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Abstract

Healthcare supply chain management has many challenges, especially when it comes to

last-mile delivery, where rising costs, environmental issues, and complexity are big problems.

The study demonstrates that the use of drone technology can address fundamental logistical

problems with the last-mile delivery of healthcare items. This innovative technology enables

faster, more affordable, and more sustainable last-mile delivery options, which is a major

benefit. Furthermore, by effectively delivering essential supplies during emergencies, drones

improve community resilience, especially in disaster-stricken areas where traditional

transportation is limited. The objective of our work is to enhance the efficiency of last-mile

medical drone delivery with the consideration of a drone battery constraint such as limitation

of drone battery life and charging time. Therefore, our study is concerned with ensuring

higher demand satisfaction rates and decreasing battery degradation rates by improving

recharging and distribution operations in the drone hub dispatching drones to hospitals that

generate stochastic demands and are located at different geographic locations. To achieve this

objective, Discrete Event Simulation methodology is used to model and analyze complex,

stochastic systems by tracking discrete events over time. The simulation was based on a

real-world case study of Zipline's drone-based medical supply delivery system across

Rwanda, Africa. By implementing a DES model, two different operational scenarios and

some experimental analyses were compared to identify the most advantageous approaches to

using drones and recharging them. Regarding different scenarios, we discovered that they

behave in the same way and there is no significant improvement in the second scenario

compared to the first scenario. Concerning various experiments about charging strategies, it

has been found that it is most effective to recharge a drone when the battery threshold is 24%

or less immediately after returning the drone from the mission. Furthermore, we analyzed the

number of drones and the results showed that a fleet size of 30-35 can guarantee a high level

of demand satisfaction rate besides lowering the number of drone charging cycles.

Notably, the findings of this study highlight how the stochastic nature of healthcare

demands and the limitation of drone battery life can be addressed when formulating strategies

for using drones in last-mile delivery in healthcare logistics. Moreover, by creating a strategic

methodology for effective drone hub operations and concentrating on charging and allocation

strategies that best suit the stochastic demands of healthcare delivery and the limitation of

drone battery life, this thesis makes a significant contribution to the field of last-mile delivery

in healthcare supply chain research. This approach improves operational efficiency as well as

resource utilization.
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Introduction
In recent years, the healthcare industry has increasingly explored innovative solutions to

enhance supply chain management, with a particular focus on last-mile delivery (Akbari et

al., 2017). The delivery of goods to the end consumer, which is also known as last-mile

delivery, is considered to be one of the most complex and expensive parts of supply chain

management (Akbari et al., 2017, Ha et al., 2022). Traditional delivery approaches face some

challenges like traffic congestion, accessibility to remote locations, and environmental impact

(Mohammad et al., 2023). These challenges are particularly noticeable in health systems

where timely delivery of medical supplies and other requirements is necessary because the

quality of care provided depends on it (Costin 2010).

Drones or Unmanned Aerial Vehicles (UAVs) have been introduced as a potential

solution to the last-mile delivery challenges (Amirsahami et al., 2023; Mohammad et al.,

2023). They are especially well-suited for carrying medical supplies to hard-to-reach

locations because of their capacity to avoid conventional transportation routes as well as their

speed and agility (Amirsahami et al., 2023). Drone technology can get critical products like

medicine, blood, and vaccines to remote areas within the shortest time and at a minimal cost

thereby making available essential healthcare resources to even the most hard-to-reach areas

(Asadi et al., 2022).

In order to address the last-mile delivery problem within the healthcare supply chain,

this thesis evaluates the potential applications of drone technology. The goal of the research is

to determine the best practices for charging and distribution operations to increase the

efficiency of deliveries made using drones. This study uses the Discrete Event Simulation

model as a methodology to investigate various scenarios and experimental analysis in order to

determine the best practices for assigning and using a fleet of drones to meet the stochastic

demands of hospitals. The main goal of this study is to examine the most effective recharging

and allocation strategies that will ensure that the maximum demand satisfaction rate is

achieved with the minimum fleet size while decreasing the number of charging cycles of

drones to reduce battery degradation. Overall, this research aims to add to the existing

knowledge about the uses of drone technology for logistics with an emphasis on the effective

implementation of drone technology into the health sector supply chain.

The first chapter of the research gives a theoretical context to supply chain

management and logistics, the problems with last-mile deliveries in the healthcare sector, and

the use of drones for medical deliveries as a novel solution. Chapter two focuses on the
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method used which is Discrete Event Simulation (DES), the reasons for choosing DES, and

how we used Python and SimPy as software to model drone operations. Furthermore, the data

collection and conceptual modeling are introduced in this chapter. The third chapter concerns

the experimental analysis. We performed different experimental analyses to find the best

configuration for the recharging and distribution of the drones, and the optimal drone fleet

size to improve the last-mile delivery efficiency. Lastly, in the final chapter, we provide a

conclusion that is based on our analysis, address the limitations encountered during the

course of the research, and present recommendations and directions for further research.
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CHAPTER 1 - Theoretical Background

Recently, there has been a growing interest in utilizing drone technology for medical

deliveries within the healthcare sector (Munawar et al., 2022). A potential advantage of

drones is that they can quickly deliver medical supplies in a way that is both cost-effective

and environmentally friendly (Mohammad et al., 2023). Moreover, drones can quickly get to

hard-to-reach places, which is especially important during sensitive situations or natural

disasters (Munawar et al., 2022).

According to Communication (2022e), delivery and transportation are essential parts

of supply chain management and logistics, therefore it is important to initially understand

their concept and then go over why drones are important in these areas. In this chapter, we

delve into more detail about supply chain management and logistics concepts and provide

clear definitions and explanations. Then, we go into great depth about drone applications for

last-mile delivery in these areas, with a particular focus on their applications within healthcare

items delivery. Finally, in the last part, we discuss our research question and the methodology

we will use to investigate the research question.

1.1. Supply Chain (SC) and Supply Chain Management (SCM)

1.1.1. Definition of Supply Chain and Supply Chain Management

Over the past few decades, the concepts of supply chain (SC) and supply chain management

(SCM) have undergone significant transformation. Before the term "supply chain

management" gained popularity in the late 1980s and became extensively used in the 1990s,

businesses largely utilized terminology like "logistics" and "operations management" instead

(Hugos, 2011). According to Croom et al. (2000), the literature on supply chain management

uses a confusing number of terms with similar meanings, consequently, a variety of labels on

supply chains and supply chain management practices can be found in the literature. These

labels include integrated purchasing strategy, value-added chain, lean chain approach, supply

pipeline management, supply network, supply stream, supply base management, supplier

integration, supplier partnership, supply chain synchronization, and network supply chain

(Croom et al., 2000).
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There are several ways to define supply chain and supply chain management, and each

one emphasizes specific aspects of the complex network that is involved in introducing goods

or services to the market.

Here are some examples of their various definitions:

● <A supply chain is the alignment of firms that bring products or services to market=

(Lambert et al., 1998).

● <A supply chain consists of all stages involved, directly or indirectly, in fulfilling a

customer request. The supply chain not only includes the manufacturer and suppliers,

but also transporters, warehouses, retailers, and customers themselves= (Chopra &

Meindl, 2003).

● Moreover, Ganeshan & Harrison (1995) proposed that <A supply chain is a network of

facilities and distribution options that performs the functions of procurement of

materials, the transformation of these materials into intermediate and finished

products, and the distribution of these finished products to customers=.

If this is the definition of a supply chain, then supply chain management is the activity

of managing and supervising the movement of goods from their point of manufacture to their

point of sale or use. It covers all of the actions we take to guarantee the efficient and effective

operation of the supply chain. As an example, we may schedule the manufacturing, shipping,

and storage of the goods. We also work out how to make the supply chain better so that it can

deliver the outcomes we want. Several definitions of supply chain management are provided

below:

● <The systemic, strategic coordination of the traditional business functions and the

tactics across these business functions within a particular company and across

businesses within the supply chain, for the purposes of improving the long-term

performance of the individual companies and the supply chain as a whole= (Mentzer el

al., 2001).

● <Supply chain management is the coordination of production, inventory, location, and

transportation among the participants in a supply chain to achieve the best mix of

responsiveness and efficiency for the market being served= (Hugos, 2011).
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● Tan et al. (1998) stated that supply chain management includes materials/supply

management from the procurement of basic raw materials to the discovery of products

(and potential recycling and repurposing). The field of supply chain management is

centered on how businesses leverage the capabilities, technologies, and processes of

their suppliers to gain a competitive edge. According to Tan et al. (1998), it is a

management philosophy that goes beyond conventional intra-enterprise operations by

uniting trading partners around the shared objectives of efficiency and optimization.

● Moreover, Berry et al. (1994) defined it as developing new products, reducing the

supplier base to a single OEM (original equipment manufacturer), and fostering trust

are the goals of supply chain management. This allows management resources to be

allocated toward creating deep, lasting relationships (Berry et al., 1994).

Hugos (2011) asserted that supply chain management is different from traditional

logistics since it covers a wider range of tasks. While supply chains involve networks of

companies working together to get products to market, logistics usually concentrates on

activities within a single enterprise. Supply chain management encompasses marketing, new

product development, finance, and customer service, while traditional logistics focuses

primarily on inventory management, distribution, procurement, and maintenance (Hugos,

2011). Croom et al. (2000) further emphasized that the term "supply chain management"

refers to a variety of inter-organizational, strategic challenges that go beyond logistics. It

might refer to non-vertical integration organizational alternatives or characterize the

relationships a business establishes with its suppliers.

1.1.2. The Origins of Supply Chain Management

According to Hugos (2011), the terms "supply chain" and "supply chain management" gained

popularity in the late 1980s and had a significant increase in usage in the late 1990s, marking

an important period (Min et al., 2019). Globalization and the transfer of market power from

manufacturers to retailers were the two main features of this era. Expectations for specialized

products tailored to their individual requirements and tastes increased as consumers in the

supply chain started to expect better value for their money. Companies tried to geographically

expand to achieve either reduced production costs or improved quality as a result of the

increased competition brought about by globalization (Min et al., 2019).
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Supply chain management (SCM) strategies became increasingly popular among the

500 largest organizations in the late 1990s as new developments in information technology

appeared. To reduce inventory levels, this involved exchanging demand data with other

parties in the supply chain. The period marked a turning point for supply chain management

(SCM), as businesses realized they had to revise 1950s normative declarations to reflect the

reality of increased global competitiveness. The SCM landscape is about to enter a new,

transformative phase as we move into the current era of Industry 4.0, which is defined by the

quick development of information-led technologies (Min et al., 2019).

It's clear from thinking about supply chain management dynamics that theoretical

development in the late 1990s trailed behind real-world improvements in supply chain

operations. As a result, there was a lack of widespread adoption of SCM across various

industries and businesses of different sizes due to the fragmented nature of its expertise. The

gap incited scholars to define supply chain management (SCM) explicitly and create detailed

frameworks to explain its complexities, which in turn encouraged more research projects. As

a result, researchers must continuously assess how dynamic and static supply chain

management is in order to forecast the future path of market dynamics (Min et al., 2019).

1.1.3. Five Phases of Supply Chain Management

A supply chain manager's responsibilities go beyond the traditional domains of procurement

and logistics; they also include the complex task of improving operational effectiveness,

reducing expenses, and reducing the possibility of shortages and unplanned disruptions.

Fernando (2024) points out that the supply chain management (SCM) process is a complex

undertaking that consists of five separate phases as you can see in Fig. 1 These stages involve

precise coordination of tasks from planning and sourcing to manufacturing, delivery, and

returns. Moving forward, each section will be discussed from Fernando's (2024) perspective.
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Fig. 1. Five phases of Supply Chain Management.
Source: Communication (2022e).

Planning

Getting the best results in supply chain management (SCM) usually starts with careful

planning to match supply with manufacturing and consumer needs. It is essential for

businesses to forecast future needs since it helps them predict demand and modify their

plans accordingly. This entails determining the number of raw materials or components

required at different stages of production, taking into account the limitations and capacity of

the equipment, and estimating the number of employees needed. To integrate and streamline

these planning procedures, a lot of big businesses use enterprise resource planning (ERP)

software (Fernando, 2024).

Sourcing

For supply chain management (SCM) procedures to work well, strong supplier relationships

are essential. Working with suppliers to get the supplies required for production is known as

sourcing. The general objective of SCM sourcing does not change, even if different sectors

may have different requirements. This ensures that:

- Components or raw materials meet the manufacturing requirements necessary to

produce items.

- Negotiated prices with vendors are in line with what the market is currently expecting.

- Vendors exhibit the ability to deliver emergency supplies quickly in the event of

unanticipated circumstances.

- Suppliers have a record of achieving quality requirements and making on-time

deliveries of items.
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Supply chain management becomes even more crucial, especially when it comes to situations

where perishable items are involved. Companies need to think about things like lead times

and the supplier's ability to meet their needs efficiently while sourcing products (Fernando,

2024).

Manufacturing (or Executing)

The manufacturing stage, which is the central component of the supply chain management

process, involves a company using its personnel and equipment to transform components or

raw materials that are purchased from suppliers into final goods. Although the finished

product represents an important turning point in the production process, supply chain

management is not over. Numerous additional operations, including assembling, testing,

inspection, and packing, are performed during the production process. Companies need to be

on the lookout for things like waste production and unanticipated resource constraints that

could cause them to move away from their initial goals during these procedures. For example,

in order to make sure that the SCM framework is in line with the company's goals, it is

necessary to quickly deal with any increase in raw material utilization that results from

inadequate staff training (Fernando, 2024).

Delivery

It becomes essential for a business to effectively deliver its items to its clients when sales

transactions are finished. Strong logistical skills and well-established delivery routes are

important parts of supply chain management, which ensures the timely, safe, and economical

delivery of goods. In the case that one means of transportation becomes momentarily

unavailable, it is necessary to implement alternate or diversified distribution systems as

backup plans (Fernando, 2024).

Returns

When the product is delivered to the customer, the supply chain management process is not

over. It includes managing client returns and providing product assistance. Handling returns is

never ideal, particularly when the reason for the return is a company error. This part of the

process, known as reverse logistics, entails the business having the necessary resources to

accept returned goods and accurately process refunds. Resolving the transaction with the

consumer is essential, regardless of the nature of the problem (a product recall or a customer

complaint). Returns can also offer insightful input that helps the business identify any

shortcomings in its products and implement the required fixes. However neglecting to deal

with the underlying reason behind client returns suggests an error in the supply chain
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management procedure, which will probably result in future return problems (Fernando,

2024).

1.2. Healthcare Supply Chain Management

Scholars, researchers, governments, and providers are paying growing attention to the

healthcare supply chain since it is an essential tool for controlling costs and improving the

quality of healthcare (Elmuti et al., 2013). This supply chain includes the lifecycle procedures

or routes that goods take from the place of production to the locations of use and payment.

According to Elmuti et al. (2013), the healthcare supply chain consists of knowledge-based,

financial, informational, and physical flows that are intended to meet end-user needs across

several interconnected supplies.

In order to ensure quality and customer satisfaction while keeping costs under control,

effective management of this complex chain requires the prompt and efficient coordination of

its various components (Elmuti, 2002). Key players in the domain of healthcare supply chains

include producers of pharmaceuticals, medical devices, and hospital supplies; distributors;

providers of medical services; insurers; governments; employers; regulators; and recipients of

healthcare services (Burns & Lee, 2008). Healthcare supply chains can directly improve

patient care by minimizing risks, lowering errors, doing away with operating room delays and

cancellations, and shortening hospital stays by optimizing the delivery of materials and

information precisely when and where needed (Elmuti et al., 2013).

Several research works claim that supply chain tools can result in lower organizational

costs, shorter cycle times, and improved performance without sacrificing quality (Elmuti et

al., 2013). But when it comes to putting these technologies into practice, the healthcare

industry continuously falls behind the commercial sectors (Kwon et al., 2016). Furthermore,

there are still misconceptions regarding the foundations of the supply chain. For example,

healthcare professionals frequently mistake supply chain management for contract and

purchasing management, ignoring the larger logistical dimensions of the discipline (Kwon et

al., 2016). It is necessary to address problems such as a lack of standardization in processes

and a lack of cooperation among stakeholders in order to overcome obstacles to successful

healthcare supply chain management (Nachtmann & Pohl, 2009).

Improving productivity and patient care at the same time depends on allocating funds

released from supply chain optimization to cutting-edge healthcare fields (Kwon et al., 2016).

Supply chain optimization in healthcare can be achieved through strategic areas such as
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supplier relationship management, logistics operating tools, and process optimization4all of

which are modeled after effective commercial supply chain strategies (Kwon et al., 2016).

The manufacture, distribution, and dispensing of pharmaceuticals and medical

supplies to patients on time is the responsibility of the complex network known as the

healthcare supply chain (HSC) (Tyagi, 2023). In contrast to other supply chains, the

healthcare supply chain is more complex because it depends heavily on human interaction and

requires accurate, appropriate medical products that are customized to meet patient demands

(Tyagi, 2023). The coordination of the movement of medical information and supplies

between suppliers, providers, customers, and patients is essential for effective HSC

management. This coordination includes sourcing, production, distribution, delivery, tracking

of consumption, cost monitoring, and disposal (Tyagi, 2023).

Inadequate supply chain management in the healthcare industry can result in high

expenses, inadequate inventories, delayed deliveries, and environmental damage (Hossain &

Thakur, 2021). On the other hand, efficient management may cut down on waste, increase

productivity, decrease mistakes, provide correct product information, and guarantee on-time

delivery (Singh & Singh, 2019; Essila, 2022). However, a lot of hospitals struggle with

outdated equipment combined with inadequate inventory management systems, which makes

it difficult for them to streamline procedures related to procurement, transportation, and

inventory handling (Tyagi, 2023).

In recent years, the field of healthcare research within operations and supply chain

management has experienced substantial growth (Ali & Kannan, 2022). In order to convert

raw materials into completed goods and facilitate their flow to end users, a network of

healthcare providers, pharmaceutical manufacturers, drug suppliers, distributors, and logistics

service providers is included in healthcare OSCM (Ali & Kannan, 2022). Healthcare supply

chain management, despite its particular complexity, can benefit from ideas, procedures, and

models from other industries to enhance service delivery and operational effectiveness (De

Vries & Huijsman, 2011). However, current supply chain management paradigms must be

expanded upon and adjusted due to the dynamic interaction of stakeholders, technologies, and

operational features unique to the healthcare industry (De Vries & Huijsman, 2011).

Therefore, even if the healthcare supply chain management has particular difficulties, it can

profit from knowledge gained from other industries, which will encourage creativity and

effectiveness in the provision of healthcare services.
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1.3. Logistics in Supply Chain Management

These days, most people only think about logistics in terms of business and industrial

logistics, since those areas control the market and have made the most progress (Kukovič et

al., 2014). Logistics, or logistics management, is the part of supply chain management that

plans, carries out, and keeps an eye on the safe transport and storage of goods, services, and

information related to them from where they are made to where they are used, all with the

goal of meeting customer needs quickly and correctly (Kukovič et al., 2014). According to

Hugos (2011), a significant distinction can be seen between supply chain management and

logistics. Logistics mostly deals with activities that happen inside one company, while supply

chains are made up of related networks of companies working together to get a product to

market. Logistics tasks like purchasing, distributing, maintaining, and managing goods have

been around for a long time. Supply chain management, on the other hand, includes these

more general logistics tasks as well as marketing, new product creation, finance, and

customer service (Hugos, 2011). In the next few parts, we'll go into more detail about logistics

to show how it works and what it means in the context of supply chain management.

1.3.1. Definitions of Healthcare (Hospital) Logistics

The critical role of logistics is to supervise the smooth movement of materials. This procedure

includes the movement of materials from suppliers into the organization's operations and

finally to the end user (D. Waters, 2003). As you can see in Fig. 2, inbound or inward

logistics, is concerned with the flow of materials from suppliers into the company. Outbound

or outward logistics involves moving items from the company to its clients. Meanwhile,

"materials management" refers to the organization's careful coordination of material

movement. These interrelated logistics elements work together to create an effective material

flow that supports businesses in satisfying client needs (D. Waters, 2003).
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Fig. 2. The role of logistics.
Source: D. Waters (2003).

By analyzing the logistics procedures in the healthcare industry, Kaya (2023) sheds

light on the complex web of actions that occur between producers and final consumers. The

logistics chain in the healthcare sector involves multiple parties, such as distributors, carriers,

manufacturers, warehouses, and, in the end, payers and patients. Moreover, it can be seen that

in Fig. 3 delivery has an important role in healthcare logistics to transport supplies from one

destination to another. Healthcare logistics encompasses an intricate network of activities that

are designed to guarantee the prompt and effective provision of medical services, ranging

from acquiring medical supplies to overseeing patient interactions and recycling procedures

(Kaya, 2023). Furthermore, hospital logistics' primary goal, as stated by Costin (2010), is to

provide all hospital stakeholders with the resources they need to do their tasks well. Hospital

logistics essentially makes sure that the appropriate resources and information are available to

care units at the appropriate times, allowing them to provide patient care effectively and

economically. In order to maximize patient outcomes while reducing costs, this entails

coordinating operations and controlling the flow of both information and physical resources

(Costin, 2010).
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Fig. 3. Healthcare logistics networks.
Source: Umoren et al. (2021) & Kaya (2023).

Analyzing healthcare logistics reveals the complexity and intricacy of this field,

making it challenging to comprehensively describe its full scope and details. In order to

provide a framework for the field of logistics, Kukovič et al. (2014) underlined how crucial it

is to define the connections between the parts of logistics and its subcategories. Logistics is

becoming more and more important in a variety of fields, as evidenced by the way it has

changed over time4from its roots in military operations to its incorporation into businesses

and service sectors (Colin, 2015). Logistics plays a crucial role in overseeing the movement

of supplies, information, and services, especially in the healthcare industry, to guarantee the

effective provision of patient care (Kukovič et al., 2014).

Moreover, Jawab et al. (2018) emphasize hospital logistics (the details of hospital

logistics are shown in Fig. 4) as an essential part of the hospital budget that handles receiving,

inventory management, and procurement. There is a great deal of room for improvement in

service quality and cost savings through effective hospital logistics management.
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Fig. 4. Hospital logistics dimensions.
Source: Jawab et al. (2018).

The complex nature and multifunctionality of hospital logistics are highlighted via a

variety of viewpoints. Hospital logistics include the management of patient, product, and

material flows, guaranteeing quality and safety throughout the care process, according to the

French Association of Supply Chain and Logistics (ASLOG) (Jawab et al., 2018). To

maximize resource efficiency and organizational effectiveness, Ducasse (1995) offers a

comprehensive view of hospital logistics that includes engineering techniques that optimize

organizational efficiencies through the use of advanced distribution technologies and flow

modeling techniques; managerial techniques that prioritize redesigning hospital operations,

and medical products to comply with environmental standards; and traditional activities

which emphasizes material management, such as the production, distribution, and

procurement of supplies needed for patient care (Sampieri-Teissier, 2002).

To summarise, the various viewpoints and interpretations around healthcare logistics

highlight its importance as a vital element of the healthcare delivery system. Logistics is a

crucial component of healthcare settings, as it is used to optimize resource utilization,

improve service quality, and improve patient outcomes.
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1.3.2. Logistics-related Challenges in the Healthcare SCM

Healthcare logistics is a complex and critical field that faces significant challenges,

particularly due to the rising costs of healthcare (Volland et al., 2017). Volland et al. (2017)

highlighted that logistics expenses rank as the second highest cost category in hospitals,

following personnel costs. Despite this, logistics and material management have historically

received limited attention in hospital management research, primarily because healthcare

supply chains are viewed as intricate and not directly contribute to the primary objective of

effective patient treatment (Volland et al., 2017). However, in recent years, logistics has

emerged as a crucial tool for controlling healthcare costs, with potential savings of up to 50%

when logistics costs are efficiently managed (De Vries, 2011; Dacosta-Claro, 2002; Volland et

al., 2017). As the pressure to improve quality and coverage grows while managing limited

resources, healthcare organizations look for ways to cut costs without lowering the level of

care or making it harder for people to get it (Beaulieu et al., 2012). Therefore, in this

situation, better healthcare logistics methods look like a good way to cut costs and improve

service levels (Velasco et al., 2018). Logistics activities that are well handled in hospitals can

help the organization in many ways, including financially and medically (Velasco et al.,

2018).

A lot of people have different opinions on whether or not logistics ideas from other

fields can be used in healthcare. Most scholars think that they might be useful, but they also

point out big problems that need to be solved (Volland et al., 2017). Still, everyone agrees that

industrial methods like lean thinking, theory of constraints, Six Sigma, and scenario modeling

can be used in healthcare, though they need to be put into practice in steps (Young et al.,

2004). Using these methods to solve problems in healthcare situations is harder, because of

the complicated operations and organizational problems that come up in hospital logistics

(Volland et al., 2017).

1.4. Last-mile Delivery

1.4.1. Definition of Last-mile Delivery

It was the telecommunications industry that was the first to introduce the term "last-mile

delivery" to characterize the final leg of delivering services to end-users (Phuong, 2020;

Barton, 2016). Since then, the notion of "last-mile delivery" has seen substantial development.
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According to Akbari et al. (2017), last-mile delivery has become more important in the field

of logistics and supply chain management acting as delivering the goods to the end users,

which is the last step in the supply chain as a result of the development of global supply

chains. It can be seen in Fig. 5 that this delivery stage is important since it is the point at

which items arrive at their final destination.

Fig. 5. Last-mile delivery structure.
Source: Castillo and Jain (2019) & Motavallian (2019).

The precise definition and extent of last-mile delivery continue to be difficult, despite

the fact that it is of great significance (Olsson et al., 2019). This is due to the variety of

perspectives that can be found in the literature. The definitions of "last mile delivery" change

depending on the context of the supply chain (Akbari and Ha, 2020). These meanings come

from the point of view of business-to-business (B2B), business-to-consumer (B2C), or

consumer-to-consumer (C2C) (Akbari and Ha, 2020).

A variety of modes, including electric vehicles, bicycles, and drones, are included in

the concept of "last-mile delivery". This concept reflects the changing landscape of delivery

techniques (Ha et al., 2022). Because preventative measures have transformed consumer

behavior and accelerated the transition toward online buying, the appearance of the

COVID-19 pandemic has further shed light on the significance of last-mile delivery (Barnes,

2020).

In order to meet the expectations of customers, the switch to e-commerce platforms

has increased the demand for efficient last-mile delivery services. These services are

characterized by shorter delivery times and more flexible options (United Nations, 2020).

According to Bauer et al.'s research from 2020, "last mile delivery" has evolved from being
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merely a support capability to becoming a key component of business models. This is because

it is essential for increasing customer happiness and loyalty.

This is especially true in locations with a high population density (Mohammad et al.,

2023). Traditional delivery methods are having difficulty keeping up with the ever-increasing

demand for their services as online retail continues to see explosive growth. Innovative

logistics solutions such as drone delivery, smart parcel stations, and crowdsourcing have

emerged as viable alternatives to traditional truck-based home delivery. These solutions

reflect the dynamic nature of last-mile delivery, which is a response to evolving consumer

preferences and technological advancements (Mohammad et al., 2023). To address these

challenges, innovative logistics solutions have emerged as viable alternatives.

1.4.2. Challenges of Last-mile Delivery

The Fourth Industrial Revolution, or Industry 4.0, is the change from traditional steam

engines to cyber-physical systems. As a result, transportation has become an important part of

urban progress, allowing modeling and prediction to improve efficiency (Mohammad et al.,

2023). However, this change has brought up some big problems for logistics in cities,

including increased air pollution from delivery vehicles and the difficulty of finding parking

in congested areas (Mohammad et al., 2023).

The last mile of transportation is the most polluting, inefficient, and expensive part of

the supply chain around the world (Mangano and Zenezini, 2019; Boysen et al., 2020;

ShipHero, 2019). These problems are made worse by the rising demand for home deliveries

(Ha et al., 2022). Studies show that last-mile transport costs can be as high as 75% of all

supply chain costs. This puts a big financial strain on businesses that want to meet customer

needs while keeping costs low (Millar, 2016; Skiver and Godfrey, 2017). Fig. 6 shows the five

main problems that come up with last-mile delivery issues (Boysen, Fedtke, and

Schwerdfeger, 2021).

26



Fig. 6. The five main challenges in Last-Mile Delivery.
Source: Boysen et al. (2021).

To explain more in detail about the challenges of last-mile delivery first, we should

mention the increasing volume of shipments. The rising number of packages is because more

people are moving to cities and more people are shopping online, which increases the need

for last-mile delivery services. The number of people living in cities has grown a lot because

of urbanization. By 2050, it is expected that about 70% of the world's population will live in

cities (Bretzke, 2013). Furthermore, E-commerce has grown very quickly, with a 23.3% rise

around the world in 2018. This has led to a lot more online sales, which has made package

deliveries faster (Mohammad et al., 2023).

Moreover, there are worries about sustainability because the growing need for

last-mile delivery means more delivery vehicles, which makes environmental, health, and

infrastructure problems worse and also makes traffic more serious. The fast growth of

delivery services has caused traffic jams in cities, which has an effect on the health and

happiness of people who live there. Customers who are more aware of environmental issues

and government rules have forced transport services to change their ways to be more

eco-friendly and long-lasting (Mohammad et al., 2023).
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Another important aspect as mentioned before is cost since standard delivery trucks

are expensive. Traditional van deliveries can cost anywhere from 2€ to 6€, based on how

dense the area is (Punakivi et al., 2001). Also, prices go up when there is a lot of traffic and

not enough parking spots on busy city streets. Delivery drivers have to deal with not knowing

exactly where to park, what customers' names are, and when customers are available

(Mohammad et al., 2023).

Time pressure is another challenge of last-mile delivery. As e-commerce grows and

more packages are sent, there is more pressure to get them delivered quickly. This is why

many companies offer next-day or same-day delivery services. Last-mile delivery companies

have to meet tight deadlines while their workloads change all the time. For modern

transportation methods to work well with these changing needs, they need to be flexible and

scalable (Mohammad et al., 2023).

The last challenge is the aging workforce. There needs to be more people working as

parcel deliverers because the job is physically hard and the urban workforce is getting older

(Peterson, 2018). Since e-commerce has become so popular, transportation technology has

also improved. For example, self-driving cars and package lockers make delivery faster and

more convenient for customers. These new technologies cut down on or get rid of human

contact, which is especially important at the end of the package delivery process when

customer satisfaction depends on how well and professionally the package is delivered

(Mohammad et al., 2023).

These problems make it clear how important it is for people involved in logistics to fix

inefficiencies, improve operations, and come up with new ideas to keep up with changing

customer needs while keeping costs low and service high in the last part of the delivery

process. These challenges underscore the urgent need for novel solutions to optimize last-mile

logistics, balancing environmental concerns, cost-effectiveness, and customer satisfaction in

urban settings (Mohammad et al., 2023). In the following section, we discuss drone delivery

as an innovative approach to overcoming these difficulties.
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1.5. Drone Delivery

As Ha et al. (2022) pointed out, last-mile delivery is part of the logistics and supply chain that

is generally seen as the most expensive, inefficient, and harmful to the environment. This is

because traditional transport methods pollute the environment and cost a lot of money,

therefore, drones could be a solution to these issues (Mohammad et al., 2023; Garg et al.,

2023). The fact that drones are used as a mode of transportation a lot in the papers shows that

big shipping companies are starting to use them more (Mohammad et al., 2023). Drones,

which are short for unmanned aerial vehicles (UAV), are basically planes that can fly without

a pilot. They can be programmed to do different tasks on their own or can be managed by a

person (Mohammad et al., 2023). In recent years, drones have found a lot of new uses in areas

like healthcare, business, and humanitarian logistics. Reasons for using drones include faster

shipping of goods, steady high speeds, not needing any road facilities, and not having to deal

with traffic jams (Amirsahami et al., 2023).

This popularity shows that drone study is well developed in both academic literature

and real-world business applications (Mohammad et al., 2023). Along with drones, other new

technologies like robots, electric cars, and parcel lockers were also often brought up. This

shows that a wide range of solutions are being considered to solve the problems of last-mile

delivery, however, as you can see the rate of usage of different delivery methods to solve the

challenges of last-mile delivery in Fig. 7, drone gets a better rate than others (Mohammad et

al., 2023). Our discussion of drone technology in logistics will get more in-depth in the parts

that follow. We talk about its potential uses, challenges, and how it will change the future of

last-mile transport and supply chain operations.

Fig. 7. Different delivery method rates to solve the last-mile delivery challenge.
Source: Mohammad et al. (2023).
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1.5.1. Drone Application, General Concept

Drone technology appears to be a promising solution for last-mile delivery due to the

increasing demand for faster, more cost-effective, and environmentally friendly delivery

methods (Amirsahami et al., 2023). As Garg et al. (2023) mentioned, drones could change the

last mile of e-commerce goods and have big benefits for the environment, transportation

systems, and being able to handle disasters. New studies say that within the next five years,

drones will be used for more than 20% of deliveries (Garg et al., 2023). Their ability to

improve community resilience, especially in disaster-stricken areas where traditional

transportation may be restricted is shown by how well they work in transporting essential

supplies during crises (Garg et al., 2023). The COVID-19 pandemic has accelerated the

development of drone transportation systems. As a result, 18 countries have invested in this

technology to make it easier to get food and medicine to people faster (Takefman, 2021).

Drones, also called unmanned aerial vehicles (UAVs), are being used more and more

in many different fields. Drones have many benefits because they can fly autonomously,

which saves a lot of time and energy even though they are still in the early stages of

widespread application and implementation (Mohammad et al., 2023). They could make a

big difference in the growth of smart cities by making smart package deliveries possible,

which would make scheduling and sending packages to many places much easier

(Mohammad et al., 2023). Some of the benefits of drone package deliveries are less traffic,

less pollution, faster arrival times, and lower shipping costs (Emergen Research, 2022).

Customers are willing to pay more for deliveries made by self-driving vehicles. This

preference is driven by two main factors: the reduced risk of infection and the increased speed

of delivery compared to traditional delivery trucks (Kreier, 2022).

While drones offer numerous advantages, their use also presents certain challenges.

Mohammad et al. (2023) proposed Unmanned Aerial Vehicles (UAVs) could be used in

delivery systems, but there are a lot of technical and legal problems that need to be solved

first. Airspace management bodies are very worried about how widely drones are being used

and stress how important it is to have clear rules about how they can be used. Setting up

unmanned traffic control platforms in many areas is necessary to make scheduling and drone

operations easier, especially since safety and airspace congestion are becoming bigger issues

(Alfandari et al., 2022). Urban places, in particular, pose big problems because of strict rules,

limited space, and short travel distances (Chung et al., 2020). Also, drone flights are limited
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by their battery life, flying speed, and payload capacities. This shows how important it is to

come up with new ways to make operations last longer (Murray and Chu, 2015). An example

to get around these problems in rural places, researchers are looking into delivery systems that

use both drones and trucks. These kinds of systems use trucks as mobile charging sites to

keep drone batteries charged so they can fly longer (Kellermann et al., 2020). Implementing

these kinds of systems, like JD Logistics' work in Guangam, Sichuan, shows that drones and

trucks can work together to meet transport needs quickly, especially in remote areas (Sun et

al., 2021).

Although deploying drone technology presents some challenges, as previously

mentioned, this technology has sparked a lot of interest and funding from big companies in

many fields when it comes to last-mile delivery solutions (Mohammad et al., 2023). Jeff

Bezos, the visionary CEO of Amazon, predicted that unmanned aerial vehicles (UAVs) would

play a major role in delivering small packages as early as 2013 (60 Minutes, 2013). This

prediction came true with the launch of Amazon Prime Air in 2016, which aims to bring

packages weighing up to 5 pounds by air within 30 minutes of an order. In 2017, Google

launched its own drone delivery service called "WING". At the same time, DHL improved its

last-mile delivery method in urban China, cutting delivery times from 40 minutes to 8 minutes

and lowering costs by an amazing 80% (DHL, 2019). Moreover, a group of well-known drone

delivery services, such as Prime Time Air, FedEx, UPS Flight Forward, and others, are

leading the way in changing the last-mile operations process (Emergen Research, 2022).

Drone deliveries are a good alternative to standard express delivery methods because they are

much easier to use and cheaper. They offer faster services at a fraction of the cost (Tavares &

Brussels, 2019). This low cost not only caters to specific markets but also starts a new era of

environmentally friendly last-mile operations, making drones key players in changing the way

global supply chains work.

Drones can be used in many fields, from healthcare to transporting emergency

supplies. They could make it much easier to reach patients and faster to respond to

emergencies (Bahrainwala et al., 2020; Saeed et al., 2021b). In addition to drone business use,

partnerships like the one between Zipline (Lyons, 2020) and the Rwandan government show

that drones can also be used for medical items delivery. They can help get medical goods to

areas that need them quickly and easily (Toor, 2016). Drones have shown how useful they can

be by making time-sensitive medical transfers possible, like moving blood in 30 minutes

instead of a whole day with traditional methods (Kretchmer, 2020). They can also bring
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important medical supplies like PPE (Personal Protective Equipment) kits and nasal swabs,

which is especially helpful during public health emergencies (Saeed et al., 2021a). In the

following section, we will explore the use of drone delivery systems within the healthcare

sector.

1.5.2. Drone Application in Healthcare

Adding drones to healthcare systems opens up a lot of ways to improve services, especially in

areas that are hard to get to or are in rural areas. Drones are used by many businesses and

groups, such as Vanuatu's Ministry of Health and Civil Aviation (Kent, 2019), Zipline (Lyons,

2020), Matternet (Matternet, 2020), and Manna Aero (Chandler, 2020), to help transport and

distribute important medical supplies like vaccines, medicines, and blood units. These

projects show that drone technology has the ability to solve problems with logistics and make

it easier for people to get to important healthcare resources. Some examples of how drones

are used in healthcare settings are shown below.

Drone-based solutions are new ways to get medical care to people, especially during

emergencies like the COVID-19 outbreak. Proposed systems, such as the drone-based sample

collection method for COVID-19 self-testing kits, aim to reduce face-to-face contact while

still giving people in need prompt medical help at home (Munawar et al., 2022). Drones with

medical supplies can give important help to patients using AI and machine learning

algorithms. This makes healthcare systems and staff less reliant on traditional methods.

According to Frigstad et al. (2023), drones have become useful tools for emergency

medical services (EMS) because they can quickly transport life-saving devices like

Automated External Defibrillators (AEDs) to people who are having an out-of-hospital

cardiac arrest (OHCA). Through the joint operation of adaptive dispatching drones and

volunteer people's help, drones could greatly cut down on reaction times and improve the

health of patients in urgent situations.

In addition, drones are a key part of changing the logistics of blood transportation and

making sure that people in need get blood products on time. Drones are a quick, reliable, and

inexpensive way to get important medical goods like blood transfusions to people who need

them because they can easily get through both crowded and unpopulated areas. Recently done
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studies have shown that it is possible, efficient, and safe to use drones to move blood

(Amirsahami et al., 2023). This opens the door for using drones in medical logistics.

Gao et al. (2023) also say that UAVs are changing the way emergency services

respond by making it possible to send them quickly and adding to what they can already do.

Drones might contribute to reducing the effects of crises like opioid overdoses by letting

bystanders help and allowing early intervention in medical situations. This is important

because patients need to get life-saving drugs like naloxone right away to survive. Drones

help improve emergency reaction times and patient outcomes in critical situations by adding

new UAVs to existing emergency medical service (EMS) systems.
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1.6. Research Question

In this chapter, we presented the aspect that drone delivery is on the rise in solving

last-mile delivery problems in healthcare SCM since drones are quicker, more affordable, and

environmentally friendly modes of transportation (Mohammad et al., 2023). Nevertheless, to

optimally realize the benefits of these technologies in facilitating healthcare delivery, more

research needs to be conducted (Gao et al., 2023). As stated by Asadi et al. (2022), given the

growing utilization of drone delivery, it is necessary to effectively manage the internal

operations of drone hubs to achieve optimal performance. To ensure the efficient operation of

a fleet of drones, it's important to consider several battery-related constraints. Some of these

are the limited flight range, the long charging process, the high cost, and the short battery life

(Asadi et al., 2022).

The objective of our work is to enhance the efficiency of last-mile medical drone

delivery with the consideration of a critical constraint such as the limitation of drone battery

life and charging time. In order to approach this task in the most effective way, we will

concentrate on the following research question:

How can drone hub charging and distribution operations be improved to enhance the

efficiency of last-mile delivery of medical supplies?

To address the core research question, this research aims to present a strategic

methodology for the efficient charging and allocation of drones to enhance resource

utilization and address the unpredictable stochastic demands that come from hospitals. The

main objective is to determine which charging and allocation strategies result in the highest

demand satisfaction rate with a minimum number of drones while at the same time using

minimum drone charging cycles.

Therefore, we will examine a drone hub tasked with dispatching drones to meet

stochastic demands for medical supplies from hospitals at different distances from the drone

hub. The drone hub operates by delivering drones to destinations within their operational

range, which is determined by the battery's level of charge. This situation is challenging

because the allocation of drones to do missions and recharging them depends on their level of

charge and the battery charge can vary from 0 to 100%. Therefore, we need to consider

multiple combinations of charge levels to fulfill the unpredictable demands from locations at

varying distances from the hub as well as find a good strategy for recharging the drones.
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In order to comprehensively investigate the research question our methodology entails

the Discrete Event Simulation and analysis of various operational scenarios and experiments

for the drone hub. The objective is to determine the most effective scenario for successfully

managing the internal activities of the drone hub to increase the demand satisfaction rate of

the hospitals located in various geographical areas with the minimum number of drones and

decrease the number of charging cycles of drones to reduce their battery degradation rate.
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1.7. Conclusion

The concept of supply chain management (SCM) has developed a lot since it became popular

in the 1990s and recently, it has gained more attention in the healthcare system since has

become a key tool for cutting costs and improving quality in that field (Min et al., 2019;

Elmuti et al., 2013). Healthcare supply chain management has many challenges, especially

when it comes to logistics, where rising costs and complexity are big problems (Volland et al.,

2017).

One area in SCM and logistics that needs more attention is last-mile delivery, which

is marked by inefficiencies, cost, and environmental issues (Ha et al., 2022). In reaction to

these challenges, drones have emerged as a promising solution due to their potential to offer

faster, cheaper, and more environmentally friendly delivery options (Mohammad et al., 2023).

While drones have shown their ability to improve healthcare delivery by facilitating the agile

transportation of vital medical supplies, such as vaccines and blood products (Garg et al.,

2023; Frigstad et al., 2023), further research is necessary to fully use their benefits and

transform healthcare delivery (Gao et al., 2023). One of these areas that needs to be

considered is drone battery-related constraints (Asadi et al., 2022). Therefore, our research

goal is to underscore the importance of improving drone hub charging and distribution

operations to enhance the efficiency of last-mile medical drone deliveries. By employing

Discrete Event Simulation methodology to analyze various operational scenarios and charging

strategies, we aim to develop charging and allocation strategies that maximize demand

satisfaction rate with the minimum number of drones and decrease the drone's charging

cycles, thus addressing constraints that come from drone9s battery such as limitation of drone

battery life and charging time.

In the next chapter, we will delve deeper into our selected methodology and explain

more about Simulation methodology and Discrete Event Simulation. Besides, we provide a

comprehensive overview of the data we will use for our scenario analysis and the Conceptual

model of our study.
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CHAPTER 2 - Methodology

In this chapter, we describe the method used in this research. We chose simulation as our

approach since it is suited for the modeling of dynamic, complex systems like the operation of

drone hubs (Robinson, 2014). Through simulation, we are able to examine the stochastic

nature of demands together with the interactions between the drone allocation, battery level,

and charging procedures. Furthermore, Discrete Event Simulation enables us to develop and

analyze various scenarios and experiments to assess their effectiveness without disrupting

real-world operations (Robinson, 2014). It offers a strong basis for decision-making and the

improvement of medical supply last-mile delivery.

Further in this chapter, we begin with introducing Simulation approaches,

differentiating the various types of Simulation, with a focus on Discrete Event Simulation, on

which the given methodology is based. Next, we will describe the conceptual model that

serves as the foundation for this simulation study and upon which the subsequent research

will be based. Subsequently, we will introduce different types of simulation software;

afterward, we will discuss the chosen software in detail. Lastly, we presented the data that

will be utilized in the experimental study and scenario analysis.

2.1. Simulation

In this section, we explore the fundamental concepts of simulation as described in Robinson's

(2014) book. Our objective is to provide a clear description of simulation and explain its

importance within the framework of our study.

2.1.1. What is Simulation?

Simulation models are extensively employed in various fields, demonstrating the

commonplace notion of simulation in our everyday existence. For example, Meteorologists

utilize simulations to forecast weather patterns, whereas video game consoles provide

simulations that enable players to perform various roles such as racing drivers or city

managers (Robinson, 2014). Based on the definition provided by Wikipedia contributors

(2024), <A simulation is an imitative representation of a process or system that could exist in

the real world=. Robinson (2014) also provides a more general and concise explanation,
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referring to it as <An imitation of a system=. In order to gain a deeper understanding of the

notion of simulation, Shannon (1975) defines simulation as <Simulation is the process of

designing a model of a system and conducting experiments with this model for the purpose

either of understanding the behavior of the system or of evaluating various strategies (within

the limits imposed by a criterion or set of criteria) for the operation of the system=.

Computer-aided design (CAD) systems and business process maps are instances of

technologies that simulate real-world functionalities, making them forms of simulation in a

wide sense (Robinson, 2014).

As described by Pidd (2003), the objective of simulation models is to assist in gaining

a better understanding of actual systems, making improvements, and gaining control over

them. The use of simulations also has a key application towards our ability to understand

systems such that we can make the right decisions in real systems. Managers of simulation

models change the inputs and other scenes to review the outcomes in an effort to enhance

their understanding and possibly make modifications to real systems. Thus, simulations serve

as a tool that helps in the decision-making process without substituting the decision-maker

(Robinson, 2014).

Furthermore, there is a clear differentiation between static and dynamic simulations.

Static simulations represent a system at a certain instant, while dynamic models illustrate the

progression of a system over time, such as the motion of weather or trains (Law and Kelton,

2000). The main focus of our study is to examine dynamic simulations, specifically those that

are performed using computers.

2.1.2. Why Simulate?

Operating systems are naturally complex, interconnected, and variable making it challenging

to predict performance. Variability includes both predictable changes, such as the number of

drones at distribution centers, and unexpected ones, such as the number of demands from

hospitals. The interconnection implies that changes in one place affect others, leading to

results. Moreover, the systems display a mix of complexity from component combinations

and dynamic complexity from prolonged interactions as described by Sterman (2000).

Simulation models effectively tackle these complexities by projecting performance,

examining designs, and assessing policy effects. They offer benefits over real-world trials that

are expensive, disruptive, and time-consuming. Modifications can be made to simulations

without affecting ongoing activities and can be viable even in the absence of actual systems.

They create controlled environments and necessitate fewer assumptions making them
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trustworthy and understandable for the general public through representations (Robinson,

2014).

Despite their advantages, simulations come with drawbacks. They can be costly,

time-consuming, and data-intensive, requiring extensive organization and analysis.

Developing models necessitates a variety of abilities, such as statistical analysis and

validation processes. Moreover, simulations may give a sense of accuracy; hence warranting

evaluation of their validity and underlying assumptions (Robinson, 2014).

An examination of simulation studies' benefits and drawbacks shows that they can be

quite helpful in certain industries, including ours. For instance, compared to direct system

experimentation, simulation studies offer the benefit of requiring only a minimal cost input. If

the simulations are effective, this approach not only lowers the possibility of large financial

losses imposed by bad decisions but also has the potential to increase profits.

2.2. Different Types of Simulations

In this section, we discuss in greater detail several simulation approaches that are illustrated in

Fig. 8 and their real-world uses. Next, we go into more detail on the particular kind of

simulation that was selected for our study, emphasizing its advantages over alternative

approaches in the context of our particular case study.

Fig. 8. Different Types of Simulation.
Source: Based on own investigation.
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The Monte Carlo method: This method evaluates uncertainties and potential threats through

the use of probability distributions, and is utilized in risk analysis for large-scale projects. It

improves risk awareness and is used in the manufacturing, finance, and oil and gas sectors

(LLC, 2023).

Agent-Based Simulation: This technique utilizes behavioral rules to imitate how individual

agents, such as workers or machinery, affect a system. It is helpful in identifying opportunities

and threats while exploring biological, social, and physical systems (LLC, 2023).

System Dynamics Simulation: Focuses on the interactions that occur inside a system over

time, predicting behaviors and examining trade-offs through the use of feedback loops

(Karunathilake et al., 2020). According to Karunathilake et al. (2020), it offers insights at the

aggregate level for long-term strategic planning.

Continuous Simulation: Models involve factors that are constantly changing over time, such

as water levels or the altitude of an airplane. This type of simulation typically uses differential

equations to model how state variables change over time (Wikipedia authors, 2023).

Discrete Event Simulation (DES): This method of system simulation monitors changes in

state during specific events while taking into account resources such as expenses and

equipment. It employs a three-phase method to enhance event processing and is very

adaptable, particularly in the manufacturing and healthcare industries (Allen et al., 2015).

2.2.1. Discrete Event Simulation as Our Selected Methodology

In this research, our main goal is to determine the best charging and allocation strategies for

drones that yield the highest demand satisfaction rate with the fewest number of drones while

also utilizing the least drone charging cycles. We have determined that Discrete Event

Simulation (DES) is the best choice for modeling stochastic processes within our case study

in the healthcare system after carefully examining various simulation models and their

real-world applications.

This conclusion is derived based on multiple factors. The Continuous Simulation

approach lacks applicability and practical significance for our particular case study because it
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works well for a system that is always changing. We are more concerned with the moment at

which an event, like charging or allocation, occurs than with our system's continuous capture.

On the other hand, the Monte Carlo simulation method is used more for risk analysis which is

not our main object and it is too simplistic for our needs. Agent-based Simulation assesses the

impact of a new agent or element on the system that is not our goal and fails to sufficiently

account for the concept of process. System Dynamics operates at a deterministic and

macroscopic level that may not include all the details of the model. Discrete Event Simulation

is widely recognized as the most versatile and commonly used approach, providing extensive

applicability and the adaptability to incorporate with other modeling techniques where

appropriate (Robinson, 2014). DES is the most suitable framework for our needs, as it offers a

comprehensive platform for capturing the complex dynamics of stochastic systems.

Discrete Event Simulation (DES), according to Stamatti (2024), is based on simulating

dynamic systems by tracking discrete events as they take place at particular periods. This

approach works especially well for modeling and examining systems whose behavior is

subject to quick shifts, concentrating on key events that impact the system's behavior.

To explain DES's fundamental ideas, entities, events, a simulation clock, and queues

are the core components of DES (Stamatti, 2024):

Entities are the objects or components of the system that are being examined (Stamatti, 2024).

The entities that make our model consist of:

● Drones: These are the main objects that interact in the simulation, carrying out tasks

like charging and delivery.

● Hospitals: Although not specifically specified as objects, hospitals are characterized

by their data (name, distance, and demand) and are represented by their stochastic

demands for drone deliveries.

Events are actions brought about by entities that change the system's conditions or state

(Stamatti, 2024). In our model, events are actions that are mainly started by the entities and

modify the drones' states or situations. Notable events consist of:
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● Starting a delivery: Triggered when a drone starts flying to a destination to do a

mission.

● Completing a delivery: Triggered when a drone completes the mission and comes

back to the hub.

● Start charging: Begins when the drone's battery needs to be recharged.

● Complete charging: This ends when a drone9s battery is fully charged.

● Demand generation: Hospitals request medical items over time based on the

non-homogeneous Poisson Process.

To help with the simulation's time flow, the simulation clock keeps track of the moments

when events happen (Stamatti, 2024). The simulation clock in our model is controlled by the

SimPy environment, which monitors the simulation time evolution. It is necessary for

planning and carrying out every event, including demand generation, drone arrivals and

departures, and charging. In part 2.4 of this chapter, we go into SimPy environments in further

detail.

Queues serve as holding places where entities wait to be processed or served and are essential

for handling and arranging entities (Stamatti, 2024). Although a queue structure is not

mentioned specifically in our model, it functions in our model since drones in scenario 2 are

sorted and dispatched according to their charge level and status. We discuss further scenario 2

in section 2.3 of this chapter.

At a higher level of abstraction, sources, servers (which might or might not include

queues), and sinks are common components of DES (Stamatti, 2024):

● Sources create entities and add them to the simulation; they have settings that control

when and how many arrive (Stamatti, 2024).

The sources in our simulation are places at which new demands are generated.

Demand originates from the hospitals and the frequency of demands is determined by

the non-homogeneous Poisson Process representing their average daily demands.
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● Servers are entities that are temporarily retained by the system, usually for a

predefined amount of time for processing (Stamatti, 2024).

Drones are the servers in our study. By flying to hospitals and delivering whatever is

required, they meet the requests. Their operational parameters4such as charging time,

range, and speed4determine how they execute tasks and organize their workflow.

● Sinks are endpoints where entities can be removed from the system. They are also

important places to collect information about the length of time an entity has been in

the system as well as general performance metrics (Stamatti, 2024).

Sinks are not shown explicitly in our study. In our case, this can theoretically entail the

efficient delivery of goods to hospitals or it can be the unsatisfied demands that are

removed from the system or even a reporting system that records deliveries that are

finished or other metrics, "removing" these events from the system so that they can be

analyzed.

2.3. Simulation Study Setup: Development of the Conceptual

Model

The outline of a simulation study is illustrated in Fig. 9 below, which was largely inspired by

the work of Robinson (2014) and Landry et al. (1983). The boxes are the key stages in a

simulation study and illustrate the important deliverables:

- Conceptual Model: Creating a comprehensive overview of the model in development,

including its theoretical foundations and operational characteristics, is the purpose of

this stage.

- Computer Model: This step, which comes after conception, focuses on actually putting

the simulation model into practice on a computing platform.

- Solutions and/or Understanding: This critical stage entails analyzing the results

derived from rigorous experimentation within the model.
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- Improvement in the Real World: The last phase converts the knowledge and solutions

obtained from the simulation into workable improvements in real-world applications.

The graphic, which links these phases, emphasizes the ease of transitioning between

several stages of simulation research by using arrows to represent the dynamic processes

enabling stage transitions.

According to Robinson (2014), the process of conceptual modeling is crucial to

simulation research and is frequently considered its most important component. A

well-designed model is essential to the simulation's effectiveness, highlighting the importance

of simplicity while fulfilling the goals of the research. Conceptual modeling is defined by

Robinson (2014) as <A non-software specific description of a computer simulation model

(that will be, is or has been developed), describing the objectives, inputs, outputs, content,

assumptions, and simplifications of the model=. A simulation study is typically prompted by

the identification of a real-world problem. This problem could be related to a proposed system

or it could be an issue with an existing one. For instance, a supermarket may face issues with

long customer queues, or there might be design concerns for a new store. It is the modeler's

responsibility to fully understand the issue and create a model that is appropriate for solving

it. Accordingly, conceptual modeling entails the following processes (Robinson, 2014):

● Gaining an extensive understanding of the current issue.

● Setting clear modeling objectives.

● Creating the conceptual model and outlining its assumptions, simplifications, content,

and inputs and outputs.

● Gathering and analyzing data essential for developing the model.
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Fig. 9. An outline of a Simulation study: Key Stages and Processes.
Source: Robinson (2014).

2.3.1. Conceptual Model of Our Study

The Conceptual Model of our drone delivery simulation study is as follows:

Problem Description and Objectives

- Our Simulation study will analyze a drone hub's operation of dispatching drones to

meet stochastic demand for medical supplies, including blood units, from hospitals

located at varying distances from the drone hub. Every hospital generates stochastic

demands independently within 24 hours. Following receiving a demand, the drone hub

initiates by verifying the availability of drones with sufficient charge to fulfill the

demand of the specified hospital. We examine two distinct scenarios concerning the

allocation of drones to meet demand. The primary difference between these scenarios

lies in the method of drone assignment. In the first scenario, upon receiving a demand,

the drone hub checks for idle drones and dispatches the first available drone that has
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enough charge to fulfill the demand. The second scenario introduces a new rule to this

model. Here, when a demand is received, the drone hub checks for idle drones with

sufficient charge sorts them according to their charge levels, and then dispatches the

drone with the minimum charge necessary to meet the demand. In both scenarios, if no

drone with adequate battery power is available, the demand remains unsatisfied.

Furthermore, the drone hub has to recharge drones when it is necessary. To achieve

this, the hub monitors idle drones every minute. If it identifies a drone with a charge

level below a designated threshold and the drone has been idle for a specified

duration, the hub recharges the drone to full capacity.

Our study aims to enhance the last-mile delivery of medical items using drones by

improving the charging and distribution operations of the drone hub when considering

the drone9s battery limitations. Therefore, our objective is to determine the most

effective recharging algorithm and distribution operation that may optimize the

utilization of the drone's energy. Simultaneously, we hope to enhance the hospital

demand satisfaction rate and reduce the rate of battery degradation. In other words, we

aim to identify potential bottlenecks and areas for drone charging and distribution

operations and improve them.

To achieve our objectives, we must implement recharging protocols that prioritize two

key performance indicators (KPIs): enhancing the average demand satisfaction rate

and promoting drone battery longevity by reducing the average number of charging

cycles per drone per day. To this end, we will conduct experimental analyses to

identify the optimal recharging strategies, which include the recharging threshold and

the duration of drone idle time before recharging. These experiments will help us

determine the most effective recharging rules for improving our KPIs.

Inputs

- Hospital Data: Includes hospital names, distances from the drone hub, and average

daily demand for medical supplies. This data is loaded from an Excel file.

- Drone Specifications: Drone9s operation range, speed, and charging time. These

parameters affect the drone9s ability to deliver and its operational efficiency. In our

study, we consider the Zipline drone specifications for our analysis.
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- Drone Fleet Size: Initially, we do our research and analysis using a fixed number of

drones. Once the optimal configuration has been determined, we examine the number

of drones needed to achieve the highest KPIs rates.

- Simulation Duration: Determination of adequate simulation length and replication

count to ensure reliable results.

Outputs

- Demand Satisfaction Rate: Percentage of demands that are successfully met within the

time constraints.

- Average Number of Charging Cycles per Drone per Day: Indicates the average

number of charging operations required for each drone on a daily basis.

Content (Scope and Level of Detail)

- The simulation focuses on the operational aspect of drone delivery from a single drone

hub to multiple hospitals.

- Includes basic drone operations like checking the drone charge level for each demand,

flying to destinations to deliver supplies, and charging operations of drones.

Assumptions

- The simulation starts with drones at 100% battery capacity.

- Hospitals9 demands follow a non-homogeneous Poisson Distribution related to the

average demands per day for each hospital ( Exponential Distribution for the time

between demand arrival is used).

- No failures or maintenance issues affect the drones during the simulation period.

Simplifications

- Simplifications include assuming perfect flight conditions and ignoring potential

real-world issues like drone maintenance, weather conditions, and emergency

prioritization.
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- The traffic conditions or other real-time challenges affecting drone speed or route are

not considered.

- Charging drones until they become fully charged. Interruption during charging is not

considered. The rationale behind this simplification is that if interruption during the

charging process is allowed, we should track the drone battery's charge level every

moment during the charging process. To do this we should have precise information

about the SOC (State of Charge) of the Zipline drone. But we do not have precise

information about the SOC of Zipline drone charging, therefore, we are unable to

follow the drone's momentary charge during the charging.

2.3.2. Process Flow Diagram and Logic Flow Diagram

Representing the conceptual model's content correctly is essential when it comes to project

specification. The process flow diagram and the logic flow diagram are the two main

techniques utilized for this (Robinson, 2014).

A process flow diagram, sometimes referred to as a process map, shows the order in

which the system components are set up to physically depict the conceptual model. This

approach describes the model's details using straightforward visual cues like boxes for

processes and circles for queues. Process flow diagrams are useful tools for showing how

processes flow within a system because of their simple, intuitive design (Robinson, 2014).

In logic flow diagrams, standard flow diagram symbols are used to depict the model's

logic as opposed to the process flow. These graphics work especially well at conveying the

complex logic of a system. The notation is frequently recognizable and simple for users to

understand. However, unlike process flow diagrams, logic flow diagrams may get rather big

and complicated, especially for large-scale models. This makes them harder to manage and

understand (Robinson, 2014).

To simply show our conceptual model, we illustrate the general structure of our

approach in Fig. 10 and 11 here with a simple process flow diagram and logic flow diagram.
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Fig. 10. Process flow diagram of our study.
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Fig. 11. Logic flow diagram of our study.
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2.4. Simulation Software

Discrete Event Simulation programs include SIMUL8, AnyLogic, Arena, and Simio, among

many others. These platforms are primarily designed for commercial use and are typically not

open source (Wikipedia writers, 2024c). For our research on discrete event simulation, we

decide to use the SimPy package in combination with the Python programming language. The

reasons behind our selection of SimPy as our simulation tool and the ways in which SimPy

and Python can be combined to imitate discrete events are covered in the following parts.

2.4.1. Python and SimPy Library for Discrete Event Simulation

Python is a versatile programming language suitable for a wide range of applications, though

it may not always be the first choice for developing Discrete Event Simulation (DES) models.

The software platforms available today provide effective drag-and-drop interfaces for

developing DES that are easy to use (Al-Muzaki, 2024b). However, building a model in

Python offers substantial benefits in post-simulation stages like result gathering, visualization,

validation, and optimization, even if it is more complicated and requires a less intuitive

approach than specialist tools. Python's capabilities also make it easier to integrate simulation

with machine learning, which could improve interoperability between both technologies

(Al-Muzaki, 2024b). Furthermore, Python is more affordable than other commercial software

because it is an open-source and free tool (Al-Muzaki, 2024b).

We leverage SimPy, a robust library for DES recognized for its reliability and

open-source availability (Al-Muzaki, 2024b). Unlike continuous simulation, in which

variables change continuously over time, SimPy focuses on the simulation of discrete-event

systems, in which changes happen at discrete moments.

As identified by Kumar (2024), SimPy is quite distinct due to the following

characteristics:

- Process: In SimPy, the entities to be simulated whether people waiting in line, cars on

a road, or the operation of a computer system are modeled as processes. These are

created using the generator functions in Python and this makes it easy to model

complex and sequential tasks.
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- Events: The basic element in the use of the SimPy framework is an event that can be

fixed at certain conditions or time intervals. This scheduling is necessary for

determining the flow of simulation and for triggering state modifications in the

system.

- Resources: SimPy addresses cases where there are entities that need to share scarce

resources. The resource class is introduced which helps to simulate the allocation and

contention of the resource which is critical in cases such as data centers and

manufacturing plants.

- Statistics and Data Collection: During the simulation, various resources for data

collection and monitoring are offered to the library. This feature is required for

monitoring the time that entities spend in certain states as well as for obtaining other

data that are essential for understanding and analyzing the performance of the system.

- Integration: Another advantage of using SimPy is that it supports integration with

other Python tools, including NumPy and Pandas. In other words, it helps to make

analytics-driven decisions and evaluate the results of simulations.

With these features, SimPy extends Python9s more powerful data handling and

analyzing function, and provides a solid basis for the modeling of discrete-event systems.

2.5. Data Collection

To model our Discrete Event Simulation and subsequent analysis of various scenarios and

experiments, it is crucial to collect specific data about drone operations. This contains

information on the drone's speed, range of operation, and charging time. Furthermore, data

about drone hub location, hospitals' distance to the drone hub, and the frequency of requests

from individual hospitals are crucial. Our study utilizes data referenced from research

conducted by Asadi et al. (2022), that provides a real-world case study utilizing Zipline

drones, which are used in Rwanda, Africa to carry medical supplies. The initial section of this

part will introduce the Zipline Company, followed by detailed data that will support our case

study.
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2.5.1. Zipline Company

Zipline, a California-based company founded in 2014, is well-known throughout the world

for its creative approach to manufacturing and design, with the primary goal of improving

healthcare delivery in remote areas (Callaghan, 2023). The business uses drone technology to

deliver necessary medical supplies, such as blood units, plasma, infusions, and more recently,

COVID-19 test kits, and vaccines. Their advanced 'Platform 1' drone which is illustrated in

Fig. 12 is mostly used for this, as it drastically cuts down on delivery times when compared to

conventional ground transportation techniques, which is vital in saving lives in remote areas

(Callaghan, 2023).

Since its establishment, Zipline has gradually expanded its services around the world.

In 2016, it started by distributing blood and medical supplies in Rwanda, Africa. The business

currently handles large-scale shipments of a variety of things beyond healthcare, including

food, retail items, veterinary and agricultural supplies, and retail goods (Tactis, 2021).

The ambitious objective of Zipline is to create a logistics system that is inclusive to

all, leaving a substantial impact in eight nations on four continents. With over 60 million

miles of autonomous commercial flights, Zipline is revolutionizing the distribution of

healthcare and consumer goods, along with food supplies (Zipline Drone Delivery &

Logistics, nd).

The company utilizes two distinct drone platforms: one for long-range deliveries and

another for precise home delivery (Zipline Drone Delivery & Logistics, nd). They deliver

directly to homes, hospitals, and companies throughout a wide range of nations, including the

USA, Rwanda, Ghana, Nigeria, Cote d'Ivoire, Kenya, and Japan (Tactis, 2021). In addition to

accelerating vital deliveries, these initiatives promote economic expansion, environmental

sustainability, and the development of innovative logistical solutions (Zipline Drone Delivery

& Logistics, nd).

The capabilities of Zipline's Platform 1, designed for long-distance commercial

deliveries, will be specifically examined in our research. The drone has an amazing

operational range of more than 120 miles per round trip (193 km), and it can attain speeds of

up to 60 miles per hour (96.5 km/h) (Zipline Drone Delivery & Logistics, nd). Additionally,

the 90-minute intervals give drones enough time to charge (McNabb, 2020).
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Fig. 12. Zipline Drone Platform 1.
Source: (Callaghan, 2023).

2.5.2. Data

In our research, a real-world case study of Zipline's drone-based medical supply delivery

system across Rwanda, Africa, is examined. The primary operational hub for these drones is

situated in Muhanga district, west of Kigali, the capital of Rwanda. The study examines how

these drones satisfy the variable demand for blood supply required by Rwandan hospitals.

The names and locations of hospitals, their distances from the drone hub, the population each

hospital serves, and the daily demands for blood units and flights are all included in the input

data, as shown in Table 1. Notably, the data utilized in our study originates from the

publication of Asadi et al. (2022). Asadi et al. (2022) collected the data for their study through

a combination of real-world case study related to the operations of Zipline drones, which are

delivering medical items in Rwanda, Africa and theoretical modeling that I explain in detail.

The Haversine formula, first proposed by Sinnott (1984) and acknowledged by Asadi

et al. (2022), is a typical method for determining the distance between two places on the

Earth's surface, and it is used in the geographical calculation of the distances between the

hospitals and the station. Asadi et al. (2022) also incorporates regulatory considerations, such
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as the Rwandan Civil Aviation Authority's (2021) mandate that prohibits drone flights within

a 10 km radius of airports. To ensure that drones do not violate airspace limits, modifications

are made to the travel routes to hospitals such as Kiziguro and Rwamagana in order to comply

with these laws. The layout of these geographical elements is displayed in Fig. 13.

Additionally, Asadi et al. (2022) developed an approach to calculate the daily blood

unit required. The first step in this method is to estimate the hospital user population using

district population information. The population of a district with many hospitals is distributed

equally among them. The World Health Organization (WHO) recommends that 2% of

hospital users require blood each year, which is the assumption used to compute the yearly

need for blood units (Dhingra, 2010). In order to account for the possibility of unplanned

demand rises, this estimate is considered cautious. To find each hospital's daily blood unit

requirement, divide the annual demand by 365. Asadi et al. (2022), also considered the

drones' capacity limitations that each can carry only two units of blood (Baker, 2017), then

they used average daily demand for blood units to determine the necessary number of daily

flights to each hospital.

In line with findings from Swartzman (1970) and Armony et al. (2015), the study

models the number of demand arrivals from hospitals using a non-homogeneous Poisson

Process. We use the pattern of demand arrivals from hospitals, consistent with Green et al.

(2007), Tiwari et al. (2014), and Jones et al. (2007), to derive the mean demand for blood

units of each hour over a day. The results as you can see in Fig. 14 show a trend of increasing

arrivals from early morning (6.00 am) until noon at peak, followed by a reduction till early

the next morning. Moreover, a significant operational limitation highlighted by the research is

that any excess demand for blood units cannot be satisfied when there are not any drones

available to meet that demand. The system does not support backlog or deferral of unmet

demands, emphasizing the urgency and critical nature of medical deliveries by drones.

Moreover, the study excludes three of the 33 hospitals surveyed4Kirehe, Nyagatare,

and Mibilizi4because their locations fall outside of the drones' 193 km operating range,

making them unreachable for medical assistance. These hospitals are removed from the

analysis due to this constraint.
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Table. 1. The data related to blood unit delivery using Zipline drones in Rwanda, Africa.
Source: Asadi et al. (2022).
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Fig. 13. Locations of airports in Rwanda, hospitals (demand nodes), and the swap station located in
the Zipline drone hub.

Source: Asadi et al. (2022).

Fig. 14. The pattern of the average number of demands received each hour of the day.
Source: Based on own investigation.
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2.6. Conclusion

In this chapter, we have thoroughly described the methodology and data that will be

employed in our simulation modeling efforts. We also detailed the specific problem and

objectives of our study and developed a conceptual model which is a crucial element in

simulation studies as noted by Robinson (2014).

Moving forward, in the subsequent chapter, we will delve deeper into our

investigation through the execution of computer-based simulation modeling. We will

introduce our experimental design, perform experiments, and present the result of scenario

analysis and experiments. This will enable us to evaluate the results and identify the most

effective scenario for our research.
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CHAPTER 3 - Experimental Analysis

In the previous chapters, we have detailed our problem statement and research question, along

with a thorough explanation of our methodology. Additionally, we have introduced our

conceptual model to be prepared for model coding.

According to Robinson (2014) and Landry et al. (1983), the next step involves

experimentation and understanding the solution. Therefore, this chapter focuses on advancing

our investigation through computer-based simulation modeling results. Further in this chapter,

we will outline our experimental design, conduct various experiments, and present the results

of our studies across different scenarios. This approach will allow us to evaluate the outcomes

and determine the most effective scenario and optimal setup to find the best results for our

research.

3.1. Experimental Design

The study aims to enhance drone performance in delivering medical supplies through the last

mile by improving the charging and distribution operation of the drone hub while considering

limitations in batteries. Our goals are to determine an effective recharging algorithm and

distribution plan for drones9 energy usage, as well as increase hospital demand satisfaction

rates and mitigate battery degradation. Battery deterioration is defined as a process whereby

the efficiency of a battery diminishes through time since it cannot retain as much power

capacity as before. This degradation means that over time, a fully charged battery will not

provide the same range as it initially did (Battery Degradation: Maximizing Battery Life &

Performance, nd). Some of the key factors that affect battery degradation are the temperature,

usage patterns, voltage, and depth of charge/discharge, along with the number of charging

cycles (Topalov, 2021; Battery University, 2023; Wikipedia contributors, 2022b; Luo et al.,

2023). In order to lower the rate of battery degradation, we aim to minimize the number of

charging cycles for drones in our study.

To provide a comprehensive explanation of our study, our simulation will analyze the

operations of a drone hub dispatching drones to fulfill stochastic demands for medical

supplies, such as blood units, from hospitals at varying distances. Each hospital generates
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stochastic demands within a 24-hour period, and the drone hub checks the availability of

drones with sufficient charge to meet these demands.

We will examine two drone allocation scenarios. The first scenario involves

dispatching a random available drone with enough charge to meet the demand. The second

scenario improves on this by sorting idle drones based on their charge levels and dispatching

the drone with the minimum necessary charge. If no drone with adequate battery power is

available, the demand remains unsatisfied in both scenarios. Additionally, the drone hub will

monitor and recharge drones as necessary. The hub will check idle drones every minute and

recharge those with a charge level below a designated threshold if they have been idle for a

specified duration.

To achieve our objectives, we will implement recharging protocols prioritizing two

key performance indicators (KPIs): increasing the average demand satisfaction rate and

extending drone battery longevity by reducing the average number of daily charging cycles

per drone. We will conduct experimental analyses to identify optimal recharging strategies,

including the recharging threshold and the necessary duration of drone idle time for

recharging. These experiments will help us determine the most effective recharging rules for

improving our KPIs. As mentioned, the two variables in our study are the 8charging threshold9

and 8drone idle time9. The charging threshold indicates the charge level at which a drone

should be recharged, while drone idle time refers to the duration a drone remains idle after

completing a mission before being recharged. To identify the optimal values for these

variables, we will run experiments with different combinations of these values and assess

which combination results in better KPIs.

Values for the 8charging threshold9 as you can see in Table 2, are chosen based on the

number of locations a drone can cover with that charge level. For drone idle time, we will

experiment with a minimum of 0 minutes and increments of 15 minutes up to a maximum of

60 minutes. If the optimal idle time is found to be 60 minutes, further experiments will be

conducted with longer idle times. The 0 minutes means recharging a drone immediately upon

return if its charge level is below the threshold. The 60 minutes means that when a drone

returns from a mission with its charge level below the designated charging threshold, it is not

recharged immediately. Instead, the drone must remain idle for a period of 60 minutes before

it can be recharged.

To conduct our experiments, we aim to test all combinations of 'charging threshold'

and 'drone idle time' across both scenarios. Prior to executing these experiments, it is crucial
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to establish the warm-up period, determine the appropriate run length, and decide on the

number of replications for each scenario. Once these preliminary steps are completed, we will

proceed with the experiments and present the results.

Table. 2. The maximum number of locations that a drone with each charge level can cover.
Source: Asadi et al. (2022) & based on own investigation.

Charge Threshold % Number of Locations Can be
Covered

6 1

21 2

22 3

24 6

29 7

33 8

36 9

37 10

43 11

44 12

47 13

48 14

50 16

51 17

53 18

56 19

58 20

64 21

61



3.1.1. Warm-up Period and Run Length
Finding a warm-up period for our model is necessary because it is a non-terminating

simulation with steady-state Key Performance Indicators (KPIs). The 8warm-up period9

indicates the initial stage of a simulation run, during which the system is allowed to move

from an arbitrary or non-representative starting state to a more stable and normal operating

condition (Robinson, 2014). During this time frame, the simulation results frequently do not

accurately reflect the long-term patterns of the system, resulting in what is referred to as

initialization bias. The main objective of the warm-up period is to reduce the impact of

initialization bias, ensuring that the data obtained after this period accurately represents the

system's stable performance (Robinson, 2014).

In our study, we must initially identify the warm-up period for each scenario. Once the

warm-up period is determined, the data corresponding to this period should be excluded, and

only the simulation results obtained post-warm-up should be considered. Additionally, to

establish an appropriate run length for the model, it should be at least ten times the duration of

the warm-up period, as suggested by Robinson (2014). Subsequently, we will calculate the

warm-up period and the run length for both scenarios.

To determine the appropriate warm-up period, we begin by running the system and

monitoring the resulting time series data for both KPIs. This enables us to determine the

duration of the warm-up period. However, our goal is to determine the optimal 'charging

threshold' and 'drone idle time' using our experimental analysis. The challenge lies in deciding

which values of 'recharging threshold' and 'drone idle time' to use in our model to accurately

determine the warm-up period. To address this, we conduct simulations across various

configurations to observe their KPIs time series data and identify the configuration that

presents more fluctuations or initial biases. This configuration will provide a reliable warm-up

period that can be applied to other configurations as well. To conduct some experiments to

identify an appropriate setup for finding the warm-up period, we choose various 'charging

thresholds' from Table 2, taking into account the minimum, average, and the maximum

number of hospitals that can be covered by that charging threshold: 6% (which can cover 1

hospital), 37% (which can cover 10 hospitals), and 58% (which can cover 20 hospitals).

Regarding the 'drone idle time,' we select 0 minutes, 30 minutes, and 60 minutes to represent

minimum, middle, and maximum idle times, respectively. Furthermore, in these experiments,

we consider a scenario where Zipline operates a fleet of 15 drones (Staedter, 2016).
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In this study, we explored nine different combinations for each scenario and conducted

experiments to visualize their KPIs time series. By visually examining these time series

across various configurations, we observed consistent patterns in both scenarios for all

configurations. The comprehensive time series graphs are included in the appendix.

Our analysis found no significant variations in the time series patterns for different

'drone idle times' (0 minutes, 30 minutes, 60 minutes), therefore, the value we choose for

'drone idle time' does not affect the determination of our warm-up period. Following

analyzing different 'charging thresholds', it was shown that a 6% threshold displayed an initial

bias in both Key Performance Indicators (KPIs) time series. For alternative thresholds (37%,

58%), KPI 1, which measures the mean demand satisfaction rate, did not exhibit an initial

bias. However, KPI 2, which measures the average number of charges per drone per day, did

show an initial bias, similar to the 6% threshold.

The initial bias observed for KPI 1 at the 'charging threshold' of 6%, compared to

other thresholds, can be attributed to the starting conditions of the simulation. In the

beginning, all drones are fully charged at 100%, enabling them to meet most hospital

demands effectively. When the 'recharging threshold' is set to a higher value, drones recharge

more quickly, maintaining high charge levels and thus consistently fulfilling demands.

However, at a 6% threshold, drones recharge more slowly, which reduces their ability to meet

demand as efficiently as they did at the initial fully charged state.

Fig. 15 and 16 depict the time series of both the key performance indicators (KPIs)

for scenario 1 with a 6% and 37% charging threshold and a drone idle time of 60 minutes.

Due to the consistent trends observed across multiple time series, we have chosen not to

include all of them in this section. For a comprehensive review of the additional time series,

please refer to the appendix.
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Fig. 15. The time series of simulation output for a charging threshold of 6 % and drone idle time of 60
minutes.
Source: Based on own investigation.

Fig. 16. The time series of simulation output for a charging threshold of 37 % and drone idle time of
60 minutes.
Source: Based on own investigation.

To determine the warm-up period and run length, we chose to run the simulation with

a 8charging threshold9 of 6% and a 8drone idle time9 of 60 minutes. This configuration was

selected since it presented an initial bias in the time series of results for both key performance

indicators (KPIs) while in other configurations with different 8charging thresholds9, we had an

initial bias in the time series of results just for KPI 2. In all other configurations, the patterns

of the time series remained the same, therefore, we determined the warm-up period for one

specific configuration using a threshold of 37% and a duration of 60 minutes. This was done

to illustrate that the warm-up period is shorter compared to the 6% threshold and remains

constant across all other configurations.

To determine the warm-up period with our two configurations, we utilized the

Marginal Standard Error Rule (MSER). This method allowed us to precisely identify the

necessary warm-up period for each scenario. For the first scenario, we conducted 20

replications over 15 days run length to smooth the time series. Similarly, for the second
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scenario, we performed 20 replications over 18 days run length before applying the MSER

formula to ascertain the warm-up periods for both configurations.

In Scenario 1, as depicted in Fig. 17 and 18, with a 'charging threshold' set at 37% and

a 'drone idle time' of 60 minutes, the warm-up period was zero day for KPI 1 and one day for

KPI 2. With a 'charging threshold' of 6% and the same 'drone idle time,' the warm-up periods

were two days for KPI 1 and one day for KPI 2. We adopted the maximum warm-up period,

which is two days, leading to a new run length of 20 days, adhering to the guideline that the

run length should be at least ten times the warm-up period (Robinson, 2014).

For Scenario 2, as shown in Fig. 19 and 20, with a 'charging threshold' of 37% and a

'drone idle time' of 60 minutes, the warm-up period was zero day for KPI 1 and one day for

KPI 2. For the configuration with a 'charging threshold' of 6% and the same 'drone idle time,'

the warm-up periods were five days for KPI 1 and four days for KPI 2. Again, we selected the

maximum warm-up period, which is five days, resulting in a new run length of 50 days.

Having established the warm-up periods and run lengths for both scenarios, the next

step is to determine the appropriate number of replications for each scenario. This will enable

us to proceed with all subsequent experiments.

Fig. 17. MSER graph and warm-up period for the time series of simulation output with a charging
threshold of 6% and a drone idle time of 60 minutes in Scenario 1.
Source: Based on own investigation.
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Fig. 18. MSER graph and warm-up period for the time series of simulation output with a charging
threshold of 37 % and a drone idle time of 60 minutes in Scenario 1.
Source: Based on own investigation.

Fig. 19. MSER graph and warm-up period for the time series of simulation output with a charging
threshold of 6% and a drone idle time of 60 minutes in Scenario 2.
Source: Based on own investigation.
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Fig. 20. MSER graph and warm-up period for the time series of simulation output with a charging
threshold of 37 % and a drone idle time of 60 minutes in Scenario 2.
Source: Based on own investigation.

3.1.2. Number of Replications
The input for our model, which represents demand, is derived from a probability distribution

function, making it inherently random. Consequently, the outcome of our analysis is also

random. To address this issue, we construct confidence intervals. Ensuring that the width of

these confidence intervals, relative to the average, remains sufficiently small requires an

adequate number of simulation replications. To determine if the number of replications is

sufficient, we must execute our simulation with the predetermined number of replications and

then calculate the 'relative error' of the confidence interval's half-width using the specified

formula below. The number of replications should be incremented until the 'relative error' is

less than 0.05 (Robinson, 2014).

In our study, to determine the warm-up period, we carried out 20 simulation

replications and calculated the average daily Key Performance Indicators (KPIs) to smooth

the time series data. To identify the necessary number of replications to achieve a sufficiently

narrow width of the confidence interval relative to the average of all daily KPIs, first, we

excluded the warm-up period observations, and then, we calculated the mean and variance of

the remaining daily KPIs. For KPI 2, the variance was found to be zero in both scenarios,
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indicating no variation among the data points and resulting in a relative error of zero. As a

result, the number of replications was considered adequate for KPI 2. Next, we calculated the

relative error for KPI 1 in both scenarios using the 20 replications, applying the Formula. 1

provided below. The relative error was less than 0.05 (approximately 0.03 for scenario 1 and

0.04 for scenario 2), indicating that the number of replications was sufficient. Based on these

results, we maintained the 20 replications for our analysis.

Formula. 1. Relative Error.

3.2. Experimental Studies
Given that we now have the optimal warm-up period, run length, and number of replications

for both scenarios, we can now undertake our experiments with a 15-drone fleet size. In these

experiments, 9charging threshold9 and 8drone idle time9 values will be varied to cover all

feasible combinations according to our assumption. Based on the settings of the experiments,

we will seek to identify which scenarios and which of the combinations of 8charging

threshold9 and 8drone idle time9 produce the best results for our KPIs. The outcomes of these

experiments are provided below, in Table 3 for scenario 1 and Table 4 for scenario 2.

Table. 3. The results of the experiments in scenario 1.
Source: Based on own investigation.

Scenario 1

Num of
EXP

Charging
Threshold

Drone Idle
Time

Mean Demand Satisfaction Rate % Mean Number of Charge

0 6 0 11.34 0.4

1 6 15 11.6 0.4

2 6 30 11 0.38
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3 6 45 11.02 0.38

4 6 60 11.39 0.4

5 21 0 65.42 3.97

6 21 15 65.24 3.89

7 21 30 62.87 3.74

8 21 45 61.73 3.64

9 21 60 60.83 3.57

10 22 0 69.8 4.35

11 22 15 68.02 4.22

12 22 30 67.18 4.12

13 22 45 65.2 3.94

14 22 60 63.22 3.81

15 24 0 75.43 5.06

16 24 15 73.19 4.82

17 24 30 71.31 4.61

18 24 45 69.11 4.44

19 24 60 67.16 4.25

20 29 0 75.74 5.21

21 29 15 74.1 5

22 29 30 71.8 4.73

23 29 45 69.88 4.54

24 29 60 67.91 4.35

25 33 0 75.96 5.37

26 33 15 74.42 5.08

27 33 30 72.45 4.83

28 33 45 70.28 4.61

29 33 60 68.03 4.38

30 36 0 76.15 5.42

31 36 15 74.44 5.12
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32 36 30 72.77 4.86

33 36 45 70.35 4.64

34 36 60 68.2 4.44

35 37 0 76.41 5.6

36 37 15 74.83 5.28

37 37 30 72.89 4.99

38 37 45 70.78 4.75

39 37 60 68.66 4.51

40 43 0 75.99 5.73

41 43 15 75 5.37

42 43 30 73.37 5.07

43 43 45 70.71 4.79

44 43 60 68.9 4.57

45 44 0 76.12 5.77

46 44 15 75.1 5.37

47 44 30 73.05 5.1

48 44 45 71.15 4.81

49 44 60 68.77 4.55

50 47 0 75.84 5.9

51 47 15 74.99 5.46

52 47 30 73.09 5.13

53 47 45 71.32 4.87

54 47 60 68.83 4.62

55 48 0 75.7 5.91

56 48 15 75.11 5.51

57 48 30 73.21 5.17

58 48 45 71.09 4.87

59 48 60 68.97 4.65

60 50 0 75.18 6.02
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61 50 15 75.17 5.57

62 50 30 73.15 5.22

63 50 45 71.15 4.93

64 50 60 69.21 4.65

65 51 0 74.95 6.14

66 51 15 74.86 5.64

67 51 30 73.23 5.27

68 51 45 71.42 4.97

69 51 60 68.85 4.68

70 53 0 74.66 6.23

71 53 15 75.01 5.72

72 53 30 72.85 5.3

73 53 45 71.32 5.01

74 53 60 69.04 4.73

75 56 0 73.98 6.33

76 56 15 74.66 5.79

77 56 30 73.23 5.36

78 56 45 71.13 5

79 56 60 69.17 4.76

80 58 0 73.33 6.48

81 58 15 74.43 5.82

82 58 30 73.25 5.42

83 58 45 71.2 5.06

84 58 60 69.06 4.76

85 64 0 72.98 6.61

86 64 15 74.52 5.91

87 64 30 73.03 5.43

88 64 45 71.22 5.1

89 64 60 68.87 4.78
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Table. 4. The results of the experiments in scenario 2.
Source: Based on own investigation.

Scenario 2

Num of
EXP

Charging
Threshold

Drone Idle
Time

Mean Demand Satisfaction Rate % Mean Number of Charge

0 6 0 13.25 0.5

1 6 15 13.21 0.5

2 6 30 13.23 0.5

3 6 45 13.22 0.5

4 6 60 13.1 0.49

5 21 0 76.11 4.99

6 21 15 73.48 4.76

7 21 30 71.05 4.52

8 21 45 68.84 4.35

9 21 60 66.55 4.15

10 22 0 76.9 5.16

11 22 15 74.7 4.91

12 22 30 72.26 4.67

13 22 45 69.76 4.47

14 22 60 67.5 4.27

15 24 0 77.44 5.44

16 24 15 75.61 5.15

17 24 30 73.13 4.89

18 24 45 70.81 4.65

19 24 60 68.54 4.43

20 29 0 77.42 5.54

21 29 15 75.65 5.22

22 29 30 73.25 4.94
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23 29 45 71.07 4.7

24 29 60 68.57 4.48

25 33 0 77.38 5.61

26 33 15 75.69 5.27

27 33 30 73.39 4.99

28 33 45 71.15 4.73

29 33 60 68.67 4.5

30 36 0 77.3 5.64

31 36 15 75.56 5.3

32 36 30 73.49 5

33 36 45 71.16 4.74

34 36 60 68.75 4.51

35 37 0 76.98 5.76

36 37 15 75.53 5.38

37 37 30 73.56 5.06

38 37 45 71.14 4.79

39 37 60 68.87 4.54

40 43 0 76.64 5.85

41 43 15 75.56 5.44

42 43 30 73.51 5.09

43 43 45 71.1 4.81

44 43 60 69.01 4.56

45 44 0 76.41 5.88

46 44 15 75.62 5.44

47 44 30 73.48 5.09

48 44 45 71.15 4.82

49 44 60 68.97 4.56

50 47 0 76.05 5.96

51 47 15 75.59 5.48
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52 47 30 73.4 5.14

53 47 45 71.23 4.84

54 47 60 68.97 4.57

55 48 0 76.01 6.01

56 48 15 75.47 5.51

57 48 30 73.32 5.15

58 48 45 71.28 4.85

59 48 60 68.82 4.59

60 50 0 75.54 6.08

61 50 15 75.36 5.54

62 50 30 73.4 5.19

63 50 45 71.21 4.87

64 50 60 68.78 4.6

65 51 0 75.26 6.18

66 51 15 75.16 5.61

67 51 30 73.43 5.2

68 51 45 71.23 4.88

69 51 60 68.86 4.61

70 53 0 74.71 6.28

71 53 15 75.02 5.65

72 53 30 73.48 5.23

73 53 45 71.1 4.91

74 53 60 68.88 4.62

75 56 0 74.17 6.39

76 56 15 75.02 5.7

77 56 30 73.31 5.25

78 56 45 71.01 4.92

79 56 60 68.97 4.63

80 58 0 73.5 6.52
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81 58 15 74.91 5.74

82 58 30 73.29 5.28

83 58 45 71.12 4.94

84 58 60 68.9 4.64

85 64 0 72.93 6.62

86 64 15 74.95 5.77

87 64 30 73.14 5.3

88 64 45 71.08 4.94

89 64 60 68.94 4.65

3.3. Analysis of Scenarios
In this section, we assessed two different scenarios in order to determine the optimal approach

for our objectives. The primary distinction between these scenarios is based on the approach

used to assign drones in order to fulfill hospital demands. In the first scenario, the first

available drone that has enough battery charge is dispatched. However, the second scenario

sorts idle drones based on their charge levels and sends out the one with the minimum

necessary charge. If there is no drone with sufficient battery capacity, the demand will not be

fulfilled in both scenarios.

The experimental results of both scenarios do not show any significant differences. In

order to explore this further, a statistical test was done using a Confidence Interval Between

Two Means, which is suggested by the Formula. 2 below, to discover that exists any

differences between the above-mentioned scenarios.

Formula. 2. Confidence Interval Between Two Means.
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Statistical Hypothesis:

Our null hypothesis (H0) states that there is no difference between the two scenarios. In order

to evaluate this hypothesis, we computed the 95% confidence intervals for both Key

Performance Indicators (KPIs).

Confidence Interval Between Two Means Analysis:

● Confidence Interval of KPI 1 (Mean Demand Satisfaction Rate %): [−2.88, 5.39]

● Confidence Interval of KPI 2 (Mean Number of Charges): [−0.24, 0.47]

Since both confidence intervals contain the value zero, we cannot reject the null

hypothesis with a confidence level of 95%. Therefore, we conclude that there is no

statistically significant difference between Scenario 1 and Scenario 2 for both KPIs. The

statistical test findings reveal that our rule in scenario 2 does not improve the model, as there

is no statistically significant difference between scenarios 1 and 2. This is likely because, in

scenario 1, the closest available drones, which often have lower charge levels, are allocated

first. Consequently, drones stationed farther away with higher charge levels remain idle until a

demand requires more charge than the closest available drones. This logic effectively aligns

scenario 1 with scenario 2.

While both scenarios behave in a similar manner, there is no notable distinction in

choosing to proceed with either scenario. Therefore, we decided to proceed with scenario 2

for additional analysis.

3.4. Optimal Configuration Analysis

In this section, our goal is to determine the optimal values for the 'charging threshold' and

'drone idle time' that yield the best Key Performance Indicators (KPIs). Specifically, we aim

to identify a configuration that maximizes our first KPI, the 'mean demand satisfaction rate',

while simultaneously minimizing our second KPI, the 'mean number of charges per drone per

day'. To achieve this, we created a scatter plot (refer to Fig. 21) that displays all experimental

results, with each point representing an experiment number from Table 4, with a combination
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of 'charging threshold' and 'drone idle time' from scenario 2. The optimal points are those

closest to the upper-left corner of the plot (0, 100), indicating the highest satisfaction rates

coupled with the lowest number of charges.

Fig. 21. Scatter plot of all experimental results in scenario 2.
Source: Based on own investigation.

To enhance the clarity of the data points in Fig. 21, we have divided the original plot into two

separate graphs. The first graph displays data with a 8mean number of charges per drone per

day9 less than 1, while the second graph presents the remaining data. The revised plots are

shown in Fig. 22 and 23.
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Fig. 22. Scatter plot of experimental results with a 8Mean Number of Charge9 less than 1 in scenario 2.
Source: Based on own investigation.

Fig. 23. Scatter plot of experimental results with a 8Mean Number of Charge9 more than 1 in scenario
2.

Source: Based on own investigation.
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To pinpoint the optimal configuration, we calculated the Euclidean distance of each

point from the upper-left corner (0, 100). By sorting these distances in ascending order, we

identified the points nearest to this ideal location as the best options. The top five optimal

points are presented in Table 5 and illustrated in Fig. 24.

Table. 5. Euclidean distance of top 5 points from the upper-left corner (0, 100).
Source: Based on own investigation.

Num of
EXP

Charge
Threshold %

Idle
Time
(min)

Mean Demand Satisfaction
Rate %

Mean Number of
Charge

Distance

15 24 0 77.44 5.44 23.20661975

20 29 0 77.42 5.54 23.24968817

25 33 0 77.38 5.61 23.3052891

30 36 0 77.3 5.64 23.39016032

10 22 0 76.9 5.16 23.66929657
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Fig. 24. The top 5 points according to their Euclidean distance from the upper-left corner (0, 100).
Source: Based on own investigation.

Based on the scatter plot analysis and the calculated distances, experiment number 15

emerges as the optimal point, being the closest to the upper-left corner coordinates (0, 100).

This experiment, which involves a 'charging threshold' of 24% and a 'drone idle time' of 0

minutes, yields the best Key Performance Indicator (KPI) results.

For subsequent analyses aimed at determining the optimal number of drones, we will

utilize this configuration. The results of the analysis will be presented in the following

section.

3.5. Number of the Drones Analysis

As for all earlier experiments, we presumed that Zipline operates with a fleet of 15

drones (Staedter, 2016). In this section, we also examine the relationship between the number

of drones and KPIs with a 8charge threshold9 of 24% and 8drone idle time9 of 0.

As illustrated in Table 6, we conducted experiments where the size of the drone fleet

ranged from 15 to 50 units. The findings indicate that as the number of drones increases, the
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'mean demand satisfaction rate' also rises, while the 'mean number of charges' decreases.

Notably, with a fleet of 45 drones, the hub can meet 100% of demands, however, acquiring

additional drones entails significant costs, and there is a risk of many drones remaining idle.

Therefore, it is crucial to determine the optimal fleet size that allows the drone hub to

efficiently meet hospitals' demands while effectively using drones. Following the section, we

present an analysis of the number of drones and their impact on Key Performance Indicators

(KPIs), ultimately determining the optimal drone fleet size.

Table. 6. Values of Key Performance Indicators (KPIs) corresponding to the increasing number of
drones.
Source: Based on own investigation.

Num Drones Mean Demand Satisfaction Rate % Mean Number of Charge

15 77.44 5.44

16 80.24 5.32

17 82.86 5.18

18 85.01 5.04

19 86.99 4.91

20 88.92 4.77

21 90.34 4.65

22 91.89 4.52

23 93.1 4.4

24 94.28 4.26

25 95.24 4.15

26 96.09 4.04

27 96.92 3.92

28 97.43 3.81

29 98.08 3.7

30 98.5 3.61

31 98.85 3.49
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32 99.13 3.4

33 99.39 3.31

34 99.56 3.21

35 99.65 3.14

36 99.78 3.05

37 99.84 2.98

38 99.89 2.89

39 99.92 2.82

40 99.95 2.75

41 99.97 2.68

42 99.97 2.63

43 99.99 2.56

44 99.99 2.51

45 100 2.44

46 100 2.39

47 100 2.35

48 100 2.29

49 100 2.25

50 100 2.2

To determine the optimal number of drones, it is crucial to achieve a balance between

maximizing the 'demand satisfaction rate' and minimizing the 'number of charges'. Initially,

we visualized these metrics against the number of drones to identify trends and potential

optimal point. This analysis aids in pinpointing the ideal number of drones that achieve both

objectives effectively.
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Fig. 25. The 8mean demand satisfaction rate9 against the number of drones.
Source: Based on own investigation.

Fig. 26. The 8mean number of charges per drone per day9 against the number of drones.
Source: Based on own investigation.

Based on our analysis of the plots, the following insights were obtained:

- Mean Demand Satisfaction Rate % vs. Number of Drones:

Fig. 25 demonstrates a significant increase in the 'mean demand satisfaction rate' as

the number of drones increases from 15 to 35. However, beyond 35 drones, this rate

begins to stabilize, showing minimal improvement up to 50 drones. Moreover, the

incremental positive changes in the 'mean demand satisfaction rate' for each additional

drone are clearly depicted in Fig. 27. Remarkably, after the deployment of 35 drones,

the increase in the 'mean demand satisfaction rate' becomes negligible.
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- Mean Number of Charges vs. Number of Drones:

The plot in Fig. 26 shows that the mean number of charges required decreases as the

number of drones increases. This is anticipated because a larger fleet can distribute the

workload more evenly, reducing the frequency with which each drone needs to

recharge. Notably, the slope of the graph is steeper from 15 to 30 drones, indicating a

more rapid decrease in the number of charges. After 30 drones, the slope becomes less

steep, suggesting a slower rate of decrease in charging frequency.

Fig. 27. The amount of incremental positive change in the 8demand satisfaction rate9 by increasing the
number of drones.
Source: Based on own investigation.

Based on the insights obtained from the visualizations, the optimal number of drones

appears to be around 30 to 35. By taking into account the cost of adding drones, this fleet size

efficiently balances the goals of maximizing the demand satisfaction rate and the

minimization of the number of charges.

84



3.6. Conclusion

This chapter is dedicated to providing a detailed overview of an experimental study conducted

to further advance our work on the last-mile delivery of medical supplies using drones.

Building on the methodology and conceptual model outlined in previous chapters, we focused

on the experimental design, execution, and evaluation of simulation results to identify optimal

strategies for drone recharging and distribution.

We designed our experiments to test different 'charging thresholds' and 'drone idle

times', aiming to enhance key performance indicators: demand satisfaction rate and the

number of charging cycles per drone per day. Our simulations evaluated the impact of various

configurations on the operations of a drone hub serving stochastic hospital demands for

medical supplies.

Through precise experimental setup, including the determination of warm-up periods,

run lengths, and number of replications, we ensured robust data collection. Then we

implement all our experiments with both scenarios and after that, we compare our two

different scenarios. The experiments revealed that no significant difference existed between

the two drone allocation scenarios tested. Thus, we proceeded with scenario 2, which

prioritized dispatching drones based on minimal required charge. Furthermore, our analysis

identified the optimal recharging configuration with a 24% charge threshold and 0 minute idle

time, which achieved the best balance between a high demand satisfaction rate and a

minimum number of charging drones to decrease the battery degradation rate. Moreover,

further analysis explored the impact of fleet size, revealing that increasing the number of

drones significantly improved demand satisfaction rates up to 35 drones, after which the

benefits are not considerable.

In conclusion, the optimal setup for our drone hub to optimally recharge drones

involves a charge threshold of 24% and drone idle time of 0 minutes, with a recommended

fleet size of 30-35 drones to effectively balance operational efficiency and resource

utilization.
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CHAPTER 4

4.1. Conclusion

The concept of supply chain management (SCM) has developed a lot since it became popular

in the 1990s, and in recent years has become a significant theory in the healthcare industry as

it has become one of the primary tools to drive efficiency and reduce cost in the system (Min

et al., 2019; Elmuti et al., 2013). Healthcare SCM also has many issues, especially in

logistics, as costs and their complexity continue to rise (Volland et al., 2017). Another

under-researched domain within SCM & logistics is last-mile delivery which has been known

to be inefficient, costly, and environmentally unsustainable (Ha et al., 2022). As a result of

these challenges, drones have been deemed a viable solution as they can provide faster,

cheaper, and eco-friendly delivery services (Mohammad et al., 2023). However, more study is

required to fully realize their benefits and transform the delivery of healthcare (Gao et al.,

2023). According to Asadi et al. (2022), a significant issue that needs consideration is the

restrictions associated with drone batteries such as limitation of drone battery life and its

charging time. In this research, the application of drones in last-mile delivery systems for the

healthcare supply chain has been investigated, specifically looking at drone9s recharging and

distribution methods to improve their effectiveness and address battery-related limitations. To

achieve this goal, Discrete Event Simulation methodology was used to track discrete events

across time to model and analyze complex, stochastic systems. This approach, which focuses

on significant events influencing system dynamics, works well for analyzing systems with

rapid behavioral changes (Stamatti, 2024, Robinson, 2014). Additionally, the data used in our

analysis is sourced from a study by Asadi et al. (2022), which offers a real-world case study

utilizing Zipline drones, which are used to transport medical supplies in Rwanda, Africa.

Based on a DES approach, we evaluated various recharging strategies (that include different

charging thresholds and drone idle time before recharging them) to assess the effects on the

identified KPIs like demand satisfaction rate and the number of charging cycles per drone per

day. Moreover, our experimental design involved two primary scenarios for drone

dispatching: In the first scenario, to fulfill the demand, the drone hub checks for idle drones

and dispatches the first available drone that has enough charge. In the second scenario, the

drone hub checks for idle drones with sufficient charge sorts them according to their charge

levels, and then dispatches the drone with the minimum charge necessary to meet the demand.

Having modeled and analyzed both scenarios, we could not detect a difference between the
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two, as a result, there is no significant difference to continue with each scenario. Hence, we

moved to the second scenario to examine it for further analysis.

Our simulations showed that the best configuration for recharging was when the

battery threshold level was at 24 % or less and the drone's idle time of 0 minutes. This

configuration was optimal in achieving a high demand satisfaction rate while at the same

time, the charging frequency was low enough to decrease the battery degradation rate.

Furthermore, the results of the analysis of the optimal number of fleets showed that the

addition of more drones has a positive effect on the number of drone charging cycles and also

increases the demand satisfaction rate to an optimal of 35 drones after which the rate

stabilizes. Therefore, it was advised that a fleet of 30 to 35 drones is the most suitable when it

comes to effectiveness and efficiency.

This research highlights the significance of proper drone management when it comes

to last-mile delivery especially in the health sector due to the need for quick delivery of

medical supplies. The study also underscores the importance of precision in charge strategies

of the drones which would significantly enhance the service delivery. In conclusion, this

research shows that drone-based delivery solutions are feasible and have tangible benefits in

the context of healthcare supply chain management. When recharging and distribution

strategies are well coordinated, it becomes easy to overcome the challenges of last-mile

delivery, thereby improving health delivery systems.
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4.2. Limitations of the Study and Recommendations
To improve the reliability and relevance of the results, it is recommended that future research

attempts overcome the many constraints of this study. First of all, the study's simulation

model assumes that all flying circumstances are ideal and ignores possible real-world

problems like severe weather conditions, the need for maintenance, and the order in which

drone operations should be prioritized in an emergency. To present more real-life cases, these

elements have to be regarded in the future study. Second, the model also does not capture

changes in the performance of the drones and their batteries over time, since it is framed with

the drones maintaining constant performance throughout the course of the study. This work

reduces the impact of battery degradation and its influence on drone reliability and range to a

basic level. For a better understanding of the impact of battery degradation and maintenance

schedules on operation efficiency, it is recommended to include more detailed models of these

components in future research. Furthermore, we do not account for waiting times for

demands, and if a demand is made and there are not any drones available, it cannot be

completed. Future research can add backlogging unsatisfied demands if it suits the

application.

In conclusion, as this study provides useful information concerning how to increase

the effectiveness of the use of drones for last-mile delivery in the healthcare sector, addressing

these challenges and exploring the recommended fields will contribute significantly to

enhancing the efficiency of future research and practical application of drone technology in

supply chain management.
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Appendix

Appendix I - The time series of simulation output with different configurations that are used
to determine the best configuration to find the warm-up period. The source of all figures is
based on our own investigation.

For Scenario 1:

Fig. 28. The time series of simulation output for a charging threshold of 6 % and drone idle time of 60
minutes.

Fig. 29. The time series of simulation output for a charging threshold of 6 % and drone idle time of 30
minutes.

Fig. 30. The time series of simulation output for a charging threshold of 6 % and drone idle time of 0
minutes.
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Fig. 31. The time series of simulation output for a charging threshold of 37 % and drone idle time of
60 minutes.

Fig. 32. The time series of simulation output for a charging threshold of 37 % and drone idle time of
30 minutes.

Fig. 33. The time series of simulation output for a charging threshold of 37 % and drone idle time of 0
minutes.
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Fig. 34. The time series of simulation output for a charging threshold of 58 % and drone idle time of
60 minutes.

Fig. 35. The time series of simulation output for a charging threshold of 58 % and drone idle time of
30 minutes.

Fig. 36. The time series of simulation output for a charging threshold of 58 % and drone idle time of 0
minutes.
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For Scenario 2:

Fig. 37. The time series of simulation output for a charging threshold of 6 % and drone idle time of 60
minutes.

Fig. 38. The time series of simulation output for a charging threshold of 6 % and drone idle time of 30
minutes.

Fig. 39. The time series of simulation output for a charging threshold of 6 % and drone idle time of 0
minutes.
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Fig. 40. The time series of simulation output for a charging threshold of 37 % and drone idle time of
60 minutes.

Fig. 41. The time series of simulation output for a charging threshold of 37 % and drone idle time of
30 minutes.

Fig. 42. The time series of simulation output for a charging threshold of 37 % and drone idle time of 0
minutes.

93



Fig. 43. The time series of simulation output for a charging threshold of 58 % and drone idle time of
60 minutes.

Fig. 44. The time series of simulation output for a charging threshold of 58 % and drone idle time of
30 minutes.

Fig. 45. The time series of simulation output for a charging threshold of 58 % and drone idle time of 0
minutes.
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