sym-
metry breaking sectors of the ALP Lagrangian share the same γIR’s, which
can be conveniently renamed as Γγ , Γg and Γf :

γγIR = γγ̃IR = Γγ , (7.101)
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γgIR = γ g̃IR = Γg , (7.102)
γSIR = γPIR = Γf . (7.103)

Moreover, the ALP is a gauge-singlet and therefore can only develop a
collinear anomalous dimension, which is of order 1/Λ2. Consequently we
can ignore its contribution to the IR anomalous dimensions and restrict
ourselves to the case n = 2 discussed above.

7.3.1 φFF & φFF̃ IR anomalous dimension

The IR anomalous dimension Γγ can be computed through Eq. (7.93) with
〈~n| = 〈1−γ , 2+γ |:

iπΓγ 〈1−γ , 2+γ |Tαβ α̇β̇|0〉 = 〈1−γ , 2+γ |S ⊗ Tαβ α̇β̇|0〉 , (7.104)

where the convolution must be expanded allowing for all possible interme-
diate states. The non-vanishing contributions are schematically illustrated
in Figure 7.20, which can be read as

2 On-shell methodology

Photon IR anomalous dimension

i⇡��

1��

2+�

= 2
X

f

10�f

20+
f̄

1��

2+�

+ 2
X

f
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20�
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1��

2+�

(1.1)

Figure 7.20: Non-vanishing contributions to the IR anomalous dimension
Γγ associated with the operators φFF and φFF̃ .

iπΓγ 〈1−γ , 2+γ |Tαβ α̇β̇|0〉 = 2
∑
f

1

16π

∫ dΩ2

4π

×
[
iM4(1

−
γ , 2

+
γ ; 1

′−
f , 2

′+
f̄
) 〈1′−f , 2

′+
f̄
|Tαβ α̇β̇|0〉

+ iM4(1
−
γ , 2

+
γ ; 1

′+
f , 2

′−
f̄
) 〈1′+f , 2

′−
f̄
|Tαβ α̇β̇|0〉

]
,

(7.105)
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where the factor 2 has been introduced to run the sum
∑

f over all Dirac
fermions (instead of Weyl fermions)1.

The first four-particle amplitude reads

iM4(1
−
γ , 2

+
γ ; 1

′−
f , 2

′+
f̄
) = −2ie2Q2

f

〈1 2′〉[2 1′]
〈2 2′〉[1 2′]

, (7.106)

while the second one can be obtained through the substitution 1′ ↔ 2′:

iM4(1
−
γ , 2

+
γ ; 1

′+
f , 2

′−
f̄
) = −2ie2Q2

f

〈1 1′〉[2 2′]
〈2 1′〉[1 1′]

. (7.107)

We can write them as functions of the angular variables θ, φ parametrizing
the two-particle phase space as follows

iM4(1
−
γ , 2

+
γ ; 1

′−
f , 2

′+
f̄
) = −2ie2Q2

f

cos θ

sin θ
eiφ , (7.108)

iM4(1
−
γ , 2

+
γ ; 1

′+
f , 2

′−
f̄
) = −2ie2Q2

f

sin θ

cos θ
e3iφ , (7.109)

where

〈1 2′〉 = 〈1 2〉 cos θ , 〈1 1′〉 = −〈1 2〉 sin θeiφ , (7.110)
〈2 2′〉 = −〈1 2〉 sin θe−iφ , 〈2 1′〉 = −〈1 2〉 cos θ , (7.111)
[2 1′] = −[1 2] cos θ , [2 2′] = −[1 2] sin θeiφ , (7.112)
[1 2′] = [1 2] cos θ , [1 1′] = −[1 2] sin θe−iφ (7.113)

have been exploited.

On the other hand, the minimal form factors associated with the stress-
energy tensor 〈1′−f , 2

′+
f̄
|Tαβ α̇β̇|0〉 and 〈1′+f , 2

′−
f̄
|Tαβ α̇β̇|0〉 are provided by

Eq. (7.100) and their expansion in terms of the helicity spinors λ1, λ2 and
λ̃1, λ̃2 looks like is a complete mess. However, this is just an illusion. Indeed,
all the terms having a non-zero integer phase give a vanishing contribution
after the integration in the azimuthal angle φ:∫ 2π

0

dφ
2π
einφ = δ0n . (7.114)

Since the amplitude in Eq. (7.108) has the phase eiφ, we can therefore select
from 〈1′−f , 2

′+
f̄
|Tαβ α̇β̇|0〉 just the terms with phase e−iφ, denoted with the

symbol |−1. For example

λ′α1 λ
′β
1 λ̃

′α̇
1 λ̃

′β̇
2 |−1 = λ′α1 λ

′β
1 λ̃

′β̇
1 λ̃

′α̇
2 |−1 = −λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 cos

3 θ sin θe−iφ ,
(7.115)

1Equivalently, we could have symmetrized the internal fermion states mapping 1′ ↔ 2′

without considering the factor 2. The result cannot change since an outgoing Weyl fermion
with helicity ± is formally equivalent to an ingoing Weyl anti-fermion with helicity ∓,
namely ū± = v̄∓.
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λ′α1 λ
′β
2 λ̃

′α̇
2 λ̃

′β̇
2 |−1 = λ′β1 λ

′α
2 λ̃

′α̇
2 λ̃

′β̇
2 |−1 = λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 cos

3 θ sin θe−iφ ,
(7.116)

so that, when recombined together, they give

〈1′−f , 2
′+
f̄
|Tαβ α̇β̇|0〉 |−1 = −2λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 cos

3 θ sin θe−iφ . (7.117)

Out of 64 terms, only one has survived, and it is precisely proportional to the
form factor 〈1−γ , 2+γ |Tαβ α̇β̇|0〉 appearing on the left hand side of Eq. (7.105).
Regarding 〈1′+f , 2

′−
f̄
|Tαβ α̇β̇|0〉, we have to isolate the terms with the phase

e−3iφ since it multiplies the amplitude in Eq. (7.109):

〈1′+f , 2
′−
f̄
|Tαβ α̇β̇|0〉 |−3 = −2λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 sin

3 θ cos θe−3iφ . (7.118)

Again, we can note that the term that has survived has the same helicity
structure of 〈1−γ , 2+γ |Tαβ α̇β̇|0〉 = 2λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 , as it should.

Thus, we can rewrite Eq. (7.105) as

2iπΓγλ
α
1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 = 2

∑
f

1

16π

∫ π/2

0
2 sin θ cos θ dθ 4ie2Q2

f (cos
4 θ + sin4 θ)

× λα1λ
β
1 λ̃

α̇
2 λ̃

β̇
2 ,

(7.119)

which leads to

Γγ = 2
∑
f

e2

4π2
Q2

f

∫ π/2

0
dθ sin θ cos θ(cos4 θ + sin4 θ)

=
e2

6π2

∑
f

Q2
f .

(7.120)

Recalling Eqs. (7.44) and (7.47), this means that the value of the anomalous
dimension matrix elements γγγ and γγ̃γ̃ is given by

γγγ = γγ̃γ̃ = Γγ =
e2

6π2

∑
f

Q2
f =

1

e2
de2

d log µ
, (7.121)

which is precisely the anomalous dimension of e2. This proves that the
Wilson coefficients e2Cγ and e2C̃γ of the respective operators φFµνF

µν and
φFµνF̃

µν scale exactly as e2 at one-loop order:

dCγ

d log µ
=

dC̃γ

d log µ
= 0 . (7.122)
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7.3.2 φGG & φGG̃ IR anomalous dimension

The IR anomalous dimension Γg can be computed through Eq. (7.93) with
〈~n| = 〈1−ga , 2+gb |:

iπΓg 〈1−ga , 2+gb |T
αβ α̇β̇|0〉 = 〈1−ga , 2+gb |S ⊗ T

αβ α̇β̇|0〉 , (7.123)

where the convolution must be expanded allowing for all possible interme-
diate states. The non-vanishing contributions are schematically illustrated
in Figure 7.21, and the factor 2 has been introduced for the same reason as
the previous calculation of Γγ .

1.1 anomalous dimensions 3

Gluon IR anomalous dimension
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(1.2)Figure 7.21: Non-vanishing contributions to the IR anomalous dimension
Γg associated with the operators φGG and φGG̃.

The four-particle amplitudes respectively read

iM4(1
−
ga , 2

+
gb
; 1′−f , 2

′+
f̄
) = −ig2sc2fδab

〈1 2′〉[2 1′]
〈2 2′〉[1 2′]

, (7.124)

iM4(1
−
ga , 2

+
gb
; 1′+f , 2

′−
f̄
) = −ig2sc2fδab

〈1 1′〉[2 2′]
〈2 1′〉[1 1′]

, (7.125)

iM4(1
−
ga , 2

+
gb
; 1′−gc , 2

′+
gd
)δcd = −2iCAg

2
sδ

ab 〈1 2′〉4

〈1 1′〉〈1′ 2〉〈2 2′〉〈2′ 1〉
, (7.126)
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iM4(1
−
ga , 2

+
gb
; 1′+gc , 2

′−
gd
)δcd = −2iCAg

2
sδ

ab 〈1 1′〉4

〈1 1′〉〈1′ 2〉〈2 2′〉〈2′ 1〉
, (7.127)

and can be expressed in terms of θ and φ as

iM4(1
−
ga , 2

+
gb
; 1′−f , 2

′+
f̄
) = −ig2sc2fδab

cos θ

sin θ
eiφ , (7.128)

iM4(1
−
ga , 2

+
gb
; 1′+f , 2

′−
f̄
) = −ig2sc2fδab

sin θ

cos θ
e3iφ , (7.129)

iM4(1
−
ga , 2

+
gb
; 1′−gc , 2

′+
gd
)δcd = 2iCAg

2
sδ

ab cos
2 θ

sin2 θ
, (7.130)

iM4(1
−
ga , 2

+
gb
; 1′+gc , 2

′−
gd
)δcd = 2iCAg

2
sδ

ab sin
2 θ

cos2 θ
e4iφ . (7.131)

As before, now we can isolate those terms of the stress-energy mini-
mal form factors that have the appropriate phases, which compensate the
amplitude phases:

〈1′−f , 2
′+
f̄
|Tαβ α̇β̇|0〉 |−1 = −2λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 cos

3 θ sin θe−iφ , (7.132)

〈1′+f , 2
′−
f̄
|Tαβ α̇β̇|0〉 |−3 = −2λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 sin

3 θ cos θe−3iφ , (7.133)

〈1′−gc , 2′+gd |T
αβ α̇β̇|0〉 |0 = 2δcdλα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 cos

4 θ , (7.134)

〈1′+gc , 2′−gd |T
αβ α̇β̇|0〉 |−4 = 2δcdλα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 sin

4 θe−4iφ . (7.135)

As a check, we can verify that they all have the same helicity structure as
〈1−ga , 2+gb |T

αβ α̇β̇|0〉 = 2δabλα1λ
β
1 λ̃

α̇
2 λ̃

β̇
2 .

At this point, we can insert all these expressions inside Eq. (7.123) and
obtain

2iπΓgδ
abλα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2 =

1

16π

∫ π/2

0
2 sin θ cos θ dθ 2δabλα1λ

β
1 λ̃

α̇
2 λ̃

β̇
2

×
[
2
∑
f

ig2sc
2
f (cos

4 θ + sin4 θ)

+ 2iCAg
2
s

(
cos6 θ

sin2 θ
+

sin6 θ

cos2 θ

)]
,

(7.136)

which can be simplified as

Γg =
g2s
8π2

∫ π/2

0
2 sin θ cos θ dθ

[∑
f

c2f (cos
4 θ + sin4 θ) + CA

cos8 θ + sin8 θ

cos2 θ sin2 θ

]
.

(7.137)
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Finally, we can recall Eqs. (7.67) and (7.70) to compute the value of the
anomalous dimension matrix elements γgg and γg̃g̃ as

γgg = γg̃g̃ = Γg −
g2s
8π2

CA

∫ π/2

0
2 sin θ cos θ dθ 1

cos2 θ sin2 θ

=
g2s
8π2

∫ π/2

0
2 sin θ cos θ dθ

[∑
f

c2f (cos
4 θ + sin4 θ)

+ CA
cos8 θ + sin8 θ − 1

cos2 θ sin2 θ

]
=

g2s
8π2

(
2

3

∑
f

c2f −
11

3
CA

)
= − g2s

8π2
b0

=
1

g2s

dg2s
d log µ

,

(7.138)

which is precisely the anomalous dimension of g2s , since
∑

f c
2
f denotes the

number of quarks and CA = 3. This proves that the Wilson coefficients
g2sCg and g2s C̃g of the respective operators φGa

µνG
aµν and φGa

µνG̃
aµν scale

exactly as g2s at one-loop order:

dCg

d log µ
=

dC̃g

d log µ
= 0 . (7.139)

7.3.3 φf̄f & iφf̄γ5f IR anomalous dimension

The IR anomalous dimension Γf can be computed through Eq. (7.93) with
〈~n| = 〈1−f , 2

+
f̄
|:

iπΓf 〈1−f , 2
+
f̄
|Tαβ α̇β̇|0〉 = 〈1−f , 2

+
f̄
|S ⊗ Tαβ α̇β̇|0〉 , (7.140)

where the convolution must be expanded allowing for all possible interme-
diate states. The non-vanishing contributions are schematically illustrated
in Figure 7.22.

The four-particle amplitudes are respectively given by

iM4(1
−
f , 2

+
f̄
; 1′−f , 2

′+
f̄
) = 2i(e2Q2

f + CF g
2
sc

2
f )
〈1 2′〉[2 1′]
〈1 1′〉[1′ 1]

= 2i(e2Q2
f + CF g

2
sc

2
f )
cos2 θ

sin2 θ
,

(7.141)

iM4(1
−
f , 2

+
f̄
; 2′−f , 1

′+
f̄
) = 2i(e2Q2

f + CF g
2
sc

2
f )
〈1 1′〉[2 2′]
〈1 2′〉[2′ 1]

= −2i(e2Q2
f + CF g

2
sc

2
f )

sin2 θ

cos2 θ
e2iφ ,

(7.142)
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4 On-shell methodology

Fermion IR anomalous dimension

i⇡�f

1�f

2+
f̄

=

10�f
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+
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+

10��
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1�f

2+
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+
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+

10�ga

20+
gb

1�f
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f̄

+

10+ga

20�
gb

1�f

2+
f̄

(1.3)Figure 7.22: Non-vanishing contributions to the IR anomalous dimension
Γf associated with the Yukawa operators φf̄f and iφf̄γ5f .

iM4(1
−
f , 2

+
f̄
; 1′−γ , 2

′+
γ ) = 2ie2Q2

f

〈2′ 1〉[1′ 2]
〈1′ 1〉[2′ 1]

= 2ie2Q2
f

cos θ

sin θ
e−iφ , (7.143)

iM4(1
−
f , 2

+
f̄
; 1′+γ , 2

′−
γ ) = 2ie2Q2

f

〈1′ 1〉[2′ 2]
〈2′ 1〉[1′ 1]

= −2ie2Q2
f

sin θ

cos θ
e3iφ ,

(7.144)

iM4(1
−
f , 2

+
f̄
; 1′−ga , 2

′+
gb
)δab = 2iCF g

2
sc

2
f

〈2′ 1〉[1′ 2]
〈1′ 1〉[2′ 1]

= 2iCF g
2
sc

2
f

cos θ

sin θ
e−iφ ,

(7.145)

iM4(1
−
f , 2

+
f̄
; 1′+ga , 2

′−
gb
)δab = 2iCF g

2
sc

2
f

〈1′ 1〉[2′ 2]
〈2′ 1〉[1′ 1]

= −2iCF g
2
sc

2
f

sin θ

cos θ
e3iφ ,

(7.146)

where we exploited the usual parametrization of the internal helicity spinors.
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These are then multiplied by the corresponding stress-energy form factors,
out of which we can isolate the terms with the relevant phases:

〈1′−f , 2
′+
f̄
|Tαβ α̇β̇|0〉 |0 = cos2 θ(cos2 θ − 3 sin2 θ) 〈1−f , 2

+
f̄
|Tαβ α̇β̇|0〉 ,

(7.147)

〈2′−f , 1
′+
f̄
|Tαβ α̇β̇|0〉 |−2 = sin2 θ(3 cos2 θ − sin2 θ)e−2iφ 〈1−f , 2

+
f̄
|Tαβ α̇β̇|0〉 ,

(7.148)

〈1′−γ , 2′+γ |Tαβ α̇β̇|0〉 |1 = 4 cos3 θ sin θeiφ 〈1−f , 2
+
f̄
|Tαβ α̇β̇|0〉 , (7.149)

〈1′+γ , 2′−γ |Tαβ α̇β̇|0〉 |−3 = −4 sin3 θ cos θe−3iφ 〈1−f , 2
+
f̄
|Tαβ α̇β̇|0〉 ,

(7.150)

〈1′−ga , 2′+gb |T
αβ α̇β̇|0〉 |1 = 4 cos3 θ sin θeiφδab 〈1−f , 2

+
f̄
|Tαβ α̇β̇|0〉 , (7.151)

〈1′+ga , 2′−gb |T
αβ α̇β̇|0〉 |−3 = −4 sin3 θ cos θe−3iφδab 〈1−f , 2

+
f̄
|Tαβ α̇β̇|0〉 .

(7.152)

Finally, we can insert all these expressions in Eq. (7.140), in which the
stress-energy form factor 〈1−f , 2

+
f̄
|Tαβ α̇β̇|0〉 correctly factorizes from both

sides:

iπΓf =
1

16π
i(e2Q2

f + CF g
2
sc

2
f )

∫ π/2

0
2 sin θ cos θ dθ

×
[
2
cos2 θ

sin2 θ
cos2 θ(cos2 θ − 3 sin2 θ)− 2

sin2 θ

cos2 θ
sin2 θ(3 cos2 θ − sin2 θ)

+ 8
cos θ

sin θ
cos3 θ sin θ + 8

sin θ

cos θ
sin3 θ cos θ

]
,

(7.153)

which can be rewritten as

Γf =
1

16π2
(e2Q2

f+CF g
2
sc

2
f )

∫ π/2

0
2 sin θ cos θ dθ 2− 6 sin2 θ cos2 θ

sin2 θ cos2 θ
. (7.154)

Finally, we can recall Eqs. (7.85) and (7.88) to compute the value of the
anomalous dimension matrix elements γSS and γPP as

γSS = γPP = Γf −
1

16π2
(e2Q2

f + CF g
2
sc

2
f )

∫ π/2

0
2 sin θ cos θ dθ 2

sin2 θ cos2 θ

=
1

16π2
(e2Q2

f + CF g
2
sc

2
f )

∫ π/2

0
2 sin θ cos θ dθ (−6)

= − 3

8π2
(e2Q2

f + CF g
2
sc

2
f )

= − 3

8π2

(
e2Q2

f +
4

3
g2sc

2
f

)
.
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(7.155)

Therefore, we can finally write the beta functions of the Wilson coeffi-
cients associated with the Yukawa operators φf̄ifj and iφf̄iγ5fj as

d(vyijS )

d log µ
= − 3

8π2

(
e2Q2

f +
4

3
g2sc

2
f

)
vyijS , (7.156)

d(vyijP )

d log µ
= − 3

8π2

(
e2Q2

f +
4

3
g2sc

2
f

)
vyijP . (7.157)



Chapter 8

Conclusions

ALPs are very compelling new physics candidates in extensions of the SM
with a spontaneously broken global symmetry. The mass scale of the new
physics sector is set by the scale Λ at which the global symmetry is broken,
whereas the mass of the ALP, which is the pseudo Nambu-Goldstone boson
associated with this symmetry, is significantly smaller. The phenomenology
of ALPs at low energies is described at leading order in the EFT expansion
by dimension-five effective operators, suppressed by 1/Λ. The ALP EFT
considered in this thesis is CP violating since is given by the sum of a shift
symmetry invariant sector with a shift symmetry breaking one.

In this master thesis work, we successfully computed the RGEs for a
CP violating ALP effective theory at one-loop level through two fundamen-
tally different methods. The results obtained with the standard Feynman
diagrammatic approach read

d

d log µ

 Cγ

Cg

vyijS

 = γ

 Cγ

Cg

vyijS

 ,
d

d log µ

 C̃γ

C̃g

vyijP

 = γ̃

 C̃γ

C̃g

vyijP

 , (8.1)

where the anomalous dimension matrices corresponding to the shift sym-
metry breaking and shift symmetry invariant sectors of the ALP EFT are
respectively given by

γ =

 0 0 0
0 0 0

3e4

2π2miδ
ijQ2

f
2g4s
π2 miδ

ijc2f − 3
8π2 (e

2Q2
f + 4

3g
2
sc

2
f )

 , (8.2)

γ̃ =

 0 0 0
0 0 0

− 3e4

2π2miδ
ijQ2

f −2g4s
π2 miδ

ijc2f − 3
8π2 (e

2Q2
f + 4

3g
2
sc

2
f )

 . (8.3)
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The fact that the Wilson coefficients associated with the operators φV V
and φV Ṽ , with V = F,G, are scale independent at one-loop order once e2
and g2s are factored out, is in agreement with the results in the literature,
in particular with Ref. [24] for the operator φGG̃. Additionally, the result
for the anomalous dimension matrix corresponding to the shift symmetry
invariant sector agree with the expressions derived in Refs. [8, 23, 28].

The most important phenomenological implication of these results con-
cerns the fact that γ and γ̃ contain non-vanishing non-diagonal elements,
which are proportional to the fermion masses mi and correspond to the
flavor-diagonal diagrams in Eqs. (5.117), (5.118), (5.142) and (5.143). In-
deed, these operator mixing effects induce at the quantum level an interac-
tion between the ALP and fermions even if the tree-level Wilson coefficients
yiiS and yiiP are vanishing. On the other hand, the diagrams in Eqs. (5.119),
(5.120), (5.144) and (5.145) give rise to multiplicative renormalization ef-
fects and, in particular, to the matrix element − 3

8π2 (e
2Q2

f + 4
3g

2
sc

2
f ) shared

by both the anomalous dimension matrices γ and γ̃.

The scale invariance of the Wilson coefficients Ca and C̃a, with a = γ, g,
has been proven also via the on-shell method based on the form factors.
The results obtained through this method agree with those computed with
Feynman diagrams, except for the non-diagonal entries of γ and γ̃ that are
proportional to the fermion masses mi. This is a direct consequence of the
fact that the method of form factors that we used relies on the fundamental
assumption of all particles being massless.

The operator mixing effects that show such a mass dependence can
nevertheless be approached in different ways. For example, one could extend
the method of form factors to massive states, as it was recently developed in
Ref. [30]. Alternatively, one could compute them by exploiting the fact that,
in the SM, the masses of fermions are generated by the Higgs mechanism.
Indeed, any amplitude proportional to the Higgs vacuum expectation value
v can be directly connected to another amplitude where v is replaced by
a physical Higgs boson h insertion. Indeed, v and h appear in the same
component of the Higgs doublet, which in the unitary gauge read H =(
0, (v + h)/

√
2
)T . As a consequence of the electroweak symmetry breaking

pattern one can compute all the RGEs for a given operator that shows an
implicit dependence on v, e.g. through fermion masses, by computing the
RGEs relative to the very same operator but with an additional Higgs boson.

Additionally, we can mention the fact that the results we have obtained
have been double-checked with a different parametrization of the internal
helicity spinors, which makes use of the Stokes’ integration technique devel-
oped in Ref. [57].

We can conclude that the results obtained via on-shell methods repre-
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sent a crucial step towards the development of a two-loop RGEs program
for ALP theories, which is missing so far in the literature. Indeed, the com-
putational advantages of these unitarity-based on-shell methods over the
traditional Feynman diagrammatic approach become apparent as the loop
order increases.





Appendix A

Renormalization in QED &
QCD

This Appendix is devoted to the renormalization program of the QED and
QCD sectors of the SM. In particular, the renormalization parameters as-
sociated with the wavefunctions of fermion, photon and gluon fields are
calculated, as well as the beta functions of the gauge couplings and masses.
These results are exploited in Chapter 5 to obtain the values of the anoma-
lous dimension matrix elements of the ALP EFT, defined in Chapter 4,
through the standard Feynman diagrammatic approach.

The renormalized and bare Lagrangians associated with the U(1)em ×
SU(3)c gauge invariant sector of the SM are respectively given by

L ren.
SM = −1

4
FµνF

µν − 1

4
(∂µA

a
ν − ∂νAa

µ)
2 − gsµε/2fabc(∂µAa

ν)A
b µAc ν

− 1

4
g2sµ

εfeabfecdAa
µA

b
νA

c µAd ν − c̄a�ca + gsµ
ε/2fabc(∂µc̄a)Ab

µc
c

+ if̄i[/∂ + iµε/2(eQf /A+ gscfT
a /A

a
)]fi −mif̄ifi ,

(A.1)

L 0
SM = −Zγ

4
FµνF

µν − Zg

4
(∂µA

a
ν − ∂νAa

µ)
2

− Z3/2
g Zgsgsµ

ε/2fabc(∂µA
a
ν)A

b µAc ν

−
Z2
gZ

2
gs

4
g2sµ

εfeabfecdAa
µA

b
νA

c µAd ν − Zcc̄
a�ca

+ ZcZ
1/2
g Zgsgsµ

ε/2fabc(∂µc̄a)Ab
µc

c

+ iZf f̄i[/∂ + iµε/2(Z1/2
γ ZeeQf /A+ Z1/2

g ZgsgscfT
a /A

a
)]fi

− ZmZfmif̄ifi ,

(A.2)
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where we have defined the additional renormalization parameters as

mi,0 = Zmmi , ca0 = Z1/2
c ca , (A.3)

e0 = Zeeµ
ε/2 , gs,0 = Zgsgsµ

ε/2 . (A.4)

Note that we have to consider the anti-commuting Faddeev-Popov ghost
fields ca to preserve unitarity. In particular, their interaction with gluons,
as we will see, maintains the gluon propagator transverse with respect to
the momentum also at loop-level, so that gauge invariance is not spoiled.
The counterterm Lagrangian can be obtained as

L ct
SM = L 0

SM −L ren.
SM . (A.5)

A.1 Gauge group conventions
Concerning the gauge group SU(Nc), we adopt the following conventions.
The generators T a, with a = 1, . . . , N2

c −1 = 8 being an index of the adjoint
representation, satisfy the commutation relation

[T a, T b] = ifabcT c , (A.6)

where fabc are the totally anti-symmetric structure constants, explicitly
given by

f123 = 1 , (A.7)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1

2
, (A.8)

f458 = f678 =

√
3

2
, (A.9)

while the ones that cannot be related to these by permuting indices are
zero. In the fundamental representation, the generators T a

IJ are Hermitian
Nc ×Nc traceless matrices, normalized as

Tr(T aT b) =
1

2
δab (A.10)

and which can be written as T a = λa/2, where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

(A.11)

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

(A.12)
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λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (A.13)

are the Gell-Mann matrices. With this normalization, the structure con-
stants can be traded with commutators and products of generators as

fabc = −2iTr(T a[T b, T c]) , (A.14)

which is a very useful relation in the context of gluon scatterings. Addition-
ally, the SU(Nc) Fierz-type identity reads

T a
IJT

a
KL =

1

2

(
δILδKJ −

1

Nc
δIJδKL

)
(A.15)

and can be understood as a completeness relation for a basis of Hermitian
matrices spanned by {1, T a}. The Casimir operators in the fundamental
and adjoint representations are respectively given by

T a
IKT

a
KJ = CF δIJ , facdf bcd = CAδ

ab , (A.16)

where

CF =
N2

c − 1

2Nc
=

4

3
, CA = Nc = 3 . (A.17)

The gluon field strenght tensor is

Ga
µν = ∂µA

a
ν − ∂νAa

µ + gsf
abcAb

µA
c
ν (A.18)

and the interaction between gluons and matter is mediated by the covariant
derivative, defined as

f̄ Ii /DIJf
J = f̄ Ii(/∂δIJ + igscfT

a
IJ /A

a
)fJ , (A.19)

where cf is a color number, which is 0 if f is a lepton (`) and 1 if f is a
quark (q):

cf =

{
0 if f = `

1 if f = q
. (A.20)

A.2 Feynman rules
Once fixed the conventions, we can report the Feynman rules associated
with L ren.

SM .
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Propagators: in the Feynman-’t Hooft gauge the propagators read
p

fi

I J
=

iδIJ

/p−mi + iε
; (A.21)

p

γ

µ ν
=
−igµν
p2 + iε

; (A.22)

p

g

µ; a ν; b
=
−igµνδab

p2 + iε
; (A.23)

p

c

a b
=

iδab

p2 + iε
. (A.24)

Interaction vertices:

µ

f̄j

fi

= −ieQfδ
ijµε/2γµ ; (A.25)

µ; a

f̄Jj

f Ii

= −igscfT a
IJδ

ijµε/2γµ ; (A.26)

p1

p2

p3

µ; a

ν; b ρ; c

= −gsµε/2fabc[gµν(p1 − p2)ρ

+ gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ] ;

(A.27)
µ; a

ν; b ρ; c

σ; d

= −ig2sµε[fabef cde(gµρgνσ − gµσgνρ)
+ facef bde(gµνgρσ − gµσgνρ)
+ fadef bce(gµνgρσ − gµρgνσ)] ;

(A.28)
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p

µ; b

cc

c̄a

= −gsfabcµε/2pµ . (A.29)

A.3 Propagator corrections

A.3.1 Fermion self-energy

The 1PI diagrams contributing to the fermion propagator correction at one-
loop level are mediated by both QED and QCD:

1.1 anomalous dimensions 5

p p

fi fi
=
ie2Q2

f

16π2
(/p− 4m)∆ε + finite , (A.30)

6 On-shell methodology

p p

fJ
i f I

i

=
ig2sc

2
f

16π2
CF δIJ(/p− 4m)∆ε + finite .

(A.31)

Thus, the sum of their divergent contributions is given by

iΣ(p)|div. =
i

16π2
(e2Q2

f + CF g
2
sc

2
f )(/p− 4m)∆ε , (A.32)

which can be used to derive the renormalization parameters Zf and Zm.
Indeed, the requirement that the relevant counterterms

L ct
SM ⊃ i(Zf − 1)f̄i/∂fi − (ZfZm − 1)mif̄ifi (A.33)

cancel this divergence

iΣ(p)|div. + i[(Zf − 1)/p− (ZfZm − 1)m] = 0 (A.34)

leads to

Zf = 1− 1

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε , (A.35)

Zm = 1− 3

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε (A.36)

at lowest order in the gauge couplings.
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Running of the masses

The renormalization group evolution of the masses mi can be computed
imposing the µ-independence of the bare masses mi,0:

0 =
dmi,0

d log µ
=

d(Zmmi)

d log µ
=

dZm

d log µ
mi + Zm

dmi

d log µ

= − 3

16π2

(
de2

d log µ
Q2

f + CF
dg2s

d log µ
c2f

)
∆εmi

+

[
1− 3

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε

]
dmi

d log µ
.

(A.37)

We can then exploit two results that will be derived in the following Section,
namely

de2

d log µ
= −εe2 +O(e4) , dg2s

d log µ
= −εg2s +O(g4s) , (A.38)

to write[
1− 3

16π2
(e2Q2

f +CF g
2
sc

2
f )∆ε

]
dmi

d log µ
= −3mi

8π2
(e2Q2

f +CF g
2
sc

2
f ) , (A.39)

and, by expanding at lowest order in the gauge couplings, we can find the
beta function for the masses:

dmi

d log µ
= −3mi

8π2
(e2Q2

f + CF g
2
sc

2
f ) . (A.40)

In this case we do not have to take the limit ε → 0, since the bare masses
mi,0 have a mass dimension equal to 1 also in d = 4−ε spacetime dimensions.

A.3.2 Photon vacuum polarization

The 1PI diagram that contributes to the photon propagator at one-loop is
given by

∑
f

1.1 anomalous dimensions 7

p p

µ ⌫ = iΠµν(p) , (A.41)

with

iΠµν(p)|div. =
ie2

12π2
(pµpν − gµνp2)∆ε

∑
f

Q2
f (A.42)

and the sum runs over all the Dirac fermions. The relevant counterterm
needed to cancel this divergence is

L ct
SM ⊃ −

1

4
(Zγ − 1)FµνF

µν , (A.43)
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from which we can obtain the renormalization parameter Zγ imposing

iΠµν(p)|div. + i(Zγ − 1)(pµpν − gµνp2) = 0 , (A.44)

namely

Zγ = 1− e2

12π2
∆ε

∑
f

Q2
f . (A.45)

A.3.3 Gluon vacuum polarization

The 1PI diagrams contributing to the gluon propagator correction at one-
loop level are given by

∑
f

8 On-shell methodology

p p

a; µ b; ⌫ = iΠab(1)
µν (p) , (A.46)

1.1 anomalous dimensions 9

p pa; µ b; ⌫

= iΠab(2)
µν (p) , (A.47)

10 On-shell methodology

p p

a; µ b; ⌫ = iΠab(3)
µν (p) , (A.48)

1.1 anomalous dimensions 11

p p

a; µ b; ⌫ = iΠab(4)
µν (p) , (A.49)

where their divergent parts are

iΠab(1)
µν (p)|div. =

ig2s
24π2

(pµpν − gµνp2)δab∆ε

∑
f

c2f , (A.50)

iΠab(3)
µν (p)|div. =

ig2s
32π2

CA

(
− 11

3
pµpν +

19

6
gµνp

2

)
δab∆ε , (A.51)

iΠab(4)
µν (p)|div. =

ig2s
32π2

CA

(
1

3
pµpν +

1

6
gµνp

2

)
δab∆ε (A.52)
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and iΠab(2)
µν (p) is identically vanishing since it is proportional to the scaleless

integral∫ ddk

k2
= 0 . (A.53)

We can note that iΠab(3)
µν (p)|div. and iΠ

ab(4)
µν (p)|div. are not separately trans-

verse, but only their sum is:

iΠab(3)
µν (p)|div. + iΠab(4)

µν (p)|div. =
5i

48π2
CAg

2
s(gµνp

2 − pµpν)δab∆ε ,

(A.54)
pµ[iΠab(3)

µν (p)|div. + iΠab(4)
µν (p)|div.] = 0 . (A.55)

The total one-loop divergent correction to the gluon propagator

iΠab
µν(p)|div. = [iΠab(1)

µν (p) + iΠab(2)
µν (p) + iΠab(3)

µν (p) + iΠab(4)
µν (p)]|div.

=
ig2s
24π2

(
5

2
CA −

∑
f

c2f

)
(gµνp

2 − pµpν)δab∆ε
(A.56)

is then gauge invariant and is cured by the counterterm

L ct
SM ⊃ −

1

4
(Zg − 1)(∂µA

a
ν − ∂νAa

µ)
2 . (A.57)

From the condition

iΠab
µν(p)|div. + i(Zg − 1)(pµpν − gµνp2)δab = 0 (A.58)

we can obtain the value of the renormalization parameter Zg, namely

Zg = 1 +
g2s

24π2

(
5

2
CA −

∑
f

c2f

)
∆ε . (A.59)

A.4 Vertex corrections

A.4.1 Running of the electric charge

The 1PI diagrams contributing to the QED vertex correction at one-loop
level are given by
Contents 27

p

q

p0

fi

f̄j

µ = −ieQfµ
ε/2Λ(γ)

µ (p′, p, q) ,

(A.60)
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p

q

p0

f I
i

f̄J
j

µ = −ieQfµ
ε/2Λ

(g)
µ IJ(p

′, p, q) ,

(A.61)

where their divergent contributions are respectively provided by

Λ(γ)
µ (p′, p, q)|div. =

1

16π2
e2Q2

fγµ∆ε , (A.62)

Λ
(g)
µ IJ(p

′, p, q)|div. =
1

16π2
CF g

2
sc

2
fδIJγµ∆ε . (A.63)

The divergence of their sum is absorbed by the counterterm

L ct
SM ⊃ −(ZfZ

1/2
γ Ze − 1)eQfµ

ε/2f̄i /Afi (A.64)

and from the condition

0 = −ieQfµ
ε/2[Λ(γ)

µ (p′, p, q)+Λ(g)
µ (p′, p, q)]|div.−i(ZfZ

1/2
γ Ze−1)eQfµ

ε/2γµ

(A.65)

we obtain

ZfZ
1/2
γ Ze = 1− 1

16π2
(e2Q2

f + CF g
2
sc

2
f )∆ε , (A.66)

which is precisely the value of Zf . This is not a numerical coincidence, but
is rather a well known result related to gauge invariance. Indeed, it follows
from the Ward-Takahashi identity and it holds at all orders in perturbation
theory. As a consequence, we find that the renormalization of the electric
charge is determined completely by the renormalization of the photon field
strength

e0 = Z−1/2
γ eµε/2 =

(
1− e2

12π2
∆ε

∑
f

Q2
f

)−1/2

eµε/2 . (A.67)

We can expand this expression neglecting O(e5) terms as

e0 =

(
1 +

e2

24π2
∆ε

∑
f

Q2
f

)
eµε/2 (A.68)
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and from the µ-independence of the bare electric charge we can write

0 =
de0

d log µ
=

d

d log µ

[(
1 +

e2

24π2
∆ε

∑
f

Q2
f

)
eµε/2

]

=
de

d log µ

e2

12π2
∆ε

∑
f

Q2
fµ

ε/2 +

(
1 +

e2

24π2
∆ε

∑
f

Q2
f

)
de

d log µ
µε/2

+
ε

2

(
1 +

e2

24π2
∆ε

∑
f

Q2
f

)
eµε/2 ,

(A.69)

namely(
1 +

e2

8π2
∆ε

∑
f

Q2
f

)
de

d log µ
= −ε

2
e− e3

24π2

∑
f

Q2
f . (A.70)

Expanding one more time in powers of e and taking the limit ε→ 0, we can
finally obtain the beta function related to the electric charge at one-loop
order

de

d log µ
= −ε

2
e− e3

24π2

∑
f

Q2
f +

e3

8π2

∑
f

Q2
f

= −ε
2
e+

e3

12π2

∑
f

Q2
f

ε→0−−−→ e3

12π2

∑
f

Q2
f .

(A.71)

Equivalently, we can express the anomalous dimension of e2 as

1

e2
de2

d log µ
=

1

e2
2e

de

d log µ
= −ε+ e2

6π2

∑
f

Q2
f

ε→0−−−→ e2

6π2

∑
f

Q2
f . (A.72)

A.4.2 Running of the strong coupling constant

In order to obtain the beta function of the strong coupling constant, we can
consider the renormalization of the interaction vertex between gluons and
quarks. The 1PI diagrams contributing to the correction of this QCD vertex
at one-loop level are given by
Contents 29

p

q

p0

qIi

q̄Jj

µ; a = −igsµε/2Λa(γ)
µ IJ(p

′, p, q) ,

(A.73)



A.4 Vertex corrections 14330 Contents

p

q

p0

qIi

q̄Jj

µ; a = −igsµε/2Λa(g1)
µ IJ (p′, p, q) ,

(A.74)
Contents 31

p

q

p0

qIi

q̄Jj

µ; a = −igsµε/2Λa(g2)
µ IJ (p′, p, q) ,

(A.75)

where their divergent contributions are respectively provided by

Λ
a(γ)
µ IJ(p

′, p, q)|div. =
e2Q2

q

16π2
γµT

a
IJ∆ε , (A.76)

Λ
a(g1)
µ IJ (p′, p, q)|div. =

g2s
16π2

γµT
a
IJ

(
CF −

CA

2

)
∆ε , (A.77)

Λ
a(g2)
µ IJ (p′, p, q)|div. =

g2s
16π2

γµT
a
IJ

3CA

2
∆ε , (A.78)

where for the second and third diagrams the following identities have been
exploited

T b
IKT

a
KLT

b
KJ =

(
CF −

CA

2

)
T a
IJ , (A.79)

fabcT c
IKT

b
KJ = − i

2
CAT

a
IJ . (A.80)

The divergence of their sum is absorbed by the counterterm

L ct
SM ⊃ −(ZqZ

1/2
g Zgs − 1)gsµ

ε/2q̄i /Aqi (A.81)

and from the condition

0 = −igsµε/2[Λa(γ)
µ IJ(p

′, p, q) + Λ
a(g1)
µ IJ (p′, p, q) + Λ

a(g2)
µ IJ (p′, p, q)]|div.

− i(ZqZ
1/2
g Zgs − 1)gsµ

ε/2γµT
a
IJ

(A.82)

we obtain

ZqZ
1/2
g Zgs = 1− g2s

16π2
(CF + CA)∆ε −

e2Q2
q

16π2
∆ε . (A.83)
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Then, recalling from Eq. (A.35) the value of Zq

Zq = 1− 1

16π2
(e2Q2

q + CF g
2
s)∆ε (A.84)

and Zg from Eq. (A.59), we can isolate from Eq. (A.83) the renormalization
parameter Zgs by expanding at lowest order in the gauge couplings

Zgs =

(
1− g2s

16π2
(CF + CA)∆ε −

e2Q2
q

16π2
∆ε

)
Z−1
q Z−1/2

g

= 1− g2s
16π2

(CF + CA)∆ε −
e2Q2

q

16π2
∆ε +

1

16π2
(e2Q2

q + CF g
2
s)∆ε

− g2s
48π2

(
5

2
CA −

∑
f

c2f

)
∆ε

= 1 +
g2s

96π2
(−11CA + 2nq)∆ε ,

(A.85)

where we have denoted the sum
∑

f c
2
f as the number of quarks nq and

observed that the contributions coming from QED have canceled each other,
as a consequence of the Ward-Takahashi identity. Therefore, the bare strong
coupling gs,0 reads

gs,0 =

[
1 +

g2s
96π2

(−11CA + 2nq)∆ε

]
gsµ

ε/2 (A.86)

and following the exact same steps of the computation of the beta function
of the electric charge, namely from Eq. (A.67) to (A.71), we can conclude
that

dgs
d log µ

= −ε
2
gs −

g3s
16π2

b0
ε→0−−−→ − g3s

16π2
b0 , (A.87)

where

b0 =
11

3
CA −

2

3
nq = 11− 2

3
nq > 0 . (A.88)

Equivalently, we can express the anomalous dimension of g2s as

1

g2s

dg2s
d log µ

=
1

g2s
2gs

dgs
d log µ

= −ε− g2s
8π2

b0
ε→0−−−→ − g2s

8π2
b0 . (A.89)



Appendix B

Calculation of one-loop
Feynman integrals

In this Appendix, we will explicitly evaluate the divergent contributions of
the one-loop 1PI Feynman integrals that are necessary to the calculation –
conducted in Chapter 5 – of the anomalous dimension matrix of the ALP
EFT defined in Chapter 4.

B.1 φFF vertex corrections

B.1.1 φf̄f mediated diagrams

The first diagram contributing to the one-loop correction of the φFµνF
µν

operator is mediated by the operator φf̄ifj and is given by

20 appendice

QCD-induced diagram

The fourth diagram contributing to the one-loop correction of the i�f̄i�5fj
operator is mediated by the operator i�f̄i�5fj itself and is QCD-induced. It
is given by

p1
k

p2

p�

p1 � k p2 � k

fJ
j f I

i

�

= iM(g)
PP (1.94)

iM(g)
PP = �

1

4⇡2
CF g

2
sc

2
f
v

⇤
yijP µ

"/2ū(p2)�5u(p1)�" + finite . (1.95)

1.3 �FF vertex corrections
1.3.1 �f̄f mediated diagrams
The first diagram contributing to the one-loop correction of the �Fµ⌫Fµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ

⌫

� = iM(1)
�S , (1.96)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
�S = (�1)

Z ddk

(2⇡)d
Tr


(i
v

⇤
yijS µ

"/2)
i

/k � /p�mj + i✏
(�ieQf�

µ�jkµ"/2)

⇥
i

/k �mk + i✏
(�ieQf�

⌫�ikµ"/2)
i

/k + /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q)

=
X

i

Aµ"
Z ddk

(2⇡)d
N

D1D2D3
,

= iM(1)
γS , (B.1)
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which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(1)
γS = (−1)

∫ ddk

(2π)d
Tr

[
(i
v

Λ
yijS µ

ε/2)
i

/k − /p−mj + iε
(−ieQfγ

µδjkµε/2)

× i

/k −mk + iε
(−ieQfγ

νδikµε/2)
i

/k + /q −mi + iε

]
ε∗µ(p)ε

∗
ν(q)

=
∑
i

Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.2)

where we have defined

A =
v

Λ
yiiSe

2Q2
fµ

ε/2 , (B.3)

N = Tr
[
(/k − /p+mi)γ

µ(/k +mi)γ
ν(/k + /q +mi)

]
ε∗µ(p)ε

∗
ν(q) , (B.4)

D1 = k2 −m2
i + iε , (B.5)

D2 = (k − p)2 −m2
i + iε , (B.6)

D3 = (k + q)2 −m2
i + iε . (B.7)

Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − py + qz)2 − C + iε]3
,

(B.8)

with

C = m2
i − 2p · qyz , (B.9)

where the on-shellness of the external photons p2 = q2 = 0 and x+y+z = 1
have been used. In order to simplify the denominator, we can shift the
integration variable k as k = `+ py − qz, which implies ddk = dd` and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(`2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(`2 − C + iε)3
.

(B.10)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = Tr[(/̀+ /p(y − 1)− /qz +mi)γ
µ(/̀+ /py − /qz +mi)γ

ν

× (/̀+ /py + /q(1− z) +mi)]ε
∗
µ(p)ε

∗
ν(q)

= f(d)mi(4`
µ`ν − `2)ε∗µ(p)ε∗ν(q) +O(`) ,

(B.11)
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where the following identities involving the trace of gamma matrices in d-
dimensions have been used

Tr[odd # of γµ’s] = 0 (B.12)
Tr[γµγνγργσ] = f(d)(gµνgρσ − gµρgνσ + gµσgνρ) , (B.13)
Tr[γµγν ] = f(d)gµν , (B.14)

with the function f(d) that has the property of approaching f(d)→ 4 as d→
4. We can observe that, once we exploit Lorentz invariance by effectively
replacing in the numerator `µ`ν with `2gµν/d and sending to zero the terms
that are proportional to the first power of `, we obtain

N = f(d)mi`
2

(
4

d
− 1

)
+O(`0)

= f(4− ε)mi`
2

(
4

4− ε
− 1

)
+O(`0)

= 4mi`
2O(ε) +O(`0) ,

(B.15)

namely the numerator is of order `0 once the ε → 0 limit is performed.
Thus, the degree of divergence of the integral is d− 2 · 3 < 0, meaning that
the diagram converges:

iM(1)
γS = finite . (B.16)

The second diagram contributing to the one-loop correction of the φFµνF
µν

operator is mediated by the operator φf̄ifj and is given by
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with the function f(d) that has the property of approaching f(d) ! 4 as d !

4. We can observe that, once we exploit Lorentz invariance by e�ectively
replacing in the numerator `µ`⌫ with `2gµ⌫/d and sending to zero the terms
that are proportional to the first power of `, we obtain

N = f(d)mi`
2

✓
4

d
� 1

◆
+O(`0)

= f(4� ")mi`
2

✓
4

4� "
� 1

◆
+O(`0)

= 4mi`
2
O(") +O(`0) ,

(1.110)

namely the numerator is of order `0 once the " ! 0 limit is performed.
Thus, the degree of divergence of the integral is d� 2 · 3 < 0, meaning that
the amplitude converges:

iM(1)
�S = finite . (1.111)

The second diagram contributing to the one-loop correction of the �Fµ⌫Fµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ

⌫

� = iM(2)
�S , (1.112)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
�S = (�1)

Z ddk

(2⇡)d
Tr


(i
v

⇤
yijS µ

"/2)
i

�/k + /p�mj + i✏
(�ieQf�

µ�jkµ"/2)

⇥
i

�/k �mk + i✏
(�ieQf�

⌫�ikµ"/2)
i

�/k � /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.113)

It can be related to iM(1)
�S via the substitutions µ $ ⌫ and p $ q, thus

iM(2)
�S = finite . (1.114)

= iM(2)
γS , (B.17)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
γS = (−1)

∫ ddk

(2π)d
Tr

[
(i
v

Λ
yijS µ

ε/2)
i

−/k − /q −mj + iε
(−ieQfγ

νδikµε/2)

× i

−/k −mk + iε
(−ieQfγ

µδjkµε/2)
i

−/k + /p−mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.18)
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It can be related to the diagram iM(1)
γS via the substitutions µ ↔ ν and

p↔ q, thus

iM(2)
γS = finite . (B.19)

B.2 φFF̃ vertex corrections

B.2.1 iφf̄γ5f mediated diagrams

The first diagram contributing to the one-loop correction of the φFµνF̃
µν

operator is mediated by the operator iφf̄iγ5fj and is given by
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1.2 �F eF vertex corrections
1.2.1 i�f̄�5f mediated diagrams
The first diagram contributing to the one-loop correction of the �Fµ⌫

eFµ⌫

operator is mediated by the operator i�f̄i�5fj and is given by

p

k

q

p�

k + q

k � p µ

⌫

� = iM(1)
�̃P , (1.20)

which can be computed according to the d-dimensional Feynman rules pre-

sented in Section ?? as

iM(1)
�̃P = (�1)
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=
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,

(1.21)

where we have defined

A = i
v

⇤
yiiP e

2Q2
fµ

"/2 , (1.22)

N = Tr
⇥
�5(/k � /p+mi)�

µ(/k +mi)�
⌫(/k + /q +mi)

⇤
✏⇤µ(p)✏

⇤
⌫(q) , (1.23)

D1 = k2 �m2
i + i✏ , (1.24)

D2 = (k � p)2 �m2
i + i✏ , (1.25)

D3 = (k + q)2 �m2
i + i✏ . (1.26)

Exploiting the Feynman parametrization, we can write the denominator in

the integral as

1

D1D2D3
= 2

Z 1

0
dx

Z 1

0
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Z 1
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[(k � py + qz)2 � C + i✏]3
,

(1.27)

= iM(1)
γ̃P , (B.20)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as
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γ̃P = (−1)

∫ ddk

(2π)d
Tr

[
(− v

Λ
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i
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]
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=
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Aµε
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(2π)d
N

D1D2D3
,

(B.21)

where we have defined

A = i
v

Λ
yiiP e

2Q2
fµ

ε/2 , (B.22)

N = Tr
[
γ5(/k − /p+mi)γ

µ(/k +mi)γ
ν(/k + /q +mi)

]
ε∗µ(p)ε

∗
ν(q) , (B.23)

D1 = k2 −m2
i + iε , (B.24)

D2 = (k − p)2 −m2
i + iε , (B.25)

D3 = (k + q)2 −m2
i + iε . (B.26)
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Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − py + qz)2 − C + iε]3
,

(B.27)

with

C = m2
i − 2p · qyz , (B.28)

where the on-shellness of the external photons p2 = q2 = 0 and x+y+z = 1
have been used. In order to simplify the denominator, we can shift the
integration variable k as k = `+ py − qz, which implies ddk = dd` and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(`2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(`2 − C + iε)3
.

(B.29)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = Tr[γ5(/̀+ /p(y − 1)− /qz +mi)γ
µ(/̀+ /py − /qz +mi)γ

ν

× (/̀+ /py + /q(1− z) +mi)]ε
∗
µ(p)ε

∗
ν(q)

= 4imi(2y − 1)εµνρσpρqσε
∗
µ(p)ε

∗
ν(q) ,

(B.30)

where the cyclicity of the trace and the following identities involving the
trace of gamma matrices have been used

Tr[γ5] = 0 , (B.31)
Tr[γ5 × (odd # of γµ’s)] = 0 , (B.32)
Tr[γ5γµγν ] = 0 , (B.33)
Tr[γµγνγργσγ5] = −4iεµνρσ . (B.34)

This last identity indeed holds in the BMHV scheme. Thus, we have found
that the numerator is `-independent, and given the fact that the denomina-
tor scales as `6, we can conclude that the diagram is actually convergent.
Therefore we can write

iM(1)
γ̃P = finite . (B.35)
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The second diagram contributing to the one-loop correction of the φFµνF̃
µν

operator is mediated by the operator iφf̄iγ5fj and is given by

1.2 �F eF vertex corrections 9

with

C = m2
i � 2p · qyz , (1.28)

where the on-shellness of the external photons p2 = q2 = 0 and x+y+z = 1
have been used. In order to simplify the denominator, we can shift the

integration variable k as k = `+ py � qz, which implies d
dk = d

d` and

1

D1D2D3
= 2

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz

�(x+ y + z � 1)

(`2 � C + i✏)3

= 2

Z 1

0
dy

Z 1�y

0
dz

1

(`2 � C + i✏)3
.

(1.29)

At this point we have to perform the shift also in the numerator of the

integral: N becomes

N = Tr[�5(/̀+ /p(y � 1)� /qz +mi)�
µ(/̀+ /py � /qz +mi)�

⌫

⇥ (/̀+ /py + /q(1� z) +mi)]✏
⇤
µ(p)✏

⇤
⌫(q)

= 4imi(2y � 1)✏µ⌫⇢�p⇢q�✏
⇤
µ(p)✏

⇤
⌫(q) ,

(1.30)

where the cyclicity of the trace and the following identities involving the

trace of gamma matrices have been used

Tr[�5] = 0 , (1.31)

Tr[�5 ⇥ (odd # of �µ’s)] = 0 , (1.32)

Tr[�5�
µ�⌫ ] = 0 , (1.33)

Tr[�µ�⌫�⇢���5] = �4i✏µ⌫⇢� . (1.34)

This last identity indeed holds in the BMHV scheme. Thus, we have found

that the numerator is `-independent, and given the fact that the denomina-

tor scales as `6, we can conclude that the diagram is actually convergent.

Therefore we can write

iM(1)
�̃P = finite . (1.35)

The second diagram contributing to the one-loop correction of the �Fµ⌫
eFµ⌫

operator is mediated by the operator i�f̄i�5fj and is given by

p

k

q

p�

k + q

k � p µ

⌫

� = iM(2)
�̃P , (1.36)= iM(2)
γ̃P , (B.36)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
γ̃P = (−1)

∫ ddk

(2π)d
Tr

[
(− v

Λ
yijP γ5µ

ε/2)
i

−/k − /q −mj + iε
(−ieQfγ

νδikµε/2)

× i

−/k −mk + iε
(−ieQfγ

µδjkµε/2)
i

−/k + /p−mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.37)

It can be related to the diagram iM(1)
γ̃P via the substitutions µ ↔ ν and

p↔ q, thus

iM(2)
γ̃P = finite . (B.38)

B.3 φGG vertex corrections

B.3.1 φf̄f mediated diagrams

The first diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φf̄ifj and is given by
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1.4 �GG vertex corrections
1.4.1 �f̄f mediated diagrams
The first diagram contributing to the one-loop correction of the �Ga

µ⌫G
aµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(1)
gS , (1.115)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
gS = (�1)

Z ddk

(2⇡)d
Tr


(i
v

⇤
yijS µ

"/2)
i

/k � /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

/k + /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.116)

The structure of this integral is completely analogous to the one of the
diagram iM(1)

�S . Indeed they are equal except for their overall coe�cient.
Therefore

iM(1)
gS = finite . (1.117)

The second diagram contributing to the one-loop correction of the �Ga
µ⌫G

aµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(2)
gS , (1.118)

= iM(1)
gS , (B.39)
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which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(1)
gS = (−1)

∫ ddk

(2π)d
Tr

[
(i
v

Λ
yijS µ

ε/2)
i

/k − /p−mj + iε
(−igscfT a

IJγ
µδjkµε/2)

× i

/k −mk + iε
(−igscfT b

JIγ
νδikµε/2)

i

/k + /q −mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.40)

The structure of this integral is completely analogous to the one of the
diagram iM(1)

γS . Indeed they are equal except for their overall coefficient.
Therefore

iM(1)
gS = finite . (B.41)

The second diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φf̄ifj and is given by

1.4 �GG vertex corrections 23

1.4 �GG vertex corrections
1.4.1 �f̄f mediated diagrams
The first diagram contributing to the one-loop correction of the �Ga

µ⌫G
aµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(1)
gS , (1.115)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
gS = (�1)

Z ddk

(2⇡)d
Tr


(i
v

⇤
yijS µ

"/2)
i

/k � /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

/k + /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.116)

The structure of this integral is completely analogous to the one of the
diagram iM(1)

�S . Indeed they are equal except for their overall coe�cient.
Therefore

iM(1)
gS = finite . (1.117)

The second diagram contributing to the one-loop correction of the �Ga
µ⌫G

aµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(2)
gS , (1.118)= iM(2)
gS , (B.42)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
gS = (−1)

∫ ddk

(2π)d
Tr

[
(i
v

Λ
yijS µ

ε/2)
i

−/k − /q −mj + iε
(−igscfT b

JIγ
νδikµε/2)

× i

−/k −mk + iε
(−igscfT a

IJγ
µδjkµε/2)

i

−/k + /p−mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.43)

It can be related to the diagram iM(1)
gS via the substitutions µ ↔ ν, a ↔ b

and p↔ q, thus

iM(2)
gS = finite . (B.44)
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B.3.2 φGG mediated diagrams

The third diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φGa
µνG

aµν itself and is given by

24 appendice

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
gS = (�1)

Z ddk

(2⇡)d
Tr


(i
v

⇤
yijS µ

"/2)
i

�/k + /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

�/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

�/k � /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.119)

It can be related to the diagram iM(1)
gS via the substitutions µ $ ⌫, a $ b

and p $ q, thus

iM(2)
gS = finite . (1.120)

1.4.2 �GG mediated diagrams
The third diagram contributing to the one-loop correction of the �Ga

µ⌫G
aµ⌫

operator is mediated by the operator �Ga
µ⌫G

aµ⌫ itself and is given by

p�

k
q

p

�

⌫; b

µ; a

= iM(1)
gg , (1.121)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
gg =

4 · 3

4!

Z ddk

(2⇡)d
4ig4s

Cg

⇤
µ3"/2�ig⇢��cd

k2 + i✏
[fabef cde(gµ⇢g⌫� � gµ�g⌫⇢)

+ facef bde(gµ⌫g⇢� � gµ�g⌫⇢) + fadef bce(gµ⌫g⇢� � gµ⇢g⌫�)]

⇥ ✏⇤µ(p)✏
⇤
⌫(q) .

(1.122)

This diagram is proportional to the scaleless integral

µ"
Z ddk

(2⇡)d
1

k2 + i✏
= 0 (1.123)

= iM(1)
gg , (B.45)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(1)
gg =

4 · 3
4!

∫ ddk

(2π)d
4ig4s

Cg

Λ
µ3ε/2

−igρσδcd

k2 + iε
[fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ) + fadef bce(gµνgρσ − gµρgνσ)]
× ε∗µ(p)ε∗ν(q) .

(B.46)

This diagram is proportional to the scaleless integral

µε
∫ ddk

(2π)d
1

k2 + iε
= 0 (B.47)

and is therefore vanishing. In order to see whether this is a consequence of
a cancellation between UV and IR divergences (as in the case of diagrams
iM(3)

gg and iM(4)
gg ), we can decouple them by giving the gluon a fictitious

mass mg and performing the limit mg → 0 at the end of the calculation. In
this way, the integral can be computed according to the master formula in
Eq. (??) as

µεI0,1 = µε
∫ ddk

(2π)d
1

k2 −m2
g + iε

= − i

16π2
m2

g

(
4πµ2

m2
g

)ε/2Γ(d/2)Γ(1− d/2)
Γ(1)Γ(d/2)

= − i

16π2
m2

g

(
4πµ2

m2
g

)ε/2

Γ(ε/2− 1) .

(B.48)
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The pole of this integral is proportional to m2
g – as required by dimensional

analysis – and we can therefore conclude that its divergent contribution
vanishes as well

iM(1)
gg |div. = 0 . (B.49)

The fourth diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φGa
µνG

aµν itself and is given by
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and is therefore vanishing. In order to see whether this is a consequence of
a cancellation between UV and IR divergencies (as in the case of diagrams
iM(3)

gg and iM(4)
gg ), we can decouple them by giving the gluon a fictitious

mass mg and performing the limit mg ! 0 at the end of the calculation. In
this way, the integral can be computed according to the master formula in
Eq. (??) as

µ"I0,1 = µ"
Z ddk

(2⇡)d
1

k2 �m2
g + i✏

= �
i

16⇡2
m2

g

✓
4⇡µ2

m2
g

◆"/2�(d/2)�(1� d/2)

�(1)�(d/2)

= �
i

16⇡2
m2

g

✓
4⇡µ2

m2
g

◆"/2

�("/2� 1) .

(1.124)

The pole of this integral is proportional to m2
g – as required by dimensional

analysis – and we can therefore conclude that its divergent contribution
vanishes as well

iM(1)
gg |div. = 0 . (1.125)

The fourth diagram contributing to the one-loop correction of the �Ga
µ⌫G

aµ⌫

operator is mediated by the operator �Ga
µ⌫G

aµ⌫ itself and is given by

p�

k + q

p� k

q
p�

⌫; b

µ; a

= iM(2)
gg , (1.126)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
gg =

4 · 3 · 2

2! · 4!

Z ddk

(2⇡)d
(4ig2s

Cg

⇤
µ"/2)[(p� k)↵(k + q)� � (p� k) · (k + q)g↵� ]

⇥ �cd
�ig↵��ce

(k + q)2 + i✏

�ig���df

(p� k)2 + i✏
(�ig2sµ

")[fabgf efg(gµ�g⌫� � gµ�g⌫�)

+ faegf bfg(gµ⌫g�� � gµ�g⌫�) + fafgf beg(gµ⌫g�� � gµ�g⌫�)]✏⇤µ(p)✏
⇤
⌫(q)

= Aµ"
Z ddk

(2⇡)d
N

D1D2
,

(1.127)

= iM(2)
gg , (B.50)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
gg =

4 · 3 · 2
2! · 4!

∫ ddk

(2π)d
(4ig2s

Cg

Λ
µε/2)[(p− k)α(k + q)β − (p− k) · (k + q)gαβ]

× δcd −igαγδce

(k + q)2 + iε

−igβδδdf

(p− k)2 + iε
(−ig2sµε)[fabgfefg(gµγgνδ − gµδgνγ)

+ faegf bfg(gµνgγδ − gµδgνγ) + fafgf beg(gµνgγδ − gµγgνδ)]ε∗µ(p)ε∗ν(q)

= Aµε
∫ ddk

(2π)d
N

D1D2
,

(B.51)

where we have defined

A = −2CAg
4
s

Cg

Λ
δabµε/2 , (B.52)

N = [(p− k)α(k + q)β − (p− k) · (k + q)gαβ]gαγgβδ

× (2gµνgγδ − gµδgνγ − gµγgνδ)ε∗µ(p)ε∗ν(q) ,
(B.53)

D1 = (k + q)2 + iε , (B.54)
D2 = (p− k)2 + iε , (B.55)

and exploited the anti-symmetry of the structure constants fabc = f [abc], as
well as the fact that facdf bcd is the Casimir operator in the adjoint repre-
sentation of SU(Nc) and, by Schur’s lemma, is proportional to the identity
matrix

facdf bcd = CAδ
ab , (B.56)



154 Calculation of one-loop Feynman integrals

with CA = Nc. Exploiting the Feynman parametrization, we can write the
denominator in the integral as

1

D1D2
=

∫ 1

0
dx 1

[xD1 + (1− x)D2]2

=

∫ 1

0
dx 1

{[k + xq + (x− 1)p]2 − C + iε}2
,

(B.57)

with

C = 2x(x− 1)p · q , (B.58)

where the on-shellness of external gluons p2 = q2 = 0 has been used. In
order to simplify the denominator, we can shift the integration variable k as
k = `− xq − (x− 1)p, which implies ddk = dd` and

1

D1D2
=

∫ 1

0
dx 1

(`2 − C + iε)2
. (B.59)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = [(−`+ x(p+ q))α(`− (x− 1)(p+ q))β − (−`+ x(p+ q))

· (`− (x− 1)(p+ q))gαβ](2gµνgαβ − δµβδ
ν
α − δµαδνβ)ε∗µ(p)ε∗ν(q)

= [(`− x(p+ q))ν(`− (x− 1)(p+ q))µ + (`− x(p+ q))µ

× (`− (x− 1)(p+ q))ν − gµν(`− x(p+ q)) · (`− (x− 1)(p+ q))

× (4− 2d)]ε∗µ(p)ε
∗
ν(q)

= {(`− xp)ν(`− (x− 1)q)µ + (`− xq)µ(`− (x− 1)p)ν

− (4− 2d)[`2 + ` · (p+ q) + 2x(x− 1)p · q]gµν}ε∗µ(p)ε∗ν(q) ,
(B.60)

where the transversality conditions p · ε∗(p) = q · ε∗(q) = 0 and δµµ = d
have been used. We can observe that, once we exploit Lorentz invariance
by effectively replacing in the numerator `µ`ν with `2gµν/d and sending to
zero the terms that are proportional to the first power of `, we obtain

N = `2gµν
(
2

d
+ 2d− 4

)
ε∗µ(p)ε

∗
ν(q)

+ 2x(x− 1)[pνqµ + (2d− 4)p · qgµν ]ε∗µ(p)ε∗ν(q) .
(B.61)

We have to keep the terms that do not depend on ` since they yield a
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divergent integral too. Therefore, we have that∫ dd`

(2π)d
N

D1D2
=

∫ 1

0
dx
∫ dd`

(2π)d
1

(`2 − C + iε)2

[
`2gµν

(
2

d
+ 2d− 4

)
+ 2x(x− 1)[pνqµ + (2d− 4)p · qgµν ]

]
ε∗µ(p)ε

∗
ν(q)

= ε∗µ(p)ε
∗
ν(q)

∫ 1

0
dx
[
gµν
(
2

d
+ 2d− 4

)
I1,2

+ 2x(x− 1)[pνqµ + (2d− 4)p · qgµν ]I0,2
]
.

(B.62)

The divergent integrals I1,2 and I0,2 are computed according to master for-
mula in Eq. (5.52) and then we can expand around ε = 0 knowing that
Γ(x) = 1/x− γE +O(x) as x→ 0:

I0,2 =
i

16π2

(
4π

C

)ε/2

Γ(ε/2) , (B.63)

I1,2 = −
i

16π2
C

(
4π

C

)ε/2(
2− ε

2

)
Γ(ε/2− 1) , (B.64)

so that

µεgµν
(
2

d
+ 2d− 4

)
I1,2 =

i

16π2
C

(
4πµ2

C

)ε/2

9

[
2

ε
− 1

3
− γE +O(ε)

]
=

i

16π2
9C

[
∆ε −

1

3
+ log

µ2

C
+O(ε)

] (B.65)

and

µεI0,2 =
i

16π2

(
4πµ2

C

)ε/2

Γ(ε/2)

=
i

16π2

(
4πµ2

C

)ε/2[2
ε
− γE +O(ε)

]
=

i

16π2

[
∆ε + log

µ2

C
+O(ε)

]
,

(B.66)

where ∆ε = 2/ε − γE + log(4π). In this way, the divergent part of the
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diagram reads

iM(2)
gg |div. =

i

16π2
Aε∗µ(p)ε

∗
ν(q)∆ε

∫ 1

0
dx {gµν9C

+ 2x(x− 1)[pνqµ + 4p · qgµν ]}

=
i

16π2
Aε∗µ(p)ε

∗
ν(q)∆ε

∫ 1

0
dx {18x(x− 1)p · qgµν

+ 2x(x− 1)[pνqµ + 4p · qgµν ]}

=
i

8π2
A(pνqµ + 13p · qgµν)ε∗µ(p)ε∗ν(q)∆ε ×

∫ 1

0
dxx(x− 1)

=
i

8π2
A(pνqµ + 13p · qgµν)ε∗µ(p)ε∗ν(q)∆ε ×

(
− 1

6

)
(B.67)

and we can finally write

iM(2)
gg =

i

24π2
CAg

4
s

Cg

Λ
µε/2(pνqµ+13p·qgµν)δabε∗µ(p)ε∗ν(q)∆ε+finite . (B.68)

The fifth diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φGa
µνG

aµν itself and is given by
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and

µ"I0,2 =
i

16⇡2

✓
4⇡µ2

C

◆"/2

�("/2)

=
i

16⇡2

✓
4⇡µ2

C

◆"/22
"
� �E +O(")

�

=
i

16⇡2


�" + log

µ2

C
+O(")

�
,

(1.142)

where �" = 2/" � �E + log(4⇡). In this way, the divergent part of the
amplitude reads

iM(2)
gg |div. =

i

16⇡2
A✏⇤µ(p)✏

⇤
⌫(q)�"

Z 1

0
dx {gµ⌫9C

+ 2x(x� 1)[p⌫qµ + 4p · qgµ⌫ ]}

=
i

16⇡2
A✏⇤µ(p)✏

⇤
⌫(q)�"

Z 1

0
dx {18x(x� 1)p · qgµ⌫

+ 2x(x� 1)[p⌫qµ + 4p · qgµ⌫ ]}

=
i

8⇡2
A(p⌫qµ + 13p · qgµ⌫)✏⇤µ(p)✏

⇤
⌫(q)�" ⇥

Z 1

0
dxx(x� 1)

=
i

8⇡2
A(p⌫qµ + 13p · qgµ⌫)✏⇤µ(p)✏

⇤
⌫(q)�" ⇥

✓
�

1

6

◆

(1.143)

and we can finally write

iM(2)
gg =

i

24⇡2
CAg

4
s
Cg

⇤
µ"/2(p⌫qµ+13p·qgµ⌫)�ab✏⇤µ(p)✏

⇤
⌫(q)�"+finite . (1.144)

The fifth diagram contributing to the one-loop correction of the �Ga
µ⌫G

aµ⌫

operator is mediated by the operator �Ga
µ⌫G

aµ⌫ itself and is given by

p�

q

k

p� k p

�

⌫; b

µ; a

= iM(3)
gg , (1.145)

= iM(3)
gg , (B.69)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(3)
gg =

3 · 3 · 2
3! · 3!

∫ ddk

(2π)d
(4g3s

Cg

Λ
µε)f bcd[gνα(q − k)β + gαβ(2k − p)ν

+ gβν(p− k − q)α]−igαγδ
ce

k2 + iε

−igβδδdf

(p− k)2 + iε
(−gsµε/2)faef

× [gµγ(p+ k)δ + gγδ(p− 2k)µ + gδµ(k − 2p)γ ]ε∗µ(p)ε
∗
ν(q)

= Aµε
∫ ddk

(2π)d
N

D1D2
,

(B.70)

where we have defined

A = 2CAg
4
s

Cg

Λ
δabµε/2 , (B.71)
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N = [gνα(q − k)β + gαβ(2k − p)ν + gβν(p− k − q)α]
× [gµγ(p+ k)δ + gγδ(p− 2k)µ + gδµ(k − 2p)γ ]gαγgβδε

∗
µ(p)ε

∗
ν(q) ,

(B.72)
D1 = k2 + iε , (B.73)
D2 = (p− k)2 + iε , (B.74)

and exploited the anti-symmetry of the structure constants fabc = f [abc], as
well as the fact that facdf bcd is the Casimir operator in the adjoint repre-
sentation of SU(Nc) and, by Schur’s lemma, is proportional to the identity
matrix

facdf bcd = CAδ
ab , (B.75)

with CA = Nc. Exploiting the Feynman parametrization, we can write the
denominator in the integral as

1

D1D2
=

∫ 1

0
dx 1

[(1− x)D1 + xD2]2

=

∫ 1

0
dx 1

{[k − xp]2 + iε}2
,

(B.76)

where the on-shellness of an external gluon p2 = 0 has been used. This
is a scaleless integral (C = 0), thus it yields iM(3)

gg = 0. This zero is due
to an exact cancellation between UV and IR divergences, and, in order to
decouple the two contributions, we can give the gluon a small fictitious mass
mg in the denominator, and at the end of the calculation we can perform
the limit mg → 0. In this way

1

D1D2
=

∫ 1

0
dx 1

(`2 − C + iε)2
, (B.77)

where

C = m2
g (B.78)

and we have shifted the integration variable k as k = `+ xp, which implies
ddk = dd`. At this point we have to perform the shift also in the numerator
of the integral: N becomes

N = [gνα(q − `− xp)β + gαβ(2`+ 2xp− p)ν + gβν(p− `− xp− q)α]
× [gµγ(p+ `+ xp)δ + gγδ(p− 2`− 2xp)µ + gδµ(`+ xp− 2p)γ ]

× gαγgβδε∗µ(p)ε∗ν(q) .
(B.79)

Before expanding the numerator we can observe that the quadratic terms
in ` do not contribute to the divergent part of the diagram, since they
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are associated to integral I1,2, which, as we have seen in the calculation of
iM(2)

gg , is proportional to C even after performing the limit ε → 0. In this
case C → 0 and therefore I1,2 → 0. The linear terms in ` do not contribute
by Lorentz invariance, hence we can isolate those terms in N that do not
depend on `:

N = [gνα(q − xp)β + gαβ(2xp− p)ν + gβν(p− xp− q)α]
× [gµγ(p+ xp)δ + gγδ(p− 2xp)µ + gδµ(xp− 2p)γ ]

× gαγgβδε∗µ(p)ε∗ν(q)
= 3(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q) ,

(B.80)

where p2 = 0 and the transversality condition p · ε∗(p) = 0 have been used.
Thus, the diagram reads

iM(3)
gg = 3A(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q)µε

∫ dd`

(2π)d

∫ 1

0
dx 1

(`2 − C + iε)2

= 3A(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q)
∫ 1

0
dxµεI0,2 .

(B.81)

The integral I0,2 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I0,2 =
i

16π2

(
4π

C

)ε/2

Γ(ε/2) , (B.82)

so that

µεI0,2 =
i

16π2

(
4πµ2

C

)ε/2

Γ(ε/2)

=
i

16π2

(
4πµ2

C

)ε/2[2
ε
− γE +O(ε)

]
=

i

16π2

[
∆ε + log

µ2

C
+O(ε)

]
,

(B.83)

where ∆ε = 2/ε− γE + log(4π). In this way, we can see that the divergent
part of the diagram does not depend on C, and we can write it as

iM(3)
gg |div. = 3A(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q)

∫ 1

0
dx i

16π2
∆ε

=
3i

16π2
A(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q)×

∫ 1

0
dx

=
3i

16π2
A(p · qgµν − pνqµ)ε∗µ(p)ε∗ν(q)× 1

=
3i

8π2
CAg

4
s

Cg

Λ
µε/2(−pνqµ + p · qgµν)δabε∗µ(p)ε∗ν(q)∆ε .

(B.84)
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The sixth diagram contributing to the one-loop correction of the φGa
µνG

aµν

operator is mediated by the operator φGa
µνG

aµν itself and is given by

1.4 �GG vertex corrections 31

so that

µ"I0,2 =
i

16⇡2

✓
4⇡µ2

C

◆"/2

�("/2)

=
i

16⇡2

✓
4⇡µ2

C

◆"/22
"
� �E +O(")

�

=
i

16⇡2


�" + log

µ2

C
+O(")

�
,

(1.159)

where �" = 2/"� �E + log(4⇡). In this way, we can see that the divergent
part of the amplitude does not depend on C, and we can write it as

iM(3)
gg |div. = 3A(p · qgµ⌫ � p⌫qµ)✏⇤µ(p)✏

⇤
⌫(q)

Z 1

0
dx i

16⇡2
�"

=
3i

16⇡2
A(p · qgµ⌫ � p⌫qµ)✏⇤µ(p)✏

⇤
⌫(q)⇥

Z 1

0
dx

=
3i

16⇡2
A(p · qgµ⌫ � p⌫qµ)✏⇤µ(p)✏

⇤
⌫(q)⇥ 1

=
3i

8⇡2
CAg

4
s
Cg

⇤
µ"/2(�p⌫qµ + p · qgµ⌫)�ab✏⇤µ(p)✏

⇤
⌫(q)�" .

(1.160)

The sixth diagram contributing to the one-loop correction of the �Ga
µ⌫G

aµ⌫

operator is mediated by the operator �Ga
µ⌫G

aµ⌫ itself and is given by

p�

p

k

q � k
q

�

µ; a

⌫; b

= iM(4)
gg , (1.161)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(4)
gg =

3 · 3 · 2

3! · 3!

Z ddk

(2⇡)d
(4g3s

Cg

⇤
µ")facd[gµ↵(p� k)� + g↵�(2k � q)µ

+ g�µ(q � k � p)↵]
�ig↵��ce

k2 + i✏

�ig���df

(q � k)2 + i✏
(�gsµ

"/2)f bef

⇥ [g⌫�(q + k)� + g��(q � 2k)⌫ + g�⌫(k � 2q)� ]✏⇤µ(p)✏
⇤
⌫(q) .

(1.162)

= iM(4)
gg , (B.85)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(4)
gg =

3 · 3 · 2
3! · 3!

∫ ddk

(2π)d
(4g3s

Cg

Λ
µε)facd[gµα(p− k)β + gαβ(2k − q)µ

+ gβµ(q − k − p)α]−igαγδ
ce

k2 + iε

−igβδδdf

(q − k)2 + iε
(−gsµε/2)f bef

× [gνγ(q + k)δ + gγδ(q − 2k)ν + gδν(k − 2q)γ ]ε∗µ(p)ε
∗
ν(q) .

(B.86)

It can be related to the diagram iM(3)
gg via the substitutions µ ↔ ν, a ↔ b

and p↔ q, thus

iM(4)
gg |div. =

3i

8π2
CAg

4
s

Cg

Λ
µε/2(−pνqµ+ p · qgµν)δabε∗µ(p)ε∗ν(q)∆ε . (B.87)

The seventh diagram contributing to the one-loop correction of the
φGa

µνG
aµν operator is mediated by the operator φGa

µνG
aµν itself and is

given by
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It can be related to the diagram iM(3)
gg via the substitutions µ $ ⌫, a $ b

and p $ q, thus

iM(4)
gg |div. =

3i

8⇡2
CAg

4
s
Cg

⇤
µ"/2(�p⌫qµ+p · qgµ⌫)�ab✏⇤µ(p)✏

⇤
⌫(q)�" . (1.163)

The seventh diagram contributing to the one-loop correction of the
�Ga

µ⌫G
aµ⌫ operator is mediated by the operator �Ga

µ⌫G
aµ⌫ itself and is

given by

p

k

q

p�

q � k

p+ k µ; a

⌫; b

� = iM(5)
gg , (1.164)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(5)
gg =

3 · 3 · 8

2! · 3! · 3!

Z ddk

(2⇡)d
✏⇤µ(p)✏

⇤
⌫(q)(4ig

2
s
Cg

⇤
µ"/2)[(p+ k)↵(q � k)�

� (p+ k) · (q � k)g↵� ]�cd
�ig↵��ce

(q � k)2 + i✏

�ig���df

(p+ k)2 + i✏

�ig⇢��gh

k2 + i✏

⇥ (�gsµ
"/2)f bge[g⌫⇢(q + k)� + g⇢�(q � 2k)⌫ + g�⌫(k � 2q)⇢]

⇥ (�gsµ
"/2)fahf [gµ�(p� k)� + g��(2k + p)µ + g�µ(�k � 2p)�]

= Aµ"
Z ddk

(2⇡)d
N

D1D2D3
,

(1.165)

where we have defined

A = �4CAg
4
s
Cg

⇤
�abµ"/2 , (1.166)

N = [(p+ k)↵(q � k)� � (p+ k) · (q � k)g↵� ][g⌫⇢(q + k)�

+ g⇢�(q � 2k)⌫ + g�⌫(k � 2q)⇢][gµ�(p� k)� + g��(2k + p)µ

+ g�µ(�k � 2p)�]g↵�g��g⇢�✏
⇤
µ(p)✏

⇤
⌫(q) ,

(1.167)
D1 = k2 + i✏ , (1.168)
D2 = (k + p)2 + i✏ , (1.169)

= iM(5)
gg , (B.88)

which can be computed according to the d-dimensional Feynman rules pre-
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sented in Sections 5.3 and A.2 as

iM(5)
gg =

3 · 3 · 8
2! · 3! · 3!

∫ ddk

(2π)d
ε∗µ(p)ε

∗
ν(q)(4ig

2
s

Cg

Λ
µε/2)[(p+ k)α(q − k)β

− (p+ k) · (q − k)gαβ]δcd −igαγδce

(q − k)2 + iε

−igβδδdf

(p+ k)2 + iε

−igρσδgh

k2 + iε

× (−gsµε/2)f bge[gνρ(q + k)γ + gργ(q − 2k)ν + gγν(k − 2q)ρ]

× (−gsµε/2)fahf [gµσ(p− k)δ + gσδ(2k + p)µ + gδµ(−k − 2p)σ]

= Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.89)

where we have defined

A = −4CAg
4
s

Cg

Λ
δabµε/2 , (B.90)

N = [(p+ k)α(q − k)β − (p+ k) · (q − k)gαβ][gνρ(q + k)γ

+ gργ(q − 2k)ν + gγν(k − 2q)ρ][gµσ(p− k)δ + gσδ(2k + p)µ

+ gδµ(−k − 2p)σ]gαγgβδgρσε
∗
µ(p)ε

∗
ν(q) ,

(B.91)
D1 = k2 + iε , (B.92)
D2 = (k + p)2 + iε , (B.93)
D3 = (k − q)2 + iε , (B.94)

and exploited the anti-symmetry of the structure constants fabc = f [abc], as
well as the fact that facdf bcd is the Casimir operator in the adjoint repre-
sentation of SU(Nc) and, by Schur’s lemma, is proportional to the identity
matrix

facdf bcd = CAδ
ab , (B.95)

with CA = Nc. Exploiting the Feynman parametrization, we can write the
denominator in the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k + yp− zq)2 − C + iε]3
,

(B.96)

with

C = −2yzp · q , (B.97)



B.3 φGG vertex corrections 161

where the on-shellness of external gluons p2 = q2 = 0 and x+y+z = 1 have
been used. In order to simplify the denominator, we can shift the integration
variable k as k = `− yp+ zq, which implies ddk = dd` and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(`2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(`2 − C + iε)3
.

(B.98)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = [(p+ `− yp+ zq)α(q − `+ yp− zq)β − (p+ `− yp+ zq) · (q − `
+ yp− zq)gαβ][gνρ(q + `− yp+ zq)γ + gργ(q − 2`+ 2yp− 2zq)ν

+ gγν(`− yp+ zq − 2q)ρ][gµσ(p− `+ yp− zq)δ + gσδ(2`− 2yp

+ 2zq + p)µ + gδµ(−`+ yp− zq − 2p)σ]gαγgβδgρσε
∗
µ(p)ε

∗
ν(q)

= (N1 +N2 +N3 +N4 +N5)
µνε∗µ(p)ε

∗
ν(q) +O(`0) ,

(B.99)

where we have defined

Nµν
1 = `µ`ν(5`2 − 4d`2 − 16p · q + 6yp · q + 6zp · q − 10yzp · q

+ 4dp · q − 4ydp · q − 4zdp · q + 8yzdp · q) ,
(B.100)

Nµν
2 = `µpν(2` · p− 8y` · p+ 10y2` · p+ 4yd` · p− 8y2d` · p

+ 6` · q + 6y` · q + 2z` · q − 10yz` · q − 4yd` · q + 8yzd` · q) ,
(B.101)

Nµν
3 = `νqµ(6` · p+ 2y` · p+ 6z` · p− 10yz` · p− 4zd` · p+ 8yzd` · p

+ 2` · q − 8z` · q + 10z2` · q + 4zd` · q − 8z2d` · q) ,
(B.102)

Nµν
4 = pνqµ`2(−9 + y + z − 5yz + 4yzd) , (B.103)

Nµν
5 = gµν(−`4 − 2(` · p)2 + 6y(` · p)2 − 4y2(` · p)2 − 6y` · p` · q

− 6z` · p` · q + 8yz` · p` · q − 2(` · q)2 + 6z(` · q)2 − 4z2(` · q)2

+ 9`2p · q − 3y`2p · q − 3z`2p · q + 4yz`2p · q) ,
(B.104)

and we have discarded all odd powers of ` by Lorentz invariance, as well as
exploited p2 = q2 = 0, δµµ = d and the transversality conditions p · ε∗(p) =
q · ε∗(q) = 0. Additionally, O(`0) terms do not contribute to the divergent
part of the diagram since the denominator of the integral scales as `6. Always
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by Lorentz invariance, we can substitute `µ`ν with `2gµν/d in the numerator.
With this substitution many terms vanish and others are simplified

`µpν` · pεµ(p) =
1

d
`2pνpµεµ(p) = 0 , (B.105)

`νqµ` · qεν(q) =
1

d
`2qνqµεν(q) = 0 , (B.106)

`µpν` · q = `νqµ` · p = 1

d
`2pνqµ , (B.107)

(` · p)2 = 1

d
`2p2 = 0 , (B.108)

(` · q)2 = 1

d
`2q2 = 0 , (B.109)

` · p` · q = 1

d
p · q , (B.110)

leading to

Nµν
1 =

1

d
`2gµν [`2(5− 4d) + p · q(−16 + 6y + 6z − 10yz + 4d− 4yd

− 4zd+ 8yzd)] ,

(B.111)

Nµν
2 =

1

d
`2pνqµ(6 + 6y + 2z − 10yz − 4yd+ 8yzd) , (B.112)

Nµν
3 =

1

d
`2pνqµ(6 + 2y + 6z − 10yz − 4zd+ 8yzd) , (B.113)

Nµν
4 = pνqµ`2(−9 + y + z − 5yz + 4yzd) , (B.114)

Nµν
5 = gµν`2

[
− `2 + p · q

(
−6y − 6z + 8yz

d
+ 9− 3y − 3z + 4yz

)]
,

(B.115)

so that they can be recombined to form the divergent part of the numerator
as

N |div. =

{
`4gµν

(
5− 4d

d
− 1

)
+ `2

[
1

d
p · qgµν(−16− 2yz + 4d− 4yd

− 4zd+ 8yzd) + p · qgµν(9− 3y − 3z + 4yz) +
1

d
pνqµ(12 + 8y + 8z

− 20yz − 4yd− 4zd+ 16yzd) + pνqµ(−9 + y + z − 5yz + 4yzd)

]}
× ε∗µ(p)ε∗ν(q)

=

{
− 15

4
`4gµν + `2

[
p · qgµν

(
9− 7y − 7z +

23

2
yz

)
+ pνqµ(−6− y − z + 22yz)

]}
ε∗µ(p)ε

∗
ν(q) ,
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(B.116)

where in the last expression we have substituted d = 41. The divergent
integrals I1,3 and I2,3 are computed according to master formula in Eq. (5.52)
and then we can expand around ε = 0 knowing that Γ(x) = 1/x−γE+O(x)
as x→ 0:

µεI1,3 = µε
∫ dd`

(2π)d
`2

(`2 − C + iε)3

=
i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

16π2

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
+ 1− γE +O(ε)

]
=

i

16π2

[
∆ε + 1 + log

µ2

C
+O(ε)

]
,

(B.117)

µεI2,3 = µε
∫ dd`

(2π)d
(`2)2

(`2 − C + iε)3

= − i

16π2
C

(
4πµ2

C

)
Γ(2 + d/2)Γ(1− d/2)

Γ(3)Γ(d/2)

= − i

16π2
C

(
4πµ2

C

)
1

8
(6− ε)(4− ε)Γ(ε/2− 1)

= − i

16π2
C

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

]
(−3)

[
2

ε
− γE +

1

6
+O(ε)

]
=

3i

16π2
C

[
∆ε +

1

6
+ log

µ2

C
+O(ε)

]
,

(B.118)

where ∆ε = 2/ε− γE + log(4π). The remaining integrals to solve are those
over the Feynman parameters:∫ 1

0
dy
∫ 1−y

0
dz C = − 1

12
p · q , (B.119)∫ 1

0
dy
∫ 1−y

0
dz
(
9− 7y − 7z +

23

2
yz

)
=

127

48
, (B.120)∫ 1

0
dy
∫ 1−y

0
dz (−6− y − z + 22yz) = −29

12
. (B.121)

1Although we should keep d = 4 − ε and expand at the end around ε = 0, this works
since we miss a term of order ε0, which therefore does not contribute to the divergent part
of the diagram.
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Therefore, the divergent part of the diagram reads

iM(5)
gg |div. = 2Aε∗µ(p)ε

∗
ν(q)

i

16π2

[
− 15

4
· 3 ·

(
− 1

12

)
p · qgµν + 127

48
p · qgµν

− 29

12
pνqµ

]
∆ε

= 2Aε∗µ(p)ε
∗
ν(q)

i

16π2
1

12
(43p · qgµν − 29pνqµ)∆ε ,

(B.122)

so that we can finally write

iM(5)
gg =

i

24π2
CAg

4
s

Cg

Λ
µε/2(29pνqµ− 43p · qgµν)δabε∗µ(p)ε∗ν(q)∆ε+finite .

(B.123)

B.4 φGG̃ vertex corrections

B.4.1 iφf̄γ5f mediated diagrams

The first diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator iφf̄iγ5fj and is given by

1.2 �G eG vertex corrections 19

(1.84)

so that we can finally write

iM(5)
gg =

i

24⇡2
CAg

4
s
Cg

⇤
µ"/2(29p⌫qµ� 43p · qgµ⌫)�ab✏⇤µ(p)✏

⇤
⌫(q)�"+finite .

(1.85)

1.2 �G eG vertex corrections
1.2.1 i�f̄�5f mediated diagrams
The first diagram contributing to the one-loop correction of the �Ga

µ⌫
eGaµ⌫

operator is mediated by the operator i�f̄i�5fj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(1)
g̃P , (1.86)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
g̃P = (�1)

Z ddk

(2⇡)d
Tr


(�

v

⇤
yijP �5µ

"/2)
i

/k � /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

/k + /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.87)

The structure of this integral is completely analogous to the one of the
diagram iM(1)

�̃P . Indeed they are equal except for their overall coe�cient.
Therefore

iM(1)
g̃P = finite . (1.88)

The second diagram contributing to the one-loop correction of the �Ga
µ⌫

eGaµ⌫

= iM(1)
g̃P , (B.124)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(1)
g̃P = (−1)

∫ ddk

(2π)d
Tr

[
(− v

Λ
yijP γ5µ

ε/2)
i

/k − /p−mj + iε
(−igscfT a

IJγ
µδjkµε/2)

× i

/k −mk + iε
(−igscfT b

JIγ
νδikµε/2)

i

/k + /q −mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.125)

The structure of this integral is completely analogous to the one of the
diagram iM(1)

γ̃P . Indeed they are equal except for their overall coefficient.
Therefore

iM(1)
g̃P = finite . (B.126)
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The second diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator iφf̄iγ5fj and is given by

20 appendice

operator is mediated by the operator i�f̄i�5fj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(2)
g̃P , (1.89)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
g̃P = (�1)

Z ddk

(2⇡)d
Tr


(�

v

⇤
yijP �5µ

"/2)
i

�/k + /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

�/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

�/k � /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.90)

It can be related to the diagram iM(1)
g̃P via the substitutions µ $ ⌫, a $ b

and p $ q, thus

iM(2)
g̃P = finite . (1.91)

1.2.2 �G eG mediated diagrams
The third diagram contributing to the one-loop correction of the �Ga

µ⌫
eGaµ⌫

operator is mediated by the operator �Ga
µ⌫

eGaµ⌫ itself and is given by

p�

k + q

p� k

q
p�

⌫; b

µ; a

= iM(1)
g̃g̃ , (1.92)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
g̃g̃ =

4 · 3 · 2

2! · 4!

Z ddk

(2⇡)d
(4ig2s

eCg

⇤
µ"/2)✏↵�⇣⌘(p� k)⇣(q + k)⌘�

cd �ig↵��ce

(k + q)2 + i✏

⇥
�ig���df

(p� k)2 + i✏
(�ig2sµ

")[fabgf efg(gµ�g⌫� � gµ�g⌫�)

+ faegf bfg(gµ⌫g�� � gµ�g⌫�) + fafgf beg(gµ⌫g�� � gµ�g⌫�)]✏⇤µ(p)✏
⇤
⌫(q) .

= iM(2)
g̃P , (B.127)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
g̃P = (−1)

∫ ddk

(2π)d
Tr

[
(− v

Λ
yijP γ5µ

ε/2)
i

−/k + /p−mj + iε
(−igscfT a

IJγ
µδjkµε/2)

× i

−/k −mk + iε
(−igscfT b

JIγ
νδikµε/2)

i

−/k − /q −mi + iε

]
ε∗µ(p)ε

∗
ν(q) .

(B.128)

It can be related to the diagram iM(1)
g̃P via the substitutions µ ↔ ν, a ↔ b

and p↔ q, thus

iM(2)
g̃P = finite . (B.129)

B.4.2 φGG̃ mediated diagrams

The third diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator φGa
µνG̃

aµν itself and is given by
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operator is mediated by the operator i�f̄i�5fj and is given by

p

k

q

p�

k + q

k � p µ; a

⌫; b

� = iM(2)
g̃P , (1.89)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
g̃P = (�1)

Z ddk

(2⇡)d
Tr


(�

v

⇤
yijP �5µ

"/2)
i

�/k + /p�mj + i✏
(�igscfT

a
IJ�

µ�jkµ"/2)

⇥
i

�/k �mk + i✏
(�igscfT

b
JI�

⌫�ikµ"/2)
i

�/k � /q �mi + i✏

�
✏⇤µ(p)✏

⇤
⌫(q) .

(1.90)

It can be related to the diagram iM(1)
g̃P via the substitutions µ $ ⌫, a $ b

and p $ q, thus

iM(2)
g̃P = finite . (1.91)

1.2.2 �G eG mediated diagrams
The third diagram contributing to the one-loop correction of the �Ga

µ⌫
eGaµ⌫

operator is mediated by the operator �Ga
µ⌫

eGaµ⌫ itself and is given by

p�

k + q

p� k

q
p�

⌫; b

µ; a

= iM(1)
g̃g̃ , (1.92)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(1)
g̃g̃ =

4 · 3 · 2

2! · 4!

Z ddk

(2⇡)d
(4ig2s

eCg

⇤
µ"/2)✏↵�⇣⌘(p� k)⇣(q + k)⌘�

cd �ig↵��ce

(k + q)2 + i✏

⇥
�ig���df

(p� k)2 + i✏
(�ig2sµ

")[fabgf efg(gµ�g⌫� � gµ�g⌫�)

+ faegf bfg(gµ⌫g�� � gµ�g⌫�) + fafgf beg(gµ⌫g�� � gµ�g⌫�)]✏⇤µ(p)✏
⇤
⌫(q) .

= iM(1)
g̃g̃ , (B.130)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(1)
g̃g̃ =

4 · 3 · 2
2! · 4!

∫ ddk

(2π)d
(4ig2s

C̃g

Λ
µε/2)εαβζη(p− k)ζ(q + k)ηδ

cd −igαγδce

(k + q)2 + iε

×
−igβδδdf

(p− k)2 + iε
(−ig2sµε)[fabgfefg(gµγgνδ − gµδgνγ)

+ faegf bfg(gµνgγδ − gµδgνγ) + fafgf beg(gµνgγδ − gµγgνδ)]ε∗µ(p)ε∗ν(q) .
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(B.131)

Since the Levi-Civita tensor εαβζη is contracted with a symmetric tensor in
α, β

εαβζηgαγgβδδ
ef [fabgfefg(gµγgνδ − gµδgνγ)

+ faegf bfg(gµνgγδ − gµδgνγ) + fafgf beg(gµνgγδ − gµγgνδ)] = 0 ,
(B.132)

we can immediately conclude that this diagram is vanishing

iM(1)
g̃g̃ = 0 . (B.133)

The fourth diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator φGa
µνG̃

aµν itself and is given by

1.2 �G eG vertex corrections 21

(1.93)

Since the Levi-Civita tensor ✏↵�⇣⌘ is contracted with a symmetric tensor in
↵,�

✏↵�⇣⌘g↵�g���
ef [fabgf efg(gµ�g⌫� � gµ�g⌫�)

+ faegf bfg(gµ⌫g�� � gµ�g⌫�) + fafgf beg(gµ⌫g�� � gµ�g⌫�)] = 0 ,
(1.94)

we can immediately conclude that this diagram is vanishing

iM(1)
g̃g̃ = 0 . (1.95)

The fourth diagram contributing to the one-loop correction of the �Ga
µ⌫

eGaµ⌫

operator is mediated by the operator �Ga
µ⌫

eGaµ⌫ itself and is given by

p�

q

k

p� k p

�

⌫; b

µ; a

= iM(2)
g̃g̃ , (1.96)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(2)
g̃g̃ =

3 · 3 · 2

3! · 3!

Z ddk

(2⇡)d
(4g3s

eCg

⇤
µ")f bcd✏⌫↵�⇢(p+ q)⇢

�ig↵��ce

k2 + i✏

�ig���df

(p� k)2 + i✏

⇥ (�gsµ
"/2)faef [gµ�(p+ k)� + g��(p� 2k)µ + g�µ(k � 2p)� ]✏⇤µ(p)✏

⇤
⌫(q)

= Aµ"
Z ddk

(2⇡)d
N

D1D2
,

(1.97)

where we have defined

A = 2CAg
4
s

eCg

⇤
�abµ"/2 , (1.98)

N = ✏⌫↵�⇢(p+ q)⇢g↵�g��[g
µ�(p+ k)� + g��(p� 2k)µ + g�µ(k � 2p)� ]

⇥ ✏⇤µ(p)✏
⇤
⌫(q) ,

(1.99)

= iM(2)
g̃g̃ , (B.134)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(2)
g̃g̃ =

3 · 3 · 2
3! · 3!

∫ ddk

(2π)d
(4g3s

C̃g

Λ
µε)f bcdεναβρ(p+ q)ρ

−igαγδce

k2 + iε

−igβδδdf

(p− k)2 + iε

× (−gsµε/2)faef [gµγ(p+ k)δ + gγδ(p− 2k)µ + gδµ(k − 2p)γ ]ε∗µ(p)ε
∗
ν(q)

= Aµε
∫ ddk

(2π)d
N

D1D2
,

(B.135)

where we have defined

A = 2CAg
4
s

C̃g

Λ
δabµε/2 , (B.136)

N = εναβρ(p+ q)ρgαγgβδ[g
µγ(p+ k)δ + gγδ(p− 2k)µ + gδµ(k − 2p)γ ]

× ε∗µ(p)ε∗ν(q) ,
(B.137)
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D1 = k2 + iε , (B.138)
D2 = (p− k)2 + iε , (B.139)

and exploited the anti-symmetry of the structure constants fabc = f [abc], as
well as the fact that facdf bcd is the Casimir operator in the adjoint repre-
sentation of SU(Nc) and, by Schur’s lemma, is proportional to the identity
matrix

facdf bcd = CAδ
ab , (B.140)

with CA = Nc. Exploiting the Feynman parametrization, we can write the
denominator in the integral as

1

D1D2
=

∫ 1

0
dx 1

[(1− x)D1 + xD2]2

=

∫ 1

0
dx 1

{[k − xp]2 + iε}2
,

(B.141)

where the on-shellness of an external gluon p2 = 0 has been used. This
is a scaleless integral (C = 0), thus it yields iM(2)

g̃g̃ = 0. This zero is due
to an exact cancellation between UV and IR divergences, and, in order to
decouple the two contributions, we can give the gluon a small fictitious mass
mg in the denominator, and at the end of the calculation we can perform
the limit mg → 0. In this way

1

D1D2
=

∫ 1

0
dx 1

(`2 − C + iε)2
, (B.142)

where

C = m2
g (B.143)

and we have shifted the integration variable k as k = `+ xp, which implies
ddk = dd`. At this point we have to perform the shift also in the numerator
of the integral: N becomes

N = εναβρ(p+ q)ρgαγgβδ[g
µγ(p+ `+ xp)δ + gγδ(p− 2`− 2xp)µ

+ gδµ(`+ xp− 2p)γ ]ε∗µ(p)ε
∗
ν(q)

= −3εµνρσpρqσε∗µ(p)ε∗ν(q)
(B.144)

and is `-independent. Consequently, the diagram is simply given by

iM(2)
g̃g̃ = −3Aεµνρσpρqσε∗µ(p)ε∗ν(q)µε

∫ 1

0
dx
∫ ddk

(2π)d
1

(`2 − C + iε)2

= −3Aεµνρσpρqσε∗µ(p)ε∗ν(q)
∫ 1

0
dxµεI0,2 .

(B.145)
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The integral I0,2 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I0,2 =
i

16π2

(
4π

C

)ε/2

Γ(ε/2) , (B.146)

so that

µεI0,2 =
i

16π2

(
4πµ2

C

)ε/2

Γ(ε/2)

=
i

16π2

(
4πµ2

C

)ε/2[2
ε
− γE +O(ε)

]
=

i

16π2

[
∆ε + log

µ2

C
+O(ε)

]
,

(B.147)

where ∆ε = 2/ε− γE + log(4π). In this way, we can see that the divergent
part of the diagram does not depend on C, and we can write it as

iM(2)
g̃g̃ |div. = −3Aεµνρσpρqσε∗µ(p)ε∗ν(q)

∫ 1

0
dx i

16π2
∆ε

= − 3i

16π2
Aεµνρσpρqσε

∗
µ(p)ε

∗
ν(q)×

∫ 1

0
dx

= − 3i

16π2
Aεµνρσpρqσε

∗
µ(p)ε

∗
ν(q)× 1

= − 3i

8π2
CAg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abε∗µ(p)ε
∗
ν(q)∆ε .

(B.148)

The fifth diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator φGa
µνG̃

aµν itself and is given by
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The integral I0,2 is computed according to master formula in Eq. (??) and
then we can expand around " = 0 knowing that �(x) = 1/x� �E +O(x) as
x ! 0:

I0,2 =
i

16⇡2

✓
4⇡

C

◆"/2

�("/2) , (1.108)

so that

µ"I0,2 =
i

16⇡2

✓
4⇡µ2

C

◆"/2

�("/2)

=
i

16⇡2

✓
4⇡µ2

C

◆"/22
"
� �E +O(")

�

=
i

16⇡2


�" + log

µ2

C
+O(")

�
,

(1.109)

where �" = 2/"� �E + log(4⇡). In this way, we can see that the divergent
part of the amplitude does not depend on C, and we can write it as

iM(2)
g̃g̃ |div. = �3A✏µ⌫⇢�p⇢q�✏

⇤
µ(p)✏

⇤
⌫(q)

Z 1

0
dx i

16⇡2
�"

= �
3i

16⇡2
A✏µ⌫⇢�p⇢q�✏

⇤
µ(p)✏

⇤
⌫(q)⇥

Z 1

0
dx

= �
3i

16⇡2
A✏µ⌫⇢�p⇢q�✏

⇤
µ(p)✏

⇤
⌫(q)⇥ 1

= �
3i

8⇡2
CAg

4
s

eCg

⇤
µ"/2✏µ⌫⇢�p⇢q��

ab✏⇤µ(p)✏
⇤
⌫(q)�" .

(1.110)

The fifth diagram contributing to the one-loop correction of the �Ga
µ⌫

eGaµ⌫

operator is mediated by the operator �Ga
µ⌫

eGaµ⌫ itself and is given by

p�

p

k

q � k
q

�

µ; a

⌫; b

= iM(3)
g̃g̃ , (1.111)

which can be computed according to the d-dimensional Feynman rules pre-

= iM(3)
g̃g̃ , (B.149)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(3)
g̃g̃ =

3 · 3 · 2
3! · 3!

∫ ddk

(2π)d
(4g3s

C̃g

Λ
µε)facdεµαβρ(p+ q)ρ

−igαγδce

k2 + iε

−igβδδdf

(q − k)2 + iε

× (−gsµε/2)f bef [gνγ(q + k)δ + gγδ(q − 2k)ν + gδν(k − 2q)γ ]ε∗µ(p)ε
∗
ν(q) .
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(B.150)

It can be related to the diagram iM(2)
g̃g̃ through the substitutions µ ↔ ν,

a↔ b and p↔ q, thus

iM(3)
g̃g̃ |div. = −

3i

8π2
CAg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abε∗µ(p)ε
∗
ν(q)∆ε . (B.151)

The sixth diagram contributing to the one-loop correction of the φGa
µνG̃

aµν

operator is mediated by the operator φGa
µνG̃

aµν itself and is given by
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sented in Section ?? as

iM(3)
g̃g̃ =

3 · 3 · 2

3! · 3!

Z ddk

(2⇡)d
(4g3s

eCg

⇤
µ")facd✏µ↵�⇢(p+ q)⇢

�ig↵��ce

k2 + i✏

�ig���df

(q � k)2 + i✏

⇥ (�gsµ
"/2)f bef [g⌫�(q + k)� + g��(q � 2k)⌫ + g�⌫(k � 2q)� ]✏⇤µ(p)✏

⇤
⌫(q) .

(1.112)

It can be related to the diagram iM(2)
g̃g̃ through the substitutions µ $ ⌫,

a $ b and p $ q, thus

iM(3)
g̃g̃ |div. = �

3i

8⇡2
CAg

4
s

eCg

⇤
µ"/2✏µ⌫⇢�p⇢q��

ab✏⇤µ(p)✏
⇤
⌫(q)�" . (1.113)

The sixth diagram contributing to the one-loop correction of the �Ga
µ⌫

eGaµ⌫

operator is mediated by the operator �Ga
µ⌫

eGaµ⌫ itself and is given by

p

k

q

p�

q � k

p+ k µ; a

⌫; b

� = iM(4)
g̃g̃ , (1.114)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(4)
g̃g̃ =

3 · 3 · 8

2! · 3! · 3!

Z ddk

(2⇡)d
(4ig2s

eCg

⇤
µ"/2)✏↵�⇣⌘(q � k)⇣(p+ k)⌘�

cd

⇥
�ig↵��ce

(q � k)2 + i✏

�ig���df

(p+ k)2 + i✏

�ig⇢��gh

k2 + i✏
(�gsµ

"/2)f bge

⇥ [g⌫⇢(q + k)� + g⇢�(q � 2k)⌫ + g�⌫(k � 2q)⇢](�gsµ
"/2)fahf

⇥ [gµ�(p� k)� + g��(2k + p)µ + g�µ(�k � 2p)�]✏⇤µ(p)✏
⇤
⌫(q)

= Aµ"
Z ddk

(2⇡)d
N

D1D2D3
,

(1.115)

where we have defined

A = �4CAg
4
s

eCg

⇤
�abµ"/2 , (1.116)

= iM(4)
g̃g̃ , (B.152)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(4)
g̃g̃ =

3 · 3 · 8
2! · 3! · 3!

∫ ddk

(2π)d
(4ig2s

C̃g

Λ
µε/2)εαβζη(q − k)ζ(p+ k)ηδ

cd

× −igαγδce

(q − k)2 + iε

−igβδδdf

(p+ k)2 + iε

−igρσδgh

k2 + iε
(−gsµε/2)f bge

× [gνρ(q + k)γ + gργ(q − 2k)ν + gγν(k − 2q)ρ](−gsµε/2)fahf

× [gµσ(p− k)δ + gσδ(2k + p)µ + gδµ(−k − 2p)σ]ε∗µ(p)ε
∗
ν(q)

= Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.153)

where we have defined

A = −4CAg
4
s

C̃g

Λ
δabµε/2 , (B.154)

N = εαβζη(q − k)ζ(p+ k)η[g
νρ(q + k)γ + gργ(q − 2k)ν + gγν(k − 2q)ρ]

× [gµσ(p− k)δ + gσδ(2k + p)µ + gδµ(−k − 2p)σ]gαγgβδgρσ

× ε∗µ(p)ε∗ν(q) ,
(B.155)

D1 = k2 + iε , (B.156)
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D2 = (k + p)2 + iε , (B.157)
D3 = (k − q)2 + iε , (B.158)

and exploited the anti-symmetry of the structure constants fabc = f [abc], as
well as the fact that facdf bcd is the Casimir operator in the adjoint repre-
sentation of SU(Nc) and, by Schur’s lemma, is proportional to the identity
matrix

facdf bcd = CAδ
ab , (B.159)

with CA = Nc. Exploiting the Feynman parametrization, we can write the
denominator in the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k + yp− zq)2 − C + iε]3
,

(B.160)

with

C = −2yzp · q , (B.161)

where the on-shellness of external gluons p2 = q2 = 0 and x+y+z = 1 have
been used. In order to simplify the denominator, we can shift the integration
variable k as k = `− yp+ zq, which implies ddk = dd` and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(`2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(`2 − C + iε)3
.

(B.162)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = εαβζη(q − `+ yp− zq)ζ(p+ `− yp+ zq)η[g
νρ(q + `− yp+ zq)γ

+ gργ(q − 2`+ 2yp− 2zq)ν + gγν(`− yp+ zq − 2q)ρ]

× [gµσ(p− `+ yp− zq)δ + gσδ(2`− 2yp+ 2zq + p)µ

+ gδµ(−`+ yp− zq − 2p)σ]gαγgβδgρσε
∗
µ(p)ε

∗
ν(q)

= {εµνρσ[`ρpσN1 + `ρqσN1 + pρqσN2] + (εµρσηNν
3 + ενρσηNµ

4 )`ρpσqη}
× ε∗µ(p)ε∗ν(q) ,

(B.163)

where we have defined

N1 = −`2 + 2` · p(y − 1) + 2` · q(1− z) + 2p · q(2− y − z + yz) ,
(B.164)
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N2 = `2(y + z − 1) + 2` · p(−1 + 2y − y2 + z − yz)
+ 2` · q(1− y − 2z + yz + z2)

+ 2p · q(2− 3y + y2 − 3z + 3yz − y2z + z2 − yz2) ,
(B.165)

N3 = −8`+ 4p(2y − 1) , (B.166)
N4 = 8`+ 4q(2z − 1) , (B.167)

and exploited the the transversality conditions p · ε∗(p) = q · ε∗(q) = 0. Since
the denominator scales as `6, we can ignore O(`0) terms, and by Lorentz
invariance we can effectively substitute `µ`ν with `2gµν/d and send to zero
the terms proportional to odd powers of `. In this way many terms simplify

εµνρσ`ρpσ` · p =
`2

d
εµνρσpρpσ = 0 , (B.168)

εµνρσ`ρqσ` · q =
`2

d
εµνρσqρqσ = 0 , (B.169)

εµνρσ`ρpσ` · q = −
`2

d
εµνρσpρqσ , (B.170)

εµνρσ`ρqσ` · p =
`2

d
εµνρσpρqσ , (B.171)

εµρση`ν`ρpσqη =
`2

d
εµνρσpρqσ , (B.172)

ενρση`µ`ρpσqη = −`
2

d
εµνρσpρqσ , (B.173)

and the divergent contribution of the numerator takes the form

N |div. = `2εµνρσpρqσ

[
− 2

d
(1− z) + 2

d
(y − 1) + y + z − 1− 16

d

]
ε∗µ(p)ε

∗
ν(q)

= `2εµνρσpρqσε
∗
µ(p)ε

∗
ν(q)

3

2
(y + z − 4) ,

(B.174)

where in the last expression we have substituted d = 42. The divergent
integral I1,3 is computed according to master formula in Eq. (5.52), and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as

2Although we should keep d = 4 − ε and expand at the end around ε = 0, this works
since we miss a term of order ε0, which therefore does not contribute to the divergent part
of the diagram.
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x→ 0:

µεI1,3 = µε
∫ dd`

(2π)d
`2

(`2 − C + iε)3

=
i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

16π2

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
+ 1− γE +O(ε)

]
=

i

16π2

[
∆ε + 1 + log

µ2

C
+O(ε)

]
,

(B.175)

where ∆ε = 2/ε−γE+log(4π). Therefore, the divergent part of the diagram
reads

iM(4)
g̃g̃ |div. = 2A

∫ 1

0
dy
∫ 1−y

0
dz i

16π2
∆εε

µνρσpρqσε
∗
µ(p)ε

∗
ν(q)

3

2
(y + z − 4)

=
i

16π2
2Aεµνρσpρqσε

∗
µ(p)ε

∗
ν(q)∆ε ×

∫ 1

0
dy
∫ 1−y

0
dz 3

2
(y + z − 4)

=
i

16π2
2Aεµνρσpρqσε

∗
µ(p)ε

∗
ν(q)∆ε ×

(
− 5

2

)
(B.176)

so that we can finally write

iM(4)
g̃g̃ =

5i

4π2
CAg

4
s

C̃g

Λ
µε/2εµνρσpρqσδ

abε∗µ(p)ε
∗
ν(q)∆ε + finite . (B.177)

B.5 φf̄f vertex corrections

B.5.1 φFF mediated diagram

The first diagram contributing to the one-loop correction of the φf̄ifj oper-
ator is mediated by the operator φFµνF

µν and is given by

Chapter 1

appendice

1.1 �f̄f vertex corrections
1.1.1 �FF mediated diagram
The first diagram contributing to the one-loop correction of the �f̄ifj oper-
ator is mediated by the operator �Fµ⌫Fµ⌫ and is given by

p1
k

p2

p�

k � p1 p2 � k

fj fi

�

= iMS� , (1.1)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iMS� =

Z ddk

(2⇡)d
ū(p2)(�ie�⌫Qfµ

"/2)
i

/k �mi + i✏

⇥ (�ie�µQfµ
"/2)u(p1)�

ij �igµ⇢
(k � p1)2 + i✏

�ig⌫�
(k � p2)2 + i✏

⇥ (4ie2
C�

⇤
µ"/2)[(k � p1) · (k � p2)g

⇢�
� (k � p1)

�(k � p2)
⇢]

= Aµ"
Z ddk

(2⇡)d
N1 +N2

D1D2D3
,

(1.2)

5

= iMSγ , (B.178)
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which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iMSγ =

∫ ddk

(2π)d
ū(p2)(−ieγνQfµ

ε/2)
i

/k −mi + iε

× (−ieγµQfµ
ε/2)u(p1)δ

ij −igµρ
(k − p1)2 + iε

−igνσ
(k − p2)2 + iε

× (4ie2
Cγ

Λ
µε/2)[(k − p1) · (k − p2)gρσ − (k − p1)σ(k − p2)ρ]

= Aµε
∫ ddk

(2π)d
N1 +N2

D1D2D3
,

(B.179)

where we have defined

A = 4e4Q2
fδ

ijCγ

Λ
µε/2 , (B.180)

N1 = ū(p2)(/k − /p1)(/k +mi)(/k − /p2)u(p1) , (B.181)
N2 = −ū(p2)γµ(/k +mi)γµu(p1)(k − p1) · (k − p2) , (B.182)
D1 = k2 −m2

i + iε , (B.183)
D2 = (k − p1)2 + iε , (B.184)
D3 = (k − p2)2 + iε . (B.185)

Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − p1y − p2z)2 − C + iε]3
,

(B.186)

with

C = m2
i (y

2 + z2 − 2y − 2z + 1) + 2p1 · p2yz , (B.187)

where p21 = p22 = m2
i , since this diagram is flavor diagonal, and x+y+ z = 1

have been used. In order to simplify the denominator, we can shift the
integration variable k as k = p+ p1y + p2z, which implies ddk = ddp and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(p2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(p2 − C + iε)3
.

(B.188)
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At this point we have to perform the shift also in the numerator of the
integral: N1 becomes

N1 = ū(p2)[/p+ /p1(y − 1) + /p2z][/p+ /p1y + /p2z +mi]

× [/p+ /p1y + /p2(z − 1)]u(p1)

= ū(p2){/p3 + /p
2[/p1y + /p2(z − 1)] + [/p1(y − 1) + /p2z]/p

2

+ /p[/p1y + /p2z +mi]/p}u(p1) +O(p)
= ū(p1){/pp2 + p2[/p1(2y − 1) + /p2(2z − 1)]

+ /p[/p1y + /p2z +mi]/p}u(p1) +O(p)
= ū(p1){/pp2 + p2[/p1(2y − 1) + /p2(2z − 1)]

+ pµpνγ
µ[/p1y + /p2z +mi]γ

ν}u(p1) +O(p) ,

(B.189)

where we have used the identity /p2 = p2, valid also in d dimensions. On the
other hand, N2 becomes

N2 = −ū(p2)γµ(/p+ /p1y + /p2z +mi)γµ[p+ p1(y − 1) + p2z]

· [p+ p1y + p2(z − 1)]u(p1)

= −ū(p2){γµ/pγµp2 + γµ/pγµp · [p1(2y − 1) + p2(2z − 1)]

+ γµ(/p1y + /p2z +mi)γµp
2}u(p1) +O(p)

= ū(p2){(d− 2)/pp
2 + (d− 2)/pp · [p1(2y − 1) + p2(2z − 1)]

+ p2[(d− 2)(/p1y + /p2z)− dmi]}u(p1) +O(p) .

(B.190)

Now we can note that the terms proportional to /pp2, when integrated, give
a vanishing contribution due to the fact that pµp2 is odd, and since we are
interested in the divergent part of the integral, we can safely ignore O(p)
terms in N1 and N2, keeping only the terms of order p2: the divergent part
of N1 is

N1|div. = ū(p2){p2[/p1(2y − 1) + /p2(2z − 1)]

+ pµpνγ
µ[/p1y + /p2z +mi]γ

ν}u(p1)
(B.191)

and the divergent part of N2 is

N2|div. = ū(p2){(d− 2)/pp · [p1(2y − 1) + p2(2z − 1)]

+ p2[(d− 2)(/p1y + /p2z)− dmi]}u(p1) .
(B.192)

The terms containing contractions between p and γ can be simplified by
Lorentz invariance: pµpν can effectively be replaced by p2gµν/d so that

/pp · pi = pµpνp
ν
i γ

µ =
1

d
p2pνi γ

µgµν =
1

d
p2/pi , (B.193)

pµpνγ
µ
/piγ

ν =
1

d
p2γµ/piγ

νgµν =
1

d
p2γµ/piγµ =

2− d
d

p2/pi , (B.194)
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and the divergent parts of N1 and N2 become proportional to p2:

N1|div. = p2ū(p2)

[
2− d
d

(/p1y+/p2z)+mi+/p1(2y−1)+/p2(2z−1)

]
u(p1) ,

(B.195)

while

N2|div. = p2ū(p2)

{
d− 2

d
[/p1(2y − 1) + /p2(2z − 1)]

+ (d− 2)[/p1y + /p2z]− dmi

}
u(p1) .

(B.196)

Additionally, we can exploit the on-shellness of external states: from the
Dirac equation follow ū(p2)/p2 = miū(p2) and /p1u(p1) = mju(p1), with mi =
mj since the diagram is flavor diagonal, and we can write

N1|div. = p2mi

[
2− d
d

(y + z) + 1 + (2y − 1) + (2z − 1)

]
ū(p2)u(p1)

= p2mi

[
2

d
(y + z) + y + z − 1

]
ū(p2)u(p1)

= p2mi

[
1

2
(3y + 3z − 2) +

1

8
ε(y + z) +O(ε2)

]
ū(p2)u(p1)

(B.197)

and

N2|div. = p2mi

[
d− 2

d
(2y − 1 + 2z − 1) + (d− 2)(y + z)− d

]
ū(p2)u(p1)

= p2mi

[(
d− 4

d

)
(y + z − 1)− 2

]
ū(p2)u(p1)

= p2mi

[
3y + 3z − 5− 5

4
ε(y + z − 1) +O(ε2)

]
ū(p2)u(p1) .

(B.198)

Their sum is given by

(N1+N2)|div. = p2mi

[
3

2
(3y+3z−4)+ 1

8
ε(10−9y−9z)+O(ε2)

]
ū(p2)u(p1)

(B.199)
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and the divergent part of the diagram reads

iMSγ |div. = 2Aµε
∫ 1

0
dy
∫ 1−y

0
dz
∫ ddp

(2π)d
(N1 +N2)|div.
(p2 − C + iε)3

= 2Amiū(p2)u(p1)µ
ε

∫ 1

0
dy
∫ 1−y

0
dz
∫ ddp

(2π)d
p2

(p2 − C + iε)3

×
[
3

2
(3y + 3z − 4) +

1

8
ε(10− 9y − 9z) +O(ε2)

]
= Amiū(p2)u(p1)

∫ 1

0
dy
∫ 1−y

0
dz µεI1,3

×
[
3(3y + 3z − 4) +

1

4
ε(10− 9y − 9z) +O(ε2)

]
.

(B.200)
The integral I1,3 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I1,3 =
i

16π2

(
4π

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

16π2

(
4π

C

)ε/2[2
ε
− 1

2
− γE +O(ε)

]
,

(B.201)

which, multiplied by µε, gives

µεI1,3 =
i

16π2

(
4πµ2

C

)ε/2[2
ε
− 1

2
− γE +O(ε)

]
=

i

16π2

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
− 1

2
− γE +O(ε)

]
=

i

16π2

[
2

ε
− 1

2
− γE + log(4π) + log

µ2

C
+O(ε)

]
=

i

16π2

[
∆ε −

1

2
+ log

µ2

C
+O(ε)

]
,

(B.202)

where ∆ε = 2/ε−γE+log(4π). Therefore, the divergent contribution of the
diagram is given by

iMSγ |div. =
3i

16π2
Amiū(p2)u(p1)∆ε ×

∫ 1

0
dy
∫ 1−y

0
dz (3y + 3z − 4)

=
3i

16π2
Amiū(p2)u(p1)∆ε × (−1)

(B.203)
and we can finally write

iMSγ = − 3i

4π2
e4Q2

f

Cγ

Λ
miδ

ijµε/2ū(p2)u(p1)∆ε + finite . (B.204)
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B.5.2 φGG mediated diagram

The second diagram contributing to the one-loop correction of the φf̄ifj
operator is mediated by the operator φGa

µνG
aµν and is given by

1.1 �f̄f vertex corrections 9

x ! 0:

I1,3 =
i

16⇡2

✓
4⇡

C

◆"/2✓
1�

"

4

◆
�("/2)

=
i

16⇡2

✓
4⇡

C

◆"/22
"
�

1

2
� �E +O(")

�
,

(1.24)

which, multiplied by µ", gives

µ"I1,3 =
i

16⇡2

✓
4⇡µ2

C

◆"/22
"
�

1

2
� �E +O(")

�

=
i

16⇡2


1 +

"

2
log

4⇡µ2

C
+O("2)

�
2

"
�

1

2
� �E +O(")

�

=
i

16⇡2


2

"
�

1

2
� �E + log(4⇡) + log

µ2

C
+O(")

�

=
i

16⇡2


�" �

1

2
+ log

µ2

C
+O(")

�
,

(1.25)

where �" = 2/"��E+log(4⇡). Therefore, the divergent contribution of the
amplitude is given by

iMS� |div. =
3i

16⇡2
Amiū(p2)u(p1)�" ⇥

Z 1

0
dy

Z 1�y

0
dz (3y + 3z � 4)

=
3i

16⇡2
Amiū(p2)u(p1)�" ⇥ (�1)

(1.26)

and we can finally write

iMS� = �
3i

4⇡2
e4Q2

f
C�

⇤
mi�

ijµ"/2ū(p2)u(p1)�" + finite . (1.27)

1.1.2 �GG mediated diagram
The second diagram contributing to the one-loop correction of the �f̄ifj
operator is mediated by the operator �Ga

µ⌫G
aµ⌫ and is given by

p1
k

p2

p�

k � p1 p2 � k

fJ
j f I

i

�

= iMSg (1.28)

= iMSg , (B.205)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iMSg =

∫ ddk

(2π)d
ū(p2)(−igsγνcfT b

ILµ
ε/2)

iδLK
/k −mi + iε

× (−igsγµcfT a
KJµ

ε/2)u(p1)δ
ij −igµρδac

(k − p1)2 + iε

−igνσδbd

(k − p2)2 + iε

× (4ig2s
Cg

Λ
δcdµε/2)[(k − p1) · (k − p2)gρσ − (k − p1)σ(k − p2)ρ] .

(B.206)

This diagram is completely analogous to iMSγ , and its color structure is
provided by

T b
ILT

a
KJδ

abδLK = CF δIJ =
N2

c − 1

2Nc
δIJ , (B.207)

where CF is the Casimir of the gauge group SU(Nc) in the fundamental
representation. Thus, we can immediately conclude that

iMSg = − 3i

4π2
CF g

4
sc

2
f

Cg

Λ
miδ

ijδIJµ
ε/2ū(p2)u(p1)∆ε + finite . (B.208)

B.5.3 φf̄f mediated diagrams

EM-induced diagram

The third diagram contributing to the one-loop correction of the φf̄ifj oper-
ator is mediated by the operator φf̄ifj itself and is EM-induced. It is given
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by

10 appendice

1.1.3 �f̄f mediated diagrams
EM-induced diagram

The third diagram contributing to the one-loop correction of the �f̄ifj oper-
ator is mediated by the operator �f̄ifj itself and is EM-induced. It is given
by

p1
k

p2

p�

p1 � k p2 � k

fj fi

�

= iM(�)
SS , (1.29)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Section ?? as

iM(�)
SS =

Z ddk

(2⇡)d
ū(p2)(�ie�⌫Qfµ

"/2)
i

/p2 � /k �mi + i✏

⇥ (i
v

⇤
yijS µ

"/2)
i

/p1 � /k �mj + i✏
(�ie�µQfµ

"/2)u(p1)
�igµ⌫
k2 + i✏

= Aµ"
Z ddk

(2⇡)d
N

D1D2D3
,

(1.30)

where we have defined

A = e2Q2
fy

ij
S

v

⇤
µ"/2 , (1.31)

N = ū(p2)�
µ(/p2 � /k +mi)(/p1 � /k +mj)�µu(p1) , (1.32)

D1 = k2 + i✏ , (1.33)
D2 = (k � p2)

2
�m2

i + i✏ , (1.34)
D3 = (k � p1)

2
�m2

j + i✏ . (1.35)

Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz �(x+ y + z � 1)

[D1x+D2y +D3z]3

= 2

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz �(x+ y + z � 1)

[(k � p2y � p1z)2 � C + i✏]3
,

(1.36)

= iM(γ)
SS , (B.209)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(γ)
SS =

∫ ddk

(2π)d
ū(p2)(−ieγνQfµ

ε/2)
i

/p2 − /k −mi + iε

× (i
v

Λ
yijS µ

ε/2)
i

/p1 − /k −mj + iε
(−ieγµQfµ

ε/2)u(p1)
−igµν
k2 + iε

= Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.210)

where we have defined

A = e2Q2
fy

ij
S

v

Λ
µε/2 , (B.211)

N = ū(p2)γ
µ(/p2 − /k +mi)(/p1 − /k +mj)γµu(p1) , (B.212)

D1 = k2 + iε , (B.213)
D2 = (k − p2)2 −m2

i + iε , (B.214)
D3 = (k − p1)2 −m2

j + iε . (B.215)

Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − p2y − p1z)2 − C + iε]3
,

(B.216)

with

C = m2
i y

2 +m2
jz

2 + 2p1 · p2yz , (B.217)
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where p21 = m2
j , p22 = m2

i and x + y + z = 1 have been used. In order to
simplify the denominator, we can shift the integration variable k as k =
p+ p2y + p1z, which implies ddk = ddp and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(p2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(p2 − C + iε)3
.

(B.218)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = ū(p2)γ
µ(/p+ /p2(y − 1) + /p1z −mi)(/p+ /p2y + /p1(z − 1)−mj)γµu(p1)

= ū(p2)γ
µ
/p
2γµu(p1) +O(p)

= p2ū(p2)γ
µγµu(p1) +O(p)

= dp2ū(p2)u(p1) +O(p) .
(B.219)

Since we are interested in the divergent part of the integral, we can safely
ignore O(p) terms in N , keeping only the term of order p2: the divergent
part of N is

N |div. = dp2ū(p2)u(p1) (B.220)

and is already proportional to p2. Thus, the divergent part of the diagram
reads

iM(γ)
SS |div. = 2Aū(p2)u(p1)µ

ε

∫ 1

0
dy
∫ 1−y

0
dz
∫ ddp

(2π)d
N |div.

(p2 − C + iε)3

= 2dAū(p2)u(p1)µ
ε

∫ 1

0
dy
∫ 1−y

0
dz p2

(p2 − C + iε)3

= 2Aū(p2)u(p1)

∫ 1

0
dy
∫ 1−y

0
dz dµεI1,3 .

(B.221)

The integral I1,3 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I1,3 =
i

16π2

(
4π

C

)ε/2(
1− ε

4

)
Γ(ε/2) , (B.222)
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which, multiplied by dµε, gives

dµεI1,3 = (4− ε) i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

= (4− ε) i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

4π2

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
− 1− γE +O(ε)

]
=

i

4π2

[
∆ε − 1 + log

µ2

C
+O(ε)

]
,

(B.223)

where ∆ε = 2/ε−γE+log(4π). Therefore, the divergent contribution of the
diagram is given by

iM(γ)
SS |div. = 2Aū(p2)u(p1)

∫ 1

0
dy
∫ 1−y

0
dz i

4π2
∆ε

=
i

2π2
Aū(p2)u(p1)∆ε ×

∫ 1

0
dy
∫ 1−y

0
dz

=
i

2π2
Aū(p2)u(p1)∆ε ×

1

2

(B.224)

and we can finally write

iM(γ)
SS =

i

4π2
e2Q2

f

v

Λ
yijS µ

ε/2ū(p2)u(p1)∆ε + finite . (B.225)

QCD-induced diagram

The fourth diagram contributing to the one-loop correction of the φf̄ifj
operator is mediated by the operator φf̄ifj itself and is QCD-induced. It is
given by
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which, multiplied by dµ", gives

dµ"I1,3 = (4� ")
i

16⇡2

✓
4⇡µ2

C

◆"/2✓
1�

"

4

◆
�("/2)

= (4� ")
i

16⇡2

✓
4⇡µ2

C

◆"/2✓
1�

"

4

◆
�("/2)

=
i

4⇡2


1 +

"

2
log

4⇡µ2

C
+O("2)

�
2

"
� 1� �E +O(")

�

=
i

4⇡2


�" � 1 + log

µ2

C
+O(")

�
,

(1.43)

where �" = 2/"��E+log(4⇡). Therefore, the divergent contribution of the
amplitude is given by

iM(�)
SS |div. = 2Aū(p2)u(p1)

Z 1

0
dy

Z 1�y

0
dz i

4⇡2
�"

=
i

2⇡2
Aū(p2)u(p1)�" ⇥

Z 1

0
dy

Z 1�y

0
dz

=
i

2⇡2
Aū(p2)u(p1)�" ⇥

1

2

(1.44)

and we can finally write

iM(�)
SS =

i

4⇡2
e2Q2

f
v

⇤
yijS µ

"/2ū(p2)u(p1)�" + finite . (1.45)

QCD-induced diagram

The fourth diagram contributing to the one-loop correction of the �f̄ifj
operator is mediated by the operator �f̄ifj itself and is QCD-induced. It is
given by

p1
k

p2

p�

p1 � k p2 � k

fJ
j f I

i

�

= iM(g)
SS (1.46)

= iM(g)
SS , (B.226)
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which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(g)
SS =

∫ ddk

(2π)d
ū(p2)(−igsγνcfT b

IMµ
ε/2)

iδMK

/p2 − /k −mi + iε
(i
v

Λ
yijS µ

ε/2)

× iδKL

/p1 − /k −mj + iε
(−igsγµcfT a

LJµ
ε/2)u(p1)

−igµνδab

k2 + iε
.

(B.227)

This diagram is completely analogous to iM(γ)
SS , and its color structure is

provided by

T b
IMT

a
LJδ

abδML = CF δIJ =
N2

c − 1

2Nc
δIJ , (B.228)

where CF is the Casimir of the gauge group SU(Nc) in the fundamental
representation. Thus, we can immediately conclude that

iM(g)
SS =

i

4π2
CF g

2
sc

2
f

v

Λ
yijS δIJµ

ε/2ū(p2)u(p1)∆ε + finite (B.229)

B.6 iφf̄γ5f vertex corrections

B.6.1 φFF̃ mediated diagram

The first diagram contributing to the one-loop correction of the iφf̄iγ5fj
operator is mediated by the operator φFµνF̃

µν and is given by

Chapter 1

appendice

1.1 i�f̄�5f vertex corrections
1.1.1 �F eF mediated diagram
The first diagram contributing to the one-loop correction of the i�f̄i�5fj
operator is mediated by the operator �Fµ⌫

eFµ⌫
and is given by

p1
k

p2

p�

k � p1 p2 � k

fj fi

�

= iMP �̃ , (1.1)

which can be computed according to the d-dimensional Feynman rules pre-

sented in Section ?? as

iMP �̃ =

Z
d
dk

(2⇡)d
ū(p2)(�ie�⌫Qfµ

"/2)
i

/k �mi + i✏

⇥ (�ie�µQfµ
"/2)u(p1)�

ij �igµ⇢
(k � p1)2 + i✏

�ig⌫�
(k � p2)2 + i✏

⇥ (4ie2
eC�

⇤
µ"/2)✏⇢�↵�(k � p1)↵(p2 � k)�

= Aµ"
Z

d
dk

(2⇡)d
N

D1D2D3
,

(1.2)

5

= iMP γ̃ , (B.230)
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which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iMP γ̃ =

∫ ddk

(2π)d
ū(p2)(−ieγνQfµ

ε/2)
i

/k −mi + iε

× (−ieγµQfµ
ε/2)u(p1)δ

ij −igµρ
(k − p1)2 + iε

−igνσ
(k − p2)2 + iε

× (4ie2
C̃γ

Λ
µε/2)ερσαβ(k − p1)α(p2 − k)β

= Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.231)

where we have defined

A = 4e4Q2
fδ

ij C̃γ

Λ
µε/2 , (B.232)

N = εµναβū(p2)γν(/k +mi)γµu(p1)(k − p1)α(k − p2)β , (B.233)
D1 = k2 −m2

i + iε , (B.234)
D2 = (k − p1)2 + iε , (B.235)
D3 = (k − p2)2 + iε . (B.236)

Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − p1y − p2z)2 − C + iε]3
,

(B.237)

with

C = m2
i (y

2 + z2 − 2y − 2z + 1) + 2p1 · p2yz , (B.238)

where p21 = p22 = m2
i , since this diagram is flavor diagonal, and x+y+ z = 1

have been used. In order to simplify the denominator, we can shift the
integration variable k as k = p+ p1y + p2z, which implies ddk = ddp and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(p2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(p2 − C + iε)3
.

(B.239)
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At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = εµναβū(p2)γν(/p+ /p1y + /p2z +mi)γµu(p1)[p+ p1(y − 1) + p2z]α

× [p+ p1y + p2(z − 1)]β

= εµναβpαpβū(p2)[γν/pγµ + γν(/p1y + /p2z +mi)γµ]u(p1)

+ εµναβū(p2)γν/pγµu(p1){pα[p1y + p2(z − 1)]β

+ pβ[p1(y − 1) + p2z]α}+O(p)
= εµναβū(p2)γν/pγµu(p1){pα[p1y + p2(z − 1)]β

+ pβ[p1(y − 1) + p2z]α}+O(p)

=
1

d
εµναβp2ū(p2)γνγ

ργµu(p1){gαρ[p1y + p2(z − 1)]β

+ gβρ[p1(y − 1) + p2z]α}+O(p) ,
(B.240)

where in the last expression we have effectively substituted pµpν with p2gµν/d
by Lorentz invariance. Since we are interested in the divergent part of the
integral, we can safely ignore O(p) terms in N , keeping only the term of
order p2: the divergent part of N is

N |div. =
1

d
εµναβp2ū(p2)γνγ

ργµu(p1){gαρ[p1y + p2(z − 1)]β

+ gβρ[p1(y − 1) + p2z]α} .
(B.241)

In order to simplify the numerator, we can exploit the following identity

γµγνγρ = Sµνρσγ
σ − iεσµνργσγ5 , (B.242)

where

Sµνρσ = gµνgρσ − gµρgνσ + gµσgνρ (B.243)

vanishes when contracted with the Levi-Civita tensor, and

εµνραεµνρβ = −2(d− 1)δαβ (B.244)
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is used, so that we obtain

N |div. = −
i

d
p2εµναβū(p2)γ

δγ5u(p1){εδναµ[p1y + p2(z − 1)]β

+ εδνβµ[p1(y − 1) + p2z]α}

= −2id− 1

d
p2ū(p2)γ

µγ5u(p1){[p1y + p2(z − 1)]µ

− [p1(y − 1) + p2z]µ}

= −2id− 1

d
p2ū(p2)(/p1 − /p2)γ5u(p1)

= 2i
d− 1

d
p2ū(p2)(γ5/p1 + /p2γ5)u(p1)

= 4i
d− 1

d
p2miū(p2)γ5u(p1) ,

(B.245)

where ū(p2)/p2 = miū(p2) and /p1u(p1) = mju(p1) from the Dirac equation,
with mi = mj since the diagram is flavor diagonal. Thus, the divergent part
of the diagram reads

iMP γ̃ |div. = 2Aµε
∫ 1

0
dy
∫ 1−y

0
dz
∫ ddp

(2π)d
N |div.

(p2 − C + iε)3

= 8i
d− 1

d
ū(p2)γ5u(p1)Amiµ

ε

∫ 1

0
dy
∫ 1−y

0
dz

×
∫ ddp

(2π)d
p2

(p2 − C + iε)3

= 8iū(p2)γ5u(p1)Ami

∫ 1

0
dy
∫ 1−y

0
dz d− 1

d
µεI1,3 .

(B.246)

The integral I1,3 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I1,3 =
i

16π2

(
4π

C

)ε/2(
1− ε

4

)
Γ(ε/2) , (B.247)

which, multiplied by (d− 1)µε/d, gives

d− 1

d
µεI1,3 =

3− ε
4− ε

i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

16π2
3

4

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
− 2

3
− γE +O(ε)

]
=

3i

64π2

[
∆ε −

2

3
+ log

µ2

C
+O(ε)

]
,

(B.248)
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where ∆ε = 2/ε−γE+log(4π). Therefore, the divergent contribution of the
diagram is given by

iMP γ̃ |div. = 8iū(p2)γ5u(p1)Ami

∫ 1

0
dy
∫ 1−y

0
dz 3i

64π2
∆ε

= − 3

8π2
ū(p2)γ5u(p1)Ami∆ε ×

∫ 1

0
dy
∫ 1−y

0
dz

= − 3

8π2
ū(p2)γ5u(p1)Ami∆ε ×

1

2

(B.249)

and we can finally write

iMP γ̃ = − 3

4π2
e4Q2

f

C̃γ

Λ
miδ

ijµε/2ū(p2)γ5u(p1)∆ε + finite . (B.250)

B.6.2 φGG̃ mediated diagram

The second diagram contributing to the one-loop correction of the iφf̄iγ5fj
operator is mediated by the operator φGa

µνG̃
aµν and is given by
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The integral I1,3 is computed according to master formula in Eq. (??) and

then we can expand around " = 0 knowing that �(x) = 1/x� �E +O(x) as

x ! 0:
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i
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which, multiplied by (d� 1)µ"/d, gives
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(1.19)

where �" = 2/"��E+log(4⇡). Therefore, the divergent contribution to the

amplitude is given by

iMP �̃ |div. = 8iū(p2)�5u(p1)Ami

Z 1

0
dy

Z 1�y

0
dz

3i

64⇡2
�"

= �
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8⇡2
ū(p2)�5u(p1)Ami�" ⇥
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0
dy

Z 1�y

0
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= �
3

8⇡2
ū(p2)�5u(p1)Ami�" ⇥

1

2

(1.20)

and we can finally write

iMP �̃ = �
3

4⇡2
e4Q2

f

eC�

⇤
mi�

ijµ"/2ū(p2)�5u(p1)�" + finite . (1.21)

1.1.2 �G eG mediated diagram
The second diagram contributing to the one-loop correction of the i�f̄i�5fj
operator is mediated by the operator �Ga

µ⌫
eGaµ⌫

and is given by

p1
k

p2

p�

k � p1 p2 � k

fJ
j f I

i

�

= iMP g̃ , (1.22)

= iMP g̃ , (B.251)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iMP g̃ =

∫ ddk

(2π)d
ū(p2)(−igsγνcfT b

ILµ
ε/2)

iδLK
/k −mi + iε

× (−igsγµcfT a
KJµ

ε/2)u(p1)δ
ij −igµρδac

(k − p1)2 + iε

−igνσδbd

(k − p2)2 + iε

× (4ig2s
C̃g

Λ
δcdµε/2)ερσαβ(k − p1)α(p2 − k)β .

(B.252)

This diagram is completely analogous to iMP γ̃ , and its color structure is
provided by

T b
ILT

a
KJδ

abδLK = CF δIJ =
N2

c − 1

2Nc
δIJ , (B.253)
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where CF is the Casimir of the gauge group SU(Nc) in the fundamental
representation. Thus, we can immediately conclude that

iMP g̃ = − 3

4π2
CF g

4
sc

2
f

C̃g

Λ
miδ

ijδIJµ
ε/2ū(p2)γ5u(p1)∆ε + finite . (B.254)

B.6.3 iφf̄γ5f mediated diagrams

EM-induced diagram

The third diagram contributing to the one-loop correction of the iφf̄iγ5fj
operator is mediated by the operator iφf̄iγ5fj itself and is EM-induced. It
is given by
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1.1.3 i�f̄�5f mediated diagrams
EM-induced diagram

The third diagram contributing to the one-loop correction of the i�f̄i�5fj
operator is mediated by the operator i�f̄i�5fj itself and is EM-induced. It

is given by

p1
k

p2

p�

p1 � k p2 � k

fj fi

�

= iM(�)
PP , (1.23)

which can be computed according to the d-dimensional Feynman rules pre-

sented in Section ?? as

iM(�)
PP =

Z
d
dk

(2⇡)d
ū(p2)(�ie�⌫Qfµ

"/2)
i

/p2 � /k �mi + i✏

⇥ (�
v

⇤
yijP �5µ

"/2)
i

/p1 � /k �mj + i✏
(�ie�µQfµ

"/2)u(p1)

⇥
�igµ⌫
k2 + i✏

= Aµ"
Z

d
dk

(2⇡)d
N

D1D2D3
,

(1.24)

where we have defined

A = ie2Q2
f
v

⇤
yijP µ

"/2 , (1.25)

N = ū(p2)�
µ(/p2 � /k +mi)�5(/p1 � /k +mj)�µu(p1) , (1.26)

D1 = k2 + i✏ , (1.27)

D2 = (k � p2)
2
�m2

i + i✏ , (1.28)

D3 = (k � p1)
2
�m2

j + i✏ . (1.29)

Exploiting the Feynman parametrization, we can write the denominator in

the integral as

1

D1D2D3
= 2

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz

�(x+ y + z � 1)

[D1x+D2y +D3z]3

= 2

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz

�(x+ y + z � 1)

[(k � p2y � p1z)2 � C + i✏]3
,

(1.30)

= iM(γ)
PP , (B.255)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(γ)
PP =

∫ ddk

(2π)d
ū(p2)(−ieγνQfµ

ε/2)
i

/p2 − /k −mi + iε

−igµν
k2 + iε

× (− v
Λ
yijP γ5µ

ε/2)
i

/p1 − /k −mj + iε
(−ieγµQfµ

ε/2)u(p1)

= Aµε
∫ ddk

(2π)d
N

D1D2D3
,

(B.256)

where we have defined

A = ie2Q2
f

v

Λ
yijP µ

ε/2 , (B.257)

N = ū(p2)γ
µ(/p2 − /k +mi)γ5(/p1 − /k +mj)γµu(p1) , (B.258)

D1 = k2 + iε , (B.259)
D2 = (k − p2)2 −m2

i + iε , (B.260)
D3 = (k − p1)2 −m2

j + iε . (B.261)
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Exploiting the Feynman parametrization, we can write the denominator in
the integral as

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[D1x+D2y +D3z]3

= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

[(k − p2y − p1z)2 − C + iε]3
,

(B.262)

with

C = m2
i y

2 +m2
jz

2 + 2p1 · p2yz , (B.263)

where p22 = m2
i , p21 = m2

j and x + y + z = 1 have been used. In order to
simplify the denominator, we can shift the integration variable k as k =
p+ p2y + p1z, which implies ddk = ddp and

1

D1D2D3
= 2

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

(p2 − C + iε)3

= 2

∫ 1

0
dy
∫ 1−y

0
dz 1

(p2 − C + iε)3
.

(B.264)

At this point we have to perform the shift also in the numerator of the
integral: N becomes

N = ū(p2)γ
µ(/p+ /p1y + /p2(z − 1)−mi)γ5

× (/p+ /p1(y − 1) + /p2z −mj)γµu(p1)

= ū(p2)γ
µ
/pγ5/pγµu(p1) +O(p)

= pαpβū(p2)γ
µγαγ5γβγµu(p1) +O(p)

=
1

d
p2gαβū(p2)γ

µγαγ5γβγµu(p1) +O(p)

=
1

d
p2ū(p2)γ

βγαγ5γαγβu(p1) +O(p) ,

(B.265)

where we have effectively substituted pµpν with p2gµν/d by Lorentz invari-
ance. Since we are interested in the divergent part of the integral, we can
safely ignore O(p) terms in N , keeping only the term of order p2: the diver-
gent part of N is

N |div. =
1

d
p2ū(p2)γ

βγαγ5γαγβu(p1) . (B.266)

In order to compute γαγ5γα, we can split γµ onto its 4-dimensional compo-
nent γ̄µ and (d − 4)-dimensional component γ̂µ as γµ = γ̄µ + γ̂µ according
to the BMHV scheme introduced in Subsection 5.1.1

γαγ5γα = (γ̄α + γ̂α)γ5(γ̄α + γ̂α)

= γ̄αγ5γ̄α + γ̄αγ5γ̂α + γ̂αγ5γ̄α + γ̂αγ5γ̂α
(B.267)
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and exploit the following identities

γ5γ̄α = −γ̄αγ5 , (B.268)
γ5γ̂α = γ̂αγ5 , (B.269)
γ̄αγ̄α = 41 , (B.270)
γ̂αγ̂α = (d− 4)1 , (B.271)
γ̂αγ̄α = 0 , (B.272)

in such a way that

γαγ5γα = (−γ̄αγ̄α + γ̄αγ̂α − γ̂αγ̄α + γ̂αγ̂α)γ5 = −(8− d)γ5 . (B.273)

Thus, we can write the divergent part of the numerator as

N |div. =
(8− d)2

d
p2ū(p2)γ5u(p1) , (B.274)

and the divergent part of the diagram reads

iM(γ)
PP |div. = 2Aµε

∫ 1

0
dy
∫ 1−y

0
dz
∫ ddp

(2π)d
N |div.

(p2 − C + iε)3

= 2Aµε
(8− d)2

d
ū(p2)γ5u(p1)

∫ 1

0
dy
∫ 1−y

0
dz

×
∫ ddp

(2π)d
p2

(p2 − C + iε)3

= 2Aū(p2)γ5u(p1)

∫ 1

0
dy
∫ 1−y

0
dz (8− d)

2

d
µεI1,3 .

(B.275)

The integral I1,3 is computed according to master formula in Eq. (5.52) and
then we can expand around ε = 0 knowing that Γ(x) = 1/x− γE +O(x) as
x→ 0:

I1,3 =
i

16π2

(
4π

C

)ε/2(
1− ε

4

)
Γ(ε/2) , (B.276)

which, multiplied by (8− d)2µε/d, gives

(8− d)2

d
µεI1,3 =

(4 + ε)2

4− ε
i

16π2

(
4πµ2

C

)ε/2(
1− ε

4

)
Γ(ε/2)

=
i

16π2
4

[
1 +

ε

2
log

4πµ2

C
+O(ε2)

][
2

ε
+ 1− γE +O(ε)

]
=

i

4π2

[
∆ε + 1 + log

µ2

C
+O(ε)

]
,

(B.277)
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where ∆ε = 2/ε−γE+log(4π). Therefore, the divergent contribution of the
diagram is given by

iM(γ)
PP |div. = 2Aū(p2)γ5u(p1)

∫ 1

0
dy
∫ 1−y

0
dz i

4π2
∆ε

=
i

2π2
Aū(p2)γ5u(p1)∆ε ×

∫ 1

0
dy
∫ 1−y

0
dz

=
i

2π2
Aū(p2)γ5u(p1)∆ε ×

1

2

(B.278)

and we can finally write

iM(γ)
PP = − 1

4π2
e2Q2

f

v

Λ
yijP µ

ε/2ū(p2)γ5u(p1)∆ε + finite . (B.279)

QCD-induced diagram

The fourth diagram contributing to the one-loop correction of the iφf̄iγ5fj
operator is mediated by the operator iφf̄iγ5fj itself and is QCD-induced. It
is given by

12 appendice

and we can finally write

iM(�)
PP = �

1

4⇡2
e2Q2

f
v

⇤
yijP µ

"/2ū(p2)�5u(p1)�" + finite . (1.47)

QCD-induced diagram

The fourth diagram contributing to the one-loop correction of the i�f̄i�5fj
operator is mediated by the operator i�f̄i�5fj itself and is QCD-induced. It

is given by

p1
k

p2

p�

p1 � k p2 � k

fJ
j f I

i

�

= iM(g)
PP (1.48)

iM(g)
PP = �

1

4⇡2
CF g

2
sc

2
f
v

⇤
yijP µ

"/2ū(p2)�5u(p1)�" + finite . (1.49)

1.2 �FF vertex corrections
1.2.1 �f̄f mediated diagrams
The first diagram contributing to the one-loop correction of the �Fµ⌫Fµ⌫

operator is mediated by the operator �f̄ifj and is given by

p

k

q

p�

k + q

k � p µ

⌫

� = iM(1)
�S , (1.50)

= iM(g)
PP , (B.280)

which can be computed according to the d-dimensional Feynman rules pre-
sented in Sections 5.3 and A.2 as

iM(g)
PP =

∫ ddk

(2π)d
ū(p2)(−igsγνcfT b

IMµ
ε/2)

iδMK

/p2 − /k −mi + iε
(− v

Λ
yijP γ5µ

ε/2)

× iδKL

/p1 − /k −mj + iε
(−igsγµcfT a

LJµ
ε/2)u(p1)

−igµνδab

k2 + iε
.

(B.281)

This diagram is completely analogous to iM(γ)
PP , and its color structure is

provided by

T b
IMT

a
LJδ

abδML = CF δIJ =
N2

c − 1

2Nc
δIJ , (B.282)
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where CF is the Casimir of the gauge group SU(Nc) in the fundamental
representation. Thus, we can immediately conclude that

iM(g)
PP = − 1

4π2
CF g

2
sc

2
f

v

Λ
yijP δIJµ

ε/2ū(p2)γ5u(p1)∆ε + finite . (B.283)



Appendix C

Four-particle tree-level
amplitudes

In this Appendix we report the four-particle tree-level amplitudes composed
of SU(Nc)×U(1)em gauge interactions. These results are exploited in Chap-
ter 7 in order to compute the RGEs of the ALP EFT via on-shell amplitude
methods.

Regarding all particles as outgoing and making explicit the indices I, J
of the fundamental representation of SU(Nc), the non-vanishing amplitudes
read

M4(1
−
fi
, 2−

f̄j
, 3+

f̄i
, 4+fj ) = 2(e2Q2

f + CF g
2
sc

2
f )
〈1 2〉[4 3]
〈1 3〉[3 1]

, (C.1)

M4(1
−
f , 2

+
f̄
, 3+

f̄
, 4−f ) = 2(e2Q2

f + CF g
2
sc

2
f )
〈1 4〉[2 3]
〈1 3〉[3 1]

, (C.2)

M4(1
−
f , 2

+
f̄
, 3−γ , 4

+
γ ) = 2e2Q2

f

〈3 1〉[4 2]
〈1 4〉[3 1]

, (C.3)

M4(1
−
fI , 2

+
f̄J , 3

−
ga , 4

+
gb
)δab = 2CF g

2
sc

2
fδIJ
〈3 1〉[4 2]
〈1 4〉[3 1]

, (C.4)

M4(1
−
fI , 2

+
f̄J , 3

−
ga , 4

+
gb
)δIJ = g2sc

2
fδ

ab 〈3 1〉[4 2]
〈1 4〉[3 1]

, (C.5)

M4(1
−
ga , 2

−
gb
, 3+gc , 4

+
gd
)δcd = −2CAg

2
sδ

ab 〈1 2〉4

〈1 3〉〈3 2〉〈2 4〉〈4 1〉
, (C.6)

where we recall that

CA = Nc = 3 , CF =
N2

c − 1

2Nc
=

4

3
. (C.7)

The adopted gauge group conventions are reported in Section A.1.
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Crossing symmetry is extensively exploited to relate scattering matrix
elements of ingoing and outgoing states with those computed with all the
momenta and other quantum numbers considered as outgoing:

M4(1
h1 , 2h2 ; 3h3 , 4h4) = (−1)n

−
fM4(1

h1 , 2h2 , 4̄−h4 , 3̄−h3) . (C.8)

Here n−f counts the number of (anti-)fermions with negative helicity in the
initial state and the reverse order of fields upon crossing ensures the proper
minus signs for fermion loops. Ref. [4] provides a detailed discussion about
these phases. Moreover, the adopted convention for opposite momenta is

p̄α̇αi = (−pi)α̇α =
¯̃
λα̇i λ̄

α
i , (C.9)

with

λ̄i = λi ,
¯̃
λi = −λ̃i , (C.10)

as already specified in Section 6.1.
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