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Abstract

Semantic Image Segmentation is a computer vision task in which we label each
single pixel in an image according to the semantic content. This task is of essential
importance for a wide range of applications as: autonomous vehicles, robot per-
ception, human-machine interaction, medical image segmentation, image editing
tools, image search engines and augmented reality to name a few. However some
application tasks need more accurate scene understanding, for robot perception a
human body part segmentation can be a very valuable tool in order to identify
parts such as hands and interact with them, in this case it is possible to talk of
Part-Based Semantic Segmentation. Although many works have studied this topic
and the Pascal-Part dataset has been created specifically for this scope, most of
these works concern only parts of few classes as human, animals, cars.
One of the biggest problems is to find a more general model capable of learning at
the same time a huge number of parts from different classes.
In this work we use an Incremental Learning approach to try to develop such
model. Our framework uses two networks where the second one is fed with the
output of the first.
The first network performs the Semantic Segmentation task with 21 classes from
the Pascal-VOC dataset, while the second one performs the Part-Based Semantic
Segmentation task with 108 classes\parts on the Pascal-Part dataset. We achieve
this goal using the features extracted by a custom CNN from the softmax (or
argmax) output of the first network to constraint and condition the prediction of
the parts.
Additionally, we have studied a new loss, with the aim of relating different parts
of the same class throught an Adjcency-matrix. Then, a distance function is ap-
plied to minimize discrepancies between the predicted matrix and the ground-truth
one, this should teach to the network to penalize parts that should not be close.
Comparing our model results with a simple network for Semantic Segmentation
adapted for our task, we were able to increase the Mean Intersection over Union
from 29.9% to 35.1%.
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1
Introduction

Semantic Image Segmentation is computer vision task which describes the process
of associating each pixel of an image region with a class label according to the
semantic content i.e. what is being represented. Since it makes a prediction for
every pixel in the image it is commonly referred to as dense prediction. Nowadays
the increasing number of applications with benefits from inferring knowledge from
imagery had made this topic one of the key problems in the field of computer
vision as it is crucial to have a complete scene understanding of a given image.

A wide range of application use this process as for example: road segmentation
for autonomous vehicles, scene segmentation for robot perception, human-machine
interaction, medical image segmentation, computational photography - image edit-
ing tools, image search engines and augmented reality to name a few. Some of
these applications need a more accurate scene understanding, for robot perception
a human body part segmentation can be a very valuable tool in order to identify
parts, such as hands, and interact with them to perform some tasks. In this case
it is possible to talk of Part-Based Semantic Segmentation.

Despite the availability of datasets with part-annotations for a large number of
different classes, this topic has been addressed in the past using various traditional
computer vision and machine learning techniques but for only for the human body
or for some specific objects. In this work we do not consider only a few classes but
we try to find out a more general method that can be used for all kind of classes
belonging to a dataset, in this case the Pascal-Part dataset.

The main idea of this thesis is connected to the Incremental learning problem,
which is defined as the capability of a CNNs architectures to continuously extend
the existing model’s knowledge without forgetting previous classes and losing per-
formance on old data. In the same way we would not lose information from a
previous network which performs Semantic Segmentation for the 21 classes from
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1. Introduction

Figure 1.1: Some example from Pascal-VOC and Pascal-Part dataset. a) RGB images
b) shows some ground truth from Pascal-VOC for Semantic Segmentation
while c) shows some annotations from Pascal-Part for Part-Based Semantic
Segmentation.

Pascal-VOC dataset. Our idea assumes that an output from this kind of network
could give useful information for a second network performing Part-Based Seman-
tic Segmentation. We evaluate this approach on Pascal-Part dataset which extends
the Pascal-VOC with annotation parts for each one of the 21 classes, Figure 1.1.
In this work we start implementing a State-of-the-Art CNNs as DeeplabV2 with
a ResNet101 encoder. The network is trained on a refined Pascal-Part dataset to
obtain a baseline results and on Pascal-VOC to generate additional data that we
want use to improve the baseline. In this thesis we want to investigate new methods
to extract higher level features from the output of the first network that can be
useful to improves lower level feature for part-annotations in order to increase the
accuracy on the Part-Based Semantic Segmentation task. The output of the first
network will be concatenated with the RGB input image and fed as input to the
second neural network.
Moreover we studied a new loss to associate each other parts of the same class.
The network should learn during the training phase how to discriminate parts
that do not belong to the same class and that should not be neighbour. In order
define this loss we built an Adjacency matrix from Graph Theory, where rows and
columns index are related to class-parts. So each matrix element will be different
from zero only if the related parts belong to the same class or appear close on the
image.
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1. Introduction

The remainder of this thesis is organized as follows. Chapter 2 introduces the
problem of semantic segmentation and describes the state-of-the-art frameworks
that use deep learning techniques to solve this problem. Chapter 3 describes
the framework utilized for this work and the proposed techniques that have been
developed. Chapter 4 defines the methods we have used to reduce and refine
the Pascal-Part dataset. Chapter 5 reports the main results obtained from the
experiments. Chapter 6 outlines and discusses future works.
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2
Deep Learning

for Image Understanding

Image segmentation is the process of partitioning an image into multiple segments
that have similar properties and features. Semantic Segmentation is an extension
of this technique and its challenge consists in labelling each pixel of an image into
a category corresponding to an object or part of the image. A simple formulation:
given an RGB image or a gray scale image, we want to find a way to assign a label
li from a label space L = {l0, ..., lk} to each pixel. In this work we will always
assume that the label l0 is associated with the background class for convenience.

Semantic segmentation is one of the key problems in computer vision and its im-
portance is strictly related to scene understanding problem which is essential for an
increasing number of application, as autonomous driving, human-machine inter-
action,computational photography, images search engines and augmented reality.

In order to understand how deep learning has approached this task, it is impor-
tant to note that semantic segmentation is a natural step in the progression from
coarse to fine inference. The origin could be located at image classification, which
predicts a list of contained objects on a given image. Object detection is the next
step, providing additional information as spacial location for those objects. So
semantic segmentation with its dense prediction inferring labels for every pixel
is a further extension of these problems, Fig 2.1. Further improvement can be
instance segmentation, different labels for different instances of the same class,
and part-based segmentation, decomposition of an already segmented class into
its sub-parts, that is the topic of this work.
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Figure 2.1: Evolution of object recognition or scene understanding from coarse-grained
to fine-grained inference: classification, detection or localization, semantic
segmentation, and instance segmentation. Figure from [3].

2.1 Convolutional Neural Networks

A convolutional neural network (CNN ) [1] is a type of artificial neural network
used in image recognition and processing that is specifically designed to process
pixel data, and it has widely improved many computer vision fields. The Ima-
geNet challenge (ILSVRC ), that was dominated by approaches based on feature
extraction and traditional ML classifiers until 2012, has showed how neural net-
work could achieve much better results and a gap in performance that would be
hard to fill with classical image analysis algorithms.

2.1.1 CNNs for Image Classification

CNNs have made significant contributions to the Image Classification task, their
importance is so high that some State-Of-The-Art model are currently being used
as building blocks for many segmentation architecture, typically using them for
the feature encoding part. In the section we briefly report some of these models.

Alexnet

AlexNet, published by A.Krizhevsky et al. [2], is the first deep CNNs with out-
standing performance during 2012 ImageNet competition, its test accuracy of
84.6% outperformed the previous accuracy of 73.8% that was obtained with tradi-
tional techniques. This model, that is considered one of the simplest today, consists
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of: five convolutional filters, max-pooling layers, three fully-connected layers and
one dropout, Fig 2.2.

Figure 2.2: AlexNet Convolutional Neural Network architecture. Figure from [2] .

VGG-16

VGG-16, published by Simonyan at al. [6] (2014), won 2013 ImageNet competition
with 92.7% accuracy. It is also known as VGG-16 due to the fact it composed of 16
convolutional layers, multiple max-pooling layers and three final fully connected
layers, Fig 2.3. Its main difference from previous work are:

• introduction of non-linearities, with ReLU activation function, in order to
learn more complex patterns;

• use of convolutional layers with small filters 3x3, due to the fact that allows
to have less parameters and with an faster training phase.

GoogLeNet - Inception V1

GoogLeNet, published by Szegedy at al. [5] (2014), won 2014 ImageNet challenge
with 93.3% accuracy. It is composed by 22 layers and a newly introduced building
block named inpection module, for a total of 50 convolutional layers. Each module
is composed of 1x1, 3x3, 5x5 convolutional layers and a 3x3 max-pool layer in
order to increase sparsity in the model and obtain different type of patterns, Fig
2.4.This approach proved that CNNs layers could be stacked in more ways than a
typical sequential manner.

ResNet

Microsoft’s ResNet [4] won the 2016 ImageNet challenge with 96.4% accuracy. It
is well known due to its 152 layers and the introduction of residual block, Fig
2.5. The residual blocks address the problem of training a really deep architecture
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Figure 2.3: VGG-16 CNN architecture. Figure from [6]

Figure 2.4: Inception module with dimensionality reduction from the GoogLeNet ar-
chitecture.

by introducing identity skip connections between the output of one or multiple
convolutional layers and their original input, this ensures that the next layer learns
something new and differnt from what the input has already encoded. Moreover,
this method does not add any additional parameter and does not increase the
computational complexity of the model.

2.1.2 CNNs for Semantic Segmentation

Currently, the most successful techniques for Semantic Segmentation are based
on the same macro structure that is called Autoencoder. These type of models
are composed by two main components: the first one, which is called Encoder,

8
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Figure 2.5: Residual block from the ResNet architecture.

is a State-Of-The-Art CNN for Image Classification without its final fully con-
nected layers. The second one, which is called Decoder, is the component that
reconstructs the prediction starting from the encoder feature maps. Decoders are
the components that most determine the difference between those models as they
differ in the approaches utilized to upsample the resolution of the feature map.

The possibility to use an Encoder from a state-of-the-art CNN for image classi-
fication offers the opportunity to enable transfer learning. Training a deep CNN
from scratch it could be not feasible because of small size dataset or difficulties
on reaching convergence in a reasonable amount of time. Even if large datasets
are available and convergence is fast it is still helpful and suggested to start with
pre-trained weights instead of random initialization, [9] [10]. Yosinski et al. [11]
proved that transferring features even from distant task can be better that ran-
dom initialization. So it is common to use Encoders from classification with their
pre-trained weights, even on different dataset, and fine-tuning the Decoder layers
with an higher learning rate compared to the Encoder, since the lower part of the
network tends to contain more generic features. Here we report some well known
CNNs for Semantic Segmentation.

Fully Convolutional Networks

Fully convolutional networks (FCN) is the first model that has adopted an Autoen-
coder structure, by Long et. al [12]. The main idea of this approach was to take
advantage of existing CNNs for visual task. They transformed the existing and
well-known image classifcation models into fully convolutional ones by replacing
the fully connected layers with convolutional ones to output spatial maps instead

9
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of classification scores, these maps are upsample to produce dense per-pixel la-
beled output. This work is considered a milestone since it showed how CNNs
can be trained end-to-end for this problem, efficiently learning how to make dense
predictions for semantic segmentation with inputs of arbitrary sizes [3].

SegNet

SegNet, by Badrinarayanan et al. [13], is a variant of FCN in which the decoder
stage is composed by a set of upsampling and convolutional layers which are at
last followed by a softmax classier to predict pixel-wise labels, Fig 2.6. Each
upsampling layer in the decoder corresponds to a max-pooling one in the encoder.
This operation is performed using the max-pooling indices from the corresponding
feature maps in the encoder phase. The upsampled maps are then convolved with
a set of trainable filters to obtain dense features maps.

Figure 2.6: SegNet architecture. Figure from [13]

U-net

U-net, by Ronneberger et al [14], is an extended version of FCN. They modified
the fully convolutional architecture by expanding the capacity of the decoder This
model is composed of two parts: a compacting part to compute features and a
symmetric expanding part to spatially localise patterns in the image.

FPN

Feature Pyramid Network (FPN), by Lin et al. [15], exploits the inherent multi-
scale, pyramidal hierarchy of deep convolutional networks to construct feature
pyramids with marginal extra cost. A top-down architecture with lateral connec-
tions is developed for building high-level semantic feature maps at all scales. This
architecture shows significant improvement as a generic feature extractor in several
applications.

10
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PSPNet

Pyramid Scene Parsing Network, by Zhao et al. [16], was designed to better under-
standing the global context representation of the scene. Given an input image its
features are extracted with a ResNet network modified with the dilated network
strategy [19] [20]. Pyramid Pooling Module are fed with the feature maps to dis-
tinguish patterns with different scales. They are pooled with four different scales
each one corresponding to a pyramid level and processed by a 1x1 convolutional
layer to reduce their dimensions. This way each pyramid level analyses sub-regions
of the image with different location. The outputs of the pyramid levels are upsam-
pled and concatenated to the inital feature maps to finally contain the local and
the global context information. Then, they are processed by a convolutional layer
to generate the pixel-wise predictions.

DeeplabV2

DeepLab, by Chen et al. [17], has three main characteristics on its architecture.
First, down-sampling operator from the last max pooling layers of DCNNs are re-
moved and replaced with atrous convolution layers that up-sample filters inserting
holes between non zero filter taps. It also allows us to effectively enlarge the field
of view of filters to incorporate larger context without increasing the number of
parameters or the amount of computation. Second, in order to handle multiple
scale, it is proposed the atrous spatial pyramid pooling (ASPP) technique to ro-
bustly segment objects at multiple scales. Finally, they boosted the model’s ability
to capture fine details by employing a fully connected Conditional Random Field
(CRF) [18].

2.2 Part-based Semantic Segmentation

Part-based Semantic Segmentation is a natural extension of Image Semantic Seg-
mentation. Decomposing an object into its semantic parts enables a more detailed
understanding of the object. Understanding how different parts are related and lo-
cated have been an increasingly important topic. This task can provide additional
information to benefit some important topics such as pose estimation [21] [22],
detection [23] [24] and fine-grained recognition [25]. However object level segmen-
tation over multiple object categories has been extensively studied, while object
parsing is addressed only for a few categories as human [26] [27], cars [26] or certain
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animals.

Human body part segmentation has been considered a very challenging task due to
the wide variability of the body parts appearance. There is a large variation due
to pose and viewpoint , self-occlusion and clothing. Traditional algorithms [28]
find it difficult to handle this large variability in natural images. Even CNN-based
approaches [19] [29], although simple and fast, give coarse part details and have
local confusion errors, if the person is in a non-typical pose, or when there are
some other objects/persons nearby with similar appearance. Other works focus on
improving CNNs approaches paying attention to the large scale variation. Chen
et al. [30] learn pixel-wise weights through an attention model to combine the part
segmentation results of three fixed scales. Xia et al. [31] build an hierarchical
model that adapts to object scales and part scales using auto-zoom.

Figure 2.7: Joint human pose estimation and semantic part segmentation improve both
tasks. (a) input image. (b) pose estimation and semantic part segmenta-
tion results before joint inference. (c) pose estimation and semantic part
segmentation results after joint inference. Note that comparing (b) and
(c), where (c) are the results from [34], (c1) and (c2) perform better. (c1)
recovers the missing forehead joint and corrects the location error of right
elbow and right wrist for the woman on the right, while (c2) gives more
accurate details of lower arms and upper legs than (b2) for both people.
Figure from [34]
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Another approach consists on joining semantic part segmentation with a comple-
mentary task as pose estimation. The estimated pose provides object-level shape
prior to regularize part segments while the part-level segments constrain the varia-
tion of pose locations. Yamaguchi et al. [32] perform pose estimation and semantic
part segmentation sequentially for clothes parsing, using a CRF with low-level fea-
tures. Ladicky et al. [33] combine the two tasks in one formulation, using also low
level features. However these methods cannot deal with images with large pose
variations or multi-person overlapping, mainly due to the less powerful features
they use or the poor quality of their part region proposals. Xia et al. [34] exceeds
this problem combining FCNs with graphical models, greatly boosting the repre-
sentation power of models to handle large pose variation. Moreover it introduces
a novel part segment consistency terms for pose estimation and novel pose con-
sistency terms for part segmentation, further improving the performance, Figure
2.7.

2.3 Incremental Learning

The Incremental Learning (IL) problem is defined as the capability of machine
learning architectures to continuously improve the learned model by feeding new
data without losing previously learned knowledge [43]. This is a challenging task
since traditional learning models require that all sample the old and the new ones
are available during all step of the training stage while an IL model should keep
learning without storing old data. This task has been widely studied in the context
of problems like image classification and object detection.

Some methods [38], [39] exploit network architectures which grow during the train-
ing process as new classes are observed. Istrate et al. in [40] proposed a method
that partitions the original network into sub-networks which are then gradually
incorporated during the training phase. On the other hand Sarwar et al. in [41]
introduce a network that incrementally grows over time while sharing parts of the
base network. Alternatively, a different strategy consists in freezing or slowing
down the learning process in some parts of the network. Kirkpatrick et al. [42]
developed Elastic Weight Consolidation (EWC) to remember old tasks by slowing
down learning on certain weights based on how important they are to previously
seen tasks.
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Papers mentioned before focus on image classification or object detection while
only few articles as [43] and [44] investigates on incremental learning for Semantic
Segmentation. These works applies the distillation approach, a technique originally
proposed in [46], [47] to preserve the output of a complex architecture of networks
when adopting a simpler network for more efficient deployment. In [44] the authors
applied knowledge distillation to preserve old classes while incrementally enlarge
the capabilities of the learning architecture to properly segment and label new
classes.

14



3
Proposed Models

In this thesis we start from the basic idea behind the Incremental Learning ap-
proach, the network should not forget what has learned before. From this idea
we research how a network should use previous acquired knowledge to learn new
task more efficiently. So we use two networks that can be consider as a cascade
where the output of the first one will be the input of the second one. The first
network is trained on a generic task, Semantic Segmentation on 21 classes from
Pascal VOC dataset, while the second network is trained on a more detailed task,
Semantic Part Segmentation on Pascal Part dataset which provides sub-classes for
the previous 21.

3.1 DeeplabV2

As previously stated, there are not works that perform Semantic-Part-Segmentation
with the entire Pascal-Part dataset, so we don’t have results to use as basis of com-
parison. We needed a State-of-Art Networks that allowed us to:

• collect baseline results training a network on a refined version of Pascal-Part
dataset;

• obtain additional data useful for our approach from Pascal-VOC dataset.

For this reasons we start with a basic implementation of a State-of-the-Art CNN.
Our choice falls on an autoencoder network DeeplabV2 with a ResNet101 with
Dilation Rate layers as encoder. It is one of the networks with the higher accuracy
on Pascal-VOC challenge.
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3.2 Proposed Model

As introduced, we aim to improve the obtained baseline results on Pascal-Part
using additional features extracted from the outputs of a CNN trained on Pascal-
VOC, so we have investigated two way to represent these outputs:

• Softmax : the outputs of the last Activation layer with size H * W * N where
N is the number of channels and classes. So each value p on the i-th channel,
H * W * i with i ∈ { 1 ... N }, is the probability of p to belong to the i-th
class. The idea of using the softmax is derived from [45].

• Argmax : the result of the argmax function applied on the softmax. So a
matrix with size H * W * 1 where each element value p ∈ { 1 ... N } is the
index channel of the Softmax with the higher probability.

These types of outputs bring different amount of additional information, on Chap-
ter 5 we analyse how it affects the accuracy.

3.2.1 Model

The DeeplabV2 CNN with ResNet101 as encoder is a quite complicated archi-
tecture and its training time is quite significant. Since we don’t want to make
it more intricate, we have implemented a simple network to process argmax and
softmax, usually basic CNNs architecture are made up of Convolutional, Pooling
and Fully-Connected layers. The most common form stacks a few Convolutional
with Relu activation layers, follows by Pooling layers, and repeats this pattern
until the image has been merged spatially to a small size, in our case we use four
Conv-Relu layers which applies elementwise non-linearity and one Max Pooling
layer.
Through Convolutional operation, a specialized type of linear operation, it’s possi-
ble to extract feature map from the input tensor, moreover applying Max Pooling
layers a downsampling operation is performed which progressively reduces the
spatial size of the representation to decrease the amount of parameters and com-
putation in the network, and hence to also control overfitting, it extracts patches
from the input feature maps and it outputs the maximum value in each patch
and discards all the other values. Once we create a simple architecture to obtain
additional data from the argmax\softmax inputs, we must feed them to the main
network, so they are concatenated with the encoder output, Figure 3.1. In this
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way informations from the Encoder and our simple network are joined and passed
to the Decoder. This technique follows the idea of using the features learned our
network to improve the performances of the Decoder.

Figure 3.1: First proposed model.

A simple variation of 3.1 is showed on Figure 3.2. In this case, the network is
simpler, faster and with a reduced memory load. On this variant the output of
the Concatenation layer is pass only to the first layer of the DeeplabV2, while
the others layer have as input only the Encoder output. We can see in Chapter
4, how this choice does not change the accuracy results, probably because useful
information can be extracted from the first Decoder layer and the information
from other layers are redundant.

3.2.2 Model variation with Dilation-Rate layers

Another variation is shown on Figure 3.4. In this case the output of our simple
network for processing softmax is given as input to four dilation rate or atrous
layers, moreover the outputs are concatenated with the output of the same kind
of layer from the decoder. These layers insert “spaces” in the kernel matrix to
capture features of the input tensor at a different scale. Compared to the increase
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Figure 3.2: Variation of the first proposed model.

in the kernel size, these layers are a cheaply way to increase the receptive field of
output units, which is especially effective when multiple dilated convolutions are
stacked one after another, Deeplab network take advantage of this properties.

Figure 3.3: Dilated convolution, example convolving a 3x3 kernel over a 7x7 input.
Figure from [35] with a dilation factor of 2

Some model variations

On previous model we have made some small changes on the softmax \argmax
network to check if it could be possible to have more improvements. We increase
and decrease the channels number of the Conv2D layers. We add some layers on
the network to extract more features from the softmax \argmax network, we try
different kernel initializer and add some BachNormalization ad Dropout layer in
order to regularize the output.
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Figure 3.4: Proposed model with dilation rate layers.

3.3 Adjacency-Matrix loss

As discuss on Chapter 1, we want to teach to the network how to discriminate
parts that do not belong to the same class and that should not be neighbour. For
this aim we start from the definition of graph and adjacency matrix.

An undirected graph is a pair G = (V,E) consisting of finite set V of vertices
and the finite set E of edges, which are unordered pairs of elements of V. From
graph theory we take into account the adjacency matrix structure i.e. a symmetric
square matrix |V | ∗ |V | used to represent a finite graph. The elements of the
matrix indicate whether pairs of vertices are adjacent or not in the graph. Given
an adjacency matrix A of G, ∀qij ∈ A:

qij :=


1 if [i, j] ∈ E

0 if [i, j] 6∈ E

Starting from the idea to define a new loss which goal is teaching to the network
which parts are correlated and penalizing cases in which uncorrelated parts appear
to be close. We define for each ground truth image its adjacency matrix, where
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each part that occurs is considered as a graph vertex. So given an image which
contains an horse and person its adjacency matrix has a similar appearence to that
in Figure 3.5.

During the training, for each predicted batch its adjacency matrix is calculated,
one common matrix for all batch images, in this case if we consider a batch size
≥2 the matrix could not be a binary matrix since the matrix will be the sum of
the adjacency matrices of each batch image and if more images contain the same
class with the same parts the final matrix will have entries > 1.

The resulting matrix is then compared to the corresponding matrix from the
ground truth with a distance function. It could be an L1 and L2 loss, respectively
Eq. [3.1] and [3.2]. If the Adjacency matrix is a binary matrix then applying an
L1 loss or and L2, the result will be the same. However this will no be true for
most of the cases and for the Weighted Adjacency matrix that we will present on
Paragraph 3.3.2.

L1 = 1
|V |2

∑
|qij − kij| with qij ∈ AAdj−ground−T ruth; kij ∈ BAdj−batch (3.1)

L2 = 1
|V |2

∑
(qij − kij)2 with qij ∈ AAdj−ground−T ruth; kij ∈ BAdj−batch (3.2)

3.3.1 Brief implementation description

Given a ground truth gray scale image, we need to find a way to extract information
about which parts are close to each others, but it’s not easy to determine if two
region with different values are adjacent. We can easily extract from an gray
scale image patches with the same values creating masks with boolean operators,
however it is not so easy to define their closest patches values.
A possible solution could be to find not patch regions but their perimeters, if we
find all contour points for all patches, it is possible to compare these contours
point to point and find a relation between patches. From the OpenCV library for
computer vision tasks, we can use the cv.findContours method, which returns a
list of point for each patch that it finds, however these are not all contour points
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Figure 3.5: Example of Adjacency matrix for an image with a person and a horse.

but only a simplified description of a perimeter patch so it is not always possible
decide if two patches are close looking for the same points on their contours.
Starting with a list of points for a first patch A, we evaluate the distance from each
point from A and all points from another contour patch. If there is a distance≤1 we
set as close the corresponding parts on the Adjacency matrix. All this operations
are conducted with matrix-vector operations to be faster.

3.3.2 Weighted Adjacency matrix

Starting from the above proposed loss, we create a simple variation trying to add
some information about how much two parts must be close. In this case the
adjacency matrix it is not a binary matrix, each element is an approximate value
about how many pixels two parts have in common. These could be helpful because
we are penalizing firstly part that should not appear closest, secondly parts that
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should appear close following a proportion rule based on their semantic meaning.
So our model should learn that a head and torso person should have in common
an approximate number of contour pixels that moreover should be higher than a
hand and an arm, while a head and a hand should not have neighboring pixel.

Following the approach described on the previous paragraph with the Opencv
function, in order to find an approximate number of common pixels, we simply
count the number of contour-points for each part, whose distance from another
contour-point of another part is less of a distance parameter pix, Eq. [3.3].

Wpi,pj
= |d(pik

, pjz) ≤ pix| (3.3)

Where:
pi, pj = two different parts with: i6=j, i, j∈[0, 107]
pix = pixel distance parameter
k = define the k − th point ∈ contour of pi

z = define the z − th point ∈ contour of pj

3.3.3 Multiple Weighted Adjacency matrices

Previous losses create a common weighted adjacency matrix for all batch images,
this could influence in wrong way the learning phase of our model. If we consider
only one Adjacency matrix independently from the batch size, we evaluate a single
loss for all batch images. Since the L2 loss is not a linear function, if we apply
it to a common adjacency matrix for all batch images, its result will be different
from applying it on a set of adjacency matrices, one for each batch image, and
then summing the results. If we evaluate L2 for each single image we should have
a more accurate value to describe the training situation for that batch.
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Dataset

4.1 PASCAL-VOC 2010

The PASCAL ( i.e pattern analysis, statistical modelling and computational learn-
ing ) dataset [7] is a benchmark in visual object category recognition and detection,
providing the vision and machine learning communities with a standard dataset of
images and annotation. Each given image has an annotation file with object class
label for each object in one of the twenty-one classes present in the image. Table
4.2, reports a list of the dataset classes.

Table 4.1: PASCAL classes and their index and parts number.
Index Class #Parts Index Class #Parts
1 airplane 5 11 table 1
2 bicycle 4 12 dog 10
3 bird 8 13 horse 8
4 boat 1 14 motorbike 4
5 bottle 2 15 person 12
6 bus 8 16 potted plant 2
7 car 7 17 sheep 8
8 cat 9 18 sofa 1
9 chair 1 19 train 7
10 cow 8 20 tv 1

These data are divided in Train, Validation and Test sets, however for the last
one annotations are not provided. In order to have a Test with annotations to
evaluate our models, we use the original Validation set as Test set and create
a new Validation set randomly taking 500 images from the Training set. These
images are taken trying to preserve class distribution over the sets, see Figure 4.1.
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Figure 4.1: Classes distribution over Train and Validation set.

4.2 PASCAL-PART

For our tests, we evaluate the previous models on the Pascal-Part dataset [8], which
auguments PASCAL -VOC classes with pixel-wise semantic part annotations, Fig-
ure 4.2 shows how each class from Pascal-VOC2010 is split into its sub classes.
For example if we consider the first line of the image, it’s possible to see how the
baby (person class) is divided into: head, ears left \right, eyes , hair, nose, neck,
mouth, torso, arms and leg lower \upper left \right, hand and foot left \right. We
can understand how this partition could be too extreme, the Pascal-Part provides
384 parts that are too many and too detailed, so some refinements are needed in
order to reduce this number. From [37] we follow these rules:

1. discard fine-grained labels (e.g ‘car wheel front-left’ and ‘car wheel back-left’
are both mapped to car-wheel);

2. merge contiguous sub-parts of the same larger part(e.g ‘person upper arm’
and ‘person lower arm’ become a single person-arm);

3. discard very tiny parts (average of widths and heights over the whole training
set <= 15 pixels);

4. discard parts with less than <= 10 samples in train set (like ‘bicycle head-
light’);

5. consider classes without sub-part as a single part object.

The final dataset contains 103 parts and 4 classes with a single part for a total
number of 108 classes considering the background. The parts have been mainly
reduced following rules 1 and 2, while few parts that are reported on Table 4.2
have been removed due to rules 3 and 4. Table 5.1 reports the number of parts
for each class while Figure 4.3 shows all parts for each class. It is important to
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notice that all the studies on Part-Based Semantic Segmentation are focused on
parts of single or few classes, human or animal-parts, so the number of classes
is highly reduced in comparison with our case, even for the human parts usually.
Only [37] takes into account all parts from the Pascal-Part however its task is
Image Classification.

Figure 4.2: a) RGB PASCAL-VOC dataset; b) Labels from PASCAL-VOC; c) Labels
from PASCAL-part; Labels from PASCAL-part after refinement.

Table 4.2: Removed parts.
Class # Parts

aeroplane tail
bicycle headlight
bird r\l eye
car r\l mirror
cow r\l eye
horse r\l eye
person r\l brow
sheep r\l eye

For a statistical study we have calculated the pixel distribution of the 107 parts
over the entire dataset, we do not consider the background, Figure 4.3 shows this
distribution in a logarithmic scale. The values are reported in logarithmic scale
because there is a remarkable gap value between classes especially for the little
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ones that moreover have less occurrences. Since some parts have a small number
of occurrences and an object does not always show all its parts on an image, even
if the validation set show the same class distribution as the training, the part
distribution does not correspond and so the Validation set lacks of two parts. For
this reason on this thesis we reports only the results on the Test set. The Validation
set was used only to choose the model’s parameters.
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Figure 4.3: Per-class percentage of pixels in logarithmic scale.

27





5
Results

5.1 Experimental Setup

The original DeeplabV2, which this thesis takes as State-of-the-Art network for
semantic segmentation to develop our model, was originally developed using Ten-
sorflow. We re-implemented this network with Tensorflow-Keras version 1.13 be-
cause we want to quickly build and test a neural network with a reduced number
of lines of code.

To perform the training procedures we utilized a single Nvidia 1070 GPU, which
has 8GB of dedicated memory. The limited amount of available resources forced
us to use small batch and resize images to a smaller resolution unless the networks
would not fit in memory, as done by all concurrent approaches in Semantic Seg-
mentation to choose training parameters we have performed some empirical trials
changing the learning rate, the image size and the number of epochs. We have
chosen parameters which lead to an higher mean intersection over union (mIoU)
as metric. Intersection over union, or Jaccard coefficient, measures the similar-
ity between the predicted image and its ground truth. It is defined as Eq. [5.1]
where true-positives are those pixels that belong to the class and are correctly pre-
dicted, false-negatives are those pixels that belong to the class but are erroneously
predicted as a different class and false-positives are those pixels that belong to a
different class but are predicted as the considered class. The mIoU is then the
mean value across all the classes in the dataset. More intuitively, the IoU can be
seen as Eq. [5.2] as the size of the intersection divided by the size of the union of
the ground truth and prediction.

IoU = TruePositives

TruePositives+ FalseNegatives+ FalsePositives
(5.1)
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IoU = groundTruth ∩ predicted
groundTruth ∪ predicted

(5.2)

In particular, we trained the network using the standard technique proposed in [17]
with Stochastic Gradient Descent (SGD) as optimizer with momentum set to 0.9.
The learning rate policy follows the proposed polynomial decay policy, the lr is
multiplied by Eq. 5.3 with power 0.9:

lr = lr ∗ (1− ( iter

maxIter
))power (5.3)

Additionally, some analysis will also be conducted using other two metrics namely:
the mean Pixel Accuracy (mPA) and the mean Class Accuracy (mCA), which are
defined as:

mPA = TruePos.+ TrueNeg.

TruePos.+ TrueNeg.+ FalseNeg.+ FalsePos.
(5.4)

mCA =
∑#Classes T rueP os.

T rueP os.+F alseNeg.

#Classes (5.5)

The mPA, Eq. [5.4], simply reports the percent of pixel in the image which are
correctly predicted, while the mCA, Eq. [5.5], evaluates the percentage of correctly
classified pixels for each class independently and averaging the values [49] [50].

Tensorflow & Keras

Created by the Google Brain team, TensorFlow [48] is an open source library
for numerical computation and large-scale machine learning. The biggest benefit
it provides for machine learning development is abstraction. Instead of dealing
with the practical details of implementing algorithms, or figuring out proper ways
to feed the output of one function to the input of another, the developer can
focus on the overall logic of the application. Its flexible architecture allows easy
deployment of computation across a variety of platforms (CPUs, GPUs, TPUs),
and from desktops to clusters of servers to mobile and edge devices. TensorFlow
can train and run deep neural networks for handwritten digit classification, image
recognition, word embeddings, recurrent neural networks, sequence-to-sequence
models for machine translation, natural language processing. It uses Python to
provide a convenient front-end API for building applications with the framework,
while executing those applications in high-performance C++.
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Keras is a high-level API to build and train deep learning models and is usually
used for fast prototyping. It does not do its own low-level operations, such as tensor
products and convolutions, it relies on a back-end engine for that. Even though
Keras supports multiple back-end engines, its primary backend is TensorFlow.
Keras models are made by connecting configurable building blocks together, there
are two main types of models available the Sequential model, and the Model class
used with the functional API. Neural layers, cost functions, optimizers, initializa-
tion schemes, activation functions, and regularization schemes are all standalone
modules that you can combine to create new models. Its friendliness offers consis-
tent and simple APIs minimizing the number of user actions required for common
use cases.

5.2 State of the Art and Baseline

Firstly, the DeeplabV2 (without CRF) with Resnet101 encoder is trained on
Pascal-VOC 2010 dataset to extract additional data that we are going to use on
our model during the “incremental” step toward the part segmentation. We fine
tune the network starting from weights that were pre-trained on the MSCOCO
dataset [36]. During training, images and batch size are set respectively to 321×321
and 2 while the learning rate is set to 10−4. Other simulation with different pa-
rameters were made, with image size 256× 256 or 512× 512 and different learning
rate. We chose the resolution achieving the highest accuracy and lower time for
convergence. Figure 5.1 shows some predicted images compared to their ground
truth.
Since we are going to extract additional information from these results, it must be
underlined how bad results could condition adversely our model, some imperfec-
tions or errors that can be seen Figure 5.1 could be propagated when performing
the incremental step. For example Figures 5.1c and 5.1k show some pixels that are
labeled as Person(pink), in spite of the background, and this could have a negative
influence. However our baseline network is one of the best performing State-of-
the-Art architectures for Semantic Segmentation. Indeed, we can appreciate in
Table 5.1 the IoU for each Pascal class and the mIoU is 72.28 %.

The output of the last Activation layer with softmax function is saved after and
before the application of the argmax, so we save two types of output, a first one
is matrix with size H×W×N , where N is the number of classes and a second one
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a simple matrix H×W×1.

Table 5.1: Results from DeeplabV2 with Pascal-VOC 2010, 72.28 mIoU
with batch size = 2, image size 321 ∗ 321 and learning rate 10−4.

Class IoU Class IoU
background 90.71 % - -
airplane 80.88 % table 54.49 %
bicycle 71.81 % dog 83.20 %
bird 85.05 % horse 75.28 %
boat 46.55 % motorbike 66.68 %
bottle 74.18 % person 77.04 %
bus 88.42 % potted plant 70.25 %
car 85.34 % sheep 81.06 %
cat 89.10 % sofa 39.43 %
chair 41.58 % train 79.03 %
cow 66.57 % tv 71.27 %

As previously stated in Chapter [3], first of all need to compute baseline results to
use a basis comparison. Starting from the previous network we changed channel
the number on the last layers from 21 to 108, where 108 is the new number of classes
/ parts. Considering the amount of classes and parts, for a better understanding
of the results each part will be related to a specific color, so the same part on
different images will be represent in the same way, this is true also for classes.

We train it on the Pascal-Part dataset for 14 epochs with batch size of 2 and
learning rate of 10−3 and we obtained 29.9 % of mIoU. As it is clear from the
third column of Figure 5.2, which shows some inference images, this model does
not perform very well. Comparing the results with the ground truth we can notice
different types of errors. First of all, the model does not define correctly the shape
of the objects as it is clear from image 5.2c. Moreover it commits two types of
logic errors, the first one is less relevant and it is showed on image 5.2g, here the
model tags different parts of the bird with the same label, it recognize the bird but
not its parts, the second is more serious and it is shown on 5.2c where some pixels
on paws, head and body of the cat are predicted as parts of unrelated classes.
Some paws pixels are labelled as a person-torso (turquoise), some on the body as
bird-body (dark-red) and few pixels on the head as dog-head (beige). This error
even is more clear on Figure 5.7 where we compare images predicted with each
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model proposed, here on Figure 5.7l the entire body of the cow (light green) is
wrongly labelled as a dog body (light blue).

In order to make a comparison with the “Standard” Semantic Segmentation task,
we decided to remap the results from the Pascal-Part into the 21 classes from
Pascal-VOC 2010, so each part-label is remapped into its class-label. This mapping
is extremely useful because it allows us to understand if our model could improve
the Semantic Segmentation task or how much worst it is compared to the State-of-
the-Art models for that task. Additionally, when we will condition our architecture
with the output of the previous model working on the set of 21 classes we would
like not to damage the initial prediction after predicting the part-labels. In this
case after remapping the baseline results show 60.20 % of mIoU vs 72.28 %. The
fourth column Figure 5.1 shows some examples remapped while Table 5.2 reports
the IoU for each class, where we can appreciate that only on class cow the Baseline
model has a higher IoU, 68.59 vs 66.57. Moreover it can be useful to easily notice
which pixels are wrongly predicted from a different class.

Table 5.2: Comparison between results on Pascal-VOC 2010 and results on Pascal-Part
after we have merged the resulting parts. The per-class IoU reported below
is computed starting from the predictions of the sub-parts.

Class IoU Baseline IoU Class IoU Baseline IoU
background 90.71 % 88.59 % - - -
airplane 80.88 % 65.92 % bus 88.42 % 81.44 %
bicycle 71.81 % 59.77 % car 85.34 % 71.77 %
bird 85.05 % 69.29 % cat 89.10 % 76.07 %
boat 46.55 % 43.52 % chair 41.58 % 21.16 %
bottle 74.18 % 56.77 % person 77.04 % 72.75 %
table 54.49 % 35.75 % potted plant 70.25 % 45.93 %
dog 83.20 % 72.89 % sheep 81.06 % 64.23 %
horse 75.28 % 62.39 % sofa 39.43 % 36.70 %

motorbike 66.68 % 42.89 % train 79.03 % 68.86 %
cow 66.57 % 68.89 % tv 71.27 % 58.77 %
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(a) RGB (b) GT (c) DeeplabV2 21 (d) Baseline

(e) RGB (f) GT (g) DeeplabV2 21 (h) Baseline

(i) RGB (j) GT (k) DeeplabV2 21 (l) Baseline

(m) RGB (n) GT (o) DeeplabV2 21 (p) Baseline

(q) RGB (r) GT (s) DeeplabV2 21 (t) Baseline

Figure 5.1: From left to right, RGB images, Ground Truth from Pascal-VOC 2010,
results from DeeplabV2 and remapped Baseline results from Pascal-Part.

5.3 Conditioning with Argmax

On Chapter 3 we discussed how to extract additional features from the results
of the argmax function applied on the network output. We show the results on
Table 5.3 where the first line reports the model proposed on Paragraph 3.2.1,
the second the variation proposed on Paragraph 3.2.2 while last two lines show
simple variations with Batch Normalization layers or with double channels for the
Conv2D layers on the custom network that extracts features from the Argmax. As
we have supposed, the Argmax does not provide extremely useful additional cues,
from Table 5.3 it is possible to notice that the best case improves the mIoU of ∼
0.5 % while the worst case obtains the same result as the Baseline.
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Table 5.3: Results from 4 different model with Argmax as additional input.
Baseline 29.9 %

BatchNormalization Dilation Rate Mult. Factor mIoU
- - 1 29.9 %
- x 1 30.3 %
- - 2 30.4 %
x - 1 30.2 %

(a) RGB (b) GT (c) Baseline (d) Argmax

(e) RGB (f) GT (g) Baseline (h) Argmax

Figure 5.2: Some Baseline and Argmax model results on Pascal-Part dataset. From
left to right, RGB images, Ground-Truth from Pascal-Part, Baseline and
Argmax results.

The third and fourth column of Figure 5.2 compare some results from the Baseline
and the Argmax model and it is clear that there are not remarkable improvements.
The image 5.2h has a more complete contour shape compared to 5.2g , however
5.2d is far from being similar to its ground-truth, it has too many pixels with
wrong labels, the body is almost completely labelled as a bird-body(dark-red).
The Figures 5.2 underline how this model does not improve to the Baseline.

As it was made on Paragraph 5.2, we have compared the remapped parts with
the results from the Pascal-VOC, Table 5.4 reports this comparison. After remap-
ping, the Argmax results shows 65.8 % of mIoU. The bold type values on Table
5.4 underline classes that have an higher IoU compared to the results from the
“Standard” Semantic Segmentation task, so in some cases the Part-Based Seman-
tic Segmentation task could obtain better results and improve the metric, however
it is notable that the three classes which gain benefits are classes without sub-parts
as the Sofa, the Chair and the Boat. Figure 5.3 compares some results remapped
with the Pascal-VOC.
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Table 5.4: Comparison between results on Pascal-VOC 2010 and results on Pascal-Part
after we have merged the results from the Argmax model. The per-class IoU
reported below is computed starting from the predictions of the sub-parts.

Class IoU Argmax IoU Class IoU Argmax IoU
background 90.71 % 90.28 % - - -
airplane 80.88 % 68.95 % bus 88.42 % 83.86 %
bicycle 71.81 % 57.80 % car 85.34 % 77.08 %
bird 85.05 % 73.35 % cat 89.10 % 82.41 %

boat 46.55 % 47.2 % chair 41.58 % 41.7 %
bottle 74.18 % 66.47 % person 77.04 % 75.75 %
table 54.49 % 45.60 % potted plant 70.25 % 59.67 %
dog 83.20 % 76.82 % sheep 81.06 % 71.96 %
horse 75.28 % 61.66 % sofa 39.43 % 47.59%

motorbike 66.68 % 53.57 % train 79.03 % 75.90 %
cow 66.57 % 65.53 % tv 71.27 % 59.21 %

(a) RGB (b) GT (c) DeeplabV2 (d) Baseline (e) Argmax

(f) RGB (g) GT (h) DeeplabV2 (i) Baseline (j) Argmax

(k) RGB (l) GT (m) DeeplabV2 (n) Baseline (o) Argmax

Figure 5.3: Shows some sample images where Sofa (Green), Boat (Blue) and Chair
(Red) have an IoU higher with the Argmax model.

5.4 Conditioning with Softmax

From [45] we derived the idea to use the Softmax output to enhance our model,
this data should provide better results compared to the Argmax since it brings an
higher amount of information. The model proposed on Paragraph 3.2.1 presents
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an improvement of ∼ 3 % with 33.36 % mIoU against the 30.4 % with the Argmax
and 29.9 % of our baseline Deeplab v2.. On the third and fourth column of Figure
5.4 the results from the Baseline with the Softmax model are compared. The image
5.4d shows some improvements, the body is correctly labelled, pixels predicted as
bird-body are gone however there are still wrong labels (turquoise) near the paws.
On the other hand, the image 5.4h shows a more significant upgrade compared to
the Baseline and the Argmax (Figure 5.2h), it is quite similar to its ground truth
and all its parts have been correctly predicted.

(a) RGB (b) GT (c) Baseline (d) Softmax

(e) RGB (f) GT (g) Baseline (h) Softmax

Figure 5.4: Some Softmax model results on Pascal-Part dataset. From left to right,
RGB, Ground-Truth from Pascal-part and Baseline and Softmax results.

On Figure 5.5 we show an histogram with the IoU of each parts for the Baseline
and Softmax model. It can be noticed that only few parts have an higher IoU on
the Baseline. In both cases some parts are not found as: the bus-car fliplate, the
motorbike handlebar and saddle, and the train headlight. However these parts are
tiny and have few occurrences on the dataset, so probably the network does not
have enough examples to learn them. Remapping these results to the 21 classes
from the Pascal-VOC leads to a 70.9 % mIoU, still lower compared to the 72.28 %
of our baseline model. On Table 5.5 we report IoU for each class, in this case the
number of classes with benefits from using additional data is increased. On the
previous model, these classes were the ones with no sub-parts, now other classes
such as the Bottle, Cow and the Bus have increased their IoU.
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Table 5.5: Comparison between results on Pascal-VOC 2010 and results on Pascal-Part
after we have merged the results from the Softmax model. The per-class IoU
reported below is computed starting from the predictions of the sub-parts.

Class IoU Softmax IoU Class IoU Softmax IoU
background 90.71 % 90.62 % - - -
airplane 80.88 % 75.66 % bus 88.42 % 89.72 %
bicycle 71.81 % 63.26 % car 85.34 % 81.44 %
bird 85.05 % 78.57 % cat 89.10 % 85.45 %

boat 46.55 % 61.77 % chair 41.58 % 43.36 %
bottle 74.18 % 74.38 % person 77.04 % 76.55 %
table 54.49 % 48.64 % potted plant 70.25 % 61.30 %
dog 83.20 % 83.02 % sheep 81.06 % 75.58 %
horse 75.28 % 75.00 % sofa 39.43 % 50.50 %

motorbike 66.68 % 61.61 % train 79.03 % 77.05 %
cow 66.57 % 80.45 % tv 71.27 % 52.42 %
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Figure 5.5: Histogram with Baseline and Softmax value for each parts.
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5.5 Adjacency Loss

On Paragraph 3.3 we have discussed about a new loss to discriminate parts that
should not be close, for example a person-head and a cat-neck. We propose three
different variations, a simple one with an unweighted adjacency matrix (i.e., with
binary values), a weighted adjacency matrix where each link between two parts
is weighted on the basis of how much two parts are close and a third one where
we create a different weighted adjacency matrix for each batch image. Finally we
trained our model end-to-end with a new loss given by Eq. [5.6], which is the linear
combination of an L2 adjacency loss as described on Eq. [3.2] and the categorical
crossentropy loss.

NewLoss = CategoricalCrossentropy + λ ∗ AdjacencyLoss (5.6)

The term AdjacencyLoss can be one of the three cases describe above and the
λ term is an hyper-parameter that must be set. Empirically„ we set λ = 10−2.
Another parameter that must be set is related to the weighted Adjacency matrix.
Studying the Pascal-Part dataset we noticed how different parts of the same class
that should be close are instead divided by background pixels, as it is shown in
Figure 5.6. For this reason we modify the algorithm described on Paragraph 3.3.1
and set the distance between contour points as a variable, so two parts will be
consider close if their contour distance is ≤pix, where pix is the distance variable.
Even for this case we made some empirical trials with different distance value and
in the end we set pix = 3 pixels.

Figure 5.6: Two examples where related parts that should be attached are instead
divided by background pixels.

All these losses are applied on the model that takes as input RGB + Softmax, since
we have proved that the Argmax does not provide enough additional information
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to our purpose. Table 5.6 reports the results obtained from the losses proposed.
The first line of the table shows that the unweighted Adj-matrix proposed performs
better of the softmax model, it gains ∼ 1%, from 33.36% to 34.26%. The second
and third line with the weighted Adj-matrix with 1 pixel distance and the one
that calculates a different matrix for each batch image do not show considerable
improvements. However the weighted Adj-matrix with pixel distance set to 3
performs better compared to the softmax model of ∼ 2%.

Table 5.6: From Top to Bottom: the unweighted adjacency-matrix loss, the weighted
adjacency-metrix loss with 1 and 3 pixel distance, the weighted adjacency-
matrix loss which calculates a different adjacency matrix for each batch
image(∗), in this case 2 matrix for a batch size 2.

Baseline 29.9 %

Loss Pixel Distance mIoU

Unweighted Adj-matrix - 34.26 %

Weighted Adj-matrix 1 34.36 %

Weighted Adj-matrix 3 35.1 %

2 Weighted Adj-matrix(∗) 1 34.76 %

The Weighted Adjacency matrix loss, with pixel distance set to 3, obtains the
best results. From Figure 5.7 it is possible to notice the relevant improvements
compared to the previous models. The dog on image 5.7u does not have pixels
with labels from other classes and moreover it has a more defined shape, in fact
its muzzle is correctly found even if its ground-truth is partially wrong. On Figure
5.7e the dog holds a toy with its mouth and it is labelled as part of the muzzle.
The train, 5.7v, and the cow, 5.7x, do not show relevant improvements compared
to the Argmax instead the cat, 5.7w, is the one that has gained more benefits from
this loss compared to other model results.
Figure 5.8 reports the Baseline and Adjacency model results for the 108 parts, we
can notice that parts that were not found or have a small IoU on Figure 5.5 are not
improved from this approach. This supports the previous hypothesis according to
which the network could not recognize them because are too tiny and with few
occurrences.

41



5. Results

Additionally, on Figure 5.8 we can confirm the wide and general trend of improve-
ment brought by our final framework with the novel loss function with respect to
the baseline model.
Furthermore this model after merging the resulting parts with its 72.27 of % mIoU
is able to match the 72.28 % obtained with the DeeplabV2 on Pascal-VOC and
Table 5.7 reports the IoU for each class. On Figure 5.9 we compare all the parts
remapped from the previous model with the DeeplabV2 results from the Pascal-
VOC.

It is clear how our approach gradually enhances the results and obtains an equiva-
lent and in some case better results compared to the DeeplabV2. For example on
the third column of Figure 5.9, the DeeplabV2 finds some wrong pixels labelled as
a person (pink). These pixels are there also in the other models results, together
with other wrong pixels tagged as bird (light brown), however with our Adjacency
loss wrong labels are drastically reduced and the image is clearly better. Also the
dog in the last row does not show some pink pixels near the right paw.

Table 5.7: Comparison between results on Pascal-VOC 2010 and results on Pascal-Part
after we have merged the results from the Adjacency loss model. The per-
class IoU reported below is computed starting from the predictions of the
sub-parts.

Class IoU Adjacency IoU Class IoU Softmax IoU
background 90.71 % 91.02 % - - -

airplane 80.88 % 75.28 % bus 88.42 % 90.07 %
bicycle 71.81 % 63.32 % car 85.34 % 82.03 %
bird 85.05 % 80.56 % cat 89.10 % 87.16 %
boat 46.55 % 61.08 % chair 41.58 % 44.63%

bottle 74.18 % 74.96 % person 77.04 % 77.84 %
table 54.49 % 49.76 % potted plant 70.25 % 58.58 %
dog 83.20 % 83.90 % sheep 81.06 % 78.67 %
horse 75.28 % 76.24 % sofa 39.43 % 51.91 %

motorbike 66.68 % 61.51 % train 79.03 % 78.13 %
cow 66.57 % 82.31 % tv 71.27 % 68.68 %
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Here we show some Tables that recap the results. Tables 5.8 reports the model
results organized in ascending order from the Baseline to the Adjacency loss model.
In this case in addition to the mIoU we compare the mPA, Eq. [5.4], and the mCA,
Eq. [5.5]. Table 5.9 reports the same metrics but for the remapped results.
These metrics show how our proposed models gradually enhance the mIoU as
well as the mPA and the mCA, showing coherence between the results of the Part-
Based Semantic Segmentation Task and the Standard Semantic Segmentation after
remapping.
Moreover, looking to the last line of Table 5.9, it possible to notice how the mIoU
of our approach matches the results obtained with the DeeplabV2 but exceeds it
with the mPA of ∼0.5% and with the mCA of ∼4%, showing the robustness of
our approach.

Table 5.8: Results in ascending order. From Top to Bottom: mean Intersection over
Union, mean Pixel Accuracy and mean per Class Accuracy for each model.

Model mIoU mPA mCA
Baseline 29.9% 84.92% 39.5%

Best Argmax 30.4% 86.06% 41.25%
Best Softmax 33.3% 87% 44.13%

Best Adj-matrix 35.1% 87.45% 45.92%

Table 5.9: Results after remapping the parts in ascending order. From Top to Bot-
tom: mean Intersection over Union, mean Pixel Accuracy and mean Class
Accuracy for each model.

DeeplabV2 72.28% 91.95% 81.25%

Model-ReMapped mIoU mPA mCA
Baseline 60.2% 89.5% 73.48%

Best Argmax 65.8% 91.09% 81%
Best Softmax 70.9% 92% 83.25%

Best Adj-matrix 72.27% 92.45% 85.26%
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(a) 2008_000078 (b) 2008_001114 (c) 2008_000358 (d) 2008_000073

(e) GT (f) GT (g) GT (h) GT

(i) Baseline (j) Baseline (k) Baseline (l) Baseline

(m) Argmax (n) Argmax (o) Argmax (p) Argmax

(q) Softmax (r) Softmax (s) Softmax (t) Softmax

(u) Adjacency (v) Adjacency (w) Adjacency (x) Adjacency

Figure 5.7: Results comparison between all models. From Top to Bottom: RGB,
Ground Truth, Baseline, Argmax, Softmax and Adjacency Model.
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Figure 5.8: Histogram with Baseline and Adjacency model values for each parts.
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(a) 2008_000078 (b) 2008_001114 (c) 2008_000358 (d) 2008_000073

(e) DeeplabV2 (f) DeeplabV2 (g) DeeplabV2 (h) DeeplabV2

(i) Baseline (j) Baseline (k) Baseline (l) Baseline

(m) Argmax (n) Argmax (o) Argmax (p) Argmax

(q) Softmax (r) Softmax (s) Softmax (t) Softmax

(u) Adjacency (v) Adjacency (w) Adjacency (x) Adjacency

Figure 5.9: Results remapped compared with all models. From Top to Bottom: RGB,
DeeplabV2, Baseline, Argmax, Softmax and Adjacency Model.
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6
Conclusions and future work

In this work we have investigated the Part-Based Semantic Segmentation task
with the aim of improving the performance when the set of parts to be learnt is
not small. As a matter of fact, many works have studied this topic but most of
these involve a restricted set of parts belonging to just few classes such as human,
animals or cars.

This was made possible by using a framework with two networks: the first was
trained in the Standard Semantic Segmentation task with 21 classes while the
second one had the same architecture of the first but it was adapted to predict a
finer set of 108 parts derived from the initial segmentation.
These networks can be considered as a cascade, the second network is fed with the
output of the first plus the RGB images. This architecture allows to the second one
to extract features from the softmax (or argmax) outputs of the first network, in
addition to the features from the RGB images. Features from the previous output
are useful to constrain and condition the prediction of the parts.

Furthermore, we have studied a new loss called Adjacency loss that is inspired by
the Adjacency-matrix from the Graph theory. We built an adjacency matrix for
each predicted image and its ground-truth and we applied a distance function, in
such a way we minimize the discrepancies between them. This should teach to the
network how to penalize parts that should not be close.

Experimental results have demonstrated the effectiveness of this approach. A
State-of-the-Art network for Semantic Segmentation trained with 108 parts ob-
tains 29.9% of mIoU, while our model is able to reach 30.5% and 33.3% of mIoU
respectively with the Argmax and the Softmax output. Moreover applying our
new loss we have reached 35.1% of mIoU with a visible improvement on predicted
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images. Additionally, remapping the parts to their respective parent, we were
able to reach the mIoU obtained by the first network with the 21 classes. This
proves that not only we improved the Part-Base Semantic Segmentation task but
we also do not lose information for the Standard Semantic Segmentation task and
moreover we could improve it.

Finally, further research could be devoted to improve the Adjacency loss: some
classes are too small and have few occurrences in the dataset and it could be useful
to find a way to weight each part differently. For example, it could be possible
to weight each part by considering its frequency in the entire dataset or for single
image during training. Additionally, it could be possible to study a new loss which
not only consider the adjacent parts but also their spacial location; it will consider
if a head and a torso person are close as well as if they are correctly located. This
new loss combined with our Adjacency loss and model could further improve the
performances.
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