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Chapter 0

Heuristic Prologue

0.1 Genesis of Stochastic Differential Equations

The starting point of stochastic processes in continuous time, is the study of dy-
namical systems of the form

ẋ = f(x), x ∈ RN (0.1)

in which a perturbation, often called noise in the literature, is added to the equa-
tion, making f depending also on ω ∈ Ω, where (Ω,A ,P) is a probability space.

Equation (0.1) is an ordinary differential equation (ODE for short); these kind
of mathematical objects turn out to be particularly fitting in the description of the
evolution of certain situations. ODE are widely used in the more disparate settings,
from physics to economics, from financial markets to demographical phenomena,
from astronomy to different areas of engineering, from chemistry to biology.

One first example comes from Newton’s works in classical physics: the second
principle is usally written as

m~a = ~F ,

which is an ODE: in fact, if t 7→ y(t) ∈ R3 describes the position of a point (whose
mass is denoted by m) in the space, then ~v(t) := y′(t) and ~a(t) := y′′(t) are its veloc-

ity and acceleration respectively. In general, the force ~F depends on time, position
and velocity of the considered point, thus the above equation can be rewritten as
follows:

my′′(t) = F (t, y(t), y′(t)).

We are dealing with an equation in which the unknown is a function of one variable
(the function y), in which some of its derivatives are involved.
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0.1. GENESIS OF STOCHASTIC DIFFERENTIAL EQUATIONS

It is clear that the main aim is to ”solve” these kind of equations, that is, find
all possible functions make the identity true.

The second matter is study uniqueness of solutions; one can easily find ODEs
which have not unique solution: take for istance y′(t) =

√
y(t) ∀t ∈ R.

Another classical example is the Malthus growth model: if y(t) denotes the
number of entities of a population, then the model assumes the growth speed of this
population y′(t) to be proportional with respect to the own entities mass, that is
the following relation has to be verified:

y′(t) = αy(t),

where α can be indended as ν − µ, where ν and µ are the natality rate and death
rate respectively.

In this case it is readily checked that functions of the form ceαt solves the equa-
tion; moreover, imposing a solution ϕ : R→ R passes thru a fixed point y0 at some
starting time t0, we can easily see that t 7→ ϕ(t)e−αt is constantly equal to y0, from
which one gets uniqueness of the solutions.

However let us come back to (0.1) and understand euristically what stochastical
differential equations are and how do they born from this. We start by considering
a discrete version of (0.1) with N = 1, that is a finite differences scalar equation: so
for 0 < ∆� 1 we write

x(k+1)∆ = xk∆ + ∆ · f(xk∆) + g(xk∆, ω) ·W∆
k (ω) (0.2)

where f : R → R is deterministic (the drift) while g : R × Ω → R brings into the
equation some randomness (the diffusion coefficient) and {W∆

k }k≥0 is a sequence of
i.i.d. random variables such that, without loss of generality E[W∆

k ] = 0.

The next step is understand how W∆
k depend on ∆: what is a suitable order

of magnitude with respect to ∆, such that the passage to the limit in (0.2) for
k → +∞, gives back something reasonable?
So, let us focus on Var[W∆

k ]; setting t = n∆, we can rewrite (0.2) as follows:

xt = x0 + ∆
n−1∑
k=0

f(xk∆) +
n−1∑
k=0

g(xk∆, ω) ·W∆
k (ω). (0.3)

Now, fixing t, it is clear that ∆→ 0 implies n→ +∞, thus it follows that

∆
n−1∑
k=0

f(xk∆)
∆→0−→

∫ t

0

f(xs) ds. (0.4)
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0.1. GENESIS OF STOCHASTIC DIFFERENTIAL EQUATIONS

Next, suppose

• g ≡ c,with c ∈ R \ {0} constant; wlog c = 1

• f ≡ 0

• x0 deterministic;

then, from (0.3) we would have

Var[xt] = Var

[
n−1∑
k=0

W∆
k

]
= nVar[W∆

0 ],

from which we get that

Var[W∆
0 ] ≈ 1

n
≈ ∆

that is a kind of information about the behavior of W∆
k with respect to ∆ we were

searching for.

Let us then set

Var[W∆
k ] := ∆ =

(√
t

n

)2

.

At this point from the Central Limit Theorem one has that

1√
n

∑n−1
k=0 W

∆
k√

t
n

=
1√
t

n−1∑
k=0

W∆
k

∆→0−−−→
D

N(0, 1)

from which
n−1∑
k=0

W∆
k

∆→0−−−→
D

Bt ∼ N(0, t).

This holds for every t ≥ 0, thus accepting all the Bt live in the same probability
space, a stochastic process B = {Bt}t≥0 is defined.

Next, we observe, that, fixed 0 ≤ s < t, the random variables Bt − Bs and Bs

are indipendent since they are limit in distribution of

b t∆c−1∑
k=b s∆c

W∆
k and

b s∆c−1∑
k=0

W∆
k

respectively.
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0.1. GENESIS OF STOCHASTIC DIFFERENTIAL EQUATIONS

It is now quite natural to expect that, fixed 0 ≤ t1 < · · · < tN , the random
variables Bt1 , Bt2 −Bt1 , . . . , BtN −BtN−1

are indipendent, from which (Bt1 , . . . , BtN )
is a gaussian random vector.

Observing now that when k → +∞ one has W∆
k ∼ B(k+1)∆−Bk∆ and considering

now a non-trivial g, we can write

n−1∑
k=0

g(xk∆)W∆
k

∆→0−→
∫ t

0

g(xs) dBs . (0.5)

where the limit is intended in probability and, if the process B has a.s. trajectories
with bounded variation then the integral is a Riemann-Stieltjes integral; neverthe-
less a stochastic process having the properties B has, with moreover a.s. continuous
trajectories, is called Brownian Motion and a.s. have not bounded variation: in
this case the integral becomes a Stochastic Integral, which was introduced by the
japanese mathematician Itô.

Putting togheter (0.3), (0.4) and (0.5) we get

xt = x0 +

∫ t

0

f(xs) ds+

∫ t

0

g(xs) dBs , (0.6)

which is a Stochastic Differential Equation driven by the Brownian Motion B.

Consider x : [0,+∞[→ R and f : R → R, both in C 1; then we know that
d
dx
f(xt) = f ′(xt) · x′t, which can be rewritten in integral form as f(xt) = f(x0) +∫ t

0
f ′(xs) dxs︸︷︷︸

x′s ds

.

Then one can asks: is this rule true if x = B (whose paths a.s. are not in C 1)?
That is: does f(Bt) = f(0) +

∫ t
0
f ′(Bs) dBs hold true? The answer is no, and this

is the motivation for the need of the celebrated Itô Formula which is basically a
generalisation of the well known chain rule, and when x = B and f ∈ C 2, it reads
as

f(Bt) = f(0) +

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds.

Let us note that stochastic differential equations can be represented in two equiv-
alent ways: the integral representation, which is the way (0.6) is written, and the
differential representation, that is

dxt = f(xt) dt+ g(xt) dBt

togheter with the initial value x0 given. The differential representation is widely
used, although it is only a formal writing, since involved paths are typically irregu-
lar.
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0.2. MORE RECENT DEVELOPMENTS

0.2 More recent developments

Recently Stochastic Differential Equations driven by a more general process became
object of interest in Stochastic Analysis research; such a process is called Fractional
Brownian Motion; it is a generalisation of the standard Brownian Motion and it
depends on an index H ∈]0, 1[, called Hurst index.

This process turns out to be useful in building many models in finance: in the
classical Black & Scholes pricing model, the randomness of the stock price S is due
to a Brownian Motion Z:

dSt = St(µdt+ σdZt), S0 > 0

dBt = rBt

where B is the bond price and µ ∈ R and r, σ ∈ R>0. In particular the first equation
is a Stochastic Differential Equation.

It was observed that interesting financial models can be derived from this last
one by replacing the Brownian Motion Z with a fractional Brownian Motion ZH ;
the solution of this new model is called Geometric Fractional Brownian Motion.

Many examples of situations in which the considered quantities are naturally
positive can be reported. For istance the study of the motion of a particle on the
plane with no constraints when its y-coordinate is ≥ 0 and ”stopping” it when it goes
below x-axis and is decreasing, removing this constraint once it becomes to increase.

These kind of models created the necessity to study SDEs with non-negativity
constraints; such a constraint can be imposed in many ways; for this last model, for
example, the Skorokhod problem (see chapter 2) turns out to be appropriate.

Studying these situations, the necessity to consider Skorokhod problem with
SDEs driven by fBM arose; this argument is debated in the literature only a few,
this is the reason why M. Ferrante and C. Rovira wrote their paper [2].

0.3 Last considerations

The stochastic integration with respect to the fBM has been studied by several au-
thors; nevertheless throughout this thesis we will consider H > 1

2
, case in which

the integral can be defined by a pathwise approach allowing a little regularity to
the integrand function: the results discussed by Young [1] ensure the existence of

the Riemann-Stieltjes integral
∫ T

0
us dB

H
s for every stochastic process {ut}t≥0 whose

trajectories are λ-Hölder continous, when λ > 1−H; this result holds for every tra-
jectory in the sense that

∫ T
0
us(ω) dBH

s (ω) is a Riemann-Stiltjes integral for every
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0.3. LAST CONSIDERATIONS

fixed ω ∈ Ω.

The starting point of this thesis is a paper by M. Ferrante and C. Rovira [2] in
which the problem of the existence and uniqueness of the solutions of such differen-
tial equations was discussed at first exploiting the λ-Hölder norm methods; in this
paper existence was proved, but some problem came out when the authors looked
at uniqueness.

A different approach was held by A. Falkowski and L. S lomiński: in their pa-
per [3] they treated a more general Stochastic Differential Equation but with some
additional assumptions on the drift and diffusion coefficients, using the p-variation
norm techniques, proving both existence and uniqueness.

We will analyze the first approach, suggesting a possible path to prove uniqueness
with sup-norm approach.
In particular, this thesis is organized as follows: in the first chapter we will give the
Stochastic Analysis tools required in the sequel, in the second one we will introduce
our SDE with non-negativity constraints and the Young Integral, which is the one
used to work with such an equation. Finally in the last chapter we will discuss about
uniqueness.
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Chapter 1

Stochastic Analysis Tools

1.1 The Fractional Brownian Motion

Let us fix a complete probability space (Ω,A ,P).

Definition 1.1.1. An N -dimensional Gaussian Vector is a random vector

X = (X1, . . . , XN)

such that, X · a =
∑N

j=1Xjaj : Ω → R is a normal random variable for every fixed

a ∈ RN .

Definition 1.1.2. Let I be a total ordered set. A stochastic process

X : Ω→ RI

is called Gaussian Process if for every J ⊆ I, |J | < +∞, X|J is a gaussian vector.

Definition 1.1.3. A scalar fractional Brownian Motion with Hurst parameter H ∈
]0, 1[ is a stochastic process

BH : Ω→ RI

where I = R≥0, which is a centered (i.e. E[BH
t ] = 0 ∀t ≥ 0) Gaussian Process with

covariance function given by

(s, t) 7→ Cov[BH
s , B

H
t ] = E[BH

s B
H
t ] =

1

2

(
t2H + s2H − |t− s|2H

)
(1.1)

and a.s. with continous trajectories such that BH
0 = 0.

It’s clear that when H = 1
2

we recover the standard Brownian Motion; in partic-
ular the increments (i.e. the random variables Bt−Bs for 0 ≤ s < t) are indipendent
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1.1. THE FRACTIONAL BROWNIAN MOTION

(we have denoted B := B1/2).
Instead, in the case H 6= 1

2
, the independency property of the increments does not

hold true any longer.

The theory developed in this chapter deals with the above introduced scalar frac-
tional Brownian Motion; nevertheless in the next chapters, working on the Stochastic
Differential Equation, an m-dimensional version of this object is used:

Definition 1.1.4. A m-dimensional fractional Brownian Motion with Hurst param-
eter H is a m-dimensional random vector

WH := (BH,1, . . . , BH,m)

where the BH,j are indipendent fBMs of the same parameter H.

The fractional Brownian Motion is invariant in law under certain transforma-
tions:

Proposition 1.1.1. If BH is an H-fractional Brownian Motion, then also the fol-
lowing stochastic processes are such:

1. {a−HBH
at}t≥0 for every fixed a > 0, that is, the fBM is self-similar.

2. {BH
t0+t −BH

t0
}t≥0 for every fixed t0 ≥ 0, that is, the fBM has stationary incre-

ments.

3. {t2HBH
1/t}t>0, that is, the law of the fBM is invariant under time inversion.

Conversely, any Gaussian process BH a.s with continuous trajectories and BH
0 = 0,

such that Var[BH
1 ] = 1 for which 1. and 2. hold, then it is a fBM of index H.

Proof. The three invariace properties can be easily get recalling that two stochastic
processes have the same law if and only if they have the same finite dimensional
distributions; in particular for the second one, it can be useful to observe that from
(1.1) it follows that

E[(BH
t −BH

s )2] = |t− s|2H , (1.2)

from which in particular we get that

BH
t0+t −BH

t0
∼ N(0, t2H) ∼ BH

t ∀t ≥ 0. (1.3)

The converse part follows by direct computations.
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1.1. THE FRACTIONAL BROWNIAN MOTION

1.1.1 Hölder regolarity of the trajectories

Let us now prove the following important result:

Theorem 1.1.1. An H-fractional Brownian Motion BH = {BH
t }t∈[0,1] has a.s. α-

Hölder continous paths for all α ∈ ]0, H[.

Proof. Let us define, for n ≥ 1

Dn :=

{
k

2n
: 0 ≤ k ≤ 2n − 1

}
and D :=

⋃
n≥1

Dn .

Step 1: Let us fix 0 < α < H and prove that ∃c, ρ > 0 such that

P
(
∃s ∈ Dn : |BH

s+2−n −BH
s | > 2−αn

)
≤ c2−ρn; (1.4)

indeed we have

P
(
∃s ∈ Dn : |BH

s+2−n −BH
s | > 2−αn

)
= P

( ⋃
s∈Dn

{
|BH

s+2−n −BH
s | > 2−αn

})
≤
∑
s∈Dn

P
(
|BH

s+2−n −BH
s | > 2−αn

)
(1.3)
= 2nP

(
|BH

s+2−n −BH
s | > 2−αn

)
= 2nP

(
|BH

s+2−n −BH
s |

1
H
m > 2−

1
H
αnm
)

Markov

≤ 2n
E
[
|BH

s+2−n −BH
s |

1
H
m
]

2−
1
H
αnm

= 2n(1+ 1
H
αm)E

∣∣∣∣∣BH
s+2−n −BH

s

2−nH

∣∣∣∣∣
1
H
m
 2−nm

and observing that
BH
s+2−n

−BHs
2−nH

∼ N(0, 1), its expected value doesn’t depend on n,

thus setting cm := E

[∣∣∣∣BHs+2−n
−BHs

2−nH

∣∣∣∣ 1
H
m
]

and ρm := −
(
1 +m

(
1
H
α− 1

))
we have that

P
(
∃s ∈ Dn : |BH

s+2−n −BH
s | > 2−αn

)
≤ cm2−nρm .

Observing that, since 0 < α < H, there exists m such that ρ := ρm > 0, and setting
c := cm, we get (1.4).
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1.1. THE FRACTIONAL BROWNIAN MOTION

Step 2: ∃Ω∗ ∈ A with P(Ω∗) = 1 such that

∀ω ∈ Ω∗ ∃n(ω) ≥ 1 : |BH
s+2−n −BH

s | ≤ 2−αn ∀s ∈ D , ∀n ≥ n(ω). (1.5)

Let us set
An :=

{
∃s ∈ Dn : |BH

s+2−n −BH
s | > 2−αn

}
∈ A ;

then, by Step 1 we get
∑

n≥1 P(An) < +∞, hence, once we have set

A := lim sup
n→+∞

An :=:
⋂
n≥1

⋃
k≥n

Ak

the first Borel-Cantelli Lemma allows to deduce that P (A) = 0; clearly Ac ∈ A and
P(Ac) = 1.
Now, ω ∈ A⇔ ω ∈ An for countable many n ≥ 1, thus ω ∈ Ac ⇔ ∃n(ω) ≥ 1 such
that ω ∈ Acn ∀n ≥ n(ω) and thus we get

Ac = {ω ∈ Ω : ∃n(ω) ≥ 1 s.t. |BH
s+2−n −BH

s | ≤ 2−αn ∀s ∈ Dn, ∀n ≥ n(ω)}
⊆ {ω ∈ Ω : ∃n(ω) ≥ 1 s.t. |BH

s+2−n −BH
s | ≤ 2−αn ∀s ∈ D , ∀n ≥ n(ω)} =: Ω∗

from which Ω∗ ∈ A (by completeness) and clearly P(Ω∗) = 1 thus we have proved
(1.5).

Step 3: Let us prove that for m > n big enough, and for s, t ∈ Dm such that
|t− s| < 2−n, then a.s. ∣∣BH

t −BH
s

∣∣ ≤ m∑
j=n+1

2−αj. (1.6)

So, let us take ω ∈ Ω∗, fix n(ω) as in Step 2 and consider m > n ≥ n(ω).
We will use induction on m−n. Let us suppose without loss of generality 0 ≤ s < t.
• Suppose m−n = 1. Then s = k

2n+1 and t = k′

2n+1 , where 0 ≤ k < k′ ≤ 2n+1−1;
hence

|t− s| < 2−n ⇐⇒ k′ − k
2n+1

< 2−n

⇐⇒ k′ − k < 2

⇐⇒ k′ = k + 1.

Thus t = s+ 2−(n+1), from which we get
∣∣∣BH

s+2−(n+1) −BH
s

∣∣∣ ≤ 2−α(n+1) by (1.5).

• Suppose now (1.6) holds for every pair m > n such that m−n ≤ h (fix one of
these pairs) for some h ≥ 1; let us show (1.6) holds for suitable m′ > n′ such that
m′ − n′ = h+ 1.
Pick s, t ∈ Dm+1 such that |t− s| < 2−n and define

s0 := s

sj := sj−1 + 2−(n+j), j = 1, . . . ,m+ 1− n .

14



1.1. THE FRACTIONAL BROWNIAN MOTION

Observe that

sm+1−n = s+
m+1∑
r=n+1

2−r = s− 2−(m+1) + 2−n ∈ Dm+1 ;

if by contradiction t > sm+1−n, say t = sm+1−n + 2−(m+1) ∈ Dm+1, then |t − s| =
2−n ≮ 2−n, absurd. Thus we have

0 ≤ s < t ≤ sm+1−n.

So we define
u := max{j = 0, 1, . . . ,m+ 1− n : sj ≤ t} ≥ 0

from which we have two cases: if su = t we have∣∣BH
t −BH

s

∣∣ ≤ m−n∑
j=0

∣∣∣BH
sj+1
−BH

sj

∣∣∣
≤

m−n∑
j=0

∣∣∣BH
sj+2−(n+j+1) −BH

sj

∣∣∣
(1.5)

≤
m−n∑
j=0

2−α(n+j+1)

=
m+1∑
j=n+1

2−αj

which is (1.6) with (m+ 1)− n = h+ 1, thus the inductive step is proved.
The other possibility is su < t. In this case clearly the following relations hold:

u ≤ m− n
t < su+1.

But, noticing that |sm−n+1 − sm−n| = 2−(m+1), since t ∈ Dm+1, it cannot be su <
t < su+1 for u = m− n, thus u ≤ m− n− 1.

Now we have to proceed as follows∣∣BH
t −BH

s

∣∣ ≤ ∣∣BH
t −BH

su

∣∣+
u−1∑
j=0

∣∣∣BH
sj+1
−BH

sj

∣∣∣
≤
∣∣BH

t −BH
su

∣∣+
u−1∑
j=0

∣∣∣BH
sj+2−(n+j+1) −BH

sj

∣∣∣
(1.5)

≤
∣∣BH

t −BH
su

∣∣+
u−1∑
j=0

2−α(n+j+1)

=
∣∣BH

t −BH
su

∣∣+
n+u∑
j=n+1

2−αj ;
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1.1. THE FRACTIONAL BROWNIAN MOTION

then observing that t, su ∈ Dm+1 and noticing that su < t implies t < su+1, we get

|t− su| < |su+1 − su| = 2−(n+u+1)

and since
(m+ 1)− (n+ u+ 1) = h− u ≤ h ,

by inductive hypotesis we obtain

∣∣BH
t −BH

su

∣∣ ≤ m+1∑
j=n+u+2

2−αj ≤
m+1∑

j=n+u+1

2−αj

which leads to the conclusion.
Let us note that the sum

∑m+1
j=n+u+2 2−αj makes sense since m + 1 ≥ n + u + 2

which is equivalent to u ≤ m− n− 1.

Step 4: Conclusion.
Let us fix ω ∈ Ω∗ and take n(ω) as in Step 2; then consider n ≥ n(ω) and observe
that D =

⋃
m>n Dm. Hence, for s, t ∈ D such that |t − s| < 2−n, when m tends to

infinity in (1.6), we get

∣∣BH
t −BH

s

∣∣ ≤ +∞∑
j=n+1

2−αj = 2−αn
(

1

2α + 1

)
︸ ︷︷ ︸

=:cα

.

Now, we are dealing with t, s ∈ D such that |t − s| < 2−n(ω); thus, there exists a
unique n ≥ n(ω) such that

2−(n+1) ≤ |t− s| < 2−n

from which we find out that∣∣BH
t −BH

s

∣∣ ≤ cα2−αn = 2αcα2−α(n+1) ≤ 2αcα|t− s|α. (1.7)

Then, let us take Ω̃ ∈ A with P(Ω̃) = 1 such that t 7→ BH
t (ω) is continuous for

every ω ∈ Ω̃.
Next, clearly Ω̃ ∩ Ω∗ ∈ A and P(Ω̃ ∩ Ω∗) = 1. So let us fix ω ∈ Ω̃ ∩ Ω∗.
We get

sup
t,s∈[0,1]
s6=t

∣∣BH
t −BH

s

∣∣
|t− s|α

< +∞⇐⇒ sup
t,s∈D
s 6=t

∣∣BH
t −BH

s

∣∣
|t− s|α

< +∞

⇐⇒ sup
t,s∈D , t 6=s
|t−s|<2−n(ω)

∣∣BH
t −BH

s

∣∣
|t− s|α

< +∞.
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1.1. THE FRACTIONAL BROWNIAN MOTION

Now, the first equivalence is true because of the density of D in [0, 1] and the
continuity of the chosen trajectory BH(ω). The second one is obvious and the latter
side is true by (1.7). Thus we have proved that a.s. the fractional brownian motion
has continuous α-Hölder trajectories, for every 0 < α < H, as wanted.

Now, in order to prove that the H-fractional Brownian Motion a.s. has not H-
Hölder continuous trajectories, let us state a suitable law of the iterated logarithm,
as reported in [8]:

Theorem 1.1.2 (Law of the Iterated Logarithm for continuous Gaussian Processes).
Let {Yt}t≥0 be a gaussian process a.s. with continuous trajectories, E[Yt] ≡ 0. Then
set

w(s, t) := E[YsYt] Q(t) :=
1

2
w(t, t) ≥ 0 .

Then define the process

Xt :=
Yt√
2Q(t)

.

Suppose there exists a monotone, non-decreasing function v : R≥0 → R such that
v(0) = 0, and there exists s0, β1, β2, β3 > 0 with β3 <

1
2
β1 +1 such that the following

relations are satisfied:

• lim
t→+∞

Q(s+ t)−Q(s)

v(s+ t)− v(s)
= 1 uniformly in s ≥ 0;

• v(t) ≥
(
t

s

)β1

· v(s) > 0, ∀ t ≥ s > s0 ;

• v(t) ≤
(
t

s

)β3

· v(s), ∀ t ≥ s > s0 ;

•Q(t) = O0+(tβ2).

Then, a.s. the following laws of the iterated logarithm hold:

lim
T→+∞

(
sup

0≤t≤T
Xt −

√
2 log log T

)
= 0

from which

lim sup
t→+∞

(
Xt −

√
2 log log t

)
= 0

and finally

lim sup
t→+∞

Xt√
2 log log t

= 1 . (1.8)
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1.1. THE FRACTIONAL BROWNIAN MOTION

Now, if Y = BH , it turns to be

w(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
Q(t) =

1

2
t2H

Xt =
BH
t

tH

and taking v := Q, β1 := 2H−ε, β2 := 2H and β3 := 2H+ ε
2
, where ε := 1−H

2
> 0,

the hypotesis of the theorem are easily fulfilled, thus, by (1.8) we get that a.s.

lim sup
t→+∞

BH
t

tH
√

2 log log t
= 1 . (1.9)

Then fixing t0 ≥ 0 and considering the process
{
t2H
(
Bt0+ 1

t
−Bt0

)}
t>0

, which is

a realisation of the fractional Brownian Motion, since it is obtained by composing
a stationary increment of an H-fBM together with a time inversion, from (1.9) we
get that a.s.

lim sup
t→+∞

tH
(
BH
t0+ 1

t

−BH
t0

)
√

2 log log t
= 1

and using the substitution t→ 1
t

this last lim sup reads as

lim sup
t→0+

BH
t0+t −BH

t0

tH
√

2 log log(1/t)
= 1 ,

from which we immediately get, a.s. for any t0 ≥ 0

lim sup
t→0+

BH
t0+t −BH

t0

tH
= +∞ ,

which implies that, for a set of probability one, the trajectories of the fractional
Brownian Motion of Hurst index H are not H-Hölder continuous around any point
t0 ≥ 0, as claimed.

Finally we want to spend a couple of words about the modulus of continuity of
a function.
Given a function f : (X, dX) → (Y, dY ) defined between metric spaces, a global
modulus of continuity for f , is a function ωf : [0 +∞]→ [0,+∞] which vanishes at
0 and is continuous at 0 such that

dY (f(x), f(x′)) ≤ ωf (dX(x, x′)) ∀x, x′ ∈ X.
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1.1. THE FRACTIONAL BROWNIAN MOTION

Just for completeness, we recall the local notion: f admits a modulus of continuity
at the point x ∈ X if there exists ωx : [0 +∞] → [0,+∞] (again zero at 0 and
continuous there) such that

dY (f(x), f(x′)) ≤ ωx(dX(x, x′)) ∀x′ ∈ X.

At this point, we report from [9] that a.s. the fractional Brownian Motion of
Hurst index 0 < H < 1 admits a global modulus of continuity given by

ωBH (δ) = δH | log δ|
1
2 .

1.1.2 On the p-variation of the fractional Brownian Motion

Let us consider a function f : [a, b] → R and a partition of the interval [a, b], say
Π := {a = t0 < t1 < · · · < tkn < tkn+1 = b}; we define the mesh of the partition Π
as |Π| := max0≤j≤kn |tj+1 − tj|. Let us fix p > 0.

Then we define the p-variation of f on the partition Π as

V
(p)
a,b(f,Π) :=

kn∑
j=0

|f(tj+1)− f(tj)|p

and the p-variation of f is thus given by

V
(p)
a,b(f) := sup

Π
V

(p)
a,b(f,Π).

Let us take T > 0 and consider tj := T
n
j, j = 0, . . . , n, thus, we have Πn := {tj}nj=0,

which is a sequence of partitions of [0, T ] whose mesh goes to 0 as n→ +∞. Then
as stated in [10], we get

∃ lim
n→+∞

V
(p)
0,T (BH ,Πn) =


+∞ p < 1/H
T · E

[∣∣BH
1

∣∣] p = 1/H
0 p > 1/H

(1.10)

where the limit is intended to be in L1(Ω,A ,P) and thus, up to passing a subse-
quence, it holds a.s..

Since it is clear that surely

V
(p)
0,T (BH) ≥ lim

n→+∞
V

(p)
0,T (BH ,Πn) ,

then, it is clear too that, for every 0 < H < 1, a.s.

V
(1)
0,T (BH) = +∞

that is, a.s. the trajectories of the fractional Brownian Motion, have not bounded
variation.
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1.1. THE FRACTIONAL BROWNIAN MOTION

Let us then note that the position ‖f‖p-var,[a,b] :=
(

V
(p)
a,b(f)

)1/p

defines a semi-

norm, called the p-variation seminorm which is linked to the α-Hölder seminorm
defined by (2.1): if f is α-Hölder continuous, then it has finite 1/α-variation; to be
precise the following inequality holds:

‖f‖ 1
α

-var,[a,b] ≤ ‖f‖α,[a,b](b− a)α.

Let us finally highlight the above p-variation and α-Hölder seminorms become
norms by setting

Θ(f)p-var,[a,b] := ‖f‖∞,[a,b] + ‖f‖p-var,[a,b]

Θ(f)α,[a,b] := ‖f‖∞,[a,b] + ‖f‖α,[a,b]

called the p-variation norm and the α-Hölder norm respectively.
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Chapter 2

Young Integration Theory

2.1 Foreword on Young Integral and overview on

the SDE

Consider 0 < λ ≤ 1 and s, t ∈ R, s < t; we will denote with C λ([s, t];Rd) the space
of measurable functions f : [s, t]→ Rd such that

‖f‖λ,[s,t] := sup
s≤u<v≤t

|f(v)− f(u)|
|v − u|λ

< +∞ (2.1)

which is the usual λ-Hölder space on [s, t] of Rd-valued functions (with | · | a norm
on Rd).

Notation: throughout this thesis, when there will be not ambiguities on the do-
main we are working on, we could omit it, e.g. writing ‖f‖λ and C λ(Rd) instead of
‖f‖λ,[s,t] and C λ([s, t];Rd) respectively.

The object of our interest is the following Stochastic Differential Equation

xt = ξ0 +

∫ t

0

b(s, xs) ds+

∫ t

0

σ(s, xs) dW
H
s + yt (2.2)

which we will now describe precisely.

(2.2) is an equation in Rd, where ξ0 ∈ Rd+ := {(x1, . . . , xd) : xi > 0 ∀i = 1, · · · , d}
is fixed and t ∈ [0, T ] for some fixed T > 0.

Next,
b : R≥0 × Rd → Rd

and
σ : R≥0 × Rd →Md,m(R)
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2.1. FOREWORD ON YOUNG INTEGRAL AND OVERVIEW ON THE SDE

are bounded measurable functions, called drift and diffusion coefficient, respectively.
We will assume the following hypotesis on them:

|b(t, x)− b(t, y)| ≤ K0|x− y| ∀x, y ∈ Rd, ∀t ∈ [0, T ] (2.3)

|σ(t, x)− σ(t, y)| ≤ K0|x− y| ∀x, y ∈ Rd, ∀t ∈ [0, T ] (2.4)

|σ(t, x)− σ(s, x)| ≤ K0|t− s|ν ∀x ∈ Rd, ∀s, t ∈ [0, T ] (2.5)

where ν ∈]1
2
, 1], K0 > 0 and | · | denotes every time a suitable norm, conveniently

chosen, which will be specified in the next chapter. Hence, both b and σ are Lips-
chitz in space and furthermore σ is ν-Hölder continous in time.

The term y = (yt)t≥0 is a vector valued, non-decreasing (the sup, the negative
part, and in general all tools which takes into account the total order of R, when
used for Rd elements, are clearly intended componentwise) process, whose role is to
mantain x non-negative; thus it allows the non-negativity constraint to be satisfied.
We want to describe explicitly this process: a suitable tool to tackle this problem is
the Skorokhod Problem, which we will now recall.

First of all let us set

C+(R+;Rd) := {x ∈ C (R+;Rd) : x0 ∈ Rd+} .

Then the Skorokhod Problem with normal reflection on Rd (SP for short) is the
following:

Definition 2.1.1. Given a path z ∈ C+(R+;Rd), a solution to the SP related to z
is a pair of functions (x, y), both in C+(R+;Rd), such that

1. xt = zt + yt and xt ∈ Rd+ for all t ≥ 0 ;

2. yi0 = 0 and t 7→ yit is non-decreasing for each i = 1, . . . , d;

3.
∫ t

0
xis dy

i
s = 0 for each i = 1, . . . , d and for all t ≥ 0.

Let us observe that since t 7→ yit is non-decreasing, it belongs to BV[0, T ] for any
fixed T > 0, thus the integral above is a Riemann-Stiltjes one, hence expressing it
as Riemann sums ∫ t

0

xis dy
i
s = lim

|Π0t|→0

n−1∑
j=0

xisj(y
i
sj+1
− yisj)

where the limit is taken over any partition Π0,t = {0 = s0 < s1 < · · · < sn = t} of
[0, t] whose mesh tends to 0, it can be seen that yi can increases only when xi is zero.

22



2.1. FOREWORD ON YOUNG INTEGRAL AND OVERVIEW ON THE SDE

Then it is well known (see [4] or [5]) how to write a solution to SPz explicitly for
each component of y (and thus of x):

yit = sup
s∈[0,t]

(
zis
)−
. (2.6)

The path x is called reflector of z, while the path y is called regulator of z.

We will apply this result to obtain the non-negativity constraint for each path in
(2.2): namely, setting

zt := ξ0 +

∫ t

0

b(s, xs) ds+

∫ t

0

σ(s, xs) dW
H
s

and solving for SPz, we can rewrite (2.2) as xt = zt+yt with x as the only unknown,
which satisfies a non-negativity constraint forced as wanted.
In the case of equation (2.2), x and y are called reflector term and regulator term,
respectively.

At this point, we need to explain how the stochastic integral∫ t

0

σ(s, xs) dW
H
s

has to be intended.
The classical stochastic integral (the one defined by Itô) is defined with respect

to the standard Brownian Motion; one of the central point in the construction of
this integral, is the fact that the increments of a Brownian Motion are indipendent.
In the case we consider (1/2 < H < 1), independence of the increments is lost, thus,
we cannot use the classical stochastic integral.

The strategy we will apply, is to use a pathwise approach, that is, working with a
fixed ω ∈ Ω: in this way we will both eliminate the indipendence problem and take
advantage from the regularity of the trajectories of the fractional Brownian Motion.
The right tool for our purposes is a generalization of the Riemann-Stiltjes integral,
which allows to perform integration with respect to functions (paths, in our case)
which has not necessarely bounded variation.

This is the Young integration, whose theory allows to define the integral∫ t

s

fu dgu

where f is λ-Hölder continous and g is γ-Hölder continous, where λ+ γ > 1. Young
integral will be introduced in the following sections, for which we will refer to [6] for
the first subsection and to [7] for the second one.
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2.2. INCREMENTS, THE MAP δ AND THE SEWING MAP Λ

2.2 Increments, the map δ and the Sewing Map Λ

The Young Integral is defined constructing an algebraic structure based on the
notion of increment togheter with an elementary operator δ acting on them. Let us
describe it.

First of all, for an arbitrary T > 0, a finite dimensional normed vector space
(V, | · |) on R (where | · | : V → R≥0 is a suitable norm on V ) and an integer k ≥ 1,
we denote by Ck(V ) the set of all continous functions f : [0, T ]k → V such that
ft1···tk = 0 if ti = ti+1 for some 1 ≤ i ≤ k − 1.
Such functions are called (k − 1)-increments.
Moreover we set C0(V ) := V .

Then endowing Ck(V ) with the pointwise sum (i.e. given f, h ∈ Ck(V ) we define
(f + h)t1···tk := ft1···tk + ht1···tk where this last sum is the one defined on the vector
space V ), and defining a scalar product as (αf)t1···tk := αft1···tk (where α ∈ R and
f ∈ Ck(V ) and this last product is the product of an element of V with a scalar) we
have given Ck(V ) an R-vector space structure; in particular (Ck(V ),+) becomes an
abelian group.

Next we define the operator δk (for any k ≥ 1) as follows:

δk : Ck(V )→ Ck+1(V ) , (δkf)t1···tk+1
:=

k+1∑
j=1

(−1)jft1···t̂j ···tk+1

where the hat ·̂ means the corresponding argument is omitted; define then δ0 : V →
C1(V ) that maps v ∈ V into the constant function ft ≡ v.

These maps δk are clearly R-linear maps and in particular are homomorphisms
of abelian groups.

Hence we can write

0
0→ C0(V )

δ0→ C1(V )
δ1→ C2(V )

δ2→ · · · (2.7)

where δk+1 ◦ δk = 0 (equivalently Im δk ⊆ ker δk+1): indeed, take f ∈ Ck(V ) and
consider

δk+1(δkfs1···sk+1
)t1···tk+2

=δk+1

(
k+1∑
j=1

(−1)jfs1···ŝj ···sk+1

)
t1···tk+2

=
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=−

− ft3t4···tk+2︸ ︷︷ ︸
=:a1,2

+ ft2t4···tk+2︸ ︷︷ ︸
=:a1,3

− ft2t3t5···tk+2︸ ︷︷ ︸
=:a1,4

+ · · · (−1)k+1 ft2t3t4···tk+1︸ ︷︷ ︸
=:a1,k+2


+

− ft3t4···tk+2︸ ︷︷ ︸
=:a2,1

+ ft1t4···tk+2︸ ︷︷ ︸
=:a2,3

− ft1t3t5···tk+2︸ ︷︷ ︸
=:a2,4

+ · · · (−1)k+1 ft1t3t4···tk+1︸ ︷︷ ︸
=:a2,k+2


−

− ft2t4···tk+2︸ ︷︷ ︸
=:a3,1

+ ft1t4···tk+2︸ ︷︷ ︸
=:a3,2

− ft1t2t5···tk+2︸ ︷︷ ︸
=:a3,4

+ · · · (−1)k+1 ft1t2t5···tk+1︸ ︷︷ ︸
=:a3,k+2


+ · · ·+

(−1)k+2

− ft2t3···tk+1︸ ︷︷ ︸
=:ak+2,1

+ ft1t3···tk+1︸ ︷︷ ︸
=:ak+2,2

− ft1t2t4···tk+1︸ ︷︷ ︸
=:ak+2,3

+ · · · (−1)k+1 ft1t2t3···tk︸ ︷︷ ︸
=:ak+2,k+1


= −

∑
1≤i<j≤k+2

(−1)i+jai,j +
∑

1≤j<i≤k+2

(−1)i+jai,j = 0

since clearly ai,j = aj,i.

Thus, the sequence (2.7) of abelian groups connected with such homomorphisms
is a cochain complex, denoted with (C∗(V ), δ), where C∗(V ) :=

⋃
k≥0 Ck(V ), and the

above mentioned operator δ : C∗(V ) → C∗(V ) is called coboundary operator and is
defined acting on the increments as δk do, i.e. δ|Ck(V )

:= δk.
We can rewrite the above property as δ ◦ δ ≡ 0.

Now, we have proved that Im δk ⊆ ker δk+1, but something stronger holds: the
inclusion is indeed an equality, as we now prove.
Let f ∈ Ck+1(V ) such that

δk+1ft1···tk+1 t̃
=− ft2t3t4···tk+1 t̃

+ ft1t3t4···tk+1 t̃
− ft1t2t4···tk+1 t̃

+ · · ·
+ (−1)k+1ft1···tk t̃ + (−1)k+2ft1···tktk+1

= 0

from which we have that

(−1)k+1ft1···tktk+1
= −ft2t3t4···tk+1 t̃

+ ft1t3t4···tk+1 t̃
− ft1t2t4···tk+1 t̃

+ · · ·+ (−1)k+1ft1···tk t̃︸ ︷︷ ︸
=:Ft1···tk+1 t̃

and thus F does not depend on t̃; in particular we have that

Ft1···tk+1 t̃
≡ Ft1···tk+10
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from which, setting gs1···sk := (−1)k+1fs1···sk0, we obtain that g ∈ Ck(V ) and δkg = f ,
as wanted.

Thus the sequence (2.7) is exact, which is another way to say the cochain com-
plex (C∗(V ), δ) is acyclic, that is, having denoted Z C k(V ) := Ck(V ) ∩ ker δk and
BC k(V ) := Ck(V ) ∩ Im δk−1 the spaces of k-cocycles and k-coboundaries respec-
tively, Z C k(V ) = BC k(V ) for any k ≥ 1.

Even if we have introduced the subject in a general setting, the cases we will
investigate the most are k = 1, 2, for which we will write explicitly how δk works:
taking f ∈ C1(V ), h ∈ C2(V ) and s, t, u ∈ [0, T ], we have that

(δ1f)st = ft − fs , (δ2h)stu = −htu + hsu − hst .

We resume now the fact above proved in the following

Lemma 2.2.1. Let k ≥ 1 and h ∈ Z C k+1(V ). Then there exists a (nonunique)
f ∈ Ck(V ) such that δkf = h.

In particular, taking a 1-increment h ∈ C2(V ) such that δ2h = 0, Lemma (2.2.1)
ensures the existence of a (nonunique) f ∈ C1(V ) such that hts = ft − fs; this pro-
vides an heuristic interpretation on how δ works on C2(V ): it measures how much a
1-increment is far from being an exact increment of a function, i.e. a finite difference.

We have already pointed out that we will deal mainly with k-increments, with
k ≤ 2. We now need a tool which will allow us to handle these objects properly:
namely, we measure the size of the increments with suitable Hölder-type norms,
which we are going to describe.

Let us fix λ > 0; if h ∈ C2(V ), we set

‖h‖λ := sup
s,t∈[0,T ]
s 6=t

|hts|
|t− s|λ

and
C λ

2 (V ) := {h ∈ C2(V ) : ‖h‖λ < +∞} .

Note that we have not specified the domain we are working on is [0, T ], since from
the context it is clear and this will not lead to any ambiguity.

Let us remark that the usual λ-Hölder space on [0, T ] of V -valued functions
as defined at the beginning of the section, can be recovered in the k-increments
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framework: if f ∈ C1(V ) we have

‖f‖λ = ‖δ1f‖λ

and thus, setting

C λ
1 (V ) := {f ∈ C1(V ) : ‖δ1f‖λ < +∞}

we trivially have C λ(V ) = C λ
1 (V ).

Finally, given g ∈ C3(V ) and γ, ρ > 0, we set

‖g‖ρ,γ := sup
s,t,u∈[0,T ]
t6=u6=s

|gsut|
|u− s|ρ|t− u|γ

from which we define

‖g‖λ := inf

{∑
j

‖gj‖ρj ,λ−ρj : g =
∑
j

gj, 0 < ρj < λ

}
,

where this last infimum is taken over all sequences {gj}j ⊂ C3(V ) such that g =∑
j g

j (when the sequence is not finite, we intend the sum converging pointwise,
with respect to the norm considered on V - notice that being V finite dimensional
R-linear space, all the norms on it are equivalent) and all choices of the numbers
0 < ρj < λ.
Let us note that, given g ∈ C λ

3 , we have

‖g‖λ ≤ ‖g‖ρ,λ−ρ ∀ 0 < ρ < λ. (2.8)

Then, ‖ · ‖λ is a norm on C3(V ) and we can consider

C λ
3 (V ) := {g ∈ C3(V ) : ‖g‖λ < +∞} ,

which is clearly an R-vector space.
Note that the same kind of norms can be considered on the space Z C 3(V ), leading
to the definition of the spaces Z C λ

3(V ) and thus Z C 1+
3 (V ), where we have set

C 1+
3 (V ) :=

⋃
λ>1 C λ

3 (V ).

The crucial point in this approach to pathwise integration of irregular processes
is that, under suitable conditions, the operator δ admits a right inverse. We call
this operator the sewing map, and we denote it by Λ; we prove its existence in the
following
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2.2. INCREMENTS, THE MAP δ AND THE SEWING MAP Λ

Theorem 2.2.1 (The Sewing Map). There exists a unique map

Λ : Z C 1+
3 (V )→ C 1+

2 (V )

such that
δ ◦ Λ = IdZ C 1+

3 (V ) .

Moreover, we have that

‖Λh‖λ ≤
1

2µ − 2
‖h‖λ ∀h ∈ Z C λ

3(V ), (2.9)

from which Λ : Z C λ
3(V ) → C λ

2 (V ) is lipschitz and thus continous for every fixed
λ > 1, since Λ is linear when seen as an operator Z C λ

3(V )→ C λ
2 (V ).

Proof. Let us fix h ∈ Z C 1+
3 ; hence h ∈ Z C λ

3 for some λ > 1.

Step 1: Let us start by proving the uniqueness of the sewing map.
In the next Steps, we will prove the existence of a 1-increment M ∈ C λ

2 (V ) such
that δM = h, that is δ : C λ

2 (V )→ Z C λ
3(V ) is surjective, which is equivalent to say

that it is right invertible; this right inverse is denoted by Λ and it is clearly defined
as Λh := M .
Now, the existence of another 1-increment M ′ ∈ C λ

2 (V ) such that δM ′ = h is
equivalent to the existence of another right inverse Λ′, which is defined as Λ′M ′ := h,
as above.
Thus, proving that M ′ = M (for every fixed h) will imply that Λ′ = Λ, that is the
sewing map is unique, as claimed.
So, setting Q := M −M ′, it is clear that δQ = 0 by linearity.
Hence Q ∈ Z C λ

2(V ) and thus, by Lemma (2.2.1), there exists q ∈ C λ
1 (V ) such that

Qts = (δq)ts = qt − qs for every t, s ∈ [0, T ], from which we have that

sup
0≤s<t≤T

|qt − qs|
|t− s|λ

= sup
0≤s<t≤T

|Qts|
|t− s|λ

= ‖Q‖λ .

So for every 0 ≤ s < t ≤ T we have that

0 ≤ |qt − qs|
|t− s|

≤ ‖Q‖λ|t− s|λ−1

hence, taking s fixed and passing to the limit for t → s in the above expression,
since λ − 1 > 0, we get |q′s| = 0 (notice that both the value and the existence of
this limit are guaranteed by two policemen theorem). Since this holds for every s,
we have that q′ ≡ 0 on [0, T ], from which we deduce q is constant on [0, T ], which
implies Q = 0, i.e. M ′ = M , as wanted.

28



2.2. INCREMENTS, THE MAP δ AND THE SEWING MAP Λ

Step 2: Let us now construct a 1-increment M ∈ C λ
2 (V ) satisfying δM = h.

Since δh = 0, invoking again Lemma (2.2.1) we know that there exists a B ∈ C2(V )
such that δB = h. We will build our M starting from B.
Pick s, t ∈ [0, T ] with s < t and, for n ≥ 0, consider the dyadic partition {rni : 0 ≤
i ≤ 2n} of the interval [s, t], that is

rni := s+
t− s
2n

i , 0 ≤ i ≤ 2n.

Then, we can define

Mn
ts := Bts −

2n−1∑
i=0

Brni+1r
n
i

(2.10)

which is a continous function and vanishes whenever s = t, thus Mn ∈ C2(V ).

Now we have

Mn+1
ts −Mn

ts = −
2n+1−1∑
i=0

Brn+1
i+1 r

n+1
i

+
2n−1∑
i=0

Brni+1r
n
i

= −
2n−1∑
i=0

Brn+1
2i+1r

n+1
2i
−

2n−1∑
i=0

Brn+1
2i+2r

n+1
2i+1

+
2n−1∑
i=0

Brni+1r
n
i

=
2n−1∑
i=0

Brn+1
2i+2r

n+1
2i
−Brn+1

2i+1r
n+1
2i
−Brn+1

2i+2r
n+1
2i+1

=
2n−1∑
i=0

(δB)rn+1
2i+2r

n+1
2i+1r

n+1
2i

=
2n−1∑
i=0

hrn+1
2i+2r

n+1
2i+1r

n+1
2i

where the second equality is obtained by splitting odd and even terms, while the
third one is got by observing that rni = rn+1

2i and rni+1 = rn+1
2i+2.

Considering then some {hj}j ⊂ C3(V ) such that h =
∑

j h
j, some 0 < ρj < λ and
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setting as := rn+1
2i+s for s = 0, 1, 2, one has that

|Mn+1
ts −Mn

ts| ≤
2n−1∑
i=0

|ha2a1a0|

≤
2n−1∑
i=0

∑
j

∣∣hja2a1a0

∣∣
=

2n−1∑
i=0

∑
j

∣∣hja2a1a0

∣∣
|a2 − a1|λ−ρj |a1 − a0|ρj

|a2 − a1|︸ ︷︷ ︸
=
|t−s|
2n+1

λ−ρj |a1 − a0|︸ ︷︷ ︸
=
|t−s|
2n+1

ρj

≤ |t− s|
λ

2λ(n+1)

2n−1∑
i=0

∑
j

‖hj‖ρj ,λ−ρj

=
|t− s|λ

2λ2n(λ−1)

∑
j

‖hj‖ρj ,λ−ρj

thus, passing to the inf on the sequences {hj}j ⊂ C3(V ) such that h =
∑

j h
j and

on the ρj ∈]0, λ[ we get

|Mn+1
ts −Mn

ts| ≤
|t− s|λ‖h‖λ

2λ2n(λ−1)
. (2.11)

Since M0
ts = 0, we have that Mn

ts =
∑n−1

j=0 M
j+1
ts −M

j
ts, from which

|Mn
ts| ≤

n−1∑
j=0

|M j+1
ts −M

j
ts| ≤

|t− s|λ‖h‖λ
2λ

n−1∑
j=0

1

2j(λ−1)
,

and thus Mts := limn→+∞M
n
ts exists and satisfies

|Mts|
|t− s|λ

≤ ‖h‖λ
2λ

+∞∑
j=0

1

2j(λ−1)
=

1

2λ − 2
‖h‖λ . (2.12)

From this we deduce that Mts vanishes whenever t = s; moreover in step 4 we will
the continuity of M and thus it belongs to C2(V ).
Finally, since (2.12) holds for all s, t ∈ [0, T ] with s 6= t, passing to the sups,t∈[0,T ],s 6=t
we get

‖M‖λ ≤
1

2λ − 2
‖h‖λ

from which M ∈ C λ
2 (V ). In step 6 it will be shown that δM = h, from which the

right inverse of δ is defined as Λh := M and thus (2.9) is satisfied.
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Step 3: We want to do the same as in step 2, but now with a general sequence
of partitions of [s, t].
Consider thus {Πn}n≥1, say Πn := {s = rn0 < rn1 < · · · < rnkn < rnkn+1 = t}, such
that its mesh |Πn| := max0≤i≤kn |rni+1− rni | tends to 0 as n→ +∞ and, without loss
of generality, Πn ( Πn+1 ∀n ≥ 1, from which {kn}n≥1 ⊆ N is a strictly increasing
sequence.
Set then

MΠn
ts := Bts −

kn∑
l=0

Brnl+1r
n
l
.

Now, if 2|t−s|
kn

� |rnl+1 − rnl−1| for all 1 ≤ l ≤ kn, supposing kn odd, say kn = 2m− 1,
we have that

|t− s| =
m∑
j=1

|rn2j − rn2(j−1)|  m
2|t− s|
kn


kn
2

2|t− s|
kn

= |t− s|

which is a contradiction. If kn was even, once set kn = 2m, the argument is the
same.
Thus there exists some 1 ≤ l1 ≤ kn such that

|rnl1+1 − rnl1−1| ≤
2|t− s|
kn

(2.13)

Set then

Π(1)
n := Πn \ {rnl1}

from which it is clear that

MΠ
(1)
n

ts = Bts −
kn∑
l=0

Brnl+1r
n
l︸ ︷︷ ︸

=MΠn
ts

+
(
Brnl1+1r

n
l1

+Brnl1
rnl1−1
−Brnl1+1r

n
l1−1

)
︸ ︷︷ ︸

=−(δB)rn
l1+1

rn
l1
rn
l1−1

= MΠn
ts − hrnl1+1r

n
l1
rnl1−1

and thus, as before, we consider some {hj}j ⊂ C3(V ) such that h =
∑

j h
j, some

0 < ρj < λ and setting as := rn+1
l1+s for s = −1, 0, 1 we have that

31



2.2. INCREMENTS, THE MAP δ AND THE SEWING MAP Λ

∣∣∣MΠn
ts −M

Π
(1)
n

ts

∣∣∣ =
∣∣ha1a0a−1

∣∣
≤
∑
j

∣∣hja1a0a−1

∣∣
=
∑
j

∣∣hja1a0a−1

∣∣
|a1 − a0|λ−ρj |a0 − a−1|ρj

|a1 − a0|︸ ︷︷ ︸
≤|a1−a−1|

λ−ρj |a0 − a−1|︸ ︷︷ ︸
≤|a1−a−1|

ρj

(2.13)

≤
(

2|t− s|
kn

)λ∑
j

‖hj‖ρj ,λ−ρj ,

from which, passing to the inf on {hj}j and ρj as above, we get∣∣∣MΠn
ts −M

Π
(1)
n

ts

∣∣∣ ≤ 2λ‖h‖λ
(
|t− s|
kn

)λ
. (2.14)

We can now repeat the argument on Π
(1)
n , finding thus an index l2 for which (2.13)

holds and allows hence to define Π
(2)
n := Π

(1)
n \{rnl2} = Πn\{rnl1 , r

n
l2
} and, as did above,

after having observed that MΠ
(2)
n

ts = MΠ
(1)
n

ts − hrnl2+1r
n
l2
rnl2−1

, to obtain the following
esimate ∣∣∣MΠ

(1)
n

ts −MΠ
(2)
n

ts

∣∣∣ ≤ 2λ‖h‖λ
(
|t− s|
kn − 1

)λ
.

We proceed inductively by defining

Π(j)
n := Πn \ {rnl1 , . . . , r

n
lj
}, j = 1, . . . , kn

and getting ∣∣∣MΠ
(j)
n

ts −MΠ
(j−1)
n

ts

∣∣∣ ≤ 2λ‖h‖λ
(
|t− s|

kn − j + 1

)λ
. (2.15)

for j = 2, . . . , kn.

Thus, observing that MΠ
(kn)
n

ts = 0 (since Π
(kn)
n = {s, t} is the trivial partition), one

gets immediately MΠn
ts = MΠn

ts − MΠ
(1)
n

ts +
∑kn

j=2

(
MΠ

(j−1)
n

ts −MΠ
(j)
n

ts

)
, from which,

exploiting (2.14) and (2.15) we have that∣∣MΠn
ts

∣∣ ≤ ∣∣∣MΠn
ts −M

Π
(1)
n

ts

∣∣∣+
kn∑
j=2

∣∣∣MΠ
(j−1)
n

ts −MΠ
(j)
n

ts

∣∣∣
≤ 2λ‖h‖λ|t− s|λ

kn∑
j=1

1

jλ

≤ 2λ‖h‖λζ(λ)︸ ︷︷ ︸
=:ch,λ

|t− s|λ
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from which the sequence
{
MΠn

ts

}
n≥1
⊂ V is bounded and thus, by Bolzano-Weierstrass

(in fact being V a finite dimensional R-vector space, it is isomorphic to RN , for some

N) admits a converging subsequence
{
M

Πnj
ts

}
j≥1
⊂ V to an element we denote by

Mts which satisfy |Mts| ≤ ch,λ|t− s|λ.

Step 4: Let us see that M is continous in a fixed point (t0, s0).
Let us fix ε > 0 and search for some δ > 0 such that

|Mts −Mt0s0| < ε ∀(t, s) ∈ B(t0,s0)(δ)

where B(x0,y0)(r) is the open ball centered in (x0, y0) and radius r > 0.

Denote the n-th dyadic partition of [s, t] already used in Step 2 with Π
[s,t]
n , specifying

now the interval [s, t].

So, calling SΠ
[s,t]
n :=

∑2n−1
i=0 Brni+1r

n
i
, where clearly rni = s+ t−s

2n
i, let us rewrite (2.10)

with this notation:
MΠ

[s,t]
n

ts = Bts − SΠ
[s,t]
n .

Moreover we have seen
{
MΠ

[s,t]
n

ts

}
n≥1

admits limit Mts, so does
{
SΠ

[s,t]
n

}
n≥1

; we de-

note this last limit by Sts.

We will consider different cases according on all the possible relations between the
two intervals [s, t] and [s0, t0], supposing always, without loss of generality, that
[s, t] ∩ [s0, t0] 6= ∅ and [s, t] 6= [s0, t0].

Case A: [s, t] \ [s0, t0] 6= ∅ 6= [s0, t0] \ [s, t]. (2.16)

We now split S in a suitable way, writing

MΠ
[s,t]
n

ts = Bts +
(
Bbnan − SΠ

[s,t]
n ∩[s0,t0]

)
−Bbnan − SΠ

[s,t]
n \[s0,t0] (2.17)

and

MΠ
[s0,t0]
n

t0s0 = Bt0s0 +
(
Bdncn − SΠ

[s0,t0]
n ∩[s,t]

)
−Bdncn − SΠ

[s0,t0]
n \[s,t] (2.18)

where

an := min
{

Π[s,t]
n ∩ [s0, t0]

}
, bn := max

{
Π[s,t]
n ∩ [s0, t0]

}
cn := min

{
Π[s0,t0]
n ∩ [s, t]

}
, dn := max

{
Π[s0,t0]
n ∩ [s, t]

}
.

Now, as n → +∞, supposing without loss of generality that the intersections are
not empty, it is clear that,

an → inf

{⋃
n≥1

Π[s,t]
n ∩ [s0, t0]

}
= min {[s, t] ∩ [s0, t0]} =: p
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where the last equality follows since
⋃
n≥1 Π

[s,t]
n is dense in [s, t].

Similarly we have that bn → max {[s, t] ∩ [s0, t0]} =: q and cn → p , dn → q.
Hence it should be clear that

Bbnan − SΠ
[s,t]
n ∩[s0,t0] −→Mqp , n→ +∞

and
Bdncn − SΠ

[s0,t0]
n ∩[s,t] −→Mqp , n→ +∞.

Moreover, setting

ξ := inf

{⋃
n≥1

Π[s,t]
n \ [s0, t0]

}
= inf {[s, t] \ [s0, t0]} , η := sup {[s, t] \ [s0, t0]}

and
ξ∗ := inf {[s0, t0] \ [s, t]} , η∗ := sup {[s0, t0] \ [s, t]}

and passing to the limit in (2.17) and (2.18) for n→ +∞, they turn into

Mts = Bts +Mqp −Bqp − Sηξ

and
Mt0s0 = Bt0s0 +Mqp −Bqp − Sη∗ξ∗

respectively, from which we immediately have

|Mts −Mt0s0| ≤ |Bts −Bt0s0|+ |Sηξ|+ |Sη∗ξ∗| .

Recalling then that B is continous, we find δ1 > 0 such that |Bts −Bt0s0| < ε
3

for
every (t, s) ∈ B(t0,s0)(δ1).

Next, since ‖M‖λ < +∞ (Step 2), we have that |Mts| ≤ ‖M‖λ|t−s|λ ∀s, t ∈ [0, T ],
from which M is continuous on the diagonal of [0, T ]2. Now, since Sts = Bts −Mts

and B is continuous on the whole [0, T ]2, it follows that S is continuous on the
diagonal too.

Now, observing the pair (s, t) respects the restriction (2.16) if and only if it be-
longs to

X(s0,t0) :=
{

(s, t) ∈ [0, T ]2 : (0 ≤ s < s0 < t < t0 ≤ T ) ∨ (0 ≤ s0 < s < t0 < t ≤ T )
}
,

we have that
lim

(s,t)→(s0,t0)
(s,t)∈X(s0,t0)

|η − ξ| = 0
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and thus
lim

(s,t)→(s0,t0)
(s,t)∈X(s0,t0)

Sηξ = 0 .

Clearly we have identical results when dealing with (ξ∗, η∗).
Hence we can find δ2 > 0 such that |Sηξ| , |Sη∗ξ∗ | < ε

3
for every (t, s) ∈ B(t0,s0)(δ2) ∩

X(s0,t0) and thus, putting all togheter and setting δA := min{δ1, δ2}, we finally get

|Mts −Mt0s0| < ε ∀(t, s) ∈ B(t0,s0)(δA) ∩X(s0,t0).

Case B: [s, t] \ [s0, t0] = ∅. (2.19)

Now a pair (s, t) satisfy this condition if and only if it belongs to

Y(s0,t0) :=
{

(s, t) ∈ [0, T ]2 : 0 ≤ s0 ≤ s < t ≤ t0 ≤ T
}
.

In particular in this case we have [s0, t0]\ [s, t] = [s0, s[∪ ]t, t0]; as did before we split

S conveniently (but now the equation for MΠ
[s0,t0]
n

ts is enough):

MΠ
[s0,t0]
n

t0s0 = Bt0s0 +
(
Bts − SΠ

[s0,t0]
n ∩[s,t]

)
−Bts − SΠ

[s0,t0]
n ∩[s0,s[ − SΠ

[s0,t0]
n ∩]t,t0]

and letting n→ +∞ this last equation turns into

Mt0s0 = Bt0s0 +Mts −Bts − Sss0 − St0t; ,

from which we immediately get

|Mts −Mt0s0 | ≤ |Bts −Bt0s0|+ |Sss0|+ |St0t| .

and with the same arguments used in Case A, we find a δB > 0 such that

|Mts −Mt0s0| < ε ∀(t, s) ∈ B(t0,s0)(δB) ∩ Y(s0,t0).

Case C: [s0, t0] \ [s, t] = ∅. (2.20)

Now a pair (s, t) satisfy this condition if and only if it belongs to

Z(s0,t0) :=
{

(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ s0 < t0 ≤ t ≤ T
}
.

It is identical to Case B; thus there exists δC > 0 such that

|Mts −Mt0s0| < ε ∀(t, s) ∈ B(t0,s0)(δC) ∩ Z(s0,t0).
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Since X(s0,t0) ∪ Y(s0,t0) ∪Z(s0,t0) = [0, T ]2, setting δ := min{δA, δB, δC}, we can finally
conclude that

|Mts −Mt0s0| < ε ∀(t, s) ∈ B(t0,s0)(δ),

obtaining then the continuity of M at the point (s0, t0).

Step 5: Let us show that M does not depend on the particular sequence of
partitions we use to define it, hence M is well defined.
Let us consider two arbitrary sequences of partitions of the interval [s, t] such that
their meshes go to 0.
Let us fix ideas: for n ≥ 1 we write

Πn := {s = rn0 < rn1 < · · · < rnkn < rnkn+1 = t}
Sn := {s = un0 < un1 < · · · < unhn < unhn+1 = t}

where we have |Πn| , |Sn| → 0 as n→ +∞ and we suppose without loss of general-
ity that Πn ( Πn+1 and Sn ( Sn+1, from which {hn}n≥1, {kn}n≥1 ⊆ N are strictly
increasing sequences.
Let us define then Un := Πn∪Sn and un+2 as the cardinality of Un; then, relabeling
the elements of Un, we can write Un = {s = tn0 < tn1 < · · · < tnun < tnun+1 = t}

We recall that

MΠn
ts = Bts −

kn∑
i=0

Brni+1r
n
i

and MSn
ts = Bts −

hn∑
i=0

Buni+1u
n
i
.

We want to prove that

∣∣MΠn
ts −MSn

ts

∣∣ n→+∞−→ 0.

So, let us consider

∣∣MΠn
ts −MSn

ts

∣∣ ≤ ∣∣MΠn
ts −MUn

ts

∣∣+
∣∣MUn

ts −MSn
ts

∣∣ .
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Now

∣∣MΠn
ts −MUn

ts

∣∣ =

∣∣∣∣∣
kn∑
i=0

Brni+1r
n
i
−

un∑
j=0

Btnj+1t
n
j

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
kn∑
i=0

Brni+1r
n
i
−

∑
tnj ,t

n
j+1∈Un

rni ≤tnj <tnj+1≤rnl+1

Btnj+1t
n
j


∣∣∣∣∣∣∣∣∣

≤
kn∑
i=0

∣∣∣∣∣∣∣∣∣Brni+1r
n
i
−

∑
tnj ,t

n
j+1∈Un

rni ≤tnj <tnj+1≤rnl+1

Btnj+1t
n
j

∣∣∣∣∣∣∣∣∣
=

kn∑
i=0

∣∣∣MUn∩[rni ,r
n
i+1]

rni+1r
n
i

∣∣∣
≤ ch,λ

kn∑
i=0

|rni+1 − rni |λ

≤ ch,λ|Πn|λ−1

kn∑
i=0

|rni+1 − rni |

= ch,λ|Πn|λ−1|t− s| n→+∞−→ 0.

The proof that even
∣∣MUn

ts −MSn
ts

∣∣ goes to 0 is the same because of the simmetry of
Πn and Sn with respect to Un.

Hence we have proved that limnM
Πn
ts does not depend on the particular sequence of

partitions used (provided its mesh goes to 0) and thus we can use the more useful
one, depending on the situation.

Step 6: Let us finally prove that δM = h.
Pick 0 ≤ s < u < t ≤ T , and consider two sequences of partitions of the intervals
[s, u] and [u, t] whose meshes go to 0 as n → +∞, say {Π[s,u]

n }n≥1 and {Π[u,t]
n }n≥1

respectively.
Set then Π

[s,t]
n := Π

[s,u]
n ∪ Π

[u,t]
n , which defines in turn a sequence of partitions of the

interval [s, t] whose mesh goes to 0.
As seen in Step 3, up to passing to a subsequence we have that

lim
n→+∞

MΠ
[s,u]
n

us = Mus , lim
n→+∞

MΠ
[u,t]
n

tu = Mtu , lim
n→+∞

MΠ
[s,t]
n

ts = Mts .

Calling then k
[s,u]
n + 2, k

[u,t]
n + 2 and k

[s,t]
n + 2 the number of points of the partitions
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Π
[s,u]
n , Π

[u,t]
n and Π

[s,t]
n respectively, and setting Π

[s,t]
n = {rni }

k
[s,u]
n +k

[u,t]
n +2

i=0 we have that

−MΠ
[u,t]
n

tu +MΠ
[s,t]
n

ts −MΠ
[s,u]
n

us =

(δB)tus︷ ︸︸ ︷
(−Btu +Bts −Bus) +

+

k
[s,u]
n +k

[u,t]
n +1∑

i=k
[s,u]
n +1

Brni+1r
n
i
−

k
[s,u]
n +k

[u,t]
n +1∑

i=0

Brni+1r
n
i

+

k
[s,u]
n∑
i=0

Brni+1r
n
i


︸ ︷︷ ︸

=0

= htus

from which, passing to the limit for n→ +∞ we get

htus = −Mtu +Mts −Mus = (δM)tus

that is δM = h, as wanted.

Remark: Given a linear map between vector spaces ϕ : V → W , it is well
known that if it is invertible on one side, a priori we cannot say anything nor on
uniqueness of this one-side inverse, neither on the invertibility of ϕ on the other side.

Nevertheless it can be proved that if ϕ admits an inverse on one side, such a
side-inverse is unique if and only if ϕ is invertible on the other side too.

In the previous theorem, for every λ > 1 fixed, we have proved the right invert-
ibility of the linear map δ2 : C λ

2 (V ) → Z C λ
3(V ) and also that this right inverse is

unique; hence this linear map is left invertible too.
What we will use in the sequel is indeed left invertibility of δ2 : C λ

2 (V ) →
Z C λ

3(V ) and the efforts done in order to prove right invertibility are justified since
right invertibility is equivalent to the uniqueness of the left inverse: in this way the
left inverse is well defined and uniquely determined.

It is important to note that left invertibility is no more verified if we look
at δ2 as a map C2(V ) → Z C 3(V ), in fact it is equivalent to injectivity and
ker δ2 ∩ C2(V ) = Im δ1 ∩ C2(V ), but clearly this last one is not {0}.

Theorem 2.2.1, togheter with this last considerations, allows to get a canonical
decomposition of the preimage of the space Z C 1+

3 (V ) under δ, or, equivalently, of
a function h ∈ C2(V ) whose increment δh is smooth enough:

Corollary 2.2.1. Given h ∈ C2(V ) such that δ2h ∈ C λ
3 (V ) for some λ > 1; then

there exists, modulo a constant, a unique f ∈ C1(V ) such that h can be decomposed
as

h = δ1f + Λδ2h (2.21)

Proof. First of all, let us note that since h is taken in C2(V ) (not in C λ
2 (V )), as

pointed out in the previous remark, Λδ2h in general is not equal to h; thus g :=
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h− Λδ2h is not a trivial element of C2(V ).
On the other hand, having assumed δ2h ∈ C λ

3 (V ), we have that δ2Λδ2h = δ2h and
thus g ∈ Z C 2(V ) = BC 2(V ). Hence there exists an element f ∈ C1(V ) such that
δ1f = g = h− Λδ2h that is (2.21).

If there was a different f̃ ∈ C2(V ) which satisfy (2.21), then we would have δ1f +

Λδ2h = h = δ1f̃ + Λδ2h from which δ1(f − f̃) = 0 that is, f − f̃ ∈ Z C 1(V ) =

BC 1(V ) = V , i.e. ∃v ∈ V such that f̃ ≡ f + v as claimed.

At this point the link between the structure we have introduced and the integra-
tion of irregular functions is not clear yet, but the next Corollary deals with a limit
of a sum as the mesh of a sequence of partitions goes to 0, which begins to move
closer to something that reminds integration territory:

Corollary 2.2.2 (Integration of small increments). For any 1-increment h ∈ C2(V )
such that δh ∈ C λ

3 (V ) for some λ > 1, set δf = (Id−Λδ)h. Then

(δf)ts = lim
n→+∞

kn∑
i=0

hti+1ti (2.22)

where the limit is taken over any sequence of partitions Πn = {s = t0 < t1 < · · · <
tkn < tkn+1 = t} of the interval [s, t] whose mesh tends to 0.
The 1-increment δf is the indefinite integral of the 1-increment δh.

Proof. Let us define partial sums for h with respect to the sequence of partitions
{Πn}n≥1:

SΠn
ts :=

kn∑
i=0

hti+1ti

Then, since h = δf + Λδh we have that

SΠn
ts =

kn∑
i=0

(δf)ti+1ti +
kn∑
i=0

(Λδh)ti+1ti = (δf)ts +
kn∑
i=0

(Λδh)ti+1ti .

Now, being Λδh ∈ C λ
2 (V ), the latter series converges to 0, in fact for a generic
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element η ∈ C λ
2 (V ) we have that∣∣∣∣∣

kn∑
i=0

ηti+1ti

∣∣∣∣∣ ≤
kn∑
i=0

∣∣ηti+1ti

∣∣
=

kn∑
i=0

∣∣ηti+1ti

∣∣
|ti+1 − ti|λ

|ti+1 − ti|λ

≤ ‖η‖λ
kn∑
i=0

|ti+1 − ti|λ

≤ ‖η‖λ|Πn|λ−1

kn∑
i=0

|ti+1 − ti|

= ‖η‖λ|Πn|λ−1|t− s| n→+∞−→ 0

This proves both the relation (2.22) and its well definition (the limit does not depend
on the particular sequence of partitions, provided its mesh goes to 0).

2.3 From Riemann Integral to Young Integral

Let us now fix an interval [a, b] ⊂ R.
A tagged partition of [a, b] is a pair (Πn, τn), where Πn = {a = t0 < t1 < · · · < tkn <
tkn+1 = b} is a usual partition of the interval [a, b], while τn = {ai}kni is a finite
sequence of arbitrary numbers such that ti ≤ ai ≤ ti+1.
The mesh of a tagged partition as above is defined as the mesh of Πn.

The Riemann Sums of a real valued continuous function defined on [a, b], say
f : [a, b]→ R, with respect to the tagged partition (Πn, τn), is defined as:

S(Πn,τn) :=
kn∑
i=0

f(ai)(ti+1 − ti) .

Then we can define the usual Riemann Integral of a continuous function on [a, b] as
the limit of its Riemann Sums over any sequence of tagged partitions whose mesh
tends to 0: ∫ b

a

f(x) dx := lim
n→+∞

kn∑
i=0

f(ai)(ti+1 − ti).

It can be proved that this object is well defined, that is, it does not depend on
the particular sequence of partitions chosen (provided its mesh goes to 0).
Now we observe that the measure we integrate with respect to, is the one which
measures the interval [ti, ti+1] as ti+1 − ti = Id(ti+1) − Id(ti); it could be useful, in
some contexts, to integrate a function over a path which is not a segment (or a line),
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but a more irregular path; in order to perturb our segment we have to use a function
g different from the identity.

The Riemann-Stieltjes Integral of a function f with respect to g, raises right
from this consideration and, at this point, its definition is obvious:

∫ b

a

f(x) dg(x) := lim
n→+∞

kn∑
i=0

f(ati)(g(ti+1)− g(ti)). (2.23)

where the limit is over any sequence of tagged partitions such that its mesh tends
to 0 (and, as before, this object is well defined).
One of the first problem that arises naturally is to detect all the possible pairs of
functions (f, g) for which (2.23) make sense.
One possible class of such pairs is given by taking f ∈ C ([a, b];R) and g ∈ BV([a, b];R),
that is f continuous and g with bounded variation.

Let us consider now a trajectory of the fractional Brownian Motion of Hurst
index 0 < H < 1, say t 7→ WH

t (ω); we have already pointed out (see the end of the
previous chapter) that a.s. it is not of bounded variation.

Thus we would have some problem to perform Riemann-Stieltjes integral of a
continuous functions with respect to a trajectory of the fractional Brownian Motion
of any Hurst parameter H and this is one of the reasons why we need a different
integration tool.

A kind of integral that fits our problem is in fact the Young Integral, since it
allows to integrate functions f ∈ C λ

1 (Md,m(R)) with respect to g ∈ C γ
1 (Rd), when

λ+ γ > 1. Let us see how this can be performed.

Suppose at first f : [0, T ] → Md,m(R) and g : [0, T ] → Rm be regular enough

such that, for 0 ≤ s < t ≤ T , the Riemann-Stieltjes integral
∫ t
s
fu dgu is well defined

(another case in which this happens is when f is Riemann-integrable and g is lips-
chitz). We will exploit the usual integration rules in order to manipulate

∫ t
s
fu dgu

until we express it in terms of Λ, fact that will allow us to extend the definition of
integral to functions f and g with the regularity above promised.
This extended integral is the Young Integral.
Let us denote Iab(f dg) :=

∫ t
s
fu dgu, using, in the sequel, one or the other according

to the convenience.
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We have

Iab(f dg) =

∫ t

s

fu dgu

= lim
n→+∞

kn∑
i=0

fati (gti+1
− gti)

= lim
n→+∞

 kn∑
i=0

(fati − fs)︸ ︷︷ ︸
=(δf)sati

(gti+1
− gti) + fs

kn∑
i=0

(gti+1
− gti)


=

∫ t

s

(δf)su dgu + fs

∫ t

s

dgu

= Ist(δf dg) + fs(δg)st

Let us concentrate on the term Ist(δf dg); it clearly belongs to C2(Rd); then, given
s, u, t ∈ [0, T ], we can define hsut := (δ2I(δf dg))sut ; let us work on it exploiting the
usual integration rules. Without loss of generality let us consider 0 ≤ s < u < t ≤ T .

hsut = (δ2I(δf dg))sut

= −Iut((f· − fu) dg·) + Ist((f· − fs) dg·)− Isu((f· − fs) dg·)
= −Iut((f· − fu) dg·) + Iut((f· − fs) dg·)
= Iut((f· − fs − f· + fu) dg·)

= (fu − fs)Iut(dg)

= (δf)su(δg)ut.

Remark: Since

Iab((f· − fa) dg·) =

∫ b

a

(∫ u

a

dfw

)
dgu ,

we read in the previous computations a nice property of the operator δ: it trans-
forms iterated integrals into product of increments.

Now it is clear that h ∈ C3(Rd) such that δh = 0 (since we recall that δδ = 0);
moreover the previous computations highlights how the regularity of f and g affects
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the regularity of h:

‖h‖λ+γ

(2.8)

≤ ‖h‖λ,γ

= sup
s,u,t∈[0,T ]
s<u<t

|hsut|
|u− s|λ|t− u|γ

= sup
s,u,t∈[0,T ]
s<u<t

|fu − fs||gt − gu|
|u− s|λ|t− u|γ

≤ sup
0≤s<u≤T

|fu − fs|
|u− s|λ

· sup
0≤u<t≤T

|gt − gu|
|t− u|γ

= ‖f‖λ‖g‖γ < +∞

and thus h ∈ Z C λ+γ
3 (Rd). So we can apply the sewing map to h, obtaining

Ist(δf dg) = Λst(δfδg)

which, plugged into the expression Iab(f dg) = Ist(δf dg) + fs(δg)st found before,
gives back

Ist(f dg) = fs(δg)st + Λst(δfδg) . (2.24)

We are arrived here supposing f and g regular enough to being legitimate in us-
ing Riemann-Stieltjes integration, but right hand side of (2.24) is defined whenever
f ∈ C λ

1 (Md,m(R)) and g ∈ C γ
1 (Rm), with λ + γ > 1, thus we have extended the

R-S integral to a more general integral: (2.24) is in fact the definition of the Young
integral.

The main theorem about Young integration follows:

Theorem 2.3.1 (Young Integral). The Young Integral of a function f ∈ C λ
1 (Md,m(R))

with respect to a function g ∈ C γ
1 (Rm) with λ+ γ > 1 is defined as

Ist(f dg) := fs(δg)st + Λst(δfδg) .

Then we have:

1. Whenever f and g are regular enough to use R-S integral, then Iab(f dg)
coincides with the R-S integral of f with respect to g.

2. For any 0 ≤ β < 1 such that 1 < γ + λ(1 − β) =: µβ the Young integral
satisfies the following inequality

|Ist(f dg)| ≤ ‖f‖∞‖g‖γ|t− s|γ + cγ,λ,β‖f‖β∞‖f‖
1−β
λ ‖g‖γ|t− s|µβ (2.25)

where cγ,λ,β = 2β(2µβ − 1)−1.
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3. The Young Integral can be expressed as limit of Riemann Sums:

Ist(f dg) = lim
n→+∞

kn∑
i=0

fti(δg)titi+1

where the limit is taken over any sequence of partitions of [s, t], say Πn = {s =
t0 < t1 < · · · tkn < tkn+1 = t}, whose mesh tends to 0. That is, the Young
integral, coincides with the one defined by Young in [1].

Proof. The first claim is true by construction; just look at how we got (2.24).
Let us prove the second claim. Recalling that for 0 ≤ a < c < b ≤ T we have
(δf)ac(δg)cb = hacb with h ∈ Z C λ+γ

3 (Rd) and, as seen in the previous page, ‖h‖λ+γ ≤
‖f‖λ‖g‖γ it follows that

|Ist(f dg)| ≤ |fs(gt − gs)|+ |Λst(δfδg)|

= |fs|
|gt − gs|
|t− s|γ

|t− s|γ +
|Λst(h)|
|t− s|λ+γ

|t− s|λ+γ

≤ ‖f‖∞‖g‖γ|t− s|γ + ‖Λ(h)‖λ+γ|t− s|λ+γ

(2.9)

≤ ‖f‖∞‖g‖γ|t− s|γ + (2λ+γ − 1)−1‖h‖λ+γ|t− s|λ+γ

≤ ‖f‖∞‖g‖γ|t− s|γ + (2λ+γ − 1)−1‖f‖λ‖g‖γ|t− s|λ+γ

which is (2.25) with β = 0. Now, if in this one instead of λ we consider λ(1− β) for
0 ≤ β < 1 such that µβ > 1, then we get

|Ist(f dg)| ≤ ‖f‖∞‖g‖γ|t− s|γ + (2µβ − 1)−1‖f‖λ(1−β)‖g‖γ|t− s|µβ

and observing then

‖f‖λ(1−β) = sup
0≤u<v≤T

|fv − fu|
|v − u|λ(1−β)

= sup
0≤u<v≤T

|fv − fu|β|fv − fu|1−β

|v − u|λ(1−β)

≤ 2β‖f‖β∞
(

sup
0≤u<v≤T

|fv − fu|
|v − u|λ

)1−β

= 2β‖f‖β∞‖f‖
1−β
λ

from which claim 2 is proved.
Third claim: let us consider pst := fs(δg)st ∈ C2(Rd); with a direct computation one
shows that

(δ2p)acb = δ2(fs(δg)st)acb = −(δf)ac(δg)cb (2.26)

from which clearly δ2p ∈ C λ+γ
3 (Rd).
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Then using Corollary (2.2.2), we get

(Id−Λδ)pst = lim
n→+∞

kn∑
j=0

ptjtj+1
,

that is

lim
n→+∞

kn∑
j=0

ftj(δg)tjtj+1
= fs(δg)st − Λst [δ2(fz(δg)zw)acb]

(2.26)
= fs(δg)st + Λst [(δf)ac(δg)cb]

(2.24)
= Ist(f dg)

which concludes the proof.
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Chapter 3

A SDE driven by a Fractional
Brownian Motion

3.1 A preliminary Lemma and some notation

Let us start with a lemma we will use in the sequel.

Lemma 3.1.1. If K b R and f, g : K → R are continuous, then∣∣∣∣sup
K
f − sup

K
g

∣∣∣∣ ≤ sup
K
|f − g| . (3.1)

Proof. Let us take x0, x1 ∈ K such that supK f = f(x0) and supK g = g(x1) assum-
ing without loss of generality that f(x0) ≥ g(x1). Hence we have∣∣∣∣sup

K
f − sup

K
g

∣∣∣∣ = f(x0)− g(x1).

Next consider x2 ∈ K which realizes supK |f − g| = |f(x2)− g(x2)|; then it is clear
that

|f(x2)− g(x2)| ≥ |f(x0)− g(x0)| = f(x0)− g(x0)

and since
f(x0)− g(x0) ≥ f(x0)− g(x1)⇐⇒ g(x0) ≤ g(x1)

we have proved (3.1).

If x ∈ RN , we denote the usual euclidean norm in RN with ‖x‖: we omit the
reference to the space RN or to the dimension N since it should be clear from the
context.
If A = (ai,j) ∈Md,m(R), we define

‖A‖(d,m)
1 := sup{‖Av‖ : v ∈ Sm−1}

‖A‖(d×m)
2 :=

√∑
i,j

a2
i,j .
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We thus have two norms on Md,m(R), which is a finite dimensional R-vector
space, hence they are equivalent, so there exist two absolute constants Cd,m, cd,m > 0
such that

cd,m‖ · ‖(d,m)
1 ≤ ‖ · ‖(d×m)

2 ≤ Cd,m‖ · ‖(d,m)
1 . (3.2)

Take now f : [0, L]→Md,m(R) and h : [0, L]→ RN ; we define

‖f‖∞,[0,L] := sup
0≤t≤L

‖f(t)‖(d,m)
1 , ‖f‖λ,[0,L] := sup

0≤s<t≤L

‖f(t)− f(s)‖(d,m)
1

|t− s|λ

‖h‖∞,[0,L] := sup
0≤t≤L

‖h(t)‖ , ‖h‖λ,[0,L] := sup
0≤s<t≤L

‖h(t)− h(s)‖
|t− s|λ

.

3.2 A SDE driven by a fBM with 1/2 < H < 1

Then let us recall quickly the problem: we want to prove uniqueness for the solutions
of the following d-dimensional stochastic differential equation

xt = ξ0 +

∫ t

0

b(s, xs) ds+

∫ t

0

σ(s, xs) dgs︸ ︷︷ ︸
=:zt

+yt (3.3)

where yt = sup0≤s≤t(zs)
−, ξ0 ∈ Rd+ is fixed and g is a fixed trajectory of an m-

dimensional fractional Brownian Motion, that is, g := WH(ω) for some ω ∈ Ω∗

fixed, where Ω∗ ∈ A is a set such that P(Ω∗) = 1 for which the regularity properties
discussed in the first chapter are fulfilled.

Moreover

b : [0, L]× Rd → Rd ,

σ : [0, L]× Rd →Md,m(R)

are bounded measurable functions which satisfy (now we are able to be precise about
the norms):

‖b(t, x)− b(t, y)‖ ≤ K0‖x− y‖ ∀x, y ∈ Rd, ∀t ∈ [0, L] (3.4)

‖σ(t, x)− σ(t, y)‖(d,m)
1 ≤ K0‖x− y‖ ∀x, y ∈ Rd, ∀t ∈ [0, L] (3.5)

‖σ(t, x)− σ(s, x)‖(d,m)
1 ≤ K0|t− s|ν ∀x ∈ Rd, ∀s, t ∈ [0, L] (3.6)

where ν ∈]1
2
, 1] and K0 > 0. Hence, both b and σ are Lipschitz in space, moreover

σ is ν-Hölder continous in time.

Next we fix H ∈]1
2
, ν] and observe that, ∀ε ∈]0, H[ one has g ∈ CH−ε([0, L],Rm).
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Then in [2] it is proved that for every fixed λ ∈]1
2
, H[, equation (3.3) admits a

solution x such that, a.s. x(ω) ∈ C λ([0, L],Rd). Hence, the notion of uniqueness
has to be given on the space C λ([0, L],Rd).

Then, fixing 1
2
< λ1 < λ2 < H and supposing uniqueness was proved, if

x(λ1), x(λ2) are the solutions on C λ1 and C λ2 respectively, being C λ2 ⊆ C λ1 it fol-
lows they must coincide; in particular x(λ1) ∈ C λ2 . From this we deduce that with
uniqueness, we would have a solution x with a.s. trajectories belonging to C λ for
every λ ∈]1

2
, H[.

A different proof of existence was given by M. Gubinelli and can be found in [11].

We summarize here the relations between the parameters considered above, in
order to be clear:

1

2
< λ < H ≤ ν ≤ 1 .

3.3 Uniqueness problem

For the sequel, let us fix ω ∈ Ω∗ and consider x(1), x(2) ∈ C λ([0, L],Rd) two solutions
of (3.3), writing z(i), y(i) with the obvious meaning: x(i) = z(i) + y(i) i = 1, 2.

We will take 0 ≤ T ≤ L, which will be chosen conveniently later.

Let us prove first that the map t 7→ σ(t, x
(1)
t ) − σ(t, x

(2)
t ) =: ∆t is λ−Hölder

continous on [0, T ]; this will allow us to integrate this function with respect to g in
Young sense.

Let us first take 0 ≤ u < v ≤ T and observe that

‖∆u −∆v‖(d,m)
1 =‖σ(u, x(1)

u )− σ(u, x(2)
u )− σ(v, x(1)

v ) + σ(v, x(2)
v )‖(d,m)

1

≤‖σ(u, x(1)
u )− σ(u, x(1)

v )‖(d,m)
1 + ‖σ(u, x(1)

v )− σ(v, x(1)
v )‖(d,m)

1

+ ‖σ(v, x(2)
v )− σ(u, x(2)

v )‖(d,m)
1 + ‖σ(u, x(2)

v )− σ(u, x(2)
u )‖(d,m)

1

(3.5),(3.6)

≤ K0

[
‖x(1)

u − x(1)
v ‖+ ‖x(2)

u − x(2)
v ‖+ 2|u− v|ν

]
from which we immediately get

‖∆‖λ,[0,T ] = sup
S≤u<v≤T

‖∆v −∆u‖(d,m)
1

|v − u|λ

≤ K0

[
‖x(1)‖λ,[0,T ] + ‖x(2)‖λ,[0,T ] + 2T ν−λ

]
≤ K0

[
‖x(1)‖λ,[0,L] + ‖x(2)‖λ,[0,L] + 2Lν−λ

]
=: C0
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Hence we have proved both the λ-Hölder continuity of ∆ (as claimed) and its λ-
Hölder norm is bounded uniformely with respect to T .

We finally recall that for every η ∈ R, the negative part can be expressed as

η− =
1

2
(|η| − η) . (3.7)

Fix then t ∈ [0, T ]:

∥∥∥y(1)
t − y

(2)
t

∥∥∥2

=

∥∥∥∥ sup
0≤s≤t

(z(1)
s )− − sup

0≤s≤t
(z(2)
s )−

∥∥∥∥2

=
d∑
j=1

(
sup

0≤s≤t
(z(1),j
s )− − sup

0≤s≤t
(z(2),j
s )−

)2

(3.1)

≤
d∑
j=1

(
sup

0≤s≤t

∣∣(z(1),j
s )− − (z(2),j

s )−
∣∣)2

.

Now in what follows we denote with b(j) and (∆t)j (or σ(t, x)j) the j-th component
of b and the j-th row of ∆t (or σ(t, x)) respectively.
We think to (∆)j as a M1,m(R)-valued function.
Before going on, we prove that (∆)j is λ-Hölder continous on [0, T ] as we did before
for ∆ and for the same reason: being allowed to integrate (∆)j with respect to g in
Young sense.

‖(∆)j‖λ,[0,T ] = sup
0≤s<t≤T

‖(∆t)j − (∆s)j‖(1,m)
1

|t− s|λ

≤ 1

c1,m

· sup
0≤s<t≤T

‖(∆t)j − (∆s)j‖(1×m)
2

|t− s|λ

≤ 1

c1,m

· sup
0≤s<t≤T

‖∆t −∆s‖(d×m)
2

|t− s|λ

≤ Cd,m
c1,m

· sup
0≤s<t≤T

‖∆t −∆s‖(d,m)
1

|t− s|λ

=
Cd,m
c1,m

‖∆‖λ,[0,T ]

≤ Cd,m
c1,m

C0
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and we are done. In particular from this we deduce that

‖(∆)j‖∞,[0,T ] ≤
Cd,m
c1,m

‖∆‖∞,[0,T ] . (3.8)

Working on the summands of the above sum, we have that

sup
0≤s≤t

∣∣(z(1),j
s )− − (z(2),j

s )−
∣∣ (3.7)

=
1

2
sup

0≤s≤t

∣∣(|z(1),j
s | − |z(2),j

s |) + (z(2),j
s − z(1),j

s )
∣∣

≤ 1

2
sup

0≤s≤t

∣∣|z(1),j
s | − |z(2),j

s |
∣∣+

1

2
sup

0≤s≤t

∣∣z(2),j
s − z(1),j

s

∣∣
≤ sup

0≤s≤t

∣∣z(1),j
s − z(2),j

s

∣∣
= sup

0≤s≤t

∣∣∣∣∫ s

0

[
b(j)(u, x(1)

u )− b(j)(u, x(2)
u )
]
du+

∫ s

0

(∆u)jdgu

∣∣∣∣
≤ sup

0≤s≤t

∫ s

0

∥∥b(u, x(1)
u )− b(u, x(2)

u )
∥∥ du+ sup

0≤s≤t

∣∣∣∣∫ s

0

(∆u)j · dgu
∣∣∣∣

(2.24)

≤ K0 sup
0≤s≤t

‖x(1) − x(2)‖∞,[0,s] · s+

+ sup
0≤s≤t

∣∣∣(∆0)j · (gs − g0) + Λ0s(h
(j)
acb)
∣∣∣

where we have set

h
(j)
acb := δ ((∆·)j)ac · (δg·)cb = δ(σ(·, x(1)

· )j − σ(·, x(2)
· )j)ac · (δg·)cb ;

moreover since (∆0)j = 0, the last term written turns into

K0‖x(1) − x(2)‖∞,[0,t] · t+ sup
0≤s≤t

∣∣∣Λ0s(h
(j)
acb)
∣∣∣ . (3.9)

So it is now appropriate to study the term
∣∣∣Λ0s(h

(j)
acb)
∣∣∣:

∣∣∣Λ0s(h
(j)
acb)
∣∣∣ =

∣∣∣Λ0s(h
(j)
acb)
∣∣∣

|s− 0|λ+H−ε s
λ+H−ε

≤ ‖Λ(h(j))‖λ+H−ε,[0,s] · sλ+H−ε

(2.9)

≤ (2λ+H−ε − 2)−1‖h(j)‖λ+H−ε,[0,s] · sλ+H−ε

(2.8)

≤ (2λ+H−ε − 2)−1‖h(j)‖λ,H−ε,[0,s] · sλ+H−ε ,
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and since

‖h(j)‖λ,H−ε,[0,s] = sup
a,c,b∈[0,s]
a6=c 6=b

|[(∆c)j − (∆a)j] · (gb − gc)|
|c− a|λ|b− c|H−ε

(C-S) ≤ sup
a,c,b∈[0,s]
a6=c 6=b

‖(∆c)j − (∆a)j‖(1×m)
2

|c− a|λ
‖gb − gc‖
|b− c|H−ε

≤ ‖g‖H−ε,[0,s] · sup
a,c∈[0,s]
a6=c

‖∆c −∆a‖(d×m)
2

|c− a|λ

≤ Cd,m‖g‖H−ε,[0,s] sup
a,c∈[0,s]
a6=c

‖∆c −∆a‖(d,m)
1

|c− a|λ

≤ K0Cd,m‖g‖H−ε,[0,s]
(
‖x(1)‖λ,[0,s] + ‖x(2)‖λ,[0,s] + 2sν−λ

)︸ ︷︷ ︸
=:(2λ+H−ε−2) 1

2
√
d
ηs

where the last inequality was already seen. Thus, putting all togheter we get

sup
0≤s≤t

∣∣∣Λ0s(h
(j)
acb)
∣∣∣ ≤ 1

2
√
d
ηt · tλ+H−ε , (3.10)

hence, setting
Ht :=

∥∥x(1) − x(2)
∥∥
∞,[0,t]

we have that (3.9) is less or equal than

K0Ht · t+
1

2
√
d
ηt · tλ+H−ε =: γt (3.11)

and thus we can write ∥∥∥y(1)
t − y

(2)
t

∥∥∥2

≤
d∑
j=1

γ2
t = dγ2

t

from which clearly ∥∥∥y(1)
t − y

(2)
t

∥∥∥ ≤ √dγt . (3.12)

Next, since ∥∥∥z(1)
t − z

(2)
t

∥∥∥2

=
d∑
j=1

(
z

(1),j
t − z(2),j

t

)2

≤
d∑
j=1

(
sup

0≤s≤t

∣∣z(1),j
s − z(2),j

s

∣∣)2

,
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repeating already done steps, we can easily get∥∥∥z(1)
t − z

(2)
t

∥∥∥ ≤ √dγt . (3.13)

Hence exploiting (3.12) and (3.13) we get, for all t ∈ [0, T ],∥∥∥x(1)
t − x

(2)
t

∥∥∥ ≤ ∥∥∥z(1)
t − z

(2)
t

∥∥∥+
∥∥∥y(1)

t − y
(2)
t

∥∥∥ ≤ 2
√
dγt

hence, being t 7→ 2
√
dγt non-decreasing, we get∥∥x(1) − x(2)

∥∥
∞,[0,T ]

≤ 2
√
dγT

that is, relabeling K1 := 2
√
dK0,

HT ≤ K1HT · T + ηT · T λ+H−ε

which is equivalent to (taking T small enough to get 1−K1T > 0)

HT

ηTT λ+H−ε ≤
1

1−K1T

and thus, setting ft := x
(1)
t − x

(2)
t (it is clear that f0 = 0) and

1 = lim sup
T→0+

1

1−K1T

≥ lim sup
T→0+

HT

ηTT λ+H−ε

≥ lim sup
T→0+

∥∥∥x(1)
T − x

(2)
T

∥∥∥
ηTT λ+H−ε

= lim sup
T→0+

‖fT − f0‖
|T − 0|

1

ηTTα

where α := λ+H − ε− 1.

At this point we focus our attention on

lim sup
T→0+

‖ft − f0‖
|t− 0|

≥ 0 . (3.14)

If (3.14) is > 0, then

lim sup
T→0+

‖fT − f0‖
|T − 0|

1

ηTTα
= +∞
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that is 1 ≥ +∞, which is a contradiction. Thus there must exists a T > 0 such that
two solutions agree on the time interval [0, T ].

If otherwise (3.14) is = 0, then

∃ lim
T→0+

‖fT − f0‖
|T − 0|

= 0.

This is where we have stopped the work. The obvious suggestion for future
works, is to exclude (3.14) is = 0; we write some comments about this in the
following concluding section.

3.4 Epilogue

Heuristically writing, the idea is that, the irregularity of the fractional BM affects
the solutions in a way that allows to handle properly (3.14).

The problem is that we need some local informations about the behaviour of the
solutions at 0 which does not seem trivial.

One last possibility, is expressing the solution of (3.3) as a limit of Riemann
Sums, trying from this to extrapolate the needed informations.
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