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Abstract

Tuning modern software systems can be tremendously challenging: the huge
number of configuration parameters and their complex dependencies make
the manual research for the optimal configuration tedious and time-consuming.
Furthermore, such optimal configuration depends on the workload under
which the system is running. This thesis presents the work done to ex-
tend an existing performance tuner to be directly applied to a production
environment exploiting the real workload perceived by the system, i.e. while
it is serving its clients, hence the term Online System Tuning. This approach
avoids the necessity of analyzing and replicating the workload on a replica of
the system but poses new challenges. To apply the tuner directly to produc-
tion environments, two main modules were developed: a workload forecasting
module, based on state-of-the-art techniques that minimize the necessity of
manual work, and a stability finder module, used to decide when to perform
tuning experiments. With these two modules, the probability of testing a
new and possibly mistaken software configuration during a workload change
is reduced, which would cause the system clients to suffer Quality of Service
losses. Moreover, by directly tuning the production system the effort of run-
ning the tuner is reduced, meaning that it is easier and faster to apply to
different scenarios. The proposed solution was tested on two DBMS models
with 20 scenarios, highlighting that the integration of forecasting techniques
improves the safety of the tuning process while keeping the effectiveness of
the original tuner.
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1 INTRODUCTION 1

1 Introduction

Most software systems allow their users to tailor the configuration to make
the system meet some targets. For example, we may increase the cache size
to reduce the response time while increasing the infrastructure costs (more
RAM required), or we may want to reduce the infrastructure costs while
keeping the same response time. Unfortunately, the number of parameters
that compose the software configurations has kept increasing over the last
years making the configuration spaces too wide and complex to be manu-
ally explored, even by human experts. Furthermore, we must consider the
workload under which the system is exposed: how many requests is the sys-
tem receiving? And which type of requests? The answer to these questions
inevitably changes the optimal configuration according to our goals. For ex-
ample, if the number of requests the system is receiving decreases, we may
be able to guarantee the same response time while scaling down the system
(i.e. reducing costs). Finally, nowadays software systems quickly evolve over
time: the code changes, new versions are released, or the underlying hard-
ware is upgraded, potentially invalidating the previous optimal configuration.
In this context, manually exploring the configuration space is expensive and
time consuming, if not even unfeasible.

To solve this issue, automated approaches have emerged [1, 2, 3, 4], with
Bayesian Optimization playing an important role in the field. In many cases,
the available approaches explore the configuration space to build a perfor-
mance model by running experiments on a replica of the real system. Per-
forming such experiments can be expensive: replicating the entire production
system may need a significant amount of resources, and most of all requires
understanding and analyzing the workload requested by the system’s clients
so that it can be replayed on the replica. The workload not only changes over
time both in terms of demand and type of requests, but it can also evolve
with the capabilities of the system or the acquisition of new clients (e.g. if
the system is released to a new country). Any of these changes would require
the analysis of the workload to be repeated so that the tuning experiments
can be as likely as possible.
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1 INTRODUCTION 2

This work builds on [1] to directly tune the production system avoiding
the workload analysis and replication steps, as shown in Figure 1. By tuning
directly the production system while it is being used, we name such approach
online system tuning. Such an approach opens a new challenge: the explo-
ration of the configuration space on the production system is vulnerable to
“bad” configurations that can lead to low Quality of Service levels or even
system failures. We tackle this challenge with a proactive and automatic ap-
proach that makes use of workload forecasting to run tuning experiments only
when the workload is predicted to be stable and suggest a workload-tailored
configuration, minimizing the probability of failure and opening the possibil-
ity of preemptively applying the best configuration found for the upcoming
workload.

We further present the problem in Section 2, detailing the components
required by the approach and the current state of the art. Section 3 describes
the proposed solution and 4 the experimental setup. Finally, Section 5 shows
the results obtained on two distinct database models.

Figure 1: Online tuning: while the system is receiving its workload (e.g.
a set of HTTP requests) the tuner uses the system metrics to suggest new
configurations that may improve the performance or reduce infrastructure
costs.
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2 CONTEXT AND STATE OF THE ART 3

2 Context and State of the Art

Tuning an IT system without changing its code requires finding good con-
figurations in an enormous search space where the tunable parameters affect
different layers of the IT stack, such as Operating System (OS), Database
Management System (DBMS), and Java Virtual Machine (JVM). These pa-
rameters can have counter-intuitive effects with inter-dependencies, mak-
ing manual optimization hard or even unfeasible when looking for the op-
timal configuration. Recent years have seen automatic approaches emerge
[1, 3, 4, 2], with [1] using Contextual Bayesian Optimization (BO). How-
ever, when automatically tuning IT systems on a staging environment, i.e. a
replica of the real system, it is still necessary to replicate the real workload
to find the optimal configuration that fits the way the IT system is used
at different times of the day or week. Finding such workload(s) takes time,
lengthening the time required to complete the tuning process.

A possible solution to this issue is to directly tune the production sys-
tem under the real workload, removing the workload analysis and replication
requirement, with the performance of each configuration measured directly
from the production system rather than a staging replica, which could lead
to unrealistic outcomes. However, performing experiments on an IT system
while being used can be dangerous and pose new challenges: a bad configu-
ration can cause a bad user experience and consequently business issues.

This work extends the Contextual Bayesian Optimization tuner [1] to be
applied in an online manner, i.e. on IT systems while they are receiving the
real workload, by providing two key components: a workload characteriza-
tion and a workload forecasting module.
The following section briefly presents BO and Section 2.1.1 presents the
Contextual BO tuner of [1] explaining why workload characterization and
forecasting are required. The state of the art of forecasting is presented
(Section 2.4), followed by a section on workload forecasting in the context
of IT systems (Section 2.5). A general overview of workload characteriza-
tion is presented in Section 2.2. Clustering, which can be used for workload
characterization, is described in Section 2.3.
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2.1 Bayesian Optimization

Bayesian Optimization [5] is a tool for the joint optimization of design choices
of complex systems, such as the parameters of a recommendation system, a
neural network, or a medical analysis tool. For example, a typical software
system made of a database, a back-end, and a front-end is characterized by
an enormous amount of parameters that are often dependent on each other.
Optimizing such parameters is not a simple task, and BO provides an auto-
mated approach to making such design choices.

Mathematically, the goal is to maximize (or minimize) an unknown ob-
jective function f :

xxx⋆ = argmax
xxx∈X

f(xxx) (1)

where X is the design space of interest, e.g. a compact subset of Rd. In
general, f can be any black-box function with no simple closed form that can
be evaluated at any arbitrary point in the domain X , where the evaluation
can produce noise-corrupted outputs y ∈ R.
BO is a sequential approach to solve Equation 1: at every iteration i, the
algorithm selects a new xxxi+1 at which f is queried, resulting in a measurement
yi. When the maximum number of iterations is reached, or when y⋆ is a
satisfactory outcome, the algorithm stops returning the best configuration
xxx⋆ associated with the best outcome y⋆. BO is very data-efficient, making
it useful when the evaluations of f are costly: the model is initialized with
a prior belief, and then at each iteration, it is refined using observed data
via Bayesian posterior updating. The acquisition function αn : X → R
guides exploration by evaluating candidate points in X , meaning that xxxi+1 is
selected by maximizing αn using data up to iteration i. Figure 2 shows a few
iterations of BO. The acquisition function αn provides a trade-off between
exploration and exploitation: when boosting exploration the value of αn will
be higher in areas of uncertainty, while when boosting exploitation αn will
favor locations where the model predicts a high objective. It is critical for

2.1 Bayesian Optimization 4



2 CONTEXT AND STATE OF THE ART 5

Figure 2: A few iterations of BO. The acquisition function u(·) (green) guides
the selection of the next point, obtaining a new observation (xxxi, yi) that
updates the underlying model of the unknown function f(·).

2.1 Bayesian Optimization 5



2 CONTEXT AND STATE OF THE ART 6

the acquisition function to be cheap to evaluate or approximate, especially
in relation to the objective function f .

In summary, BO has two key ingredients [5]: a probabilistic surrogate
model, consisting of a prior distribution that captures our beliefs about f

and an observation model that describes the data generation process, and
a loss function that describes how optimal a sequence of queries are. The
expected loss is minimized to drive the selection of xxxi. After observing the
outcome yi of xxxi, the prior is updated to produce a more informative posterior
distribution.

2.1.1 Contextual Bayesian Optimization of IT systems

When applying BO to IT systems, the goal is to find a configuration xxx to
optimize a performance indicator y ∈ R such as throughput, response time,
and memory consumption [1]. If BO is applied while the system is running,
it is very likely that the workload will change over time: the number of
users connected to the system can increase and decrease, as their behavior
can change from read-intensive to write-intensive operations. Such changes
will inevitably affect how the system behaves under a specific configuration,
but regardless of the workload, the underlying system maintains some of its
properties. This scenario perfectly fits the multitask extension of BO [6]:
we have a family of correlated objective functions T = {f1, ..., fm} (e.g. the
performance of an IT system under different workloads or the same IT system
running with different software versions) and we want to use data obtained
optimizing {f1, ..., fj−1, fj+1, ..., fm} to optimize fj. Figure 3 shows how [6]
is able to share information between two black-box functions and influence
the posterior predictive distribution of another function.

More formally, we are trying to maximize a function fwww subject to a
workload wwwt that changes over time. The tuning process, shown in Figure
4, starts with a configuration xxx0 (usually the default configuration, called
baseline or vendor configuration) applied under a workload www0 whose perfor-
mance indicator y0 is measured. The tuner uses a knowledge base, initially
containing only the triplet {(xxx0,www0, y0)}, along with the current workload

2.1 Bayesian Optimization 6
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Figure 3: Multitask Bayesian Optimization. The figure in the middle shows
the posterior predictive distribution of the blue function (3) without exploit-
ing the information of the other functions.

w1 to suggest a new configuration x1 that is applied, evaluated, and added
to the knowledge base. After N iterations the tuner can exploit all infor-
mation ({(xxx0,www0, y0)}, ..., {(xxxN ,wwwN , yN)}) gathered so far to make refined
suggestions.

Furthermore, when optimizing a system, it may be useful to define some
constraints the system should not violate: a tuning process may be executed
with the requirement of satisfying some Quality of Service (QoS) levels. For
example, while trying to minimize the average memory usage to reduce the
infrastructure costs, the system could be expected to keep the users’ requests
latency below some target.
The work proposed by [1] has been extended internally by the company so
that it is possible to define such constraints: when a configuration violates
any constraint, the violation is added to the knowledge base along with its
configuration and associated system performance. Interestingly, by penaliz-
ing violations, the tuner can be used on a system that doesn’t initially satisfy
some QoS levels, so that at the end of the tuning process violations are not
likely to occur anymore.

The BO regression model of [1] is a Gaussian Process (GP) that derives
its posterior model (i.e. the predictions) by combining observed values with
its prior distribution. When asking the GP to predict the performance of
a configuration that is very different from any configuration that was previ-
ously observed it will resort to the prior distribution, which is often a zero-
mean, unitary variance normal distribution. As a result, if we are trying

2.1 Bayesian Optimization 7
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Figure 4: BO-based tuning process. Given the workload wwwi, the tuner uses
the knowledge base to apply a new configuration xxxi that is evaluated (ob-
taining yi), growing the knowledge base.

to maximize the throughput of an IT system, the GP will predict that any
unknown configuration will likely destroy the system performance, with the
consequence that BO will avoid the exploration of uncertain regions. There-
fore, rather than using the raw performance of the applied configurations,
[1] standardizes the observed data so that GP will predict that by picking
a random configuration the system will exhibit a performance value that is
equal to the average performance of the observed values. Nonetheless, when
dealing with different workloads, it is crucial to standardize each point by
taking into account also the relevant workload [1]. This is achieved by using
a modified version of the Normalized Performance Improvement:

NPI(xxx,www) = f(xxx0,www)−f(xxx,www)
f(xxx0,www)−f(xxx+

www ,www)

where xxx is the configuration being evaluated, xxx0 is the baseline configura-
tion, www is the workload, and f(xxx+

www ,www) is the best configuration found so far
while tuning the system with the workload www. Hence, [1] requires a workload

2.1 Bayesian Optimization 8
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characterization module (discussed in Section 2.2) to cluster the workloads
and effectively apply BO.

To evaluate the performance of an IT system under a new configuration,
many technologies require some warm-up time. For example, the Java Vir-
tual Machine is characterized by a lazy class loading and Just In Time (JIT)
compilation that makes the performance evolve with time after the Java ap-
plication is launched. Usually, a window of duration that ranges from ten
to thirty minutes is required for the performance to stabilize. Furthermore,
after the warm-up is completed, the system performance yi resulting from
configuration xxxi under workload wwwi should be obtained by taking multiple
measurements in order to balance the noisy environment. This evaluation
process requires the workload to remain stable in order to avoid corrupting
the measurements or nullifying the warm-up (e.g. a new workload may use
different Java classes and functions). Therefore, a single tuning step (or ex-
periment) requires a time window ωt1:t2 , starting at time t1 and ending at
time t2, of duration t2 − t1 during which the workload wt must be stable.
Furthermore, as mentioned before, Contextual Bayesian Optimization sug-
gests a configuration tailored for the given workload. This means that a
workload change may cause the system being optimized to underperform,
potentially leading to bad QoS or even failures. Such consequences should
be avoided as much as possible.

In order to predict if the upcoming tuning window will be stable, the tuner
requires a component capable of predicting the upcoming workload, as long
as some sort of classifier that given the predicted workload indicates whether
the future workload will be stable or not. Finally, once the performance of the
best configuration for the given workload is satisfactory, that configuration
can be applied in advance.
Forecasting and workload forecasting will be discusses in Section 2.4 and 2.5
respectively.

2.1 Bayesian Optimization 9
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2.2 Workload Characterization

The term workload refers to all the inputs received by a given technological
infrastructure [7]. Within the IT domain, understanding the properties and
behavior of such workload is essential for evaluating the Quality of Service
(QoS) perceived by the users in order to meet the Service Level Agreement
(SLA) obligations. In such a context, workload characterization provides the
basis for devising efficient resource provisioning, power management, and
performance engineering strategies.
By characterizing the workload and deriving workload models it is possible
to summarize and explain the main properties of the workloads, generate
synthetic workloads for performance evaluation studies, and define bench-
mark experiments. Workload characterization can be applied to different
domains such as online social networks, video services, mobile devices, and
cloud computing.

Characterizing the workloads requires collecting representative measure-
ments while the system under study is operating (i.e. under the true work-
loads). These measurements refer to specific components of the system and
capture their static and dynamic properties, along with the behavior of the
users. When choosing which metrics to consider, it is important to take into
account the hierarchical nature of typical infrastructures: a network sniffer
provides measurements about the network traffic, logging facilities provide
application-specific measurements such as the number of requests to an URL
of a web application, and trace logs contain measurements related to the re-
sources used by jobs and tasks (e.g. CPU and memory usage). The choice of
the attributes to consider for the characterization depends on its objectives
and on the nature of the workload to be analyzed.

Once measurements are collected, they have to be analyzed in order to
build workload models. The first step is to perform a statistical analysis to
describe the properties (e.g. mean, variance, percentiles) of each attribute of
interest and find any relation between them (e.g. using Pearson’s correlation
coefficient [8]).
A common challenge faced during this step is how to deal with outliers,

2.2 Workload Characterization 10
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that are atypical behaviors of one or more attributes: outliers could indi-
cate previously unknown phenomena that are worth exploring, or they could
correspond to anomalous operating conditions that should be discarded.

Further steps of the workload characterization methodology are multi-
variate analysis to analyze the components in the multidimensional space of
their attributes, numerical fitting to study the dynamics of the workloads and
model their temporal patterns, stochastic processes to study time-varying
properties of the workloads, and graph analysis to model the behavior of
interactive users [7].

The multivariate analysis allows deriving models that capture and sum-
marize the overall properties of the workloads. A technique that has been
widely used for that purpose is clustering [9], which enables unsupervised
classification when labeled data is not available. A popular clustering algo-
rithm is k-means [9], that partitions the data into k clusters identified by k

centroids where each centroid would represent one type of workload. Clus-
tering is further presented in Section 2.3.
When the number of variables being analyzed is too large, it is common
to apply dimensionality reduction techniques such as PCA [10] to obtain a
smaller set of uncorrelated variables.

With numerical fitting techniques is possible to estimate the parameters
of the function that best fits the empirical data, for example, to understand
whether it is generated by a well-known probabilistic distribution. [11] has
shown that the distribution of many workloads properties are well described
by power laws (e.g. Pareto or Zipf distributions), meaning that extreme
values should be investigated rather than being considered outliers.

Finally, stochastic processes such as wavelets and non-parametric filter-
ing are used to extract trend and seasonal components from the time series
representing the workload properties (see Section 2.4), identify the structure
of predictive models, and estimate their parameters. A common goal when
applying such techniques is to cope with capacity planning and resource
management.

2.2 Workload Characterization 11
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Figure 5: Common clustering procedure.

2.3 Clustering

In the era of data, clustering provides a way to classify and group information
into a set of categories, called clusters, when labels are not provided. The
goal is to learn a new object or understand a phenomenon, and try to seek the
features that can describe it to make comparisons with other known objects
or phenomena [9]. Such learning process is called unsupervised learning. In
general, a cluster is described by considering its internal homogeneity and
the external separation [12], meaning that the same cluster should present
similar patterns, while patterns in different clusters should be different.

Formally, given an input set X = {xxx1, ...,xNxNxN} with xxxi ∈ Rd, hard clus-
tering attempts to seek a K-partition of X, C = {C1, ..., CK} with K ≤ N

such that:

1. Ci ̸= ∅ for i = 1, ..., K

2. ∪K
i=1Ci = X

3. Ci ∩ Cj = ∅ for each i, j = 1, ..., K with i ̸= j

Therefore, at the end of the procedure, each point in X belongs to a single
cluster. In fuzzy clustering this constraint is relaxed, and a point xxxi ∈ X can
belong to multiple clusters with a certain degree of membership [13]. Another
alternative to hard clustering is hierarchical clustering, that repeatedly ag-
glomerates points (or, symmetrically, divides clusters) creating a dendrogram
[14].

2.3 Clustering 12



2 CONTEXT AND STATE OF THE ART 13

The general clustering procedure is depicted in Figure 5. The feature
selection or extraction step chooses a subset of features from the set of avail-
able features. From that subset new features can be generated, for example
by using Principal Component Analysis. This step can heavily affect the
clustering result. Then, one or more clustering algorithms must be selected
often along with a proximity measure (e.g. the Euclidean distance). Note
that there isn’t any clustering algorithm that is capable of solving all types
of problems [15]. Finally, each clustering algorithm must be objectively val-
idated, and the results interpreted.

In the context of workload characterization (see Section 2.2) we are in-
terested in hard clustering methods to automatically group workloads.
A well-known clustering method is k-means, that partitions X into k ≤ |X|
clusters C1, ..., Ck by finding:

argmax
C1,...,Ck

∑︁k
i=1

∑︁
xxx∈S

||xxx − µµµi||2

where µµµi is the centroid of cluster Ci, and a point xxx belongs to the clus-
ter having the closest centroid. In order to effectively initialize the value of
µi, k-means++ can be used [16]. k-means requires the number of clusters to
be given as input.

Mean shift [17] is another centroid-based clustering procedure that at
each iteration moves the points towards the direction of maximum density
by using a kernel function K(xi, x) (e.g. a Gaussian kernel) that controls the
direction of the movement m(x):

m(x) =
∑︁

xi∈N(x) K(xi−x)xi∑︁
xi∈N(x) K(xi−x)

where N(x) is the neighborhood of x. The algorithm stops on convergence,
i.e. when points cannot further be moved or the movement is below some
threshold ϵ. Unlike k-means, mean shift doesn’t require to know the number
of clusters, but it must be provided with a bandwidth parameter that deter-
mines the size of the neighborhood N(x). Such bandwidth can be estimated
using nearest neighbors.

2.3 Clustering 13
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OPTICS [18] is a density-based approach that requires two parameters:
the minimum number of points required to form a cluster, and the radius ϵ

to consider when forming clusters. OPTICS is very data-efficient for small
values of ϵ, and can be used for outlier detection as it doesn’t necessarily
need to assign a cluster to each point.

Finally, Gaussian Mixture Models (GMM) [19] provide a probabilistic ap-
proach to clustering by estimating k Gaussian distributions via Expectation-
Maximization. The expectation step calculates the probability that a point
xxxi belongs to the cluster Cj, and the maximization step updates the pa-
rameters (mean and covariance matrix) of the distributions representing the
clusters to maximize the log-likelihood function. This process is repeated
until convergence. To do so, GMM require to be given the number of com-
ponents (i.e. clusters) and the covariance type. When compared to k-means,
the advantage of GMM is that it is not limited to spherical-shaped clusters.

When evaluating the quality of a clustering C = {C1, ..., Ck}, the Sil-
houette coefficient [20] computes a score representing how well-separated the
clusters are. Similarly, the Bayesian Information Criterion [21] is an alterna-
tive applicable to GMM. These scores can be used to choose the number of
clusters to be found or method-specific parameter.

2.4 Forecasting

Forecasting is a common data science task that makes use of temporal data [22]
to help organizations with capacity planning, goal setting, and anomaly de-
tection. It is required in many situations: for example, deciding whether to
build another warehouse in the next five years requires forecasts of future
demand, and scheduling staff in a call center next week requires forecasts of
call volumes.

The first successful forecasting methods have been proposed around 1950,
some of them being Exponential Smoothing [23] and ARIMA [24], which orig-
inated a wide variety of derived techniques [25]. In the big-data era, where
companies have huge numbers of time series each with their characteristics,
traditional techniques have shown some limitations due to specific model re-

2.4 Forecasting 14
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quirements (Section 2.4.1 and 2.4.2), model inflexibility, necessity of manual
feature engineering, lack of automation, difficulties of dealing with missing
data, and lack of well-performing multivariate models [25].
Recent developments have seen pure deep learning models joining the fields
with inconsistent performance [26], but highlighting the possibility of ex-
ploiting huge datasets to learn a single global model capable of recogniz-
ing complex and sometimes shared time series patterns. Other recent deep
learning research achievements, especially in the natural language process-
ing domain [27, 28, 29], have inspired promising models [30, 31, 26], some
of them having an hybrid architecture that utilizes both statistical and ma-
chine learning (ML) features [32, 33]. Interestingly, the winner of the 2018
M4 competition [32] was a combination of Exponential Smoothing and deep
learning [34], while the top-performing submissions of the 2020 M5 compe-
tition [35], where most of the time series have some kind of correlation and
share frequency and domain, cross-learning ML models have shown their
potential with the top-performing submissions using a weighted average of
several pure ML models.
Other methods, such as the one proposed by Prophet [36], provide an analyst-
in-the-loop approach suggesting that by injecting domain-specific knowledge
into the model it’s still possible to outperform fully automated approaches,
especially with small amounts of data.
Nevertheless, Artificial Neural Network (ANN) based models have only re-
cently started overtaking simpler classical models [32, 35] opening a set of
inspiring possibilities, and the market has seen big companies developing
their own solutions [36, 33, 37, 34] highlighting the necessity for the busi-
nesses of better forecasting techniques.

Despite the forecasting importance, there are still serious challenges as-
sociated with producing reliable and high quality forecasts: time series often
have long term dependencies with nonlinear relationships. Moreover, the
quality of forecasts is heavily affected by model selection, model tuning, and
covariates (e.g. dynamical historical features) selection, where the data sci-
entist has to manually inspect data and inject domain knowledge into the
model [26, 36].

2.4 Forecasting 15
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Figure 6: Four time series examples. Top left: seasonality and cycle; top
right: trend only; bottom left: trend and seasonality; bottom right: random
fluctuations.

The necessity of tailored forecasting models comes from the fact that time
series can be very different from each other, exhibiting complex patterns and
relationships with other time series and data in general.

Nevertheless, time series can often be seen as a composition of a trend, a
seasonal pattern, and a cycle [38] (see Figure 6). A trend exists if there is a
long-term increase or decrease in the data, which can be linear or not, and
can be subject to changes that increase or decrease the trend. A seasonal
pattern occurs when a time series is affected by seasonal factors like the hour
of the day or the day of the week, with fixed and known frequency. Finally, a
cycle occurs when data rises and falls without a fixed frequency, e.g. due to
economic conditions. Cycles are usually longer than seasonal patterns and
have more variable magnitudes.

Trend and cycles are usually combined into a single trend-cycle compo-
nent, often referred as trend for simplicity. Therefore, we can think of a time
series as a combination of a trend-cycle component, a seasonal component,

2.4 Forecasting 16
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and a remainder component containing anything else in the time series. By
assuming additive decomposition we can write:

yt = St + Tt + Rt

where yt is the time series, St the seasonal component, Tt the trend com-
ponent, and Rt the remainder component, all at period t. When considering
multiplicative decomposition, which occurs when the variation of the trend
or of the seasonal component is proportional to the time series level, we can
write:

yt = St ∗ Tt ∗ Rt

To obtain such decomposition the Seasonal and Trend decomposition us-
ing Loess (STL) [39] can be applied, leading to the separation of trend,
seasonality, and remainder as shown in Figure 7.

Given this background, let Z = {zi,1:Ti
}N

i=1 be a set of N univariate time
series where zi,1:Ti

= (zi,1, zi,2, ..., zi,Ti
) and zi,t ∈ R is the value of the i-th time

series at time t. The time series in Z may have different sampling frequencies,
can start at different times, and may have missing values. Furthermore, let
X = {xxxi,1:Ti+τ }N

i=1 be a set of associated, time-varying covariate vectors with
xxxi,t ∈ RD being any useful information that must be known before computing
the forecast up to time Ti + τ (e.g. a holiday flag).
The goal of forecasting [38] is to predict the probability distribution of future
values zi,Ti+1:Ti+τ given the past values zi,1:Ti

, the covariates xxxi,1:Ti+τ , and the
model parameters Φ:

p(zi,Ti+1:Ti+τ |zi,1:Ti
,xxxi,1:Ti+τ , Φ) (2)

which, depending on the model, can be reduced to point forecast by con-
sidering the mean (e.g. µ if the model uses a Gaussian distribution), the
median, or by drawing Monte Carlo samples to approximate the mean. The
choice between probabilistic and point forecast depends on the application:
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Figure 7: Additive decomposition of a time series using STL.
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Category Modeling

Generative p(zi,1:Ti+τ |xxxi,1:Ti+τ , Φ)
Discriminative p(zi,Ti+1:Ti+τ |zi,1:Ti

,xxxi,1:Ti+τ , Φ)

Table 1: Forecasting models.

probabilistic forecast can be used for anomaly detection or when the task
has an asymmetric cost for over and under-predicting.
Equation 2 is a supervised learning problem where the model structure is
usually fixed upfront and we want to learn the model parameters Φ using an
optimization method such as maximum likelihood estimation.

Univariate models learn the model parameters Φ for each individual time
series, while multivariate models are capable of learning a single global model
for multiple time series by sharing the parameters.
As noted by the latest M5 competition [35], nowadays time series models
are typically sufficient for identifying and capturing their historical data pat-
tern, i.e. level, trend, and seasonality. However, relying solely on historical
data fails to effectively account for the effects of holidays and special events.
Moreover, such factors can affect historical data, leading to distorted time
series and consequently models. In such settings, the information from exoge-
nous/explanatory variables, i.e. the covariates xxxi,1:Ti+τ

, becomes of critical
importance to improve accuracy; in fact, recent models such as the ones
discussed later [36, 30, 31] allow the inclusion of these kind of variables.

Time series models can be categorized as generative and discriminative
[40] (Table 1): generative models assume that time series data is generated by
an unknown stochastic process with some parametric structure of parameters
Φ given the covariates X, while discriminative models model the conditional
distribution for a fixed horizon τ . Discriminative models are typically more
flexible since they make less structural assumptions [33].
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2.4.1 Exponential Smoothing

Exponential smoothing [23] is one of the oldest forecasting techniques that
belongs to the generative models class. It is a simple and lightweight state-
space model that smooths random fluctuations by using declining weights on
older data, it’s easy to compute and requires minimum data. The simplest
form of exponential smoothing assumes that all past observations have equal
importance:

ŷT +1 = 1
T

∑︁T
t=1 yt

where ŷT +1 is the forecasted value at time T + 1 knowing past values up
to time T . By introducing decaying weights, the formula becomes:

ŷT +1 = A(yT + ByT −1 + B2yT −2 + B3yT −3 + ...)

where A ∈ [0, 1] and B = 1 − A, A can attenuate the effect of old ob-
servations. The formula can be recursively applied to obtain observation at
T + k, k > 1.
Exponential smoothing has been extended to take into consideration linear
trend and seasonality [23]. The trend can be approximated applying the
same equation above on the time series zt = yt − yt−1 while to model season-
ality its period must be known beforehand.
Note that due to its nature the forecasts produced by Exponential Smoothing
will lag behind the actual trend.

A more complex state-space approach, called Innovation State Space
Model (ISSM) [41], has been proposed to add a statistical model that de-
scribes the data generation process, therefore providing prediction intervals.
ISSM maintains a latent state vector lllt with recent information about level,
trend and seasonality which evolves with time adding a small innovation at
each time step (i.e. the Gaussian noise):

lllt = Ftlllt−1 + gggtϵt, ϵt ∼ N (0, 1)
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where gggt controls innovation strength and Ft is the transition matrix. The
observations become a linear combination of the current state lllt:

yt+1 = aaaT
t lllt + bt + νt, νt ∼ N (0, 1)

The ISSM parameters (Ft, gggt, aaat, bt, νt) are typically learned using the maxi-
mum likelihood principle.

2.4.2 ARMA models

ARMA models are Auto-Regressive models with a Moving-Average compo-
nent, they provide a complementary approach to Exponential Smoothing and
they belong to the generative models class.
The Auto Regressive component of order p, AR(p), predicts the next value
using a linear combination of p previous known values, while the Moving
Average component of order q, MA(q), takes into consideration the average
and the last q differences between the predicted and the actual value. When
combined, they form an ARMA(p, q) model:

ŷt = ARMA(p, q) = AR(p) + MA(q) = ∑︁p
i=1 ϕiyt−i + µ + ϵt + ∑︁q

i=1 θiϵt−i

Unfortunately, ARMA requires the time series to be stationary, i.e. with-
out trends and seasonality. To make a time series stationary and apply
ARMA models, Box and Jenkins [42] proposed an approach by: (1) provid-
ing guidelines for making the time series stationary, (2) suggesting the use
of autocorrelations and partial autocorrelation for determining appropriate
values for p and q, (3) providing a set of computer programs to identify ap-
propriate values for p and q, and (4) estimating the parameters involved.
The approach is known as the Box-Jenkins methodology to ARIMA models,
where the letter “I” means “Integrated”, reflecting the need for differencing
the time series to make it stationary. Furthermore, ARIMA can deal with
seasonality by applying seasonal differencing, but requires the seasonality
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period to be known beforehand. This extension is called SARIMA.
The more general SARIMA(p, d, q, P, D, Q, m) model is defined by 7 pa-

rameters:

• p: trend auto-regression order

• d: trend difference order

• q: trend moving average order

• P : seasonal auto-regressive order

• D: seasonal difference order

• Q: seasonal moving average order

• m: seasonal period steps

Besides the availability of the well defined 3-steps Box-Jenkins frame-
work, a decent amount of human work was still required to find the right
values for these parameters. To tackle this issue many approaches have been
developed, some of them being made available only by commercial software.
A well known automated solution has been implemented by [43], where they
make use of unit root tests to find the differencing orders and the Akaike’s
information criterion (AIC) to select the best combination of p, q, P , and Q.
AIC introduces a model complexity penalty to avoid overfitting data.
Nevertheless, the number of steps of the seasonal period must still be given by
the analyst, although it’s often a well known seasonality (e.g. daily, weekly,
yearly).

The vector ARIMA (VARIMA) model has been proposed as a multi-
variate generalization of the univariate ARIMA model, but in general Vector
Auto-Regressive (VAR) models tend to suffer from overfitting, providing poor
out-of-sample forecasts [25].

2.4.3 Prophet

Prophet [36] is a solution developed by Facebook that provides an “analyst-
in-the-loop” approach (Figure 8) and a flexible model that fits a wide range
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Figure 8: Prophet analyst-in-the-loop approach.

of business time series. The model simplifies the process of adding domain
knowledge about the data generation process and reduces the time required
to obtain high quality forecasts. Finally, Prophet can automatically han-
dle time series with trend changes, multiple seasonality, and holidays effects.
Prophet model is a Generalized Additive Model (GAM) [44] that decomposes
trend, seasonalities, and holidays combining them in the following equation:

y(t) = g(t) + s(t) + h(t) + ϵt

where g(t) is the trend function which models non-periodic changes, s(t) is
the seasonality function that models periodic changes like daily and weekly
seasonality, and h(t) represents the effect of holidays which occur on poten-
tially irregular schedules. Finally, the error term ϵt represents anything not
accommodated by the model, which is assumed to be normally distributed.
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The GAM formulation can be easily extended to add new components as nec-
essary and it can fit very quickly using optimization methods like L-BFGS
[45], making the forecasting problem a curve-fitting problem which allows
non-regularly spaced measurements (e.g. due to missing values).
The trend model g(t) can be a saturating growth model capable of dealing
with a limited population growth (e.g. the number of subscriptions limited
by the population of a country) or a piece-wise linear model. The latter has
the following form:

g(t) = (k + aaa(t)Tδδδ)t + (m + aaa(t)T γ) (3)

where k is the growth rate, δδδ is the rate adjustments vector, m is the offset
parameter, and γj is set to −sjδj to make the function continuous.
Therefore, δδδ ∈ RS defines S trend change points occurring at time sj, with
δj being the rate adjustment. The rate at time t is k + ∑︁

j:t>sj
δj, which is

more cleanly defined by a vector aaa(t) ∈ {0, 1}S such that:

aj(t) =

⎧⎪⎨⎪⎩1 if t ≥ sj

0 otherwise

By using such aaa(t) notation, the rate at time t is k +aaa(t)Tδδδ, which is part of
Equation 3.
The change points sj can be specified by the analyst or they can be auto-
matically selected by putting a sparse prior on δδδ, e.g. a Laplace prior.
The seasonality function s(t) is modeled using Fourier series, meaning that
a seasonality with period P can be approximated by:

s(t) = ∑︁N
n=1(an cos (2πnt

P
) + bn sin (2πnt

P
))

which can be automatically estimated finding 2N parameters, i.e.
βββ = (a1, b1, ..., aN , bN). By choosing N , the series can be truncated at differ-
ent depths allowing to fit seasonal patterns that change more or less quickly,
possibly leading to overfitting. Finally, the initialization βββ ∼ N (0, σ2) allows
to impose a prior on the seasonality by choosing σ.
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The holiday model h(t) can deal with predictable shocks that cannot be mod-
eled by a smoothed Fourier series. An example could be the increase of units
sold during Easter, which doesn’t falls a specific day. An analyst can provide
a list of dates of interest Dj for each holiday j, so the holiday model becomes:

h(t) = Z(t)κκκ

with Z(t) = [1(t ∈ D1), ..., 1(t ∈ DL)] and κκκ initialized as κκκ ∼ N (0, v2),
like it was done with seasonality.
The Prophet solution is capable of achieving lower prediction errors when
compared to traditional methods like Exponential Smoothing and ARIMA,
with very quick fitting time.

2.4.4 ML models

The forecasting field has seen past practitioners proposing novel Neural Net-
works (NN) architectures that could not be considered competitive against
simpler univariate statistical models. However, we are now living in the Big
Data era: companies have gathered huge amounts of data over the years con-
taining important information about their business patterns, unlocking the
possibility of learning effective multivariate models. Big data in the context
of time series doesn’t necessarily mean having single time series with a lot
of historical data, but it rather means that there are many related time se-
ries from the same domain [46]. In such context, models capable of learning
from multiple time series have emerged [35] outperforming traditional ones
while alleviating the time and labor-intensive manual feature engineering by
making no explicit assumptions on data and therefore being more flexible
when compared to traditional techniques such as ARIMA and Exponential
Smoothing.

All recent successful models are based on Recurrent Neural Networks
(RNN) [47, 46], which demonstrated state-of-the-art performance in various
applications handling sequential data like text, audio, and video where some
kind of state must be kept while processing. RNNs can be a combination of
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Figure 9: Architecture of an Elman recurrent unit, LSTM, and GRU. The
output at step t − 1 influences the output at step t.

recurrent units like Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) (see Figure 9). By using recurrent edges connecting adjacent
time steps (i.e. feedback loops), RNNs introduce the notion of time to the
model: at time step t the network receives the current input xxx(t) plus the
previous network state hhh(t−1) producing a new context hhh(t) (often called hid-
den state) and eventually an output ooo(t). The context acts as a memory of
what the network has seen so far and influences the output, unlocking state-
ful decision-making.
However, the first recurrent unit (i.e. the Elman recurrent unit) suffered from
the vanishing/exploding gradient problem [48] which causes the inability of
carrying long-term dependencies. To address this shortcoming, the Elman
recurrent unit has been extended leading to improved variants such as LSTM
and GRU.

LSTM uses two components for its state: the hidden state and the in-
ternal state, containing short-term and long-term memory respectively. Fur-
thermore, LSTM introduces a gating mechanism made of an input, forget,
and output gate used to filter what should or should not be kept of the
state in the next step (for example, to disable the output contribution to the
LSTM state just set the output gate to zero). GRU is a simpler version of
LSTM with fewer gates (update and reset) which allows faster computations
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Figure 10: RNN architectures. Red rectangles are input vectors, blue rect-
angles are output vectors, and green rectangles are recurrent units such as
LSTM or GRU which share the same weights while their state evolves from
left to right.

and is less prone to overfitting due to the lower number of parameters.
Recurrent units (e.g. LSTM, GRU) can constitute RNNs in various

types of architectures, depending on the application: a many-to-one (or
sequence-to-vector) architecture can be used for sentiment classification, one-
to-many (or vector-to-sequence) for music generation, and many-to-many (or
sequence-to-sequence) for machine translation (see Figure 10).

To obtain such architectures a single LSTM can be used, in that case,
the green LSTM in Figure 10 is unfolded such that in the whole processing
of the input the same weights are used, while the internal state of the LSTM
evolves. Nevertheless, multiple LSTMs can be stacked together such as in
Figure 11 composing multiple layers and increasing the expressiveness of the
network. Usually when forecasting the size d of the output (or the internal
state of an LSTM) doesn’t match the dimension of the forecasting horizon H.
In such cases, another neural layer is added to map ooo(t) ∈ Rd to the forecast
yyŷ(t) ∈ RH . This neural layer is trained together with the LSTM, with the
loss (e.g. the forecasting error |ŷ − y|) being calculated per each time step
and accumulated until the end of the time series after which backpropagation
through time is executed.

Forecasting requires a many-to-many architecture: the input is a se-
quence, i.e. a time series, and the output is another sequence that is a
continuation of the input sequence, i.e. a forecast of horizon H. In such

2.4 Forecasting 27



2 CONTEXT AND STATE OF THE ART 28

Figure 11: 2-layers stacked LSTMs.

context, the Sequence to Sequence (S2S) [28] models have proven to be suc-
cessful. S2S models are made of two RNNs: an encoder followed by a decoder,
as shown in Figure 12. The encoder is used to extract features from known
time series data in order to produce a context vector (e.g. the LSTM hidden
state) that is given as input to the decoder to produce forecasts. Examples
of models based on S2S are DeepAR [30] and Multi-Horizon Quantile Recur-
rent Forecaster [49], explained later. By defining an encoder and a decoder,
a model is allowed to see a limited amount of past values and can predict a
fixed horizon, which means that any context and prediction length change
requires re-training.

The decoder at time step t+1 can receive as input the prediction made at
step t, but many forecasting problems have long periodicity (e.g. 365 days)
and may suffer memory loss during forward propagation. To overcome the
long-term dependency issue, [50] proposed a recurrent unit which computes
a hidden state hhh(t) not only based on previous state hhh(t−1) but also a specific
set of other past states (e.g. (hhh(t−2)), ...,hhh(t−D))) facilitating the ability to
keep long dependencies. This technique is called skip-connection. However,
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Figure 12: Sequence to sequence model.

the naive alternative adopted by [30, 49] obtains the same effect by directly
feeding past time series values (yt−1, ..., yt−D) as feature inputs to the decoder.

In general, the idea of feeding both time-dependent and time-independent
features as input (often called exogenous variables), along with the time series
data points, has proven to be successful: when dealing with huge datasets,
assigning time-independent (or static) features such as the category of the
time series (e.g. “clothing” in the context of shopping) allows the model to
learn both global and category-specific patterns, while time-dependent (or
dynamic) features like the day of the week, holidays, and relevant events
allow the model to learn and distinguish seasonality patterns from one-shot
events like anomalies, reducing the risk of overfitting. However, such dynamic
features must be known beforehand when computing forecasts, and in some
contexts, they can be used to make conditional forecasts, e.g. “How many
units of product X will I sell if I set the price to Z?”.

The usage of such a combination of features facilitates the learning of a
global model exploiting information from many time series simultaneously.
For NNs this means that weights are learned globally, but the state is main-
tained for each time series. Furthermore, the global model can be used to
forecast time series that have never been seen during training and lack of
data, as the model can still use patterns learned from the training set.
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2.4.5 DeepAR

DeepAR [30] is a discriminative model capable of probabilistic forecasts in
the form of Monte Carlo samples, it is based on Sequence to Sequence (S2S)
[28] and learns a global model from multiple time series.
Alongside a model, DeepAR proposes a solution to the issue of dealing with
time series having very different magnitudes, which are known to ruin the
learning of an effective global model reducing the effectiveness of normaliza-
tion techniques on some datasets [30].

DeepAR goal is to model the conditional distribution:

P (zzzi,t0:T |zzzi,1:t0−1,xxxi,1:T )

where zzzi,t0:T = [zi,t0 , zi,t0+1, ..., zi,T ] is the future (or prediction range), zzzi,1:t0−1

is the past (or conditioning range), and xxxi,1:T are covariates that must be
known for all time points.

DeepAR assumes that its distribution QΘ(zzzi,t0:T |zzzi,1:t0−1,xxxi,1:T ) consists
of a product of likelihood factors:

QΘ(zzzi,t0:T |zzzi,1:t0−1,xxxi,1:T ) = ∏︁T
t=t0 QΘ(zi,t|zzzi,1:t−1,xxxi,1:T ) = ∏︁T

t=t0 l(zi,t|θ(hhhi,t, Θ))

which is parameterized by the output hhhi,t of an autoregressive RNN

hhhi,t = h(hhhi,t, zzzi,t−1,xxxi,t, Θ) (4)

where h is implemented by multi-layer RNN with LSTM cells, meaning that
hhhi,t is given by the internal state of the LSTMs as shown in Figure 13.
l(zi,t|θ(hhhi,t) is the likelihood of a fixed distribution (e.g. Student’s t-distribution)
whose parameters are given by a function θ(hhhi,t, Θ) of the network output
hhhi,t. The model is autoregressive and recurrent as it uses the previous output
z̃i,t and state hhhi,t as input, which potentially means that prediction errors at
time t will negatively affect predictions at time t > 1.
The initial state hhhi,t0−1 of the decoder shown in Figure 13 is obtained using
an encoder with the same architecture and weights that computes Equa-
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Figure 13: DeepAR decoder network.

tion 4 for t = 1, ..., t0 − 1. The forecasts zzz̃i,t0:T are obtained by sampling
z̃i,t ∼ l(·|θ(hhhi,t, Θ)), where θ(hhhi,t, Θ)) are the parameters (e.g. mean and vari-
ance) of the distribution fixed during training and are directly predicted by
the decoder network.

The likelihood l(z|θ) determines the noise model and should match the
statistical properties of the data: a Gaussian likelihood can be used for real-
valued data, a beta likelihood for data in the unit interval, and a negative-
binomial likelihood for positive count data. For example, the Gaussian likeli-
hood is parameterized using its mean and standard deviation, i.e. θ = (µ, σ)
where µ is obtained with an affine function of the network output hhhi,t and
the standard deviation is obtained by applying an affine transformation fol-
lowed by a softplus activation to ensure σ > 0. Therefore, each likelihood
with parameters θ requires a mapping from the decoder state hhhi,t to θ whose
parameters are learned by the network.

Without any modification, in order to handle different scales, the network
should learn to scale the input to an appropriate range and then invert the
scaling. As the network has a limited operating range and some datasets
exhibit a power-law of scales (such as the Amazon dataset of [30]), this issue
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was addressed by scaling the input values (e.g. z̃i,t and zi,t) using an item-
dependent factor νi. Then, before drawing samples from the distribution,
the output of the network (e.g. the mean µ of the Gaussian) is multiplied
by the scale. The scaling factor ν is set to be the average value of the
time series: νi = 1 + 1

t0

∑︁t0
t=1 zi,t. Finally, rather than training the network

choosing random time series from the dataset, the probability of choosing a
time series is proportional to its scale factor νi: by non-uniformly sampling
during training, imbalanced datasets with fewer large scale time series are
used more effectively.

2.4.6 DeepState

DeepState [31] is a generative model that combines state space models [41]
with deep learning. The idea is to use a latent state lllt ∈ RD to encode
time series components such as level, trend, and seasonality patterns, and
parameterize the linear state space model (SSM) by using a recurrent neural
network (RNN) whose weights are learned jointly from multiple time series
and covariates.
The main advantage of SSM is that the model is easily interpretable, but
when used with traditional models such as ARIMA and Exponential Smooth-
ing it results in a univariate model that still requires a lot of human work
that cannot be easily recycled for other time series. DeepState solves this
issue by using neural networks to learn a global model from multiple time
series without making strong assumptions reducing the human effort, and
solving the common interpretability issue of neural networks by fusing them
with SSMs.

The goal of DeepState is to produce probabilistic forecasts for each time
series i = 1, ..., N given the past:

p(zzzi,Ti+1:Ti+τ |zzzi,1:Ti
,xxxi,1:Ti+τ ; Φ)

where zzzi,Ti+1:Ti+τ are the τ future values, zzzi,1:Ti
are the known past values,

xxxi,1:Ti+τ are the covariates that must be known beforehand for t = 1, ..., T ,
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and Φ is the set of learnable parameters of the model (i.e. the RNN).
DeepState makes the assumption that time series are independent of each
other when conditioned on the associated covariates xxxi,1:T . Nevertheless, the
model is still able to learn and share patterns across time series as Φ is shared
(and learned) between all of them.

SSMs use a latent state lllt ∈ RL encoding time series components (level,
trend, seasonality) that evolves over time with linear transitions at each time
step t:

lllt = Ftlllt−1 + gggtϵt, ϵt ∼ N (0, 1)

where Ft is the transition matrix and gggtϵt is a random innovation compo-
nent. The latent state can be inspected to check and potentially change the
encoded trend and seasonality, and is also used to obtain predictions. For
example, considering a linear Gaussian observation model:

zt = yt + σtϵt, yt = aaaT
t lllt−1 + bt, ϵt ∼ N (0, 1) (5)

with the initial state lll0 ∼ N (µµµ0, diag(σσσ2
0)), aaat ∈ RL, σt ∈ R>0, and bt ∈ R

varying over time.
Therefore, the state space model of one time series is fully described by
Θt = (µµµ0,σσσ0,FFF t, gggt, aaat, bt, σt), ∀t > 0, differing from the classical settings
where Θ doesn’t change with time.
To obtain Θi,t for the time series i, the DeepState model learns a mapping
Ψ from the covariates xxxi,1:Ti

to the parameters Θi,t:

Θi,t = Ψ(xxxi,1:T , θ)

that is parameterized from a set of parameters θ learned jointly from the
entire dataset of time series.
More precisely, the mapping Ψ is implemented by the RNN shown in Figure
14 having a stacked architecture of LSTM cells. Its parameters θ are learned
by maximizing the likelihood during training.
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Figure 14: DeepState network.

Finally, once the mapping is learned and given xxxi,1:Ti
, the data zzzi,1:Ti

is
distributed according to the marginal likelihood:

p(zzzi,1:Ti
|xxxi,1:Ti

, θ) = pSS(zzzi,1:Ti
|Θi,1:Ti

)

= p(zi,1|Θi,1)
∏︁T

t=2 p(zi,t|zi,1:t−1, Θi,1:t)

=
∫︁

p(lll0)[
∏︁Ti

t=1 p(zi,t|lllt)p(lllt|lllt−1)]dlll0:Ti

that is analytically tractable in the linear-Gaussian case.
To produce a forecast, the posterior of the last latent state p(lllT |zi,1:Ti

) is com-
puted using the observations zi,1:Ti

, then the RNN is fed with the covariates
xi,1:Ti+τ (see Figure 15) while the transition equation is recursively applied,
drawing Monte Carlo samples using Equation 5.

2.4.7 Multi Quantile Recurrent Forecaster

Multi Quantile Recurrent Forecaster (MQCNN) [49] is a Sequence-to-Sequence
RNN-based model capable of producing multi-horizon quantile forecasts.
[49] proposes a forking-sequences approach that improves the training stabil-
ity and performance of encoder-decoder architectures by efficiently training
on all-time points where a forecast could be created. Furthermore, the model
can be used with different encoders, but the best results were achieved using
a CNN-based encoder.
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Figure 15: DeepState forecast illustration.

To train a quantile regression model for a quantile q ∈ [0, 1] the loss of a
single forecasted value is given by:

Lq(y, ŷ) = q max(0, y − ŷ) + (1 − q) max(0, ŷ − y)

where by setting q = 0.5 the model will be trained to simply predict the me-
dian. Note that by predicting quantiles the model is robust since it doesn’t
make distributional assumptions (e.g. like DeepAr [30]).
Eventually, more quantiles can be considered such that the total loss is given
by:

∑︁
t∈T

∑︁
q∈Q

∑︁K
k=1 Lq(yt+k, ŷ

(q)
t+k)

where T contains the forecast creation times, Q the quantiles, and K is
the size of the horizon to forecast. Furthermore, different quantiles can be
associated with different weights, which could be useful for tasks with an
asymmetric cost for over and under-predicting.

The general architecture of a multi-quantile recurrent forecaster is shown
in Figure 16. The encoder is fed with the time series history producing hid-
den states ht, then a global neural network summarizes the encoder output
into an horizon-agnostic context ca plus a horizon-specific context ct+k for
k = 1, ..., K using the hidden state ht and the future covariates xt+1:t+K :
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Figure 16: Multi-quantile recurrent forecaster architecture.

(ct+1,...,ct+K ,ca) = mG(ht, xt+1:t+K)

where each context ci can have an arbitrary dimension. The idea behind
this choice is that ca should capture relevant information that is not time-
sensitive, while ct+k carries awareness of the temporal distance between the
forecast creation time t and the specific horizon.
Then, these contexts are used by a local neural network to compute the quan-
tiles of a specific horizon t+k for each k = 1, ..., K using the horizon-agnostic
context and the horizon-specific context, plus the associated covariates:

(ŷ(q1)
t+k), ..., ŷ

(qQ)
t+k ) = mL(ct+k, ca, xt+k)

The local neural network implementing mL has its parameters shared across
all the horizons.

The motivation for replacing the standard RNN-based decoder is that the
horizon-specific context should have already captured the flow of temporal
information. Furthermore, by not feeding predictions recursively there is
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Figure 17: A stack of dilated causal convolutional layers.

no error accumulation and following the forking-sequences training scheme
proposed by [49] the training time is dramatically reduced while the process
of updating the gradients is stabilized, leading to better forecasts with a
reduced effort.

The encoder is not limited to be a simple LSTM-based RNN: [49] achieved
the best results using a CNN-based encoder made of a stack of dilated causal
convolutional layers, similarly to the work done by WaveNet [51].
Dilated causal convolutional layers, shown in Figure 17, form long-term con-
nections creating large receptive fields with just a few layers, thus preserving
computational efficiency. The result is the so-called MQ-CNN model.

2.5 Workload Forecasting

The ability to forecast the workload of an IT system opens the possibility of
proactively adapting the system according to the future demand and making
smarter decisions, keeping the Quality of Service (QoS) high while reduc-
ing the infrastructure costs. This section lists some applications of workload
forecasting and how it has been approached.
Recent years have seen companies moving from self-hosted to cloud-hosted
IT services, where a public provider is paid to lend on-demand computing
power likewise utilities such as electricity, gas, and water. This paradigm,
called cloud computing [52], enabled the possibility of flexibly adapting the
capacity of a system according to the demand, potentially heavily reducing
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Figure 18: Cloud vs traditional computing.

the infrastructure costs. Figure 18 highlights the difference of cloud com-
puting with the traditional paradigm, where to avoid losing customers the
capacity of the system must be able to serve the highest peak of demand,
causing an over-provisioning of resources when the demand is low.

A scalable system can acquire new resources in a matter of minutes, thus
quickly reacting to changes in the demand. However, the demand a system
is subject to can as quickly increase, making a reactive approach often in-
appropriate due to spikes in the demand that can cause disservices or even
system crashes [53], leading to a loss of customers. In this context, a work-
load forecasting module that can make reliable forecasts about the upcoming
workload allows to proactively adapt the system, reducing costs while pro-
viding high QoS. Such a module must predict the workload by modeling time
series with sub-hourly frequencies, representing metrics such as CPU usage
and the number of incoming requests.
To do so, [53] used ARIMA to predict the number of end users’ future requests
to meet the QoS targets while reducing the resources utilization, focusing on
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specific request patterns that exhibit seasonal behavior. [54] used ARMA
models to predict the upcoming workload and proactively autoscale the IT
system under study, focusing on a small number of machines and leaving the
exploration of the feasibility of their solution with modern workloads and a
large number of resources for future work. In order to deal with huge num-
bers of machines, with the goal of efficiently provision computing resources
in the cloud, [55] adopted the approach of first grouping machines with high
correlation and then making predictions about individual machine’s workload
based on the groups found on the previous step using Hidden Markov Model.
[56] proposes the usage of LSTM-based neural networks to forecast the work-
load in large-scale computing centers, highlighting that training models on
one-dimensional time series doesn’t capture useful similarities across multiple
time series.

Another task that makes use of workload forecasting is job scheduling. In
the context of cloud service providers, running database backups while there
are peaks of customer activity results in inevitable competition for resources
and poor QoS. [57] proposed an automated solution to schedule backups dur-
ing intervals of minimum activity comparing the forecasting models proposed
by [37, 33, 36] in terms of accuracy and scalability. Interestingly, they dis-
carded the ARIMA model due to its long execution time. Furthermore, by
analyzing the typical customer activity patterns on PostgreSQL and MySQL
servers, [57] discovered that the majority of the activity can be classified ei-
ther as stable or as a daily or weekly pattern: less than 1% of the servers
didn’t follow either a daily or weekly pattern.

The application of novel forecasting techniques such as the ones based
on a neural network has still to be explored. Nevertheless, the flexibility of
such models, especially when compared to ARIMA and Exponential Smooth-
ing, is promising: potentially dealing with huge numbers of time series with
minimum effort, while keeping the forecasting accuracy high, would make
workload forecasting much more accessible to many companies, leading to
better services and lower costs.
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3 Proposed solution and approach

At the time of writing, [1] optimizes IT systems on a staging environment
(a replica of the real system) using artificial workloads that have no impact
on the user experience. The goal of this work is to extend the underlying
tuner so it can be applied to the actual IT system running under the real
workload, with the advantages of reducing the effort explained in Section 2.2
and obtaining performance measurements directly from the “real” system.
To do so, as detailed in Section 2.1.1, we need a workload characterization
and a workload forecasting module.

The main challenge when tuning a system while it is serving its clients
is to keep QoS levels high and at the same time quickly find good configu-
rations for the system. Furthermore, we want the tuning system to be easy
to configure and apply in order to require the minimum amount of human
work. Therefore, the requirements for the solution are to be autonomous and
reliable.

The autonomous requirement translates to the need for a workload fore-
casting module that can train good models without having to inspect the
time series composing the workload, and possibly without having to inject
domain knowledge about the system being optimized. The reliability require-
ment requires the models to be as accurate as possible. Furthermore, as the
solution is running in real-time, it must be possible to train the forecasting
models in a decent amount of time in order to incorporate new data, and the
prediction queries must be satisfied in a matter of seconds.

As stated in Section 2.1.1, we are interested in finding short time windows
during which the workload will be stable, along with the average values the
workload time series will assume.
Formally, given the forecast Ỹ t1:t2 = (yyỹ1

t1:t2 , ..., yyỹn
t1:t2) at time t, where yyỹi

t1:t2 , i ∈
[1, n] is the forecast of the i-th time series composing the workload, we want
to know if the window ωt1:t2 assuming values Ỹ t1:t2 , starting at time t1 ≥ t
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and ending at time t2 > t1 is stable:

sΘ(Ỹ t1:t2 , Yt0:t1) =

⎧⎪⎨⎪⎩1 if Ỹ t1:t2 is stable

0 otherwise
(6)

where sΘ is a function with hyper-parameters Θ that marks whether a fore-
casted window is stable or not, given the historical values Yt0:t1 . The forecast
Ỹ t1:t2 is also used by the tuner to suggest a workload-tailored configuration.
To obtain such forecast, the forecasting module explained in Section 3.2 was
developed, while the component developed to implement the function sΘ is
detailed in Section 3.3. Finally, the workload characterization module is pre-
sented in Section 3.4.
The interaction of such components is depicted in Figure 19.

Figure 19: Solution architecture: the Tuner repeatedly reads the workload
from the IT System and sends it to the Forecasting Module. When ready,
the Tuner asks the Forecasting Module to predict the upcoming workload.
Then, it uses the Stability Module to check whether the predicted workload
is stable or not, eventually applying a new configuration to the IT System.
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3.1 Online Contextual Gaussian Process Tuner

The tuner must optimize directly the production system in real-time, with the
help of the previously mentioned forecasting and stability modules that allow
the tuner to suggest workload-tailored configurations when the workload is
predicted to be stable. To do so, before starting the tuning process, made of
iterations (or experiments) where a new configuration is repeatedly applied
and evaluated, we must collect enough workload data in order to train the
forecasting models and gather knowledge about the workload (see Section
3.4 for details). As stated by [57], a significant number of workloads follow
a daily or a weekly seasonality. Therefore, we chose to dedicate at least one
week to data collection.

After the collection period has ended, the online tuning process of the IT
system can start. The tuning process is made of experiments of duration up
to t2 − t1, that is the length of the window ωt1:t2 on which a configuration is
applied and its outcome is measured. These experiments are performed when
the upcoming workload is predicted to be stable. However, it can happen
that an experiment gets invalidated due to an early stop condition such as
the violation of constraint (see Section 2.1.1).

After a forecast is made, the experiment develops and the true workload
reveals itself. When comparing the predicted with the actual workload, two
(bad) cases can occur: the predicted average workload is different from the
true average workload, or the stability prediction is not correct (e.g. predicted
stable but was unstable). The latter case is further detailed by the four sub-
cases shown in Table 2. The most dangerous case occurs when we predict
that the workload will be stable but actually it won’t (i.e. false positive
case): in such case, the tuner may suggest a configuration that leads to low
QoS, ruining user experience. However, if we missed a stable window (i.e.
false negative case) we just lengthened the tuning process, which may be
acceptable depending on the context. In case of false positives, we chose
to exclude the experiment results from the knowledge base of the tuner.
The reason is that the evaluation of an experiment requires us to measure
the average performance of the configuration over the tuning window, and
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Case Outcome

Predicted stable, revealed stable (TP) Experiment chance taken
Predicted stable, revealed unstable (FP) Experiment failed
Predicted unstable, revealed unstable (TN) Experiment not available
Predicted unstable, revealed stable (FN) Experiment chance lost

Table 2: Window stability outcomes. TP, FP, TN, FN stands for True
Positive, False Positive, True Negative, and False negative respectively.

an unstable workload may lead to unrealistic measurements (for example, a
good configuration may be associated with a constraint violation caused by
a quick spike in the workload)..
Similarly, we could face issues if the predicted and true windows are stable,
but the actual average workload differs from the real average: the tuner
would suggest a configuration tailored for a workload that is not the real
one. In such cases, when adding the experiment to the knowledge of the
tuner, we replace the average forecasted workload with the true average.
By doing so, we may augment the knowledge base with a point that that
was not suggested, i.e. that doesn’t maximize the acquisition function (see
Section 2.1). However, by replacing the associated workload, the point can
still provide useful information to the tuner.

The flowchart of the tuning process is depicted in Figure 20. In summary,
each experiment is made of the following steps:

1. Forecast the upcoming workload Ỹ t1:t2 .

2. Apply sΘ(Ỹ t1:t2 , Yt0:t1) to find whether the upcoming workload Ỹ t1:t2 is
stable.

3. If the upcoming workload is predicted to be unstable stop the experi-
ment and go back to step 1, otherwise continue.

4. Ask the tuner a new configuration x given the average of the predicted
workload Ỹ t1:t2 and the knowledge base (initially empty).

3.1 Online Contextual Gaussian Process Tuner 43



3 PROPOSED SOLUTION AND APPROACH 44

5. Apply the configuration x and monitor the state of the system.

6. While t ∈ (t1, t2), check if any constraint violation occurred. If a vi-
olation occurred, check if it happened under an unstable workload by
applying sΘ(Ỹ t:t2 , Yt0:t). If the workload was stable, add the violation
caused by the configuration to the knowledge base, otherwise discard
the experiment. Go back to step 1.

7. When t = t2, check if the workload was actually stable applying
sΘ(Yt1:t2 , Yt0:t1). If it was stable: add the configuration-outcome pair to
the knowledge base, otherwise discard it.
Then, repeat from step 1.

It may happen that that forecasting module is called multiple times con-
secutively while the workload is unstable. To reduce the computational re-
quirement, especially when deep learning models are used, forecasts are done
for a window of length longer than the experiment, so that the same forecast
can be used multiple times.

Before the tuner is queried for a new configuration, the workload char-
acterization module groups the knowledge base by workload type (which are
automatically detected) so that the performance of the system is normalized
according to the related workload type (see Section 2.1.1 and 3.4 for more
details).

The reason for discarding violations that occur when the workload is un-
stable is that such violations may be caused by a difference between the
predicted workload, that is used by the tuner to suggest a configuration, and
the real workload, that may not coexist with that suggested configuration
(e.g. an abnormal spike in the workload). In these cases, we drop the exper-
iment results and start a new one. Furthermore, when a violation occurs, we
quickly resort to the vendor (or baseline) configuration. An alternative ap-
proach could use the best configuration found so far for the current workload
type.

Finally, when an experiment completes (i.e. at step 7) we store the eval-
uated point in the knowledge base using the true average workload rather
than the predicted one.

3.1 Online Contextual Gaussian Process Tuner 44



3 PROPOSED SOLUTION AND APPROACH 45

Figure 20: Tuning flowchart.
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It is important to note that both the forecasting and workload character-
ization modules are working together with a tuner that repeatedly applies
new configurations to the system, and each new configuration will likely have
an impact on some properties of the system being optimized, such as CPU
and memory usage. If the workload being characterized and forecasted in-
cludes these properties, the forecasting models will face issues modeling time
series with unpredictable changes caused by configuration changes, and the
workload characterization module will not be able to objectively character-
ize workloads. Therefore, such system properties must not be part of the
workload. In general, we characterize the workload using metrics that are
not affected by a configuration unless it has catastrophic consequences on
the system (e.g. a service no longer available). For example, the number
of users connected to the system and the read/write ratio satisfy that con-
straint, where the former gives an idea of the amount of work requested to
the system, while the latter suggests the type of such work.

After N iterations, the tuner will eventually converge to a good configu-
ration for each type of workload. At that point, we can stop the tuner and
use only the forecasting module to proactively apply such configurations.

Finally, note that the data collection time is exploited only by the fore-
casting module to train its models with a decent amount of history: the BO
tuner doesn’t make use of such time and it is therefore (busy) waiting until
the end of the week. As a consequence, the first configuration suggestion
will resort to the BO prior, which will likely lead to bad QoS levels. We
could boost the suggestion of the first configurations by sampling the per-
formance of the baseline configuration during the data collection period in
order to initialize the knowledge base. However, by doing so the size of the
knowledge base would quickly grow, slowing the actual tuning process (the
complexity of GP fitting is O(n3)). Therefore, such improvement requires us
to summarize the knowledge base to reduce its size and is left as future work.
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3.2 Forecasting Module

As noted in Section 2.4, different models may achieve different results for
the same time series, depending on their properties (e.g. patterns, trends,
cycles) and the available amount of data. Therefore, the forecasting module
was developed such that it can wrap a different prediction model for each
time series composing the workload. The models that have been included in
the module are Prophet (Section 2.4.3), DeepAR (Section 2.4.5), DeepState
(Section 2.4.6), and MQCNN (Section 2.4.7), plus two naive models that re-
peat the value of the previous day and the previous week. Besides Prophet
and the naive models, the remaining can be used as multivariate models.
The module uses a well-defined model interface so that it is easy to integrate
new models.
Prophet is intended to be used when there is a small amount of data or when
time series exhibit clear and strong seasonality patterns, while deep learning
models should be used when more data is available.
If a time series exhibit a very strong daily or weekly pattern we can resort
to the naive models, which are much lighter. In order to favor such lighter
models, we could penalize complexity, for example by using the Akaike in-
formation criterion.
Note that once the Prophet model is fitted it makes the same predictions
independently from new data. On the other side, the deep learning models
use the latest data each time a prediction is requested, allowing them to react
to time series changes without re-fitting. However, the time required to fit
a Prophet model is much less when compared to any neural network-based
model in general.

The usage of the module is quite simple: as time advances, it will be called
to add new data with a given frequency, eventually re-fitting the models to
include new information. Meanwhile, the module can be called at any time
to predict the upcoming workload.

In order to be configured, the Forecaster class accepts a JSON-formatted
text that associates each time series with a model, as shown in figure 21.
Finally, the Forecaster class provides utility methods to evaluate the accuracy
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of the predictions so that different models can be evaluated and the best one

Figure 21: Forecasting Module JSON configuration. The group property was
used to build a DeepAR multivariate model on the time series n requests1
and n requests2. The params property takes any model-specific parameter.

3.2 Forecasting Module 48



3 PROPOSED SOLUTION AND APPROACH 49

selected (see Section 4.1).
The implementation of DeepAR, DeepState, and MQCNN uses GluonTS

[33], with a few modifications. All these models use static and dynamic
features, that are used both during training and forecasting. Static features
allow the deep learning models to learn time series-specific behaviors when
training on multiple time series. Therefore, the forecasting module adds a
category to each time series when training a multivariate model, so that
when forecasting the model can use the patterns learned from a particular
time series. Dynamic features contain information that changes over time
and must be known beforehand when requesting a forecast. Examples of
dynamic features are time features such as the day of the week or the hour of
the day, that the model can use to incorporate time-related behaviors such
as working hours.

RNN-based forecasting models unroll a specific amount of past values to
make predictions. The amount of data should be limited to avoid making
the neural network too expensive to train and compute forecasts, with the
consequence that the network may not have the opportunity of incorporating
long-term dependencies. This is especially true for time series with an inter-
val of a few minutes: feeding and training a network with the last week of
data would require to unroll the RNN up to ten thousand times (see Section
2.4). Since this is not feasible, in order to overcome such an issue DeepAR is
fed with lag features, which are the values assumed by the time series at some
points in time before computing the forecasts (e.g. one week before and one
month before). These lag features have been customized to enforce the mod-
eling of a weekly seasonality. Furthermore, to balance noisy environments,
the lag features include a neighborhood of the lagged value.

Similarly, MQCNN uses dilated causal convolutions to learn long-term
dependencies. The default structure of the dilated convolutions has been
parameterized so that the dilation can follow a power of two.

Finally, the default Prophet model has been changed to accommodate
stronger weekly seasonality by increasing the dedicated number of Fourier
terms. To overcome overfitting issues, the choice of the Prophet parameters
(e.g. the seasonality prior scale) can be performed with cross-validation
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using the last week of data. Note that by performing such validation on the
last week of data the choice of the parameters is biased towards being more
correct on recent data.

3.3 Stable Window Finder

As explained in Section 3, we must run tuning experiments when the work-
load is stable to properly evaluate configurations and reduce the risk of fail-
ures. Therefore, given a forecast Ỹ t1:t2 , we want to know if the represented
workload is stable so that it can be used by the tuner to suggest a workload-
tailored configuration. The stability function sΘ(Ỹ t1:t2 , Yt0:t1) is applied to
each time series composing the workload independently, meaning that:

sΘ(Ỹ t1:t2 , Yt0:t1) = ∧n
i=1sΘ(yyỹi

t1:t2 , yyyi
t0:t1)

where ∧i=1 is a logical AND operation, meaning that the workload is as-
sumed to be stable if all the time series in the workload are independently
stable. Θ is a hyper-parameter of the stability function, usually a threshold.

The reason for using the time series history as a parameter is that the
evaluation of the stability of the upcoming values should take into consider-
ation the past values, for example, to know the range of values assumed by
the time series. The following stability functions have been implemented:

• Coefficient of Variation (CV): a window is considered stable if its coef-
ficient of variation Θ doesn’t exceed a threshold. This method doesn’t
make use of past values.

sΘ(yyỹt1:t2 , yyyt0:t1) =

⎧⎪⎨⎪⎩
1 if σ(yyỹt1:t2 )

µ(yyỹt1:t2 ) > Θ

0 otherwise

• Min-Max: let δ(xxx) = (maxxxx − minxxx) be the width of the range of
values assumed by xxx. Then, a window is considered stable if its values
are in a range with a size that is below a threshold Θ times the size of
the range of values assumed in the whole history of the time series.
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sΘ(yyỹt1:t2 , yyyt0:t1) =

⎧⎪⎨⎪⎩1 if δ(yyỹt1:t2) ≤ Θ · δ(yyyt0:t1)

0 otherwise

• Normal: normalize the window values using the mean and standard
deviation of yyyt0:t1 . Let µN(yyỹt1:t2) be the (normalized) mean. Then the
window is considered stable if all its (normalized) values y are such
that: y ∈ [µN(yyỹt1:t2) − Θ, µN(yyỹt1:t2) + Θ]

Of these methods, the MinMax is the most intuitive, as Θ sets the allowed
percentage of movement from the historical range of values. Figure 22 shows
a comparison of the three approaches.

Note that once we have the true workload, we can check whether a window
was actually stable or not by running sΘ(yyyt1:t2 , yyyt0:t1). This is extremely
important because it enables us to invalidate a tuning experiment if the
workload is revealed to be unstable. Furthermore, it allows us to easily
evaluate the stability algorithm or tune its parameters Θ.

Finally, note that we are using a wide variety of forecasting models with
different properties. For example, Prophet (Section 2.4.3) doesn’t model
noise and therefore its predictions are flatter when compared to the real-
time series or other models’ predictions. This means that using the same
threshold for predicting if a window will be stable and then checking if the
window was actually stable eventually leads to misleading outcomes, even if
the forecast is accurate. Therefore, we use two different thresholds Θ̃ and
Θ: the former for the prediction, i.e. sΘ̃(yyỹt1:t2 , yyyt0:t1), and the latter for the
posterior evaluation sΘ(yyyt1:t2 , yyyt0:t1).

In order to set the thresholds effectively, a human operator must, first
of all, vary Θ to see which windows would be considered stable on the true
workload time series. Note that it is not trivial to find an optimal Θ⋆ that
fits all scenarios because its effectiveness depends on the properties of the
workload received by the system, such as noise. To find Θ̃, we need to train
the forecasting model, produce forecasts, and then find a value that matches
the outcome of the previous step (both stable and unstable windows). Note
that this step can be automated by finding Θ̃ that maximizes the number
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of stable and unstable windows matches resulting from sΘ(yyyt1:t2 , yyyt0:t1) and
sΘ̃(yyỹt1:t2 , yyyt0:t1):

Θ̃ = argmax
Θ̃

nT P,Θ̃
nT P,Θ̃+w·nF P,Θ̃

where nT P,Θ̃ is the number of true positives, i.e. the number of predicted
stable windows that were actually stable, nF P,Θ̃ is the number of false posi-
tives (see Table 2 for more details), and w is a weight that allows to prioritize
the absence of false positives over true positive.

3.4 Workload Characterization Module

Workload characterization is used to normalize the outcome of each con-
figuration according to the workload type, which is required by contextual
Bayesian optimization (Section 2.1.1). We are interested in characterizing
the workload without any human intervention: for this reason, the module
uses clustering-based methods.
The clustering methods that have been chosen are k-means, mean shift, Gaus-
sian Mixture Models (GMM), and OPTICS (see Section 2.3).

Since k-means requires the number of clusters k to be given as input, the
quality of clustering is evaluated for each size k ∈ K, K = [2, max(3, log n)]
where n is the number of workload points. The evaluation is performed com-
puting the Silhouette coefficient [20] for each k, and selecting the value that
leads to the highest score:

k = argmax
k∈K

S(W, lk)

where S is the Silhouette score, W is the set of workload points, and lk

are the labels obtained by applying k-means to find k clusters.
Mean shift doesn’t require setting the number of clusters beforehand, but

it must be provided with the bandwidth, i.e. the size of the kernel [17].
The bandwidth is estimated using k-nearest neighbor on a down-sampled
workload dataset to reduce the computation time.
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(a) CV

(b) MinMax

(c) Normal

Figure 22: Examples of stable windows detected by the CV-based Stable
Window Finder with a threshold of 4, Min-Max with a threshold of 8%, and
Normal with a threshold of 0.18. The stable regions are colored in green.
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GMM must be provided with the number of components (i.e. clusters)
to look for and the covariance type. These parameters are chosen by maxi-
mizing the Bayesian Information Criterion (BIC):

(n, cv) = argmax
n∈N,cv∈CV

BIC(Cn,cv)

where n is the number of components, cv is the covariance type, and Cn,cv

is the clustering obtained using GMM with n and cv. Similarly to k-means
the range of the number of clusters to find is N = [2, max(3, log n)]. CV is
the set of available covariance types, e.g spherical, and diagonal.

Finally, OPTICS clustering is performed using the Euclidean distance
and with different values of ξ, that controls a cluster boundary. Similarly to
k-means, the best value of ξ is chosen by maximizing the Silhouette score:

ξ = argmax
ξ∈Ξ

S(W, lξ)

where Ξ is the set of possible ξ values, and lξ are the labels obtained by
applying OPTICS on the workload dataset W using ξ. The workload points
marked as outliers are assigned to a dedicated cluster containing just one
point.

In all cases, since the properties composing the workload may have dif-
ferent scales (e.g. number of users and read/write ratio), they are all scaled
in the [0, 1] range using a min-max scaler. Furthermore, with all methods
except OPTICS, the size of the input dataset W is limited by randomly
sampling N points from W so that the computation effort required by the
clustering methods is limited.

Finally, the dataset W is initialized together with the forecasting module:
the workload points seen during the initialization period (e.g. the first week)
are included so that the tuner is provided with meaningful workload groups
since the beginning of the optimization process.
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4 Experimental Setup

The proposed solution has the goal of extending the existing tuner [1] to
work directly with the production system. Therefore, we are interested in
how quickly we are able to find a good configuration while avoiding bad
ones. Nevertheless, the tuning effectiveness depends on two key factors: the
ability to select as many stable workload windows as possible, which increases
the number of experiments and therefore how quickly we can optimize the
objective function while avoiding unstable workload windows that are likely
to lead to failures or low QoS levels. This selection ability, along with the
quality of the configuration proposed by the tuner, strongly depends on the
forecasting accuracy. Therefore, we evaluate the forecasting module and the
window selection algorithm independently from the tuner.

Section 4.1 describes the two metrics chosen to evaluate forecasting,
namely MAPE and RMSE. Section 4.2 presents how Precision and Recall
allows us to evaluate the Stable Window Finder module according to our
goal (e.g. do we seek for fewer failures or faster optimal convergence?). Sec-
tion 4.3 describes how the overall solution is evaluated considering the Cu-
mulative Reward and the number of failures caused by the tuning process.
To perform such evaluation, we used two IT system models provided by [1]
that allow us to perform repeatable tests on a local machine. Note that to
perform our analysis we need a set of time series that describes the work-
load perceived by the IT system models and that will be used to train the
forecasting models and make predictions. Such time series are described in
Section 4.3. Finally, the Workload Characterization module, which is based
on clustering algorithms, is evaluated qualitatively in section 5.2 using the
chosen time series.

4.1 Workload Forecasting

To evaluate the forecasting accuracy we chose two metrics: the Mean Abso-
lute Percentage Error (MAPE) and the Root Mean Squared Error (RMSE).
Remembering that we are repeatedly forecasting short-term windows while
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new workload data is incoming, we are interested in the overall errors up to
the latest measurement plus how wrong the forecaster is in a specific moment.

Formally, when evaluating the accuracy of a time series starting at time t0

and we have data up to time t1, for each forecasted window ωt:t+δ where δ is
the length of the short term forecast, we compute the error of the associated
forecast yyỹt:t+δ using the true values yyyt:t+δ, for t = t0, ..., t1 − δ. Then, we
merge the forecasts and compute the error up to time t1 − δ. As we receive
new time series data over time (i.e. t1 increases over time), the latter is called
incremental MAPE or RMSE.
Figure 23 shows a time series with naive forecasts, the per-forecast error, and
the incremental error evolving with time when the tuning windows have a
length of 1 hour.

The error of a forecasting model in a specific moment can be used to in-
spect the performance of a single model, eventually automatically triggering
a re-fitting process when the error exceeds a threshold. For example, picture
(b) in Figure 23 clearly shows a huge forecasting error on date 2019-01-28
given by configuration zero. On the other side, the incremental error can be
used to compare different forecasting models and how the errors change after
a model has been re-fitted (e.g. new data has been included). The latest
value of the incremental error is of particular interest, as it represents the
up-to-date overall performance of a model.

The MAPE has the following formula:

MAPE(yyyt:t+m, yyỹt:t+m) = 100
m

∑︁t+m
i=t |yyyt:t+m−yyỹt:t+m

yyyt:t+m
|

and the RMSE:

RMSE(yyyt:t+m, yyỹt:t+m) =
√︃∑︁t+m

i=t
(yi−ỹi)2

m

The two metrics may look redundant, but since the RMSE gives more
importance to the highest errors, by considering the RMSE over the MAPE
we are actually increasing sensitivity to outliers. Furthermore, using RMSE
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(a) Naive forecasts (red) based on previous day
value.

(b) Per-forecast MAPE.

(c) Incremental MAPE.

Figure 23: Per-forecast and incremental MAPE example of three models.
The forecast shown in picture (a) is given by configuration 0.
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we seek to be correct on average, while in contrast, the MAPE targets the
median.
Finally, note that the MAPE is easier to understand as it expresses the error
as a percentage that is independent of the scale of the time series. Therefore,
it is useful to compare the performance of a model on different time series.
Nevertheless, MAPE cannot be used when the values are too close to zero.

4.2 Stable Window Finder

The stable workload finder algorithm uses the forecast of the upcoming work-
load and its historical data to predict if a time window in the upcoming future
will be stable or not. Therefore, it acts as a binary classifier that detects a
decent amount of stable windows while avoiding unstable ones. As mentioned
in Section 3.3, we give more importance to avoiding false positives (see Table
2) as they facilitate failures.

To evaluate such a classifier, we consider its precision and recall. Preci-
sion is defined as:

Precision = T rue P ositive
T rue P ositive+F alse P ositive

and Recall as:

Recall = T rue P ositive
T rue P ositive+F alse Negative

Simply put, Precision measures how many of the windows that were marked
stable were actually stable, while Recall measures how many (true) stable
windows were found by the algorithm. Therefore, we give more importance
to the Precision score as it measures how many potentially dangerous exper-
iments the tuner performed. On the other side, a good Recall value means
that the tuner exploited as many windows as possible eventually leading to
faster optimal convergence, but this shouldn’t come at the cost of QoS.

To balance Recall and Precision we use the F1 score:
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F1 = 2 × Precision × Recall
Precision + Recall

4.3 Online Contextual Gaussian Process Tuner

The evaluation of the overall real-time tuner presented in Section 3.1, which
works in combination with the Workload Forecasting and Stable Window
Finder modules, is performed by tuning the system models provided by [1].
The models were trained to map a system-specific configuration space to a
wide variety of performance metrics, such as throughput and memory us-
age, according to the workload perceived by the system. These performance
metrics can be used as the objective function to be optimized. Furthermore,
the models can detect when a system failure occurs, i.e. when the system
is not able to respond (e.g. when the configuration doesn’t allow to process
the huge amount of incoming requests). By using such models, we can run
reproducible experiments.

Finally, by using system models, we know the optimal configuration for
a given workload and we can use it to see how far the tuner is from the real
optimum. To do so, we compute the Normalized Performance Improvement
at iteration i:

NPI(i) = y0−yi

y0−y⋆ = f(xxx0wwwi)−f(xxxi,wwwi)
f(xxx0wwwi)−f(xxx⋆

wwwi
,wwwi)

where xxx0 is the vendor (or baseline) configuration, xxxi is the configuration
being evaluated at iteration i, and xxx⋆

wwwi
is the optimal configuration for the

workload observed at iteration i. Therefore, an NPI of zero means that we
have the same performance of the vendor configuration, and an NPI of one
means that we found the global optimum.

To evaluate the entire tuning process up to iteration i we use the Cumu-
lative Reward (CR):

CR(i) = ∑︁i
j=0 NPI(j)
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that has a constant unitary slope if the tuner is optimal, is equal to zero
if the baseline is repeatedly applied, and has no lower bounds for bad con-
figurations.
By using normalized performance metrics we can quantitatively compare and
evaluate tuners independently from the workload, taking into consideration
the number of iterations required by the tuner to find a good configuration.
When evaluating tuners, we are also interested in how many iterations are
required to outperform the baseline tuner in terms of CR. We expect that
at the beginning of the tuning process the tuner needs to explore the con-
figuration space, suggesting configurations that are worse than the baseline.
After a few iterations, the suggested configurations will be better than the
baseline (i.e. the configurations will have a score higher than 0) so that the
CR of the tuner will eventually overtake the CR of the Baseline tuner. We
name this metric Time To Recover (TTR).

Furthermore, we consider the cumulative number of failures occurred up
to iteration i:

Failures(i) = ∑︁i
j=0 F (j)

where F (j) is one if a failure occurred at iteration j, zero otherwise. Note
that [1], as described in 2.1.1, allows to define constraints that the tuning
system should not violate. A violation of any of these constraints, such as a
QoS target, is considered a failure.

Considering that the system models of [1] are DBMB models simulating
Cassandra [58] and MongoDB [59], we set the constraints of keeping the
memory usage below some target when tuning Cassandra and keeping the
latency (i.e. response time) below specific values when tuning MongoDB.
The objective functions being minimized are the memory requirements for
MongoDB and the latency for Cassandra.

Of course, to perform our experiments, we need a set of time series rep-
resenting the workload received by the DBMS models that allow us to make
reproducible tests. We chose a set of four time series shown in Figure 24
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(a) Daily pattern (b) Weekly pattern

(c) Taxi requests (d) Real requests

Figure 24: Workload time series.

representing the number of users connected to the system being optimized.
Two time series are synthetically generated by creating a daily and a

weekly pattern. The daily pattern time series has three variants with in-
creasing noise to make a sensibility analysis (Figure 25). The remaining two
time series are obtained from real data: the number of taxi requests in the
city of New York [60] and the number of requests to a real private bank sys-
tem. Note that all time series have been mapped to the [10, 80] range to be
compatible with the DBMS models.
Furthermore, besides the number of requests, the workload can be affected
by a 3-value category representing the behavior of the users at a certain time
(e.g. are the users just reading data from the DBMS, or are they inserting
data?). We model this property of the workload, that we name mix, by using
three types of user behavior: read-intensive, write-intensive, and balanced.

Finally, we are interested in the performance of the developed solution
when the amount of time series data provided to the forecaster covers less
than one week. By exploring such cases when using time series with weekly
seasonality we can also understand how the system reacts to patterns that
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(a) Daily 0.02 stddev noise (b) Daily 0.04 stddev noise

(c) Daily 0.08 stddev noise

Figure 25: Zoomed daily pattern with increasing noise.

are not present in the historical data (e.g. the reduced number of requests
during the weekend when the forecaster has only four days of historical data).
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5 Results

This Section presents the results according to the setup presented in Sec-
tion 4. Forecasting is evaluated in Section 5.1, workload characterization is
evaluated qualitatively in Section 5.2, and the real-time tuner in Section 5.3.

5.1 Forecasting

This section is organized as follow: for each time series in Figure 24 we show
the per-forecast errors and the incremental errors (see Section 4.1). The
synthetic time series (daily and weekly pattern) have their per-forecast error
computed on forecasts of length 1 hour, performed every 30 minutes, while
the real-world time series models make forecasts of length 45 minutes every
15 minutes. The reason for such difference is that the volatility of the latter
time series is much higher, with tops that are reached in less than thirty
minutes. By re-computing forecasts every 15 minutes, deep learning models
are allowed to exploit the latest data and quickly react to ramps.

5.1.1 Daily Time Series

The daily time series models are trained with 7 days of historical data, in-
dependently from the noise level. Once more data is available, the models
are not retrained: they are expected to extract the pattern within the data
collection period. The results on the daily pattern with 0.02 standard devi-
ation noise are shown in Figure 26, while the results for all the time series
variants with increasing noise are summarized in Table 3, which shows the
final MAPE and RMSE.
Prophet and DeepAR are the models that achieve the best performance
considering the increasing noise, with DeepAR being the most resilient to
noise. Interestingly, when qualitatively evaluating the forecasts of DeepAR
and MQCNN on the lowest noise variant, DeepAR looks preferable due to
forecasts that better match the underlying daily pattern, as shown in picture
27.
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(a) Per-forecast MAPE (b) Per-forecast RMSE

(c) Incremental MAPE (d) Incremental RMSE

Figure 26: Errors on daily pattern time series, with 0.02 std dev. noise.

(a) DeepAR forecasts (b) MQCNN forecasts

Figure 27: Qualitative comparison of DeepAR and MQCNN on daily pattern
with 0.02 std dev. noise. The blue time series is the ground truth. The model
forecasts are red-colored.
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Model MAPE RMSE

0.02 std dev. noise

Daily 4.81 76.85
Prophet 3.51 53.76
DeepAR 5.0 91.82
MQCNN 4.67 74.67
DeepState 15.68 315.33

0.04 std dev. noise

Daily 7.23 127.10
Prophet 5.22 90.40
DeepAR 7.25 138.40
MQCNN 9.92 183.99
DeepState 12.70 270.68

0.08 std dev. noise

Daily 11.67 213.15
Prophet 8.51 154.55
DeepAR 8.87 165.33
MQCNN 10.86 212.58
DeepState 52.76 1841.80

Table 3: Results on daily patterns with increasing noise. The daily model
produces forecasts repeating data of the previous day.
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(a) Per-forecast MAPE (b) Per-forecast RMSE

(c) Incremental MAPE (d) Incremental RMSE

Figure 28: Errors on weekly pattern time series.

5.1.2 Weekly time series

The weekly time series models are trained with 14 days of historical data. The
goal of such a time series is to understand the ability of a model to extract
a weekly pattern. The results are shown in picture 28 and summarized in
Table 4: the clear winners are Prophet and DeepAR. MQCNN is able to
extract the pattern but fails at predicting the time series’ tops, accumulating
errors during workdays as shown in Figure 29.
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MAPE RMSE

Weekly 5.433 73.52
Prophet 4.16 54.32
DeepAR 4.69 65.93
MQCNN 16.44 398.02
DeepState 19.03 988.35

Table 4: Results on weekly pattern with increasing noise. The Weekly model
produces forecasts repeating data of the previous week.

Figure 29: Forecasting of MQCNN model on weekly time series. The ground
truth is blue. The model forecasts are red-colored.
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MAPE RMSE

Weekly 5.74 87.29
Prophet 16.16 111.96
DeepAR 5.62 58.91
MQCNN 6.58 60.68
DeepState 13.84 184.68

Table 5: Results on Real time series. The Weekly model produces forecasts
repeating data of the previous week.

5.1.3 Real-world time series

The private bank time series was obtained from real-world data, and due to
its shortness, the data collection period was set to one week. To balance such
lack of data the models are retrained every day.

This time series is heavily affected by the working hours: in just thirty
minutes after the workday started the number of requests per second raises
from bottom to top, requiring the models to be able to quickly react to
changes. Results are shown in Figure 30 and summarized in Table 5.

By checking the DeepAR per-forecast error and forecast, we can see that
the Saturday ramp causes a fake-out where the model predicts a spike similar
to the previous working days. This behavior is caused by a lack of data.

As mentioned before, by reducing the forecast interval the deep learning
models are able to react to ramp signals quicker. Figure 31 shows the impact
of forecasting every 15 and 30 minutes.

The Prophet model achieves a higher error when compared to the other
models. Nevertheless, its predictions are not too bad: what contributes to
the high errors is the weekend, which is not properly modeled. This issue
could be solved by further increasing the number of Fourier terms for the
weekly seasonality, however, by doing so we would risk overfitting.
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(a) Per-forecast MAPE (b) Per-forecast RMSE

(c) Incremental MAPE (d) Incremental RMSE

Figure 30: Errors on weekly pattern time series.

(a) DeepAR with 30 minutes forecasting
interval

(b) DeepAR with 15 minutes forecasting
interval

Figure 31: Impact of forecasting every 30 and 15 minutes respectively. The
blue-colored time series is the ground truth. The model forecasts are red-
colored.
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Figure 32: Prophet forecasting. The blue-colored time series is the ground
truth. The model forecasts are red-colored.
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MAPE RMSE

Daily 17.76 540
Prophet 14.75 451
DeepAR 6.87 214
MQCNN 9.22 297
DeepState 16.97 1061

Table 6: Results on taxi time series with increasing noise. The daily model
produces forecasts repeating data of the previous day.

5.1.4 Taxi time series

The taxi time series contains one month of taxi requests performed in the
city of New York [60] and was used to study how the models evolve when
more data is available. To do so, the data collection period lasts seven days
as usual, but every new week the models are re-trained. The time series
is characterized by a strong daily seasonality with quick rises and drops,
therefore the models shouldn’t suffer from fake-outs like with the Real time
series. The results are shown in Figure 33 and Table 6.

DeepAR achieve the best results both in terms of MAPE and RMSE,
while DeepState had to be excluded from the per-forecast errors as they are
too high. Except for DeepState, all the models improve as new data becomes
available. Prophet errors are heavily affected by a great mistake made at the
beginning of the forecasting, recovering gradually. Nevertheless, the taxi
time series has peaks that don’t follow a strong daily or weekly seasonality,
and Prophet often fails to catch the tops and bottoms. Figure 34 compares
Prophet and DeepAR forecasts.
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(a) Per-forecast MAPE (b) Per-forecast RMSE

(c) Incremental MAPE (d) Incremental RMSE

Figure 33: Errors on taxi time series. DeepState per-forecasts errors are not
shown as they are high, hiding the other errors.

(a) Prophet forecasts (b) DeepAR forecasts

Figure 34: Qualitative comparison of Prophet and DeepAR on taxi time
series. The model forecasts are red-colored.
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5.1.5 Forecasting results conclusions

The results clearly show that DeepState is outperformed by all the other
models, despite multiple configurations were tested. Such an outcome could
derive by a lack of data, meaning that DeepState requires more data points
to make good predictions when compared to the other models.

The DeepAR configuration is the same for all time series except the daily
time series, which is simple and can be modeled with a lighter network ar-
chitecture. Therefore, except for the daily time series, the DeepAR model
unrolls one day of past data to make a one-hour forecast. Interestingly, the
best configuration found for DeepAR makes use of the custom lags, which
improved the modeling of the weekly seasonality, quick rises, and drops.

Similarly, the MQCNN configuration uses one day of past data to make
one-hour predictions. The network decoder size was increased from 30 to
50. The model is trained to minimize the quantile error for the quantiles
Q = {0.1, 0.2, 0.3, ..., 0.9}. The skip-connections were left to the default
value, as the custom ones didn’t improve the outcomes.

Finally, the Prophet model was set to use 8 Fourier terms for the daily
seasonality and 30 terms for the weekly seasonality. The weekly terms were
greatly increased from the default value (which is 3) due to the strong weekly
seasonality that characterizes the time series. Nevertheless, the number of
such terms should be increased with caution, as they can lead to overfitting.

The models’ training times are shown in Table 7, which are obtained
with an Intel i7 8750h CPU. As expected, Prophet is the lighter model.
Nevertheless, by training the deep learning models on a GPU the gap would
be much smaller.

In the following sections, we chose to keep two forecasting models over the
available: Prophet and DeepAR. The reasons for excluding DeepState are its
lower accuracy and higher training time, while MQCNN has been excluded
as it is outperformed by DeepAR. Finally, by keeping Prophet we can make
comparisons between deep learning and more traditional models.
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Model Time

Prophet < 2s total
DeepAR 26s/epoch
MQCNN 14s/epoch
DeepState 40s/epoch

Table 7: Training times on the Weekly time series.

5.2 Workload Characterization

The workload characterization, performed with clustering methods, is evalu-
ated qualitatively. By doing so, we must remember that each workload type
(i.e. cluster) will group the points that will be used by the tuner to normalize
the score. Therefore, it is important for each cluster to contain a meaningful
amount of points so that the tuner can understand which configurations are
better/worse under a given workload type. For this reason, OPTICS turned
out to be unusable due to the high number of identified clusters (often above
1000), where a significant amount of clusters were made of just one point.
Note that such an issue could be solved by changing the parameters accord-
ing to the dataset being clustered, at the cost of losing the autonomy of the
workload characterization module.

By using Gaussian Mixture Models, a probabilistic approach that uses dif-
ferent covariance types, the number of identified clusters on a given dataset is
inconsistent: running the algorithm multiple times returns a clustering with
different covariance types and number of components (chosen by maximizing
the BIC). This outcome is even accentuated after down-sampling the dataset,
which is required to limit the amount of time required to find the clusters.
Furthermore, GMM is prone to assign different clusters to points that are
expected to belong to the same cluster. This behavior is shown in Figure 35,
where low-demand zones are assigned to different workload types.

By excluding OPTICS and GMM we are left with k-means and mean
shift. As expected, k-means returns spherical-shaped clusters so that the
associated workload types are well-separated. This behavior is shown in
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Figure 35: GMM clustering on the Real time series (d). Each color is a
cluster (there are a total of 8 clusters). The Image clearly shows how the
low-demand zone is over-separated, which would lead to a less-effective usage
of the collected experiments by the tuner.

Figure 36. The clustering obtained with mean shift is shown in picture 37.
Comparing k-means with mean shift, it is clear that mean shift generally

finds more clusters. The impact of such difference depends on how the tuner
is able to exploit the collected knowledge and is therefore further discussed
later. Nevertheless, finding more workload types requires more time to popu-
late each cluster with tuning experiments. Therefore, the clustering method
should be chosen specifically for each workload pattern. Note that such a
choice can be made at any step of the tuning process: we may start with
k-means and then switch to mean shift once there is enough data.
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(a) Daily pattern (b) Weekly pattern

(c) Taxi requests (d) Real requests

Figure 36: Results of clustering the workload using k-means. Points with
the same color belong to the same cluster.
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(a) Daily pattern (b) Weekly pattern

(c) Taxi requests (d) Real requests

Figure 37: Results of clustering the workload using mean shift. Points with
the same color belong to the same cluster.
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5.3 Online Contextual Gaussian Process Tuner

By using workload forecasting with the tuner we aim at avoiding applying
new configurations when the workload is predicted to change (e.g. when the
working hours begin). Furthermore, by knowing the upcoming workload,
we expect the tuner to suggest workload-tailored configurations. In general,
as explained in Section 4.3, we measure this by considering the Cumulative
Reward (CR) and the cumulative number of Failures (F). The achievement of
such a goal strongly depends on the number of stable windows found by the
module, which in turn depends on the threshold Θ and forecasting threshold
Θ̃. To choose the value of these two thresholds we emulated the tuning
processes without actually running a tuner (and the system models), but only
forecasting the workload and then computing whether a window was stable
or not. By doing so, we get the advantage of being able to see the impact
of a particular threshold value without the overhead of running an entire
tuning process. Furthermore, in a real tuning scenario, we would be able
to use the collected workload time series to fine-tune the thresholds without
actually running tuning experiments that may cause unwanted failures on
the production system being optimized. However, with such an approach,
we are only approximating the real Precision, Recall, and F1 score, because
in case of failure we are not counting that the tuner would stop the current
experiment to eventually run a new experiment right after the failure.

To evaluate the Online CGP Tuners using forecasting models we created
an online naive version that doesn’t make use of the forecasting and stability
finder modules. The naive version asks the tuner for a configuration to
apply using the workload currently received by the system and measures the
outcome independently from the stability of the workload (i.e. any workload
is considered stable). If a violation occurs, the outcome is still stored in the
knowledge base using the actual average workload received by the system
during the experiment.

It is important to note that the complexity of Bayesian Optimization us-
ing Gaussian Processes is O(n3) on the size n of the knowledge base, i.e. the
number of successful experiments plus failures that occurred under a stable
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Figure 38: Online CGP references: Best tuner (yellow), Baseline tuner
(green), and Worst tuner (red).

workload. For this reason, the tuning scenarios times have been reduced to
at most one week, and the tuning time of the naive tuner was reduced to
limit the required computational time. The only exception is the daily time
series with strong noise that has a limited amount of stable windows. Nev-
ertheless, note that one week is enough for the tuner to find well-performing
configurations.

For each time series in Figure 24 we defined at least one scenario that has a
target function to optimize, at least one constraint, and multiple tuners being
compared. As a reference, each scenario uses a common set of tuners: a Worst
tuner, that repeatedly applies the worst known configuration, a Baseline
tuner, that applies the vendor configuration, a Best tuner, that always applies
the best configuration available, and the Naive tuner previously explained.
At each iteration, the Worst, Baseline, and Best tuner receive a reward of
−1, 0, and 1 respectively, giving the boundary lines shown in Figure 38.

Table 8 summarizes the tuning scenarios optimizing MongoDB. The sce-
narios share the objective function of minimizing the primary memory re-
quirements with experiments of length 30 minutes. By reducing/increasing
the latency constraint we make the tuning environment harder/easier.
The mix, that composes the workload for some scenarios and changes the
type of requests from read-intensive to write-intensive, was defined in Sec-
tion 4.3. Such property of the workload changes with a daily seasonality on
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Name TS Latency Collection Workload Clustering

MDaily02 Daily.02 < 9ms 1 week [req/s] k-means
MDaily04 Daily.04 < 9ms 1 week [req/s] k-means
MDaily08 Daily.08 < 9ms 1 week [req/s] k-means
MDaily02B Daily.02 < 8ms 1 week [req/s, mix] k-means
MWeekly Daily.02 < 10ms 2 weeks [req/s] mean shift
MReal1 Real < 9ms 1 week [req/s] k-means
MReal2 Real < 9ms 1 week [req/s] mean shift
MReal3 Real < 10ms 1 week [req/s] k-means
MReal4 Real < 10ms 1 week [req/s, mix] k-means
MTaxi1 Taxi < 9ms 24 days [req/s] k-means
MTaxi2 Taxi < 10ms 24 days [req/s] k-means

Table 8: Summary of MongoDB tuning scenarios.

the MDaily02B scenario and a weekly seasonality on the MReal4 scenario,
using a simple step function.

We first show the complete results of a single tuning scenario, which
comprises the CR and Failures graphs and the TTR (Time To Recover)
defined in Section 4.3. Then, we summarize the results of the remaining
scenarios using tables.

Figure 39 shows the CR and Failures graphs for the MReal3 scenario.
The Baseline, Naive, Prophet, and DeepAR tuners start identically: while
collecting data, they use the baseline configuration until iteration 2016 (i.e.
for one week). Then, the tuners start evaluating new configurations, even-
tually leading to failures and obtaining different scores. In this particular
scenario, the baseline leads to fewer failures overall when compared to the
online tuners. However, by setting the latency constraint to 9ms, the base-
line starts accumulating failures each time the requests per second are above
65, and the online tuners are able to find configurations that reduce such
amount of failures.

Figure 40 zooms the CR graph highlighting the TTR. Considering that
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(a) Cumulative Reward

(b) Failures

Figure 39: Results of scenario MReal3.
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Figure 40: MReal3 scenario Time To Recover on the CR graph. The yellow
line is the Baseline CR. DeepAR, Prophet, and Naive online tuners overlap,
leading to a TTR equal to 21 iterations, i.e. 1.5 hours.

in this scenario each iteration corresponds to 5 minutes, the TTR is 1.8
hours, which is quite low. Note that the TTR can be heavily affected by the
number of stable windows after the tuning starts: without stable windows,
the online tuners don’t make experiments (i.e. the system runs with the
baseline configuration which leads to a score of zero), and the TTR inevitably
increases. Furthermore, note that the tuner finds configurations that are
better than the baseline before the TTR.

The final CR, Failures, and TTR of all scenarios are summarized in ta-
bles 9 and 10. As previously mentioned, in most scenarios (Real time series
excluded) the Naive tuner was early stopped due to the greater number of
performed experiments, which affect the tuning time with an O(n3) relation.
Therefore, the tables also report the CR and number of failures at the mo-
ment the Naive tuner was stopped. These two metrics are named Early CR
(ECR) and Early Failures (EF). Furthermore, note that during data collec-
tion the system being optimized runs with the baseline configuration, which
eventually leads to failures. The number of failures accumulated when the
tuning actually starts is named Starting Failures (SF).

Table 11 shows the scenarios performed on the Cassandra database model.
All the Cassandra scenarios share the same objective function of minimiz-
ing the latency with the constraint of using at most 125% of the primary
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Scenario Tuner ECR/CR SF EF/F TTR

MDaily02

Baseline 0/0

417

712/833
Naive 1710/- 489/- 9.5h
Prophet 1417/2053 485/503 17.2h
DeepAR 1107/1557 525/558 13.5h

MDaily04

Baseline 0/0

347

604/712
Naive 1630/- 424/- 10.6h
Prophet 1366/1997 409/434 15.1h
DeepAR 1404/2105 421/434 14.3h

MDaily08

Baseline 0/0

170

293/522
Naive 1477/- 226/- 9.45h
Prophet 1222/3893 204/234 18.6h
DeepAR 994/4026 198/249 45h

MDaily02B

Baseline 0/0

0

0/0
Naive 1932/- 3/- 1.5h
Prophet 1125/1671 2/4 11.5h
DeepAR 1376/2003 8/8 4.7h

MWeekly

Baseline 0/0

286

429/429
Naive 1136/- 352/- 16.2h
Prophet 776/1327 356/356 21.1h
DeepAR 1078/1350 327/327 22.6h

Table 9: MongoDB tuning scenarios results on synthetic time series.
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Scenario Tuner ECR/CR SF EF/F TTR

MReal1

Baseline 0/0

107

167/167
Naive 1297/1297 156/156 1.8h
Prophet 1290/1290 147/147 1.8h
DeepAR 1268/1268 145/145 1.8h

MReal2

Baseline 0/0

107

167/167
Naive 1227/1227 159/159 1.8h
Prophet 1055/1055 151/151 1.8h
DeepAR 1320/1320 148/148 1.8h

MReal3

Baseline 0/0

17

19/19
Naive 1468/1468 40/40 1.8h
Prophet 1200/1200 34/34 1.8h
DeepAR 1275/1275 31/31 1.8h

MReal4

Baseline 0/0

0

0/0
Naive 1271/1271 0/0 3.6h
Prophet 1218/1218 0/0 3.6h
DeepAR 1008/1008 0/0 3.6h

MTaxi1

Baseline 0/0

150

202/263
Naive 908/- 222/- 5.6h
Prophet 872/1062 214/288 7.3h
DeepAR 879/1042 219/260 5.6h

MTaxi2

Baseline 0/0

8

28/29
Naive 1270/- 46/- 5.5h
Prophet 1027/1229 48/53 7h
DeepAR 1240/1449 43/53 5.5h

Table 10: MongoDB tuning scenarios results on real time series.

5.3 Online Contextual Gaussian Process Tuner 84



5 RESULTS 85

Name TS Memory Collection Workload Clustering

CDaily02 Daily.02 < 1920Mb 1 week [req/s] k-means
CDaily04 Daily.04 < 1920Mb 1 week [req/s] k-means
CDaily08 Daily.08 < 1920Mb 1 week [req/s] k-means
CDaily02B Daily.02 < 1920Mb 1 week [req/s, mix] k-means
CWeekly Daily.02 < 1920Mb 2 weeks [req/s] mean shift
CReal1 Real < 1920Mb 1 week [req/s] k-means
CReal2 Real < 1920Mb 1 week [req/s] mean shift
CReal3 Real < 1920Mb 1 week [req/s, mix] k-means
CTaxi Taxi < 1920Mb 24 days [req/s] k-means

Table 11: Summary of MongoDB tuning scenarios.

memory (cache and JVM heap) used by the baseline configuration. Unlike
the MongoDB scenario, where the latency constraint is checked monitoring a
system metric, the maximum memory constraint is enforced directly on the
configuration domain, meaning that the tuner will never violate it. Never-
theless, a configuration can still cause a failure if Cassandra is not able to
serve requests. In general, such failure can be considered much worse when
compared to a violation of the latency constraint in the MongoDB scenarios.

Tables 12 and 13 show the results on the synthetic and real time series
respectively. In all scenarios, the baseline configuration never fails, and find-
ing configurations that reduce the latency cause failures. Nevertheless, the
online tuners using a forecasting module collect fewer failures when compared
to the naive tuner. Furthermore, the tuner always instantly finds a better
configuration than the baseline in all scenarios except CReal3. However, all
CReal3 tuners have a CR that doesn’t fall below −0.7 meaning that practi-
cally, besides the failures, the suggested configurations don’t downgrade the
baseline performance.
In all the Cassandra scenarios using the Real time series, the CR stops grow-
ing under the weekend load, which is flat. Meanwhile, the tuners collect
failures as they are exploring the configuration space. Under such context,
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it would be useful to stop the tuning process as it is not leading to improve-
ments, avoiding failures.

Table 14 shows stability information: the threshold Θ used to mark a
window either as stable or unstable, the forecasting threshold Θ̃ used on a
forecast to predict if a window will be stable or not, and the Precision, Recall,
and F1 scores.

The results show that all the online tuners are able to find configurations
outperforming the baseline in a short time. However, the tuners using a fore-
casting model are able to achieve a much higher CR when taking into con-
sideration the number of performed experiments: for example, the DeepAR
tuner of scenario CTaxi ends with 267 experiments and a CR of 476, while
the Naive tuner finishes with 296 experiments and a CR of 417. The same
reasoning applies to all scenarios. Considering that the change of a config-
uration property may require the reboot of the system being optimized, the
ability to better exploit the acquired knowledge can be valuable.
Nevertheless, some scenarios highlighted a small gap between the Naive tuner
and the Prophet or DeepAR tuners that may not justify the usage of such
more complex tuners, even if the forecasting quality is high. When comparing
the MongoDB and Cassandra scenarios, the MongoDB scenarios are charac-
terized by a higher amount of overall failures caused both by the Baseline
and online tuners, where the latter are able to tune the system while caus-
ing a smaller amount of failure when the latency constraint is set to 9ms.
However, most failures are caused by the latency constraint rather than an
entire system failure (that makes the system unavailable to its clients) which
may be considered less severe depending on the context. On the other side,
tuning the Cassandra scenarios inevitably leads to system failures, while the
baseline configuration always keeps the system available.

Considering the usage of k-means versus mean shift (MReal1 and CReal1
versus MReal2 and CReal2) it is clear that k-means leads to better results.
Such outcome could be the consequence of mean shift finding more clusters
(see Section 5.2), resulting in fewer experiments available to the tuner when
suggesting a configuration for a specific workload type, especially in the early
stage of the tuning scenario.
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Scenario Tuner ECR/CR SF EF/F TTR

CDaily02

Baseline 0/0

0

0/0
Naive 924/- 11/- 0h
Prophet 753/1085 5/5 0h
DeepAR 706/1060 4/5 0h

CDaily04

Baseline 0/0

0

0/0
Naive 1049/- 14/- 0h
Prophet 964/1347 1/2 0h
DeepAR 1094/1490 3/6 0h

CDaily08

Baseline 0/0

0

0/0
Naive 1029/- 3/- 0h
Prophet 587/2174 6/13 0h
DeepAR 850/2706 1/5 0h

CDaily02B

Baseline 0/0

0

0/0
Naive 616/- 21/- 0h
Prophet 390/551 6/9 0h
DeepAR 447/619 5/10 0h

CWeekly

Baseline 0/0

0

0/0
Naive 851/- 9/- 0h
Prophet 525/826 9/10 0h
DeepAR 751/1061 5/8 0h

Table 12: MongoDB tuning scenarios results on synthetic time series.
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Scenario Tuner ECR/CR SF EF/F TTR

CReal1

Baseline 0/0

0

0/0
Naive 336/336 9/9 0h
Prophet 234/234 6/6 0h
DeepAR 211/211 5/5 0h

CReal2

Baseline 0/0

0

0/0
Naive 265/265 18/18 0h
Prophet 126/126 15/15 0h
DeepAR 191/191 20/20 0h

CReal3

Baseline 0/0

0

0/0
Naive 194/194 9/9 11.9h
Prophet 128/128 14/14 13.1h
DeepAR 158/128 7/7 13.75h

CTaxi

Baseline 0/0

0

0/0
Naive 417/- 18/- 0h
Prophet 365/426 13/14 0h
DeepAR 410/476 14/17 0h

Table 13: MongoDB tuning scenarios results on real time series.
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TS Tuner Θ/Θ̃ Precision Recall F1

Daily02
Prophet 0.1/0.08 0.72 0.77 0.75
DeepAR 0.1/0.1 0.70 0.73 0.72

Daily04
Prophet 0.12/0.08 0.66 0.60 0.63
DeepAR 0.12/0.12 0.63 0.98 0.77

Daily08
Prophet 0.12/0.07 0.12 0.57 0.20
DeepAR 0.12/0.07 0.11 0.68 0.19

Weekly
Prophet 0.06/0.05 0.52 0.67 0.59
DeepAR 0.06/0.06 0.50 0.85 0.64

Real
Prophet 0.12/0.09 0.95 0.76 0.85
DeepAR 0.12/0.09 0.95 0.85 0.90

Taxi
Prophet 0.12/0.08 0.72 0.95 0.82
DeepAR 0.12/0.1 0.71 0.96 0.82

Table 14: Tuning scenarios stability data, valid both for Cassandra and
MongoDB scenarios. TS indicates the Time Series.
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The results of the scenarios using the Daily time series with increasing
noise show that noise doesn’t have a significant impact on the tuning. Sim-
ulating the scenarios, there are a total of 191, 190, and 70 stable windows
(i.e. true positives) in the time series with 0.02, 0.04, and 0.08 std. devia-
tion noise respectively, highlighting that what actually affects the tuning are
the thresholds Theta and Θ̃: by raising the thresholds we increase the CR
(lowering the TTR) at the cost of causing more failures.
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6 Conclusions and future work

With this work, we integrated state-of-the-art forecasting techniques with [1]
to smartly explore the configuration space of a software system, improving a
target metric while avoiding constraints violations, such as Quality of Service
constraints.

The developed solution has been tested using two DBMS models on 20
tuning scenarios, always finding configurations that either reduce the pri-
mary memory requirements or the system response time within a day of
experiments and effectively exploiting the collected knowledge. By making
accurate predictions about the workload time series, the forecasting models
allow the online tuners to reduce the number of constraint violations and
system failures caused by the necessity of exploring the configuration space
to improve its baseline, according to the different workloads perceived by the
system being optimized.

The developed solution can also be applied to different systems with mini-
mal manual work, as the forecasting models just need to autonomously collect
workload data for one week without the need of introducing prior knowledge
about the workload.

Nevertheless, we aim at further improving the autonomy and safety (in
terms of failures) of the approach.
To further reduce the number of failures, multiple optimizations can be im-
plemented. First of all, at the beginning of the tuning process, the tuners
suggest a configuration without any available knowledge, making the sugges-
tion random. To overcome this issue, the tuner may sample the outcome of
the baseline configuration under different workload types, so that the first
suggestion uses a minimum amount of information. Note that a smart way
to summarize the collected knowledge should be implemented to avoid affect-
ing the speed of the tuner. Then, we may tune the exploration-exploitation
trade-off provided by the BO acquisition function explained in Section 2.1
to boost exploitation and make the tuners prefer to suggest configurations
within a region that has already been shown to be promising. Finally, to re-
duce the impact of failures on a production system, the tuning experiments
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could make use of a canary deployment.
To further improve the cumulative reward (e.g. overall response time of

the system) during the tuning process, in particular when the workload is
predicted to be unstable, we may apply the best configuration found for the
upcoming predicted workload rather than the baseline. Such optimization
should be applied once enough experiments have been collected. Then, when
the tuner is no longer able to improve the best configuration found so far (or
the improvements are minimal), we may stop the tuning process and start
to apply the best configuration according to the workload, reducing the risk
of failure.

Besides these optimizations, we tested the tuners using univariate time
series or simple multivariate time series due to a lack of data. In order to
further test the tuners on more complex scenarios, such as a system with
multiple front-end and back-end nodes each with its own time series, more
data must be collected, along with the creation of system models.

Finally, finding a good pair of thresholds to be used to evaluate the sta-
bility of the actual and predicted workloads may not be trivial, and at the
moment requires some manual work. By developing an automated approach
that chooses these thresholds we would simplify the process of applying the
online tuners, reducing the risk of making mistakes.
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