
MASTER THESIS IN ICT FOR INTERNET AND MULTIMEDIA

Geometric Shape Recognition Algorithm from
Coaxial Vision System Images for 3D

Reconstruction

MASTER CANDIDATE SUPERVISOR

Dal Bello Nicola Prof. Zanuttigh Pietro
Student ID 2004064 University of Padova

CO-SUPERVISOR

Passarella Luca, Cerato Davide
Sisma S.p.A.

DATE
12/10/2023

ACADEMIC YEAR
2022/2023

Abstract

This thesis focuses on geometric shape recognition from 2D high-resolution
grayscale images suitable for 3D reconstruction. The aim is to develop an accu-
rate computer vision algorithm that is able to retrieve object geometries through
deep learning techniques from images provided by a coaxial vision system of
laser systems.

The main task is to assign a unique label (or category) to every single pixel in
the image, which can be considered as a dense classification problem. This type
of problem in computer vision domain is known as Image Segmentation. Seg-
mentation is a key step in image understanding and is used in many different
industries. Due to limited resources (GPU memory above all), image segmenta-
tion is a very challenging task, especially in high resolution images.

Nowadays, convolutional neural networks (CNNs) have shown excellent re-
sults in object recognition and have also been the first choice for dense classifi-
cation problems such as image segmentation.

The research explores the strategies and techniques adopted in order to ob-
tain an optimal solution and the problems encountered during development.

The images exploited for the machine learning algorithms were obtained
from high-precision laser machines and systems, capturing objects used in the
industrial and jewelery sectors, mostly metallic, of all types of shapes and sizes.
A total of 700 photos were captured, which were segmented by hand to obtain
ground truth.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1
1.1 Sisma S.p.A. 2

1.1.1 Main Software: 𝑆𝐿𝐶3 and 3D Scan Pack 2
1.2 Thesis goals . 4

1.2.1 Image Segmentation . 6
1.3 Dataset . 7
1.4 Thesis structure . 8

2 Image Segmentation 11
2.1 Common Segmentation applications 11
2.2 Image Segmentation Techniques 12
2.3 Main Approaches for Segmentation 13

2.3.1 Traditional approaches . 13
2.3.2 Deep learning approaches 15
2.3.3 U-Net . 20
2.3.4 RefineNet . 22
2.3.5 High-Resolution Refine Net (HRRNet) 23

2.4 Evaluation metrics . 24

3 Main tool and libraries 31
3.1 Programming languages . 31
3.2 Main Python libraries . 32

v

CONTENTS

3.3 OpenCV and Emgu CV . 33
3.4 TensorFlow and TensorFlow.NET 34
3.5 Tools . 34

4 Data Exploration and Preprocessing for Improving the Performance of
the AI Model 37
4.1 Dataset Overview . 37

4.1.1 Data Augmentation . 39
4.1.2 Synthetic Dataset . 39

4.2 Preprocessing and Edge detectors 41
4.2.1 Sobel Edge Detection . 42
4.2.2 Canny Edge Detection . 43
4.2.3 Final Considerations . 45

4.3 Train, validation and Test split . 46

5 Image Segmentation Model Architecture 49
5.1 Rough Module . 50

5.1.1 Model Training . 54
5.1.2 Model Evaluation . 57

5.2 Refinement Module . 59
5.2.1 Model Training . 62
5.2.2 Model Evaluation . 63

6 Edge Refinement Interpolation 65
6.1 Image Interpolation Strategies . 65
6.2 Edge Refinement Interpolation . 68
6.3 Final Evaluation . 73

7 𝑆𝐿𝐶3 Integration 77
7.1 Implementation details . 77

7.1.1 Export and Import of the models 77
7.1.2 User Interface . 78

8 Conclusions 83
8.1 Future works . 84
8.2 Personal Growth and Accomplishments 85

References 87

vi

List of Figures

1.1 Engravings types . 2
1.2 Example of laser marking via 3D Scan Pack Module 3
1.3 Surfaces Acquisition . 3
1.4 Axes Synchronization . 4
1.5 Segmentation Example . 5
1.6 Segmentation Example . 6
1.7 Example Data . 8

2.1 Encoder-Decoder Neural Network 17
2.2 Convolution Operation . 18
2.3 Max Pooling Operation . 18
2.4 Transposed Convolution Operation 20
2.5 U-Net structure [25] . 21
2.6 RefineNet Architecture [14] . 22
2.7 Global Process HRRNet [28] . 24
2.8 Confusion Matrix . 25
2.9 Dice Coefficent . 28
2.10 IoU Coefficent . 29

3.1 OpenCV and EmguCV logo. 33
3.2 Tensorflow logo. 34

4.1 Example Data . 38
4.2 Synthetic Shapes . 40
4.3 Generated Synthetic Data Examples 41
4.4 Image Derivatives. 42
4.5 X and Y direction Kernel, respectively 43
4.6 Hysteresis Threshold [26]. 44

xi

LIST OF FIGURES

5.1 Whole Architecture . 49
5.2 Rough Module Architecture . 51
5.3 Refinement Module Architecture 60
5.4 Results Comparison. 64

6.1 Bilinear Interpolation . 66
6.2 Interpolation Example . 69
6.3 Interpolated Results. 74

7.1 User Interface . 79
7.2 Rendered 3D model . 80
7.3 UV Maps . 81

xii

List of Tables

4.1 Number of samples for each set. 47

5.1 Rough Module Results . 58
5.2 Refinement Module Results . 63

6.1 Final Interpolation Results . 75

xiii

List of Acronyms

ML Machine Learning

DL Deep Learning

AI Artificial Intelligence

ANN Artificial Neural Network

DA Data Augmentation

IT Information Technology

NN Neural Network

TPR True Positive Rate

FPR False Positive Rate

IDE Integrated Development Environment

IOU Intersection over Union

ROI Region of Interest

RU Refinement Unit

OS Original Size

xix

1
Introduction

Computer vision is an area of artificial intelligence that teaches and equips
machines to comprehend the visual environment. Deep learning models and
digital photos can be used by computers to precisely recognize, categorize and
monitor objects. As a result of recent developments in areas like artificial intel-
ligence and computing capabilities the field of computer vision has made sig-
nificant progress toward becoming more pervasive in everyday life. The goal of
computer vision in AI is to create automated systems that can interpret visual
data (such pictures or videos) in a similar way to how people do. The aim is to
teach computers how to individually analyze and understand images.

The objective of this project is to explore the potential of Machine Learning
and Deep Learning structures in the computer vision field trying to improve
the handcrafted vision system, not based on machine learning, already present
in the Sisma main software for laser marking ”𝑆𝐿𝐶3”. This application has the
task of facilitating the operator in interfacing with laser machines to create 2D
textures or 3D engravings to enhance or customize fashion products.

Specifically, I developed an algorithm that through a convolutional neural
network (CNN) for semantic segmentation is able to obtain the geometries of
a random object separating it from the background. The input images are in
grayscale and of variable size. Image sizes vary depending on the scanned sam-
ple and typically range from the smallest in size (1620x1620) to the largest in size
(10,000x10,000).

1

1.1. SISMA S.P.A.

1.1 SISMA S.P.A.

This master’s thesis project is being developed in collaboration with Sisma
S.p.A., which is a worldwide reference for the design and production of very
high precision laser machinery and systems. It produces over 130 different mod-
els of machines for the automatic production of jewellery, extending its skills to
offer a panorama of products that includes resin and metal 3D printers, laser
systems for marking, engraving, welding and cutting as well as the solid sec-
tor of machines for the automatic production of gold chain. Sisma includes an
internal research and development department to define tailor-made projects
according to customer requests both from the hardware and software side.

The primary mission is to design and implement innovative systems and so-
lutions, at the service of those who produce and create, using the technologies
of laser precision micromechanical systems and additive manufacturing (3D).

1.1.1 MAIN SOFTWARE: 𝑆𝐿𝐶3 AND 3D SCAN PACK

In my internship at the company i worked to improve the functionalities of
the main software ”𝑆𝐿𝐶3”, that provides an interface for each Sisma laser mark-
ing machine, which can easily create 2D texture and 3D engravings to enhance
or customize fashion products.

𝑆𝐿𝐶3 provides tools that allows to perform:

• 2D engraving on 2D surface: two-dimensional engraving on flat surface

• 2D engraving on 3D surface: two-dimensional engraving on a non-planar
surface

• 3D engraving on 2D surface three-dimensional engraving on flat surface

• 3D engraving on 3D surface: three-dimensional engraving on a non-planar
surface

Figure 1.1: Engravings types

The software needs a 3D model of the sample in concern in order to effi-
ciently engrave non-flat surfaces. During my internship I focused on the 3D Scan

2

CHAPTER 1. INTRODUCTION

Pack Module which allows to automatically process objects like rings, bracelets,
bangles, and any other oval or circular sample without knowing their geome-
try. Thanks to this, object shape is automatically recognized by a coaxial camera
and then laser processed with the synchronized movement of a roto-tilting spin-
dle. 3D Scan Pack takes a top-down profile photo of the object using a coaxial
camera and a roto-tilting mandrel and uses this information to generate a 3D
reconstructed geometric model.

(a) Bangle 3D model software visual-
ization

(b) Final result of a laser processed ban-
gle

Figure 1.2: Example of laser marking via 3D Scan Pack Module

The acquisition process is illustrated by the figures 1.3.

(a) Profile

(b) External (c) Internal

Figure 1.3: Surfaces Acquisition

First, the spindle tilts to vertical position (a) while the laser head sets at the

3

1.2. THESIS GOALS

correct height for the coaxial camera to acquire the object profile in focus. The
geometries are obtained from a shape recognition algorithm which has the task
of distinguishing the pixels belonging to the background from those belonging
to the region of interest in the input image. Once the geometries have been ex-
trapolated the user will see the 3D model together with the unwrapping of the
object’s inner and outer surfaces. On these UV maps, the user can easily place
and visualize the lasering pattern in form of vector files, texts or textures. Auto-
tilting spindle makes laser processing possible on both inner and outer surfaces
of the sample. With the 3D obtained object geometry, the spindle is tilted hori-
zontally for outer (b), or to a small angle for inner (c) surface acquisition. Once
entered the scanning range expressed in degrees, the mandrel rotates while the
coaxial camera synchronously acquires a set of images, which are stitched and
lied onto the reconstructed UV map to visualize the object surfaces. Here, lasing
processing pattern can be placed either manually or automatically.

The synchronization of the axes allows to focus the camera and perform pre-
cise laser engraving.

Figure 1.4: Axes Synchronization

1.2 THESIS GOALS

My work focused on improving the shape recognition algorithm. The shape
recognition algorithm currently receives the scan of the profile as input and out-
put a binary mask, see figure 1.5, which distinguishes the white pixels belonging
to the sample under examination from the black ones belonging to the back-
ground.

4

CHAPTER 1. INTRODUCTION

(a) Input (b) Output

Figure 1.5: Segmentation Example

The previous strategy applies median filters, to remove low frequency de-
tails, and extrapolates the edges map using the Canny [3] method, then start-
ing from the center, rays are projected towards the edges of the image and the
coordinates where there is an edge are recorded. The Canny algorithm is one
of the most accurate specified edge detection techniques that uses a multi-step
algorithm to detect a wide range of edges in images. It offers accurate and de-
pendable detection thanks to the application of Non-maximum Suppression and
Hysteresis Thresholding operations. The final 3D model is constructed using the
obtained coordinates.

This algorithm is limited to recognize only circular or oval shapes such as
rings and bracelets, furthermore it cannot achieve satisfactory results when the
edges of the samples are not well defined or the objects do not have a totally flat
profile (figure 1.6). Moreover, reflections caused by external lights often lead to
unwanted results.

Hence the idea of a deep learning solution with the aim of overcoming these
shortcomings thus obtaining better results and expanding the range of recog-
nizable shapes. However, putting Machine Learning technologies into practice
can be difficult and complicated. To maximize the impact of AI we must con-
sider various factors, such as the quality of data, which is a common issue and
limitation when implementing AI models.

The fact that the images being analyzed are of various sizes and high resolu-
tion is crucial to take into account. In order to be analyzed by the algorithm that

5

1.2. THESIS GOALS

Figure 1.6: Segmentation Example

generates the 3D model, the dimensions of the output mask must match those
of the source image.

1.2.1 IMAGE SEGMENTATION

Image segmentation is a crucial component in image understanding, in its
most basic definition, it is the division of an image into a number of regions.
The pixels of these regions should typically have some qualities in common. In
general, there are three groups of image segmentation tasks:

• Semantic segmentation: simply the task of assigning a class label to every
single pixel of an input image.

• Instance Segmentation: it’s like semantic segmentation but it distinguishes
between different objects of the same class.

• Panoptic segmentation: combine semantic and instance segmentation.

For this thesis I focused on a sort of binary semantic segmentation with only
two types of classes, since the task is to assign a label for each pixel belonging
to the sample and a label for the background. Convolutional neural networks
(CNNs) have proven to perform exceptionally well at object recognition and are
the preferred option also for dense classification tasks. Image segmentation is
a quite challenging task especially when we work with high resolution images
since repeated subsampling operations like pooling or convolution striding in
deep CNNs lead to a significant decrease in the initial image resolution. Multi-
ple stages of spatial pooling and convolution strides reduce the final prediction

6

CHAPTER 1. INTRODUCTION

typically by a factor of 32, leading to a loss of much of the finer image structure
and therefore, they are unable to output accurate high-resolution prediction.
Low-level visual information is essential for accurate prediction on the bound-
aries or details. Using larger receptive fields without downscaling the image
needs to perform convolutions on a large number of detailed (high-resolution)
feature maps that usually have high-dimensional features, which are computa-
tional expensive and require huge GPU memory resources.

For this thesis I developed a encoder-decoder architecture that has the aim to
extrapolate a low-resolution segmentation mask, therefore, a refinement mod-
ule is proposed to improve the accuracy of the high-resolution segmentation.
The output of the first is used as the input of the latter. Finally, given that the
input images have variable dimensions, instead of using common interpolations
algorithms like bilinear, bicubic or lanczos [20], I have developed an algorithm
that exploits the edge information of the original high resolution image to ob-
tain the most accurate final segmentation possible, that follows the shape of the
sample.

1.3 DATASET

All the dataset images considered were captured by me using the prototypes
of the Sisma coaxial vision system present in the company. About 50 objects of
different shapes and sizes were scanned (including large and small jewels such
as rings and bracelets, and industrial samples), obtaining a dataset of about 700
grayscale images. The dimensions of the photos produced vary according to the
sample examined, typically range from the smallest in size (1620x1620) to the
largest in size (10,000x10,000)

Scans are typically performed placing a dark background to facilitate capture
and accentuate the contrast with metallic samples or performed directly when
the sample is positioned on the mandrel gripper (also dark) ready for the laser
marking process.

To diversify and expand the dataset and thus obtain more robust models
the same objects were photographed several times in different positions, back-
grounds, exposure times and output dimensions (see figure 1.7).

In my internship a lot of time was spent getting the ground truth by hand
using free image editors like Gimp [30]. The ground truth had to be very accurate
to get the most precise output masks possible.

7

1.4. THESIS STRUCTURE

Figure 1.7: Example Data

Since manual acquisition and segmentation process is highly time consum-
ing, in order to broaden the set of available data, techniques like data augmenta-
tion were applied. Furthermore, I created an algorithm for consistent synthetic
data production with the aim of exploiting shapes and samples not physically
present in the company and considerably reducing the manual segmentation
time. Using real world data is always better but it takes a long time to manually
capture and segment them.

1.4 THESIS STRUCTURE

The structure of this thesis is organized to provide a comprehensive under-
standing of the research and implementation process. The thesis is divided into
several sections, each focused on specific aspects related to the development of
a machine learning solution for shape recognition for Sisma’s main software.

Chapter 1 provides an introduction to Sisma S.p.A., the company where I
did the internship and its main software 𝑆𝐿𝐶3. The automatic marking process
is also described, using the 3D scan pack module, from the generation of the 3D
model to the various movements of the mandrel. In the introduction the thesis
goals are outlined specifying the limitations of the previous algorithm and list-
ing the potential benefits of a machine learning-based solution. The image seg-
mentation task in its various forms is also introduced together with the dataset
used to train my models.

The chapter 2 explores the importance of image segmentation in a business
scenario. Common computer vision tasks are introduced, with particular at-
tention to the most important image segmentation strategies. Subsequently the
various factors involved in deep learning approaches are listed and discussed,

8

CHAPTER 1. INTRODUCTION

including disadvantages and benefits. This chapter presents the main architec-
tures that I took inspiration from, in the development of my solution. At the
end, evaluation metrics are exposed.

The main tools and libraries used in the whole project are discussed in the
third section.

Chapter 4 concerns data exploration and preprocessing techniques to en-
hance the performance of both AI models implemented. Includes a description
of the operations performed to expand the training data set automatically and
considerations regarding class imbalance. The techniques used to extrapolate
edge maps are also explored by listing their steps and discussing their proper-
ties.

Chapter 5 delves into the implementation of my solution and presents a com-
prehensive evaluation of these architectures. The two modules are widely illus-
trated through two figures that outline the set of layers and operations and by
the developed code. It also focuses on the loss functions and the type of opti-
mization algorithm chosen. The main objective of this section is to appropriately
describe the developed models and evaluate their performance and effective-
ness.

The chapter 6 illustrates the main interpolation strategies for upsample the
masks obtained in the previous phases to the original image dimensions. An in-
terpolation method developed by me is exposed which exploits the information
extrapolated from the edge maps to obtain more accurate masks. This chapter
encompasses a detailed examination of final results obtained.

Chapter 7 shows the user interface developed in C# and describes the work
done to integrate the machine learning models into 𝑆𝐿𝐶3.

The thesis’s final conclusion and future works are both included in the final
chapter 8.

9

2
Image Segmentation

Computer vision is an interdisciplinary branch of science that studies how
to make computers grasp complex information from digital photos or videos.
Engineering-wise, it aims to automate activities that the human visual system
can perform.

Image segmentation is a widely used method in digital image processing
and analysis to divide an image into various parts or areas. Foreground and
background can be distinguished in an image by segmenting it, or pixels can be
grouped together based on their similarity in color or shape.

For computer vision technologies and algorithms, image segmentation is a
crucial building element. It is employed in a variety of real-world contexts, in-
cluding face detection and recognition, video surveillance, satellite image anal-
ysis, medical image analysis, and autonomous vehicle computer vision.

2.1 COMMON SEGMENTATION APPLICATIONS

Image segmentation has undergone many improvements, both large and
small, that have had a profound impact on our lives. Here are some examples
of use cases for segmentation models.

OBJECT DETECTION AND SCENE UNDERSTANDING

Accuracy of object detection models is improved by segmentation techniques.
Scene comprehension can be enhanced by determining a scene’s semantic mean-

11

2.2. IMAGE SEGMENTATION TECHNIQUES

ing, and the capacity to partition items can be applied to tracking, object recog-
nition, and relational understanding.

For example It is used to automatically locate objects from images captured
by drones or satellites, in agriculture for flood monitoring, in any intelligent
video surveillance system for pedestrian detection and many others.

MEDICAL IMAGING

Segmentation is used in medical image analysis to recognize and separate
various organs and tissues. Diseases can be diagnosed and treatment strate-
gies can be developed using this knowledge. Algorithms for automated dental
radiography and analysis have also been developed using image segmentation
techniques.

In fact, one of the most widely used algorithms in medical AI nowadays is
image segmentation.

AUTONOMOUS DRIVING

Semantic segmentation techniques are widely used on self-driving cars. We
can interpret environmental data gathered from the car’s sensors and cameras
by assigning a predefined class to each pixel in an image. The benefit of au-
tonomous vehicles is their ability to comprehend their surroundings, locate ve-
hicles and other objects on the road, and plan a safe route for the vehicle.

2.2 IMAGE SEGMENTATION TECHNIQUES

In this thesis I focused on Binary Image Segmentation where the goal is to
separate the foreground from the background, in which each pixel in an image
is given a label that specifies its content. Foreground-background separation is
relatively easier compared to tasks like instance or panoptic segmentation. Like
for Semantic segmentation, we display identical items with the same color since
it is unable to discriminate between distinct instances of the same category. On
the other hand, instance segmentation can discriminate between many instances
of the same category, so samples belonging to the same class are divided by
various colors.

12

CHAPTER 2. IMAGE SEGMENTATION

2.3 MAIN APPROACHES FOR SEGMENTATION

A variety of approaches to perform image segmentation have been devel-
oped over the years using domain-specific knowledge to effectively solve seg-
mentation problems in specific application areas.

The strategy previously adopted by the older 𝑆𝐿𝐶3 version was to look for
rapid changes in pixel values, which often denote the edges that define a re-
gion. Other common approaches are based on detecting similarities in regions
of image like region growing, clustering and thresholding.

The assumption that items in an image or video share similar characteristics
is the basis of the segmentation principle used by AI to process picture data. AI
models can learn to identify objects by extracting features from data and clus-
tering pixels based on similarity.

2.3.1 TRADITIONAL APPROACHES

There are different techniques for image segmentation, every solution has
advantages and disadvantages and depends on specific application and type of
images we want to segment.

• Threshold Method: Thresholding divides pixels according to their inten-
sity in relation to a predetermined value or threshold, making it the sim-
plest approach for segmenting images. Suitable for images with high con-
trast between foreground and background. The threshold value can be
constant in low-noise images, but in some cases is necessary to use dy-
namic thresholds.

• Region Based Method: Involves dividing an image into regions with sim-
ilar characteristics. Each region can grow or shrink or merge with another
region based on seed points. Good choice for images with a wide range of
features but it can be slow for large images.

• Edge Based Method: Identifies the edges of various objects in a given im-
age. It helps locate features of associated objects in the image using the in-
formation from the edges. Edge-based segmentation algorithms identify
edges based on contrast, texture, color, and saturation variations. Good
results for low-contrast images but sensitive to noise.

• Clustering Based Method: Clustering algorithms are unsupervised clas-
sification algorithms that help identify hidden information in images. The
method separates data pieces and groups comparable elements into clus-
ters, dividing images into groups of pixels with similar properties. Best
for images with many objects but can be computationally expensive.

13

2.3. MAIN APPROACHES FOR SEGMENTATION

• Graph Partitioning Methods: involves the application of graph theory to
construct a representation of an image in the form of a graph. In this ap-
proach, each image pixel is represented as a node, while the edges connect-
ing the nodes represent the degree of similarity between the correspond-
ing pixels. It can be seen as a hybrid method which combines different
approaches like the edge based, region based and many others.

The most popular strategies are introduced below.

OTSU’S METHOD

In computer vision and image processing, Otsu’s method [27] is used to per-
form automatic image thresholding. The algorithm returns a single intensity
threshold in its most basic form, dividing pixels into the foreground and back-
ground classes. The threshold is automatically computed from the histogram.
The success of this operation depends on various factors like the distance be-
tween peaks, noise, illumination and relative size of the regions. The optimal
global threshold is determined by minimizing intra-class intensity variance, or
equivalently, by maximizing inter-class variance.

K-MEANS

K-Means clustering algorithm [23] is an unsupervised algorithm and it is
used to separate the interest area from the background. It clusters, or partitions
the given data into a fixed number K of clusters or parts based on the K cen-
troids. It is an iterative algorithm that alternate two procedures that try to find
cluster centers and point-cluster allocations that minimize the error made by ap-
proximating the points with the cluster centers. It always converges to a solution
but does not guarantee that it is the optimal one. The final solution depends on
the initialization of the parameters and the number of clusters must be known
a priori. Furthermore, it assumes that clusters are spherical and have similar
variance, which may not be suitable for complex or irregular clusters.

MEAN SHIFT

Mean shift [6] is an unsupervised learning algorithm that is mostly used for
clustering. Since it is non-parametric and doesn’t require a predetermined shape
of the clusters in the feature space, it is frequently utilized in real-world data
analysis (such as image segmentation). In simple terms The mean shift algo-
rithm seeks modes or local maxima of samples’ density in the feature space.

14

CHAPTER 2. IMAGE SEGMENTATION

In other words, Mean shift is a procedure for locating the maxima of a density
function given discrete data sampled from that function. Like K-Means, it is an
iterative method. It needs a single input parameter which is the window size. It
is not trivial to set since inappropriate window size can cause unwanted behav-
iors. Differing from the K-Means algorithm, It output variable number of not
assumed spherical clusters.

2.3.2 DEEP LEARNING APPROACHES

Traditional image segmentation methods such as those presented previously
can be quick and easy, but they frequently need a lot of fine-tuning to fit partic-
ular use cases, moreover they are not sufficiently accurate to use for complex
images. Machine learning and Deep learning solutions try to overcome this
problems increasing accuracy and flexibility.

Deep learning is a subset of machine learning that uses artificial neural net-
works (ANNs) to model and solve complex problems. The input data for deep
learning algorithms is propagated through an input layer, several hidden layers,
and finally the output layer in a layered architecture. Each layer applies a set of
mathematical operations, called weights and biases, to the input data, and the
output of one layer serves as the input to the next. During the training phase we
reduce the error between the projected output and the true output, modifying
DL model’s weights and biases. This is typically done using a variant of gradi-
ent descent, an optimization algorithm that adjusts the weights and biases in the
direction of the steepest decrease in the error. Deep learning can also manage
huge and complex data, and it has been utilized to solve a variety of challenges
achieving state-of-the-art performances.

Unfortunately these technologies have some disadvantages we have to con-
sider:

1. High computational cost: Deep learning model training takes a lot of pro-
cessing power, requiring powerful GPUs and lots of RAM. This can be
costly and time-consuming.

2. Overfitting: When a model performs well on training data but underper-
forms on new, untrained data, it is said to overfit. Deep learning frequently
encounters this issue, which can be brought on by a lack of data, a com-
plex model, or a lack of regularization, especially when working with big
neural networks.

3. Lack of interpretability: Deep learning models can be complicated and
challenging to interpret, especially those with several layers. Some deep

15

2.3. MAIN APPROACHES FOR SEGMENTATION

learning models are referred to as ”black-box” models because it can be
challenging to figure out how the model makes predictions and what in-
fluences those predictions.

4. Dependence on data quality: The quality of the data that deep learning
algorithms are trained on is crucial. The model’s performance will be neg-
atively affected if the data is noisy, incomplete, or biased.

5. Limited to the data its trained on: Deep learning models can only make
predictions based on the data it has been trained on. They might not be
able to extrapolate to new contexts or conditions that weren’t included in
the training data.

Deep neural network technology is especially effective for image segmenta-
tion tasks. Model training is used in machine learning-based image segmenta-
tion techniques to enhance the program’s capacity to recognize significant fea-
tures.

Different neural network implementations and designs are appropriate for
image segmentation but they typically share the same fundamental elements
(figure 2.1):

• An Encoder: a set of successively deeper, smaller layers used to extract
visual information. If the encoder has prior experience with a compara-
ble task (like image recognition), it may be able to use that experience to
complete segmentation tasks.

• A Decoder: a set of layers that gradually transform the encoder output into
a segmentation mask matching the pixel resolution of the input image.

• Skip connections: Multiple connections across long-range neural networks
enable the model to recognize information at various scales, improving
model accuracy.

Unlike classification, where the outcome of the network is a single value, seg-
mentation in addition to pixel-level discrimination also requires a mechanism
for projecting the discriminative features acquired throughout the encoder’s many
phases onto the pixel space.

One key term that comes up frequently is ”receptive field” which refers to
the area in the input volume that a specific feature extractor (filter) is focusing
on. Receptive field (context), to put it simply, is the portion of the input image
that the filter is currently covering.

The main operations typically used in encoder and decoder paths are de-
scribed below.

16

CHAPTER 2. IMAGE SEGMENTATION

Figure 2.1: Encoder-Decoder Neural Network

CONVOLUTION OPERATION

the convolution operation takes in input a 3D volume (that cloud be the input
image) of size (nin x nin x channels) and a set of ’k’ filters (also called kernels)
each one of size (f x f x channels). The output will be also a 3D volume (also
called as output image or feature map) of size (nout x nout x k). The relationship
between nin and nout is as follows:

nout =

⌊
𝑛in + 2𝑝 − 𝑘

𝑠

⌋
+ 1 (2.1)

with 𝑘 as convolution kernel size, 𝑝 convolution padding size and 𝑠 convolu-
tion stride size. Padding (𝑝) represents the number of zeros padded around the
original input, while stride (𝑠) is the amount by which the kernel is shifted when
sliding across the input image.

The figure 2.2 shows how a convolutional layer works as a two-step process.

MAX POOLING OPERATION

Pooling has the purpose of shrinking the feature map in order to have fewer
parameters in the network. In essence, we choose the highest pixel value from
each block of the input feature map to create a pooled feature map. Strides and
filter size are two crucial hyper-parameters for the this operation. The objective

17

2.3. MAIN APPROACHES FOR SEGMENTATION

Figure 2.2: Convolution Operation

is to save only the most important features (highest valued pixels) from each re-
gion and discard the rest. By important, I mean the information that best char-
acterizes the image’s context. It is critical to note that both the convolution and
the pooling operations reduce the size of the image. This is referred to as down
sampling. The filters in the following layers will be able to see more context, that
is, as we move deeper into the network, the size of the image decreases while the
receptive field increases. However, as the number of channels/depth (number
of filters applied) increases, it becomes easier to extract more complicated fea-
tures from the image.

By down sampling the model gains a better understanding of ”WHAT” is
present in the image but it loses information about ”WHERE” it is present.

In figure 2.3 the original image size is (4x4) and after pooling is reduced to
(2x2).

Figure 2.3: Max Pooling Operation

18

CHAPTER 2. IMAGE SEGMENTATION

TRANSPOSED CONVOLUTION OPERATION

Image segmentation produces more than simply a class label or some bound-
ing box parameters, it produces a whole high-resolution image in which all
pixels are classified. In the case of segmentation, we require both ”WHAT”
and ”WHERE” informations. To recover the “WHERE” information, the inter-
mediate space of low-resolution features must be mapped into a final higher-
resolution image.

There are numerous approaches in the literature for up sampling an image.
Bi-linear interpolation, cubic interpolation, nearest neighbor interpolation, un-
pooling, transposed convolution, and others are examples. However, for most
state of the art networks, transposed convolution is the recommended method
for up sampling an image.

Transposed convolution (also called deconvolution) is a method for doing
up sampling of an image with learnable parameters, can be used if we want
our network to learn how to up-sample as efficiently as possible, since we have
weights that we learn through back-propagation. The padding and stride are the
parameters that determine the transposed convolutional layer as they are for the
conventional convolutional layer. These padding and stride values correspond
to the hypothetical operations that were performed on the output to produce
the input. In other words, if you take the output and perform a conventional
convolution with defined stride and padding, the generated spatial dimension
will be the same as the input.

Implementing a transposed convolutional layer is best described as a four-
step procedure (see figure 2.4):

1. Calculate new parameters 𝑧 = 𝑠 − 1 and 𝑝′ = 𝑘 − 𝑝 − 1

2. Insert 𝑧 number of zeros between each row and column of the input. This
increases the input size to (2 ∗ 𝑛in − 1)𝑥(2 ∗ 𝑛in − 1)

3. Pad the modified input image with 𝑝′ zeros.

4. Apply standard convolution to the image created in step 3 with a stride
length of 1.

The relationship between nin and nout is as follows:

nout = (𝑛in − 1) ∗ 𝑠 + 𝑘 − 2𝑝 (2.2)

19

2.3. MAIN APPROACHES FOR SEGMENTATION

Figure 2.4: Transposed Convolution Operation

with 𝑘 as convolution kernel size, 𝑝 convolution padding size and 𝑠 convolu-
tion stride size.

2.3.3 U-NET

Olaf Ronneberger et al. designed the U-Net architecture for Bio Medical Im-
age Segmentation [25]. U-Net is a very popular end-to-end U-shaped encoder-
decoder network for semantic segmentation which consists of four encoder blocks
and four decoder blocks that are connected via a bridge. It has two main parts:

• The contraction path (also known as the encoder) is simply a standard
stack of convolutional and max pooling layers that is used to capture the
context in the image encoding the input image into feature representations
at multiple different levels.

• The symmetric expanding path (also known as the decoder) is utilized to
achieve precise localisation via transposed convolutions.

This is what gives the architecture a symmetric U-shape, hence the name
U-Net. It only has Convolutional layers and none of them are Dense. U-Net
structure as in the original paper is described in figure 2.5.

In the original paper the size of the input image is (572x572x3). In the left
hand side (the contracting path) the main block of operations comprehends two
3x3 convolution layers, each followed by a rectified linear unit (ReLU), and 2x2
max pooling producing feature maps with half the spatial dimensions and dou-
ble the number of filters. These operations are repeated leading to gradually
reducing size of the input image while increasing gradually the depth, finally
features of size (32x32x512) are obtained. This essentially means that the net-
work learns the ”WHAT” information in the image but loses the ”WHERE” in-
formation.

In the right hand side (the expansion path) is repeatedly applied transposed
convolutions along with regular convolutions, , each followed by a ReLU, that

20

CHAPTER 2. IMAGE SEGMENTATION

Figure 2.5: U-Net structure [25]

doubles the spatial dimensions and half the number of feature channels. In this
part the size of the image gradually increases while the depth gradually de-
creases, starting from size (28x8x512) to output size (338x338x2). The Decoder
intuitively recovers the ”WHERE” information (exact location) by gradually ap-
plying up-sampling.

Since upsampling is a sparse operation we need a good prior from earlier
stages to better represent the localization, for this purpose we use skip connec-
tions at each step of the decoder by concatenating the output of the transposed
convolution layers with the feature maps from the Encoder at the same level.

We need to notice that the output dimensions (388 x 388) differ from the
original input dimensions (572 x 572). If we wish to maintain the dimensions
consistent, we have to exploit padded convolutions.

Image segmentation has been attempted by other neural networks in the past,
but U-Net outperforms them by being less computationally expensive and min-
imizing information loss.

21

2.3. MAIN APPROACHES FOR SEGMENTATION

2.3.4 REFINENET

RefineNet is a generic multi-path refinement network that explicitly exploits
all the information available along the down-sampling process to enable high-
resolution prediction using long-range residual connections [14]. This allows the
fine-grained features from previous convolutions to directly improve the deeper
layers that capture high-level semantic data. Low-level visual details that are
lost during the downsampling procedure in the convolution forward stage not
always can be recovered by deconvolution processes leading to output an in-
accurate prediction. For precise boundary or detail prediction, low-level visual
data is essential.

RefineNet exploits Residual Net (ResNet) [19] network, pre-trained on Ima-
geNet, as fundamental building block for semantic segmantation.

For achieving standard multi-path architecture, ResNet is divided into 4 main
blocks according to the resolutions of the feature maps, and employ a 4-cascaded
architecture with 4 RefineNet units, each of which directly connects to the output
of one ResNet block as well as to the preceding RefineNet block in the cascade.

Figure 2.6: RefineNet Architecture [14]

As shown in figure 2.6 RefineNet does not require the maintenance of very
big intermediate feature maps since it takes advantage of varying levels of detail
at various stages of convolutions and merges them to provide a high-resolution
output.

In practice, one convolutional layer is applied to each ResNet output to adjust
the dimensionality.

Although each RefineNet Unit has the same basic structures, there are no ties

22

CHAPTER 2. IMAGE SEGMENTATION

between its parameters, allowing for a more flexible adaption for different levels
of detail.

2.3.5 HIGH-RESOLUTION REFINE NET (HRRNET)

The network HRRNet proposed by Qiming Li and Chengcheng Chen [28] is
divided into a rough segmentation module and a refinement module.

The first obtain rough segmentation results, exploiting DeepLabV3+ [21] ar-
chitecture, the output of which is used as the input of the second. In the refine-
ment module the input image’s global context information is first gathered by a
global procedure. In order to extract local information in a local process, each
patch of the high-resolution image is processed separately. Both local and global
processes use multiple refinement units (RU) and multi-scale inputs, such as Re-
fineNet [14], to adaptively fuse the features of different scale feature maps and
maximize the information obtained. Finally, the improved patches are stitched
together based on the context information of the global process to produce the
refined segmentation result of the entire high-resolution image.

In order to generate fine segmentation, the RU block in the original paper
takes as input the original image and three segmentation images of the same size
at various scales. RU module has an encoder-decoder architecture and uses a
modified version of Deeplabv3+ as the segmentation network and ResNet50 for
feature extraction. The decoder block output segmentation results at different
scales: 1/8, 1/4 or equal to the original input spatial dimensions (OS).

Global process of the refinement module, which I took as inspiration for my
solution, is discussed more in details below.

GLOBAL PROCESS

The refinement module takes the original image and the rough segmenta-
tion image of the original image size as input. The structure of the three-stage
cascade RU is shown in Figure 2.7.

The arrows marked with ”Up” represent upsampling operations since the
input must have a consistent size in order to be analyzed by a neural network.
The design goal of this input is to more effectively collect specific features and
data at various scales in order to produce more accurate segmentation results.

Each RU is given as input the original image and three segmentation results
and outputs masks of different sizes:

23

2.4. EVALUATION METRICS

Figure 2.7: Global Process HRRNet [28]

• The first RU input consists of a concatenation of the original image and
three times the rough segmentation result, upsampled to match the input
size. In this case the input will be analyzed only from the first decoding
block since only the low resolution segmentation result will return, with
size 1/8 OS.

• The input for the second RU is the same as the first replacing the last two
rough segmentation results by the upsampled output segmentation map
of OS8 obtained by the first RU. The output will consists in 2 segmentation
maps in different scales: OS8 and OS4. In this case the input was analyzed
by two blocks of the decoder.

• Finally, input image with rough segmentation result are concatenated with
upsampled segmentation maps OS8 and OS4 obtained in previous RU, to
obtain the input for the last RU block. In this case the set of masks are
processed by the entire structure obtaining a mask of the same size as the
input one.

The local process is very similar to the global one using only two cascaded
RUs, exploiting the masks obtained in the global part. The overall loss function
of the network is constructed by adding a combination of cross-entropy, L1, and
L2 loss functions of different scales of the network.

2.4 EVALUATION METRICS

The effectiveness of a statistical or machine learning model is measured us-
ing evaluation metrics. Evaluating machine learning models or algorithms is

24

CHAPTER 2. IMAGE SEGMENTATION

crucial for every project. To test a model a wide variety of evaluation metrics
are available, the best known include classification accuracy. When we use the
word accuracy, we usually indicate classification accuracy, which is the ratio of
the number of accurate predictions to the total number of input samples. Testing
our ML models involves using combination of different individual evaluation
metrics.

It is crucial to analyze our model using a variety of evaluation metrics since
a model may perform well when one metric is used, but poorly when another is
applied. In order to make sure that our model is working properly and ideally,
evaluation metrics are essential.

Before listing the adopted metrics, it is important to state the concept of
confusion matrix. A confusion matrix produces a matrix that summarizes the
model’s overall performance. Each column of the matrix represents the instances
in the real class while each row of the matrix represents the occurrences in the
predicted class, or vice versa (figure 2.8).

Figure 2.8: Confusion Matrix

For tasks involving image segmentation, we predict a mask, representing the
location where the object of interest is present. Since we assign 0 for background
pixels and 1 for the object of interest, we are referring to binary segmentation,
so:

• TP (True Positive): represents the number of true sample pixels that have
been properly classified as sample (1).

• FP (False Positive): represents the number of background pixels being
misclassified as sample (1)

25

2.4. EVALUATION METRICS

• FN (False Negative): represents the number of sample pixels being mis-
classified as background (0)

• TN (True Negative): represents the number of background pixels that
have been properly classified as background (0)

The metrics used for this project are listed below, all of them are based on
the computation of a confusion matrix for a binary segmentation mask and are
bounded between 0 (worst result) and 1 (better result).

PIXEL ACCURACY

Pixel Accuracy represents the ratio of correctly classified pixels in the final
output mask. It consists of correct positive and negative predictions divided by
the total number of predictions.

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
(2.3)

Even though it is simple to understand, this metric is far from ideal: in our
specific case the background is the vast majority of the image and the object to
predict represents only a tiny percentage of the whole amount of pixels. In our
ground truth dataset white pixel, representing the objects of interest, account for
about 10 percent. For example analyzing images of dimension 448x448 with a
total of 200704 pixels, of these 20070 are white the rest belong to the background.
If we now have the same model predict all background pixels, we will get an ac-
curacy of: (200704-20070) / 200704 = 0.90 or 90%. That’s a very high accuracy for
a very bad model. This situation’s problem is caused by the dataset’s high imbal-
ance. The data accuracy is not sufficient to describe the complete real situation
when working with a class-imbalanced dataset, such as this one, where there is
a noticeable disparity between the number of positive and negative labels.

PRECISION

Precision, as its name suggests, is a measure of how accurate our predictions
are, in other words, it is how accurate the model is. Precision effectively de-
scribes the purity of our positive detections relative to the ground truth. This
score is calculated dividing the number of true positive results by the number
of all positive results.

26

CHAPTER 2. IMAGE SEGMENTATION

P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.4)

For instance, the precision is 1 if we correctly predict a single pixel. This
strategy becomes ineffective when predicting very few pixels from the object
class, in this case, the fewer predictions one makes, the lower the error.

RECALL

Recall, also known as Sensitivity, effectively describes the completeness of
our positive predictions relative to the ground truth. Recall score, is the number
of true positive results divided by the number of all samples that should have
been identified as positive.

R𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.5)

So, the more pixels we predict as the true class, the better will be the recall. If
Precision can be compared to the quality of the model, Recall refers to quantity,
or how many of the real labels were predicted.

DICE COEFFICIENT (F1-SCORE)

It is one of the most widespread scores for performance measuring in com-
puter vision and in Medical Image Segmentation. Dice coefficient is a ”harmo-
nious” balance between precision and recall, sometimes using only this metrics
separately isn’t enough. It evaluate the overlap between the predicted segmen-
tation and the ground truth, additionally, it penalizes false positives, which are
a frequent occurrence in datasets with highly class imbalance, like the one ob-
tained for this project. As shown in figure 2.9 the Dice coefficent, also known as
F1 score, is obtained multiplying by 2 the intersection between prediction and
ground truth divided by the the total number of pixels.

Here is how it is defined when applied to two sets of pixels 𝐴 and 𝐵, where
𝐴 is the set of true pixels and 𝐵 the set of predicted ones:

27

2.4. EVALUATION METRICS

Figure 2.9: Dice Coefficent

D𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(2.6)

In terms of the confusion matrix, the metric can be rephrased in terms of
true/false positives/negatives:

D𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2.7)

In the formula, we can see one limitation of the F1 score: true negatives aren’t
used directly.

The F1 score formula can be rephrased as a combination of Precision and
Recall, as shown below:

D𝑖𝑐𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2.8)

JACCARD INDEX (INTERSECTION-OVER-UNION)

Jaccard index, also known as Intersection-over-Union (IoU), is the area of
the intersection over union of the predicted segmentation and the ground truth
(figure 2.10).

28

CHAPTER 2. IMAGE SEGMENTATION

Figure 2.10: IoU Coefficent

In other words is essentially a method to quantify the percent overlap be-
tween the target mask and our prediction output. Considering for example 𝐴

the ground truth ad 𝐵 the predicted mask, the IoU metric measures the number
of pixels common between the target 𝐴 and prediction masks 𝐵 divided by the
total number of pixels present across both masks.

I𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(2.9)

In terms of the confusion matrix:

I𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2.10)

The metric mIoU is often used when dealing with multiclass problems, this
can be calculated simply computing the IoU coefficient for each class and then
take the mean. Often in problems like this where background is the major part,
it is better to exclude the background class from the mIoU computation.

In this project the accuracy values are marginally analysed since the dataset
has highly imbalanced classes between Regions of Interest (ROIs) and back-
ground. In other words, the ROIs in our images typically just take up a small por-
tion of the total image, the remaining is background. Accuracy score includes

29

2.4. EVALUATION METRICS

true negative results, thus leading to not meaningful high scoring. In contrast,
dice coefficient and IoU are the most commonly used metrics for image segmen-
tation because both metrics penalize false positives. However, choose between
dice coefficient and IoU or vice versa depends on the task’s individual use cases.

30

3
Main tool and libraries

I will briefly describe the primary tools that I have used to conduct the anal-
ysis and development in this section before getting into the specifics of imple-
mentation.

3.1 PROGRAMMING LANGUAGES

For the study of the optimal solution and the development of the model, I
used Python [13], versions 3.9, one of the most popular programming languages
in the field of artificial intelligence, especially in machine learning and image
processing. There are many programming languages utilized in the building
of AI models, It is the best option for processing massive datasets and creating
complicated models thanks to its extensive collection of open-source modules
and tools.

For the integration part in 𝑆𝐿𝐶3, Sisma’s software, I used the .NET frame-
work [12] and in particular the C# [24] language. .NET is a free, cross-platform,
open-source developer platform for building many types of applications. Apps
and libraries are compiled from source code and a project file, using an inte-
grated development environment (IDE) such as Visual Studio. C# language has
its roots in the C family, It is a modern, object-oriented, and type-safe program-
ming language.

31

3.2. MAIN PYTHON LIBRARIES

3.2 MAIN PYTHON LIBRARIES

One of the key benefits of adopting Python is the huge number of open-
source libraries. In this section I’ll outline the key Python libraries utilized in
this project.

NUMPY

Numpy [15] is a popular open-source package that Python programmers use
for numerical computation and data analysis. It provides powerful tools for
working with matrices, vectors and other data structures. For engineers and
data scientists who work with massive amounts of data, Numpy is a crucial tool.

The key benefits of Numpy are interoperability with other libraries and tools,
like as Pandas and Matplotlib, making it simple to use, and broadcasting, a use-
ful feature that permits operations between elements in arrays with diverse sizes
and forms.

MATPLOTLIB

The most popular Python library for creating static, animated, and interac-
tive visualizations is Matplotlib [16]. It allows users to make a wide variety of
plots, including line plots, scatter plots, bar graphs, histograms, and more. It
also enables users to display RGB and grayscale images.

SCIKIT-LEARN

Scikit-learn [9] library is used for machine learning tasks, It offers easy-to-use
tools for data mining and data analysis. It was mostly used in this thesis for
splitting the dataset into training, validation, and test, and also to calculate the
evaluation metrics on the final results.

ALBUMENTATIONS

Albumentations is a Python library for fast and flexible image augmentations
[1]. It is a computer vision tool that boosts the performance of deep convolu-
tional neural networks. It provides a clear but effective image augmentation
interface for a number of computer vision tasks, such as object classification,

32

CHAPTER 3. MAIN TOOL AND LIBRARIES

segmentation, and detection. Albumentations implements a wide range of im-
age transform operations that are optimized for performance. In this thesis it
was used above all for the creation of synthetic data.

3.3 OPENCV AND EMGU CV

OpenCV (Open Source Computer Vision Library) [18] is an open source com-
puter vision and machine learning software library. OpenCV was developed to
facilitate the use of machine perception in commercial products and to provide
a common infrastructure for computer vision applications. More than 2500 opti-
mized algorithms are available in the library, including a wide range of both tra-
ditional and state-of-the-art computer vision and machine learning techniques.
It supports Windows, Linux, Android, and Mac OS, it is natively written in C++
but provides interfaces also for Python, Java, and MATLAB.

Emgu CV [7] is a cross platform .Net wrapper to the OpenCV image process-
ing library. It allows call OpenCV functions from .NET compatible languages
like C#. This wrapper is compiled by Visual Studio and it can run on Windows,
Linux, Mac OS, iOS and Android.

I have extensively used OpenCV and Emgu CV, in Python and C# respec-
tively, for numerous image operations including interpolations, scaling, extrap-
olation of edge maps and division into patches.

Figure 3.1: OpenCV and EmguCV logo.

33

3.4. TENSORFLOW AND TENSORFLOW.NET

3.4 TENSORFLOW AND TENSORFLOW.NET

TensorFlow [2] is another open-source machine learning framework devel-
oped by Google Brain commonly used. It offers a full range of tools for creat-
ing and training machine learning models, including neural networks, decision
trees and regression models. The native APIs in the library are developed in
Python, C, Java, Go and Rust languages. However, the use of the Python lan-
guage is recommended because it allows you to implement and call the Ten-
sorFlow libraries more quickly. TensorFlow therefore allows you to specify the
architecture of a model, including the number of layers, the type of activation
function and the optimizer to use, and then provides the tools to train the model
on a dataset. Keras [5] is the high-level API of the TensorFlow platform.

TensorFlow.NET [4] is a library that provides a .NET standard binding for Ten-
sorFlow, allowing developers to design, train and implement neural networks
in the .NET environment. This library allowed me to import the model, already
trained in Python, into C# and integrate it into the Sisma application.

Figure 3.2: Tensorflow logo.

3.5 TOOLS

It is essential to have access to a variety of software tools and services that
can simplify the project development process. In this section I will review some
of the main software services and development tools used to create the complete
project.

34

CHAPTER 3. MAIN TOOL AND LIBRARIES

ANACONDA AND JUPYTER NOTEBOOK

Anaconda [17] is a distribution of the Python and R programming languages
for scientific computing, that aims to simplify package management and deploy-
ment. Over 250 data science packages are included in the distribution, and over
7,500 additional open source packages suitable for Windows, Linux, and macOS
can be installed. One of these includes Jupyter Notebook.

Jupyter Notebook [11] is an open source web application that allows you to cre-
ate and share interactive text documents, containing objects such as equations,
graphs and executable source code. Jupyter notebooks are composed of a num-
ber of ”cells” that are organized in a linear fashion. Any cell can contain text or
a code.

MICROSOFT VISUAL STUDIO

Microsoft Visual Studio (or more commonly Visual Studio) [8] is an integrated
development environment (IDE) developed by Microsoft. Visual Studio support
various languages, including C#, Visual Basic .Net, C++, Java and Javascript, and
the creation of projects for various platforms, including Mobile and Console.
Visual Studio integrates IntelliSense technology which allows you to correct any
syntactic errors, and even some logical ones, without compiling the application.
Unlike classic compilers, the one available with the .NET Framework converts
the source code (Visual Basic, C#, etc.) into IL (Intermediate Language) code.

GIT

Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency
[22]. An impressive number of software projects rely on Git for version control,
including commercial and open source projects. Thanks to Git, programmers
can record every change that is made to the code over time, compare different
versions of the same file, collaborate simultaneously on the same program to
implement new features without interfering with the work of other team mem-
bers.

35

3.5. TOOLS

GIMP

GIMP [30] is a cross-platform image editor available for GNU/Linux, macOS,
Windows and more operating systems. GIMP a is free open-source software that
offers many features, such as high-quality photo manipulation, original artwork
creation and graphic design. Thanks to its selection tools it allowed me to obtain
the ground truth segmentation masks in a simpler and faster way.

36

4
Data Exploration and Preprocessing

for Improving the Performance of the
AI Model

In this chapter I will introduce the structure and properties of the dataset
used in this project and the preprocessing operations performed in order to im-
prove prediction results. One of the most crucial elements affecting the perfor-
mance of the AI models is the quality of the data, for this purpose preprocessing
operations can significantly impact the quality of the model’s output. We will
have the input data prepared for the development/training phase by the con-
clusion of this chapter.

4.1 DATASET OVERVIEW

All images used for training and testing the DL model were captured man-
ually through the use of the vision system of Sisma’s machinery present in the
company and the 𝑆𝐿𝐶3 application for laser marking. I have been provided
by the company with samples of shapes similar to those used by customers of
different sizes and geometries. The objects supplied to me were photographed
with dark backgrounds in order to highlight the contrast or positioned directly
in the gripper of the mandrel ready for processing. From about 50 objects I
obtained about 700 photos by varying positions and exposure times of the cam-
era. Depending on the sample under examination, the generated images di-

37

4.1. DATASET OVERVIEW

mensions differ; they normally span from the smallest (1620x1620) to the largest
(10,000x10,000).

Training a segmentation model requires a dataset which contains images seg-
mentation masks as ground truth of the same size as the original photos, they
express the class to which each pixel of the respective photo belongs. The bi-
nary masks representing the ground truth were obtained using Gimp a free and
open source image editor application capable of facilitating the precise manual
segmentation procedure. The process of capture and manual segmentation of
the images obtained, also given the considerable resolution, it is quite time con-
suming.

The more images dataset contains, the better the model will train, because it
will see more examples during training process, excellent results are achieved
with 5000 or more images varied as possible. Data augmentation techniques
and generation of synthetic data were applied with the aim of expanding the set
of images for training. It must be taken into account that the captured images
often had reflections and shadows caused by sometimes unavoidable external
lights.

Figure 4.1: Example Data

LABEL DISTRIBUTION

The ground truth is formed by binary masks, the value 0 represents a posi-
tion occupied by the background while 1 the object of interest. By analyzing the
dataset and the ground truth, we can state that the distribution of binary values
is highly unbalanced, with background values that prevail over ROI values by a
percentage of about 90 of the total number of pixels. This issue leads us to focus
on metrics and loss functions more suited to the type of data we have.

38

CHAPTER 4. DATA EXPLORATION AND PREPROCESSING FOR IMPROVING THE
PERFORMANCE OF THE AI MODEL

4.1.1 DATA AUGMENTATION

In my thesis I made use of data augmentation techniques since the set of im-
ages obtained is limited. Overfitting is a term used in machine learning (ML)
to describe the circumstance in which a model does not generalize well from
training data to unseen data. It is one of the most difficult challenges in applied
machine learning. Acquiring and classifying additional data will produce su-
perior outcomes in many circumstances, but it is typically time-consuming and
costly in terms of labour. That is where data augmentation (DA) comes in.

Data augmentation is a method for producing altered data from existing data
in order to artificially increase the size of a training set. Using DA is a useful
technique if you want to avoid overfitting, if the initial dataset is too small to
train on, or if you want to squeeze more performance out of your model.

For this thesis I made use of the following DA techniques:

• Geometric transformation: include for example random flip, rotation, shear,
resize, zoom.

• Color space transformations: random change greyscale values (altering
brightness and contrast).

• Linear filters: sharpen or blur an image.

Unfortunately the biases in the original dataset persist in the augmented data
and finding an effective approach for data augmentation can be difficult.

4.1.2 SYNTHETIC DATASET

In computer vision, the term ”synthetic data” refers to images that are cre-
ated by algorithms rather than acquired by a camera. These photos are typically
used to train artificial intelligence (AI) models. Using synthetic data offers var-
ious advantages over using real data:

• It is easier to obtain a large amount of synthetic data rather than real data.

• Synthetic data can be generated with specific properties that are difficult
to find in real data, for example it is possible to create images of partially
hidden objects (helpful for developing object identification models). In this
case the images generated will not have the problem of having to manage
reflections and shadows.

• For instance, the color of the objects in the photos can be altered to system-
atically change the generated data. This is useful for developing models
that must be resistant to changes in appearance.

39

4.1. DATASET OVERVIEW

• Synthetic data can be generated with labels, in this case segmentation masks
are generated automatically.

When compared to a human procedure, an automated process allows us to
build datasets significantly faster.

For this purpose I have considered 2 different approaches: in the first case
I used about 50 cropped photos of real samples in various positions (especially
in the jewelry sector) as objects of interest, in the second case I used random
abstract shapes to which grayscale textures were applied. Since we are working
with mostly metallic samples, we first estimate the gray value distribution of the
samples in the real photos, then this distribution is applied to the pixels of the
synthetic images to obtain an image with a real metal-like appearance (see figure
4.2).

Figure 4.2: Synthetic Shapes

More than 40 background images obtained from Sisma laser systems and
about 100 cropped synthetic shapes were used in the creation of the synthetic
dataset.

Here are the steps I followed to generate a synthetic scene:

1. Randomly choose a background image

2. Randomly pick an object of interest

3. Synthetic cropped sample is randomly edited in order to obtain different
shapes exploiting Albumentations [1], a powerful python library that allows
transformations (like rotation, flip, blur, change colors, distortion contrast
and brightness) both to the input image and the output mask. Thanks to
this step we are able to distort the shape taken as input and obtain different
shapes at each iteration.

4. Edited object of interest is added to background image in a random posi-
tion and It is retrieved relative mask composition (object area is filled with
white color, background with black).

5. Since we want to have dataset with backgrounds as varied as possible I
finally add some Gaussian random background noise.

40

CHAPTER 4. DATA EXPLORATION AND PREPROCESSING FOR IMPROVING THE
PERFORMANCE OF THE AI MODEL

Figure 4.3: Generated Synthetic Data Examples

In figure 4.3 we can see some of the synthetic final scenes obtained.
Working with real images is always better than using artificial datasets, the

background noise generated by a camera is always complicated to emulate, fur-
thermore, unlike real data, these do not suffer from shadow and reflection prob-
lems.

4.2 PREPROCESSING AND EDGE DETECTORS

Deep learning requires a lot of processing power. There are more than one
hundred thousand parameters in even a simple neural network model, training
large neural networks is highly expensive in terms of computer resources. As
a result, training a network using original resolution images is prohibitive in
terms of available hardware. I decided to reduce the size of the input images to
(448x448), a fair compromise to be able to manage all the images in memory and
train the developed model within acceptable times. Furthermore, although not
mandatory, most standard CNNs are designed for a fixed-size input, because
they contain elements of their architecture that don’t generalize well to other
sizes.

To help the network recognize the geometries and obtain the most precise
result possible for each image, the edge maps were obtained, which were linked
to the downsampled image and then given as input to the deep learning model.
This choice proved successful, improving the final results.

By edge in an image we refer to a place of rapid change in the image intensity
function. Edge detection is a widely used and popular image processing tech-
nique required for most computer vision applications, is used to identify the
boundaries (edges) of objects or regions within an image. While maintaining

41

4.2. PREPROCESSING AND EDGE DETECTORS

the image’s structure, it lowers the amount of noise and the number of features
in the image.

We must identify image discontinuities in order to detect edges, and com-
puting the derivative in image intensities will help us do this.

Figure 4.4: Image Derivatives.

As shown in the figure above 4.4, the edges corresponds to the derivative
peak values. Derivates, however, are also impacted by noise, hence, it is advised
to first smooth the image before taking the derivative.

Fortunately, OpenCV [18] package allows to perform edge detection with dif-
ferent techniques, the most important, considered for this thesis, are described
below.

Finally a normalization procedure is applied to all the samples of the dataset
in order to obtain pixel values between 0 and 1. This will help training the neural
networks speeding up convergence.

4.2.1 SOBEL EDGE DETECTION

One of the most used edge detection methods is Sobel [29] Edge Detection,
it detects edges marked by sudden changes in pixel intensity in a grayscale im-
age. By analyzing the first derivative of the intensity function, the increase in
intensity becomes much more apparent, so edges are detected in areas where
the gradient is greater than a particular threshold value. Sobel method use one
kernel to detect sudden changes in pixel intensity in the X direction and another
in the Y direction, therefore approximating the first derivative using 2 different

42

CHAPTER 4. DATA EXPLORATION AND PREPROCESSING FOR IMPROVING THE
PERFORMANCE OF THE AI MODEL

(3x3) kernels.

𝐴 =

−1 0 +1

−2 0 +2

−1 0 +1

, 𝐵 =

+1 +2 +1

0 0 0

−1 −2 −1

Figure 4.5: X and Y direction Kernel, respectively
The intensity gradient in the 𝑥 and 𝑦 directions are denoted as 𝐺𝑥 and 𝐺𝑦 , X
and Y kernels defined above as 𝐴 and 𝐵, respectively. 𝐺𝑥 and 𝐺𝑦 are obtained
through convolution operator with the original input image 𝐼:

G𝑥 = 𝐴 ⊛ 𝐼 (4.1)

G𝑦 = 𝐵 ⊛ 𝐼 (4.2)

The final approximation of the gradient magnitude 𝐺 can be computed as:

G =

√
𝐺2

𝑥 + 𝐺2
𝑦 (4.3)

And the orientation of the gradient can be approximated as:

Θ = 𝑡𝑎𝑛−1(
𝐺𝑦

𝐺𝑥
) (4.4)

To compute edge maps with less noise some filters like the Gaussian are often
performed on original images resulting in blurred images. It must be taken into
consideration that this method suffers from poor localization: It implies that
multiple edges could be extrapolated where there should only be one.

4.2.2 CANNY EDGE DETECTION

Because it is so reliable and adaptable, Canny [3] Edge Detection is one of the
most widely used edge-detection techniques today. It is a multi-stage algorithm
made up of 4 different stages:

43

4.2. PREPROCESSING AND EDGE DETECTORS

1. Noise Reduction: Since edge detection is susceptible to noise in the image
noise must be reduced. A 5x5 Gaussian blur filter is mainly utilized in
Canny Edge Detection to remove or minimize unwanted information that
could result in undesired edges.

2. Calculate Intensity Gradient: The image is filtered using a Sobel kernel
both horizontally and vertically after it has been smoothed. The intensity
gradient magnitude (𝐺) and direction (Θ) for each pixel are then deter-
mined as previously explained.

3. Edges Suppression: Non-maximum suppression of edges is a method that
the algorithm in this phase use to remove undesirable pixels that corre-
spond to unwanted edges. Each pixel is compared to its neighbors in both
the positive and negative gradient directions: the magnitude of the ana-
lyzed pixel remains unaffected if it is greater than of its surrounding pixels.
Otherwise, the current pixel’s magnitude is set to zero. As result we will
get a binary image with ”thin edges”.

4. Hysteresis Thresholding: The gradient magnitudes are compared with
two threshold values, one smaller than the other:

• If the gradient magnitude value exceeds the greater threshold value
the pixels are associated with ’solid’ edges and are included in the
final edge map.

• If the gradient magnitude values are less than the smaller threshold
value, the pixels are suppressed and left out of the final edge map.

• Pixels whose gradient magnitude lies between these two thresholds
are classified as ”weak”, this pixels are represented in the final edge
map if they are related to those corresponding to solid edges.

See figure 4.6 [26].

Figure 4.6: Hysteresis Threshold [26].

The edge A is a ”sure-edge” because it is above the maximum value. The whole
curve is obtained even if point C is below maxVal since it connects to edge A.
Although edge B is in the same region as edge C and is above minVal, it is not
related to any other ”sure-edges” and is therefore discarded.

44

CHAPTER 4. DATA EXPLORATION AND PREPROCESSING FOR IMPROVING THE
PERFORMANCE OF THE AI MODEL

4.2.3 FINAL CONSIDERATIONS

The Sobel operator’s key benefits are that it is less complicated and takes less
time, the edges, though, are rough. On the other hand, the non-maxima sup-
pression and the hysteresis threshold used in the Canny technique result in finer
edges. The Canny algorithm has the drawback of being more complex and less
time-efficient than Sobel.
In my specific case I used Sobel for the images analyzed by the Rough model, that
works with low resolution images, given that TensorFlow provides a method
for calculating gradients in the pipeline dedicated to the creation of TensorFlow
datasets. This operation allowed me to save memory and upload more images
for training. For the refinement module, however, we need the concatenated
edge map to be as precise as possible, which is why Canny method is used in
this case.
OpenCV library [18] provides useful function that performs both Sobel and
Canny edge detection in sigle functions. In the Python code example below,
the Sobel() and Canny() function implements the methodologies described in
previous chapters.

1 import cv2
2

3 sobelxy_edgemap = cv2.Sobel(image, ddepth=cv2.CV_64F, dx=1, dy=1,
ksize=3)

4 canny_edgemap = cv2.Canny(image, threshold1=minVal, threshold2=maxVal
)

Listing 4.1: OpenCV Sobel and Canny Edge Detection

For the Sobel function it is important to specify:

• The parameter ddepth, that means the desired depth of the destination
image in this case we receive a single channel grayscale image with float
pixel values.

• I set dx = 1 and dy = 1 in order to compute the first derivative in both
directions.

• We can also change the size of the original 3x3 kernel by setting the argu-
ment ksize

For the second, OpenCV takes care of all the technical details while I provide
the two thresholds that the Canny Edge Detection method uses.

45

4.3. TRAIN, VALIDATION AND TEST SPLIT

4.3 TRAIN, VALIDATION AND TEST SPLIT

The division of the dataset in train, validation, and test is essential for the cre-
ation of strong and reliable machine learning models. By ensuring that the
datasets used to train the model and to evaluate it are separate, you are better
able to evaluate the performance of the model.
Given that our dataset is made up of multiple images representing the same
sample, with different positions or exposure times, when dividing the samples
into the various sets, care must be taken to assign a single set to a given sample
in order to obtain unbiased evaluations.
The following are the key characteristics of each set:

• Train set: The training set is the portion of the dataset reserved to fit the
model. It consists of labeled examples that the model uses to learn the
underlying patterns and relationships between input features and target
outputs. The model sees and adjusts its parameters based on the training
data in order to minimize a loss function and enhance its predictive ca-
pabilities. The training set must be large enough to avoid overfitting. To
maximize model performance, I considered about 80% of total samples.

• Validation set: During training process, the validation set is utilized to
fine-tune a machine learning model. Thanks to the validation set we can
know the ability of a trained model to generalize to new data. Potential
problems like overfitting are identified by this assessment. It is also essen-
tial for hyperparameter tuning. Hyperparameters such as learning rate or
regularization are settings that control the behavior and also the training of
a ML model. We can determine the ideal combination of hyperparameters
that produces the best results by experimenting with different hyperpa-
rameter values, training the model on the training set, and evaluating its
performance using the validation set. About 10% of total samples are used
for validation.

• Test set: The test set is used to evaluate the final performance of the trained
model. It serves as an unbiased measure of how well the model can gener-
alize to unseen data. The test set should be representative of the real-world
data the model will encounter. About 10% of total samples are used for
testing.

The following table shows the number of samples assigned to each set. Images
generated through data augmentation and synthetic data were not considered.

46

CHAPTER 4. DATA EXPLORATION AND PREPROCESSING FOR IMPROVING THE
PERFORMANCE OF THE AI MODEL

Training
Set

Validation
Set

Test Set

568 64 61

Table 4.1: Number of samples for each set.

47

5
Image Segmentation Model

Architecture

This section provides an in-depth explanation of the machine learning model
that was designed and developed which led to the optimal solution. As shown
in Figure 5.1, the network model proposed in this thesis is composed by two
main components: a rough segmentation module and a refinement module, like
the HRRNet [28] network.

Figure 5.1: Whole Architecture

For the rough segmentation module I got inspired from U-Net [25] architecture
and processes the input image in low resolution. This first module aims to obtain
a first approximate segmentation mask at low resolution. The high-resolution

49

5.1. ROUGH MODULE

input image, together with the edge map, is then first reduced to the dimensions
448x448x2 in order to be analyzed by the first network, obtaining a binary mask
with spatial dimensions equal to the input (448x448). Subsequently the result
obtained from the previous module is interpolated with a bilinear method, until
a mask measuring 1344x1344 is obtained.
In the refinement module, the approximate segmentation result, the original im-
age and its edge map are taken into consideration together. The input is divided
into 9 patches, each patch is segmented separately and refined to extract local
details information of the image. This strategy is similar to the one presented by
Anton Milan and Guosheng Lin [14] which uses multiscale inputs to maximize
the information obtained during the previous layers.
The refined patches are then pieced together to generate a high-resolution re-
fined segmentation result.
Finally, the mask needs to be interpolated again until the dimensions match the
original input ones: various interpolation techniques have been tried, I have also
developed a method that takes advantage of information from the edges and
assigns pixel intensity values accordingly .
Below both modules are described in detail together with the evaluation metrics
calculated on the test set.

5.1 ROUGH MODULE

For the development of this architecture I took inspiration from the U-Net ar-
chitecture presented in 2015 by Olaf Ronneberger, Philipp Fischer and Thomas
Brox [25].
The original structure was used originally in the medical field, specifically for tu-
mor detection, but over the years it has been exploited in multiple fields achiev-
ing excellent results.
The model’s goal as an image segmentation tool is to assign each pixel to one
of the output classes, producing as output a single channel mask. The output
mask will have the same number of columns and rows as the output image, each
element will be between 0 and 1. These values can be interpreted as the proba-
bility that the pixels of the original image, present in the same position, belong
to class 1 (region of interest). On the other hand, the probability that a given
pixel belongs to class 0 (background) can be calculated as 1 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒.
It is important to underline that this network doesn’t have any fully connected

50

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

layer. The developed architecture is described by the figure 5.2.

Figure 5.2: Rough Module Architecture

As in the original paper the architecture is composed of two main parts: encoder
and decoder. The contracting path, or encoder, reduces (down-sample) the input
image into a feature map, and through pooling layers extracts the key elements.
The second path is the symmetric expansion path, also known as the decoder,
it allows for accurate localisation through transposed convolution. At each step
transposed convolution double the size of feature maps while the number of
channels is halved. The decoder amplifies (up sample) the feature map to ob-
tain a single channel image, using the deconvolution layers, also through skip
connection techniques.
Each operation represented by the arrows is described below:

• Each blue arrow applies a convolutional layer with a kernel of size 3x3.
Padding values were placed in the outlines of the maps before the con-
volution operation in order to avoid map downsampling. Furthermore,
batch normalization layers and Leaky ReLU activation functions are ap-
plied after each convolutional layer.

• The red arrows represent max pooling operators. This calculates the maxi-
mum value applying a filter to non-overlapping subregions of size 2x2 and
obtains a downsampled feature map with half sizes. It is commonly used
to reduce the number of parameters and increase computational speed but
also because it allows you to analyze features at different scales.

51

5.1. ROUGH MODULE

• Transposed convolution layers are represented by green arrows. This
phase involves two steps: add padding to each pixel in input feature map,
then apply convolution with kernel size 3x3 with stride 2 in order to match
same level encoder feature maps sizes.

• The gray connections between encoder and decoder maps refer to concate-
nation operations. Skip Connections copies the image matrix from the ear-
lier layers and uses it as a part of the later layers. This enables the model to
preserve information from a richer matrix and prevent information loss.

• The last operation represented in yellow indicates a last convolutional
layer, with kernel size equal to 1, that returns a single channel. In this
case the activation function performed is the sigmoid in order to obtain
values between 0 and 1.

The developed code is shown below: all layers used are standard layers pro-
vided by Keras [5]. To build a model layers need to be assembled specifying the
calculation order from the input to the output. Since convolution operations are
frequently performed in both contracting and expansive paths, to avoid code
repetition I grouped them into a single function conv2d_block().

1 import tensorflow as tf
2

3 def conv2d_block(input_tensor , n_filters):
4

5 # first layer
6 x = tf.keras.layers.Conv2D(filters = n_filters , kernel_size = (3,

3), kernel_initializer = 'he_normal', padding = 'same')(
input_tensor)

7 x = tf.keras.layers.BatchNormalization()(x)
8 x = tf.keras.layers.LeakyReLU(alpha=0.01)(x)
9

10 # second layer
11 x = tf.keras.layers.Conv2D(filters = n_filters , kernel_size = (3,

3), kernel_initializer = 'he_normal', padding = 'same')(x)
12 x = tf.keras.layers.BatchNormalization()(x)
13 x = tf.keras.layers.LeakyReLU(alpha=0.01)(x)
14

15 return x

Listing 5.1: Convolutional Block

This function receives the current layer and the depth of the feature map it
should produce. 2D convolutional layers use 3x3 kernel sizes, adding padding
values to the edges of the maps in order to avoid downsampling. Initial random
weights are set following a truncated normal distribution centered on 0.

52

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

Batch normalization layers apply a transformation that maintains the mean out-
put close to 0 and the output standard deviation close to 1. This has the effect
of stabilizing the learning process and reducing the number of training epochs
required to train deep networks.
Leaky Rectified Linear Units, also known as Leaky ReLUs, are activation func-
tions that are based on ReLU but have a small slope for negative values instead of
a flat slope. The slope coefficient is not learned during training but is a constant
entered as input.
The following code shows the entire structure of the rough module and how it
is initialized.

1 def get_rough_module(dropout = 0.1):
2 input_layer = tf.keras.layers.Input(shape=[448, 448, 2])
3

4 # Contracting Path
5 c1 = conv2d_block(input_layer , 32)
6 p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)
7 p1 = tf.keras.layers.Dropout(dropout)(p1)
8

9 c2 = conv2d_block(p1, 64)
10 p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)
11 p2 = tf.keras.layers.Dropout(dropout)(p2)
12

13 c3 = conv2d_block(p2, 128)
14 p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)
15 p3 = tf.keras.layers.Dropout(dropout)(p3)
16

17 c4 = conv2d_block(p3, 256)
18 p4 = tf.keras.layers.MaxPooling2D((2, 2))(c4)
19 p4 = tf.keras.layers.Dropout(dropout)(p4)
20

21 c5 = conv2d_block(p4, n_filters = 512)
22

23 # Expansive Path
24 u6 = tf.keras.layers.Conv2DTranspose(256, (3, 3), strides = (2,

2), padding = 'same')(c5)
25 u6 = tf.keras.layers.concatenate([u6, c4])
26 u6 = tf.keras.layers.Dropout(dropout)(u6)
27 c6 = conv2d_block(u6, 256)
28

29 u7 = tf.keras.layers.Conv2DTranspose(128, (3, 3), strides = (2,
2), padding = 'same')(c6)

53

5.1. ROUGH MODULE

30 u7 = tf.keras.layers.concatenate([u7, c3])
31 u7 = tf.keras.layers.Dropout(dropout)(u7)
32 c7 = conv2d_block(u7, 128)
33

34 u8 = tf.keras.layers.Conv2DTranspose(64, (3, 3), strides = (2, 2)
, padding = 'same')(c7)

35 u8 = tf.keras.layers.concatenate([u8, c2])
36 u8 = tf.keras.layers.Dropout(dropout)(u8)
37 c8 = conv2d_block(u8, 64)
38

39 u9 = tf.keras.layers.Conv2DTranspose(32, (3, 3), strides = (2, 2)
, padding = 'same')(c8)

40 u9 = tf.keras.layers.concatenate([u9, c1])
41 u9 = tf.keras.layers.Dropout(dropout)(u9)
42 c9 = conv2d_block(u9, 32)
43

44 output_layer = tf.keras.layers.Conv2D(1, (1, 1), activation='
sigmoid')(c9)

45 model = tf.keras.Model(inputs=[input_layer], outputs=[
output_layer])

46 return model

Listing 5.2: Solution Code

The model currently takes as input the image together with its edge map reduced
to 448x448 spatial dimensions.
The function tf.keras.layers.concatenate ([l1 , l2, ...]) takes as in-
put a list of layers, all of the same shape except for the concatenation axis, and
returns a single tensor that is the concatenation of all inputs.
In order to avoid overfitting, the Dropout layer randomly sets input units to 0
with a frequency of a given rate at each step during training. Inputs not set to 0
are scaled up by 1/(1− 𝑟𝑎𝑡𝑒) such that the sum over all inputs is unchanged [32].

5.1.1 MODEL TRAINING

It is necessary to compile the model before training. When compiling the model
is important to specify:

• Loss Function: a method of measuring how far predictions are from the in-
tended result. With neural networks, we often aim to reduce the error. The
cost or loss function has a significant task since it must accurately distill all
the model’s components into a single number such that improvements in
that number are a sign of a better model. Choosing the right loss function

54

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

can be a challenging problem since it must capture the characteristics of
the issue and be motivated by concerns that are important to the project
and data considered. Importantly, the choice of loss function is directly
related to the activation function used in the output layer.

• Optimizer Function: The algorithm performed to adjust network internal
trainable parameters. Optimizers minimize an error function(loss func-
tion), can be seen as mathematical functions which are dependent on
model’s learnable parameters. They determine how to change weights and
learning rate of a neural network.

The most commonly used loss function for the task of image segmentation is a
pixel-wise cross entropy loss. This loss examines each pixel individually, com-
paring the class predictions with the ground truth:

L𝐶𝐸 = −
1

𝑁

𝑁∑

𝑖

𝑀∑

𝑗

𝑦𝑖 𝑗 𝑙𝑜𝑔(𝑝𝑖 𝑗) (5.1)

With 𝑁 the number of samples (in this case all pixels), 𝑀 the number of classes
(binary case 𝑀 = 2), 𝑦𝑖 𝑗 the ground truth value and 𝑝𝑖 𝑗 the corresponding pre-
diction result.
This way we are imposing the same learning for each pixel in the image because
the cross entropy loss analyzes the class predictions for each pixel vector individ-
ually before averaging across all pixels. If the distribution of several classes in
the image ground truth is not balanced choose this type of loss function could
be an issue because the most common class might dominate training. In the
dataset I worked with, the pixels classified as background occupy a large part of
the final mask resulting in a highly unbalanced dataset.
To counteract this problem TensorFlow allows you to weight the loss function
for each output channel using a representation of the final mask in one hot en-
coding, but other functions based on dice or Jaccard coefficients are commonly
used.
For both modules I tried implementing both solutions and got better results us-
ing a custom loss function based on the Jaccard index, also known as Intersection
over Union (IoU).
Jaccard index is the area of the intersection over union of the predicted segmen-
tation 𝐵 and the ground truth 𝐴.

55

5.1. ROUGH MODULE

L𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) = −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(5.2)

where |𝐴∩ 𝐵| represents the total common elements between sets A and B, and
|𝐴∪𝐵| represents the number of elements which are in A, in B, or in both A and
B.
In other words it is essentially a measure of overlap between two samples. This
measurement has a range of 0 to 1, with a coefficient of 1 signifying perfect and
total overlap.
Since output mask is binary, I approximate the intersection |𝐴∩𝐵| as the element-
wise multiplication between the prediction and target mask, and then sum the
resulting matrix.
In order to quantify |𝐴∪ 𝐵| I simple calculate the sum for both sets A and B and
then I subtract the intersection calculated previously.
In order to formulate a loss function which can be minimized, I simply multi-
plied the IoU coefficient by −1.

L𝑗𝑎𝑐𝑐𝑎𝑟𝑑 = −

∑𝑁
𝑖 𝑦𝑖𝑝𝑖

∑𝑁
𝑖 𝑦𝑖 +

∑𝑁
𝑖 𝑝𝑖 −

∑𝑁
𝑖 𝑦𝑖𝑝𝑖

(5.3)

The loss function’s source code is shown below.
1 from keras import backend as K
2

3 def jaccard_coef(y_true, y_pred):
4 y_true = tf.cast(y_true, tf.float32)
5 y_pred = tf.cast(y_pred, tf.float32)
6

7 y_true_f = K.flatten(y_true)
8 y_pred_f = K.flatten(y_pred)
9 intersection = K.sum(y_true_f * y_pred_f)

10 return (intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f)
- intersection + 1.0)

11

12 def jaccard_coef_loss(y_true, y_pred):
13 return -jaccard_coef(y_true, y_pred)

Listing 5.3: Jaccard Loss function

56

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

A value equal to 1 was added to the denominator and numerator in order to
avoid the possible error of division by zero.
As regards the optimization algorithm, Adam [10] (Adaptive Moment Estima-
tion) was chosen. The Adam optimizer is one of the most widely utilized gradi-
ent descent optimization methods. Adam optimization is a stochastic gradient
descent method that is based on adaptive estimation of first-order and second-
order moments. According to Kingma et al [10], the method is ”computationally
efficient, has little memory requirement, invariant to diagonal rescaling of gra-
dients, and is well suited for problems that are large in terms of data/parame-
ters”. The Adam optimizer works by computing an exponential moving average
of the gradient and the squared gradient. The Adam optimizer maintains two
moving averages: the first moment (mean) and the second moment (uncentered
variance) of the gradient. The first moment is calculated as an exponentially
decaying average of the gradient, and the second moment is calculated as an
exponentially decaying average of the squared gradient [31].
TensorFlow allows to set Adam parameters such as:

• Learning Rate: the parameter that determines the step size at each itera-
tion while moving toward a minimum of a loss function.

• Beta1 and Beta2: are the decay rates for the first and second moments.

• Epsilon: A small constant for numerical stability.

For this project I kept Adam’s default values: beta1=0.9, beta2=0.999,
learning_rate=0.001, and epsilon=1e-7.
After compiling, the training phase can be started thanks to the method
model.fit(). The model was trained for 200 epochs, by epoch I mean an it-
eration over the entire training data provided.

5.1.2 MODEL EVALUATION

In this subsection, I will present the results of the tests conducted on the dataset
considering only the first Rough Module.
sklearn library in python allows to compute the confusion matrix in order to
evaluate the accuracy of a classification. In the following code the metrics de-
scribed in the previous chapters are obtained by exploiting the number of true
positive, true negative, false positive and false negative values obtained from the
confusion matrix between predicted masks and ground truth.

57

5.1. ROUGH MODULE

1 from sklearn.metrics import confusion_matrix
2

3 def show_evaluation_metrics(y_true, y_pred):
4

5 tn, fp, fn, tp = confusion_matrix(y_true.flatten(), y_pred.
flatten()).ravel()

6 print('True Negative:', tn, ', False Positive:', fp, ', False
Negative:', fn, ', True Positive:', tp)

7

8 print('Pixel Accuracy:', (tp + tn)/(tp + tn + fn + fp))
9 print('Precision:', tp / (tp + fp))

10 print('Recall:', tp / (tp + fn))
11

12 f1_score = 2 * tp / (2 * tp + fp + fn)
13 print('Dice Coefficent (F1 Score): ', f1_score)
14

15 iou = tp / (tp + fp + fn)
16 print('Intersection -Over-Union IoU Coefficent(Jaccard Index): ',

iou)

Listing 5.4: Evaluation Metrics

In the first row of the table it is possible to observe the value of the relevant
metrics evaluated in the test set taking into consideration predicted masks and
the ground truth downsampled to dimensions 448x448. In the second line in-
stead we take into consideration the ground truth with original dimensions and
predicted masks interpolated with a bilinear method.

Pixel
Accuracy

Precision Recall Dice
Coeff.

IoU
Coeff.

448 x 448 0.997 0.991 0.977 0.984 0.969
Original
Sizes

0.996 0.996 0.968 0.982 0.964

Table 5.1: Rough Module Results

These results were achieved by applying data augmentation techniques to the
training and validation samples, obtaining a total of 4544 and 512 respectively.
For each image 7 different images are generated by applying random transfor-
mations such as rotations, shears, zooms and flips. Furthermore, 2000 synthetic
images were imported, obtaining a total training set composed of a total of 6544

58

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

units.

5.2 REFINEMENT MODULE

For this module I took inspiration from the RefineNet [14] architecture designed
by Guosheng Lin et al. and the paper ”A robust and high-precision edge seg-
mentation and refinement method for high-resolution images” [28].
This module aims to improve the result obtained in the previous part and at the
same time increase the size of the mask from 448x448 to 1344x1344. It tries to
maximize the features obtained in various scales fusing features maps at differ-
ent levels.
This architecture works with original images, resized to 1344x1344, relative
Canny edge map and segmentation result obtained by the rough network. The
latter must be resized with bilinear interpolation in order to be compatible. In
this case the edge map is calculated using the Canny method in order to obtain
more precise traces thanks to the application of non-maximum suppression and
hysteresis thresholding techniques.
First of all, each input is divided into 9 patches measuring 448x448 using patchify
[33], a Python library that allows to divide the input images into overlapping
patches, giving the desired size, and merge them to regain the original image.
Each patch is analyzed separately from the model.
As can be seen from the descriptive image 5.3 the structure makes use of three
cascade refinement units (RU). In the left part is represented the corresponding
input, while on the right side the output. Each RU works with 5-channel inputs,
three of them are standard to every block: the original patch, relative edge map
and rough segmentation output.
The RU is a encoder-decoder structure, like the U-Net, that returns segmenta-
tion results at different scale. As for the global process described in the HRRNet
paper, RUs has the following properties:

• The original image patch, the relative edge map and the relative crop of
the rough segmentation result concatenated three times make up the first
RU input. It will output a low resolution segmentation result with size 1/8
OS.

• The input for the second RU is identical to the first, with the upsampled
output segmentation map of OS8 acquired by the first RU replacing the
last two rough segmentation outputs. Two segmentation maps on two dif-
ferent scales, OS8 and OS4, will be the final outcome.

59

5.2. REFINEMENT MODULE

Figure 5.3: Refinement Module Architecture

• The input for the last RU block is created by concatenating the image’s
rough segmentation results with the upsampled segmentation maps OS8
and OS4 from the previous RU. The input is processed by the complete
structure in this instance, yielding a mask with the same size as the input
one.

For greater clarity the code developed for creating the model is shown below.

1 def get_refine_module(n_filters):
2

3 input_layer = tf.keras.layers.Input(shape=[448, 448, 3])
4 rough_mask = tf.expand_dims(input_layer[:,:,:,2], -1)
5

6 input_layer_ru1 = tf.keras.layers.concatenate([input_layer ,
rough_mask , rough_mask])

7 _, _, os8_1 = ru_block(input_layer_rm1 , n_filters)
8

9 os8_1 = Resize()([os8_1, [448, 448]])
10 input_layer_rm2 = tf.keras.layers.concatenate([input_layer , os8_1

, os8_1])
11 _, os4, os8_2 = ru_block(input_layer_rm2 , n_filters)
12

13 os8_2 = Resize()([os8_2, [448, 448]])
14 os4 = Resize()([os4, [448, 448]])
15 input_layer_rm3 = tf.keras.layers.concatenate([input_layer , os4,

os8_2])

60

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

16 os1, _, _ = ru_block(input_layer_rm3 , n_filters)
17

18 #label layer
19 label_layer = tf.keras.layers.Input(shape=[448, 448])
20

21 ref_model = tf.keras.Model(inputs=[input_layer , label_layer],
outputs=[os1])

22

23 loss = - (jacard_coef(os8_2, label_layer) + jacard_coef(os4,
label_layer) + jacard_coef(os1, label_layer)) / 3

24 ref_model.add_loss(loss)
25

26 return ref_model

Listing 5.5: Refinement Module

Resize() is a custom layer that I created that interpolates the input image ac-
cording with the data given using a bilinear approach.
A RU block is applied calling ru_block() function specifying the number of fil-
ters performed. It returns three outputs that are segmentation results at different
scales at different levels of the decoder.
Refinement Unit structure is explained by following code.

1 def ru_block(input_tensor , n_filters , dropout = 0.1):
2

3 # Encoder, Contracting Path
4 c1 = conv2d_block(input_tensor , n_filters)
5 p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)
6 p1 = tf.keras.layers.Dropout(dropout)(p1)
7

8 c2 = conv2d_block(p1, n_filters*2)
9 p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)

10 p2 = tf.keras.layers.Dropout(dropout)(p2)
11

12 c3 = conv2d_block(p2, n_filters*4)
13 p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)
14 p3 = tf.keras.layers.Dropout(dropout)(p3)
15

16 c4 = conv2d_block(p3, n_filters*8)
17

18 # Decoder, Expansive Path
19 rcu1 = conv2d_block(c4, n_filters*4)
20 os8 = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(

rcu1)

61

5.2. REFINEMENT MODULE

21 u5 = tf.keras.layers.Conv2DTranspose(n_filters*4, (3, 3), strides
= (2, 2), padding = 'same')(rcu1)

22 u5 = tf.keras.layers.concatenate([u5, c3])
23 u5 = tf.keras.layers.Dropout(dropout)(u5)
24

25 rcu2 = conv2d_block(u5, n_filters*2)
26 os4 = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(

rcu2)
27 u6 = tf.keras.layers.Conv2DTranspose(n_filters*2, (3, 3), strides

= (2, 2), padding = 'same')(rcu2)
28 u6 = tf.keras.layers.concatenate([u6, c2])
29 u6 = tf.keras.layers.Dropout(dropout)(u6)
30

31 rcu3 = conv2d_block(u6, n_filters)
32 u7 = tf.keras.layers.Conv2DTranspose(n_filters , (3, 3), strides =

(2, 2), padding = 'same')(rcu3)
33 u7 = tf.keras.layers.concatenate([u7, c1])
34 u7 = tf.keras.layers.Dropout(dropout)(u7)
35 os1 = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(u7)
36

37 return os1, os4, os8

Listing 5.6: Refinement Unit

This architecture is similar to U-Net but more simplified with only 3 blocks in
the contraction part and 3 in the expansion part, furthermore the number of
initial filters has decreased from 32 to 16. It uses the same function that applies
2 convolutional layers, batch normalization and leaky ReLU to extrapolate the
context of the feature maps.
In the decoder the convolutional block this time is applied before the upsam-
pling operation via a transposed convolutional layer.
The outputs at each scale (OS1, OS4, OS8) are obtained by applying a single-
channel convolutional layer and a sigmoid as the activation function.

5.2.1 MODEL TRAINING

The model was trained for 100 epochs using Adam as optimization algorithm
and a loss function based on jaccard index as in the rough module. The custom
loss function is embedded in the code that returns the refinement model 5.5.
The overall loss function of the network in this case is constructed by adding the
Intersection over Union coefficient of different scales of the network, that is:

62

CHAPTER 5. IMAGE SEGMENTATION MODEL ARCHITECTURE

L =

𝐿𝑂𝑆8

𝐽𝑎𝑐𝑐𝑎𝑟𝑑
+ 𝐿𝑂𝑆4

𝐽𝑎𝑐𝑐𝑎𝑟𝑑
+ 𝐿𝑂𝑆1

𝐽𝑎𝑐𝑐𝑎𝑟𝑑

3
(5.4)

𝐿𝐽𝑎𝑐𝑐𝑎𝑟𝑑 is an approximation of the Jaccard index calculated as 5.3. 𝐿𝑂𝑆8

𝐽𝑎𝑐𝑐𝑎𝑟𝑑
and

𝐿𝑂𝑆4

𝐽𝑎𝑐𝑐𝑎𝑟𝑑
are calculated on the resized output of the second Refinement Unit,

𝐿𝑂𝑆1

𝐽𝑎𝑐𝑐𝑎𝑟𝑑
is instead referred at the final output. In this case the loss function is not

specified when compiling the model but since it needs to analyze intermediate
layers the add_loss() method is applied once the model has been initialized.
The network was trained with Adam’s default parameters.

5.2.2 MODEL EVALUATION

In this subsection are presented the results of the tests conducted on the test set
considering also the Refinement Module. The original image is first analyzed
by the first model which has the task of extrapolating an approximate mask, the
result is then used as input for the second which has the task of refining and
increasing the dimensions of the final mask.
The calculation of the metrics was performed by calling the same function de-
scribed in the chapter for the evaluation of the rough module.
The results achieved are shown in the table 5.2.

Pixel
Accuracy

Precision Recall Dice
Coeff.

IoU
Coeff.

1344 x 1344 0.998 0.988 0.984 0.986 0.972
Original
Sizes

0.997 0.995 0.979 0.987 0.975

Table 5.2: Refinement Module Results

In the first row you can see the value of the metrics that were evaluated in the
test set by taking the predicted masks and the ground truth downsampled to
1344x1344. Instead, for the second line, we consider the ground truth with the
original dimensions and the predicted masks interpolated using a bilinear tech-
nique.
Given the computational and memory limitations, this model was trained by im-
porting only the original data, without applying data augmentation or import-

63

5.2. REFINEMENT MODULE

ing synthetic data. Patches measuring 448x448 were obtained from 568 training
data resized to 1344x 1344. 9 patches were extrapolated from each image for a
total of 5112.

Figure 5.4: Results Comparison.

64

6
Edge Refinement Interpolation

Once the images have been processed we obtain a mask measuring 1344x1344,
these must finally be interpolated to obtain dimensions equal to the original im-
ages in order to generate the 3D model. The input images depend on the size of
the sample taken into consideration, typically larger jewelery such as bracelets
and bangles produce 100 MP resolution images.
In this section, different interpolation strategies are discussed, listing their char-
acteristics, advantages and disadvantages. Furthermore, I developed an inter-
polation strategy that aims to align the boundaries of the low resolution masks
with the edges obtained from the original high resolution image.
Finally, in the last subchapter the results obtained by applying the different tech-
niques are shown and discussed.

6.1 IMAGE INTERPOLATION STRATEGIES

Interpolation strategies allow to enlarge an image estimating the value of the
function describing the image in locations different from the sampling ones. It
is pertinent also for other operations like rotations and geometric transforms.
Depending on the interpolation algorithm, the outcomes can differ significantly
even when the same image is resized. Every time interpolation is used, an image
will always lose some quality because it basically estimates new data sampled in
positions not present in the original image. Image interpolation aims to achieve
the best approximation of a pixel’s intensity and color depending on the values
of the neighboring pixels. It operates in two directions (x,y).

65

6.1. IMAGE INTERPOLATION STRATEGIES

All the strategies described below are applicable via a simple function
cv2.resize() in OpenCV specifying the new size and the interpolation method.

1 import cv2
2 cv2.resize(input_mask , size, interpolation = cv2.INTER_LANCZOS4)

Listing 6.1: OpenCV Resize Function

NEAREST-NEIGHBOR INTERPOLATION

Nearest neighbor is the most basic and simplest interpolation scheme. It only
considers one pixel: it just select the value of the closest available point at each
location. In other word, it has the effect of simply making each pixel bigger. It
requires low processing time but achieves poor results.

BILINEAR INTERPOLATION

The nearest 2x2 neighborhood of known pixel values around the unknown pixel
is taken into account in this case. The final interpolated value is then obtained
by taking a weighted average of these 4 pixels:

p(𝑥, 𝑦) = (1 − 𝑎)(1 − 𝑏)𝐼1 + 𝑎(1 − 𝑏)𝐼2 + (1 − 𝑎)𝑏𝐼3 + 𝑎𝑏𝐼4 (6.1)

Figure 6.1: Bilinear Interpolation

66

CHAPTER 6. EDGE REFINEMENT INTERPOLATION

As seen from the figure 6.1, the coefficients 𝑎 and 𝑏 depend on the distance of
the point from the 4 close samples.
This solution represents a good compromise between speed and complexity.

BICUBIC INTERPOLATION

Bicubic goes a step further than bilinear by taking the nearest 4x4 neighborhood
of known pixels (a total of 16) into account. As the previous, interpolated values
are obtained by taking a weighted average, since proximity pixels are at various
distances from the value to calculate, closer pixels are given a higher weighting
in the calculation.

p(𝑥, 𝑦) =

3∑

𝑖=0

3∑

𝑗=0

𝑎𝑖 , 𝑗𝑥
𝑖𝑦 𝑗 (6.2)

Coefficients 𝑎𝑖 , 𝑗 are computed from various constraints including sample posi-
tions, first order derivatives and cross derivatives.
Bicubic produces noticeably sharper images than the previous two methods but
is much slower.

LANCZOS INTERPOLATION

Lanczos interpolation is one of the most popular methods to resize images, to-
gether with bilinear and bicubic interpolation.
It can be used as a low-pass filter or used to smoothly interpolate the value of
a digital signal between its samples. It maps each sample of the given signal to
a translated and scaled copy of the Lanczos kernel, which is a windowed 𝑠𝑖𝑛𝑐

function [20].
The Lanczos kernel 𝐿(𝑥) determines how each input sample affects the interpo-
lated values.

𝐿(𝑥) =

{
𝑠𝑖𝑛𝑐(𝜋𝑥)𝑠𝑖𝑛𝑐(𝜋𝑥/𝑎) if − 𝑎 < 𝑥 < 𝑎,

0 otherwise
(6.3)

As can be seen from the equation 6.3, it is the normalized 𝑠𝑖𝑛𝑐, windowed (mul-
tiplied) by the Lanczos window, or sinc window, which is the central lobe of

67

6.2. EDGE REFINEMENT INTERPOLATION

a horizontally stretched 𝑠𝑖𝑛𝑐 function. The parameter 𝑎 is a positive integer,
typically 2 or 3, which determines the size of the kernel.
Given a two-dimensional signal with samples 𝑠𝑖 𝑗 , the value 𝑆(𝑥, 𝑦) interpolated
is obtained by the discrete convolution of those samples with the Lanczos kernel:

S(𝑥, 𝑦) =

⌊𝑥⌋+𝑎∑

𝑖=⌊𝑥⌋−𝑎+1

⌊𝑦⌋+𝑎∑

𝑗=⌊𝑦⌋−𝑎+1

𝑠𝑖 𝑗𝐿(𝑥 − 𝑖)𝐿(𝑦 − 𝑗) (6.4)

where 𝑎 is the filter size parameter, and ⌊𝑥⌋ is the floor function. This method
is more computationally heavy but obtains good results, which is why it is used
by many image processing applications like Photoshop and Gimp.

6.2 EDGE REFINEMENT INTERPOLATION

In this section I present a solution that I developed to interpolate the mask ob-
tained in the previous steps to original dimensions by exploiting the information
obtained from the edges map. The algorithm works with the 2x2 nearest neigh-
borhood, like the bilinear method, and the unknown values are established de-
pending on their intensity.
This method combines two different approaches:

• Pixel values are assigned depending on the proximity intensity values and
the traces given by the edge map calculated on the original high resolution
image if an edge exists within the considered window.

• Otherwise the values are assigned using the bilinear method described in
the previous chapters.

Now let’s look at the code and discuss it. First of all we need to generate a suit-
able edge map.

1 def generate_blurred_edge_map(image):
2

3 image = np.uint8(image * 255)
4 blurred = cv2.medianBlur(image, 15)
5

6 otsu_thresh_val = cv2.threshold(blurred, 0, 255, cv2.
THRESH_BINARY | cv2.THRESH_OTSU)[0]

7

68

CHAPTER 6. EDGE REFINEMENT INTERPOLATION

8 edgemap = cv2.Canny(blurred, otsu_thresh_val * 0.35,
otsu_thresh_val)

9

10 return edgemap/255

Listing 6.2: Edge Map Generation Function

Figure 6.2: Interpolation Example

A blurring filter via median blur is applied to the original image. The Canny
method was chosen for the best precision, then I looked for an automatic method
to establish the threshold values, to achieve this I used Otsu’s [27] method. This
threshold is automatically computed from the image histogram, the optimal
global threshold is computed maximizing the interclass variance.
Once the edges map has been calculated, the values of the predicted mask are
positioned relatively far apart inside a numpy array of size equal to the original
image, with default values equal to zero. Sampled values are equally spaced
based on the dimensions of the original image. This interpolation strategy tries
to obtain the best approximation of the label of a pixel based on the values of the 4
surrounding pixels and the edges relating to the portion of the image considered.
The algorithm cycles through sampling points and if it finds a value assigned
to the region of interest extrapolates the relevant window in the edge map: if
there are values the following edge_refinement_interpolation () function is
performed, otherwise the bilinear method is chosen.
In the following code we are considering a square window (nxn) where: p1 rep-
resents the pixel at the upper left corner, p2 the upper right pixel, p3 the lower
right pixel and p4 the lower left pixel.

69

6.2. EDGE REFINEMENT INTERPOLATION

1 def edge_refinement_interpolation(pixel_values , edge_map_patch):
2

3 p1 = pixel_values[0]
4 p2 = pixel_values[1]
5 p3 = pixel_values[2]
6 p4 = pixel_values[3]
7

8 mask = np.zeros (edge_map_patch.shape, dtype = np.float64)
9

10 if (p1 == p2 == p3 == 0 and p4 == 1) :
11 ## start from left / down
12 var_r, var_c = variance_on_axis(edge_map_patch)
13

14 if var_r > var_c:
15 # left
16 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= True)
17 else :
18 # down
19 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= False)
20

21 elif (p1 == p3 == p4 == 1 and p2 == 0) :
22 ## start from left / down
23 var_r, var_c = variance_on_axis(edge_map_patch)
24

25 if var_r > var_c:
26 # left
27 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= True, no_edge_val = 1)
28 else :
29 # down
30 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= False, no_edge_val = 1)
31

32 elif (p1 == p2 == p4 == 0 and p3 == 1):
33 ## start from right / down
34 var_r, var_c = variance_on_axis(edge_map_patch)
35 if var_r > var_c:
36 # right
37 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= False)
38

70

CHAPTER 6. EDGE REFINEMENT INTERPOLATION

39 else :
40 # down
41 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= False)
42

43 elif (p1 == 0 and p2 == p3 == p4 == 1):
44 ## start from right / down
45 var_r, var_c = variance_on_axis(edge_map_patch)
46 if var_r > var_c:
47 # right
48 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= False, no_edge_val = 1)
49

50 else :
51 # down
52 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= False, no_edge_val = 1)
53

54 elif (p2 == 1 and p1 == p3 == p4 == 0):
55 ## start from right / up
56 var_r, var_c = variance_on_axis(edge_map_patch)
57 if var_r > var_c:
58 # right
59 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= False)
60

61 else :
62 # up
63 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= True)
64

65 elif (p1 == p2 == p3 == 1 and p4 == 0):
66 ## start from right / up
67 var_r, var_c = variance_on_axis(edge_map_patch)
68 if var_r > var_c:
69 # right
70 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= False, no_edge_val = 1)
71

72 else :
73 # up
74 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= True, no_edge_val = 1)

71

6.2. EDGE REFINEMENT INTERPOLATION

75

76 elif (p1 == 1 and p2 == p3 == p4 == 0):
77 ## start from left / up
78 var_r, var_c = variance_on_axis(edge_map_patch)
79 if var_r > var_c:
80 # left
81 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= True)
82

83 else :
84 # up
85 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= True)
86

87 elif (p1 == p2 == p4 == 1 and p3 == 0):
88 ## start from left / up
89 var_r, var_c = variance_on_axis(edge_map_patch)
90 if var_r > var_c:
91 # left
92 mask = fill_mask(edge_map_patch , column_iteration = False

, start_fill= True, no_edge_val = 1)
93

94 else :
95 # up
96 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= True, no_edge_val = 1)
97

98 elif (p3 == p4 == 1 and p1 == p2 == 0):
99 ## start from down

100 mask = fill_mask(edge_map_patch , column_iteration = True,
start_fill= False)

101

102 elif (p2 == p3 ==1 and p1 == p4 == 0):
103 ## start from right
104 mask = fill_mask(edge_map_patch , column_iteration = False,

start_fill= False)
105

106 elif (p1 == p4 == 1 and p2 == p3 == 0):
107 ## start from left
108 mask = fill_mask(edge_map_patch , column_iteration = False,

start_fill= True)
109

110 elif (p1 == p2 == 1 and p3 == p4 == 0):

72

CHAPTER 6. EDGE REFINEMENT INTERPOLATION

111 ## start from up
112 mask = fill_mask(edge_map_patch , column_iteration = True,

start_fill= True)
113

114 elif (p1 == p3 and p2 == p4):
115 ## segmentation error
116 print('segmentation error')
117

118 return mask

Listing 6.3: Edge Refinement Interpolation

The values of 1 (ROI) are assigned depending on the proximity pixels present
at the corners of the windows taken into consideration. fill_mask() function
returns the interpolated mask by filling the area outlined by the edges. By
setting the flag start_fill = True the function will position the ROI values
to the left or from the top of the trace depending on the value of the second
column_iteration parameter which establishes whether the iteration is per-
formed first on the columns or on the rows. The third parameter no_edge_val
allows you to set the values assigned to the column or row in case there is no
trace in the edge map.
In some cases when the information from the 4 corners is not enough to under-
stand the type of filling that needs to be performed, this decision is made by
calculating the variance of the indices in which an edge appears in the x and y
axis. Let’s take for example a window where the pixel at the top left is white
while the other three are black, in this case there are two possibilities: fill the
mask starting from the left or from the top. By calculating the variance on the
indices of both axes we can estimate in which direction the edge extends the
most and make a decision accordingly.
The images below 6.3 show how this strategy performs well when the edges are
clearly defined. The masks obtained were superimposed on the original images
by altering the RGB channel corresponding to red.

6.3 FINAL EVALUATION

This chapter lists the statistics obtained once the mask obtained from the two
networks has been upsampled to the dimensions of the original images.
As can be seen from the table the results are almost the same. This is given by
the fact of working with very high resolution images and therefore the pixels

73

6.3. FINAL EVALUATION

Figure 6.3: Interpolated Results.

74

CHAPTER 6. EDGE REFINEMENT INTERPOLATION

belonging to the edges, the region of the image where a more complex strategy
should produce more accurate results, represent a small percentage of the total.

Interpolation
Strategy

Pixel
Accuracy

Precision Recall Dice
Coeff.

IoU
Coeff.

Nearest-
Neighbor

0.997 0.995 0.979 0.987 0.974

Bilinear 0.997 0.995 0.979 0.987 0.975
Bicubic 0.997 0.995 0.979 0.987 0.975
Lanczos4 0.997 0.995 0.979 0.987 0.975
Edge
Refinement

0.997 0.992 0.981 0.987 0.974

Table 6.1: Final Interpolation Results

By analyzing the results obtained from the interpolation via edges developed
by me in comparison to the other strategies we can draw information. We can
observe a lower value regarding Precision while a higher Recall. This could be
due to an increase in the number of false positives (pixels belonging to the back-
ground classified as ROI) and a decrease in false negatives (pixels belonging to
ROI classified as background) and therefore a general increase in white pixels.
The algorithm can still be improved by considering several aspects:

• I did not consider the case in which there is more than one edge in the
considered window. Textures belonging to the object of interest or the
background can generate unwanted edges which can lead to falsified re-
sults.

• The case where there is a clear segmentation fault is not handled. A
method can be developed to assign a truth index, based on neighbors,
which, if an established threshold is exceeded, this pixel is considered re-
liable.

• In the developed approach 2x2 windows are considered, by using larger
windows, as is done for example in the bicubic approach, information can
be obtained at larger scales.

75

7
𝑆𝐿𝐶3 Integration

This chapter summarizes the work carried out in C# to incorporate the results
of the Python study into the main Sisma 𝑆𝐿𝐶3 software’s marking process. This
work was carried out together and in conjunction with Dr. Cerato Davide who
helped me in the development part. The models were exported as two different
frozen graphs to allow the end user to analyze the image from only the rough
network, when this is sufficient, in order to speed up the marking process. In-
stead the edge refinement interpolation algorithm has been completely rewritten
in C#. To align the code with the other team members, git [22] was used, a tool
incorporated into the functions of Microsoft Visual Studio [8].

7.1 IMPLEMENTATION DETAILS

Both models have been incorporated into the latest version of 𝑆𝐿𝐶3 for the shape
recognition task. Many of Sisma’s customers operate in international contexts,
necessitating the need for a user interface that can handle multiple languages.
The models have been extrapolated into a format that assembles architecture
and weights in a single file, facilitating distribution, and also minimizes size by
removing unnecessary metadata for the inference process.

7.1.1 EXPORT AND IMPORT OF THE MODELS

The two models were developed and trained with the standard TensorFlow li-
braries in Python [2]. Unfortunately there is no official TensorFlow package for

77

7.1. IMPLEMENTATION DETAILS

the .NET environment but there are various third-party libraries that allow the
import of models already trained in other languages such as TensorFlow.NET
[4].
There are several ways to save a model and its weights, the standard methods
maintain several files that contain the weights and the network architecture with
all the metadata to be able to retrain the network. However, when we want to use
a model in production, we only need our model and its weights to be organized
in one file, we don’t need any other metadata to complicate our files.
For this reasons I decided to convert them into frozen graphs. When a graph
is frozen in TensorFlow, the description of the graph and its variables are com-
bined into a single file .pb that can be quickly deployed in a real-world setting.
Basically, freezing a graph involves removing all nodes not required for infer-
ence and changing all variables in the graph to constants. Freezing a graph is
important because it allows us to deploy our models without having to include
the entire TensorFlow framework. This can greatly lower the size of the deploy-
ment package.
To obtain this type of file it is sufficient to first export the model
in the SavedModel format and then convert it to GraphDef using the
convert_variables_to_constants_v2 TensorFlow function. Finally, The
frozen graph must then be saved to a .pb file using the tf.io.write_graph func-
tion. Making inferences in the .NET environment is very easy, first the graph is
loaded via the Import() method. A Session object allows to obtain the final
mask.

7.1.2 USER INTERFACE

The developed interface 7.1 allows the user to select the file paths of the models
and the image to be analyzed.
Using the Refinement module is optional, good results are obtained even just us-
ing the first model. In general, C# is a statically-typed and compiled language,
while Python is a dynamically-typed and interpreted language. This means that
C# is generally faster and more efficient but Python has numerous libraries opti-
mized for working with large images and matrices, which makes it more perfor-
mant in this case. Interpolation with edges has been implemented as in Python
and can be enabled by clicking on the corresponding checkbox, otherwise it uses
the bilinear method.

78

CHAPTER 7. 𝑆𝐿𝐶3 INTEGRATION

Figure 7.1: User Interface

79

7.1. IMPLEMENTATION DETAILS

Before starting the recognition algorithm it is important to set three main pa-
rameters:

• The Resolution of the image (pixel/millimeter), usually set automatically,
is used to obtain a 3D scale model.

• The Height of the object, we assume that the sample is flat with a constant
height at all points, even if this constraint does not exist during the marking
phase

• The Smooth percentage is an operation that is done postprocessing, it aims
to carry out a denoising operation on the final mask, it tries to obtain more
ideal shapes.

Once the binary mask has been obtained, the 3D model is generated in a Sisma
proprietary file format and rendered, see fig. 7.2.

Figure 7.2: Rendered 3D model

Taking into consideration a ring as in the figure 7.3, upon confirmation of the
3D model, a new project will be created where it is possible to observe the UV
mapping of the external development at the top, the development of the edge

80

CHAPTER 7. 𝑆𝐿𝐶3 INTEGRATION

Figure 7.3: UV Maps

(vertical mandrel) in the center, and finally the UV mapping of the internal de-
velopment.
Is possible to achieve automatic internal and external scanning by tilting the
mandrel at 0 and 15 degrees respectively. Using the editor it is possible to posi-
tion the engraving to be made in the desired position on the maps. Finally, the
generated file containing the geometries of the scanned object can be saved and
imported for subsequent processing.

81

8
Conclusions

The primary objective of this master’s thesis was to improve and expand the
capabilities of the shape recognition algorithm in the 3D scan package of the
Sisma 𝑆𝐿𝐶3 software. This thesis describes the entire strategy adopted in order
to obtain an artificial intelligence model capable of segmenting the input image
and dividing it between background and foreground pixels.
In the image segmentation domain, I worked with very high resolution black
and white images captured and manually segmented to obtain the ground truth.
The main goal was to obtain the most accurate binary mask possible given that
these machines work for high precision laser marking. To expand the data set,
data augmentation techniques were applied and synthetic images were also ar-
tificially generated.
Various algorithms were implemented to obtain an optimal final solution.
In the preprocessing phase, it was effective to incorporate information obtained
from edge maps to help the network process more accurate masks. The main
structure was inspired by the U-Net architecture [25], proving to achieve high
performance even with limited datasets. Subsequently, a refinement network
refines the result by aligning the edges of the mask with those obtained from
techniques such as the Canny algorithm.
To evaluate the performance of the models, a comprehensive examination of the
detection results was performed. The performance of each model was evaluated
based on overall accuracy, precision, recall, F1 score and Jaccard index.
An interpolation technique that exploits the edge maps obtained from the orig-
inal size images was developed. Furthermore, different interpolation strategies

83

8.1. FUTURE WORKS

were analyzed and the results compared.
The solutions were finally implemented in C# and integrated into the marking
process pipeline. By implementing these solutions, the software is able to obtain
better final masks compared to the previous approach and directly contributes
to making more precise automatic laser engravings. Furthermore, this solution
expands the range of recognizable shapes, allowing to engrave more types of
objects.
Additionally, the prediction times, as well as resource consumption, were taken
into consideration. Execution times are longer in the .NET environment com-
pared to Python. The precision obtained through the refinement module can
be sacrificed to obtain more immediate results. In this case only the original
downsampled image is analyzed and not the 9 patches for the second module.

8.1 FUTURE WORKS

Artificial intelligence is already being used in numerous sectors, particularly
computer vision, and is expected to continue to have a significant impact on
a variety of elements of daily life. For this reasons researches in this field are in
continuous evolution.
Although it took me a lot of time to capture real images and manually segment
the binary masks (approximately 50 different samples were analyzed) the re-
sulting dataset is still limited and I would need to obtain other data for better
performance. Furthermore, the developed solution can be improved by focus-
ing on minimizing execution times, the implementation carried out in C# must
certainly be optimized.
Taking advantage of transfer learning, fine-tuning and more complex architec-
tures can improve the final results but at the same time increase execution times
and computational cost due to their larger size. Transfer learning implies the
use of pretrained models, these usually are advanced deep learning models that
have been trained on very large datasets using supervised learning techniques.
Moreover the developed interpolation algorithm needs to be improved consid-
ering the cases where there are multiple edges within the considered window
and the cases where there is a clear segmentation error, as explained in the re-
lated chapter.

84

CHAPTER 8. CONCLUSIONS

8.2 PERSONAL GROWTH AND ACCOMPLISHMENTS

The effective conduct of this research was made possible by the theoretical foun-
dations of machine learning and algorithms, as well as the practical and critical
thinking skills developed during the course of my studies. Throughout the de-
velopment and the writing of this thesis, I came across a real-world scenario that
allowed me to effectively address and achieve the objectives established in this
research. Thanks to the years of diligent study and global skills I have developed
throughout my academic career, I have been able to complete these goals suc-
cessfully. My involvement in this project not only increased my technical knowl-
edge but also helped me improve my project management, problem-solving, and
critical thinking abilities. Both from my perspective and that of the concerned
Sisma technicians, the outcomes achieved are very satisfactory.

85

References

[1] Alex Parinov Alexander Buslaev et al. Albumentations. 2018. URL: https:
//albumentations.ai/.

[2] Google Brain. TensorFlow. 2015. URL: https://www.tensorflow.org/.

[3] John Francis Canny. “A Computational Approach To Edge Detection”. In:
IEEE Xplore (1986).

[4] Haiping Chen et al. TensorFlow.NET. 2018. URL: https : / / scisharp .
github.io/tensorflow-net-docs/.

[5] François Chollet. Keras. 2015. URL: https://keras.io/.

[6] Dorin Comaniciu and Peter Meer. “Mean Shift: A Robust Approach To-
wards Feature Space Analysis”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol.24 (2002).

[7] Emgu Corporation. Emgu CV. 2008. URL: https://www.emgu.com/.

[8] Microsoft Corporation. Microsoft Visual Studio. 1997. URL: https : / /
visualstudio.microsoft.com/.

[9] Olivier Grisel David Cournapeau et al. Scikit-learn: Machine Learning in
Python. 2009. URL: https://scikit-learn.org/.

[10] Jimmy Ba Diederik P. Kingma. “Adam: A Method for Stochastic Optimiza-
tion”. In: arXiv preprint arXiv:1412.6980v9 (2015).

[11] Brian Granger Fernando Pérez. Jupyter Notebook. 2014. URL: https : / /
jupyter.org/.

[12] .NET Foundation. .NET. URL: https://learn.microsoft.com/it- it/
dotnet/.

[13] Python Software Foundation. Python. 2001. URL: https://www.python.
org/.

87

https://albumentations.ai/
https://albumentations.ai/
https://www.tensorflow.org/
https://scisharp.github.io/tensorflow-net-docs/
https://scisharp.github.io/tensorflow-net-docs/
https://keras.io/
https://www.emgu.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://scikit-learn.org/
https://jupyter.org/
https://jupyter.org/
https://learn.microsoft.com/it-it/dotnet/
https://learn.microsoft.com/it-it/dotnet/
https://www.python.org/
https://www.python.org/

REFERENCES

[14] Anton Milan Guosheng Lin et al. “RefineNet: Multi-Path Refinement Net-
works for High-Resolution Semantic Segmentation”. In: arXiv preprint
arXiv:1611.06612v3 (2016).

[15] Charles R. Harris et al. NumPy: array processing for numbers, strings, records,
and objects. 2006. URL: https://numpy.org/.

[16] J. D. Hunter. Matplotlib: A 2D Graphics Environment. 2007. URL: http://
matplotlib.org.

[17] Anaconda Inc. Anaconda. 2012. URL: https://www.anaconda.com/.

[18] Willow Garage Intel. OpenCV. 2020. URL: https://opencv.org/.

[19] Xiangyu Zhang Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: arXiv preprint arXiv:1512.03385 (2015).

[20] Lanczos resempling. URL: https: / /en . wikipedia. org /wiki / Lanczos_
resampling (visited on 2023).

[21] Yukun Zhu Liang-Chieh Chen et al. “Encoder-Decoder with Atrous Sep-
arable Convolution for Semantic Image Segmentation”. In: arXiv preprint
arXiv:1802.02611v3 (2018).

[22] Junio Hamano Linus Torvalds. Git. 2005. URL: https://git-scm.com/.

[23] S. Lloyd. “K-Means Clustering”. In: (1957).

[24] Microsoft. C#. URL: https : / / learn . microsoft . com / it - it / dotnet /
csharp/.

[25] Thomas Brox Olaf Ronneberger Philipp Fischer. “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation”. In: arXiv preprint
arXiv:1505.04597v1 (2015).

[26] OpenCV Canny Edge Detection. URL: https://docs.opencv.org/4.x/da/
d22/tutorial_py_canny.html (visited on 2023).

[27] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level His-
tograms”. In: IEEE Transactions on Systems, Man, and Cybernetics (1979).

[28] Chengcheng Chen Qiming Li. “A robust and high-precision edge seg-
mentation and refinement method for high-resolution images”. In: AIMS,
Mathematical Biosciences and Engineering (2022).

[29] Irwin Sobel and Gary M. Feldman. Sobel operator. 1968.

[30] Peter Mattis Spencer Kimball. GIMP. 1996. URL: https://www.gimp.org/.

88

https://numpy.org/
http://matplotlib.org
http://matplotlib.org
https://www.anaconda.com/
https://opencv.org/
https://en.wikipedia.org/wiki/Lanczos_resampling
https://en.wikipedia.org/wiki/Lanczos_resampling
https://git-scm.com/
https://learn.microsoft.com/it-it/dotnet/csharp/
https://learn.microsoft.com/it-it/dotnet/csharp/
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://www.gimp.org/

REFERENCES

[31] Tensorflow Confusion regarding the Adam optimizer. URL: https : / /
saturncloud . io / blog / tensorflow - confusion - regarding - the -
adam- optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%
20effectively % 2C % 20it % 20is % 20important % 20to , and % 20epsilon %
3D1e%2D7%20. (visited on 2023).

[32] Tensorflow Dropout Layer. URL: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/Dropout (visited on 2023).

[33] Weiyuan Wu. Patchify. 2021. URL: https://pypi.org/project/patchify/.

89

https://saturncloud.io/blog/tensorflow-confusion-regarding-the-adam-optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%20effectively%2C%20it%20is%20important%20to,and%20epsilon%3D1e%2D7%20.
https://saturncloud.io/blog/tensorflow-confusion-regarding-the-adam-optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%20effectively%2C%20it%20is%20important%20to,and%20epsilon%3D1e%2D7%20.
https://saturncloud.io/blog/tensorflow-confusion-regarding-the-adam-optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%20effectively%2C%20it%20is%20important%20to,and%20epsilon%3D1e%2D7%20.
https://saturncloud.io/blog/tensorflow-confusion-regarding-the-adam-optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%20effectively%2C%20it%20is%20important%20to,and%20epsilon%3D1e%2D7%20.
https://saturncloud.io/blog/tensorflow-confusion-regarding-the-adam-optimizer/#:~:text=To%20use%20the%20Adam%20optimizer%20effectively%2C%20it%20is%20important%20to,and%20epsilon%3D1e%2D7%20.
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://pypi.org/project/patchify/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Sisma S.p.A.
	Main Software: SLC3 and 3D Scan Pack

	Thesis goals
	Image Segmentation

	Dataset
	Thesis structure

	Image Segmentation
	Common Segmentation applications
	Image Segmentation Techniques
	Main Approaches for Segmentation
	Traditional approaches
	Deep learning approaches
	U-Net
	RefineNet
	High-Resolution Refine Net (HRRNet)

	Evaluation metrics

	Main tool and libraries
	Programming languages
	Main Python libraries
	OpenCV and Emgu CV
	TensorFlow and TensorFlow.NET
	Tools

	Data Exploration and Preprocessing for Improving the Performance of the AI Model
	Dataset Overview
	Data Augmentation
	Synthetic Dataset

	Preprocessing and Edge detectors
	Sobel Edge Detection
	Canny Edge Detection
	Final Considerations

	Train, validation and Test split

	Image Segmentation Model Architecture
	Rough Module
	Model Training
	Model Evaluation

	Refinement Module
	Model Training
	Model Evaluation

	Edge Refinement Interpolation
	Image Interpolation Strategies
	Edge Refinement Interpolation
	Final Evaluation

	SLC3 Integration
	Implementation details
	Export and Import of the models
	User Interface

	Conclusions
	Future works
	Personal Growth and Accomplishments

	References

