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Abstract

In this thesis, we address the challenges of task representation and task planning for assembly
within a communication-free Human-Robot Collaboration (HRC) framework. Our primary goal
is to present a novel task planning approach that does not rely on modeling the human as a pre-
dictable agent. Instead, we treat the human as an unpredictable agent and focus on optimizing
the robot’s actions. Building on the existing Hierarchical Task Network (HTN) planning frame-
work, UHTP (User-aware Hierarchical Task Planning), we present an implementation based on
personal interpretation, extending it to handle joint actions and incorporate a failure recovery
process. The secondary goal is to develop a method for autonomously retrieving task repre-
sentations from annotated videos, organizing tasks into a hierarchical structure. The proposed
solutions are validated through simulation experiments and comparedwith others to demonstrate
their robustness and effectiveness.





Sommario

In questa tesi affrontiamo le sfide legate alla rappresentazione e pianificazione del task per l’as-
semblaggio in un contesto di Human-Robot Collaboration (HRC) senza comunicazione. Il nos-
tro obiettivo principale è presentare un nuovo approccio di pianificazione del task che non si
basi sulla modellizzazione dell’essere umano come agente prevedibile. Al contrario, consideri-
amo l’essere umano come un agente imprevedibile e ci concentriamo sull’ottimizzazione delle
azioni del robot. Basandoci sul framework esistente di task planning con Hierarchical Task
Networks (HTN), UHTP (User-aware Hierarchical Task Planning), proponiamo un’implemen-
tazione derivata da un’interpretazione personale, estendendola per gestire azioni congiunte e
integrare un processo di ripristino in caso di fallimento delle azioni. L’obiettivo secondario
è sviluppare un metodo per ottenere in modo autonomo rappresentazioni del task da video
trascritti, organizzando i compiti in una struttura gerarchica. Le soluzioni proposte sono val-
idate attraverso esperimenti di simulazione e confrontate con altre metodologie per dimostrarne
la robustezza ed efficacia.
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Chapter 1

Introduction

In recent decades, technological innovation has profoundly transformed the industrial world, in-
troducing advanced automation and artificial intelligence into manufacturing processes. One of
the most promising developments in this context is represented by Human-Robot Collaboration
(HRC). HRC is an innovative paradigm that aims to combine the unique capabilities of humans,
such as manual dexterity and critical thinking, with the strength, precision, and repeatability of
industrial robots. Thanks to advanced sensors and artificial intelligence algorithms that ensure
safe and smooth interaction, collaborative robots, also known as cobots, leave the role of simple
machine tools and become active partners for human workers. Different from traditional indus-
trial robots, modern cobots are designed to work side by side with humans, sharing workspaces
and tasks without the need for physical safety barriers. As a result, the novel HRC framework
promises increased productivity and efficiency of workflows.

Assembly is one of the most relevant and complex tasks in the manufacturing industry. As-
sembly processes, indeed, are challenging as they typically involve a long sequence of subtasks.
Each subtask may require particular strength to move heavy objects or dexterity to perform
complex actions such as insertions or screwing. In this context, HRC results to be an effective
solution both to improve efficiency and alleviate human workers from tedious and repetitive
tasks.

Implementing an efficient HRC framework for assembly tasks, however, is also challenging.
As said, assemblies require a long series of actions to be performed in a sequence, with specific
constraints on their order. First, an efficient abstraction of the task, hereafter denoted as task
representation or task description, is required, which describes the task goal and the constraints
on action sequentiality. Besides efficient task representation, precise coordination between the
human worker and the robot is fundamental: the robot should be continuously updated on the
action performed by the human partner and, ideally, it should be aware of the human’s intention,
either through explicit communication or by movement interpretation. Finally, an effective task
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planning algorithm is needed to optimize the robot’s action sequence according to the assembly
state and the human’s choices. All these aspects make collaborative assembly a challenging
problem, subject to an intense research effort.

Several solutions have been proposed in the literature. Regarding task description, the large
majority of presented works rely on hierarchical task representations, which group the entire set
of actions to be performed in a hierarchy of subtasks of increasing (or decreasing) complexity,
and organize them in a graph or tree structure. Hierarchical approaches are appealing for two
main reasons: on the one hand, they explicitly model the inherent relationships of sequentiality
or independence between subtasks or manipulated objects. On the other hand, grouping tasks
into a hierarchical structure reduces the description complexity. Widespread hierarchical repre-
sentations include, to name a few, And/Or graphs, Behavior Trees, Scheduling Algorithms, and
Hierarchical Task Networks (HTNs). In particular, as it will be clearer in the following, HTNs
are largely involved in the context of planning, thanks to their straightforward definition and
interpretability.

Manually deriving task descriptions is a tedious and time-consuming task, which requires
domain expertise and could become difficult to infeasible for very long assemblies with a large
number of actions involved. For these reasons, deriving the task description automatically, for
example from video demonstrations, is a widely discussed topic in the literature. Zhuo et al.
[1] construct HTN trees starting from partially observed plan traces, the task is annotated with a
focus on its preconditions and effects. The algorithm presented returns a series of decomposition
trees, each referring to a higher-level task. Hayes et al. [2] introduce Clique/Chain HTNs, a
new method based on Conjugate Task Graphs, graphical representations that aim to simplify
and outline a hierarchical structure between tasks. Danfei Xu et al. [3] propose a learning
algorithm based on neural networks and neural programming that takes as input generalized
video demonstrations and decomposes their hierarchically complex structures into subtasks.

For what concerns planning algorithms, most of the solutions proposed rely on hierarchical
representations. Prior works that adopt And/Or graphs are, for example, Darvish et al. [4]
and Johannsmeier et al. [5]. Despite being effective, these methods reveal problems in online
task replanning due to the increasing complexity of And/Or graphs for large-scale problems.
Moreover, these approaches require the human agent to follow predefined plans, which can
be restrictive. Differently, Fusaro et al. in [6] and [7] employ Behavior Trees due to their
modularity and responsiveness, which allow the handling of different levels of human-robot
interaction. However, also in this case the human agent is constrained to choose a certain path
established a priori, based on cost optimization. Scheduling Algorithms such as Chaski [8]
or APA [9] are also widely utilized. Chaski enables the robot to dynamically adapt to human
behavior, though it explicitly requires communication between partners. APA synchronizes
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robot scheduling with human preferences, treating the robot as a follower, which may not fully
leverage the robot’s potential in collaboration. Milliez et al. [10] implement an adaptive task
planning using HTNs, ensuring that human preferences and constraints are respected throughout
the process. However, a limitation of this framework is that human behavior must be explicitly
modeled. Roncone et al. [11] propose a planning approach based on HTNs aimed at reducing
the human’s cognitive load. Nevertheless, in their specific scenario, explicit communication
between agents becomes essential.

Note that all the aforementioned works either suppose the human to follow a prescribed
plan or require explicit communication between agents. These two aspects can reduce the nat-
uralness of the interaction, leading to decreased efficiency. Similar to what happens among
human teams, where one agent tries to understand the others just by observing their behavior,
one would expect the robot to interpret the human and adapt its choice accordingly, without ex-
plicit communication if not needed. Moreover, in many situations, it is desirable that the robot
proactively supports the human partner, neither prescribing actions for the human co-worker nor
acting completely as a follower. For the aforementioned reasons, in this thesis, we consider a
human-robot team where the robot adapts itself to the human, autonomously adopting actions
that optimize the assembly success without explicit communication or human modeling.

In this context, Ramachandruni et al. [12] presented the UHTP (User-aware Hierarchical
Task Planning) framework, based on HTNs, which is particularly suited for communication-
free scenarios. It does not require explicit modeling of the human agent and avoids imposing
predefined paths for either the human or the robot. Despite its efficiency, this approach does
not address two important aspects of collaborative assembly: the possibility for the agents to
perform joint actions and the handling of failures. A study addressing both joint actions and
failure recovery is conducted by Giulio Giacomuzzo and Diego Romeres [13]. Their setup is
the reference for this thesis. However, their approach, which employs Reinforcement Learning
(RL) to solve the planning problem, is based on a complex event-triggered interaction model.
Their reinforcement learning solution lacks interpretability. Moreover, while it has proved to
converge to optimization-based solutions in small assembly problems, its generalization to more
general and large-scale tasks is not guaranteed.

Optimization-based solutions like UHTP are more appealing as they are interpretable and
are guaranteed to provide the optimal plan. For this reason, the primary goal of this thesis is
the extension of the UHTP framework to make it handle joint actions and failures. Given that
UHTP relies on HTNs, the secondary goal consists of the development of an automatic tool to
derive HTNs from video demonstrations. In particular, the contribution is threefold:

1. We investigate and reviewmethodologies in hierarchical task representation and planning
for collaboration in assembly tasks.
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2. We propose a novel algorithm to derive HTNs directly from annotated videos.

3. We present a novel task planning algorithm, which extends UHTP by adding handling of
joint actions and failures.

The developed solutions are extensively evaluated on different simulated assembly scenar-
ios, where they show improved performances compared to considered baselines.

This thesis is organized as follows. Chapter 2 contains a literature review, analyzing the
current state of research on the subject, with a focus on the most commonly used methods for
task representation and task planning. The core Chapters 3 and 4 discuss the developed strat-
egy, detailing the techniques employed an the implementation details, and presenting relevant
simulation experiments. Finally, a conclusion Chapter 5 highlights the key results obtained and
discusses potential directions for future work.
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Chapter 2

State of the Art and Background

This chapter reviews relevant literature in the field of HRC assembly. In particular, the chapter
focuses on task representation solutions and planning algorithms. By examining fundamental
studies and recent advancements, this review identifies key methodologies and limitations that
support the development of the proposed framework by highlighting critical gaps in existing
research, particularly in the areas of task flexibility, real-time adaptation and human operator
constraints and communication-free environments.

2.1 Task Representation

Task representation has a fundamental role in HRC assembly as it provides a structured frame-
work that facilitates coordination, communication, and priority execution between human and
robot. In particular, hierarchical description enables the decomposition of complex assembly
processes into manageable subtasks. Task representation can support dynamic replanning, al-
lowing the system to adapt to changes or unexpected events without disrupting the workflow. It
minimizes the need for explicit communication by providing a clear understanding of the task
flow, reducing cognitive load for the human. Furthermore, task representation plays a critical
role in optimizing task execution, as they provide the structure to define optimality conditions,
according to which actions can be selected.

Task representation is crucial also to implement efficient task planning strategies as it im-
proves decision-making processes, enabling the robot to plan actions accordingly to human be-
havior and tasks’ status. It also provides the means to implement complex features such as joint
actions and failure recovery ensuring a robust and adaptable planning

For all these reasons, the choice of a suitable task representation is crucial when addressing
the collaborative assembly problem. The following methods are the most consistent and widely
adopted.
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2.1.1 Methods

AND/OR graphs
And/Or graphs are widely used in the field of HRC because of their suitability for solving

complex tasks, breaking them down into more simple ones. As they are a state-based structure,
their nodes represent states or sub-goals to be achieved, while arcs reflect the actions or transi-
tions required to progress. There are two main types of arcs: AND and OR. AND arcs indicate
that several actions must be completed simultaneously or sequentially in order to progress, while
OR arcs denote the possibility of choosing between several alternatives to continue.

In HRC, And/Or graphs are useful for dividing complex tasks into manageable sub-tasks,
allowing specific parts to be assigned to robots and others to humans. However, they have
notable limitations: as the number of tasks increases, their size tends to grow exponentially,
making them computationally expensive to process. Real-time replanning to adapt to human
decisions and potentially anticipate human behavior is also challenging, as the graph typically
has a fixed structure, therefore, adapting the graph to unexpected events or new conditions often
requires a complete reconstruction, which limits flexibility in dynamic environments. [14] [15]
Behavior Trees

Behavior Trees (BTs) are state-based hierarchical data structures used for planning and exe-
cuting complex behavior in autonomous systems, such as robots and intelligent agents. Techni-
cally, a BT is composed of nodes that can be divided into twomain categories: control nodes and
execution nodes. Control nodes, such as Sequence, Fallback, Parallel, and Decorator, manage
the execution flow, determining the order in which child nodes are activated based on the con-
ditions or results of other nodes. Execution nodes, on the other hand, represent specific actions
or conditions that return a status of Success, Failure or Running, depending on the result of the
operation performed.

One of the distinctive technical features of BTs is their ability to combine reactive and
planned behavior. For example, a Sequence node will execute its children in order, moving
on to the next only if the previous one succeeds, while a Fallback node will execute its chil-
dren in sequence until one succeeds, making it ideal for handling fallback situations or multiple
attempts. This modular and reusable design allows BTs to easily scale and handle both simple
and complex behavior.

For this specific work BTs do not appear suitable to implement a real-time adapting frame-
work as, like And/Or graphs, they tend to impose a predefined path on human operator. They
present some limits in responding to unpredictable human input or environmental changes as
they could be forced to handle extensive modifications. [16] [6]
Scheduling Algorithms

Scheduling algorithms are crucial in HRC as they enable efficient management of time and
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resources, ensuring that tasks are assigned and completed as efficiently as possible. These algo-
rithms determine the sequence and priority with which tasks should be performed, taking into
account constraints such as available time, processing capacity and shared resources between
humans and robots. In HRC, scheduling is particularly complex as it must balance differences
in skills, work rhythms, and dynamic interactions between agents.

There are different types of scheduling algorithms, each with specific characteristics. For
example, static scheduling algorithms create a predetermined plan, where tasks are assigned to
robots and humans in a fixed way, without changes during execution. This approach is useful
in predictable environments with repetitive tasks. In contrast, dynamic scheduling algorithms
allow assignments to be recalculated and readjusted during execution, in response to changes
such as delays, failures, or priority changes. This approach is more suitable for flexible and
complex work environments, such as those requiring frequent interactions between humans and
robots.

In general, this approach considers more factors such as task deadlines, resource availability
and task dependencies and is, therefore, less flexible in handling unforeseen events or dynamic
task requirements. [17]

Hierarchical Task Networks

Hierarchical Task Networks are action-based tree structures used to organize the resolution
of complex tasks in a hierarchy of sub-levels, each level represents a different abstraction or sub-
division of the main problem. The root node corresponds to the general task to be completed,
while subsequent nodes represent subtasks that become more and more specific as one moves
toward the leaves of the tree. This organization facilitates workflow management in collabo-
rative contexts, where robots and humans can be assigned to different levels of the hierarchy
according to their skills and capabilities. For example, a robot could be responsible for the more
detailed and repetitive subtasks at the leaf level, while humans can oversee decisions at a higher,
more strategic level.

HTNs offer significant advantages in terms of modularity and adaptability, as they allow
complex tasks to be divided into independent parts that can be assigned to different agents in
parallel or in series. This structure also facilitates themanagement of dependencies and priorities
between tasks, a set of requirements can be deducted for each task starting from an HTN. Conse-
quently, HTN trees enable dynamic planning, allowing robots to update their actions according
to changes in operating conditions or human progress, improving efficiency and cooperation
within mixed teams.

An example of HTN tree follows. Yellow nodes represent the actions that are either executed
always by the same agent or can be executed by one of them, depending on the agent’s planning
choices. Red nodes, conventionally called fully ordered nodes (FO-nodes), impose a specific
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sequential order on the actions appended beneath them. Blue nodes called partially ordered
nodes (PO-nodes), represent parallelism, allowing the actions below to be executed in every
order, even simultaneously.

Figure 2.1: Example of HTN tree structure.

They appear to be themost suitable approach for the purposes of this thesis, as their flexibility
allows them to avoid imposing constraints on the human agent. [18]

In Appendix A, the basic concepts of general tree data structures are provided to help un-
derstand their implementation.

2.1.2 Literature Review on HTN Construction from Sequences of Actions

To further support our research goals, this section explores existing methodologies for HTN
construction derived from annotated video data. By examining key studies in this area, we
aim to identify techniques and insights that align with our objectives, offering a foundation for
applying video-based task modeling in our task planning framework.

Learning Hierarchical Task Network Domains from Partially Observed Plan Traces

Zhuo et al. [1] introduce the learning algorithm HTNLearn, which aims to autonomously create
HTN planning models. The algorithm helps construct HTN methods and action models simul-
taneously from partially observed plan traces, significantly reducing the manual effort required
to encode these models.

In a planning context using HTNs, an annotated task is defined as a triple consisting of the
task itself, preconditions, and effects. The preconditions represent the conditions that must be
true before the task can be performed, while the effects describe the observable changes in the
state of the system once the task is completed. To decompose a complex task into simpler tasks,
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methods are defined. A method is characterized by a unique name, the main task it decomposes,
a list of preconditions necessary for applying the method, and a list of subtasks into which the
main task is divided. The preconditions must be met for the method to be used to decompose
a non-primitive task into subtasks. Subtasks can be either primitive, representing executable
actions, or non-primitive, requiring further decomposition.

The solution to an HTN problem results in a series of decomposition trees, each referring
to a higher-level task. The root of each tree represents the main task, the inner nodes contain
non-primitive tasks decomposed throughmethods, and the leaf nodes represent fully instantiated
actions that can be executed sequentially to reach the final goal from the initial state.

Autonomously Constructing Hierarchical Task Networks for Planning and Human-Robot
Collaboration

Bradley Hayes and Brian Scassellati [2] propose a method for autonomously constructing
HTNs, designed to improve collaboration between humans and robots. The approach intro-
duces “Clique/Chain HTNs” (CC-HTNs), a type of HTN based on Conjugate Task Graphs, a
graphical representation that facilitates the identification of ramifications and hierarchical struc-
tures within tasks. The ultimate goal of this approach is to enable task planning in collaborative
contexts.

The main implementations explored in this article are the following:

• Clique/Chain HTN (CC-HTN): This new type of HTN represents relationships between
actions using “clique” (commutative actions) groups, where actions can be performed in
varying order, and “chain” (actions with obligatory order) graphs, which represent se-
quences of actions that must follow a specific order.

• Algorithm for CC-HTN Construction: The algorithm analyzes task graphs to identify
and abstract commutative and sequential subsequences, reducing the complexity of the
scheduling problem and making the task representation more compact and readable.

• Evaluation and Applications: The paper demonstrates how CC-HTNs can be applied
to state estimation and transfer learning in reinforcement learning domains, improving
computational efficiency. For example, in the context of IKEA furniture assembly, the
use of CC-HTNs has been shown to significantly reduce the computational time required
for task planning and goal identification during collaboration.

Neural Task Programming: Learning to Generalize Across Hierarchical Tasks

Danfei Xu et al. [3] present a learning framework for robots, called Neural Task Programming
(NTP), which enables generalization of complex hierarchically structured tasks. The goal is to
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address two fundamental challenges in advanced robotics: learning policies that can adapt to
new task goals and hierarchically decomposing tasks into subtasks.

NTP is a learning algorithm based on neural networks and neural programming. It takes
as input a task specification, such as a generalized video demonstration, and recursively de-
composes it into subtask specifications (a time sequence that describes the process and the final
goal). These subtasks are handled through a hierarchical policy, where lower-level programs
represent executable subroutines that interact with the environment.

During training, NTP generates conditional policies using Few-Shot Learning from Demon-
strations, enabling it to generalize to unseen tasks by adapting to variations in sequence length,
task topology, and goals.

More specifically, policies are represented as neural programs that take task specifications
as input, using a task-agnostic core network to decide the next sub-program and adaptively feed
specific task information to each level. This allows NTP to recursively decompose tasks through
a divide-and-conquer strategy.

2.2 Task Planning

Task planning is a crucial element in the field of robotics, as it allows us to model the environ-
ment in which agents, whether robots or humans, operate and to define how they can interact
within that environment. In other words, task planning provides a structured framework that
allows agents to identify the actions necessary to achieve certain goals and to understand how
these actions affect the overall state of the system.

Task planning is structured in terms of actions and states: an agent performs an action with
the objective of changing the current state of the system, progressively moving towards achiev-
ing the final goal. Actions, whichmay be simple or complex, are planned in an optimal sequence,
taking into account initial conditions, available resources and possible interactions with other
agents or the environment.

In a robotic context, task planning is not only concerned with determining which actions are
to be performed, but also with predicting andmanaging possible uncertainties or variations in the
environment, such as unexpected obstacles or changes in operating conditions. This process re-
quires an integration of different skills, such as situation recognition, real-time decision-making,
resource planning and adaptability.

A thorough study of existing literature has been conducted to deeply understand the needs
of our research and choose the most suitable method to implement our task planning. Sev-
eral notable case studies are highlighted below to point out the affinity with our thesis goals.
These studies are divided into four subsections, each identifying the task representation method
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adopted.

2.2.1 And/Or Graphs

Flexible Human–Robot Cooperation Models for Assisted Shop-Floor Tasks

Darvish et al. [4] adopt And/Or graphs to implement a flexible architecture (FlexHRC) for
HRC in assisted cooperation. It challenges collaboration by using wearable sensors for human
action recognition and a task priority framework to separate action planning from robot motion
planning and control.

FlexHRC implements action planning through a task representation module that uses
AND/OR graphs to decide which action should be performed by the operator or the robot. These
graphs make it possible to represent different patterns of cooperation and establish optimal ac-
tion sequences based on the structure of the graph itself. The Planning module uses these graphs
to suggest actions to operators, leaving them free to decide whether to follow them or not, while
imposing actions on the robot.

The FlexHRC architecture places special emphasis on the flexibility and freedom of human
operators, trying to minimize the constraints imposed during the cooperation process. Specifi-
cally:

• Flexibility: Operators are not forced to follow a predefined sequence of operations, but
can decide which actions to perform on the fly, as long as they adhere to the overall goals
of cooperation. Robots must balance between providing optimal suggestions and reacting
appropriately when operators do not follow those suggestions.

• Intelligibility: Operators must be able to intuitively understand the robots’ actions and
intentions, achieving symbolic and linguistic communication. Collaborative robots must
be able to separate action planning from motion planning and control, hiding low-level
complexities.

• Adaptability: The system must adapt to operators without requiring an operator-specific
calibration process, using wearable sensors and statistical techniques for action recogni-
tion.

• Transparency: Operators should not restrict their freedom of movement, such as stay-
ing in front of the robot at all times, to allow the system to monitor their actions during
cooperation.

While this approach supports task planning for both the robot and human, it limits the number
of cooperation paths and lacks integrated safety strategies, such as detecting sudden or unwanted
contacts.
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Figure 2.2: FlexHRC system’s architecture: modules and data flow.

A Hierarchical Human-Robot Interaction-Planning Framework for Task Allocation in Col-
laborative Industrial Assembly Processes

Johannsmeier et al. [5] implement a framework using AND/OR graphs for assembly planning
and processes as they implicitly model parallelism.

The described approach for task planning has three integrated hierarchical levels: team level,
agent level, and real-time level.

• Team-level: The system plans the entire assembly process from the perspective of the
team leader, using an abstract world model. This planning, performed offline, employs
AND/OR graphs and A* graph-search to determine the optimal task sequences for each
agent in the team, consisting of human and robotic operators. There is no distinction
between the agents since this specific level conveys only abstract descriptions of tasks
without the need to consider specific implementations of the necessary skills. The alloca-
tion of the optimal task planning is derived taking into account the computed cost of each
agent.

• Agent-level: It translates the team level planning into tasks executable by individual
agents. Agents, both human and robot, use modular and parametric skills, managed
through hierarchical and concurrent state machines, to perform assigned tasks. This layer
also deals with handling unexpected events such as collisions or interruptions by human
operators, in a way that should be consistent with the entire team-level planning and when
this is not possible request a rescheduling. The basic actions implemented are: pick-up,
assemble, hand-over, collision handling.
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• Real-time level: It focuses on the execution of planned trajectories, control, and imme-
diate reactions to unexpected events. It ensures rapid and safe response to unplanned
disturbances, ensuring the continuity and safety of operations.

Figure 2.3: Planner workframe.

If an agent is unable to perform a specific action it is considered with infinite cost, thus
affecting the optimal task allocation. Interruptions by human operators must be handled in a
manner consistent with the overall plan or require offline replanning at the Team-level.

2.2.2 Behavior Trees

A Human-Aware Method to Plan Complex Cooperative and Autonomous Tasks using Behav-
ior Trees

The paper by Fusaro et al. [6] proposes an innovative method for task planning in industrial
environments involving collaboration between robots and humans. This method uses BTs mod-
ified to account for costs associated with actions and specific metrics for cooperation with hu-
man workers. Modifications include the implementation of cost functions that consider: human
availability, decisions made by human workers, ergonomics, or the comfort and safety of the
worker during interaction with the robot.

The BT has a directed tree structure, with a root node periodically sending signals, called
“ticks,” to trigger the execution of child nodes. Each node of the tree, apart from the root, has a
parent node and one or more child nodes. When a node receives a tick, it performs its task and
returns a status to the parent: SUCCESS if the action is successfully completed, FAILURE if it
fails, and RUNNING if it is still in progress.
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This approach allows the robot to adapt its plan in real-time based on the behavior and in-
tentions of the human operator. Specifically, the robot selects tasks by minimizing execution
costs (calculated using weights defined for a particular realistic scenario through simulations).
The methodology was validated with a practical experiment involving the packing of four dif-
ferent objects, demonstrating that cost-based BTs enable the robot to react and plan new tasks
in response to dynamic changes in the environment.

In the proposed approach, the main constraints for the human operator include:

• Availability: The system must consider whether the operator is available or engaged in
other activities.

• Decisions: Decisions made by the operator directly affect the robot’s planning. The robot
must be able to recognize and adapt to these decisions.

• Ergonomics: The system takes into account ergonomic conditions, such as the weight
of objects to be handled and their location, to ensure that assigned tasks are safe and
comfortable for the human operator.

BTs allow different levels of human-robot interaction to be handled, from simple coexistence
to full cooperation and autonomous task execution by the robot. The performance of the system
was evaluated in both simulations and real-world scenarios, demonstrating the robot’s ability to
dynamically adapt and optimize planning based on human actions.

An Integrated Dynamic Method for Allocating Roles and Planning Tasks for Mixed Human-
Robot Teams

The paper [7] describes an innovative methodology for planning and allocating tasks in mixed
teams of robots and humans, particularly suitable for production environments. The task plan-
ning process is based on BTs, which allow complex work to be modeled as a series of distinct
tasks with time and logic constraints. The key feature of BTs is their modularity and respon-
siveness, which allows dynamic situations to be managed by adapting plans in real time. In the
proposed context, BTs do not control the behavior of a single agent, as is traditionally the case,
but rather manage the entire task, delegating tasks to the various agents (humans and robots)
available. This approach allows tasks to be dynamically allocated to team members based on
the costs associated with the actions and the availability of the agents.

One of the innovative aspects of the proposedmethodology is the integration of task planning
and role allocation. This integration is achieved through the definition of customized nodes
within the BTs:
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1. Role allocation node: This is responsible for assigning tasks to agents based on the asso-
ciated costs. The costs consider various factors such as ergonomics and agent experience.
This node calculates the optimal allocation by solving a linear mixed integer optimisation
problem (MILP).

2. Agent management node: Determines which agent (human or robot) should perform the
assigned task. If the task is intended for a human, the node will communicate the action
to the operator via an interface. If, on the other hand, it is intended for a robot, it will
activate the robot planner directly.

3. Robot action node: Controls the execution of the robot’s movements, such as grasping
or moving, according to the assigned tasks.

4. Human communication node: Communicates to the human operator the tasks to be
performed, using devices such as monitors (smartwatches or smartglasses, depending on
the working environment).

Figure 2.4: Scheme of the allocation and planning method.

The experiments conducted showed that the proposed methodology can effectively adapt to
different production scenarios, optimizing task allocation and reducing waiting times. However,
further studies are needed to evaluate the effectiveness of the method in real environments and
to improve the user interface for task generation.
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2.2.3 Scheduling Algorithms

Improved Human-Robot Team Performance Using Chaski, A Human-Inspired Plan Execu-
tion System

The Chaski algorithm [8] is designed to improve the performance of human-robot teams by
emulating the effective behaviors of human teams. This algorithm allows robots to dynamically
adapt to human partners, reducing human downtime and making interactions more natural and
fluid.

The main technical features of Chaski algorithm are here listed:

1. Task level executive: Chaski acts as an executive that plans and schedules the robot’s
actions based on a shared plan among team members. It uses the task-based hierarchical
planning model, HTN, to manage tasks.

2. Dynamic decision-making: The algorithm enables robots to make decisions in real time
as it supports the interruption and resumption of tasks, adapting to changes in context and
the actions of human partners.

3. Minimization of downtime: Chaski predicts and minimizes human downtime by opti-
mizing the sequence of tasks to ensure smooth and continuous collaboration. It imple-
ments continuous monitoring mechanisms to detect when a team member is inactive and
to redistribute tasks accordingly.

Human constraints imposed by the algorithm:

• Equal partners: In this model, each team member, both human and robotic, has equal
authority in making decisions regarding the execution of the plan. Humans must be pre-
pared to share control of activities and coordinate closely with robots.

• Choice of activities: Humans have the freedom to choose their actions within the con-
straints of the shared plan. They must manage the timing of their activities so as not to
interfere with the robots’ operations, maintaining a balance between autonomy and coor-
dination.

• Information sharing: Operators have a shared mental model and the human is expected
to regularly communicate the status of activities, sending immediate feedback on task
performance and reporting any problems or changes in the operational environment. This
ensures that robots can adapt quickly and that interaction remains smooth and efficient.

The framework presented requires communication between agents and the human is sup-
posed to adapt to the robot’s choices.
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Optimization of Temporal Dynamics for Adaptive Human-Robot Interaction in Assembly
Manufacturing

Wilcox et al. [9] address the optimization of human-robot collaboration in assembly manufac-
turing, focusing on two main challenges: adapting to varying human preferences and meeting
rigid temporal constraints.

The Adaptive Preferences Algorithm (APA) is presented as an algorithm for optimizing
time scheduling in a flexible and robust manner. It allows robot scheduling to be adapted to the
evolving preferences of human operator, while maintaining synchronization and adherence to
task schedules.

To achieve the prefixed goal, the algorithm requires some constraints:

1. Variable preference: Human workers can change the order and time of task completion.
The APA algorithm must therefore be highly adaptable to respond to these changes.

2. Strict scheduling constraints: Despite adaptability, the systemmust ensure that tasks are
completed within predetermined timescales, such as flow rates between assembly stations
and production deadlines.

3. Robustness and flexibility: The algorithm must be able to adapt to time disturbances
without requiring a complete re-computation of the schedule, thus providing a robust so-
lution to variations.

APA represents a significant step forward in human-robot collaboration, providing adaptable
temporal scheduling that responds quickly to human preferences and operational disturbances,
while respecting the essential temporal constraints of the production process.

Here are some application examples:

• Robotic Assistant for Assembly Mechanic: A robot such as FRIDA can assist a me-
chanic in preparing and handling components, allowing the mechanic to focus on more
critical tasks such as aligning and securing parts.

• Orchestration of Robot Teams: A single operator can lead a team of robots, ensuring
that scheduling deadlines are met and work is redistributed quickly in the event of inter-
ruptions.
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2.2.4 Hierarchical Task Networks

Using Human Knowledge Awareness to Adapt Collaborative Plan Generation, Explanation
and Monitoring

Milliez et al. [10] implement task planning using HTNs for its domain representation and ef-
ficient planning. This structure facilitates the monitoring of agents’ task execution and subse-
quently collaboration between them.

The main aspects of the adaptive planner for the robot are:

1. Agent based: The system computes multi-agent plans with actions of both humans and
robots.

2. Cost-driven: The best or “good enough” plan is found faster by pruning plans.

3. Social rules: Plans are refined according to a set of rules to promote socially acceptable
plans, such as balancing efforts according to human preferences and context.

Each action in the domain provides a function that estimates the cost when added to the plan.
During plan construction, the cost of the partial plan is continuously calculated and compared
with the current best score, discarding plans that exceed that cost. In addition, after plan genera-
tion, filtering rules are applied to ensure that plans meet certain social behaviors. Once the best
plan is retrieved, it is sent to the supervisor in the form of HTN tree decomposition and action
streams are processed for each agent (human or robot).

Human operator is modeled through different levels of task knowledge, which influence the
robot’s behavior during the generation and execution of the collaborative plan. The defined
knowledge levels are:

• NEW: Used for tasks never performed by the user. If the user observes the task with
explanation or performs it, the level changes to BEGINNER.

• BEGINNER: For users who have already performed the task but may need explanation.
If the user successfully performs the task without asking for explanation, the level changes
to INTERMEDIATE.

• INTERMEDIATE: For users who can perform the task without guidance. If the user
successfully performs again, the level changes to EXPERT.

• EXPERT: For users who can perform the task without guidance and explain to others. If
it fails, it is downgraded to INTERMEDIATE.
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Figure 2.5: System architecture.

These levels allow adaptive collaborative plan generation, explanation and monitoring.
Adaptive plan execution involves a plan management algorithm that considers the user’s

knowledge level and interaction policy (teaching or efficiency). The robot not only performs
andmonitors actions, but also teaches the user when necessary. Examples of specific constraints
include: if the agent is only the robot and the user is at NEW level, the robot will execute and
explain actions; if the user is BEGINNER, the robot will propose explanations and monitor
execution, for INTERMEDIATE and EXPERT levels, the robot mainly monitors, adapting as-
sistance as needed.

In summary, the system implements adaptive planning that considers the user’s knowl-
edge and interacts dynamically to optimize task execution, ensuring that human preferences
and constraints are respected throughout the process. Plans are dynamically adapted to respond
to changes in context and to handle any failures of actions.

Transparent Role Assignment and Task Allocation in Human Robot Collaboration

The paper by Roncone et al. [11] discusses how robots can be qualified collaborators able to
reduce cognitive load for the human partner. This is achieved with the employment of HTNs
that derive optimal robotic planners, predicting also possible human actions. Markov Decision
Processes are extended to Partially Observable Markov Decision Processes (POMDPs) for the
purpose of this research, they address interaction uncertainties as non-observable, covering situ-
ations such as misalignment of task progress and environmental changes that are non-observable
by the robot. In addition to the sequential and parallel operators typical of the HTN represen-
tation, we introduce the alternative operator. This operator allows subtasks to be disjointed,
greatly improving the expressiveness of the network.

The proposed framework implements a model based on human-robot communication and
focuses on two main aspects:

1. Role Assignment: The system is able to determine the roles of each participant, based
on specific capabilities and task requirements. Moreover it uses shared mental models to
ensure that both participants (human and robot) understand each other’s roles and respon-
sibilities.
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2. Task Allocation: Tasks are divided into subtasks that can be executed in parallel, reduc-
ing cognitive overhead for the human operator. The system adopts an intuitive interface
and high-level commands, making it accessible even to inexperienced users.

The system is transparent and designed to reduce the cognitive load on the human operator,
allowing him to focus on tasks that require dexterity and superior skills, in fact the goal is to
minimize the need for continuous communication, which can be expensive and ineffective in
noisy environments. The robot often cannot fully observe and understand the state of the world,
especially in unexpected or unplanned situations, therefore in some specif cases communication
is used to reduce uncertainty.

Human-Robot Collaboration for Assembling IKEA Furniture through Reinforcement
Learning-Based Planning

The task planning designed in the paper by Giulio Giacomuzzo and Diego Romeres manages
complexities such as joint actions, failure recovery and change of mind. [13] The main approach
used for the design of the task planning focuses on the concept of Discrete Event Markov Deci-
sion Process (DE-MDP). This approach integrates hierarchical task representation and advanced
solution methods to facilitate efficient HRC in assembly tasks.

The process relies on avoiding human behavior modeling, the human agent is considered an
uncontrollable agent. In this context, the robot does not directly control the human actions but
must observe and respond to them. Human actions are detected by the robot after a certain la-
tency period, which introduces an element of uncertainty and necessitates real-time adaptability
in the robot’s planning. This setup essentially transforms the collaborative task planning prob-
lem into a single-agent problem from the robot’s perspective, focusing on how the robot reacts
and adapts to human actions.

The assembly task uses HTNs for representation and is then modeled as a Discrete Event
Markov Decision Process (DE-MDP), in which state transitions are determined by significant
events such as completion of an action, detection of human actions, or changes in human intent.
This model takes into account the asynchronous nature and variable duration of tasks, providing
a flexible and dynamic framework.

To solve DE-MDP, the approach considers two methods: a deterministic decision graph and
Reinforcement Learning (RL). RL is particularly valued for its ability to find optimal policies in
both deterministic and stochastic contexts, making it suitable for handling variability in human
actions and work environments.

Several challenges are addressed within this framework:

• Synchronization: Ensuring that both human and robot agents can perform joint actions
despite differing action durations.
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• Human Detection: Adapting robot actions based on observed human actions, which in-
troduces scheduling delays.

• Human Change of Mind: The robot must be capable of rescheduling its plans if the
human changes tasks mid-way.

By integrating these elements, the approach creates a robust framework for collaborative
assembly, emphasizing the robot’s ability to dynamically adjust to human behavior and envi-
ronmental changes. This dynamic adaptation is crucial for effective collaboration, optimizing
task execution, and enhancing overall system performance.

UHTP: A User-Aware Hierarchical Task Planning Framework for Communication-Free,
Mutually-Adaptive Human-Robot Collaboration

Ramachandruni et al. [12] in this paper present a framework called UHTP (User-aware Hierar-
chical Task Planning), designed for adaptive collaboration between humans and robots without
the need for explicit communication. This approach overcomes the traditional ‘leader-follower’
paradigm, in which one agent (human or robot) follows the actions established by the other.
UHTP allows the robot to observe human actions, perform tasks that support human decisions
and select actions that maximize the overall efficiency of the collaboration.

UHTP is based on HTNs that represent both human and robot actions. The process is struc-
tured as follows:

1. Extension of the HTN: The traditional representation of the HTN is extended to include
the assignment of actions to agents (human or robot) and their action costs.

2. Action Assignment: Actions are assigned to agents based on their capabilities. If an
action can be performed by both, it is converted into a decision node with two children,
one for each agent.

3. Cost Calculation: The total cost of executing actions is calculated, considering both
agent-specific and cumulative costs, to identify the optimal execution path.

4. Online Planning: During task execution, UHTP continuously monitors the current state
of the task through real-time human action recognition and selects robot actions that min-
imize the total expected cost.

One of the main advantages of the UHTP framework is that it does not constrain the human
operator to follow a predefined plan or to communicate explicitly with the robot. The human
retains the freedom to choose his actions based on observation of the task and the robot, without
being constrained by a planner or the robot’s actions. This approach reduces the cognitive load
on the human and improves the overall efficiency of the collaborative task.
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Chapter 3

HTN Construction From Annotated
Videos

Through a deep study and analysis of the State of the Art reported in Chapter 2, including the
most common approaches for achieving goals similar to those of this thesis, HTNs emerged
as the most suitable approach for task representation. This methodology offers intuitive repre-
sentation, low computational costs for online replanning, and an action-based framework that
facilitates robot policies based on cost accumulation.

Among the reviewed approaches, the framework UHTP: A User-Aware Hierarchical Task
Planning Framework for Communication-Free, Mutually-Adaptive Human-Robot Collabora-
tion [12] stands out as the most aligned with the established requirements for task planning im-
plementation using HTNs. UHTP imposes no constraints on the human agent, supports seamless
online replanning, and will be reinterpreted and extended with additional functionalities in the
next chapter.

The applicability of various algorithms to HTNs reveals that a significant challenge lies
in constructing the HTN tree. Therefore, this thesis extends its focus to the exploration of an
algorithm designed to automatically generate an HTN tree. Manually generating an HTN from
a series of actions, each with its own requirements, can be time-consuming and not always
intuitive. Human error must also be taken into account. The complexity of this framework is
further increased by the flexibility of the collaborative assembly setups considered in this work.
There are no single, fixed sequences of tasks as agents can exchange actions, and multiple paths
can be taken to achieve the same goals.

One approach to deal with this complexity could be Learning from Demonstration (LfD), a
widely used method for robot training and policy learning. Rather than simply teaching robots
specific instructions, many researchers aim to use LfD to impart more generalized knowledge
that increases the robot’s adaptability. This approach also reduces the amount of data required
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for training, enabling more efficient learning processes and extending the robot’s ability to per-
form flexible task sequences within the HTN framework. [19]

The study and development of this approach are left to other works; the foundation of this
Chapter will be on the assumption that a dataset is already available and the goal is to create the
HTN by analyzing the relationships between actions and understanding how agents collaborate
within these tasks.

3.1 HTN Construction: Algorithm Implementation

The approach used to implement the algorithm involves two main methods: one that extracts
action requirements from a dataset and another that constructs the HTN tree structure for the
UHTP framework.

The dataset consists of annotated videos structured as a list of tuples, each tuple contains the
human action and the robot action being executed simultaneously. Each action is given as a list
that contains: the name of the action, its duration and the agent performing it. If either agent
is not executing an action, it is labeled as idle. The succession of tuples is not determined by a
time variable but instead by the transitions between actions, a new tuple is recorded whenever
the human or robot changes their action, including transitions to or from the idle action. If the
tuple consists of the same action for both the human and the robot, it indicates that they are
performing a joint action.

An example of tuple is reported below, multiple tuples expressed in this form represent an
annotated video.

(["action 1",[1],["human"]] , ["action 2",[1],["robot"]])

The requirements of an action are the set of actions that must be completed in advance to
achieve a specific task goal. Task descriptions based on action requirements offer an alternative
approach to HTNs. While this approach might be useful for certain implementation strategies,
its main limitation is the absence of hierarchical structure typical of HTNs, which is essential for
task planning. Therefore, a method that converts one representation into the other is necessary.

The first method, that extracts action requirements, processes all the annotated videos one
by one. For each video, a list of executed actions is maintained to track the actions that have
been completed. When a new action occurs, whether performed by the human or the robot,
its list of requirements is updated to include all the actions in the executed actions list. Since
there are multiple ways to achieve the same goal and each annotated video reports a different
sequence, the requirements for an action must always be a subset of the completed actions as
the videos progress. If any requirement does not meet this condition, it is removed from the list
of requirements.
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Algorithm 1 Extract actions’ requirements from annotated videos
1: function extract_htn_requirements(annotated_videos)
2: action_list← []
3: for each action_sequence in annotated_videos do
4: executed_actions← []
5: for each (human_action, robot_action) in action_sequence do
6: append executed actions to current_human_action and current_robot_action
7: if human_action equals robot_action then
8: current_joint_action← human_action
9: else
10: current_joint_action← ”idle”
11: end if
12: end for
13: if current_action is not ”idle” then
14: for each action in action_list do
15: if action equals current_action then
16: update action[3] based on executed_actions
17: end if
18: end for
19: if action not found then
20: append current_action to action_list
21: end if
22: end if
23: end for
24: return action_list
25: end function

The second method, that creates an HTN tree given a set of requirements, is found on the
structure presented by UHTP framework.

The HTN is constructed starting from the leaves. It iterates through the list of actions and
progressively appends the actions whose requirements are contained within the past actions list.
The past actions list maintains a record of all actions that have already been appended to a node
in the tree. If an action can be performed by only one agent, a single action node is created.
Otherwise, if the action can be performed by multiple agents, an action node is created for each
agent and these nodes are appended to a decision node (this type of node belongs to UHTP
implementation and will be better introduced in the next Chapter 4). Partially ordered nodes are
added to the tree to introduce parallelism between actions, while fully ordered nodes establish
sequential relationships. When multiple actions share the same set of requirements, they can
be added as children of a partially ordered node. Fully ordered nodes are used when there are
multiple actions that need to be performed in a specific order. When multiple actions share the
same set of requirements, they can be appended as children of a partially ordered node, allowing
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for parallel execution. Fully ordered nodes, on the other hand, are used when multiple actions
must be performed in a specific sequence. Additionally, each node appended to a fully ordered
node must have all its action requirements already appended to the left of the same parent node,
ensuring that dependencies are respected.

Once all action requirements are identified, an HTN can be constructed and this concept
leads to the following theorem:

Theorem 1 Given a dataset of actions, each with its own set of requirements, one or multiple
Hierarchical Task Networks (HTNs) can be constructed. Vice versa, from a given HTN tree
structure, a unique set of action requirements can be extracted.

Proof: The proof is algorithmic.

For any given set of actions A = {a1, a2, . . . , an}, each associated with a set of
requirements R(ai), it is always possible to derive a correspondent HTN structure.
This is because the requirements of an action ai that depend on another action aj

implicitly include all of aj’s requirements, even if not explicitly stated. This de-
pendency induces a hierarchical structure between actions.

While the requirements of actions uniquely identify the relationships between them,
the hierarchical structure that defines the HTN is not necessarily unique. Multiple
HTN trees can be derived depending on how task-subtask relationships are conven-
tionally defined.

For instance:

• Fully ordered (FO) nodes can represent the hierarchy imposing sets of require-
ments on the actions

• Partially ordered (PO) nodes can organize the hierarchy into subsets of tasks

• Primitive nodes represent the tasks as leaves

Conversely, given an HTN tree structure T , the unique set of requirements for each
action can be derived traversing the tree. Any node whose parent is a fully ordered
node inherits as requirements all the actions contained in the left subtree(s) of the
same FO node, if such a subtree exists.
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Algorithm 2 Generate HTN from action list
1: function generate_htn(action_list)
2: action_sequence← action_list
3: past_actions← []
4: next_node_children← []
5: function add_action(parent_node, child)
6: if len(child[2]) == 1 then
7: create primitive action node
8: add node to parent_node
9: else
10: create decision node
11: create and add action nodes for ’human’ and ’robot’
12: end if
13: end function
14: while action_sequence is not empty do
15: children← []
16: for each action in action_sequence do
17: if all requirements of action are in past_actions then
18: append action to children
19: remove action from action_sequence
20: end if
21: end for
22: if len(children) > 1 then
23: create PO node
24: for each child in children do
25: add action to PO node using add_action function
26: end for
27: append PO node to next_node_children
28: else
29: append children to next_node_children
30: end if
31: if len(next_node_children) > 1 then
32: create FO node
33: for each child in next_node_children do
34: add child to FO node
35: end for
36: clear next_node_children
37: append FO node to next_node_children
38: end if
39: end while
40: create HTN tree with root as next_node_children[0]
41: return htn_tree
42: end function

27



3.2 Experiments

Example 1

Based on the chair assembly example from the UHTP paper [12], a sequence of annotated videos
is used to determine the action requirements and construct the HTN. For the purposes of this ex-
ample, all of the possible combinations of action sequences are given, implying the full knowl-
edge of the actual requirements.

An annotated video in this example is reported below.

(["attach left leg", [3],["human"]], ["attach right leg",[2],["robot"]]),
(["attach left leg", [3],["human"]], ["attach back", [5],["robot"]]),
(["flip seat", [2],["human"]], ["attach back", [5],["robot"]]),
(["attach back to seat",[5],["human"]], ["idle", [5],["robot"]])

Themethod get_htn_requirements returns the various actions, each with its own require-
ments reported as a list included at the end of each action’s description.

["attach left leg", [3,2], ["human","robot"], []],
["attach right leg", [3,2], ["human","robot"], []],
["attach back", [5,5], ["human","robot"], []],
["flip seat", [2], ["human"], ["attach right leg",

"attach left leg"]],
["attach back to seat",[5,7], ["human","robot"], ["attach right leg",

"attach left leg",
"attach back",
"flip seat"]]

Given this set of requirements, the following HTN structure is obtained through
generate_htn algorithm. Traversing the tree in postorder from each leaf confirms that all
requirements are satisfied. For instance, attach left leg, attach right leg, and attach
back have no requirements, as they are children of a PO node. Conversely, flip seat is ap-
pended to a FO node and inherits as requirements all actions located in the left subtree of the
same parent node, specifically attach left leg and attach right leg. Similarly, attach
back to seat is the rightmost child appended to the FO node, which serves as the root of the
tree. As a result, it inherits as requirements all the actions appended to the left of this node.
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Figure 3.1: HTN chair assembly exemple.

Example 2

Below is reported another example with a larger set of actions to validate the illustrated methods
for HTN construction. Firstly all actions are reported with their requirements (obtained through
the execution of get_htn_requirements).

["action 0", [8,16], ["human", "robot"], []],
["action 1", [16,8], ["human", "robot"], []],
["action 2", [16,8], ["human", "robot"], [0,1]],
["action 3", [16,8], ["human", "robot"], [0,1,2]],
["action 4", [16,8], ["human", "robot"], [0,1,2,3]],
["action 5", [16,8], ["human", "robot"], [0,1,2,3]],
["action 6", [16], ["joint"], [0,1,2,3]],
["action 7", [16], ["joint"], [0,1,2,3]],

The resulted HTN after the execution of generate_htn has the following structure. Apply-
ing the same reasoning as in the previous example confirms that all requirements are satisfied
within the generated HTN.
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Figure 3.2: HTN random example.

After testing the two implemented methods with various setups, it can be concluded that the
constructed HTNs satisfy the requirements of each action and provide a viable solution. The
generate_htn method could be further modified to produce alternative tree structures. For
example, in the second example, the three concatenated FO nodes could be merged into a single
FO node, with their children appended in hierarchical order to preserve their requirements. This
reasoning strongly aligns with and supports the theorem stated earlier (1).
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Chapter 4

UHTP Implementation

The implementation of task planning is based on the UHTP framework presented in [12], as
it meets the key requirements of this thesis. These include the absence of communication be-
tween agents, support for online replanning, no constraints imposed on the human agent, and
most importantly the adoption of HTNs. Additionally, the framework demonstrates efficient
performances.

Below, a reinterpretation of the algorithm is provided, extended to incorporate features not
yet implemented such as management of joint actions, actions performed simultaneously by
both agents and, recovery plan for failed actions. Building on the pseudocode from the paper,
which outlines the program flow, the algorithm is fully deduced and implemented.

4.1 Framework Implementation

A notable aspect considered is the classification of the node types that populate the HTN: to
adhere to the structure of the original algorithm, the approach is to implement a Node class with
several subclasses, each representing a specific type of node. Each subclass defines a unique
method for computing the cost of the subtree starting from that particular node. In particular,
UHTP introduces another type of node, called decision node, which extends the standard HTN
classification discussed earlier.

Here follows the definition of the different types of nodes:

• Primitive nodes: which represent the actions performed by either the human or robot
agent. As the leaves of the tree, they represent the simplest subtasks, with their cost being
intrinsic to the action itself.

• Decision nodes: introduced when an action can be chosen by multiple agents as it is
followed by as many primitive nodes as there are agents capable of executing that ac-
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tion. Its cost is computed as the sum of the children’s costs, weighted by their respective
probabilities.

• Fully ordered nodes: indicating actions that must be executed sequentially, in a specific
order. The total cost is the sum of the costs of the child nodes.

• Partially ordered nodes: which allow actions to be performed in parallel, meaning sev-
eral tasks can be performed simultaneously. The cost is calculated by comparing the
upper and lower bounds: the upper bound is the sum of the children’s costs, while the
lower bound is the maximum of these costs.

Figure 4.1: UHTP tree example.

Each node object contains a children attribute, which is a list of its child nodes. A notable
feature is that primitive nodes, being leaf nodes, cannot have any children.

All subclasses of the Node class share three common parameters: name, type, and parent
(which refers to the preceding node in the structure). Additionally, the Decision node class
includes a probability parameter, representing the likelihood of each agent executing the
subsequent action. This parameter is useful for calculating the aggregate cost associated with
the Decision node.

The Primitive node class includes additional parameters: index, cost, duration, and
agent, which further define the specifics of the task it represents.

The HTN class is also defined, where its objects are initialized using the root node of the tree
as a parameter. Since each node maintains its own list of children, passing only the root node
implicitly passes the entire tree structure and its nodes. The attributes of this class are as follows:

• current_human_action, current_robot_action: Initialized as None, representing
the current actions being executed by the human and the robot;
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Algorithm 3 Pseudocode of UHTP program flow
1: function UHTP(T , Ah, Ar)
2: T UHTP ← AssignActions(T , Ah, Ar)
3: AggregateCosts(T UHTP )
4: ah ← ∅
5: ar ← ∅
6: while T UHTP is not empty do
7: a′h ← ActivityRecognition()
8: if a′h ̸= ah then
9: T UHTP .Remove(ah)
10: PruneBranches(Root(T UHTP ), a′h, human)
11: ah ← a′h
12: end if
13: if robot is idle then
14: T UHTP .Remove(ar)
15: ar ← SelectMinAction(T UHTP , robot)
16: PruneBranches(Root(T UHTP ), ar, robot)
17: Execute(ar)
18: end if
19: end while
20: end function

• Ah, Ar: Empty lists, which will contain the actions assigned to the human and the robot,
respectively;

• executed_Ah, executed_Ar: Empty lists that will store the completed actions of the
human and robot;

• robot_idle: Boolean attribute indicating whether the robot is idle or currently perform-
ing an action.

The following methods are all implemented inside HTN class:

• AssignActions: Initializes the lists Ah, Ar.

• AggregateCosts: Performs a postorder traversal of the tree to compute and aggregate
costs. It ensures that the costs of child nodes are calculated and aggregated before com-
puting the cost of their parent node.

• ActivityRecognition: Simulates the activity recognition process. While in a real-life
context this would involve sensors or vision-based systems, for the purposes of this thesis
it is simplified to a human selecting the first available action without considering costs.
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• PruneBranches: Removes irrelevant branches from the tree based on the given action
and agent to maintain consistency. When it encounters a decision node, it preserves
branches where the action is valid and discards others. For fully ordered nodes, it re-
cursively calls PruneBranches on only the first child (since actions are sequential). For
partially ordered nodes, it recursively calls PruneBranches on all child nodes (since ac-
tions can be parallel).

• SelectMinAction: Identifies the most cost-efficient action for the robot agent by eval-
uating all possible actions at a given node. It first checks if the action’s requirements are
met (i.e. if the required tasks are already completed). For each valid action, it creates a
copy of the tree, prunes irrelevant branches, and calculates the total cost of the remaining
subtree. It then selects the action with the minimum cost. If no valid action is found, the
method returns None, indicating the robot is idle.

• Execute: In simulation context this method simply removes the executed actions form
the lists Ah, Ar and appends them to executed_Ah, executed_Ar, changing the state of
the robot to idle.

Ultimately, themethod UHTP_main emulates the workflow presented in pseudocodewith the
insertion of time tracking and some rearrangements in the logical transitions. One of the chal-
lenges is testing the code through simulation. To address this, the human agent is also simulated,
and his decisions are modeled using the ActivityRecognition method. The agent’s choices
are guided by the requirements of each action, these requirements consist of other actions that
must be completed in a specific order to accomplish assembly tasks. Once all prerequisite ac-
tions for a particular task have been fulfilled, the agent can select that task for execution. The
method get_requirements is implemented to follow the logic explained above.

New methods have been introduced in the HTN class to enhance the logic of UHTP_main and
improve the overall flow of the method.

The UHTP_main process is organized around two primary methods: execute_action and
recognize_and_prune. The execute_action method is triggered when an action’s duration
reaches zero, indicating its completion. This method calls the HTN method execute to finalize
the action, removes the action from the HTN tree, and then calls removeNodes to prune any
nodes that lack children with primitive actions.

The second method, recognize_and_prune, handles new action assignments. It calls ei-
ther ActivityRecognition if the human has completed the last action, or SelectMinAction
if the robot has. When a new action is assigned, the method PruneBranches is called to refine
the task tree, and the duration variable is updated to reflect the time needed for the new action.
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Algorithm 4 Extract Requirements from Node to Root
1: function get_requirements(node)
2: requirements← []
3: curr_node← node
4: while curr_node is not root do
5: curr_parent← curr_node.parent
6: if curr_parent.type equals ”Fully ordered” then
7: node_idx← 0
8: for each (idx, child) in enumerate(curr_parent.get_children()) do
9: if child equals curr_node then
10: node_idx← idx
11: end if
12: end for
13: nodes_tbc_list← [curr_parent.get_children()[i] for i in range(0, node_idx)]
14: for each check_node in nodes_tbc_list do
15: actions← getNodePrimitiveActions(check_node)
16: for each action in actions do
17: append action to requirements
18: end for
19: end for
20: end if
21: curr_node← curr_parent
22: end while
23: return requirements
24: end function

To properly simulate the sequence of action execution, tracking time is essential. Each ac-
tion, whether assigned to the robot or the human, has an associated duration variable indicating
its required completion time. When an action’s duration reaches zero, it signals that the action
has been fully executed, enabling the agent to select or receive a new action.

Upon assignment of a new action, the duration variable is reset. During each iteration of
the while loop, a time counter increments by the minimum of the remaining action durations.
Each action’s duration is then reduced by this minimum value, effectively progressing the time.
At the end of each loop iteration, the maximum duration of completed actions is added to the
cumulative time variable, ensuring an accurate track of the execution sequence.

4.1.1 Failure and Recovery of Actions

An essential feature implemented in the UHTP algorithm is the management of failed actions.
Failures can arise in a variety of scenarios, each of which may disrupt the task sequence. For
instance, a failure could occur if an agent drops a part during assembly, incorrectly aligns or
assembles a component, or encounters unexpected resistance in a task step. In these cases,
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the agent’s progress is temporarily halted, necessitating corrective actions to restore the proper
sequence of tasks.

To address such failures within this framework, the approach taken in this thesis is to intro-
duce a recoverymechanism in the HTN. Specifically, when an action fails, a designated recovery
node is added to the HTN. This recovery action does not need to be executed immediately after
the failure; agents may perform other actions first, depending on the requirements and priorities
of the task under consideration. Once the recovery is successfully completed, the recovery ac-
tion is removed from the HTN, and the initially failed action(s) is reinserted, allowing the agent
to attempt it again in the correct sequence.

A new class of recovery actions, inheriting from the primary Node class, has been developed
to facilitate this functionality. This recovery action class includes the following parameters:
index, name, type, parent, cost, duration, agent

Additionally, the recovery action class includes an attribute list that stores references to the
failed action(s), ensuring that all necessary corrections are properly tracked and can be reat-
tempted in the correct sequence after recovery.

This design assumes that recovery actions can be performed by the same agents responsible
for the failed actions, facilitating a straightforward corrective workflow. Through this mech-
anism, the HTN framework not only manages task successions but also handles unexpected
disruptions, making the algorithm more robust and adaptable to real-world execution variabil-
ity.

A method of the class HTN manages the whole recovery process explained above.
The recovery procedure is integrated into UHTP_main through a method called

handle_failure. This method triggers recovery and resets the duration of the agent whose
action encountered the failure, ensuring a smooth continuation of the task.

4.1.2 Joint Actions

Another notable improvement introduced to the UHTP algorithm is the implementation of joint
actions, which require coordinated efforts from both human and robotic agents to accomplish
a given task. In this framework, joint actions are designed to facilitate collaboration by taking
advantage of the unique capabilities of each agent. The underlying logic ensures that the hu-
man agent initiates a joint action by selecting it, taking into account the specific requirements
associated with that action. If the robotic agent is currently idle, it immediately joins the hu-
man to execute the joint task. Otherwise, if the robot is already engaged in another task, it is
programmed to prioritize completion of its current action before joining the human in the joint
action.

To incorporate joint actions into UHTP, they were added only to the human’s set of actions
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Algorithm 5 Recovery Process for Failed Action Nodes
1: function recovery(node)
2: failed_action← node
3: parent← failed_action.get_parent()
4: recovery_action_list← failed_action.recover
5: agent_dict ← {”human”: (self.Ah, self.executed_Ar), ”robot”: (self.Ar, self.exe-

cuted_Ah)}
6: for each recovery_action in recovery_action_list do
7: append failed_action to recovery_action.post_recover
8: add recovery_action as child of parent
9: end for
10: action_list, _← agent_dict[recovery_action.agent]
11: append recovery_action to action_list
12: failed_agent_list, executed_list← agent_dict[failed_action.agent]
13: remove failed_action from failed_agent_list
14: for each action in executed_list do
15: if action.name[5:] equals failed_action.name[5:] then
16: remove action from executed_list
17: append action to recovery_action.post_recover
18: end if
19: end for
20: self.find_and_remove(failed_action)
21: end function

(Ah), as only the human agent can initiate a joint task. Two new attributes were introduced
to the HTN class: joint, a Boolean indicating whether a joint action has been selected, and
current_joint_action, which stores the joint action identified by the human. When the
robot agent is idle and able to assist, both the human’s and robot’s current actions are updated
to the joint action, ensuring synchronized durations for both agents.

Also joint actions can fail and when it happens the same procedure outlined above is applied,
in these situations both the human or the robot are required to execute the recovery action.

4.2 Experiments

4.2.1 Failure Recovery Experiments

Failure recovery process is tested using examples to evaluate its robustness.
For simulation experiments a function action_has_failed is implemented. It takes as

input an action node and generates a random floating-point number between 0 and 1 using
random.random() which is confronted with a decimal number that indicates the failure prob-
ability. The function returns a boolean value True if the action has failed. To validate that the
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whole task planning can handle failures, few examples were tested with an increasing probability
of failure for each action.

Example 1

Firstly the simple chair assembly example illustrated in UHTP paper is tested. Its HTN structure
and task actions are already reported in the first example of the previous Chapter 3.1.

The plot shows the distribution of task completion times (in seconds). The experiment starts
with a failure probability of 10%per action and increases in 10% increments up to 50%. For each
failure probability, the task was executed 100 times, and the completion times were recorded.
The plot illustrates how increasing failure probabilities impact task completion time.

Figure 4.2: Task completion time across failure probabilities for example 1.

Example 2

A second, more complex example is presented, featuring the HTN structure shown below. This
example incorporates joint actions, adding complexity compared to the previous scenario. The
tests were conducted following the same methodology as the previous example.
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Figure 4.3: HTN task representation for example 2.

Figure 4.4: Task completion time across failure probabilities for example 2.

The results of these tests clearly indicate that failing actions lead to increased task execution
times. However, the framework demonstrates robustness by successfully completing the task in
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all cases, regardless of the failure probability.

4.2.2 Policy Comparison Experiments

This thesis aims to directly compare the efficiency between different policies. To this aim, a
simulated environment has been created based on the open-ai gym library [20], implementing
the Markov Decision Process (MDP) proposed in [13].

The primary mechanism of the aforementioned MDP relies on event-driven transitions:
based on the event that occurs, the robot agent can either be set to idle or assigned a new action
by its policy, if a feasible action is available. To monitor the progress of task completion, a
state object is continuously updated, containing the following parameters:

• sa: A list of binary values that represents the current state of the assembly process, with
each element representing an action; set to zero if the action is pending, or one if it has
been completed.

• ah: The current action being performed by the human; this can also be set to idle.

• hdt: The remaining time for the human to complete their current action.

• rdt: The remaining time for the robot to complete its current action.

• j: A flag that is set to True if a joint action is detected.

• aj: The current joint action, if one is in progress.

• ar: The current action assigned to the robot, which can also be set to idle.

• d: A flag that is set to True if a human action has been detected.

The key aspect to investigate is the robot’s action-selection and interfacing other policies
with UHTP policy. To achieve this, a method called state_to_action is introduced in UHTP.
This method is invoked in the main gym function when the robot is allowed to choose an action.
It takes as input the current state, the environment setup, Ah, and Ar (the lists of actions defined
in UHTP) and returns an object of the gym action class.

The environment setup, Ah and and Ar are autonomously generated by the function
generate_htn (algorithm 2) given the complete set of actions with their respective possible
agents, execution durations, and requirements.

Before applying the policy for the robot’s action choice, the method verifies which actions
have already been completed. A new attribute, gym_id, is introduced in the Primitive node
class to establish a correspondence between actions in UHTP and those in the gym environment.
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The integer variable gym_id stores the index of each action in the gym environment, addressing
the structural difference between the two systems: in gym, there is one object per action with a
list of agents able to execute it, while in UHTP, there is a Primitive node object for each agent
capable of executing the action.

The method processes the list sa to update the lists Ah and Ar, removing completed actions
from the HTN as well. It calls the remove_nodesmethod to prune any nodes that no longer have
children. Before assigning an action to the robot, the method verifies if the human currently has
an action and calls pruneBranches to prevent the robot from selecting the same action. Finally,
selectMinAction is triggered. If an action is found, it is returned (selected with the gym index)
or on the contrary the robot is set to idle.

Algorithm 6 State to Action Mapping
1: function state_to_action(curr_state, env, Ah, Ar)
2: current_human_action← curr_state.ah
3: durations← {”human”: curr_state.hdt, ”robot”: curr_state.rdt}
4: for each action_state in curr_state do
5: if action_state equals 1 then
6: remove action_state from Ah or Ar
7: find_and_remove(action_state)
8: end if
9: end for
10: remove_nodes(root)
11: if current_human_action exists then
12: prune_branches()
13: end if
14: if durations[”robot”] equals 0 then
15: action← selectMinAction()
16: if action exists then
17: return action
18: else
19: return ”idle”
20: end if
21: end if
22: end function

Several examples were tested to evaluate the performances of the proposed approach. The
testing began with the chair assembly example presented in the UHTP paper (already reported in
previous examples 3.1), followed by four additional examples generated with random require-
ments. These examples varied in complexity, featuring different numbers of actions: 8, 16, 24,
and 32 actions, respectively.

The following plots illustrate the mean and standard deviation results obtained by running
1000 simulations for each policy on each example. These metrics provide insight into the ro-
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bustness and consistency of the policies across varying task complexities. The other policies
adopted to test the efficiency were the Greedy Policy, which selects actions that minimize the
single-action cost and, the Random Policy, which randomly assigns an action to the robot by
selecting it from the set of available ones.

Figure 4.5: Task completion time across different policies.

Looking at the different examples tested, it can be concluded that UHTP Policy generally
minimizes task completion time and demonstrates the highest efficiency among the policies
evaluated.

42



Chapter 5

Conclusion and Further Work

In this thesis, we introduced a novel algorithm for retrieving the task representation for assem-
bly tasks, specifically an HTN, from annotated videos. The first achievement was a method
that computes actions’ requirements given a set of annotated videos as these requirements were
crucial for highlighting the hierarchical structure inherent in the sequence of performed actions.
The primary challenge lay in identifying a unique hierarchy, given that the actions in the various
videos were not performed in a fixed way.

Another method was implemented taking advantage of the hierarchical structure obtained
from the requirements. This method constructed consistent HTN tree structures for various tasks
and was validated using different examples to ensure reliability and robustness.

In future work, it would be valuable to test the proposed approach on large-scale tasks to
further evaluate its effectiveness in more complex scenarios.

As a second contribution, we presented a novel framework for task planning, building upon
the existing UHTP framework, which was implemented with a self-derived interpretation. The
framework was based on a communication-free environment with no constraints on the human
agent and was further extended to include additional features, such as handling joint actions and
employing recovery action processes. However, several challenges were encountered during
this process. One of the most significant was understanding and interpreting how the original
framework was implemented, as the details had to be deducted from the paper [12]. For this
reason, the program flow was modified and adjusted to achieve viable results.

Both of the added extensions proved to be robust, enabling the task planning framework
to effectively handle complex tasks involving numerous actions and multiple failures. These
results were confirmed through extensive validations. Additionally, the efficiency of the UHTP
policy for the robot’s action selection was compared against other policies, namely Greedy and
Random, and emerged to be the most effective overall. Furthermore, the framework demon-
strated the ability to efficiently coordinate human and robot planning while treating the human
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as an unpredictable agent and allowing the robot to dynamically adapt to human decisions.
An interesting study for future research would be to implement mechanisms for handling

human changes of mind, further enhancing adaptability and responsiveness of the framework.

44



Appendix A

Tree Data Structure

Trees are hierarchical structures characterized by a collection of nodes that branch out from a root
node through parent-child relationships. These relationships form a minimal set of connections
that link all nodes within the structure. A list represents an edge case of a tree, exemplifying a
linear hierarchical structure.

A rooted tree T is a collection of nodes that, if not empty, satisfies the following properties:

• ∃ a special node r ∈ T , called the root of the tree.

• ∀ v ∈ T , v ̸= r, ∃ a unique node u ∈ T such that u is the parent of v (and v is a child of
u).

• ∀ v ∈ T , v ̸= r, tracing back through the parent nodes eventually leads to r (i.e., every
node is a descendant of the root).

A node x is an ancestor of a node y if x = y or x is an ancestor of y’s parent, and x is a
descendant of y if y is an ancestor of x; internal nodes are those with one or more children,
while leaves are nodes without any children.

A subtree rooted at v, denoted as Tv, is the tree formed by all the descendants of v.
An ordered tree T is a tree where, for every internal node v ∈ T , a linear order is defined

among its children u1, u2, . . . , uk.
The depth of a node v in a tree T , denoted as depthT (v), can be defined in two alternative

ways:

• depthT (v) = |ancestors(v)| − 1.

• If v = r (the root) then depthT (v) = 0, otherwise depthT (v) = 1 + depthT (parent(v)).

The level i represents all the nodes at depth i (i g 0)

The height of a node v in a tree T , denoted as heightT (v), is defined as follows:

45



• If v is a leaf then heightT (v) = 0.

• Otherwise heightT (v) = 1 +maxw:w is a child of v(heightT (w)).

Tree Traversal is a systematic scan of all the nodes in a tree, allowing a specific operation
to be performed on each node.

The most common techniques for traversal are the following:

• Preorder: First visit the parent, then recursively traverse the subtrees rooted at its children.

• Postorder: First recursively traverse the subtrees rooted at the children, then visit the
parent.

Algorithm 7 Preorder Traversal
Require: A node v ∈ T

Ensure: Visit all nodes of the subtree Tv

1: procedure Preorder(T, v)
2: Visit v
3: for all w ∈ T.children(v) do
4: Preorder(T,w)
5: end for
6: end procedure

Algorithm 8 Postorder Traversal
Require: A node v ∈ T

Ensure: Visit all nodes of the subtree Tv

1: procedure Postorder(T, v)
2: for all w ∈ T.children(v) do
3: Postorder(T,w)
4: end for
5: Visit v
6: end procedure

[21]
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