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Abstract

The exploration of the underwater environment has always been a relevant field for science and
technology, to enlarge our knowledge of this mainly unexplored environment.

In this work, we solve an optimization problem for underwater exploration andmonitoring
based on a fleet of small autonomous underwater vehicles (AUVs). We assume a coarse-grained
map is already available from satellite measurements and the set of robots is used to get detailed
information on sea bottom features. We provide exact and heuristic integer linear program-
ming methods for finding both the optimal starting position and path planning for a fleet of
drones. To obtain a realistic model useful in real applications, we enhance our formulation by
imposing connectivity constraints among the AUVs.

Lastly, we present a use case application for coral reef monitoring with real data taken by
Abu Dhabi environmental authorities.
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Introduction

Underwater exploration is one of the main technological challenges of the next century. Cov-
ering the 70% of the Earth’s surface, the oceans represent a big source ofmineral and biological
resources that can be possible sources of food, energy, and medicines for future generations if
managed in a sustainable way. Nevertheless, ocean exploration shows very critical aspects, due
to the high pressures, complex hydrodynamics, absence of GPS, and limited communications.
For these reasons, exploration missions are usually complex and costly and can be managed by
Governmental or transnational authorities.

In this thesis, we propose the use of an underwater fleet for cheaper andmore reliable explo-
ration. Compared to the use of a single vehicle, a fleet is cheaper, more flexible, scalable, and
robust, and -most relevantly- has improved perception, because it can provide detailed infor-
mation (images, videos) of large areas even in complex environments.

In our scenario, a detailed (high-resolution) exploration and mapping are performed by a
fleet of AUVs. A centralized controller has a map with coarse resolution, as can be obtained
from satellite images. Based on this map and on the selection made by the operator about the
area to be deeply investigated, a centralized controller runs an optimization algorithm able to
identify the best paths each vehicle has to cover, in order to get the most possible information
for a specific feature (coral, grass, rock) minimizing the energy consumption and guaranteeing
all the robots complete their mission. Then, the controller transfers to each AUV its best path
and themap. To get higher-resolution images, a fleet of robotswill be used. A central controller
has to choose the optimal trajectories for the fleet. To find the best paths for each vehicle, we
implement severalmodels and algorithms in the context ofMathematicalOptimization. When
dealing with a group of robots the identification of the best path to be covered by each robot
is in fact an optimization problem belonging to the large class of Routing Problems.

The thesis is organized as follows: in Chapter 1 some basics regarding Mathematical Opti-
mizationmodels are presented. InChapter 2 the problem is clearly defined and outlined, while
the literature is presented. In Chapter 3 an exact model is presented. In Chapter 4 an extended
formulation through column generation is presented. In Chapter 5 the extended formulation
is enhanced by adding communication constraints between vehicles. The results are summa-
rized in Chapter 6. Lastly, we give an overview of our work and future applications in the

1



Conclusion.

2



1
Preliminaries

1.1 TeamOrienteering Problem

The Team Orienteering Problem (TOP) belongs to the class of routing problems. It is an ex-
tension of the Orienteering Problem (OP) since we have at our disposal a fleet made by several
units that independently can visit customers. This kind of problem takes inspiration fromOri-
enteering, an outdoor sport in which a competitor (or a team) has to start at a specific point
and has to visit as many control points as possible in a given time interval. Each control point
gives some points if it is visited and the aim of the competitor is to collect as many points as
possible and reach the finish point before the time runs out. This competition usually takes
place in mountains or forested area, so it is difficult to reach every control point. In fact, the
competitor has to choose carefully a subset of point in order tomaximize the total score and to
be able to reach the end point before it is too late.

TOP problemwas presented byChao et al. [1] and it has been shown to be at least NP-hard.
In the following we present a network based representation of TOP and we give also a formu-
lation of the problem. Let’s take into consideration a undirected graph G = (V,E), where
V = 1, ..., n is the set of vertices and E the set of edges. The first vertex is the starting and
the end point of each vehicle’s tour and all other nodes are the customers. Each customer is
associated with a score si (s1 = 0) that is a non-negative quantity. (i, j) is an edge of graphG
if it is possible to travel from node i and node j and at each edge is associated a weight cij that

3



is the travel time (weights are symmetric in this particular settings). We consider a fleet made
bym vehicles, each vehicle can visit any subset of V within a given time limit Tmax, but a cus-
tomer can be visited by only one vehicle. Find a solution for TOPmeans to maximize the total
profit collected by the fleet observing the bound imposed by Tmax. We present a mathematical
formulation as in [2]. Let xp

ij be equal to 1 if edge (i, j) belongs to path p, 0 otherwise, y
p
i be

equal 1 if vertex i is visited in path p, 0 otherwise and up
i be the position of vertex i in path p.

We can formulate the model as follow:

max
m∑
p=1

n∑
i=1

siy
p
i (1.1)

m∑
p=1

n∑
j=2

xp
1j =

m∑
p=1

n−1∑
i=2

xp
i1 = m (1.2)

m∑
p=1

ypk ≤ 1 ∀k = 2, ..., n− 1 (1.3)

n−1∑
i=1

xp
ik =

n−1∑
j=2

xp
kj = ypk ∀k = 2, ..., n− 1; ∀p = 1, ...,m (1.4)

n−1∑
i=1

n∑
j=2

cijx
p
ij ≤ Tmax ∀p = 1, ...,m (1.5)

2 ≤ up
i ≤ n ∀i = 1, ..., n; ∀p = 1, ...,m (1.6)

up
i − up

j + 1 ≤ (n− 1)(1− xp
ij) ∀i, j = 2, ..., n; ∀p = 1, ...,m (1.7)

xp
ij, y

p
i ∈ {0, 1} ∀i, j = 1, ..., n; ∀p = 1, ...,m (1.8)

The score function (1.1) maximises the total collected score. Constraints (1.2) require that
each path starts and ends in vertex 1. Constraints (1.3) ensure that every vertex is visited atmost
once. Constraints (1.4) guarantee the connectivity of each path. Constraints (1.5) ensure the
max time travel. Constraints (1.6) and (1.7) prevent the presence of sub-tours.

1.2 Branch and Bound

Branch and bound is a solutionmethod that can be applied tomany different problem types. A
branch and bound algorithmdivides the solution space into sub-problems using the divide and

4



conquermethod, then optimizes independently over each sub-problem. When the branch and
bound method is applied to an integer programming problem, it is used in conjunction with
the normal non-integer solver methods. The method is based on the fact that when a subset is
not solved at integrality, only a so-called linear relaxation is solved. In thisway, the computation
is faster and after evaluating a lower bound (or upper bound, depending on the problem) it is
possible to prune a sub-problem if some criteria are met.
Let’s saywewant to solve amaximization problem. We start by finding through some heuris-

tic a feasible solution thatwe call s̄. This solutionwill be an initial lower bound for our problem.
In fact, if there is a better solution, then its value should be greater than the one we found at
the start. Then, we relax the integral constraints, allowing more solution that are not feasible
for the initial problem and we solve the problem again. The value of the solution we obtain
in this way is an upper bound for our set of feasible solution, since we have enlarged the state
space. Now, if the value of lower bound and upper bound are equal, than we already have an
optimal solution and the algorithm terminates. Otherwise, we identify n sub-problems such
that the union of their state space is equal to the original one. Then, we add this sub-problem
to a list of not explored ones. This procedure is called branching. To continue the algorithm,
we select one of the candidate sub-problems and process it. There are four possible results. If
we find a feasible solution better than s̄, then we replace s̄with the new solution and continue.
We may also find that the sub-problem has no solutions, in which case we discard (prune) it.
Otherwise, we compare the upper bound for the sub-problem to our lower upper bound, given
by the value of the best feasible solution encountered thus far. If it is lower than or equal to our
current lower bound, then we may again prune the sub-problem. Finally, if we cannot prune
the sub-problem, we are forced to branch and add the new sub-problems to the list of active
candidates. We continue in this way until the list of candidate sub-problems is empty, at which
point our current best solution is, in fact, optimal.

1.3 ColumnGeneration

Column generation is an algorithm for solvingmixed integer linear programs with a large (usu-
ally exponential) number of variables. The main idea is to use an iterative algorithm that starts
with a considerably smaller amount of variables and, at each iteration, either adds a so-called
improving variable or proves that the solution found so far is optimal. It is mainly known for
its performance on the cutting stock problem [3], but it has been applied to many different
problems such as scheduling problems and routing problems.

5



The algorithm is made by two problems called master problem and subproblem. The mas-
ter problem keeps track of the actual solution of our model. The aim of the subproblem is to
generate a new improving variable to be added to the master problem. The subproblem op-
timizes over a new domain in which it is possible to build elements represented by a variable
in the master problem. This optimization can be performed in different ways, i.e. thanks to
MILP, dynamic programming. The master problem with a restricted number of variables is
called RestrictedMaster Problem (RMP)

1.4 Branch and Price

The column generation algorithm is a technique used to solve a linear problem. To solve a
mathematical formulation containing discrete variables it is necessary to include the column
generation algorithm in a branch and bound framework. As the name suggests, the branch
and price algorithm is the of combination between branch and bound and column generation.

• The RMP is solved through column generation. Columns are added until it is needed.

• If the solution found is admissible for the MILP, then the algorithm is terminated and
the solution is optimal.

• A well designed branch and bound is now applied and at each iteration, it is performed
column generation til the branching scheme ends.

Looking deeper into this algorithm, it is noticeable that the decision regarding branching has
to be designed carefully. Adding constraints to the RMP can make it impossible to formulate
the pricing problem.

6



Figure 1.1: High‐level outline of the column generation algorithm.
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2
ProblemDescription

2.1 Description of the problem

The basic formulation of our problem is inspired by the team orienteering problem. In our
setting, we have a graph where each node has a value between 0 and 1. These values represent
the quantity of a feature that a vehicle can collect if it passes through that node. Each edge
has a real positive value that represents the distance between the two nodes linked. We have at
our disposal a fixed number of vehicles that can explore the graph. Each vehicle has a limited
capacity regarding the total distance it can travel. For this reason, in general, it is not possible to
explore all the nodes and the model should be able to select only a subset of nodes to be visited.
The objective of the problem is to maximize the amount of a feature collected by the fleet and
we do not want to minimize the amount of energy consumed by the fleet. What is different
from a standard TOP is that we do not know a priori the position of the starting point that we
are going to call base station. We take as an assumption that the starting and the ending points
are the same for all the vehicles. The last two assumptions we make are motivated by the fact
that the application underlying this scenario is the exploration of a marine environment. As
we are going to present later in this chapter, we are deploying a fleet of robotic fish from a boat,
so the starting point of the mission can be chosen carefully to maximize the collection of the
desired marine ecosystem feature.

To have a better idea of what is our setting, we show here some examples of the final results.

9



(a) ”Bad” routing. (b) ”Good” routing.

Figure 2.1: Two examples of possible solution.

In figure 2.1, we present two possible solutions for one of our instances. The map contains
different colors associated with different features. In this example, we are interested in maxi-
mizing the quantity of coral (purple color). We can notice that the position of the base station
is different (the purple circle), four vehicles are operating and they are trying to maximize the
amount of red feature collected. As we are going to show later, we can see that the choice of
the starting point is a critical decision to make, since it influences the mission itself. We refer
to the left picture as ”bad” routing since the position of the base station is not optimal and it
does not allow the vehicles to explore an interesting region. On the other side, we can see that,
if the base station is correctly placed, the fleet is able to collect a larger amount of information
within the same restriction of autonomy.

2.1.1 Problem variants

Since this work is motivated by real application, we have to consider what could happen in a
real scenario and the specification asked by the real use case. We present here two additions that
can be useful in a real-life mission.

Communicationconstraints Whenwe deploy theAUVs in the sea, wewant to be sure
that we don’t lose them. A safety measure we can adopt is to ensure that there is stable com-
munication between every AUV and the base station. Since this requirement is too strict and
reduces a lot the explorable region, we can ask for a multi-hop communication between the
base station and the vehicles. In Figure 2.2, we can see that the vehicle on the bottom left (each
vehicle is a black dot) is not directly communicating with the base station (purple dot), but is
connected with another vehicle that is linked with the base station.

10



Figure 2.2: Example of multi‐hop communication. The base station is purple and the other nodes are black.

Underwatercurrents When anAUV is following a path, this is influenced by the effect
of currents. For this reason, it is not fair to consider a symmetrical graph since moving from
one node to another one could be affected by the currents and the energy consumption can
be different. To have a more realistic setup, we implement a function that returns the energy
consumption based on historical data of currents in the region of interest.

2.2 Data collection

In our real scenario, a first coarse-resolutionmap is available to a centralized controller. Usually,
a map is derived from satellite measurements and it is made available by local environmental
authorities. Alternatively, more rarely, a map can result from a long-term exploration andmap-
ping mission performed by an unmanned underwater vehicle. The input data of our work is
derived from satellite imagery, where a bathymetry map with soil and vegetation description is
provided by the City Environmental Authority. The map distinguishes 3 features out of sand:
grass, coral, and rock. This first low-resolution map allows the operator to identify the areas
of interest. To have higher-resolution data, a fleet of robots has to be deployed. The exploring
AUVs are “small” and equipped with simple sensors. Each one can get close to the sea bottom
to get good-resolution images but it can only cover a limited area. Therefore the single robot is
unable to solve this task without cooperating with the other AUVs in the fleet. The full fleet,
on the contrary, can guarantee the coverage of an extended area, collecting at the same time
high-resolution images and videos. For this reason, after an operator selects the area of interest,
a centralized controller calculates the deployment point and the optimal path for each robot to
maximize the coverage of one or more specific features (rock, coral, sea grass) to be monitored.
The controller assigns to each robot the proper path and the low-resolution map.

11



Figure 2.3: Map showing the mainland and marine environment studied and the 12 different snapshots used in the experi‐
mental section.

2.2.1 Basic data

The experiments are based on amapprovidedby theCityEnvironmentAgency (see Figure 2.3).
The maps show the mainland and marine habitat data for City. The Data-set is created us-
ing WorldView 2 satellite imagery acquired between 2012-2014 as part of a habitat mapping
project. This satellite mission monitors the environment and takes images of the Earth and
ocean. The habitat map is very accurate and reports 54 different colors, which represent 54
different features (original features) on both marine and terrestrial habitats. Each color in the
map shown in Figure 2.3 corresponds to a starting feature.
The 54 starting features are grouped into three groups:

• Seabed. In this group, we include all the original features that can be traversed but that
do not need to be investigated. Features of this are generically labeled as “seabed”.

• Mainland. This group consists of all the features that represent terrain that can not be
traversed bymarine AUV, like for example airports, industry, farmland, road, etc. These
features are therefore labeled as “mainland”.

• Basic feature. This group represents the part of the seabed we are interested in. We
grouped the original features into three classes: rock, coral, and grass.

2.2.2 Map processing and graph definition

The map considered corresponds to a surface too large to be analyzed in its entirety. For this
reason, we focus on 12 snapshots taken from the map. Each snapshot corresponds to an area
providing an interesting combination of the three basic features considered.
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Figure 2.4: High granularity: squares of 200× 200 m

The final benchmark used in the experiments is obtained after applying the following proce-
dure to each of the 12 snapshots: we first apply to the snapshot a squared grid of fixed size that
we will call it granularity. Secondly, in each square of the grid, we compute the percentage of
the abundance of each feature, of the seabed and of the mainland.

In Figures 2.4, we show an example of how a snapshot is preprocessed according to the cho-
sen granularity. In both figures, each square is filled with four colors: light blue (seabed), dark
green (seagrass), light green (rock), red (coral), and peach (mainland). The height of each color
is proportional to the percentage of the abundance of the corresponding feature. Starting from
a snapshot and a chosen granularity, one instance that can be processed by themodels described
is created as follows:

• The graphG = (N,A) is obtained by associating one node to each square.

• In principle itwouldbe necessary to add a side for eachpair of nodes distant a lower value
equal to half of the range of each vehicle. However, this choice leads to an extremely
dense graph. In our experiments, we have decided to limit ourselves to using amaximum
of eight edges incident on each node: up, down, left, right, and the four on the diagonals.
The values ofdi,j are calculated as the Euclidean distance between the nodes in the graph.

• The profit pfi for feature f and node i represents the surface of the associated square
covered by feature f . It is worth noting that a node (and the respective square) is consid-
ered fully visited. This is done because we assume that the distribution of the features is
on average homogeneous on the full square and enough information is gathered by the
AUV relative to that square.
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2.3 Literature Analysis

The literature of exact [4] and heuristic [5, 6] algorithms for the VRP and its variant is vast,
both in terms of applications and methodologies. For more details, we refer the reader to the
following surveys: [7, 8, 9, 4, 10].

In [11] the authors propose amixed integer linear program to plan the exploration of an area
with a heterogeneous team of mobile agents. The communication is ensured by checking for
each agent if it is within a certain distance of a list of other agents. In [12] a fleet of drones is
used to investigate a set of points in an area (to each drone is assigned a single point). Once a
drone visits the assigned point, it can be used as a relay in multi-hop communication. In [13]
the multi-objective nature is related to different tasks, like monitoring, searching, and commu-
nication with the base station. The following works are quite similar to us: [14] and [15]. In
[16] team ofMicro-Aerial Vehicle used frontier-based exploration and coordination approach
for exploration strategy. The goal of this paper is to reduce exploration time and energy con-
sumption. They used an Ad-Hoc network. The difference from our work is that the system is
weakly centralized. The leader is not predefined and can be changed during the mission.

In [17] multiple traveling salesmen (mTSP) paths are used to propose a positioning and
trajectory planning algorithm for relay nodes to provide connectivity to drones that are out in
the air.

In [18] a traveling salesman problem solved by a based partitioning algorithm is presented
in this paper. UAVs need to repeatedly visit sensing locations while maintaining a multi-hop
connection to the base station.

In [19] it is presented a simulation of a swarm of robots that keeps moving around in an
enclosed environment and uses ad-hoc networking to communicate with each other.

14



3
Compact Model

In this chapter, we present amathematical model used to simultaneously compute the optimal
starting point and routes for a fleet of underwater AUVs, according to different optimization
criteria. We will refer to this model as the compact model since we are using a polynomial
number of variables and constraints, polynomial in the graph dimension.

3.1 Formulation

Parameters and variables In Table 3.1 and Table 3.2, we present the parameters and
the decision variables used in the models presented in this section. The space is divided into
a grid of squares. Each square is represented by a node. A graph G is used to represent the
seabed, where each node i is associated with a given quantity pfi of feature f , representing
the abundance of the feature f on that node (i.e. square). In our setting, we are considering
the euclidean distance calculated in the generated graph. Thus, the value is not representing
the real distance, but a normalized value that is equal to 1 when two nodes are adjacent. The
maximum distance dkmax can be different for every vehicle and it is normalized using the same
ratio as the distance between two adjacent nodes. We define a variablexk

i,j for every arch and for
every vehicle and each of them takes value 1 if the vehicle k pass through the arch connecting
node i and j. Then, we have variables wi that take value 1 if the base station is placed in node
i. Variables yi take value 1 if at least one of the vehicles collects the feature in that node. Lastly,
variables tki measure the arrival time at node i for vehicle k and take value 0 if the node is not
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Table 3.1: Parameters ‐ Compact Model

Name Definition

G =
(N,A)

Graph used for the routing of the AUVs

N Set of nodes, |N | = nN

A Set of arcs, |A| = nA

F Set of features, |F | = nF

K Set of drones, |K| = nK

N+(i) Set of nodes that are endpoints of outgo-
ing arcs of node i

N−(i) Set of nodes that are endpoints of ingoing
arcs of node i

pfi quantity of feature f associated to node
i ∈ N

di,j Length of arc {i, j} ∈ A
dkmax Maximum distance associated to AUV

k ∈ K

Table 3.2: Decision variables ‐ Compact Model

Name Definition Range

xk
i,j Equal to 1 if AUV k goes from

i to j
{0; 1}

wi Equal to 1 if node i is used as a
starting point

{0; 1}

yi Equal to 1 if node i is visited by
at least one AUV

{0; 1}

tki Arrival time at node i of AUV
k

R+
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visited by that vehicle. We need these variables to obtain feasible paths.

Constraints The proposed mathematical models use the following sets of constraints:

yi −
nK∑
k=1

∑
j∈N−(i)

xk
j,i ≤ 0 ∀i ∈ N (3.1)

∑
j∈N

wi = 1 (3.2)

1 ≥
∑

j∈N−(i)

xk
j,i ≥ wi ∀i ∈ N, k ∈ K (3.3)

1 ≥
∑

j∈N+(i)

xk
i,j ≥ wi ∀i ∈ N, k ∈ K (3.4)

∑
j∈N+(i)

xk
i,j −

∑
j∈N−(i)

xk
j,i = 0 ∀i ∈ N, k ∈ K (3.5)

∑
{i,j}∈A

di,jx
k
i,j ≤ dkmax ∀k ∈ K (3.6)

tki + di,j −M(1− xk
i,j + wj) ≤ tkj ∀ {i, j} ∈ A, k ∈ K (3.7)

tki ≤ M(1− wi) ∀i ∈ N, k ∈ K (3.8)

tki ≤ M
∑

j∈N−(i)

xk
j,i ∀i ∈ N, k ∈ K (3.9)

Constraint (3.1) allows counting one node i as visited only if at least one of the arcs entering
in i is equal to one. Constraint (3.2) imposes that one (and only one) node can be used as the
base station. Constraints (3.3) and (3.4) ensure that the route of each AUVs starts and ends
at the node selected as the base station. Constraint (3.5) impose that if an AUV visits node
i it must also leave it. Constraint (3.6) imposes a limit on the maximum distance that each
AUV can travel. Constraint (3.7) imposes the correct order of the nodes visited by vehicle k
and avoids the generation of subtours. In our computation we used a value for the “big-M”
constant equal to M = dmax + max(i,j)∈A di,j . Constraint (3.8) sets to zero the variable
t associated with the base station. Constraint (3.9) sets to zero all the variables t associated
with nodes that are not visited by any of the vehicles. If the starting position is fixed and if
the objective function is linear, this problem reduces to the TeamOrienteering Problem [1] or
Vehicle Routing with profits [9, Chapter 10]. Many variants of the problem are present in the
literature [8]. However, this is the first exact algorithm that includes the choice of the starting
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point as part of the decision process. In Chapter 6 we show that the choice of the starting
position is crucial for achieving good results in practice.

Single feature objective function. In this work, we have nF features and to each
feature f we associate a set of profits pfi , with f = 1, . . . , nF and i = 1, . . . , nN . To obtain
a model able to find the set of paths that allow obtaining the maximum collected quantity of a
given feature f , we use the following objective function:

max

nN∑
i=1

pfi yi . (3.10)

The objective function (3.10) is used to sum up the profits of feature f associated with each
node.

3.2 Model improvement

Reachability constraints The first set of inequalities allows having a tighter link be-
tween the y and the w variables. For each node i ∈ N , let C(i) ⊆ N be the set of nodes that
are reachable from node i. A node i′ is reachable from node i if there exists a path of length
dmax that starts and ends in i that reaches node i′. With this definition, we define the following
set of inequalities: ∑

j∈C(i)

wj ≥ yi ∀i ∈ N . (3.11)

Inequalities (3.11) allows having a variable yiwith a value of one only if at least one of the nodes
that can be reached by i is selected as starting position. Inequalities (3.11) are always valid (i.e.,
the model remains exact if we add them) and therefore in the following, we will consider them
as always part of the model.

Symmetry breaking formulation In order to reduce the feasible region, wewant to get
rid of that vehicles are not distinguishable from each other [20, 21]. For this reason, we need to
restate the formulation of the problem. At first, we create a new set of variables as in Table 3.3.
Then , we need to replace constraints (3.1) and (3.11) with the two following constraints:
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Table 3.3: New variables y

Name Definition Range

yki Equal to 1 if node i is visited by
AUV k

{0, 1}

yki −
nK∑
k=1

∑
j∈N−(i)

xk
j,i ≤ 0 ∀i ∈ N, k ∈ K (3.12)

∑
j∈C(i)

wj ≥
∑
k∈K

yki ∀i ∈ N (3.13)

Lastly, we add a new constraint:∑
i∈N

yki p
f
i ≥

∑
i∈N

yk−1
i pfi ∀k ∈ {2, ..., nK} (3.14)

Constraints (3.14) introduce an order between vehicles. In fact, the total feature collected
by each vehicle is decreasing with the number of vehicles. In this way, vehicles are no more
exchangeable between eachother andwediscard solutions obtainedby swapping only the order
with which vehicles are chosen. It is noticeable that Constraints (3.13) assure that at most one
vehicle retrieves the feature in every node.

Branchingpriority The solverwedecided touse isCPLEX,whichmakes use of a branch
and cut algorithm. Instead of leaving the solver free to choose in which variable it should
branch, we set a level of priority for branching as follows:

• for the model with Constraints (3.1)-(3.9),(3.11), we set as high priority variables yi. In
this way, the model branches first on which nodes should be part of the solution.

• for the model with Constraints (3.2)-(3.9),(3.12)-(3.14), we defined a new set of vari-
ables:

zi =
∑
k∈nK

yki ∀i ∈ N (3.15)

Then, we set these new variables as high-priority variables for branching. In fact, vari-
ables zi play the same role as variables yi in the previous model.

19



20



4
Extended Formulation

In this chapter, we introduce a secondmodel to solve our problem, solved by a column genera-
tion algorithm. This strategy differs from the one we already exploit since we consider a model
where the variables represent all the feasible paths that our vehicle can travel. The number of
variables considered is exponential in the size of the input, it is therefore impossible in practice
to consider all these variables from the start, we initialize the model with a subset of paths and
at each iteration, we try to add new variables in order to find the optimal solution.

4.1 Formulation

4.1.1 Master Problem

In order to apply the column generation algorithm, we reformulate our model as follows.

Parameters and variables. In Table 4.1 and Table 4.2 we present the parameters and
the decision variables used in the models presented in this section. The setting is similar to
the one presented in Chapter 3. We introduce a new set of variables, λp, where each of these
variables takes value 1 if path p is one of the paths that are crossed by one vehicle.
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Table 4.1: Parameters

Name Definition

G =
(N,A)

Graph used for the routing of the AUVs

N Set of nodes, |N | = nN

F Set of features, |F | = nF

K Set of drones, |K| = nK

P Set of all feasible paths, |P | = nP

pfi quantity of feature f associated to node
i ∈ N

ypi indicates if node i ∈ N is visited by path
p ∈ P

Table 4.2: Decision variables

Name Definition Range

λp Equal to 1 if path p is chosen by
a AUV

{0; 1}

wi Equal to 1 if node i is used as a
starting point

{0; 1}

yi Equal to 1 if node i is visited by
at least one AUV

{0; 1}
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Constraints. The master model uses the following set of constraints:

yi ≤
∑
p∈P

λpypi ∀i ∈ N (4.1)∑
p∈P

λp = nK (4.2)∑
j∈N

wi = 1 (4.3)

wi ≤
1

nP

(
∑
p∈P

λpypi ) ∀i ∈ N (4.4)

(4.5)

Constraint (4.1) allows counting one node i as visited only if at least one of the paths going
through node i is chosen by a vehicle. Constraint (4.2) imposes that only nK paths can be
chosen. Constraints (4.3) imposes that one (and only one) node can be used as the base station.
Constraint (4.4) imposes that one node i can not be the base station if there are less than nK

chosen paths going through node i.

Single feature objective function. In this work, we have nF features and to each
feature f we associate a set of profits pfi , with f = 1, . . . , nF and i = 1, . . . , nN . To obtain
a model able to find the set of paths that allow obtaining the maximum collected quantity of a
given feature f , we use the following objective function:

max

nN∑
i=1

pfi yi . (4.6)

The objective function (4.6) is used to sum up the profits of feature f associated to each node.
From now on, we refer to this problem asMP (P ), where P is the set of all possible paths.

Since we can not work with all set of variables, but only with a subset of them, in the following,
we are going to refer toMP (P̄ ) as the master problem where the set of paths P̄ is a subset of
P , P̄ ⊂ P .

Dual model. In order to describe the procedure with which we are going to add new vari-
ables, we need to introduce the dual model of theMP (P̄ ). We can summarize the dual prob-
lem as follow:
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minnKβ + γ (4.7)

αi ≥ pfi yi ∀i ∈ N (4.8)

β −
∑
i∈p

(αi +
δi
nk

) ≥ 0 ∀p ∈ P̄ (4.9)

γ + δi ≥ 0 ∀i ∈ N (4.10)

αi, δi ≥ 0 ∀i ∈ N (4.11)

β, γ ∈ R (4.12)

Dual variables αi, β, γ, δi correspond to constraints (4.1) - (4.4) of the MP (P̄ ) and dual
constraints (4.8) - (4.10) are associated to variable yi, λp, wi of the primal problem.

4.1.2 Subproblem

As we explained in Chapter 1, to solve this particular formulation, we need an additional prob-
lem to generate paths. Regarding the pricing problem for VRP, we refer to the work of De-
saulniers et al [22]. Among the all possible choice for the pricing subproblem, we decide to
adapt a Resource Constrained Elementary Shortest Path Problem (RCESP).

Thanks to theworkofMosheDror [23], it is shown that theRCESP is stronglyNP-hard. To
the best of our knowledge, the most used technique to solve the RCESP is dynamic program-
ming. In this work, we decide to use an implementation of the algorithm proposed by Tilk et
al. [24]. They extended the work of Righini and Salani [25] regarding the bounded bidirec-
tional dynamic programming algorithm for RCESP. In particular, they exploit new strategies
regarding asymmetric halfway points.

We can define the pricing problem as follows. Sincewe are tackling amaximization problem,
we want to find new columns, specifically new paths, that have a positive reduced cost. The
reduce cost of each column λp ∈ P can be computed as:

∑
i∈p

(αi +
δi
nk

)− β > 0 (4.13)

where the summation is done on all the nodes crossed by path p and the dual variables β, γ, δi
correspond to constraints (4.2) - (4.4).
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In order to find a new column that has a positive reduced cost, we create a graph where the
arcs have non-negative weights that represents the euclidean distance dij between the linked
nodes and non-positive weights on nodes with the following expression: αi +

δi
nk
. With this

representation, theRCESPfinds a non-elementary cycle that starts and ends in the base station,
with a maximum viable distance equal to the maximum distance the vehicle can do and with a
maximum reduced cost.

4.2 Algorithm

In this section we describe the algorithms we implemented to solve the extended formulation
thanks to column generation. In particular, we show three different algorithms: a branch and
price scheme and two heuristic diving algorithms.

4.2.1 Branch and Price

As we mentioned in Chapter 1, a branch and price algorithm is formulated as a combination
of branch and bound with column generation. The algorithm starts with a column genera-
tion phase. When no more columns are added to the master problem, we have two possible
cases. If the LP relaxation of the master problem has an integer solution, the algorithm termi-
nates and the optimal solution is found. If the LP relaxation has a noninteger solution, the
algorithm picks a variable with a fractional value and branches on that. For every branch, the
algorithm first solves the LP relaxation, then a column generation phase is applied to add a
new column and lastly, the LP relaxation is solved again with the new variables added. The
branching scheme goes on as a usual branch and bound algorithm and terminates when no
more branches are open.

There are still some problems to be addressed. First of all, we have to be careful to design a
good branching scheme. In fact, adding constraints can modify the pricing and make it con-
siderably harder to be solved in pratice. In our implementation, we choose to branch first on
variables yi and then onwi since branching on these variables does not affect the pricing prob-
lem. Furthermore, dual constraints 4.9 are associatedwith variablesλp meaning that only if we
branch on variables λp there is a modification of the pricing problem. In principle to have an
exact branching scheme, it would be necessary to implement another exact branching policy
to avoid getting stuck with variables λp with rational values. In practice, given the size of the
instances, we opted for a heuristic solution. Since it is possible that all variables yi andwi have
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integer values after LP relaxation of the master problem, but not λp, we terminate the branch
by subMIPing (i.e. by adding the integrality constraints).

Another choice we faced is how to perform branching. After several tries, we decide to
branch on the variable with the value closer to 0.5.

The pseudocode of the algorithm is described in Algorithm 4.1.

Algorithm 4.1 Branch and Price
1: Initialize P̄
2: B = [Initial Master Problem]
3: val_best_sol= −∞
4: best_sol = []
5: whileB ̸= []
6: Solve linear relaxation ofMP (P̄ )
7: if Unfeasible
8: Prune branch
9: Solve subproblem - Column Generation Phase
10: Solve linear relaxation ofMP (P̄ )
11: if solution is integer
12: if val_sol≥ val_best_sol
13: val_best_sol= val_sol
14: best_sol = sol
15: Prune Branch
16: else if val_sol≤ val_best_sol
17: Prune Branche
18: else
19: Branch on variable
20: Add branches to B

4.2.2 Model Improvement

Ordering of the base station Fixing aw variable is equivalent to deciding which node
should be used a starting point (or base station).

During the branch and price algorithm, we explore all the possible base station in order to
obtain an improving variable. We foundout that the orderwithwhichwe try all the base station
is critical. We tested three different approaches:

• Following the order of the node
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• Randomly try all the nodes

• Assigning at each node a probability value equal to the value of the corresponding w
variable after solving the linear relaxation and, to not get stuck, adding a random com-
ponent. In this way, the model selects first the base station that has a non-zero value in
the last linear relaxation solved.

Sub-graph generation To solve the sub-problem through the dynamic programming al-
gorithm we decide to use, it is necessary to create a graph from every base station with the
respective dual weights. In generating this graph, we keep only the nodes that are reachable
from the selected base station. By doing so, we can reduce the dimensionality of the problem
and obtain a new path faster.

Multiple paths addition Thanks to the algorithmwe chose for the resource constraint
shortest path, we have the possibility to retrieve not only the best route but also a list of the
best paths. In this way, we can add more than one path at each iteration, if the reduced cost is
negative. This procedure could add more paths to the model, even useless ones, but the main
advantage is that, on average, we get a good subset of paths faster.

4.3 Heuristic Approach

Since even with this new formulation, the problem could be hard to solve when the dimen-
sion of the graph is high, we develop some heuristic approach to find a feasible solution in a
reasonable amount of time.

4.3.1 DivingHeuristic

One of the most effective depth-first heuristics search algorithms in the branch and price tree
is a diving heuristic. At each node of the tree, the algorithm chooses a branch based on some
greedy or rounding strategies. This fixing is different from the branching decision in the branch
and price algorithm sincewe are not interested in exploring and balancing the tree, butwewant
to find a feasible solution faster. Furthermore, at each fixing, the LP relaxation of the master
problem is solved again and new columns are generated, if it is possible. To do so, we have
to be careful during the fixing phase, since we do not want to impair the column generation
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Figure 4.1: Main scheme for diving.

phase by adding some constraints that are incompatible with the pricing problem. A visual
representation of the diving heuristic in a binary tree is shown in Picture 4.1.

In our implementation, we proceed as follows:

• Solve the LP relaxation of the master problem.

• Select a variable and fix its value to 1.

• Perform column generation after updating the master problem.

• Repeat the fixing T times and restart if the problem is shown as infeasible.

• SubMIPing to find a feasible solution after T fixing.

To avoid getting stuck to the same fixing scheme, we add the chosen node to a tabu-list and
store the node for a couple of iterations. After that, we start by removing randomly nodes
from the tabu list, to keep variability in the diving scheme. The pseudocode of the algorithm
is described in Algorithm 4.2.
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Algorithm 4.2Diving scheme

1: Initialize P̄
2: val_best_sol= −∞
3: best_sol = []
4: Tabu_List = []
5: while time ≤ TL
6: while k ≤ MaxDepth
7: Solve linear relaxation ofMP (P̄ )
8: if Unfeasible
9: Prune branch
10: Solve subproblem - Column Generation Phase
11: Solve linear relaxation ofMP (P̄ )
12: if solution is integer
13: if val_sol≥ val_best_sol
14: val_best_sol= val_sol
15: best_sol = sol
16: Break
17: else if val_sol≤ val_best_sol
18: Break
19: else
20: Choose a variable not in Tabu_List and fix the value
21: Add chosen variable to Tabu_List
22: Remove some elements from Tabu_List
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4.3.2 Square diving

One of the most critical aspects of our formulation is the choice of the base station. In fact, if
we keep the base station fixed, we obtain the formulation of a team-orienteering problem. To
make the choice of the base station easier to tackle, we implement a heuristic diving where at
each iteration we reduce the space of possible choice for the base station. The main idea is the
following:

• After the first LP relaxation is solved and all the possible columns are generated, we look
at the value of wi variables and find the index i for which the value is higher. Then we
center a square S0 of side a0 around this node.

• At the next iteration of the algorithm, the base station should be inside this new square.

• After solving the LP relaxation and generating new columns, we create a new square Si

with side ai around the nodewith a higherwi value andwe reiterate this procedure until
we have only a node inside this square.

• To find a feasible solution, we apply subMIPing.

To ensure convergence, the values of ai is a decreasing sequence. In our particular implemen-
tation, we have the sequence as 12, 8, 4, 2, 1. A graphical representation of this idea is shown
in Picture 4.2.

Sincewewant to apply this procedure several times in a row,wedonotwant to endup always
in the same base station. To avoid this phenomenon, we add a Tabu-list. The idea is that after
a base station is chosen by the diving algorithm, it enters a Tabu-list and it cannot be chosen
again for the next k iteration. In this way, we can explore different regions and generate more
paths.
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Figure 4.2: An iteration of diving with tabu‐square.
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5
Model with communication

Working in an underwater environment could be challenging, and we should expect possible
malfunctioning of the vehicles. Retrieving a UAVwithout the support of locating systems like
GPS could be a hard task. To avoid this scenario, we want to enhance our model ensuring that
the vehicles can communicate with each other. The communication should happen to take
into account the range of underwater transmission channels.

For the sake of simplicity, we want to impose that the vehicles should have a link with the
base station when they still have half of their battery life. Since it is reasonable to think that
when they have half of their autonomy missing they are starting to go back towards the base
station. To do so, we impose a checkpoint half of the way and we verify that all the vehicles
are communicating with a multi-hop link with the base station. The approach we are going to
propose can be extended to a larger number of checkpoints, depending on the communication
required by the user.

5.1 Formulation

Sincewewere able to find good results with a column generator algorithm,we propose a similar
approach for our model with communication. We decide to implement the model in the same
fashion, but we need to do different assumptions to keep the model feasible. At first, in this
scenario, we take the position of the base station for granted. Then we choose to deal with the
communication as follows. We ask for multi-hop communication. In this way, a vehicle could
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Figure 5.1: Multi‐hop communication.

not be communicating directly with the base station, but it can be linked with another vehicle
that is in range of the base station. Furthermore, we check if all the vehicles are communicating
only when they reach half of their autonomy. Thanks to these assumptions, we are ready to
define our model.

5.1.1 Master

Parameter and Variables. As shown in Table 5.1, we have a new set of parameters rep-
resenting all the possible communication trees that allow each vehicle to be connectedwith the
base station (example of communication tree). To generate all these possible trees, we adapt an
algorithm developed by Karakashian, Choueiry, and Hartke [26].

We need to add another set of parameters to ensure that the vehicles are at the checkpoint
at the required time interval. To do so, when we generate a path, we save as a parameter the
midpoint of the path. Thus, if the model chooses that path, we know that the vehicle should
be in that specific position during the communication checkpoint. In this way, it is easy to
check if all the vehicles respect a particular communication tree.

Lastly, we need to handle the choice of the communication tree. We add a new set of vari-
ables, one for each tree. Each of these variables takes value 1 if the corresponding communica-
tion tree is chosen, 0 otherwise.

Constraints and Objective function. Since the aim of the model is the same as in
the previous chapter, we take as the objective function the maximum over the chosen feature
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Table 5.1: Parameters

Name Definition

G =
(N,A)

Graph used for the routing of the AUVs

N Set of nodes, |N | = nN

F Set of features, |F | = nF

K Set of drones, |K| = nK

P Set of all feasible paths, |P | = nP

T Set of all communication tree, |P | = nT

pfi quantity of feature f associated to node
i ∈ N

ypi indicates if node i ∈ N is visited by path
p ∈ P

mp
i indicates if node i ∈ N is midpoint of

path p ∈ P
ht
i indicates if node i ∈ N is part of commu-

nication tree t ∈ T

Table 5.2: Decision variables

Name Definition Range

λp Equal to 1 if path p is chosen by
a AUV

{0; 1}

yi Equal to 1 if node i is visited by
at least one AUV

{0; 1}

ct Equal to 1 if tree t is used as
communication tree

{0; 1}
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collected by the fleet. The master model uses the following set of constraints:

max

nN∑
i=1

pfi yi (5.1)

[αi] yi −
∑
p∈P

ypi λ
p ≤ 0 ∀i ∈ N (5.2)

[β]
∑
p∈P

λp = nK (5.3)

[θ]
∑
t∈T

ct = 1 (5.4)

[µi]
∑
p∈P

λpmp
i −

∑
t∈T

ht
ict ≤ 0 ∀i ∈ N (5.5)

y, l, c ≥ 0 (5.6)

Constraint (5.2) allows counting one node i as visited only if at least one of the paths going
through node i is chosen by a vehicle. Constraint (5.3) imposes that only nK paths can be
chosen. Constraints (5.4) impose that one (and only one) communication tree can be used.
Constraints (5.5) impose that there is communication.

5.1.2 Subproblem

Dual model. In order to describe the procedure with which we are going to add new vari-
ables, we need to introduce the dual model of theMP (P̄ ). We can summarize the dual prob-
lem as follow:

min nkβ + γ + θ (5.7)

[yi] αi ≥ pfi ∀i ∈ N (5.8)

[λp] −
∑
i∈N

ypi αi + β +
∑
i∈N

mp
iµi ≥ 0 ∀p ∈ P (5.9)

[ct] θ −
∑
i∈N

ht
iµi ≥ 0 ∀t ∈ T (5.10)

Dual variables αi, β, θ, µi correspond to constraints (5.2) - (5.5) of the MP (P̄ ) and dual
constraints (5.8) - (5.10) are associated to variable yi, λp, ct of the primal problem.
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We can define the pricing problem as follows. Sincewe are tackling amaximization problem,
we want to find new columns, specifically new paths, that have a positive reduced cost. The
reduce cost of each column λp ∈ P can be computed as:∑

i∈N

ypi αi − β −
∑
i∈N

mp
iµi ≥ 0 (5.11)

where the summation is done on all the nodes crossed by path p.
In order to find a new column that has a positive reduced cost, we create a graph where the

arcs have non-negative weights that represents the euclidean distance dij between the linked
nodes and non-positive weights on nodes with the following expression: αi +

δi
nk
. In this case,

implementing a direct approach with RCESP is complex since we have to know which is the
midpoint of the route. To avoid any complications, we decide to impose in advance the mid-
point and find two shortest paths: one from the base station to the midpoint and another for
coming back. When the first one is chosen, we avoid using the same arches by removing them
from the graph.

5.1.3 Tree generation

The formulationwe just presented requires the generation of all trees in the graph that contains
the base station and 4 nodes, one for each vehicle. We refer to the algorithm developed by (add
ref). This algorithm is able to find all trees in a given graph. Since we need only the trees that
contain the base station, wemodified the algorithm to obtain the trees that have that particular
node.

Thanks to this technique,we retrieve all the trees. This number grows combinatoricallywith
the dimension of the input. In our specific application, with a graph of dimension 17× 9, the
number of subtrees with 5 nodes is bounded by≃ 100000000 (found experimentally). If we
add this amount of variables to our model, it will become really hard to solve in a reasonable
amount of time. To speed up the solution, we heuristically choose a subset of trees. We decide
to keep only the trees where all nodes are far from the base station of at least dcomm − δ. This
choice is due to the fact that we impose a checkpoint at half-time of the mission and we expect
the vehicle to be the furthest possible. To reduce further the number of trees, we decide to keep
only the trees where at least two nodes are further than dcomm. The reason behind this choice
is that we expect that the vehicles are exploring different regions of the graph.

Thanks to this observation, we were able to reduce the number of trees to roughly 10000.
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5.1.4 Branch and Price

The branch and price algorithm developed for this model is similar to the one we presented in
Chapter 4. The scheme is exactly the same for most of the operations, but there are a couple
of changes. At first, we do not have wi variables, but we have the new ct variables. So, the
branching is done first on the yi as before, and then on ct. Both of this fixing does not interfere
with the pricing problem. Since the pricing problem has been modified, to add new columns
we have to explore all the possible midpoints. This idea is similar to what we did for the base
station in the first branch and price algorithm we presented. In this case, we try to add a new
column by choosing every midpoint possible. If it is not possible to add any new variables, the
pricing problem ends.
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6
Results

The aim of our project is to find a model able to perform better than the compact model de-
scribe in Chapter 4. Taking into account the setting we described in Chapter 2, our fleet can
collect three different types of features: coral, grass, and rock. Since we worked with a single
feature objective function, we present the results for every feature. Furthermore, all the fine-
tuning of the model was carried on for the coral feature, since it is the more challenging to
collect. This is due to the fact that the coral is sparse and present in less quantity with respect
to grass and rock.

In order to compare the performance, we define a measure called GAP:

GAP (method) =
UB − LB(method)

UB
∗ 100 (6.1)

where UB is the upper bound of the compact model and LB(method) stands for the Lower
Bound of the selected method.

First, we describe the setting in which the experiment was carried on:

• We take into account a fleet made by 4 vehicles

• Each vehicle has an autonomy of 16.

• The graph is the one described in Subsection 2.2.2.

• The time limit for each model tested is 2 hours.
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To have a better understanding, we recollect the model and their specification.

• Compact model: it is the model described in Chapter 3, where all the model improve-
ment described are adopted.

• Branch and price: the model is described in Section 4.2.1.

• Diving heuristic it is the first heuristic algorithm in Section 4.3.1

• Square diving: heuristic algorithm presented in Section 4.3.2

6.1 Coral

We start by presenting the results obtained when the objective of the mission is to collect coral.
In the following, we describe all the values that we measured during the experiment:

• LB: it is the lower bound found by the model. It is the value of the best integer solu-
tion found before the time limit is reached and is the amount of feature that has been
collected.

• UB: it is the best upper bound of the total amount of feature that can be collected found
by CPLEX during the execution of the solver.

• Time: it is the time in seconds. When the value is TL, it means that it has reached the
given time limit.

• BS: they are the euclidean coordinate in the graph of the base station.

In Table 6.1 and 6.2 we present the results for our four algorithms. We highlight in bold the
best results for each image in both tables.

Aswe expected, our columngeneration formulationperformsbetter than the compactmodel.
Furthermore, it is possible to notice how the choice of the base station is a crucial aspect to find
a better solution. In Table 6.3 we compute the average distance of the base station between
the models. As we can see, the average distance of the base station between the compact model
and the others is higher and this could be a crucial aspect to obtain the maximum number of
feature collected.

To have a better comparison of the model, we calculate the GAP for each method. In Ta-
ble 6.4 we present the values of GAP for the methods we tested.
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Table 6.1: Coral: results for exact models.

Compact Model Branch and Price
Image LB UB Time BS LB Time BS
1 0.4192 0.5452 TL (5,5) 0.5168 TL (10,5)
2 9.6504 14.8969 TL (12,1) 10.9532 TL (10,2)
3 3.1876 4.7076 TL (9,3) 4.2876 TL (6,6)
4 3.9348 3.9348 346 (12,6) 3.9348 8 (13,6)
5 9.844 9.8496 TL (5,3) 9.8488 TL (4,4)
6 5.1612 5.46 TL (7,4) 5.4564 TL (7,6)
7 7.7696 11.6725 TL (11,5) 7.7732 TL (11,4)
8 7.574 13.7625 TL (3,2) 9.754 TL (9,3)
9 3.6108 5.3468 TL (2,0) 3.8604 TL (4,4)
10 3.6296 5.8319 TL (13,4) 3.972 TL (12,3)
11 3.8284 3.8284 14 (11,6) 3.8284 9 (12,6)
12 3.7428 4.1488 TL (2,3) 3.7804 TL (4,3)

Table 6.2: Coral: results for heuristic algorithm.

Diving on y Diving onw (square)
Image LB Time BS LB Time BS
1 0.5136 TL (10,5) 0.4768 TL (10,4)
2 10.9532 TL (10,1) 11.6316 TL (11,2)
3 4.2876 TL (6,6) 4.2872 TL (6,4)
4 3.9348 8 (13,6) 3.9348 8 (13,6)
5 9.838 TL (6,3) 9.7868 TL (6,3)
6 5.4588 TL (7,6) 5.4588 TL (7,6)
7 8.2068 TL (9,4) 8.3896 TL (9,3)
8 9.6012 TL (11,1) 9.3604 TL (7,3)
9 4.1052 TL (7,2) 4.1696 TL (7,2)
10 4.0000 TL (13,2) 3.9372 TL (12,3)
11 3.8284 9 (12,6) 3.8284 9 (12,6)
12 3.7804 TL (4,3) 3.7736 TL (4,4)
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Table 6.3: Coral: Average distance of the base station.

Root Node Branch and Price Diving on y Square diving
Root Node 0.0000 2.6552 2.9938 2.5552
Branch and Price 2.6552 0.0000 1.0904 1.2565
Diving on y 2.9938 1.0904 0.0000 1.0250
Square diving 2.5552 1.2565 1.0250 0.0000

Table 6.4: GAP value for coral.

Model GAP
Compact Model 21.21
Branch and Price 14.31
Diving on y 13.73
Square diving 13.97

6.2 Grass

In Table 6.1 and 6.2 we present the results for our four algorithms. We highlight in bold the
best results for each image in both tables.

Table 6.5: Grass: results for exact models.

Compact Model Branch and Price
Image LB UB Time BS LB Time BS
1 6.6128 7.3520 TL (9,5) 6.8180 TL (9,5)
2 5.9916 6.4696 TL (6,3) 6.4456 TL (4,3)
3 24.3416 27.7247 TL (10,3) 24.5076 TL (12,2)
4 21.2356 30.2898 TL (8,3) 23.8416 TL (4,5)
5 10.2880 13.4080 TL (5,8) 11.1636 TL (10,4)
6 17.9652 24.2356 TL (3,1) 19.1600 TL (4,1)
7 30.8944 33.8258 TL (9,4) 30.3224 TL (7,3)
8 23.2376 25.3404 TL (10,3) 22.5128 TL (10,2)
9 6.7520 12.8202 TL (4,2) 10.5260 TL (11,2)
10 3.4080 4.0992 TL (12,3) 3.7028 TL (9,0)
11 22.2164 28.2381 TL (8,5) 22.3696 TL (10,5)
12 3.9652 4.4412 TL (3,3) 3.9696 TL (4,1)

As we did for the coral, we show how the choice of the base station plays a crucial role to
carry on a successful mission. In Table 6.7 we compute the average distance of the base station
between the models. As we can see, the average distance of the base station between the com-
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Table 6.6: Grass: results for heuristic algorithm.

Diving on y Diving onw (square)
Image LB Time BS LB Time BS
1 6.6608 TL (9,5) 6.8168 TL (9,5)
2 6.4456 TL (4,4) 6.4456 TL (4,5)
3 24.5700 TL (11,2) 24.4320 TL (10,3)
4 22.5316 TL (3,6) 22.2960 TL (3,5)
5 11.1636 TL (10,4) 11.1636 TL (10,4)
6 18.9828 TL (4,1) 19.2056 TL (4,1)
7 29.8112 TL (7,3) 29.6332 TL (7,3)
8 23.2108 TL (10,3) 23.3168 TL (10,3)
9 10.2032 TL (12,2) 10.2032 TL (12,2)
10 3.6968 TL (9,0) 3.6712 TL (9,0)
11 22.1744 TL (5,4) 22.4276 TL (5,4)
12 3.9696 TL (4,3) 3.9696 TL (3,1)

pact model and the others is higher and this could be a crucial aspect to obtain the maximum
number of feature collected.

Table 6.7: Grass: Average distance of the base station.

Root Node Branch and Price Diving on y Square diving
Root Node 0.0000 2.3686 2.2106 2.3088
Branch and Price 2.3686 0.0000 1.0428 1.1113
Diving on y 2.2106 1.0428 0.0000 0.4709
Square diving 2.3088 1.1113 0.4709 0.0000

To have a better comparison of the model, we calculate the GAP for each method. In Ta-
ble 6.8 we present the values of GAP for the methods we tested.

Table 6.8: GAP value for grass.

Model GAP
Compact Model 18.49
Branch and Price 13.22
Diving on y 13.98
Square diving 13.82

43



6.3 Rock

InTable 6.1 and 6.2we present the results for our four algorithm. We highlight in bold the best
results for each image in both tables.

Table 6.9: Rock: results for exact models.

Compact Model Branch and Price
Image LB UB Time BS LB Time BS
1 8.6068 16.6296 TL (5,14) 14.914 TL (4,10)
2 42.496 49.8497 TL (6,5) 38.6032 TL (5,3)
3 36.178 51.7415 TL (3,5) 34.8908 TL (3,4)
4 32.986 46.5455 TL (5,9) 36.0952 TL (5,9)
5 35.5696 54.4654 TL (3,15) 44.1148 TL (3,3)
6 36.9376 44.4408 TL (3,6) 33.9116 TL (3,4)
7 39.2816 51.2107 TL (4,16) 39.8048 TL (2,15)
8 35.6124 55.3081 TL (2,8) 43.1684 TL (4,5)
9 26.0236 41.2702 TL (2,9) 29.5876 TL (2,11)
10 27.4584 39.8959 TL (4,13) 27.8688 TL (5,11)
11 25.7488 35.347 TL (3,9) 27.5424 TL (1,8)
12 28.6748 43.0733 TL (6,2) 31.8144 TL (7,9)

Table 6.10: Rock: results for heuristic algorithm.

Diving on y Diving onw (square)
Image LB Time BS LB Time BS
1 14.8916 TL (4,10) 14.8152 TL (4,10)
2 38.5332 TL (3,4) 37.1568 TL (3,4)
3 35.5856 TL (3,4) 35.5856 TL (3,4)
4 34.51 TL (5,12) 34.81 TL (6,11)
5 45.1148 TL (3,3) 43.2284 TL (3,3)
6 33.9428 TL (2,5) 33.5772 TL (3,5)
7 39.9588 TL (2,15) 39.8048 TL (2,15)
8 42.6408 TL (3,4) 43.5472 TL (3,4)
9 31.9156 TL (3,11) 29.2896 TL (2,11)
10 27.6976 TL (4,10) 27.292 TL (3,12)
11 26.436 TL (1,8) 26.1308 TL (1,8)
12 29.854 TL (7,9) 29.8556 TL (7,4)

As we did for the coral, we show how the choice of the base station plays a crucial role to
carry on a successful mission. In Table 6.11 we compute the average distance of the base sta-
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tion between the models. As we can see, the average distance of the base station between the
compact model and the others is higher and this could be a crucial aspect to obtain the maxi-
mum number of feature collected.

Table 6.11: Rock: Average distance of the base station.

Root Node Branch and Price Diving on y Square diving
Root Node 0.0000 3.3953 3.8002 3.1472
Branch and Price 3.3953 0.0000 0.8732 1.1769
Diving on y 3.8002 0.8732 0.0000 0.8875
Square diving 3.1472 1.1769 0.8875 0.0000

To have a better comparison of the model, we calculate the GAP for each method. In Ta-
ble 6.12 we present the values of GAP for the methods we tested.

Table 6.12: GAP value for rock.

Model GAP
Compact Model 30.12
Branch and Price 23.45
Diving on y 23.75
Square diving 24.90

6.4 Communication Results

As we mentioned before, it is important for our application to ensure stable communication.
We decide to run our model trying to optimize the amount of feature collected. We choose as
base station the one selected by the bestmodel without communication. In this way, we can see
our much feature collected we lose after imposing the communication constraint. The model
we run is described in Chapter 5. The algorithm used is branch and price with a time limit of
2 hours.

Even ifwe donot impose that there should be some relay vehiclesmeaning that these vehicles
are there just to ensure communication, we notice that in some cases there are vehicles that do
not collect a large amount of feature, but they ensure that the communication is there. These
vehicles explore the graph, but they go to a checkpoint to increase exploration for another ve-
hicle at their expense. An example of this phenomenon can be seen in Figure 6.1. The blue
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Figure 6.1: Example of relay vehicle.

vehicle (blue path) is basically not collecting any feature, but it allows the green vehicle (green
path) to reach the feature on the bottom left part of the graph.
It is possible to see the results for all instances in Appendix A.
Here there are the results for the communicationmodel for the three different features: coral,

grass, and rock. In the next tables. the following quantities are reported:

• LB is the value of the best solution found by the model with communication.

• LB is the value of the best solution found by the model without communication.

• Time is the total amount of time needed by the model. If the value is TL, it means that
after 2 hours the execution has been stopped.

In particular, looking at the results, it can be noticed that for some instances the best solution
has a higher value than the one without communication. This phenomenon happens since
once the base station is fixed, it is easier to find the right paths. It can be seen as an indicator
of how difficult the problem is and of the fact that it is not trivial to optimize both the base
station and the paths.
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Table 6.13: Coral: experimental results with com‐
munication.

Image LB LB Time
1 0.5136 0.5168 70
2 12.1168 11.6316 TL
3 4.1724 4.2876 TL
4 3.9292 3.9348 150
5 9.5096 9.8488 TL
6 5.4560 5.4588 TL
7 7.9872 8.3896 TL
8 9.0512 9.6012 222
9 3.2612 4.1696 227
10 3.8696 4.0000 TL
11 3.8284 3.8284 282
12 3.7404 3.7804 TL

Table 6.14: Grass: experimental results with com‐
munication.

Image LB LB Time
1 6.5924 6.8180 905
2 6.3048 6.4456 TL
3 24.8492 24.4700 TL
4 23.7552 23.8416 TL
5 9.9728 11.1636 TL
6 18.7476 19.2056 TL
7 30.7580 30.8944 TL
8 23.3424 23.3168 TL
9 9.7312 10.5260 TL
10 3.5100 3.7028 TL
11 22.3612 22.4276 TL
12 3.8512 3.9696 218

Table 6.15: Rock: experimental results with communication.

Image LB LB Time
1 13.6456 14.9140 TL
2 44.3296 42.4960 TL
3 38.1036 36.1780 TL
4 36.6932 36.0952 TL
5 42.1324 45.1148 TL
6 37.3548 36.9376 TL
7 40.9576 39.9588 TL
8 46.1676 43.5472 TL
9 28.6768 31.9156 TL
10 28.6272 27.8688 TL
11 26.0728 27.5424 TL
12 34.9648 31.8144 TL
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Conclusion

Nowadays, there is an increasing interest in using collaborative multi-vehicle systems for un-
derwater exploration and monitoring, to achieve a more reliable and wider underwater area
coverage. In fact, a fleet of AUVs equipped with cheaper sensors, since it can provide detailed
information (images, videos) of larger areas, can achieve enhanced and more extended percep-
tion if compared to the one provided by a single, high-performant AUV.

The path planning of the mission plays a crucial role in energy saving and data retrieving.
Since it is possible to find data that can give a hint on what there could be on the seabed, it is
reasonable to design an apriorimissionplan to achieve better perception. This kindof problem
belongs to the large class of Vehicle Routing Problem and it is possible to define a model as an
optimization problem.

In our work, the optimization problem has been exactly solved through several heuristic al-
gorithms based on column generation. After developing an exact approach and given the com-
plexity of the problem, we develop a heuristic branch and price algorithm. Starting from this
idea, we designed two pure heuristic techniques based on the general scheme of diving heuris-
tics. We experimentally showed that they all outperform the results obtained with a compact
model.

The algorithms have been applied to real environmental data, specifically underwater maps
based on satellite imagery provided by the Abu Dhabi Environmental Authority. An example
of a use case is the collection of detailed information on the health and conservation status of
corals, or different species of seagrass, as it is needed by local Environmental Authorities.

Furthermore, the model has been enhanced with communication constraints. This require-
ment is necessary since we are operating in an underwater environment, where it is difficult to
retrieve a vehicle due to the absence of GPS.

As an outcome of this thesis, a paper has been published [27] and two are under preparation.

49



50



A
To have a general idea about what is going on in every instance, we show the results of the
best solution without communication and with communication. The images are organized as
follows: on the left part, there are the results without communication, and on the right side
the results with communication. From top to bottom the images are divided by the feature
collected: coral (red), grass (dark green), and rock (light green) as in Table A.1.

Coral Coral with communication
Grass Grass with communication
Rock Rock with communication

Table A.1: Schematic explanation of the organization of the images.

In each figure, each path is denoted by a different color: green, red, yellow, and blue. The
base station is represented by a purple dot. The black dot on the instances with communica-
tion represents the halfway point where we ensure that the vehicle is passing by for achieving
communication.

51



Figure A.1: Results on instance 1.
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Figure A.2: Results on instance 2.
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Figure A.3: Results on instance 3.
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Figure A.4: Results on instance 4.
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Figure A.5: Results on instance 5.
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Figure A.6: Results on instance 6.
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Figure A.7: Results on instance 7.
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Figure A.8: Results on instance 8.
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Figure A.9: Results on instance 9.
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Figure A.10: Results on instance 10.
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Figure A.11: Results on instance 11.

62



Figure A.12: Results on instance 12.
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