
DEPARTEMENT OF INFORMATION ENGINEERING

MASTER DEGREE IN COMPUTER ENGINEERING

Monocular Depth Estimation And
Collision Prediction For Quadrotors

Supervisor Student
Prof. Alessandro Sperduti Niko Picello

Assistant Supervisors
Alessandro Saviolo, Prof. Giuseppe Loianno

ACADEMIC YEAR 2021-2024

Graduation date 16/04/2024

To everybody I know, if you were part of this journey, thank you.

Abstract

This thesis presents a novel approach to nonlinear model predictive control for collision avoid-
ance flight using quadrotors. We use a deep neural network to estimate depth information from
monocular image sequences. The network is an encoder-decoder architecture that leverages
the weights of a state-of-the-art foundation vision model to encode the input images into dense
embeddings, and then a trained-from-scratch decoder head to predict a lightweight depth map
tailored for obstacle avoidance. The network decoder is trained on simulated custom-generated
depth images due to the lack of sufficient open-sourced datasets tailored for obstacle avoidance
tasks. The output depth map is embedded in the model predictive control state and mapped
through the camera’s intrinsic parameters to the three-dimensional space. At every optimiza-
tion iteration of the controller, the projected points are translated and rotated based on the system
dynamics of the quadrotor. Then, the points are projected back to the image plane along with
the size of the robot at each point’s depth. The closest point that falls within the robot’s size
reprojection provides the information on the minimum distance to collide. We map this distance
to a collision probability by first converting it into time to collision and then applying a comple-
mentary sigmoid function. The overall framework only requires monocular images and inertial
measurement unit information to control the robot to navigate a three-dimensional environment
without colliding with obstacles. The framework is optimized to run at the control frequency of
100Hz, hence enabling real-time control of the quadrotor. We make a comprehensive analysis
of the state-of-the-art approaches for monocular depth estimation and qualitatively demonstrate
the limitations of such methods for real-time collision-free navigation. We validate the pro-
posed framework with a statistical analysis in Gazebo simulations, demonstrating its efficacy in
cluttered environments.

v

vi

Contents

1 Introduction 1

2 Monocular Depth Estimation 3
2.1 Fundamentals and Challenges . 3
2.2 Deep Learning Models . 5

2.2.1 DORN - Deep Ordinal Regression Network for Monocular Depth Esti-
mation . 6

2.2.2 MiDaS - Towards Robust Monocular Depth Estimation: Mixing
Datasets for Zero-shot Cross-dataset Transfer 8

2.2.3 ZoeDepth - Zero-shot Transfer by Combining Relative and Metric Depth 9
2.2.4 Depth Anything - Unleashing the Power of Large-Scale Unlabeled Data 10
2.2.5 Our model . 11

2.3 Data Collection and Augmentation . 14
2.3.1 Gazebo-Based Data Collection . 14
2.3.2 Incorporating Complex Environments 17
2.3.3 Data Augmentation Techniques . 17
2.3.4 NYU Depth V2 . 19

2.4 Results . 21

3 Learning Deep Collision Probabilities 35
3.1 Monocular Depth Estimation For Collision Avoidance 35
3.2 Forecasting Collision Probabilities . 36

4 Collision-Free Model Predictive Control 39
4.1 The Essence of NMPC for Quadrotor Control 39
4.2 Incorporating Collision Probabilities into NMPC 40

4.2.1 Formulation of the Optimal Control Problem 40
4.2.2 Quadrotor Dynamics Model . 41
4.2.3 State’s propagation . 43

vii

4.3 Results . 43

5 Conclusions 49

6 Appendix 51
6.1 Data Collection . 51
6.2 Foundation Vision models . 53

6.2.1 SAM . 53
6.2.2 MobileSAM . 55
6.2.3 DepthSAM . 56

6.3 Background . 57
6.4 CNN . 57

6.4.1 Convolutional layer . 59
6.4.2 Pooling . 62
6.4.3 Batch normalization . 63

6.5 Transformers . 64
6.5.1 Architecture . 64
6.5.2 The attention mechanism . 64
6.5.3 Foundation Model . 65

Bibliography 67

viii

List of Figures

2.1 Deep monocular depth estimation architecture proposed by [17]. 5

2.2 DORN: Deep Ordinal Regression Network for Monocular Depth Estimation [22]. 6

2.3 ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth [24]. . 10

2.4 Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data [27]. . 10

2.5 MobileNetV2’s bottleneck block . 12

2.6 Our proposed Depth Estimation Model. 13

2.7 Gazebo-based simulator developed for this thesis for collecting the data with
high-fidelity dynamics and millimeter-accurate depth ground-truth estimations. 16

2.8 Processed sample from NYU Depth V2: The bounding box in green on the
RGB images represent the collision box of the drone. Depth images have been
colorized for visualization. 20

2.9 Generalization capability of the Depth Anything model on 3 scenes. The bottom
right image is from NYU Depth V2, and it is resized for better visualization. . . 21

2.10 MonoNav example for depth estimation and point cloud reconstruction. Image
taken from [31] . 22

2.11 Fitting curve in the hospital environment. 23

2.12 Prediction and Ground truth taken from the hospital environment. 24

2.13 Fine grained and Coarse grained depth maps on NYU Depth V2. 25

2.14 Ablation of the decoder architecture. 26

2.15 Ablation of the optimal decoder w.r.t. the history. 27

2.16 Ablation of the optimal decoder w.r.t. the time stride. 28

2.17 Ablation of the optimal decoder w.r.t. the number of bins. 29

2.18 Ablation of the optimal decoder w.r.t. the learning rate. 30

2.19 Predictions of the model for images from our laboratory. No ground truth depth
map is available for ablation. 32

2.20 Coarse Depth Map predictions on NYU Depth V2. From left to right: input
RGB image, target depth map, and prediction. 33

ix

2.21 Coarse Depth Map predictions on the hospital environment. From left to right:
input RGB image, target depth map, and prediction. 34

3.1 Fixed binning with 10 bins spacing the range [0.01, 10.0] 36
3.2 Fixed binning with 32 bins spacing the range [0.01, 10.0] 36

4.1 Top-down view of the robot’s odometry with respect to the position command . 45
4.2 Views demonstrating how the drone avoids a corner by expanding its trajectory. 45
4.3 Ground truth and depth predictions on the corner demonstrating how the drone

avoids a corner by expanding its trajectory. 46
4.4 Red: actual odometry. Blue: inteded position command. Green: collision prob-

ability. 47

6.1 RGB image and depth map captured with L515 LiDAR camera 52
6.2 The RealSense L515 LiDAR camera . 53
6.3 Overview of Segment Anything Model . 54
6.4 Semi-Coupled Knowledge Distillation . 56
6.5 Decoupled Knowledge Distillation . 56
6.6 Functioning of the convolution operation . 60
6.7 Depth-wise convolution workflow. The color scheme is just for representation,

depth-wise convolution can be applied to whatever grid-type input having N

channels. 61
6.8 Dilated convolution applied to a 3× 3 kernel, with dilation d = 1,2. 62
6.9 Max Pooling and Average Pooling applied with a kernel of size 2× 2. 62

x

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), including quadrotors, play an increasingly crucial role in a
variety of applications, ranging from logistics and search and rescue to reconnaissance missions,
thanks to their simplicity in design, agility, low cost, and ability to hover in place and move
in 3D [1]. Their importance has dramatically increased amidst global crises like the COVID-
19 pandemic and ongoing conflicts, highlighting their versatility and broad utility in critical
scenarios. However, the autonomous operation of UAVs in complex and dynamic environments
is constrained by their limited capability for following the desired path while ensuring collision-
free navigation.

Traditionally, obstacle avoidance requires accurately localizing the robot, mapping the en-
vironment, planning collision-free trajectories, and finally controlling it to follow these desired
paths. This sequence must be continuously executed during flight to adjust for localization
errors, mapping inaccuracies, or changes due to dynamic obstacles. The complexity of these
tasks, given the high-dimensional nature of the data involved, imposes substantial computa-
tional demands in terms of processing speed and memory usage. Furthermore, the sequential
design of the traditional autonomy stack can lead to compounded errors, where a failure in one
module compromises the overall performance. These limitations call for novel approaches that
tightly couple perception, planning, and control. Such approaches would enable the controller
to quickly respond directly to raw sensory inputs without the need for complex processing and
intermediate steps. This direct reaction capability is crucial for enhancing UAV autonomy, par-
ticularly in environments where rapid adaptability and precise control are required [2].

Motivated by the above, in this work we develop a novel obstacle avoidance scheme that
learns to enable collision-free flight in complex environments, while solely relying on a history
of real-time RGB image observations and inertial measurement unit (IMU) reading.

We have developed a deep collision encoder-decoder network that leverages a prominent
foundation model known for relative depth estimation, titled Depth Anything [3]. This model

1

is frozen within our training loop to serve as a robust feature extractor. Each image in the
sequence is processed independently, allowing Depth Anything to compute feature maps in
parallel for each frame. The extracted features are then fed into our decoder network, which
outputs an absolute coarse depth map for the latest frame in the sequence. Importantly, we
do not require the entire history of depth maps, but rather only the one corresponding to the
current timestamp. Our approach is inspired by traditional stereo vision techniques, which utilize
triangulation across multiple views of a scene to estimate depth. By adopting this paradigm and
processing distinctive perspectives from successive timestamps, we effectively reconstruct a
precise coarse depth map of the robot’s view, enabling our model to operate at high frequencies
in real-time.

Furthermore, we have designed a Non-Linear Model Predictive Control (NMPC) system
that utilizes these depth maps to determine the optimal trajectory for obstacle avoidance. In our
framework, depth maps are converted to point clouds—3D volumes that contain the coordinates
of points in space. Leveraging the predictive capabilities of NMPC, we unroll these future
depth maps, or ”future point clouds,” over a horizon of N timestamps, the approach will be
further explained in 4.2.3. Subsequently, we select the optimal trajectory that minimizes the
cost function, which includes both reaching the desired destination and minimizing collision
risks. The first action in the predicted sequence is executed, while the remaining actions are
discarded, consistent with standard MPC-integrated pipeline practices.

As the optimization loop continues, a new set of images is processed by the network, and
the cycle commences anew, maintaining the same rigorous methodology throughout each iter-
ation. This setup forms a critical part of our introduction, showcasing our model’s capability to
integrate advanced depth perception with dynamic control strategies for real-time navigation.

The proposed approach boasts a set of contributions:

• It allows aerial robots to fly through diverse cluttered environments without being limited
by a particular task and associated environment assumptions or knowledge.

• Through its modular architecture, it can be exploited by both traditional controllers using
Euclidean dynamics and vision-based controllers that operate directly in the sensor space.

• it demonstrates the capability to process high-dimensional sensory data at high frequen-
cies, enabling real-time navigation and decision-making, which is crucial for operations
in complex and dynamic settings.

2

Chapter 2

Monocular Depth Estimation

Monocular Depth Estimation (MDE) is a pivotal area in the intersection of computer vision and
robotics. It involves deducing the three-dimensional structure of an environment from a single
two-dimensional image. This task, inherent with complexities due to the loss of spatial infor-
mation during image capture, presents considerable theoretical and practical challenges. This
chapter explores the foundational principles of MDE, highlighting its importance, the inherent
challenges in depth prediction from a single viewpoint, and the necessity of addressing these
challenges to push forward the realms of technology and robotics. Moreover, it provides a com-
prehensive review of the state-of-the-art approaches in MDE, including qualitative benchmarks
across various models on tailored datasets, and unveils a novel neural network architecture de-
signed specifically for this thesis. Additional background details about the methodologies in-
troduced in this chapter are reported in Appendix 6.3.

2.1 Fundamentals and Challenges

The path to accurate monocular depth estimation is filled with challenges, each contributing to
the overall complexity of accurately predicting depth from single images:

• Ambiguity in Depth Perception: The primary challenge stems from the inherent limi-
tation of single images in providing detailed distance information. This limitation leads
to ambiguity in distinguishing between objects at different distances using only monoc-
ular cues. This phenomenon mirrors the human capability to gauge depth with one eye,
reliant on accumulated experience and interaction with the environment. This parallel
suggests promising avenues for data-driven approaches that emulate this iterative learn-
ing process [4].

• Variability in Environmental Conditions: Environmental factors such as lighting,

3

weather, and seasonal changes significantly affect the visual appearance of scenes, intro-
ducing variability that complicates depth estimation. Algorithms must exhibit robustness
to these conditions to ensure reliability in real-world applications [5].

• Texture and Pattern Complexity: The presence of repeating patterns or environments
with minimal texture can mislead depth estimation algorithms, resulting in inaccurate
depth cues. This challenge underscores the difficulty of consistently localizing robots in
environments lacking distinct features [6].

• Dynamic and Cluttered Scenes: Scenes characterized by moving objects or clutter de-
mand algorithms that are not only robust but also adaptable, capable of adjusting depth
estimates in response to dynamic changes within the environment [7].

Addressing these challenges requires a confluence of advanced computational techniques
and innovative methodological approaches:

• Deep Learning Models: Deep neural networks, especially Convolutional Neural Net-
works (CNNs), have demonstrated success in MDE by learning complex depth repre-
sentations from extensive data. These models typically consist of convolutional layers,
pooling layers, fully connected layers, and activation functions, enabling the extraction of
spatial features from input images and the generation of depth maps [8]. Representative
CNNs include AlexNet [9], VGG [10], GoogLeNet [11], ResNet [12], DenseNet [13], and
some lightweight networks, such as MobileNet [14], ShuffleNet [15], and GhostNet [16],
each of which is used as the backbone of the existing CNN-based depth estimation net-
work.

• Data Collection and Augmentation: Enhancing the robustness of depth estimation mod-
els against environmental variability calls for comprehensive data augmentation strategies
and training on diverse datasets. This approach aims to ensure model generalization across
a wide array of scenes and lighting conditions, bolstering their applicability in real-world
scenarios.

The resolution of monocular depth estimation challenges is critical for propelling advance-
ments in computer vision and robotics. Precise depth prediction from a single image can sig-
nificantly elevate the autonomy and safety of robots and autonomous vehicles, facilitating their
navigation and interaction within their environments. Furthermore, enhancements in depth es-
timation methodologies contribute to progress in related domains, such as 3D modeling, virtual
reality, and augmented reality, by providing a nuanced and accurate representation of spatial
scene properties.

4

Figure 2.1: Deep monocular depth estimation architecture proposed by [17].

2.2 Deep Learning Models

Deep neural networks have played an important role in various areas with their powerful feature
learning ability. Monocular depth estimation-based deep learning was first proposed by [18] in
2014. It was a coarse-to-fine framework, where the coarse network learned the global depth on
the entire image to obtain a rough depth map and the fine network learned the local features to
refine the depth map. Since then, many researchers have carried out deep learning methods for
monocular depth estimation [19]–[21].

The state-of-the-art framework of monocular depth estimation based on deep learning is an
encoder-decoder network, with the RGB image input and depth map output (Figure 2.1). The
encoder network consists of convolution and pooling layers to capture the depth features, and
the decoder network includes deconvolution layers to regress the estimated pixel-level depth
map, with the same size as the input. Additionally, in order to preserve the features of each
scale, the corresponding layers of encoder and decoder are concatenated with skip-connections.
The entire network is constrained and trained by the depth loss functions and converges when
the desired depth map is generated.

Deep learning methods for monocular depth estimation often utilize gradient descent to train
deep neural networks, and obtain a local minimum finally. The best local minimum depends
on initialization and specific parameter settings. In the initialization process, it is generally
necessary to resize the image to meet the needs of network learning. In addition, it also need to
set the initial learning rate, optimizer parameters, batch size and mini-batch size, to learn and
save image features. The commonly used learning method is stochastic gradient descent, and
the optimizer is Adam. When the gradient no longer changes and the loss function becomes
stable, the network converges.

Compared with traditional methods, deep learning methods for monocular depth estima-
tion construct the multi-layer neural network to learn deep features, which has higher accuracy.
When there is small occlusion in the monocular image or part of the ground-truth depth is miss-
ing, the deep learning methods can still estimate the depth of the scene, and have low errors;

5

when there is large occlusion in presence in the scene or there is no ground-truth depth, deep
learning methods can learn the depth of the scene by adding network constraints. In short, deep
learning methods for monocular depth estimation have shown strong robustness.

2.2.1 DORN - Deep Ordinal Regression Network for Monocular Depth
Estimation

In the exploration of monocular depth estimation, a critical aspect of computer vision that en-
ables machines to perceive the world in three dimensions from a single image, the Deep Ordinal
Regression Network (DORN) [22] emerges as a groundbreaking approach. Traditional depth
estimation methods have primarily focused on regression techniques, directly predicting the
distance of objects from the camera. However, these methods often struggle with the inherent
ambiguity of depth information in single images, particularly for objects at varying distances.

DORN innovatively addresses this challenge by adopting a deep ordinal regression frame-
work: it combines a dense feature extractor and a scene understanding module to regress multi-
channel dense ordinal depth maps 2.2. The first component has a standard configuration for
a Deep Convolutional Neural Network (DCNN), in which the final downsampling layers are
omitted so not to reduce the spatial dimension of the output. The second component comprises
3 components:

• ASPP blocks - which exploit dilated convolution (see Appendix 6.4.1) to enlarge the
field-of-view of filters without decreasing the spatial resolution nor increasing the number
of parameters.

• cross-channel learner - that can learn complex cross-channel interactions.

• full-image encoder - which captures global contextual information and clarifies local con-
fusion in depth estimation.

Figure 2.2: DORN: Deep Ordinal Regression Network for Monocular Depth Estimation [22].

6

After that, the features are concatenated and stacked together, and two other convolutional
layers transform these features into a multi-channel dense ordinal depth map: instead of predict-
ing precise distances, DORN indeed categorizes depth into discrete levels. This methodology is
rooted in the understanding that depth perception becomes increasingly uncertain with distance.
To this end, DORN employs a strategy known as spacing-increasing discretization (SID), which
adjusts the spacing between depth categories based on their distance, allowing for greater dis-
crepancies in depth prediction at farther ranges without compromising overall model accuracy.

With the predicted discrete depth values at hand, the learning problem is transformed into
a multi-class classification problem, and adopts softmax regression loss to optimize the net-
work. Despite that, typical multi-class classification problems ignore the ordinal correlation
between the labels,while here the discrete depth targets are highly correlated since they form
a well-ordered set. Therefore, the authors transform the depth estimation task into an ordinal
regression problem, i.e., one where the target variable has a natural, ordered relationship be-
tween its categories, but the distances between these categories are not known or necessarily
consistent, and create an ordinal loss function to train the neural network.

A key strength of DORN lies in its architectural design, which is specifically tailored to over-
come common obstacles in depth estimation. Many existing methods produce low-resolution
depth maps, necessitating complex techniques like skip-connections to achieve higher reso-
lution. DORN circumvents these challenges through its dilated convolutions and specialized
multi-scale feature learner, enabling the direct prediction of high-resolution depth maps. This
streamlined architecture not only enhances the model’s efficiency but also its effectiveness in
capturing both the fine details and broader context of a scene.

Tested across several benchmark datasets, including KITTI, ScanNet, Make3D, and NYU
Depth v2, DORN has demonstrated superior performance compared to previous depth estima-
tion methods. Its ability to accurately estimate depth across a wide range of distances showcases
the potential of ordinal regression in advancing the field of monocular depth estimation.

The introduction of DORN marks a significant advancement in the quest for more accurate
and reliable depth estimation from single images. By redefining the problem within an ordi-
nal regression framework and leveraging innovative architectural features, DORN sets a new
benchmark for future research in the field. Its success underscores the importance of adapting
and refining computational models to better mimic the nuanced ways in which humans perceive
depth, opening new avenues for the development of more sophisticated and accurate depth es-
timation techniques in computer vision.

7

2.2.2 MiDaS - Towards Robust Monocular Depth Estimation: Mixing
Datasets for Zero-shot Cross-dataset Transfer

Building on the foundation laid by previous advancements in monocular depth estimation, in-
cluding the notable DORN, MiDaS [23] introduces a novel strategy that significantly enhances
model robustness and generalization across diverse environments. This approach, characterized
by the innovative use of multiple datasets with potentially incompatible annotations, represents
a leap towards solving the depth estimation challenge in a broader range of settings.

The essence of MiDaS lies in its ability to mix data from various sources during training
by employing a robust training objective that remains invariant to differences in depth range
and scale. This method allows for the effective combination of distinct datasets, addressing the
critical need for models to perform reliably across varied scenes without direct exposure during
training, a concept referred to as zero-shot cross-dataset transfer.

The Shift-Scale Invariant loss for a single sample is defined as

Lssi(d̂, d̂
⋆
) =

1

2M

M
∑︂

i=1

ρ(d̂− d̂
⋆
), (2.1)

where M denote the number of pixels in the image, and

d̂ = sd+ t, (2.2)

d̂
⋆
= d⋆, (2.3)

(s, t) = arg min
s,t

M
∑︂

i=1

(sdi + t− d⋆i)
2. (2.4)

The authors also defined the gradient matching term as:

Lreg(d̂, d̂
⋆
) =

1

M

K
∑︂

k=1

M
∑︂

i=1

(|∇xR
k
i |+ |∇yR

k
i |). (2.5)

Here, Ri = d̂i − d̂
⋆

i , and k denotes the scale at which the difference of disparity maps is
computed (in MiDaS, the authors used k = 4).

Ultimately, the final loss is computed as:

Ll =
1

Nl

Nl
∑︂

n=1

[︂

Lssi(d̂
n
, (d̂

⋆
)n + αLreg(d̂

n
, (d̂

⋆
)n
]︂

, (2.6)

with Nl being the training set size and α = 0.5

8

2.2.3 ZoeDepth - Zero-shot Transfer by Combining Relative and Metric
Depth

ZoeDepth [24] introduces a unique approach that leverages a two-stage training framework,
initially harnessing a wide array of datasets to master relative depth estimation, followed by
fine-tuning with metric depth data. This strategy ensures that ZoeDepth not only excels in gen-
eralization across various scenes but also retains the precision of metric scale depth estimation.
The flagship model, ZoeD-M12-NK, exemplifies the power of this methodology. It undergoes
pre-training on 12 datasets for relative depth, followed by meticulous fine-tuning on both indoor
(NYU Depth v2) and outdoor (KITTI) datasets for metric depth, using a specialized lightweight
head for each domain.

The architecture proposed for ZoeDepth has a typical encoder-decoder structure (DPT),
where the encoder is however replaced with a more recent transformer-based backbone. De-
spite that the core innovation lies in the metric bins module, a novel component designed to
adaptively predict depth across multiple scales, that is attached on top of the aforementioned
backbone of the model.

Inspired by older binning mechanisms such as AdaBins [25], and LocalBins [26], the
MetricBins module takes multi-scale features from the decoder and predicts the bin centers that
are going to be used for depth estimation. Differently from its predecessors, instead of starting
with a small amount of bin centers, and splitting them later, the new module predicts all the bin
centers at once and then adjust them in the successive decoder layers. Through its ingenious
bin adjustment design, ZoeDepth significantly enhances depth prediction accuracy, especially
in challenging environments.

During inference, ZoeDepth intelligently routes each input image to the appropriate head,
based on a latent classifier, ensuring optimal depth estimation across varying domains.

Empirical results underscore ZoeDepth’s exceptional capabilities. Without pre-training,
ZoeDepth already improves upon the state of the art on the NYU Depth v2 dataset. When
leveraging pre-training across 12 datasets and fine-tuning on NYU Depth v2, it achieves an un-
precedented 21% improvement in terms of relative absolute error (REL). Moreover, ZoeD-M12-
NK marks a milestone as the first model to train jointly on multiple datasets without significant
performance degradation, showcasing unparalleled zero-shot generalization across eight unseen
datasets.

ZoeDepth not only pushes the boundaries of monocular depth estimation but also introduces
a versatile framework that can be adapted to various domains, from indoor to outdoor, real
to simulated environments. This breakthrough paves the way for a new generation of depth
estimation models, capable of operating with unmatched accuracy and generalizability.

ZoeDepth’s methodology aligns closely with the principles underpinning MiDaS. Both Mi-

9

Figure 2.3: ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth [24].

DaS and ZoeDepth underscore the importance of leveraging diverse data sources to train depth
estimation models. MiDaS’s exploration of 3D films as a novel data source and its robust train-
ing objectives complement ZoeDepth’s strategy of using a vast and varied dataset collection for
initial training followed by domain-specific fine-tuning. Together, these methodologies high-
light a pivotal shift in the field towards models that are not only highly accurate but also remark-
ably adaptable to new and unseen environments.

In summary, MiDaS and ZoeDepth collectively represent the forefront of research in monoc-
ular depth estimation. Their shared emphasis on dataset diversity, robust training techniques,
and the goal of achieving high generalization across datasets showcases a unified direction to-
wards creating more reliable and versatile depth estimation models.

2.2.4 Depth Anything - Unleashing the Power of Large-Scale Unlabeled
Data

Concluding our exploration of state-of-the-art models in monocular depth estimation, the debut
of Depth Anything [27] signifies a notable advancement in relative depth regression. Diverging
from traditional reliance on labeled datasets, Depth Anything innovates by harnessing a vast
collection of unlabeled images to bolster its generalization capacity across varied environments.

Figure 2.4: Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data [27].

10

Depth Anything exploits the wealth and variety of unlabeled data, shifting from con-
ventional methods that necessitate expensive and time-consuming collection of labeled data.
Through the creation of a data engine capable of automatically annotating these unlabeled im-
ages, the model broadens its learning beyond the confines of labeled datasets. This approach
not only mitigates the challenges associated with data scarcity and diversity but also clears the
path for more scalable and robust depth estimation solutions.

By adopting a more demanding optimization goal and auxiliary supervision to impose rich
semantic priors from pretrained encoders, Depth Anything demonstrates remarkable zero-shot
generalization capabilities. Depth Anything is meticulously trained in a two-stage process: ini-
tially, a model is trained with labeled images, then this model acts as a mentor to generate labels
for the unlabeled data, which trains the actual student model. Mathematically, the labeled and
unlabeled datasets are denoted as Dl = (xi,di)i = 1M and Du = uii = 1N respectively. The
objective is to develop a teacher model T from Dl, then utilize T to assign pseudo-labels to Du,
and subsequently train the student model S with both labeled and pseudo-labeled data.

The methodology for training the teacher model mirrors that used for MiDaS; depth maps are
transformed into disparity maps and normalized within the range [0 − 1]. Furthermore, to fa-
cilitate multi-dataset joint training, the Shift-Scale Invariant loss as outlined in 2.1 is employed.
Despite utilizing fewer labeled images than MiDaS for initial training, the subsequent inclusion
of unlabeled images in the second training phase introduces the required diversification to en-
hance the model’s generalization capability and robustness. This enhancement is evident in its
superior performance across various public datasets and real-world scenarios, thereby redefining
benchmarks in the domain.

Moreover, Depth Anything underscores the untapped potential of large-scale unlabeled data
in advancing monocular depth estimation. Its innovative application of such data significantly
diminishes the generalization error, facilitating precise model performance in any context. This
accomplishment highlights the model’s versatility and resilience, establishing it as a fundamen-
tal tool for future endeavors in computer vision and robotics. Particularly, Depth Anything’s
efficacy in generating high-quality results on simulated data minimizes the sim-to-real gap be-
tween training and deployment phases.

2.2.5 Our model

Leveraging the impressive capabilities of Depth Anything for accurate relative depth estimation,
our final model architecture is derived from this robust foundation. Depth Anything serves as
the cornerstone for feature extraction, upon which we architect a decoder network tasked with
the computation of absolute depth values. Drawing inspiration from the pioneering work of
MobileNetV2 [28] our decoder is modeled after its architectural principles, with a particular

11

focus on the innovative bottleneck block utilized in MobileNetV2 (see fig. 2.5).

Figure 2.5: MobileNetV2’s bottleneck block

This specialized bottleneck block adapts
its behavior based on the setting of the stride
parameter, manifesting in two distinct opera-
tional modes:

• With a stride of 1, the bottleneck block
incorporates a residual connection, ef-
fectively adding the input directly to
the bottleneck’s output. This addition
necessitates the input’s adjustment in
terms of both shape and channel count
to align with the output’s dimensions.

• Conversely, a stride of 2 shifts the bot-
tleneck block’s operation to process the
input independently, foregoing residual connections. This approach results in a reduction
of the input’s dimensions by half due to the increased stride, rendering the application of
residual connections infeasible.

A critical element of MobileNetV2’s bottleneck block is its reliance on depth-wise con-
volution (see Appendix 6.4.1), as opposed to conventional convolution methods. This choice
facilitates the construction of a more profound architectural depth while simultaneously curtail-
ing the total parameter count, thereby enhancing the model’s efficiency without compromising
its depth estimation performance.

As mentioned, our Depth Anything model plays a crucial role in feature extraction: it extracts
four sets of features from each image, each set having increased dimensionality. These are then
reshaped and processed differently to infer the relative depth map. In our work, we are not
focused on the model’s final prediction. Instead, we utilize each set of features individually as
input to our decoder. We discovered that the features set closest to the model’s final layers yields
the best results. Thanks to the residual connections between the cascading sets of features, the
final feature map integrates information from the preceding sets as well, significantly enhancing
the model’s learning capability.

Figure 2.6 presents the complete architecture of our network. Initially, the input image is
processed by the Depth Anything model to extract a feature map. This feature map is then fed
into the decoder, which consists of a series of convolutional layers, batch normalization, and
ReLU activation functions. The decoder’s output is a coarse-grained bin volume. This volume

12

Figure 2.6: Our proposed Depth Estimation Model.

features a markedly reduced width and height, while its third dimension corresponds to the total
number of bins used to discretize the depth range.

The volume is then processed with a softmax function on the bin dimension, so to retrieve
what can be claimed to be the probability of each bin to correspond to the actual distance of the
nearest element in the region captured by the coarse block. Following this, a matrix-vector mul-
tiplication occurs between the bin volume and the bin vector, which defines the depth intervals.
This operation produces a single-channel, coarse-grained depth map. For each segment, this
map indicates the nearest distance to any object within the corresponding region of the original
RGB image, offering a simplified yet effective depth estimation.

In our work, this depth estimation network is integrated within the Model Predictive Con-
trol (MPC), that predicts the sequences of possible future states, composed of linear velocity,
orientation, position, and angular velocity, and the action that the robot should take, here the
4 motors speed, in Rounds Per Minute (RPM). In this setup, the coarse-grained depth map,
reprojected as a flatten 3D point cloud, is also added to the drone’s current state.

In the horizon of actions predicted by the NMPC, only the first action is executed, and the
rest are disregarded, continuing the process with the next history of RGB images.

13

2.3 Data Collection and Augmentation

In the pursuit of refining monocular depth estimation for quadrotor navigation and obstacle
avoidance, the choice and creation of datasets play a critical role. Among the existing datasets,
NYU Depth Dataset V2 (NYU v2) and the KITTI dataset stand as benchmarks in the field.
NYU v2, with its focus on indoor environments, provides high-resolution images and depth
maps captured within various indoor settings. The KITTI dataset, on the other hand, is tailored
for outdoor scenarios, primarily targeting autonomous driving applications with its collection
of images and depth information captured in urban and rural environments. Despite their exten-
sive use and contributions to advancements in MDE, these datasets present certain limitations,
particularly when applied to the specific demands of quadrotor navigation.

The primary challenge with existing datasets like NYU v2 and KITTI lies in their static
nature and the absence of dynamic interactions and robot dynamics. While they offer a snap-
shot of the environment, they lack data on how the environment or object positions change in
response to the robot’s movements. More critically, these datasets do not capture the quadro-
tor’s dynamics, such as the effects of motor speeds and thrust variations, which are essential for
understanding and predicting the quadrotor’s behavior and interactions with its surroundings.

Furthermore, the scenarios depicted in NYU v2 and KITTI are limited to what the sen-
sors have captured, without the possibility of exploring unseen or hypothetical situations. This
limitation restricts the depth estimation models’ ability to generalize across varied and novel
environments, an essential capability for quadrotors operating in diverse or unknown territories.

To address these challenges and limitations, we embarked on the collection of a custom
dataset, specifically designed to meet the unique requirements of quadrotor navigation and ob-
stacle avoidance. Our dataset aims to incorporate the dynamic aspects of quadrotor flight, in-
cluding the influence of motor speeds and the resultant changes in the environment from the
quadrotor’s perspective.

2.3.1 Gazebo-Based Data Collection

To construct a dataset tailored to the intricate requirements of quadrotor navigation, we uti-
lized a cutting-edge simulation framework that intricately models both the dynamics and the
visual aspects of quadrotor flight. This framework integrates Gazebo, a comprehensive and
widely adopted robotics simulator, with ROS2 (Robot Operating System version 2) and PX4
1.14 simulation. The combination of these tools forms a potent simulation environment that can
accurately represent the physical world and the quadrotor’s interaction with it.

Gazebo provides a rich set of features, including high-quality rendering of environments
and physics-based simulation of light, shadows, and textures, which are essential for creating

14

realistic visual data for depth estimation. The incorporation of ROS2 facilitates seamless and
efficient communication within the simulator, enabling the orchestration of complex scenarios
and the collection of data from various sensors simulated within the environment.

The use of PX4 1.14 simulation is particularly crucial. PX4 is among the leading open-source
flight control software for drones and other unmanned vehicles. Its simulation within Gazebo
allows for the accurate replication of quadrotor dynamics, including the effects of propeller
speed, tilt angles, and external forces such as wind. This level of detail ensures that the collected
data reflects the nuances of real-world quadrotor flight, providing a solid foundation for training
depth estimation models that can predict and react to dynamic changes in the environment.

Our simulation setup goes beyond static environments to include dynamic elements that a
quadrotor might encounter during flight. This includes moving obstacles, variable wind con-
ditions, and changes in lighting. Such dynamic simulations are crucial for developing models
capable of understanding and reacting to changes in real-time, a critical requirement for au-
tonomous navigation and obstacle avoidance.

To further enhance the realism and efficacy of the simulation, we meticulously modeled our
quadrotor based on specific configurations and capabilities. Our simulated quadrotor, mirroring
its real-world counterpart, has a mass of 1.3kg. It is equipped with four motors that provide the
necessary lift and maneuverability across various simulated environments.

For processing and capturing visual data within the simulation, we emulate the capabilities
of an NVIDIA Jetson Xavier NX and an Arducam IMX477 camera, operating at resolutions
of 544 × 960. This setup allows for the collection of high-quality visual data, essential for
depth estimation tasks. The simulation operates in real-time, with the control system process-
ing inertial measurements at 100Hz and the perception framework processing camera frames at
60Hz, ensuring that the simulation accurately reflects the dynamics and responsiveness of actual
quadrotor flight.

15

Figure 2.7: Gazebo-based simulator developed for this thesis for collecting the data with high-
fidelity dynamics and millimeter-accurate depth ground-truth estimations.

16

2.3.2 Incorporating Complex Environments

To further enhance the realism and applicability of our dataset, we incorporated detailed mod-
els of environments from the DARPA Subterranean Challenge into the Gazebo simulator (Fig-
ure 2.7). These environments are characterized by their complexity and variety, featuring nar-
row tunnels, large open spaces, and intricate urban underground structures. The high-fidelity
modeling of these environments ensures that the dataset covers a wide range of scenarios and
obstacles, from tight spaces that require precise navigation to large, open areas where depth
perception becomes critical for identifying distant obstacles.

2.3.3 Data Augmentation Techniques

To maximize the utility and realism of our dataset for monocular depth estimation (MDE) and
obstacle avoidance tasks, we extended our data augmentation techniques by incorporating var-
ious transformations from the torchvision library [29]. These augmentations simulate a range
of visual conditions and distortions that a quadrotor might encounter, further enhancing the ro-
bustness and adaptability of the depth estimation models developed from our dataset.

The augmentation techniques we employed are as follows:

• Gaussian Blur: This augmentation applies a Gaussian blur with a kernel size of 3 and
a sigma range of 0.1 to 2.0. This simulation can represent the effect of rapid motion or
atmospheric conditions like fog or smoke that reduce visibility, teaching the model to
infer depth information from less distinct visual cues.

• Random Erasing: We use Random Erasing with a probability of 1.0, targeting a small
portion of the image for erasure with a scale range of 0.001 to 0.01 and a ratio range of 0.3
to 3.3, filling the erased area with a value of 0. This technique mimics the occurrence of
sensor occlusions or dead pixels, encouraging the model to make depth estimations based
on the surrounding context.

• Color Jitter: Variations in lighting and color are introduced through Color Jitter, ad-
justing the brightness, contrast, saturation, and hue by up to 20%, 20%, 20%, and 10%
respectively. This augmentation ensures that the model can reliably estimate depth in
varying lighting conditions and environments with different color profiles.

• Grayscale Conversion: By converting color images to grayscale (while retaining three
output channels), we simulate the loss of color information, which can occur in low-light
conditions or with certain sensor limitations. This forces the model to rely on texture and
shape rather than color cues for depth estimation.

17

Name Augmentation

Original

Gaussian blur

Erasing

Color jitter

Grayscale

Table 2.1: Augmentation techniques used to increase the dataset size; for the sake of visualiza-
tion, the images are not normalized.

18

These augmentations are composed of the original transformation applied to the dataset, en-
suring that the base image processing remains consistent across all augmented data. By employ-
ing these sophisticated data augmentation techniques from torchvision, we significantly enhance
the dataset’s ability to train monocular depth estimation models capable of performing under
a wide range of operational conditions, mirroring the complexities of real-world autonomous
quadrotor navigation; see table 2.1.

2.3.4 NYU Depth V2

The NYU Depth Dataset V2 [30], an advancement in computer vision research, offers a compre-
hensive collection of depth data suitable for various applications including 3D reconstruction,
indoor navigation, and object recognition. Developed by the Computer Science and Engineering
Department at New York University, this dataset comprises RGB and depth images meticulously
captured with a Microsoft Kinect sensor across multiple indoor scenes. Notably, it includes over
1,500 sequences divided into 464 distinct scenes, providing a rich resource for training and eval-
uating depth estimation algorithms. The diversity of the environments captured, ranging from
residential spaces to office settings, ensures its applicability in developing versatile and robust
computer vision models. The dataset also comes equipped with labeled objects and segmenta-
tion masks, which we didn’t really used.

Initially, the dataset was accessible directly from its official webpage. Later, it was incor-
porated into the Hugging Face dataset library, necessitating its conversion to a format compat-
ible with our requirements. Specifically, this involved re-projecting the drone’s position within
the depth images. This step was critical for determining a collision probability for the mov-
ing vehicle. However, it’s important to note that the original dataset did not employ a drone
for data capture. Furthermore, even if drone-captured data were available, the flight dynamics
would significantly differ from the scenarios we are modeling. Consequently, we leveraged
this dataset primarily to expand our sample pool, thereby enhancing the training process of our
Depth Estimation Model. Figure 2.8 displays some samples from the dataset. Here, the drone
is re-projected into the RGB images using depth map data. It’s important to note, however,
that during training, the bounding box indicating the drone’s position is not actually present.
Instead, it is utilized to determine the minimum distance from the drone to any obstacle within
the robot’s field of vision.

19

Figure 2.8: Processed sample from NYU Depth V2: The bounding box in green on the RGB
images represent the collision box of the drone. Depth images have been colorized for visual-
ization.

20

2.4 Results

We distinguish the results obtained through our model between fine-grained and coarse-grained.
Our initial goal was to predict dense depth maps from RGB images. When examining relative
depth estimation, Depth Anything performs exceptionally well. Thanks to its extensive training
dataset, it delivers remarkable outcomes on new, unseen data, positioning it as an ideal choice
for relative depth estimation tasks. As demonstrated in Figure 2.9, Depth Anything showcases
its capability to effectively generalize across both real-world and simulated data. This versatility
not only highlights the model’s robustness but also opens up opportunities to leverage simulated
data for training subsequent models with relative depth inputs.

Figure 2.9: Generalization capability of the Depth Anything model on 3 scenes. The bottom
right image is from NYU Depth V2, and it is resized for better visualization.

Despite our efforts to utilize Depth Anything for estimating the collision probability of the
flying drone, the outcomes were not as favorable as anticipated. The model encountered diffi-
culties in accurately learning the conversion from relative depth to the minimum distance to an
obstacle within the drone’s reprojection. Initially, we believed that extracting distance informa-
tion for a single point within the bounding box from the depth map would be straightforward.
However, this task proved to be more challenging than expected, leading to unsatisfactory fi-
nal estimations. Specifically, with a significant number of samples where the minimum depth
within the robot’s reprojection reached its maximum (i.e., 10m), our model tended to minimize
the overall error. This approach resulted in accurate predictions for this particular set of samples
but introduced larger errors for other inputs. Despite our efforts to address the issue of an im-

21

balanced dataset through techniques like data augmentation and loss weighting (for example,
assigning higher weights to rarer samples and reducing the weight for more common ones), the
model still fell short in accurately predicting distances across all images: it struggled to decrease
the error margin for data that was less densely represented.

Consequently, we shifted our focus to absolute depth estimation, where ZoeDepth stands
out as the leading model. It demonstrates impressive performance even on unseen data, showing
a strong ability to generalize across various environments, both real and simulated. However,
the main challenge with ZoeDepth lies in its inference time. Previous studies, such as [31],
attempted to apply this model for Monocular Depth Estimation and processed the resulting depth
map to reconstruct the environment surrounding the robot. The significant drawback of this
method is the computational load associated with depth estimation and reconstruction. These
processes must be carried out off-board, introducing delays between the robot and the computing
workstation. Despite these efforts, the system operates at approximately 4-5Hz, which does not
meet our desired performance criteria. In order to have an end-to-end framework for autonomous
navigation, we don’t want to do reconstruction nor planning outside of the controller. Instead,
what we want is to have a drone that, given a RGB image, understands where it has to go to
reach its final goal.

Figure 2.10: MonoNav example for depth estimation and point cloud reconstruction. Image
taken from [31]

In our search for effective absolute depth estimation solutions, we explored the metric vari-
ant of Depth Anything. This version integrates the ZoeDepth stack atop the DepthAnything
module for relative depth estimation. The authors of ZoeDepth suggest that the metric heads,
responsible for inferring absolute depth, comprise only 1% of the total parameters of the back-
bone, indicating that choosing a different backbone could enhance inference speed. Despite
these claims of efficiency, the model remained too slow for integration within our operational
framework. This particular metric variant was built on the largest of the Depth Anything mod-

22

els, DepthAnything-L, which contains approximately 335.3 million parameters. As a result, it
imposes substantial computational demands that our real-time depth prediction system cannot
accommodate.

We thus need a faster and accurate enough model, so to be able to exploit the retrieved
depth maps in a real-time deployment, and our model comes at hand. Using the smallest of the
Depth Anything model (DepthAnything-S, with 24.8M parameters), we managed to build a
depth estimation network that work at a higher inference speed w.r.t. to the former approaches.
Specifically, our network2.2.5, optimized with TensorRT, manages to work at 73Hz, allowing
us to integrate it within our framework. Figure 2.12 shows the qualitative results achieved on
a sequence of images in the hospital environment. Here, the goal is to show that we can fit the
training data and generalize on unseen test data. Despite that, the two sets of images are captured
within the same environment, hence we don’t expect them to be too different from the training
pool of samples. Future works aim at expanding both the training and testing data with all the
environments we collected in order to prove the generalization capability of our model. In figure
2.11, the curves illustrate the discrepancies between the predicted depths and the actual ground
truths. Despite occasional spikes, the errors for the minimum and mean predictions mostly
remain below 0.8 meters, which could be considered sufficiently accurate for applications such
as drone navigation within an environment. Conversely, the errors associated with maximum
depth predictions are significantly larger. This could be attributed to the increased complexity
of estimating distances for farther points in an image, a challenge that mirrors human visual
perception. For nearby objects, humans can gauge distances with reasonable accuracy. How-
ever, estimating the distance to more distant objects is inherently more difficult, and precision
diminishes. It appears the depth estimation model follows a similar pattern, excelling at closer
range predictions but struggling with accuracy at greater distances.

Figure 2.11: Fitting curve in the hospital environment.

23

Figure 2.12: Prediction and Ground truth taken from the hospital environment.

24

For coarse-grained depth estimation the model is trained to predict a 7 × 4 depth matrix,
which serves as a sparse approximation of the complete depth map. This reduction in resolution
is crucial for mitigating the computational burden posed to the Model Predictive Controller
(MPC). A fine-grained depth map would be prohibitively dense for the MPC to process in a
timely manner, hence a more coarse representation is adopted for efficiency.

Figure 2.13: Fine grained and Coarse grained depth maps on NYU Depth V2.

Our underlying assumption posits that dense pixel-level depth information is not essential
for the drone’s navigation. Rather, a sparser set of depth data should suffice for safe flight.
Analogous to human navigation, the drone’s primary requirement is to discern the proximity to
the nearest obstacle to avoid collisions, rather than a detailed distance measure for every visible
point. Therefore, our model focuses on identifying the most critical depth information to inform
obstacle avoidance strategies.

Finally, Figures 2.14, 2.15, 2.16, 2.17, 2.18 present the training curves for the models
discussed previously. We conducted training and evaluation of various models utilizing the
High Performance Computer (HPC) facilities at NYU, which enabled us to leverage NVIDIA
A100 GPUs across 16 parallel processes simultaneously for periods of 18 hours each. Given that
numerous training attempts were discontinued throughout the project, we focus on showcasing
the final, most relevant outcomes.

Figure 2.14 show the performance of the 3 decoders implemented to infer the depth map
from the features extracted by Depth Anything, while table 2.2 shows the specifics of the de-
coders.

Model Number of Parameters Inference Speed
Vanilla 96.1 million 0.0984 ms
With Pool 70.6 million 0.0318 ms
DepthWise 9.34 million 0.0148 ms

Table 2.2: Ablation of different decoders based on parameters and speed

25

Figure 2.14: Ablation of the decoder architecture.

26

Figure 2.15: Ablation of the optimal decoder w.r.t. the history.

27

Figure 2.16: Ablation of the optimal decoder w.r.t. the time stride.

28

Figure 2.17: Ablation of the optimal decoder w.r.t. the number of bins.

29

Figure 2.18: Ablation of the optimal decoder w.r.t. the learning rate.

30

Model History Time stride # bins Learning rate Train loss Test loss
Vanilla 4 1 4 0.0003 0.4207 1.064
With Pool 4 1 4 0.0003 0.3672 0.9603
DepthWise 1 1 4 0.0003 0.664 1.02
DepthWise 2 1 4 0.0003 0.4539 0.99
DepthWise 4 1 4 0.0003 0.5699 0.9885
DepthWise 8 1 4 0.0003 0.4488 1.013
DepthWise 4 2 4 0.0003 0.469 1.009
DepthWise 4 4 4 0.0003 0.5837 0.9873
DepthWise 4 1 2 0.0003 0.5964 0.9629
DepthWise 4 1 3 0.0003 0.4986 0.9772
DepthWise 4 1 8 0.0003 0.4873 0.9603
DepthWise 4 1 16 0.0003 0.5333 0.9775
DepthWise 4 1 32 0.0003 0.6269 1.001
DepthWise 4 1 64 0.0003 0.482 0.9851
DepthWise 4 1 4 0.00001 0.7315 1.142
DepthWise 4 1 4 0.00005 0.624 1.056
DepthWise 4 1 4 0.0001 0.5806 1.032
DepthWise 4 1 4 0.001 0.6 0.9927

Table 2.3: Ablation of the various model trained during our work.

31

Figure 2.19 illustrates the predictive capability of our model with images captured within
our laboratory. Without access to a high-quality depth-sensing device, we lack precise ground
truth data; however, the qualitative assessment of the model’s output is quite promising. The
model displays a competent level of depth estimation: for example, the area within the drone
in the first image is appropriately identified as being further away, while the door is rightly
estimated as closer to the camera with depth values diminishing along the walls.

Figure 2.19: Predictions of the model for images from our laboratory. No ground truth depth
map is available for ablation.

In the second image, the region towards the upper left is anticipated to be the most distant
from the camera, whereas the chair is predicted to be much nearer. The model also correctly
infers that the distance increases progressively along the table’s length and the adjacent wall.
Finally, for the third image, the model estimates the monitor at the bottom right to be about
70cm from the camera, while the opposite wall shows greater distances, reaching a maximum
at the top of the image where it is furthest from the camera.

32

Figure 2.20 illustrates our model’s performance on the NYU Depth V2 dataset. There are
evident discrepancies between the model’s predictions and the actual ground truth. For instance,
in the first image, the model successfully identifies the open door and estimates the distance to
the wall behind it. However, it misses the closer collision distance presented by the door itself.
Additionally, the model displays consistent errors, with a minimum deviation of about 50cm,
often misjudging closer objects as being farther away.

The second set of images highlights a weakness of our model: its inability to accurately
estimate depth on reflective surfaces. The mirror in the left portion of the room, for example, is
inaccurately estimated to be around 3 meters away, when it should be much nearer to the sensor.
The third image, however, shows a prediction that aligns more logically with the scene when

Figure 2.20: Coarse Depth Map predictions on NYU Depth V2. From left to right: input RGB
image, target depth map, and prediction.

compared to the RGB image. The model’s estimation of the bed at 1.4 meters appears more
credible than the ground truth’s 0.67 meters. Yet, it overestimates the distance to the far corner
of the room, suggesting it is around 5 meters away, which seems improbable for a standard-sized
bedroom, especially considering the bed is the only object between the camera and the corner.

It’s important to note that the environments in which we trained our model were less cluttered
compared to those in the NYU Depth V2 dataset. Typically, our training scenes are indoor but
with larger areas. We believe that with more varied data in our training set, the model will be
able to generate high-quality predictions for a wide variety of environments it may encounter.

33

Finally, the predictions on the test set from the hospital environment are displayed in figure
2.21. When compared to the NYU Depth V2 dataset, the predictions here align closely with the
ground truths, demonstrating the model’s ability to effectively estimate depth maps for unseen
samples. It is crucial to acknowledge, however, that these samples originate from the same type
of environment upon which the model was trained. This similarity in distribution between the
training samples and the test set likely contributes to the enhanced performance observed in
these predictions.

Figure 2.21: Coarse Depth Map predictions on the hospital environment. From left to right:
input RGB image, target depth map, and prediction.

34

Chapter 3

Learning Deep Collision Probabilities

This chapter delves into the critical aspects of enhancing robotic autonomy and safety through
the precise estimation of collision probabilities using monocular depth estimation. The capacity
to accurately predict and avoid potential collisions in real-time is paramount for robots, espe-
cially those operating in dynamic and unpredictable environments. Our methodology is inspired
by DORN, where the concept of binning plays a central role in refining depth estimation accu-
racy, particularly for objects close to the robot. Unlike the Adaptive Binning (AdaBins) ap-
proach, which adapts bin boundaries for a global perspective on depth distribution, our strategy
is meticulously designed for the specific exigencies of robotics and obstacle avoidance. The pri-
mary focus is on resolving fine-grained distances near the robot, which are crucial for immediate
navigation and safety concerns, rather than distant object detection.

To achieve this, we implement a fixed binning scheme predicated on an exponential model,
enhancing bin frequency for closer distances while distributing bins more sparsely as depth
increases. This configuration ensures elevated resolution and sensitivity in proximity to the
robot, facilitating the timely identification and circumvention of obstacles. Such a strategic
choice underscores our commitment to prioritizing near-field precision, aligning seamlessly with
the overarching requirements of robotic navigation and obstacle avoidance.

3.1 Monocular Depth Estimation For Collision Avoidance

Building upon the foundational principles set by DORN, our approach capitalizes on binning to
amplify the precision of depth estimation. This is particularly vital for understanding the spatial
relationship between the robot and its immediate surroundings. Our divergence from AdaBins,
characterized by its dynamic adjustment of bin boundaries, stems from our focused interest in
the intricacies of near-field distances. By adhering to a fixed binning scheme informed by an
exponential model, we ensure a granular focus on proximal spaces—where the risk of collision

35

looms largest—and a de-emphasis on distant objects, which bear less immediate relevance to
the robot’s navigational safety.

Figures 3.1 and 3.2 illustrate the adaptability of our binning strategy across different ranges,
based on the number of bins. Incorporating more bins allows for a finer-grained representation of
depth, enhancing the precision of our analysis. However, this advantage comes with a trade-off:
increasing the number of bins also amplifies the complexity of the algorithm. This complexity
arises from the expanded 3D volume that represents pixel distances, which is a critical factor in
the eventual computation of depth. Therefore, while a higher bin count can improve depth reso-
lution, it also necessitates careful consideration of the algorithm’s efficiency and computational
demands.

Figure 3.1: Fixed binning with 10 bins spacing the range [0.01, 10.0]

Figure 3.2: Fixed binning with 32 bins spacing the range [0.01, 10.0]

3.2 Forecasting Collision Probabilities

In our pursuit to quantify collision probabilities, we introduce the collision probability as a func-
tion of the time-to-collide (TTC), which quantifies the duration before a robot collides with an
obstacle if it maintains its current trajectory and velocity. Formally, for each discrete time step
t, TTC is computed as

TTCt =
dt

vt
, (3.1)

where dt denotes the minimal distance to the nearest obstacle detected by the robot’s camera, and
vt is the robot’s velocity. To model the relationship between TTCt and the collision probability
ct, we employ a sigmoid function. This choice is based on the sigmoid’s inherent characteristic
of facilitating a smooth probabilistic transition from values nearing 0 to those approaching 1.
This smooth transition mirrors real-world dynamics, where the proximity of an obstacle incre-

36

mentally escalates the likelihood of a collision. The probabilistic model is expressed as

ct = 1− [1 + k exp((TTCt − TTC0))]
−1

. (3.2)

The parameter k is a positive scalar that governs the sigmoid curve’s steepness, thereby
modulating the model’s responsiveness to variations in TTC. This modeling approach enables
a rigorous mathematical representation of the collision probability, facilitating its integration
into the robot’s decision-making algorithms. By adjusting the parameters TTC0 and k, the
model can be calibrated to different robot dynamics and operational environments, enhancing
its applicability across various robotic applications.

Determining TTC necessitates accurate estimations of velocity and the closest distance to
potential obstacles. Velocity estimation is straightforward to measure through conventional state
estimation. Conversely, calculating the minimal distance to obstacles presents a more complex
challenge, as the camera’s field of view includes obstacles of different importance to collision
risk. For instance, obstacles that are far away or on the edge of the camera’s view might not pose
a risk if the robot moves straight ahead, as it will likely avoid them naturally. On the other hand,
obstacles directly in the robot’s path are a significant collision risk, as the robot will eventually
hit them if it continues forward. To address this, we focus on obstacles that appear in front of
the robot, as predicted by projecting the robot’s size onto the camera’s view.

The underactuated dynamics of a quadrotor, which moves forward by tilting (pitching), af-
fect how obstacles are seen on the camera. This pitching motion shifts the position of obstacles
in the camera’s view. To consider the effect of pitching, we adjust the current depth image by
the robot’s pitch angle. After this adjustment, we project the robot’s shape (simplified to a rect-
angle for ease) into the center of this modified image. The minimum distance is then defined as
the space between the closest obstacle within this projected rectangle and the robot.

37

38

Chapter 4

Collision-Free Model Predictive Control

The advanced maneuverability of quadrotors, coupled with their growing deployment in com-
plex and dynamic environments, necessitates the development of sophisticated control strate-
gies that ensure safety without sacrificing performance. Among these strategies, Collision-Free
Model Predictive Control (CFMPC) stands out for its ability to dynamically integrate obsta-
cle avoidance into the trajectory planning process. This chapter delves into the intricacies of
embedding collision probabilities within a Nonlinear Model Predictive Control (NMPC) frame-
work tailored for quadrotor control. Through this approach, we aim to strike an optimal balance
between adherence to the desired trajectory and the imperative of avoiding obstacles, thereby
paving the way for more resilient and adaptive quadrotor navigation.

4.1 The Essence of NMPC for Quadrotor Control

At the core of NMPC lies the principle of optimizing a control action over a finite prediction
horizon, based on a model of the system dynamics and constraints. For quadrotors, which are
highly agile yet inherently unstable vehicles, NMPC offers a framework for real-time trajectory
optimization that accounts for the system’s nonlinearities and input constraints. This control
strategy is particularly advantageous for quadrotors due to its ability to accommodate the com-
plex dynamics and underactuated nature of these aerial vehicles, enabling precise navigation
and maneuverability even in tightly constrained spaces.

The application of NMPC in quadrotor control involves forecasting the system’s future states
over a predefined horizon based on a mathematical model of the quadrotor dynamics. The
optimization process seeks to minimize a cost function that typically encompasses deviations
from a reference trajectory, control effort, and, in the context of CFMPC, penalties associated
with the probability of collision. This predictive capability allows the controller to anticipate
and mitigate potential collisions well in advance, ensuring smoother and safer flight trajectories.

39

4.2 Incorporating Collision Probabilities into NMPC

To embed collision avoidance directly into the NMPC framework, we introduce a novel cost
function component that explicitly accounts for collision probabilities. This approach enables
the controller to evaluate potential future trajectories not only in terms of their adherence to
the desired path but also their safety with respect to obstacles. By integrating the collision
probability as a quadratic term in the cost function, we provide the NMPC optimizer with a
quantitative measure of collision risk that influences the selection of optimal control inputs.

4.2.1 Formulation of the Optimal Control Problem

The Optimal Control Problem (OCP) for CFMPC is formulated with multiple shooting steps
over a prediction horizon of N , aiming to minimize a cost function composed of three key
terms: the tracking error for both states and inputs, and the square of collision probabilities at
each step. Mathematically, the OCP is expressed as follows:

min
x0,...,xN

u0,...,uN−1

c0,...,cN

N
∑︂

i=0

x̃⊤

i Qxx̃i +
N−1
∑︂

i=0

ũ⊤

i Quũi +
N
∑︂

i=0

c2i (4.1)

s.t. xi+1 = h(xi,ui), i = 0, . . . ,N − 1

ci = fcol(ri), i = 0, . . . ,N

ri+1 = ftrans(ri,ui), i = 0, . . . ,N − 1

r0 = frep(I0)

x0 = x̂0

g(xi,ui) ≤ 0

where Qx and Qu are positive semi-definite diagonal weight matrices, while x̃i = xdes,i − xi,
and ũi = udes,i − ui are the errors between the desired state and input and the actual state
and input. Therefore, the cost function calculates the discrepancy between the predicted and
reference states over the time horizon, using multiple reference points. The system dynamics
are represented by h(xi,ui) and the initial state is constrained to the current estimate x̂0. The
problem is further constrained by state and input constraints g (xi,ui) ≤ 0 which comprise
actuator constraints [32].

In our implementation, we formulate the NMPC OCP in eq. (??) with N = 20 shooting
steps, covering the evolution of the system over 1 s. The optimization is solved using sequen-
tial quadratic programming and a real-time iteration scheme [33] with its implementation in the

40

acados package [34]. The Quadratic Programming (QP) subproblems are obtained using the
Gauss-Newton Hessian approximation and regularized with a Levenberg-Marquardt regulariza-
tion term to improve the controller robustness. The QPs are solved using the high-performance
interior-point method in HPIPM [35] with full condensing and the basic linear algebra library for
embedded optimization BLASFEO [36].

The OCP in eq. (??) is weighted by the definite diagonal weight matrices

Qp = diag(200, 200, 300) ,

Qv = diag(10, 10, 10) ,

Qq = diag(150, 150, 200, 1) ,

Qω = diag(10, 10, 10) ,

Qu = diag(5, 5, 5, 5) ,

Qc = diag(1) ,

where diag denotes a diagonal matrix and is formulated to respect the state and input constraints

−20 ≤ vi ≤ 20 ∀i ∈ [0, 2] [m s−1],

−3.14 ≤ ωi ≤ 3.14 ∀i ∈ [0, 2] [rad s−1],

0.01 ≤ Ωi ≤ 1.124 ∀i ∈ [0, 3] [N].

The desired control inputs udes,i can be obtained from the flat outputs of a differential-flatness
planner [37], [38]. The planner, leveraging the property of differential flatness, designs optimal
trajectories in the reduced space of flat outputs. These trajectories are then transformed into the
full state and input space due to the unique mapping with respect to the flat outputs, resulting in
the desired control inputs.

4.2.2 Quadrotor Dynamics Model

We introduce the dynamics model of the quadrotor’s system. Table 4.1 lists the relevant vari-
ables used in the paper. Nominal methods model the quadrotor’s system dynamics by using
nonlinear ordinary differential equations. Specifically, consider the quadrotor system modeled

by the state vector x =
[︂

p⊤ v⊤ q⊤
ω

⊤

]︂⊤

and the control input u, then the quadrotor’s nominal

41

I,B inertial, body frame
m mass of quadrotor in I
p ∈ R

3 position of quadrotor in I
v ∈ R

3 linear velocity of quadrotor in I
q ∈ R

4 orientation of quadrotor with respect to I
ω ∈ R

3 angular velocity of quadrotor in B
u ∈ R

4 motor commands generated by quadrotor’s controller
v̇ ∈ R

3 linear acceleration of quadrotor in B
ω̇ ∈ R

3 angular acceleration of quadrotor in B
f ∈ R total thrust of quadrotor
τ ∈ R

3 torque of quadrotor in B
J ∈ R

3×3 diagonal moment of inertia matrix of quadrotor
kf rotor thrust constant
kτ rotor torque constant
l length of the quadrotor arm
g gravity constant
⊙ quaternion-vector product

Table 4.1: Notation table.

dynamics evolve as follows

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ṗ

v̇

q̇

ω̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v
1
m
(q ⊙ f) + g

1
2
(q ⊙ ω)

J−1(τ − ω × Jω)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= h(x, u), (4.2)

where J = diag(Jxx, Jyy, Jzz) is the diagonal moment of inertia matrix, g =
[︂

0 0 −g

]︂⊤

is the
gravity vector, and the collective thrust f and torque τ of the quadrotor are defined as

f = kf

3
∑︂

i=0

u2
i , τ =

⎡

⎢

⎢

⎢

⎣

kf l(u
2
0 + u2

1 − u2
2 − u2

3)

kf l(−u2
0 + u2

1 + u2
2 − u2

3)

kτ (u
2
0 − u2

1 + u2
2 − u2

3)

⎤

⎥

⎥

⎥

⎦

. (4.3)

The parameters Jxx, Jyy, Jzz,m, kf , kτ , l are related to the physical system and strictly define the
nominal model h. Accurately identifying their values is key for guaranteeing high-performance
flight control while using nominal dynamics. However, precisely modeling the system’s param-
eters is very difficult due to the nonlinearity of external effects that make the estimation process
difficult.

42

4.2.3 State’s propagation

The classic NMPC (Nonlinear Model Predictive Control) employs a dynamic model of the robot,
which dictates that given a specific state and action, it can predict the next state. This state
includes vital information such as position, linear velocity, orientation, and angular velocity,
while the actions are defined by the RPMs of the robot’s four motors. Each time the NMPC
resolves an optimization problem, it recursively utilizes the dynamics model, performing a roll-
out over the horizon to predict how a given action at a current state will affect the state at time
t+ 1.

Leveraging this capability inherent to MPC, which is essentially provided ’for free’, we
utilize the velocity predicted by the MPC for a future action at time t + 1. We then take our
depth map at time t, and perform a roto-translation (using quaternions for rotation and velocity
for translation), thereby updating our depth map - which, at this stage, could be considered a
point cloud. Essentially, we deploy a model that converts the quaternion into a rotation matrix,
applies this matrix to all points in the point cloud that represents our current state, and calculates
the new point cloud configuration.

Based on this transformed point cloud, both the robot’s size and the 3D points from the
point cloud are reprojected into 2D. This projection allows us to identify the point within it that
is closest to the quadrotor (if present). The collision probability is then computed based on the
time-to-collide, which is derived from the minimum distance to the quadrotor and the predicted
velocity. The computed TTC is in fact forwarded to a translated sigmoid 4.4 that shrink the
value into the range [0,1], making it an ideal representation of the collision probability.

ct = 1− 1

1 + 10(− TTC)
(4.4)

This approach not only enhances the precision of our trajectory predictions but also signif-
icantly improves the safety measures by enabling real-time, dynamic adjustments to the flight
path based on the predicted and updated spatial configurations.

4.3 Results

In this study, we present a novel framework that effectively integrates the local planning capabil-
ities of Nonlinear Model Predictive Control (NMPC) with advanced Deep Learning techniques.
Specifically, we employ a Deep Neural Network to analyze RGB images for real-time collision
avoidance, demonstrating proficiency in generating depth maps from these images. Further-
more, the predicted information from the NMPC are then exploited to propagate the current
state of the robot into an horizon in the future, as described in 4.2.3.

43

During each optimization cycle of the NMPC, a history of images serves as the input, al-
lowing the model to predict depth maps for the most recent frame at time step t. The NMPC
then uses this information to forecast potential velocities over a future horizon of N steps.

The system features a forward-facing RGB camera securely mounted on the vehicle, ensur-
ing the robot’s projection within the depth map remains centered and dynamically adjusts with
the drone’s pitch. As the quadrotor reaches its peak velocity, the camera tilts downward, mov-
ing its projection above the center of the image. Conversely, as the drone decelerates and pitches
backward, the camera angles upwards. In each scenario, the drone’s projection is shifted verti-
cally to continually align with its actual trajectory and effectively manage collision avoidance
with imminent front-facing obstacles.

We specifically focus on the effectiveness of our NMPC framework in modifying the drone’s
trajectory when encountering obstacles. Figure 4.1 illustrates the actual odometry of the drone,
shown in green, alongside the intended position command in red. Flags within the image mark
waypoints that delineate the planned trajectory, which is dynamically adjusted to avoid any
obstacles in the path. Figure 4.2 further demonstrates the drone’s ability to navigate around a
corner by subtly shifting its path to ensure a safe passage. The trajectory adjustments are smooth,
and while they are not dramatic, they are essential. Without our framework, the MPC would
simply adhere to the original red trajectory, potentially leading to collisions. Additionally, figure
4.4 presents variations in the trajectory across different axes, along with the collision probability
at each timestamp. The first three graphs display the odometry in red and the position command
in blue. A separate graph in green indicates the collision probability. It is noteworthy that
the drone deviates from the intended path, widening its route to maintain a safer distance from
obstacles as the collision probability increases, particularly near the corner.

Our innovative Collision-Free Model Predictive Control (CFMPC) framework constitutes a
significant advancement in quadrotor control, particularly for navigation in complex environ-
ments. By integrating collision probabilities into the NMPC’s cost function, we not only en-
hance the quadrotor’s safety but also retain the flexibility and efficiency of trajectory planning.
This approach showcases the crucial role of predictive modeling and optimization in achieving
secure and autonomous drone flight, illustrating the potential of combining advanced control
theories to address the multifaceted challenges in modern robotics.

44

Figure 4.1: Top-down view of the robot’s odometry with respect to the position command

Figure 4.2: Views demonstrating how the drone avoids a corner by expanding its trajectory.

45

Figure 4.3: Ground truth and depth predictions on the corner demonstrating how the drone
avoids a corner by expanding its trajectory.

46

Figure 4.4: Red: actual odometry. Blue: inteded position command. Green: collision probabil-
ity.

47

48

Chapter 5

Conclusions

This work represents a significant progression in monocular depth estimation and end-to-end
collision avoidance without preliminary planning. Initially, our focus was on depth estima-
tion, which we successfully achieved using the model detailed in 2.2.5. This model enables
depth reconstruction from sequences of RGB images. As demonstrated by the ablation stud-
ies in 2.4, utilizing image sequences enhances performance compared to using single images.
This approach draws inspiration from stereo vision techniques, which employ triangulation from
multiple viewpoints to estimate depth. Despite variations in camera sensor positioning during
capture—a consideration crucial in stereo imaging—our network effectively leverages the in-
creased data from different scene views (captured at distinct times) to refine object distance
estimations.

We believe there is considerable scope to enhance our model. Future work involves ex-
panding the dataset used for training, validating, and testing our model, thus maximizing the
architecture’s capabilities and enabling better generalization across diverse environments, both
simulated and real. Furthermore, by employing the Depth Anything feature extractor, we have
minimized the sim-to-real gap between simulated and real images. This allows for training with
simulated data, which is significantly easier to obtain compared to real-world data. Real-world
data collection presents challenges, especially due to sensor noise, which is difficult to mitigate
in lightweight drones that cannot accommodate heavier, more sophisticated devices.

Operating at a frame rate of 100Hz, the framework can reconstruct depth maps in real-time,
marking a substantial enhancement in the field that can be utilized by any chosen controller.

Regarding Model Predictive Control, our initial strategy was to deploy a simple Recurrent
Neural Network (RNN) that could predict future states of the drone (i.e., depth, position, linear
and angular velocities, and orientation) based on current states and control actions (i.e., motor
speeds), and calculate collision probabilities. However, integrating such an architecture within
the ACADOS framework proved exceedingly complex. We then experimented with a simpler

49

Multi-Layer Perceptron (MLP), but the results were suboptimal. This method’s shortcomings
are currently under investigation, with remedial measures planned for future research.

To address these challenges, we adopted a more straightforward approach by harnessing
velocity data from the Inertial Measurement Unit (IMU) and using MPC to predict these mea-
surements. This mathematical formulation of the problem enabled us to determine new states
of the robot and calculate the probability of future collisions, thereby identifying an optimal
trajectory for collision-free navigation.

The successful implementation of this model signifies a step forward in autonomous systems,
bridging the gap between theoretical research and practical applications. Our results underline
the robustness of combining classical control methods with modern machine learning techniques
to solve real-world problems. This synergy not only enhances the performance of autonomous
systems but also opens up new avenues for future innovations.

In conclusion, our study highlights the transformative potential of integrated approaches in
robotics, paving the way for more sophisticated and reliable autonomous navigation solutions.
As we continue to refine these technologies, the prospects for their application across various
industries become increasingly promising, heralding a new era of efficiency and safety in au-
tonomous operations.

50

Chapter 6

Appendix

6.1 Data Collection

The foundation of our project was initially laid on the concept of collecting depth information
directly from real-world environments. This approach aimed at capturing detailed spatial infor-
mation essential for accurate monocular depth estimation and effective obstacle avoidance.

For our initial experiments, we selected the Intel RealSense L515 LiDAR camera, a forefront
device in depth sensing. The L515’s efficient LiDAR sensor not only captures precise depth in-
formation but is also characterized by its lightweight and compact design, making it ideally
suited for drone integration and usage in small-sized embedded robots, offering a practical so-
lution for real-world data collection. It is engineered to discern depth information accurately
up to a distance of 9 meters, albeit with performance significantly influenced by environmental
factors such as lighting, occlusion, and object surface properties.

A notable feature of the L515 is its capability for real-time 3D image reconstruction. Uti-
lizing LiDAR technology that deploys millions of laser pulses, it can reconstruct complex real-
world scenes. Nonetheless, this sophisticated process tends to introduce substantial noise into
the depth maps, posing challenges in environments not tailored to minimize such drawbacks.

Adjusting the LiDAR Camera’s parameters did yield some improvement in the depth map
quality. However, the outcomes were not sufficiently reliable for incorporation into our frame-
work. The primary issue encountered was the excessive noise within the depth maps, rendering
them unsuitable for direct application as model inputs or for training a neural network for depth
estimation. Despite extensive efforts to optimize the camera’s performance, the resulting depth
maps consistently contained large amounts of missing information, particularly problematic in
areas with dark or reflective surfaces.

Figure 6.1 showcase the severity of these issues, with many objects poorly represented in
the depth map. The grainy and noisy sections indicate pixels for which the sensor failed to

51

accurately determine distances. Additionally, the field of view (FoV) discrepancy between the
RGB and depth maps further complicates data utilization. Objects that are clearly visible in the
RGB scene appear more occluded in the depth map, necessitating adjustments for effective use
of the captured data.

Figure 6.1: RGB image and depth map captured with L515 LiDAR camera

52

Figure 6.2: The RealSense L515 LiDAR camera

6.2 Foundation Vision models

Before diving into the framework’s implementation, it’s crucial to comprehend the distinction
between absolute and relative depths.

• Absolute Depth: This type of depth map includes the actual distance value of each pixel
in an image, often expressed in meters. Thus, each element is associated with a distance
value that accurately defines how far that element is from the camera.

• Relative Depth: Unlike absolute depth, relative depths do not provide a numeric dis-
tance value to an object from the camera. Instead, they can be envisioned as a heatmap
indicating which elements are closer or farther away, offering a qualitative assessment of
element proximity within a scene.

Initially, our objective was to leverage absolute depth for predicting collision probabilities
in our quadrotor. We then decided to employ a pretrained model as the backbone of our net-
work. In this context, MobileSAM [39] emerged as a suitable choice. This model is designed
to emulate the foundational capabilities of SAM [40], while offering enhanced inference speed
and comparable performance.

6.2.1 SAM

The Segment Anything Model (SAM) stands out as a foundational model that has been trained
on approximately 11 million images and 1 billion segmentation masks. According to the authors,

53

these images and masks cover a diverse range of geographic and economic backgrounds across
different countries, thereby reducing the biases typically introduced into the network. SAM
uniquely allows users to specify a prompt to control the segmentation process, enabling selective
focus on certain elements while ignoring others.

Like many foundational models, SAM leverages the transformer architecture, employing a
variant known as the Vision Transformer(ViT) for processing visual data. Also, all its variant
share a similar structure made of 3 components:

Image Encoder : [41] showed that Masked Auto-Encoders are scalable self-supervised
learners, hence the authors of SAM used a MAE pre-trained Vision Transformer slightly modi-
fied to be able to process high resolution inputs as the encoder of the model.

Prompt Encoder : based on the type of prompt there is a different kind of encoding: sparse
prompts, such as points and boxes are represented through positional encoding, text-like prompts
are embedded through an off-the-shelf encoder from CLIP [42], dense prompts, like masks, are
encoded using convolution and then summed element-wise with the image embedding.

Mask Decoder : finally, the mask decoder maps the image embedding, prompt embed-
ding, and an output token to a mask. This decoder exploit a variant of the decoder block of the
traditional Transformer, followed by a dynamic mask prediction head. This uses prompt self-
attention and cross-attention in two directions to update all the embeddings. Then, the image
embeddings are upsampled and a MLP maps the output token to a dynamic linear classifier,
which ultimately predict the the mask foreground probability at each image location.

Figure 6.3: Overview of Segment Anything Model

Despite the great work on the architecture, the main contribution introduced with the Seg-
ment Anything Model is the way it is trained and the data used to perform the training itself.
The data-engine has 3 stages:

1. Assisted-manual stage : In this stage, a team of professionals annotators labeled masks
in the images by setting foreground and background objects in the images. So at the
very beginning SAM has been trained using public segmentation datasets, then using the
newly annotated images. Throughout this stage the team collected 4.3M masks from 120K

54

images.

2. Semi-automatic stage : Here, the authors aimed at increasing the diversity of masks.
Images were segmented with the most confident masks, and then the users were asked to
manually segment the other unannotated objects. With this stage they managed to increase
the number of masks of 5.9M over 180K images.

3. Fully-automatic stage : Eventually, the model has been enchanced so much it could
predict good masks consistently. In this final stage, authors prompted the model with
a 32x32 grid of points, and for each point the model had to predict the masks that may
correspond to valid objects. Using IoU and and thresholding they selected only stable and
confident masks. At the end of the process the dataset contained 1.1B masks from 11M
images.

This structured, incremental learning process enabled SAM to be trained on an unprece-
dented volume of images and masks, achieving unparalleled generalization across a diverse
variety of images.

6.2.2 MobileSAM

The ability of SAM to perform amazingly on zero-shot transfer segmentation, and its high ver-
satility among numerous vision applications, made it the baseline for many complex tasks. The
main issue with this model is its inference time, which despite being fast enough for real-time
browser-web applications, it remains unfeasible to use it on devices with limited resources, and
where the time constraint is even harder.

In [39] the authors focused on developing a faster version of SAM, containing a fraction of
the parameters of the original one, and gaining the knowledge from the heavy image encoder
(ViT-H) to a lightweight transformer encoder, which outputs would be directly compatible with
the mask decoder of the original model.

The authors introduce a novel approach to training a streamlined version of SAM, iden-
tifying the core challenge in Knowledge Distillation (KD) as the intertwined optimization of
the image encoder and mask decoder. In traditional KD, the performance of one component is
deeply interlinked with the other, leading to a situation where the efficacy of either the image
encoder or mask decoder can be compromised by the limitations of its counterpart. To address
this, the authors propose a method termed semi-coupled distillation. This technique involves
freezing the mask decoder and the prompt encoder during the initial phase of training to prevent
their performance from being adversely affected by an underperforming image encoder. This
approach effectively separates the KD process into two distinct phases: distillation of the image
encoder, followed by optional fine-tuning of the mask decoder, as illustrated in fig. 6.4.

55

Figure 6.4: Semi-Coupled Knowledge Distillation

Despite these advancements, the authors acknowledge that optimization through this tech-
nique remains complex. A significant factor contributing to this complexity is the variability
introduced by the randomness in prompt selection, which impacts the mask decoder’s perfor-
mance. To simplify the distillation process further, they introduce Decoupled Distillation. This
strategy focuses on distilling the smaller image encoder directly from the large Vision Trans-
former (ViT-H) used in the original SAM, bypassing the complexities associated with the mask
decoder. This method is depicted in fig. 6.5, offering a more straightforward approach to knowl-
edge transfer without engaging the composite decoder mechanism.

Figure 6.5: Decoupled Knowledge Distillation

6.2.3 DepthSAM

Our initial goal was to implement a model that could leverage the knowledge of MobileSAM,
distilled from SAM, and adapt it to perform the Monocular Depth Estimation task.

We used MobileSAM for feature extraction, with feature maps having 256 channels and re-
duced width and height. MobileSAM’s weights are available for different sizes of input images,

56

hence we used resolution of (384 × 384) to reduce the computational demand of the model,
despite it being able to work with high-resolution input of size (1024× 1024).

We tried both to fine-tune the network and to train it from scratch, as well as freezing it
completely. At the beginning our idea was that fine-tuning the encoder could have compromised
the quality of the feature maps that the model had achieved by mimicking its parent model SAM.
We then discovered that, fine-tuning the model was the best option, and achieved better results
with respect to the other counterparts. Despite that we couldn’t really exploit this architecture too
much: after several tries aimed at reducing the computational demand of the model, we couldn’t
deploy a model that worked real-time. Our DepthSAM model performed predictions on histories
of images at a frequency rate of 17Hz, inevitably leading us to discard the architecture and to
search for more lightweight and faster alternatives.

6.3 Background

It is helpful to clarify some key components that underpin our framework. We’ll start by ex-
ploring essential concepts, from the workings of Convolutional Neural Networks (CNNs) and
the definition of foundation models, to the intricacies of Nonlinear Model Predictive Control
(NMPC). Beyond these, we’ll also touch upon other elements that are crucial to our work. This
approach ensures a well-rounded understanding of the foundation upon which our project is
built, setting the stage for the detailed exploration that follows.

6.4 CNN

Convolutional Neural Networks are a specialized type of Neural Network invented for dealing
with grid-type data, like images, sequences, or whatever input that can have a grid topology.
Proposed in the 1989 by Yann LeCun [43], their name derives from the convolution operation
they exploit to process the input data. Long story short, CNNs are neural networks that use
convolution instead of matrix multiplication in one or more of their layers.

In its most conventional form, the mathematical concept of convolution can be expressed by
the following formula

(x ⋆ w)(t) =

∫︂

∞

−∞

x(τ)w(t− τ)dτ (6.1)

where x is usually referred to as the input, w is the kernel, and the output of the operation
is called feature map. Despite this definition, when working on a computer the data we are
dealing with are non-continuous, and such a formulation become useless. For discrete data (i.e.,

57

the one fed to a whatsoever neural network), the convolution operation is defined as

(x ⋆ w)(t) =
∞
∑︂

τ=−∞

x(τ)w(t− τ) (6.2)

In machine learning, the input for a CNN is often a multidimensional array, thus the con-
volution operation need to be adapted to process this kind of data. For instance, when dealing
with two-dimensional image I , we also want (often, but not always) to use a two-dimensional
kernel K, and the formulation is, given the commutative property of the convolution that allows
to define the equality among the sums,

(I ⋆ K)(i, j) =
∑︂

m

∑︂

n

I(m,n)K(i−m, j − n) =
∑︂

m

∑︂

n

I(i−m,j − n)K(m,n) (6.3)

In traditional mathematical terms, convolution involves flipping one of the functions before
performing the sliding dot product. However, in the context of CNNs, the convolution operation
is more akin to another operation called cross-correlation, which is actually the one that most
library refer to when talking about convolution. The difference is that in the latter the flipping
step is typically omitted for simplicity and efficiency, since the learning filters (i.e., the kernels)
can adapt regardless of the transposition. Thus, the convolution operation in modern machine
learning algorithms is implemented in the following way

(I ⋆ K)(i, j) =
∑︂

m

∑︂

n

I(i+m, j + n)K(m,n). (6.4)

In the context of neural networks, the convolution operation has been widely used with great
success because it leverages 3 important paradigms:

• Sparse interactions: Achieved by utilizing a kernel size smaller than the input size. Tra-
ditional neural networks connect each input element to every output through a dense ma-
trix of weights, leading to dense interactions where each output unit interacts with every
input unit. Convolutional layers, in contrast, restrict the interaction of each output unit to a
subset of input units within the kernel’s footprint, denoted as k. This design choice results
in a model that requires fewer parameters and less computational effort. It also reduces
the risk of overfitting by limiting the complexity of the model, espectially when the input
size is very large (e.g., images) and a dense layer would result in an enormous number of
parameters. Moreover, by capturing localized features within small regions of the input,
convolutional layers facilitate a hierarchical feature learning process, which is particularly
effective for tasks involving spatial data, such as image and sequence processing.

• Parameter sharing: This paradigm is implemented by utilizing the same kernel, with an

58

identical set of weights, to process every position of the input. Unlike in dense layers,
where each input element is multiplied by a unique weight, leading to a distinct param-
eter for each connection, convolutional layers employ a singular kernel across the entire
input. This approach means that the network learns a single set of parameters, applicable
universally across the input field. Parameter sharing dramatically reduces the model’s
complexity and the number of parameters, enhancing the network’s ability to generalize
across different regions of the input. This is particularly advantageous for processing data
where similar patterns can occur at any location.

• Equivariance: A function exhibits equivariance to translation when a shift in the input
results in a corresponding shift in the output. Convolutional layers inherently possess
this property due to the nature of the convolution operation combined with parameter
sharing. This means that if, for example, an object within an image or a pattern within
time-series data is moved spatially or temporally, the convolutional layer will produce an
output where the detection of this object or pattern is shifted by the same amount. Such
behavior ensures that the network’s understanding and processing of features is consistent
regardless of their position in the input space, which is crucial for effectively handling
spatially and temporally varying data. Despite that, convolution is not equivariant to other
transformations, such as changes in scale or rotation, for which other mechanisms are
necessary to handle them.

6.4.1 Convolutional layer

A fundamental layer within a convolutional neural network (CNN) unfolds through a meticu-
lously orchestrated two-stage process, designed to distill and refine the rich, complex patterns
embedded within the input data. At its core, the first stage encompasses the actual convolution
operation, where a linear function is adeptly applied in a sliding-window manner across the
input. This strategic operation is pivotal for extracting spatial hierarchies of features, enabling
the gradual construction of a profound understanding of the data’s structural intricacies through
successive layers. Following this, the second stage transitions the linear outputs through the
crucible of a non-linear activation function such as ReLU (Rectified Linear Unit), ELU (Ex-
ponential Linear Unit), or GELU (Gaussian Error Linear Unit), among a diverse array. This
infusion of non-linearity is critical: it gives the model the capability to apprehend and articulate
more complex patterns within the data it encounters during the training process.

59

Figure 6.6: Functioning of the convolution operation

Depth-wise convolution

Within the expansive realm of convolutional operations, depth-wise convolution emerges as a
nuanced variant that fundamentally reimagines the convolution process. Contrary to the con-
ventional approach where filters traverse and integrate features across all input channels, depth-
wise convolution 6.7 adopts a more granular perspective. Here, each filter is dedicated to a
single channel, operating independently. This tailored approach dramatically diminishes the
computational load and the parameter count, ushering in a new era of efficiency without sac-
rificing the depth of feature extraction. Post convolution, these singular channel convolutions
coalesce through a subsequent pointwise convolution phase, which amalgamates the indepen-
dently processed channels into a unified feature map. This ingenious combination of depth-wise
and pointwise operations crystallizes into a powerful mechanism for preserving the architectural
depth and the nuanced detection of features, all the while operating within a markedly reduced
computational framework. Depth-wise convolution, thus, represents a pivotal innovation in the
design of lightweight, yet profoundly capable, neural architectures, especially suited for envi-
ronments where computational resources are at a premium.

Dilated convolution

Dilated convolution 6.8is another useful twist on the regular convolution process used in deep
learning, especially when you want your model to have a wider view of the input without in-
creasing the size of the model too much. Imagine it like zooming out to see more of a picture
without having to step back. In dilated convolution, the filter is spread out so it covers more area
of the input with the same number of calculations. This is like poking holes in the filter to skip
some parts of the input, making the filter’s reach wider without needing more parameters. This
method is really helpful for tasks where understanding the broader context or bigger picture is
important, like in analyzing sound or predicting future parts of a sequence. By using dilated con-

60

Figure 6.7: Depth-wise convolution workflow. The color scheme is just for representation,
depth-wise convolution can be applied to whatever grid-type input having N channels.

volutions, models can become better at capturing information from a larger area with the same
computational budget, making them efficient and powerful at understanding wide-ranging pat-
terns.

61

Figure 6.8: Dilated convolution applied to a 3× 3 kernel, with dilation d = 1,2.

6.4.2 Pooling

Another stage is usually involved in the layer of a convolutional neural network, a pooling layer
6.9. This serves for reducing the spatial dimension of the input feature maps, decreasing the
computational load, memory usage, and also providing an abstracted form of the features, mak-
ing the network more robust to variations of the input. There are different way of performing
the pooling operation withing a CNN, but the most classical and common kind of pooling lay-
ers are the max pooling and the average pooling, which output the maximum value within a
rectangular neighborhood, and its average, respectively.

Figure 6.9: Max Pooling and Average Pooling applied with a kernel of size 2× 2.

62

6.4.3 Batch normalization

Batch normalization, introduced in 2015 [44], is a pivotal technique in the training of deep neural
networks, particularly convolutional neural networks (CNNs). This layer aims to standardize
activations, helping the network to learn on a more stable distribution of inputs, significantly
improving the training speed and allowing for higher stability and efficiency, especially when
dealing with deep learning models. Batch normalization is achieved by adjusting and scaling
the output of the activations, so that the input to the next layer will have a mean and variance of
0 and 1, respectively. This way, batch normalization is able to reduce the internal covariant
shift problem, which refers to the changes in the distribution of network activations due to the
update of its weights in previous layers, and that can interfere with the training process, slowing
it down and making it more difficult to train at higher learning rate ratio.

63

6.5 Transformers

Although gated Recurrent Neural Networks (RNNs) have long been recognized as the state-
of-the-art for processing sequential data, the emergence of transformers and their attention
mechanism has set a new benchmark in this domain.

Like many other architectures, transformers are built on an encoder-decoder framework:
the input sequence x = (x0, . . . ,xn) is transformed into a continuous representation z =

(z0, . . . ,zn) by the encoder. Subsequently, the decoder uses z to generate the output sequence
y = (y0, . . . ,ym). Furthermore, the transformer model employs an auto-regressive approach,
incorporating the previous symbol as additional input to compute the current output, enhancing
its predictive capabilities.

6.5.1 Architecture

When it was first presented in [45], the encoder-decoder stack that define the transformer archi-
tecture was described as follow:

• Encoder: composed of N identical layers stacked together, each one of them exploit
two sub-layers: the first is a multi-head self-attention mechanism, while the second is a
position-wise fully connected feed-forward network. Residual connections are used be-
tween each of the sub-layers, followed by layer normalization, hence the output of a sub-
layer will be

LayerNorm(x+ Sublayer(x)) (6.5)

• Decoder: Similar to the encoder, it is also composed of N identical layers. Besides the
two sub-layers found in the encoder, it includes multi-head attention over the encoder’s
output. Residual connections are also used here, followed by layer normalization. Ad-
ditionally, the self-attention sub-layers are modified to prevent attending to subsequent
positions.

The attention mechanism used in the Transformer is a function that maps a query and a set
of key-value pairs into an output. The queries, the keys, and the values are all vectors, and their
combination is a weighted sum of the values, where the weight is computed by a compatibility
function between the query and the associated key.

6.5.2 The attention mechanism

The attention mechanism described in [45] is called Scaled Dot-Product Attention. Here the
input consists of query and key vectors of dimension dk, and value vectors of dimension dv.

64

After computing the dot product between queries and keys, the resulting vector is divided by√
dk, and a softmax function is applied to obtain the weights associated with each value. Despite

this formulation, in practice, each component is packed into a matrix (instead of a vector), to
make the computation faster, and the final matrix of outputs is computed as:

Attention(Q,K,V) = Softmax
(︃

QKT

√
dk

)︃

V (6.6)

Then, instead of a single attention function mapping dmodel-dimensional queries, keys, and val-
ues into an output, Transformers exploit linear projection on these three inputs h times (i.e., the
number of heads), to project queries, keys, and values to dk, dk, and dv dimensions, respec-
tively. Then, the attention function is performed on the projected version of the inputs, and
the h results of these operations are lastly concatenated and once again re-projected to return
the final output. This is called Multi-Head Attention, and allows the Transformers to jointly
retain information from different representation sub-spaces at different positions. Multi-Head
Attention is regulated by the following equation

MultiHead(Q,K,V) = Concat(Head1, . . . ,Headh)W
O, (6.7)

where Headi = Attention(QW
Q
i , KWK

i , V W V
i).

6.5.3 Foundation Model

A Foundation Model (FM) is a type of neural network that is trained on a enormous amount
of data and that can then be adapted for a wide range of tasks and operations. FMs exploit the
Transformer technology to effectively learn the data, and usually contain bilions of parameters.

The type of data on which a FM is trained determines its mode (the term multi-modal learning
indeed refers to the training of a model using data of different nature), for instance a large-
language model (LLM) is a FM trained on a vast number of text data, while image-generation
models are trained on image data (possibly coupled with text).

Similarly to any other NN, the first step to define a Foundation Model is to design its archi-
tecture, by choosing its size and structure among many other parameters. Then, before starting
with the actual training, data should be tokenised into a format suitable for training the model.
The training of a FM starts with a pre-trained phase in which thousands of gigabytes are used to
build the initial knowledge of the model, fine-tuning is then exploited to add specific capabilities
or improvements. For fine-tuning a model, two main approaches can used:

• Alignment, which is the process of improving the behaviour of the model so that it adhere
to the expectations or preferences that the user may have.

65

• Domain/Task specific, which consists of training the model to specialize it to a particular
domain or task.

In our framework we used Depth Anything, a Foundation Model for monocular depth es-
timation that, despite being a quite large model, in terms of parameters it contains, it allows for
fast inference and high accurate predictions.

66

Bibliography

[1] B. J. Emran and H. Najjaran, “A review of quadrotor: An underactuated mechanical sys-
tem,” Annual Reviews in Control, vol. 46, pp. 165–180, 2018. doi: https://doi.org/
10.1016/j.arcontrol.2018.10.009.

[2] K. Ebadi, L. Bernreiter, H. Biggie, et al., “Present and future of slam in extreme under-
ground environments,” arXiv preprint arXiv:2208.01787, 2022.

[3] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, Depth anything: Unleashing
the power of large-scale unlabeled data, 2024. arXiv: 2401.10891 [cs.CV].

[4] Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular depth estimation:
A review,” Neurocomputing, vol. 438, pp. 14–33, 2021.

[5] S. Gasperini, N. Morbitzer, H. Jung, N. Navab, and F. Tombari, “Robust monocular depth
estimation under challenging conditions,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2023, pp. 8177–8186.

[6] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS: A research
platform for visual-inertial estimation,” in Proc. of the IEEE International Conference
on Robotics and Automation, Paris, France, 2020. [Online]. Available: \url{https :
//github.com/rpng/open_vins}.

[7] A. Bhoi, “Monocular depth estimation: A survey,” arXiv preprint arXiv:1901.09402,
2019.

[8] X. Yang, Y. Gao, H. Luo, C. Liao, and K.-T. Cheng, “Bayesian denet: Monocular depth
prediction and frame-wise fusion with synchronized uncertainty,” IEEE Transactions on
Multimedia, vol. 21, no. 11, pp. 2701–2713, 2019.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Advances in neural information processing systems, vol. 25,
2012.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

67

https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.009
https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.009
https://arxiv.org/abs/2401.10891
\url{https://github.com/rpng/open_vins}
\url{https://github.com/rpng/open_vins}

[11] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected con-
volutional networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 4700–4708.

[14] A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[15] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 6848–6856.

[16] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More features from
cheap operations,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 1580–1589.

[17] J. Cho, D. Min, Y. Kim, and K. Sohn, “Deep monocular depth estimation leverag-
ing a large-scale outdoor stereo dataset,” Expert Systems with Applications, vol. 178,
p. 114 877, 2021.

[18] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using a
multi-scale deep network,” Advances in neural information processing systems, vol. 27,
2014.

[19] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 2650–2658.

[20] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and J. Civera, “Cam-convs:
Camera-aware multi-scale convolutions for single-view depth,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 826–
11 835.

[21] S. Zhao, H. Fu, M. Gong, and D. Tao, “Geometry-aware symmetric domain adaptation for
monocular depth estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9788–9798.

68

[22] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression net-
work for monocular depth estimation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 2002–2011.

[23] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards robust monoc-
ular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 44, no. 3, pp. 1623–1637, 2020.

[24] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Müller, “Zoedepth: Zero-shot transfer
by combining relative and metric depth,” arXiv preprint arXiv:2302.12288, 2023.

[25] S. Farooq Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation using adaptive
bins,” Jun. 2021. doi: 10.1109/cvpr46437.2021.00400. [Online]. Available: http:
//dx.doi.org/10.1109/CVPR46437.2021.00400.

[26] S. F. Bhat, I. Alhashim, and P. Wonka, “Localbins: Improving depth estimation by learn-
ing local distributions,” 2022. arXiv: 2203.15132 [cs.CV].

[27] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth anything: Unleashing
the power of large-scale unlabeled data,” arXiv preprint arXiv:2401.10891, 2024.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” 2019. arXiv: 1801.04381 [cs.CV].

[29] T. maintainers and contributors, Torchvision: Pytorch’s computer vision library, https:
//github.com/pytorch/vision, 2016.

[30] P. K. Nathan Silberman Derek Hoiem and R. Fergus, “Indoor segmentation and support
inference from rgbd images,” in ECCV, 2012.

[31] N. Simon and A. Majumdar, Mononav: Mav navigation via monocular depth estimation
and reconstruction, 2023. arXiv: 2311.14100 [cs.RO].

[32] J. Mao, G. Li, S. Nogar, C. Kroninger, and G. Loianno, “Aggressive visual perching with
quadrotors on inclined surfaces,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2021, pp. 5242–5248.

[33] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer, “Real-
time optimization and nonlinear model predictive control of processes governed by
differential-algebraic equations,” Journal of Process Control, vol. 12, no. 4, pp. 577–
585, 2002.

[34] R. Verschueren, G. Frison, D. Kouzoupis, et al., “Acados – a modular open-source frame-
work for fast embedded optimal control,” Mathematical Programming Computation,
2021.

69

https://doi.org/10.1109/cvpr46437.2021.00400
http://dx.doi.org/10.1109/CVPR46437.2021.00400
http://dx.doi.org/10.1109/CVPR46437.2021.00400
https://arxiv.org/abs/2203.15132
https://arxiv.org/abs/1801.04381
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://arxiv.org/abs/2311.14100

[35] G. Frison and M. Diehl, “HPIPM: A high-performance quadratic programming frame-
work for model predictive control,” IFAC, 2020.

[36] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “BLASFEO: Basic linear
algebra subroutines for embedded optimization,” ACM Transactions on Mathematical
Software, 2018.

[37] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A comparative study
of nonlinear mpc and differential-flatness-based control for quadrotor agile flight,” IEEE
Transactions on Robotics, pp. 1–17, 2022.

[38] H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predictive control for micro
aerial vehicles: A survey,” in European Control Conference, 2021, pp. 1556–1563.

[39] C. Zhang, D. Han, Y. Qiao, et al., Faster segment anything: Towards lightweight sam for
mobile applications, 2023. arXiv: 2306.14289 [cs.CV].

[40] A. Kirillov, E. Mintun, N. Ravi, et al., Segment anything, 2023. arXiv: 2304 . 02643
[cs.CV].

[41] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, Masked autoencoders are
scalable vision learners, 2021. arXiv: 2111.06377 [cs.CV].

[42] A. Radford, J. W. Kim, C. Hallacy, et al., Learning transferable visual models from nat-
ural language supervision, 2021. arXiv: 2103.00020 [cs.CV].

[43] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to handwritten zip
code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. doi: 10.1162/
neco.1989.1.4.541.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning, pmlr,
2015, pp. 448–456.

[45] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

70

https://arxiv.org/abs/2306.14289
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2103.00020
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541

	Introduction
	Monocular Depth Estimation
	Fundamentals and Challenges
	Deep Learning Models
	DORN - Deep Ordinal Regression Network for Monocular Depth Estimation
	MiDaS - Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
	ZoeDepth - Zero-shot Transfer by Combining Relative and Metric Depth
	Depth Anything - Unleashing the Power of Large-Scale Unlabeled Data
	Our model

	Data Collection and Augmentation
	Gazebo-Based Data Collection
	Incorporating Complex Environments
	Data Augmentation Techniques
	NYU Depth V2

	Results

	Learning Deep Collision Probabilities
	Monocular Depth Estimation For Collision Avoidance
	Forecasting Collision Probabilities

	Collision-Free Model Predictive Control
	The Essence of NMPC for Quadrotor Control
	Incorporating Collision Probabilities into NMPC
	Formulation of the Optimal Control Problem
	Quadrotor Dynamics Model
	State's propagation

	Results

	Conclusions
	Appendix
	Data Collection
	Foundation Vision models
	SAM
	MobileSAM
	DepthSAM

	Background
	CNN
	Convolutional layer
	Pooling
	Batch normalization

	Transformers
	Architecture
	The attention mechanism
	Foundation Model

	Bibliography

