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Introduction

In 1978 De Giorgi formulated the following conjecture [15]:

Conjecture 0.1. (De Giorgi’s Conjecture) Let us consider a solution u ∈ C2(Rn) in
all Rn of the partial differential equation

∆u = u3 − u (1)

such that

|u| ≤ 1, ∂nu > 0 (2)

in the whole Rn. Is it true that all level sets {u = λ} are hyperplanes, at least if n ≤ 8?

This conjecture is naturally extended to the case ∆u = h′0(u), where h0 is a “double
well” potential. For n = 2 the conjecture was proved by N. Ghoussoub and C. Gui in
[28] and for n = 3 it was proved by L. Ambrosio and X. Cabré in [3]. In [20] we can find
a counterexample for n ≥ 9 by M. Del Pino, M. Kowalczyk and J. Wei. The question
remains open for 8 ≥ n ≥ 4.

In this thesis we study the following result achieved by O. Savin in [44].

Theorem 0.1. Let u ∈ C2(Rn) be a solution of the partial differential equation

∆u = h′0(u) (3)

in all Rn such that:

|u| ≤ 1, ∂xnu > 0, lim
xn→±∞

u(x′, xn) = ±1. (4)

Then, if n ≤ 8, the level sets of u are hyperplanes.

This theorem is the solution of a reduced version of De Giorgi’s Conjecture and it is
strongly related to phase transitions problems. Indeed, we consider u such that |u| ≤ 1 in
Rn and u is a local minimizer in Rn of the following energy functional

J(u,Ω) =

ˆ
Ω

1

2
|∇u|2 + h0(u) dx, (5)

that describes the energy of a fluid in a phase transition regime (see for instance [33],
[43], [10]). It is called Ginzburg-Landau functional. Equation (3) is the Euler-Lagrange
equation of the functional (5) and, we will see in Section 2.2 that if u satisfies conditions
(4) then u is a local minimizer of the Ginzburg-Landau functional.

Using this deep connection between minimizers of the Ginzburg-Landau functional and
De Giorgi’s Conjecture we can prove that Theorem 0.1 is a consequence of the following
result (see Section 2.2)
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ii Introduction

Theorem 0.2. Let u ∈ H1
loc(R

n) be a local minimizer of J in Rn and u(0) = 0, then the
following holds:

(i) If n ≤ 7 then the level sets of u are hyperplanes.

(ii) If n = 8 and ∂xnu > 0 then the level sets of u are hyperplanes.

In the first part of the thesis, we consider the rescaled minimizer uε = u(xε ) and we see
how the level sets of uε converge uniformly, on compact sets, to ∂E when ε goes to zero,
where E is a set with locally minimal perimeter in Rn. Namely, L. Modica proved in [40]
that there exists a sequence uεk such that uεk converge to χE − χEc in L1

loc(R
n).

One of the main steps for proving Theorem 0.2 is the following density estimate proved
in [11]

Theorem 0.3. Given α > −1 and β < 1, if u ∈ H1(BR(x)) is a minimizer of J(·, BR(x))
and u(x) ≥ α, then there exist a constant c depending only on n and h0 and a constant
r0(α, β) depending on α, β, n, and h0 such that:

Ln({u > β} ∩Br(x)) ≥ crn,
Ln({u < β} ∩Br(x)) ≥ crn

for r ≥ r0(α, β), provided that Br+2(x) ⊆ BR(x).

In order to prove this theorem we do not follow the proof given by Caffarelli and
Cordoba in [11], but we adapt the techniques used in [52] to our specific functional. Using
these techniques we simplify a bit the proof and we correct some minor flaws present in
[11].

We see how Theorem 0.3 allows us to pass from the L1
loc(R

n) convergence to a uniform
convergence of {u = λ}, on compact sets, to ∂E. Thanks to Simon’s theorem on sets with
minimal perimeter in Rn proved in [51], we prove that the level sets of u are asymptotically
flat at ∞ for n ≤ 7 and, if we also assume ∂nu > 0, this asymptotic behaviour is still true
for n = 8.

In the second part of the thesis, we show how De Giorgi’s conjecture can be proved
using this asymptotic behaviour of the level sets. For this purpose we need a more pre-
cise estimate of the behaviour at ∞ of the level sets of u. In particular we prove the
“Improvement of Flatness” theorem:

Theorem 0.4. Let u ∈ H1
loc(R

n) be a local minimizer of J in {|x′| < l} × {|xn| < l}.
Assume that u(0) = 0 and assume that there exists θ ≤ l such that:

{u = 0} ⊂ {|x′| < l} × {|xn| < θ}.

Then there exist small constants 0 < η1 < η2 < 1 depending on n and h0 such that: given
θ0 > 0 there exists ε1(θ0) > 0 depending on n, h0 and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|πξx| < η2l} × {|x · ξ| < η2l}

is included in a flatter cylinder

{|πξx| < η2l} × {|x · ξ| < η1θ},

for some unit vector ξ, where πξx = x− (x · ξ)ξ.
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The proof of this result is divided into three steps.
In the first step, we construct two different families of viscosity supersolutions of ∆u =

h′0(u), and we develop several “sliding methods” that allow us to compare a weak Sobolev
solution of ∆u = h′0(u) to this two families of viscosity supersolutions. In the second step
we use this “sliding methods” to prove that the level sets of the minimizers satisfy the zero
mean curvature equation in the viscosity sense. In this two steps we present the results
achieved by B. Sciunzi and E. Valdinoci in [50], in particular in the proof of Theorem 3.9
we correct some minor flaws present in Lemma 6.6 of [50].

In the last step, we finally prove the “Improvement of Flatness” Theorem using the
Harnack inequality for flat level sets of minimizers and the geometric information on the
level sets proved in the second step. In this last step we present the results achieved by
O. Savin, B. Sciunzi and E. Valdinoci in [49].

This thesis is structured as follows. In Chapter 1 we introduce De Giorgi’s conjecture,
we present the state of art of the conjecture, and we study a link between phase transi-
tions and minimal surfaces. In particular, we prove Theorem 0.3 and an asymptotic flat
behaviour of the level sets of phase transitions.

In Chapter 2 we introduce the “Improvement of Flatness” Theorem, we prove De
Giorgi’s conjecture for phase transitions and finally we prove the reduced version of De
Giorgi’s conjecture.

In Chapter 3 we introfuce the notion of hypersurface that satisfies the zero mean
curvature equation in the viscosity sense. We construct two different families of viscosity
supersolutions of ∆u = h′0(u) and we develop several “sliding methods”. Finally, we
prove that the level sets of the minimizers satisfy the zero mean curvature equation in the
viscosity sense. In particular, in this chapter we present the first two steps of the proof of
Theorem 0.4

In Chapter 4, we present the final step of the proof of Theorem 0.4. We introduce the
Harnack inequality and, using the geometric information on level sets achieved in Chapter
3, we prove the “Improvement of Flatness” Theorem.
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Chapter 1

De Giorgi’s Conjecture and
Minimal Surfaces

1.1 De Giorgi’s Conjecture

De Giorgi’s conjecture is related to the study of bounded solution of the semilinear elliptic
equation ∆u−F ′(u) = 0 in the whole space Rn, under the assumption that u is monotone
in one direction, say ∂nu > 0. In particular the goal is to prove that the solution u is
one-dimensional, namely, u only depends on one variable. This question was raised by De
Giorgi in 1978, who made the following conjecture (page 175 of [15])

Conjecture 1.1. (De Giorgi’s Conjecture) Let us consider a solution u ∈ C2(Rn) in
all Rn of the partial differential equation

∆u = u3 − u (1.1)

such that
|u| ≤ 1, ∂nu > 0 (1.2)

in the whole Rn. Is it true that all level sets {u = λ} are hyperplanes, at least if n ≤ 8?

De Giorgi’s conjecture is equivalent to the one-dimensional symmetry property. In
fact, if the conjecture is true, then u depends only on the direction orthogonal to the level
sets.

The particular elliptic equation (1.1) is called the Allen-Cahn equation, but the results
achieved in the past years are dealing with more general elliptic equations of the form:

∆u(x)− F ′(u(x)) = 0, x ∈ Rn, (1.3)

where F ∈ C2(R) and F (x) > min{F (1), F (−1)} for every x ∈ (−1, 1).
The conjecture remained completely open until 1998 when C. Gui and N. Ghoussoub

in [28] proved the result for n = 2. Their proof use a Liouville-type theorem for elliptic
equations in divergence form, developed by H. Berestycki, L. Caffarelli and L. Nirenberg
in [5], applied to the ratio

σ =
∂x1u

∂x2u
.

They proved that σ is constant in all R2, and, using this result, they proved the conjecture
for n = 2. Using similar techniques, L. Ambrosio and X. Cabrè in [3] extended these
results to the dimension n = 3. We can resume this two works in the following theorem:

1



2 Chapter 1. De Giorgi’s Conjecture and Minimal Surfaces

Theorem 1.1. Assume that F ∈ C2(R), F (x) > min{F (1), F (−1)} for every x ∈ (−1, 1)
and u is a solution of (1.3) in all Rn satisfying the conditions (1.2). If n = 2 or n = 3
then all level sets of u are hyperplanes.

Another fundamental result was achieved in 2009 by M. Del Pino, M. Kowalczyk and
J. Wei in [20]; for n ≥ 9 they showed examples of solutions u of (1.1), satisfying conditions
(1.2), that are not one dimensional. In this way they proved that the upper bound n ≤ 8
in Conjecture (1.1) is sharp. This is the state of the art on Conjecture (1.1), the problem
is still open for dimensions 4 ≤ n ≤ 8.

Despite the fact that Conjecture (1.1) is still open, some interesting results were ob-
tained in the past years. For instance N. Ghoussoub and C. Gui showed in [29] that, for
n = 4 and n = 5, the conjecture is true for a special class of solutions that satisfy an
anti-symmetry condition.

But the most important result was proved in 2009 by O. Savin that proved in [44] the
following theorem:

Theorem 1.2. Let u ∈ C2(Rn) be a solution of:

∆u = u3 − u

in all Rn, such that

|u| ≤ 1, ∂nu > 0, lim
xn→±∞

u(x′, xn) = ±1. (1.4)

If n ≤ 8 then the level sets of u are hyperplanes.

Savin proved this result not only for the Allen-Cahn equation but for a more general
elliptic equation of the form:

∆u(x) = h′0(u(x)), x ∈ Rn, (1.5)

where h0 is a “double well” potential, we will give the precise definitions in the next
section.

The technique used for proving Theorem 1.1 and the technique used for proving The-
orem 1.2 are completely different. In Theorem 1.1 the flatness of the level sets is proved
using a Liouville-type theorem for elliptic equations and, in particular, the results achieved
in [28] and [3] do not use the regularity theory of minimal surfaces. For Theorem 1.2, on
the other hand, the regularity theory of minimal surfaces plays a crucial role, and the proof
is based on the fact that u, solution of (1.5) with conditions (1.4), is a local minimizer of
the following functional:

J(u,Ω) =

ˆ
Ω

(1

2
|∇u|2 + h0(u)

)
dx.

Although the two Theorems 1.1 and 1.2 are similar, the ideas behind them are completely
different. In this thesis we will study in detail the results achieved by Savin in [44].

1.2 Phase transitions and minimal surfaces

We start by defining the typical phase transition functional. Given a domain Ω ⊆ Rn, we
define the following functional on H1(Ω):

J(u,Ω) =

ˆ
Ω

(1

2
|∇u|2 + h0(u)

)
dx. (1.6)
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From now on we suppose h0(1) = h0(−1) = 0 and h0 ∈ C2([−1, 1]). We assume that, for
some 0 < c < 1 < C and some θ∗ ∈ (0, 1),

h0(x) > 0 for any x ∈ (−1, 1), (1.7)

for any θ ∈ [0, 1], cθ2 ≤ h0(−1 + θ) ≤ Cθ2 and cθ2 ≤ h0(1− θ) ≤ Cθ2, (1.8)

for any θ ∈ [0, θ∗), cθ ≤ h′0(−1 + θ) and h′0(1− θ) ≤ −cθ. (1.9)

We also assume a convexity property of h0 near ±1, namely that h′0 is increasing in
(−1,−1 + θ∗) and in (1− θ∗, 1).

As a model example for a potential h0 satisfying the conditions stated above, one may
consider:

h0(u) =
1

4
(1− u2)2. (1.10)

In the literature, h0 is often reffered to as a “double well” potential, while its derivative h′0
is sometimes called a “bi-stable nonlinearity” and the funcitonal (1.6) is called Ginzburg-
Landau type functional.

In light of the hypothesis above, with no loss of generality, possibliy reducing the size
of θ∗, we may assume that

h0(ξ) ≥ max
[−1,−1+θ∗]∪[1−θ∗,1]

h0 for any ξ ∈ [−1 + θ∗, 1− θ∗]. (1.11)

Notice that, if u ∈ H1(Ω), |u| ≤ 1, is critical for J(·,Ω), then u satisfies in a weak
sense the following elliptic equation:

∆u(x) = h′0(u(x)) x ∈ Ω,

and if we choose the potential (1.10) we obtain the Allen-Cahn equation ∆u = u3 − u.
Let us briefly explain what is the physical meaning of the functional (1.6). Imagine

that we have a two-phase fluid in a domain Ω, and we denote its density at a point x by
u(x). Assume its energy is given by a double well potential h0(u(x)) with minima at u1

and u2 i.e.
h0(u1) = h0(u2) = 0, h0(s) > 0 if s 6= u1, u2.

The densities u1 and u2 correspond to the stable fluid phases, for simplicity in our model
we set u1 = −1 and u2 = 1. Then a candidate energy functional of the fluid is given by
the integral: ˆ

Ω
h0(u(x)) dx.

But this is not a satisfactory physical model since any density function u(x), that takes
only the values u1 and u2, minimizes the density energy. In particular the stable phases
u1 and u2 could coexist along any complicated interface. This problem arises because we
ignored the interactions at small scales (such as friction) which penalize the formation of
unnecessary interfaces. In order to take into account this kind of interactions we add the
term |∇u|2 to the functional. This term represents a penalization to the total energy, and
keeps under control the formation of interfaces (see ). The functional (1.6) represents the
energy functional associated to phase transition phenomena, in particular it appears in
the Van Der Waals-Allen-Cahn-Hilliard and Ginzburg-Landau theories of phase transition
(see, for instance, [43],[10]).

We now discuss the close relation between minimal surfaces and level sets of minimizers
of J . We introduce now the definition of local minimizer,



4 Chapter 1. De Giorgi’s Conjecture and Minimal Surfaces

Definition 1.1. A function u ∈ H1(Ω) is a local minimizer of J in Ω if, for every open
set A ⊂ Ω relatively compact in Ω,

J(u,A) ≤ J(u+ φ,A), ∀φ ∈ H1
0 (A). (1.12)

Minimizers of the energy functional (1.6) are also called “phase transitions”.

Now we want to study the behaviour of u in large domains (recall that De Giorgi’s
Conjecture is stated for solution in all Rn), in order to do this we rescale with a parameter
ε a local minimizer in Ω and we study the behaviour of the rescaled minimizer when ε
goes to zero. We define Ω

ε := {xε | x ∈ Ω} and we consider u local minimizer of J in the
domain Ω

ε , the behaviour of u in large domains is given by the behaviour of the rescaled
functions uε defined as:

uε(x) := u
(x
ε

)
, x ∈ Ω. (1.13)

If u is a local minimizer of J in the domain Ω
ε then, performing a change of variable,

we can see that uε is a local minimizer of the rescaled energy Jε in Ω,

Jε(v,Ω) :=

ˆ
Ω

( ε
2
|∇v|2 +

1

ε
h0(v)

)
dx. (1.14)

Now we make an heuristic discussion about minimizers of Jε which highlights a first
connection between minimal surfaces and level sets of phase transitions. For a given
function v with |v| ≤ 1, the main contribution in Jε(v,Ω), for ε small, comes from the
potential energy which is minimized when v is equal either to 1 or −1. Instant jumps from
a region where v = 1 to a region where v = −1 are not allowed since the kinetic energy´
ε
2 |∇v|

2 would becomes infinite.

From the elementary inequality a2 + b2 ≥ 2ab we clearly obtain

ˆ
Ω

( ε
2
|∇v|2 +

1

ε
h0(v)

)
dx ≥

ˆ
Ω

√
2h0(v)|∇v| dx, (1.15)

now we can use the coarea formula and we get

ˆ
Ω

√
2h0(v(x))|∇v(x)| dx =

ˆ 1

−1

(ˆ
Ω∩{v(x)=s}

√
2h0(s)dHn−1(y)

)
ds

=

ˆ 1

−1

√
2h0(s)Hn−1({v = s})ds.

Finally the inequality (1.15) becomes:

Jε(v,Ω) ≥
ˆ 1

−1

√
2h0(s)Hn−1({v = s})ds. (1.16)

The energy Jε is minimized by functions for which the inequality (1.16) becomes an equal-
ity and for which the Hn−1 measure of the level sets is as small as possible.

We have an equality in (1.15) and (1.16) if and only if

|∇v| = 1

ε

√
2h0(v),

this equality gives

v(x) = g0

(dΓ(x)

ε

)
, (1.17)
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where dΓ(x) represents the sign distance from the 0−level set Γ := {v = 0} and g0 is the
solution to the ODE {

g′0 =
√

2h0(g0)

g0(0) = 0.

We want also to minimize the Hn−1 measure of the level sets, but in general the level sets
of the function v cannot be all with minimal perimeter. However, if for example the 0-level
set Γ is minimal then the s-level sets are essentially minimal as long as s is not too close
to ±1 and ε is small. In fact, heuristically, we have that (1.17) is a continuous increasing

function and depends only on dΓ(x)
ε , so if we consider the s-level set, we have that the

distance between these level sets and Γ is small if ε is small. On the other hand, when s is
close to ±1 the weight

√
2h0(s) becomes negligible. All these heuristic discussions suggest

us that the level sets of minimizers of Jε converge to a minimal surface as ε→ 0.
Now we want to make all these arguments rigorous. First of all we define the perimeter

of a set:

Definition 1.2. Given Ω ⊆ Rn open, let E be a mesurable set, the perimeter of E in Ω
is defined as:

P (E,Ω) = sup
{ˆ

E
divψ dx : ψ ∈ C1

c (Ω,Rn), ||ψ||∞ ≤ 1
}
. (1.18)

When Ω is the whole Rn we use the shorter notation

P (E) := P (E,Rn).

We introduce also the concept of minimal surface:

Definition 1.3. We say that E is a set with minimal perimeter in Ω or, shortly, ∂E is
minimal surface in Ω if, for every A ⊂ Ω relatively compact in Ω,

P (E,A) ≤ P (F,A) (1.19)

whenever E and F coincide outside a compact set included in A

The asymptotic behaviour of uε was first studied in a rigorous way by L. Modica and
S. Mortola in [38] and by L. Modica in [40] within the framework of Γ-convergence.

All the heuristic arguments concerning the convergence of level sets of uε to minimal
surfaces are made rigorous by the results of Modica achieved in [40]. In particular he
proved the following Theorem

Theorem 1.3. (Modica) Given Ω ⊆ Rn open, let uε be local minimizers for the energies
Jε(·,Ω), then there exists a sequence uεk such that,

uεk −→ χE − χEc in L1
loc(Ω) (1.20)

where E is a set with minimal perimeter in Ω.

This result shows the deep connection between the minimizers of the Ginzburg-Landau
functional and minimal surfaces; roughly speaking minimal surfaces and minimizers of Jε
should have similar property, at least for small ε.

Our goal is to show that the convergence of uεk in Theorem 1.3 is stronger than L1
loc(Ω),

indeed in Section 1.4 we will show that the level sets of uεk converge uniformly on compact
sets to minimal surfaces.

In order to reach this result we need density estimates for level sets of phase transi-
tions, the following section is devoted to the study of this density estimates.
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1.3 Density estimates for level sets of phase transitions

The goal of this section is to prove estimates for the Lebesgue measure of the superlevel
sets and sublevel sets of minimizers of (1.6). In the next section, we will see that these
estimates are crucial for proving that the L1

loc convergence, given by Theorem 1.3, can be
improved to a uniform convergence (in the sense of the Hausdorff distance) on compact
sets of the level sets of uε to minimal surfaces.

The following density estimates are proved by Caffarelli and Cordoba in [11]

Theorem 1.4. (Caffarelli-Cordoba) Given α > −1 and β < 1, if u is a minimizer of
J in BR(x) and u(x) ≥ α, then there exist a constant c depending only on n and h0 and
a constant r0(α, β) depending on α, β, n, and h0 such that:

Ln({u > β} ∩Br(x)) ≥ crn, (1.21)

Ln({u < β} ∩Br(x)) ≥ crn (1.22)

for r ≥ r0(α, β), provided that Br+2(x) ⊆ BR(x).

Before proving this theorem we highlights another analogy between phase transitions
and minimal surfaces: all the ideas behind the density estimates for phase transitions and
the improving of the convergence for level sets come from analogous results for minimal
surfaces.

We recall the standard compactness theorem for sets with minimal perimeter, a proof
can be found in the book of Giusti [32].

Theorem 1.5. If En is a sequence of sets with minimal perimeter in Ω then there exists
a subsequence Enk that converges to a set with minimal perimeter E, i.e.,

χEnk −→ χE in L1
loc(Ω). (1.23)

Now we can pass from this L1
loc convergence to a uniform convergence on compact sets

using the following density estimates

Theorem 1.6. Assume that E has minimal perimeter in B1 and 0 ∈ ∂E. There exists a
constant c > 0 depending only on the dimension n such that for all r ∈ (0, 1)

Ln(E ∩Br) ≥ crn, Ln(Ec ∩Br) ≥ crn.

We see a perfect analogy between Theorems 1.3 and 1.4, about phase transitions, and
Theorems 1.5 and 1.6, about minimal surfaces. It is clear that, in order to prove the
convergence results for phase transitions, we use the same strategy as in the theory of
minimal surface. First of all we prove a compactness result and then, with the density
estimates, we improve the convergence.

There is a huge literature regarding density estimates for phase transitions, see for
instance [11],[52],[42],[41], and [23]. In this section we present the results achieved in [11]
and, in particular, we adapt the techniques used in [52] to our specific functional (1.6).

Theorem 1.4 is a direct consequence of the following result:

Theorem 1.7. Let u be a local minimizer of J in Ω, then:

(i) there exist positive constants c, r0 (depending only on n and h0) such that

J(u,Br(x)) ≤ crn−1 (1.24)

for any r ≥ r0, provided that Br+2(x) ⊂ Ω;
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(ii) for any θ0 ∈ [0, 1), for any θ ∈ (−θ0, θ0) and for any µ0 > 0, if there exists K > 0
such that Ln({u > θ} ∩ BK(x)) ≥ µ0, then there exist positive constants c∗, r0

(depending only on n and h0) such that

Ln({u > θ} ∩Br(x)) ≥ c∗rn (1.25)

for any r ≥ r0, provided that Br+2(x) ⊂ Ω. Analogously if Ln({u < θ}∩BK(x)) ≥ µ0,
then

Ln({u < θ} ∩Br(x)) ≥ c∗rn (1.26)

for any r ≥ r0, provided that Br+2(x) ⊂ Ω.

Proof. For simplicity of notation we introduce two constants C and c, depending only on
n and h0, that can change from line to line.

(i) We start by noticing that, from standard energy inequality, we have J(u,B1(x0)) ≤ C
provided that B2(x0) ⊂ Ω . Indeed, we define the following function w on B2(x0)
that depends only on r := |x− x0|,

w(r) =

{
−1 if r ≤ 1

2r − 3 if 1 < r ≤ 2.

From the fact that |u| ≤ 1 we obtain the inclusion B1(x0) ⊂ {w < u} ⊆ B2(x0) and,
by comparing w with u on the open set {w < u}, we obtain

J(u,B1(x0)) ≤ J(u, {w < u}) ≤ J(w, {w < u}) ≤ J(w,B2(x0)) ≤ C.

We now fix x0 ∈ Ω and r > 0 sufficiently large. Let g be a radial smooth function
that is identically equal to −1 on Br−1(x0) and identically to 1 on ∂Br(x0). We
define u∗ = min{u, g}. Clearly, since h0 is bounded and h0(−1) = 0 we obtain´
Br(x0) h0(u∗) =

´
Br(x0)\Br−1(x0) h0(u∗) ≤ Crn−1.

Since in the H1-sense ∇u∗ is equal to ∇u or ∇g almost everywhere, we conclude
that ∇u∗ = ∇g = 0 on Br−1(x0). Therefore we have

J(u,Br(x0)) ≤ J(u∗, Br(x0)) ≤ C
(ˆ

Br(x0)\Br−1(x0)
|∇u∗|2 dx+ rn−1

)
≤

≤ C
(ˆ

Br(x0)\Br−1(x0)

{
|∇u|2 + |∇g|2

}
dx+ rn−1

)
≤

≤ C
(ˆ

Br(x0)\Br−1(x0)
|∇u|2 dx+ rn−1

)
.

Let us now cover Br(x0)\Br−1(x0) with balls B1(z1), ..., B1(zK) with radius 1 and
with K ≤ C1r

n−1 for some constant C1.

Now we have zi ∈ Br(x0)\Br−1(x0) for all i = 1, ...,K and, given the assumption
Br+2(x) ⊂ Ω, we have that B2(zi) ⊂ Ω for all i = 1, ...,K; hence J(u,B1(zi)) ≤ C
and in particular

´
B1(zi)

|∇u|2 ≤ C for all i = 1, ...,K. Then, from the estimates
above, we obtain

J(u,Br(x0)) ≤ C
( K∑
i=1

ˆ
B1(zi)

|∇u|2 dx+ rn−1
)
≤

≤ C(C1r
n−1 + rn−1) ≤ crn−1, (1.27)

for some constant c. The estimate (1.27) is true for every x0 ∈ Ω such that
Br+2(x0) ⊂ Ω, and this proves (i).
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(ii) We prove the estimate (1.25), the proof of the estimate (1.26) being analogous. We
fix x ∈ Ω and for simplicity we define Br := Br(x). First of all we notice that it is
enough to prove (ii) for θ close to −1. Indeed, assume the result is true for θ∗ close
to −1, and let θ ∈ [−θ0, θ0] with θ∗ ≤ −θ0, then

µ0 ≤ Ln({u > θ} ∩BK) ≤ Ln({u > θ∗} ∩BK).

In general we have that,ˆ
Br∩{θ∗<u≤θ}

h0(u)dx ≥ Ln({θ∗ < u ≤ θ} ∩BK) inf
u∈[θ∗,θ0]

h0(u),

and with the assumption (1.7) on h0 we have infu∈[θ∗,θ0] h0(u) 6= 0. We obtain the
following estimate:

crn ≤ Ln({u > θ∗} ∩Br) ≤ Ln({u > θ} ∩Br) + Ln({θ∗ < u ≤ θ} ∩Br) ≤

≤ Ln({u > θ} ∩Br) +
1

infu∈[θ∗,θ0] h0(u)

ˆ
Br

h0(u)dx ≤

≤ Ln({u > θ} ∩Br) + crn−1. (1.28)

In the last inequality we used (1.24) for the estimate
´
Br
h0(u)dx ≤ J(u,Br) ≤ crn−1.

Then we finally obtain:

crn − crn−1 ≤ Ln({u > θ} ∩Br),

and for r sufficiently large, for some constant c, we obtain that crn ≤ Ln({u >
θ} ∩ Br). From these considerations, in the rest of the proof, we can assume that θ
is close to −1.

We use suitable positive parameters Θ and T : the idea is that we will fix Θ small
enough and then choose T suitably large. Set k ∈ N, we introduce a barrier function
g = gk ∈ C2(B(k+1)T ) so that −1 ≤ g ≤ 1 in B(k+1)T , g = 1 on ∂B(k+1)T and also g
verifies the following inequalities:

g + 1 ≤ Ce−ΘT in BkT (1.29)

|∆g| ≤ CΘ(g + 1) in B(k+1)T . (1.30)

From the last inequality and from our assumption (1.9) on the potential we have, for
Θ small enough:

|∆g| ≤
√

Θh′0(g) in B(k+1)T . (1.31)

An explicit construction of g can be found in [45] or in [52] .
Define θ′ = θ − Ce−ΘT , if T is large enough we have that θ′ > −1. Define also

σ = min{u, g} and β = min{u− σ, 1 + θ′}.

Since g = 1 on ∂B(k+1)T we have that β = 0 on ∂B(k+1)T so we can apply the
Gagliardo-Nirenberg-Sobolev inequality and, using the elementary inequality Aa2 +
b2

A ≥ 2ab for all a, b ∈ R and A > 0, we obtain(ˆ
B(k+1)T

β
2n
n−1

)n−1
n ≤

ˆ
B(k+1)T

|β||∇β| =
ˆ
B(k+1)T∩{u−σ≤1+θ′}

|β||∇β| ≤

≤ AC
(ˆ

B(k+1)T∩{u−σ≤1+θ′}
|∇u|2 + |∇σ|2 − 2|∇u||∇σ|

)
+

+
C

A

ˆ
B(k+1)T∩{u−σ≤1+θ′}

(u− σ)2. (1.32)
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Hence from (1.32) we obtain(ˆ
B(k+1)T

β
2n
n−1

)n−1
n ≤AC

(ˆ
B(k+1)T∩{u−σ≤1+θ′}

|∇u|2 − |∇σ|2 − 2|∇(u− σ)||∇σ|
)

+

+
C

A

ˆ
B(k+1)T∩{u−σ≤1+θ′}

(u− σ)2. (1.33)

Now from the minimality property of u we obtain

ˆ
B(k+1)T∩{u−σ≤1+θ′}

(
|∇u|2 − |∇σ|2

)
≤
ˆ
B(k+1)T∩{u−σ≤1+θ′}

(
h0(σ)− h0(u)

)
.

Using this estimate and an integrating by parts in (1.33) we finally get:(ˆ
B(k+1)T

β
2n
n−1

)n−1
n ≤AC

(ˆ
B(k+1)T∩{u−σ≤1+θ′}

h0(σ)− h0(u) + 2∆σ(u− σ)
)

+

+
C

A

ˆ
B(k+1)T∩{u−σ≤1+θ′}

(u− σ)2, (1.34)

where A is a free parameter, to be chosen suitably large in what follows.

Let us now define

Λ(r) = Ln(Br ∩ {u ≥ θ}).

We now estimate the left hand side of (1.34). From (1.29) we obtain that if T is big

enough we get θ−g ≥ (1−θ0)
2 in BkT , hence we have β ≥ (1−θ0)

2 > 0 in BkT ∩{u ≥ θ}.
Thus there exists a constant C such that the left hand side of (1.34) is bigger than

CΛ(kT )
n−1
n .

Let us now estimate the right hand side of (1.34). First of all, we consider the
contribution in {u ≤ θ}. We observe that, since −1 ≤ σ ≤ u ≤ 1,

(u+ 1)2 − (σ + 1)2 − 1

2
(u− σ)2 =

= (u+ σ)(u− σ) + 2(u− σ)− 1

2
(u− σ)2 =

= (u− σ)
(1

2
u+

3

2
σ + 2

)
≥ 0;

accordingly, recalling (1.9), in {σ < u ≤ θ} we have

h0(u)− h0(σ) =

ˆ u

σ
h′0(ξ)dξ ≥

≥ C
ˆ u

σ
(1 + ξ)dξ = C[(u+ 1)2 − (σ + 1)2] ≥

≥ C(u− σ)2. (1.35)

Consequently, choosing A suitable large and recalling (1.31), the contribution of the
right hand side of (1.34) in {u ≤ θ} is controlled by

ˆ
B(k+1)T∩{σ<u≤θ}

(h0(σ)− h0(u) + C
√

Θh′0(σ)(u− σ)). (1.36)
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We now show that this quantity is indeed negative. Since we can choose θ to be close
to −1, we have that h0 and h′0 are monotone in (−1, θ). Hence, in {σ < u ≤ θ},
h0(σ)− h0(u) is negative and, furthermore,

|h′0(σ)(u− σ)| ≤ |h0(σ)− h0(u)|.

Since we assumed Θ to be small, we have shown that the quantity in (1.36) is negative
and clearly we can consider in our estimates only the contributions in {u > θ} .

Let us now bound the right hand side of (1.34) in {u > θ}. First we notice that this
term has no contribution in BkT : indeed, from condition (1.29), we have:

u ≤ σ + 1 + θ′ ≤ g + 1 + θ′ ≤ Ce−ΘT + θ − Ce−ΘT = θ,

and this means that

BkT ∩ {σ < u− σ ≤ +1 + θ′} ⊆ BkT ∩ {σ < u ≤ θ}.

Thus, from all the estimates above and from condition (1.30), it follows that the
right hand side of (1.34) is bounded by

ˆ
(B(k+1)T \BkT )∩{u>θ}

(
h0(σ)− h0(u) + (σ + 1)(u− σ) + (u− σ)2

)
. (1.37)

Now the integrand is limited, so this term can be bounded by:

CLn({u > θ} ∩ (B(k+1)T \BkT )). (1.38)

Collecting all the estimates, we finally get

C(Λ(kT ))
n−1
n ≤ Λ((k + 1)T )− Λ(kT ). (1.39)

Let us define αk := Λ(kT )− Λ((k − 1)T ). Notice that∑
1≤j≤k

αj = Λ(kT )− Λ((k − 1)T ) + Λ((k − 1)T )− Λ((k − 2)T ) + ...

= Λ(kT ),

and therfore from inequality (1.39) we get

C
( ∑

1≤j≤k
αj

)n−1
n ≤ αk+1. (1.40)

Now by induction we prove that there exists a constant c such that αk ≥ ckn−1. The
first step of the induction is true by hypothesis, indeed if we take T ≥ K we have
α1 = Λ(T ) ≥ Λ(K) ≥ µ0. Suppose αj ≥ cjn−1 for evey j ≤ k. We show the same

estimate for k + 1. Recalling the elementary inequality
´ k

0 x
n−1 dx ≤

∑
1≤j≤k j

n−1,
we get

αk+1 ≥ C
( ∑

1≤j≤k
αj

)n−1
n ≥ C

( ∑
1≤j≤k

jn−1
)n−1

n ≥

≥ C
(ˆ k

0
xn−1 dx

)n−1
n ≥ Ckn−1 ≥

≥ C

2n−1
(k + 1)n−1.
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This proves that αk ≥ ckn−1 for some constant c.

Now we prove that Λ(kT ) ≥ ckn for some constant c. From all the above estimates
we have

Λ(kT ) =
∑

1≤j≤k
αj ≥ c

∑
1≤j≤k

jn−1 ≥

≥ c
(ˆ k

0
xn−1 dx

)
≥ c

n
kn.

From the estimate above we obtain:

Ln({u > θ} ∩ (BkT ) ≥ ckn,

performing the change of variable kT = r we finally obtain

Ln({u > θ} ∩ (Br) ≥
c

Tn
rn, (1.41)

and this proves (ii).

Theorem 1.4 follows directly from Theorem 1.7.

Proof of Theorem 1.4. For simplicity we define Br := Br(x). Since u is a solution of an
elliptic equation, from regularity theory for elliptic partial differential equations (see for
instance [2],[4],[30]) we have that u is Hölder continuous, so in particular Ln(B1 ∩ {u >
α
2 }) ≥ µ0 > 0. Thus by Theorem 1.7

Ln
(
Br ∩ {u >

α

2
}
)
≥ crn,

for r large enough.
Now we have two cases, β ≤ α

2 or β > α
2 . In the first case the theorem follows

immediately. In the second case we use the same argument used in the proof of Theorem
1.7, where we were restricted to the case θ near to −1 (estimates (1.28)). We obtain

crn ≤ Ln
(
{u > α

2
} ∩Br

)
≤ Ln({u > β} ∩Br) + Ln

(
{α

2
< u ≤ β} ∩Br

)
≤

≤ Ln({u > β} ∩Br) +
1

infu∈[α
2
,β] h0(u)

ˆ
Br

h0(u)dx ≤

≤ Ln({u > β} ∩Br) + crn−1,

and, for r large enough, we finally get

Ln(Br ∩ {u > β}) ≥ crn.

In the next section, using Theorem 1.4 we improve the convergence of the level sets of
minimizers of Jε. The density estimates allow us to pass from a convergence in measure
(L1

loc convergence) to a uniform convergence (in the sense of the Hausdorff distance).
Combining this result with the regularity theory of minimal surfaces we will obtain an
asymptotic flat behaviour of the level sets of u, at least in low dimension.
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1.4 Asymptotic behaviour of level sets

We prove that the convergence in Theorem 1.3 is stronger than L1
loc convergence. In

the previous sections we say that the convergence is, actually, a uniform convergence
on compact sets. We now define what actually means that a sequence of sets converge
uniformly on compact set to another sets.

We introduce the Hausdorff distance in Rn:

Definition 1.4. Let X and Y be two subset of Rn, the Hausdorff distance between X and
Y is:

dH(X,Y ) := inf{ε > 0 | X ⊆ Yε and Y ⊆ Xε}. (1.42)

Where Xε is:

Xε :=
⋃
x∈X
{z ∈ Rn | ||x− z|| ≤ ε} (1.43)

We now prove, using Theorem 1.4, that the convergence in Theorem 1.3 is a conver-
gence in the Hausdorff distance.

Corollary 1.8. Given Ω ⊆ Rn open, let uε be local minimizers for the energies Jε(·,Ω),
then there exists a sequence uεk such that {uεk = 0} converge in Hausdorff distance to ∂E,
where E is a set with minimal perimeter in Ω.

Proof. We assume by contradiction that dH({uεk = 0}, ∂E) > 0 for every k ≥ k̄, for some
k̄. We have two possible cases:

(i) There exists δ > 0 such that for k ≥ k̄ exists xk ∈ {uεk = 0} ∩ Bδ(z0), with
B2δ(z0) ⊂ E.

(ii) There exists δ > 0 such that for k ≥ k̄ exists xk ∈ {uεk = 0} ∩ Bδ(z0), with
B2δ(z0) ⊂ Ec.

We analyze the case (i). From the estimate (1.22) we obtain that:

Ln({uεk < 0} ∩Bδ(z0)) ≥ cLn(Bδ(z0)).

We recall that B2δ(z0) ⊂ E, in particular χE(x) = 1 for every x ∈ Bδ(z0), from this
consideration and the estimate above we obtain:

1 ≤
 
{uεk<0}∩Bδ(z0)

|1− uεk |dx ≤
1

cLn(Bδ(z0))

ˆ
{uεk<0}∩Bδ(z0)

|1− uεk |dx =

=
1

cLn(Bδ(z0))

ˆ
{uεk<0}∩Bδ(z0)

|χE − uεk |dx −−−→
k→∞

0,

that is a contradiction. The case (ii) is similar.

Our purpose, in this section, is to obtain an asymptotic behaviour of the level sets of
phase transitions. We have just proved that the level sets of the rescaled phase transitions
converge uniformly on compact sets to a minimal surface.

In order to obtain more precise results we must investigate the geometry of minimal
surfaces in Rn. We summarize in the following theorem some fundamental results about
minimal surfaces:

Theorem 1.9. Let E be a set with minimal perimeter in Rn, then the following holds:
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(i) if n ≤ 7, then ∂E is a hyperplane.

(ii) The Simons cone { x2
1 + x2

2 + x2
3 + x2

4 < x2
5 + x2

6 + x2
7 + x2

8 } is a set with minimal
perimeter in R8.

(iii) If n ≤ 8 and if we also assume that ∂E is a graph in some direction, then ∂E is a
hyperplane.

(iv) If n ≥ 9 there exist non-affine minimal graphs

This Theorem combine several classical results. The main contributions are the papers
of De Giorgi [16] and [17], Simons [51] and Bombieri, De Giorgi and Giusti [6]. A detailed
proof of the Theorem can be found in the book of Giusti [32] and a short proof of (ii) can
be found in the paper of De Philippis and Paolini [18].

We consider u, a local minimizer of the functional (1.6) in Rn with n ≤ 7, and we
assume that u(0) = 0. From Corollary 1.8 and Theorem 1.9 we have that {uεk = 0}
uniformly converge on compact sets to ∂E, where E is a set with minimal perimeter in
Rn. We have that ∂E is an hyperplane, because n ≤ 7. We also have that 0 ∈ ∂E because
uεk(0) = 0 for every k, so we can assume, without lost of generality, that ∂E = {xn = 0}.
Indeed, if it is not true, we can rotate the coordinates in such a way that the hyperplane
∂E coincide with the hyperplane {xn = 0}.

We finally obtain that there exists a sequence δk → 0 such that:

{uεk = 0} ∩B1(0) ⊆ {|xn| ≤ δk}. (1.44)

If we rescale back the minimizers we obtain:

{u = 0} ∩B 1
εk

(0) ⊆ {|xn| ≤
δk
εk
}. (1.45)

This asymptotic behaviour is still true also if we assume that n = 8 and ∂xnu > 0.
Indeed, in this case, we have that the level sets of uεk are rescaling of the level sets of u,
that is a graph in the en direction. We obtain that ∂E is a minimal graph in R8 and, from
point (iii) in Theorem 1.9, we conclude that ∂E is a hyperplane.

All the arguments above are true not only for the 0-level set but also for all the s-level
sets, with |s| < 1. In particular (1.45) is true for {u = s} with |s| < 1.

We notice that the estimate (1.45) gives us an asymptotically flat behaviour of the
level sets: from the limit k → ∞ we obtain information on the level sets in all Rn. The
level sets are trapped into cylinders, and, if k →∞, we obtain that εk → 0, so the basis of
these cylinders tends to all Rn. But we don’t know the behaviour of the heights of these
cylinders. Indeed if k →∞ we know that δk → 0 and εk → 0, but we don’t know the limit
of the ratio δk

εk
.

We notice that, if we can prove that δk
εk
→ 0, we can conclude that the level sets

of phase transitions, for which (1.45) holds, are hyperplanes and this proves De Giorgi’s
Conjecture for this minimizers. Savin in [44] gives precise estimates on the behaviour of
the heights of this cylinders, using these estimates he proves De Giorgi’s Conjecture for
phase transitions. In the next Chapter we present the results achieved by Savin in [44].
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Chapter 2

Proof of De Giorgi’s Conjecture
for Phase Transitions

For simplicity, in this section we consider only the 0-level set of the phase transition u.
We prove that the 0-level set is a hyperplane, but all the arguments can be adapted to
the s-level sets, with |s| < 1. From now on we frequently use the following notation:
x = (x′, xn) = (x1, x2, ..., xn−1, xn) ∈ Rn.

2.1 Main results

In this section we present the statements of the main theorems proved by Savin in [44],
that prove De Giorgi’s Conjecture for phase transitions.

We have seen in Section 1.4 that, if in the estimate (1.45) we prove that δk
εk
→ 0, then

we conclude that the 0-level set is a hyperplane. In order to obtain this result Savin proves
in [44] the following theorem for level sets of u:

Theorem 2.1. (Improvement of Flatness) Let u be a local minimizer of J in {|x′| <
l} × {|xn| < l}. Assume that u(0) = 0 and assume that there exists θ ≤ l such that:

{u = 0} ⊂ {|x′| < l} × {|xn| < θ}.

Then there exist small constants 0 < η1 < η2 < 1 depending on n and h0 such that:
given θ0 > 0 there exists ε1(θ0) > 0 depending on n, h0 and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|πξx| < η2l} × {|x · ξ| < η2l}

is included in a flatter cylinder

{|πξx| < η2l} × {|x · ξ| < η1θ},

for some unit vector ξ, where πξx = x− (x · ξ)ξ.

This theorem is valid for any s-level set, with |s| < 1, but it was stated for s = 0 for
simplicity. We will study in detail this theorem in Chapter 4.

Theorem 2.1 gives us a precise estimate on the decay of the heights of the cylinders
in the estimate (1.45). Indeed the theorem heuristically says that, if the 0-level set of u

15
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is included in a flat cylinder, then, up to a rotation of coordinates, in the interior it is
included in a flatter cylinder. This result is fundamental beacuse tells us that the cylinders
that trap the 0-level set of u in the estimate (1.45) becomes flatter if k →∞.

This deep geometric interpretation of Theorem 2.1 is crucial in order to prove De
Giorgi’s Conjecture for phase transitions.

Theorem 2.2. Let u be a local minimizer of the Ginzburg-Landau functional (1.6) in Rn

and u(0) = 0, then the following holds:

(i) If n ≤ 7 then the level sets of u are hyperplanes.

(ii) If n = 8 and ∂xnu > 0 then the level sets of u are hyperplanes.

Obviously, Theorem 2.2 does not imply the full De Giorgi’s Conjecture 1.1. Indeed the
conjecture is stated for critical points of the funcional J , instead Theorem 2.2 concerns
local minimizers.

A direct consequence of Theorem 2.2 is the following theorem that gives us a solution
for a weaker version of De Giorgi’s Conjecture:

Theorem 2.3. Let u ∈ C2(Rn) be a solution of the partial differential equation

∆u = h′0(u) (2.1)

in all Rn such that:

|u| ≤ 1, ∂xnu > 0, lim
xn→±∞

u(x′, xn) = ±1. (2.2)

Then, if n ≤ 8, the level sets of u are hyperplanes.

2.2 Proof of Theorems 2.2 and 2.3

In this section we prove De Giorgi’s Conjecture for phase transitions. We use Theorem
2.1 to prove the following lemma:

Lemma 2.4. Let u be a local minimizer of J in Rn with u(0) = 0. Suppose that there
exist sequences of positive numbers θk, lk and unit vectors ξk with lk →∞, θkl

−1
k → 0 such

that
{u = 0} ∩

(
{|πξx| < lk} × {|x · ξk| < lk}

)
⊂ {|x · ξk| < θk}. (2.3)

Then the 0-level set is a hyperplane.

Proof. We fix θ0 > 0 and we choose k large such that θkl
−1
k ≤ ε ≤ ε1(θ0), where ε1(θ0)

is the quantity involved in Theorem 2.1. If θk ≥ θ0 then we apply Theorem 2.1 and we
obtain that {u = 0} is trapped in a flatter cylinder with height η1θk. We apply Theorem
2.1 repeatedly until the height θ′k of the new cylinder becomes less than θ0.

In some system of coordinates we obtain(
{u = 0} ∩

(
{|y′| < lk} × {|yn| < lk}

))
⊂ {|yn| < θ′k} ⊂ {|yn| < θ0}. (2.4)

Let θ
′′
k be the height of the cylinder before the last application of Theorem 2.1, we have

θ′k = η1θ
′′
k . We notice that, if we apply Theorem 2.1 repeatedly, the lowest value of the

height of the cylinder that we can obtain is θ0, so θ0 ≤ θk
′′. From this consideration we

obtain
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θ′k = η1θ
′′
k ≥ η1θ0. (2.5)

Suppose we have applied Theorem 2.1 m times: we have that l′k = lkη
m
2 and θ′k = θkη

m
1 .

Recalling that η1 < η2, we finally obtain

θ′k
l′k

=
θk
lk
·
(η1

η2

)m
≤ θk
lk
≤ ε. (2.6)

Combining the inequalities (2.5) and (2.6) we obtain:

l′k ≥
η1θ0

ε
.

We let ε → 0 and then, from (2.4), we conclude that {u = 0} is included in a strip of
width θ0. The lemma is proved since θ0 is arbitrary.

Theorem 2.2 is a direct consequence of Lemma 2.4

Proof of Theorem 2.2. We have that u is a local minimizer of J in Rn and u(0) = 0. If
one between the two conditions (i) and (ii) is true then, as we have seen in Section 1.4,
the estimate (1.45) is true for the 0-level set.

We define θk = δk
εk

and lk = 1
εk

, clearly lk → ∞ and θkl
−1
k → 0. Now u is a local

minimizer of J that satisfies the hypothesis of the Lemma 2.4. We conclude that the
0-level set is a hyperplane. All these arguments can be adapted to a general s-level set,
with |s| < 1, then the theorem is proved.

We now prove Theorem 2.3. The proof consists in showing that a solution in all of Rn

of the equation (2.1) that satisfies conditions (2.2), is a local minimizer of the Ginzburg-
Landau functional J . The first proof of this result was given by Alberti, Ambrosio and
Cabré in [1]. In this proof they used a calibration method, which is quite involved. Another
proof can be found in [34]. In this Thesis we present an easier version of the proof that
we can find in [9].

Proof of Theorem 2.3. Without loss of generality we can suppose that u(0) = 0. Indeed
if it is not true, from conditions (2.2), we can easily see that there exists y ∈ Rn such that
u(y) = 0. We define ũ(x) = u(x + y) and we see that ũ satisifes the conditions (2.2) and
ũ(0) = 0. If we prove that the level sets of ũ are hyperplanes, then this result is also true
for u, because u is obtained by translating ũ.

We want to show that u is a local minimizer of J in Rn. Let us consider the functions:

ut(x) := u(x′, xn + t), for any t ∈ R.

By the monotonicity assumption we have that

ut < ut
′

in Rn, if t < t′. (2.7)

Thus by the conditions (2.2) we have that the graphs of ut(x), t ∈ R, form a foliation
filling all of Rn × (−1, 1). Moreover, we have that for every t ∈ R, ut are solutions of
∆ut = h′0(ut) in Rn.

Given a ball BR we prove that there exists a minimizer v : BR → (−1, 1) of J in BR,
such that v = u on ∂BR. Let vh be a minimizing sequence for J in BR, we have that
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vh = u on ∂BR for every h ∈ N. We show that the sequence vh is uniformly bounded in
H1(BR). Indeed |vh| < 1 and we obtain

ˆ
BR

v2
h ≤ Ln(BR) ≤ C, for every h ∈ N.

We have that vh is a minimizing sequence, so J(vh, BR) → L with L ∈ R, in particular
J(vh, BR) ≤ C < ∞ for every h ∈ N. With this estimate, recalling that h0(u(x)) ≥ 0 for
every x ∈ BR, we obtain the bound of the norm of the weak derivative

ˆ
BR

1

2
|∇vh|2 ≤ J(vh, BR) ≤ C for every h ∈ N.

We have that vh is bounded in H1(BR), in particular {vh} is a precompact set in the
weak topology of H1(BR). Then there exist a subsequence vhk and an element v ∈ H1(BR)
such that vhk converge to v in the weak H1(BR) topology. The domain BR has a regular
boundary and then by Rellich-Kondrachov theorem we have that H1(BR) ⊂⊂ L2(BR).
Then there exists a subsequence of vhk that converges to v strongly in L2(BR). If we
consider another subsequence we have an almost everywhere convergence. Redefining this
subsequence by vh, we finally obtain the following convergences:

vh ⇀ v in L2(BR),

∇vh ⇀ ∇v in L2(BR),

vh → v in L2(BR),

vh → v a.e. in BR.

We prove that v ∈ H1(BR) is a minimizer for J(·, BR). We use the lower-semicontinuity
of the L2 norm with respect to the weak topology in order to estimate the kinetic part of
the functional and we use the Fatou Lemma for the potential part of the functional. We
obtain

J(v,BR) =

ˆ
BR

1

2
|∇v|2 +

ˆ
BR

lim inf
h→0

h0(vh) ≤

≤ lim inf
h→0

ˆ
BR

1

2
|∇vh|2 + h0(vh) =

= lim
h→0

J(vh, BR).

From the fact that vh is a minimizing sequence we conclude that v is a minimizer of J
in BR and, from the fact that vh = u on ∂BR, we have that v = u on ∂BR.

In particular, v satisfies 
∆v = v3 − v in BR

|v| < 1 in BR

v = u on ∂BR.

(2.8)

We prove that u is the unique solution of (2.8). From this fact follows directly that u
is a local minimizer of J in Rn.

By conditions (2.2) we have that the graph of ut, in the compact set BR, is above the
graph of v for t large enough (see Figure 2.1). If v 6= u, let us assume that v < u at some
point in BR (the situation v > u somewhere in BR is done similarly). It follows that,
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Figure 2.1: The foliation {ut} and the minimizer v

starting from t = −∞, there will exist a first t∗ < 0, such that ut
∗

touches v at a point
P ∈ BR. This means that ut

∗ ≤ v in BR and ut
∗
(P ) = v(P ).

From (2.7) and from the fact that v = u = u0 on ∂BR, the point P cannot belong to
∂BR, because t∗ < 0.

But then we have that ut
∗

and v are two solutions of the same semilinear elliptic
equation, the graph of ut

∗
stays below the one of v, and they touch each other at the

interior point (P, v(P )). This is in contradiction with the strong maximum principle (see
Appendix A Corollary A.3 ).

We have proved that u is a local minimizer of J in Rn and, by hypothesis ∂xnu > 0, we
apply Theorem 2.2 and we obtain that the level sets of u are hyperplanes if n ≤ 8.
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Chapter 3

Mean Curvature Properties for
Phase Transitions

3.1 Zero mean curvature for phase transitions

To state our results, we need to recall some standard conventions about the sign of the
mean curvature of a paraboloid. Let us consider a hyperplane π ⊂ Rn with normal vector
ν. Let S be a hypersurface and P a paraboloid with vertex at some point x, and let us
assume that they are tangent to each other and to π at x.

We say that P touches S from below at x in Br(x) if, for any y ∈ S and z ∈ P with
y, z ∈ Br(x) and y − z in the same direction as ν, we have (y − z) · ν ≥ 0. An analogous
definition can be given for a paraboloid touching from above.

Figure 3.1: P touches S from below at x

Of course, up to a suitable choice of coordinates, one may assume that x = 0, π =
{xn = 0} and ν = en. In this set of coordinates, the paraboloid P takes the form{

(x′, xn) ∈ Rn−1 × R : xn =
1

2
x′ ·Mx′, M ∈ Mat((n− 1)× (n− 1))

}
.

21
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We say that P has non-negative mean curvature if TrM ≥ 0. Analogously, one may
define positive, negative, non-positive and zero mean curvature. Obviously, the sign of the
mean curvature depends on the orientation of ν, i.e., changing ν to −ν turns a positive
mean curvature into a negative one, and so on. Similarly, changing ν to −ν turns touching
from below into touching from above.

Using the above conventions we define the concept of zero mean curvature in a viscosity
sense:

Definition 3.1. Let S = ∂E be a surface. S satisfies the zero mean curvature equation
in the viscosity sense if the following happens:

let x∗ ∈ S be so that for any r > 0,

Ln((RN \ E) ∩Br(x∗)) > 0 and Ln(E ∩Br(x∗)) > 0

assume also that S admits a tangent hyperplane in x∗, then:

• if a paraboloid with vertex at x∗ touches S from below at x∗, then its mean curvature
at x∗ must be non-positive;

• if a paraboloid with vertex at x∗ touches S from above at x∗, then its mean curvature
at x∗ must be non-negative.

In particular, if S is C2 in a neighborhood of x∗, then the mean curvature of S at x∗

is zero in the classical sense.
We state the main theorem of this chapter. This theorem is fundamental in order to

prove the Improvement of Flatness Theorem.

Theorem 3.1. Let u be a local minimizer of the Ginzburg-Landau functional (1.6) in Rn

such that u(0) = 0 and |u| ≤ 1. Let % ∈ (0, 1) and M ∈ Mat((n− 1)× (n− 1)) with

TrM > %||M || and ||M || ≤ %−1.

Let

Γ :=
{

(x′, xn) ∈ Rn−1 × R : xn =
1

2
x′ ·Mx′

}
.

Then there exist a universal constant %∗ > 0 and a function σ0 : (0, 1) → (0, 1) such that
if ε ∈ (0, σ0(%)) and % ∈ (0, %∗), then Γ cannot touch {uε = 0} at 0 from below inside the
ball B%

√
ε/
√

TrM , where uε is the rescaled phase transition. More explicitly,

{uε = 0} ∩
{
xn <

1

2
x′ ·Mx′

}
∩
{
|x| < %

√
ε√

TrM

}
6= ∅.

Theorem 3.1 says that {uε = 0} satisfies the zero mean curvature equation in the
viscosity sense, in which we have to specify the size of the neighborhood around the
touching point. Indeed Theorem 3.1, roughly speaking, tells us that if we take a paraboloid
with non-negative mean curvature, then this praboloid cannot touch {uε = 0} from below
at 0 in a neighborhood of 0. This fact proves the first point of Definition 3.1.

As we have said above the fact that P has non-negative curvature and the fact that P
touches {uε = 0} from below are matter of conventions. Indeed, if we consider the opposite
orientation, i.e., changing ν to −ν, non-negative curvature becomes non-positive curvature
and touches {uε = 0} from below becomes touches {uε = 0} from above. Using this fact
we can reformulate Theorem 3.1 in the following way: if P has non-positive curvature,
then P cannot touch {uε = 0} from above at 0 in a neighborhood of 0. This fact prove
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the second point of Definition 3.1. For a rigorous proof that Theorem 3.1 implies that
{uε = 0} satisfies the zero mean curvature equation in the viscosity sense see [50].

We know that {uε = 0} uniformly converge, on compact sets, to a minimal surface. If
we recall that minimal surfaces are surfaces with zero mean curvature, we can say that
{uε = 0} uniformly converge, on compact sets, to a surface with zero mean curvature.
Roughly speaking Theorem 3.1 tells us that {uε = 0} attains a weak version of zero mean
curvature property even “before” converging to the limit surface. This fact is crucial, as
we will see in Chapter 4, for proving the Improvement of Flatness result.

The main purpose of this chapter is to prove Theorem 3.1 and, in order to do this, in
the next section we introduce some useful “barriers” functions.

3.2 Barrier functions

Before going into the details of the argument, we would like to point out some heuristic
ideas underlying the construction given below. The crucial idea, which goes back to
De Giorgi, is that one dimensional phase transitions are the ones which encode much
information on the system. Following this belief, we will construct two barriers, which are
suitable modification of one-dimensional solutions.

The first barrier, built in Lemma 3.2, is radially symmetric. More precisely is flat in a
ball and then radially increasing. Clearly, since the solution we consider does not has such
symmetry, this barrier may provide good bounds in some directions, but poor bounds in
other directions. Therefore, in the following section, we will have to slide this barrier to
obtain information in all the domain we are interested in.

The second barrier we need is constructed in Lemma 3.3. This is a modification
of a one-dimensional solution which takes into account the distance from the level sets.
Equation (1.5) will relate the second derivatives of this barrier with the mean curvature
of the level sets of our rescaled phase transitions, from this relation we will obtain some
useful estimates.

Figure 3.2: The function gl introduced in Lemma 3.2

We now construct the first comparision function (sketched in Figure 3.2) that will be
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used in the proof of Theorem 3.1. In what follows universal constants are constants that
depend only on n and h0.

Lemma 3.2. There exist universal constants l̄ > 1 and 0 < c̄ ≤ 1
2 so that, if l ≥ l̄, we can

find Tl ∈ [c̄l, l2 ] and a non-decreasing function

gl ∈ C0(−∞, Tl) ∩ C1,1(−∞, 0) ∩ C2((−c̄l, Tl) \ {0})

which is constant in an interval I containing (−∞,− l
2 ], with g′l > 0 outside I, satisfies

gl(0) = 0, gl(Tl) = 1, and if we define

Ψy,l(x) := gl(|x− y| − l), (3.1)

then Ψy,l is a strict supersolution of 1.5 in the viscosity sense in BTl+l(y) \ ∂Bl(y).

Namely, gl is constructed as follows. There exist constants 0 < c̄1 < C̄1, C̄2 so that, if
we define

sl := e−c̄1l,

hl(s) :=

{
h0(s)− h0(sl − 1)− C̄2

l ((1 + s)2 − s2
l ) if sl − 1 < s < 0

h0(s) + h0(1− sl) + C̄2
l ((1− s)2 + sl(1− s)) if 0 ≤ s < 1,

Hl(s) :=

ˆ s

0

1√
2hl(ξ)

dξ, for any s ∈ (−1, 1),

H0(s) :=

ˆ s

0

1√
2h0(ξ)

dξ, for any s ∈ (−1, 1),

then the following holds:

(i) hl(s) > 0 in sl − 1 < s < 1; in particular, Hl is well defined and strictly increasing
for sl − 1 < s < 1 and thus we may define gl(t) := H−1

l (t) for t ∈ (sl − 1, 1);

(ii) gl(t) is defined to be constantly equal to sl − 1 for t ≤ Hl(sl − 1);

(iii) the following estimates on Hl hold:

Hl(1) ≤ l

2
; (3.2)

Hl(sl − 1) ≥ − l
2

; (3.3)

H0(s) ≤ Hl(s)−
C̄1

l
log(1−|s|) ∀ |s| ≤ 1− e−c̄1l/2; (3.4)

Hl(1− e−c̄1l/2) ≥ c̄l; (3.5)

Hl(e
−c̄1l/2 − 1) ≤ −c̄l. (3.6)

Proof. We will focus first on proving (3.2), (3.3), (3.4) and the viscosity supersolution
property of Ψy,l.

The proof will consider separately the cases sl − 1 < s < 0 and 0 ≤ s < 1. Let us first
consider the case sl − 1 < s < 0. From condition (1.11),

hl(s) ≥ h0(θ∗ − 1)/2 (3.7)
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if θ∗ − 1 ≤ s < 0, provided l is suitably large. Also, in light of Lemma B.2, we get

h0(s)− h0(sl − 1) ≥ c((1 + s)2 − s2
l ), (3.8)

for sl − 1 < s < θ∗ − 1, therefore

const(h0(s)− h0(sl − 1)) ≤ hl(s), (3.9)

for sl − 1 < s < θ∗− 1, provided l is sufficiently large. Now, from the inequality (3.7) and
from the conditions on the potential (1.11), we conclude that hl(s) > 0 in sl − 1 < s < 0.
This shows that Hl is well defined and strictly increasing in this case. Also, from the
definition of Hl and from (3.7), (3.8) and (3.9), we obtain

−Hl(sl − 1) = const

ˆ 0

sl−1

1√
hl(ξ)

dξ

= const
(ˆ 0

θ∗−1

1√
hl(ξ)

dξ +

ˆ θ∗−1

sl−1

1√
hl(ξ)

dξ
)

≤ const
(

1 +

ˆ θ∗−1

sl−1

1√
hl(ξ)

dξ
)

≤ const
(

1 +

ˆ θ∗−1

sl−1

1√
(1 + ξ)2 − s2

l

dξ
)

≤ const
(

1 +

ˆ 0

sl−1

1√
(1 + ξ)2 − s2

l

dξ
)
,

hence, from Lemma B.3, we get

Hl(sl − 1) ≥ − l
2
,

provided c̄1 is suitably small. This proves estimate (3.3).
We now show that Ψy,l is a viscosity supersolution of (1.5) when |x−y| < l (i.e., when

s = gl(t) < 0; here and in what follows, we often use the notation t = |x − y| − l and
s = gl(t) = Ψy,l(x)).

Of course, if |x − y| < l
2 , then Ψy,l(x) = sl − 1 by (3.3) and the definition of gl.

Therefore, by Lemma B.7,

∆Ψy,l(x) ≤ 0 < h′0(sl − 1) = h′0(Ψy,l(x)), (3.10)

showing that the viscosity supersolution property of Ψy,l holds in {Ψy,l = sl − 1}, and, in
particular, if |x− y| < l

2 . Hence, we can now concentrate on the case l
2 ≤ |x− y| < l. In

view of Lemma B.6,
g′l(t) =

√
2hl(g(t)), g′′l (t) = h′l(gl(t)).

Thus, by Lemma B.4, we have

∆Ψy,l(x) = g′′(t) + g′(t)
n− 1

|x− y|

≤ h′l(gl(t)) +K(n− 1)
√
hl(g(t))

1

|x− y|

≤ h′l(gl(t)) +
2K(n− 1)

√
hl(g(t))

l
, (3.11)
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for |x− y| ≥ l
2 , provided K is suitably large.

Hence, by definition of hl, we get (using again the notation s = gl(t))

hl(s) ≤ h0(s)− h0(sl − 1) ≤ h0(s)

and

h′l(s) = h′0(s)− 2C̄2

l
(1 + s)

in sl − 1 < s < 0, hence

∆Ψy,l(x) < h′0(s)− 2C̄2

l
(1 + s) +

2K(n− 1)

l

√
h0(s), (3.12)

for sl − 1 < s < 0. By condition (1.8), we get, for C̄2 suitably large,

2C̄2

l
(1 + s) ≥ 2K(n− 1)

l

√
h0(s) (3.13)

and therefore

∆Ψy,l(x) < h′0(Ψy,l(x)) (3.14)

for sl − 1 < gl(t) and |x− y| ≥ l
2 .

Estimates (3.10) and (3.14) show that Ψy,l is a strict viscosity supersolution of (1.5)
at any point x so that |x− y| < l. This proves that Ψy,l is a strict supersolution of (1.5)
in sl − 1 < s < 0.

Let us now prove (3.4) for e−c̄1l/2 − 1 ≤ s ≤ 0. Observe that by definition of hl,
recalling condition (1.8),

h0(s)− hl(s) ≤ h0(sl − 1) +
C̄2

l
((1 + s)2 − s2

l ) ≤ Cs2
l +

C̄2

l
((1 + s)2 − s2

l )

≤ 2C̄2

l
(1 + s)2, (3.15)

provided l is sufficiently large. Furthermore, from (3.7), (3.8) and (3.9), it follows that

hl(s) ≥ const(1 + s)2, (3.16)

if e−c̄1l/2 − 1 ≤ s ≤ 0 and l is large enough. Also, using Lemma B.1 we obtain

H0(s)−Hl(s) = const

ˆ 0

s

1√
hl(ξ)

− 1√
h0(ξ)

dξ

= const

ˆ 0

s

√
h0(ξ)−

√
hl(ξ)√

h0(ξ)hl(ξ)
dξ

≤ const

ˆ 0

s

h0(ξ)− hl(ξ)(√
h0(ξ) +

√
hl(ξ)

)√
h0(ξ)hl(ξ)

dξ

≤ const

ˆ 0

s

h0(ξ)− hl(ξ)
h0(ξ)

√
hl(ξ)

dξ.

Consequently, from condition (1.8) and from the inequalities (3.15) and (3.16), we obtain

H0(s)−Hl(s) ≤
const

l

ˆ 0

s

dξ

1 + ξ
≤ −const

l
log(1 + s)
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thus proving (3.4) for e−c̄1l/2 − 1 ≤ s ≤ 0. This completes the proof in the case sl − 1 <
s < 0.

Let us now consider the case 0 ≤ s < 1. In this case, hl > 0 by definition, thus Hl is
well defined and strictly increasing in [0, 1). Setting t = |x−y|− l and s = gl(t) = Ψy,l(x),
we notice that s ≥ 0 corresponds to |x− y| ≥ l, therefore, arguing as in (3.11), we have,

∆Ψy,l(x) ≤ h′l(gl(t)) +
K(n− 1)

√
hl(g(t))

l
(3.17)

if |x− y| ≥ l, provided K is large enough. Since, by definition of hl and (1.8),

hl(s) ≤ const(h0(s) + h0(1− sl))

for C̄2 large enough, it follows that

∆Ψy,l(x) < h′0(s)− C̄2

l
(2(1− s) + sl) +

K(n− 1)

l

√
(h0(s) + h0(1− sl))

≤ h′0(s);

if C̄2 is suitably large, where, in the last estimate, (1.8) has been used once more to-
gether with the simplest inequality

√
a+ b ≤

√
a +
√
b. Thus Ψy,l(x) is a strict viscosity

supersolution of (1.5) for |x− y| > l, provided Ψy,l(x) is well defined.

We now need to prove (3.4) in the case 0 ≤ s ≤ 1 − e−c̄1l/2. To this end, first notice
that, if 0 ≤ s ≤ 1− e−c̄1l/2, we have 1− s ≥ √sl and therefore

s2
l ≤ sl(1− s)2 ≤ 1

l
(1− s)2, (3.18)

if l is large enough. The definition of hl, (1.8) and (3.18) imply that

hl(s)− h0(s) ≤ const
(
s2
l +

(1− s)2

l

)
≤ const

l
(1− s)2, (3.19)

for 0 ≤ s ≤ 1− e−c̄1l/2. On the other hand, the definition of hl and (1.8) lead to

hl(s) ≥ h0(s) + h0(1− sl) ≥ const(1− s)2, (3.20)

for 0 ≤ s ≤ 1− e−c̄1l/2. Also we have that

H0(s)−Hl(s) = const

ˆ s

0

1√
h0(ξ)

− 1√
hl(ξ)

dξ

= const

ˆ s

0

√
hl(ξ)−

√
h0(ξ)√

h0(ξ)hl(ξ)
dξ

≤ const

ˆ s

0

hl(ξ)− h0(ξ)(√
h0(ξ) +

√
hl(ξ)

)√
h0(ξ)hl(ξ)

dξ

≤ const

ˆ s

0

hl(ξ)− h0(ξ)

h0(ξ)
√
hl(ξ)

dξ. (3.21)

Then, from estimates (3.18), (3.19), (3.21), condition (1.8) and Lemma B.1, we obtain

H0(s)−Hl(s) ≤
const

l

ˆ s

0

dξ

1− ξ
= −const

l
log(1− s)
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if 0 ≤ s ≤ 1− e−c̄1l/2. This proves (3.4) in the case 0 ≤ s < 1− e−c̄1l/2.
Let us now prove (3.2). Using the definition of Hl, hl and (1.8), we get

Hl(1) ≤ const

ˆ 1

0

dξ√
h0(ξ) + h0(1− sl)

≤ const

ˆ 1

0

dξ√
(1− ξ)2 + s2

l

≤ const

ˆ 1

0

dξ

1− ξ + sl
≤ const log

( 1

sl

)
.

This proves (3.2) provided c̄1 is chosen to be suitably small.
In particular estimate (3.3) says that, by construction, gl is constant in (−∞,− l

2 ].
Also, estimates (3.4) and (1.8) imply that

Hl(1− e−c̄1l/2) ≥ const

ˆ 1−e−c̄1l/2

0

dξ

1− ξ
− const = const · l − 1 ≥ c̄l,

provided l is large enough and c̄ is small enough, and, analogously,

Hl(e
−c̄1l/2 − 1) ≤ −c̄l,

proving (3.5) and (3.6). These estimates also imply that gl is strictly increasing al least
in (−c̄l, c̄l).

Also, if Tl := Hl(1), by (3.2) and (3.5), we have that Tl ∈ [c̄l, l/2]. We finally notice
that the extension in (ii) is C1,1, since by Lemma B.6, if t = Hl(sl − 1),

g′l(t) =
√

2hl(gl(t)) =
√

2hl(sl − 1) = 0.

This ends the proof of Lemma 3.2

We now introduce the second comparision function. This function is an appropriate
modification of the comparision function in Lemma 3.2, in order to deal with distance
function:

Lemma 3.3. Let 0 < ε ≤ σ ≤ δ < 1, ξ ∈ Rn−1, and M ∈ Mat((n− 1)× (n− 1)). Let Γ
be the hypersurface defined as

Γ :=
{
xn =

ε

2
x′ ·Mx′ + σξ · x′

}
∩ {|x′| < σ

ε
}

and assume that
TrM ≥ δ, ||M || ≤ 2/δ, |ξ| ≤ 1/δ.

Define dΓ(x) to be the signed distance of x from Γ, with the assumption that dΓ is positive
above Γ.

Then there exist functions σ0 : (0,+∞) → (0, 1) and C0 : (0,+∞) → (0, 1) and a
number Tε,δ ∈ [0, C0(δ) log(1/ε)] such that if ε ≤ σ ≤ σ0(δ) we can find a function gΓ with
the following properties:

• gΓ ∈ C1,1(−∞, Tε,δ);

• gΓ is constant in (−∞,−C0(δ) log(1/ε)];

• gΓ(0) = 0 and gΓ(Tε,δ) = 1;

• gΓ is C2 with g′Γ non vanishing outside the set where it is constant;
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• gΓ(dΓ(x)) is a strict viscosity supersolution of (1.5) in its domain of definition (that
is, provided dΓ(x) < Tε,δ).

Namely, gΓ is constructed as follows. Let c1 > 0 be suitably small and let ρ ∈ C1(R)
be a non-decreasing function so that ρ(0) = 0, ρ(s) = −1 for s ≤ −1/2 and ρ(s) = 1 for
s ≥ 1/2. For any s ∈ (0, 1) we define

hΓ := max{0, h0(s) + c1δερ(s)}. (3.22)

Let sδ,ε be the point near −1 for which h0(sδ,ε) = c1δε. Define also

HΓ(s) :=

ˆ s

0

1√
2hΓ(ξ)

dξ.

Then:

(i) There exists a constant c# ∈ (0, 1) so that

c#
√
δε ≤ 1 + sδ,ε ≤

1

c#

√
δε (3.23)

(ii) for any sδ,ε < s ≤ 1,
hΓ(s) > 0; (3.24)

in particular, HΓ is well defined and strictly increasing in [sδ,ε, 1]. Thus we may
define gΓ(t) := H−1

Γ (t) for any t ∈ [HΓ(sδ,ε), HΓ(1)] and extend gΓ to be constantly
sδ,ε for t ≤ HΓ(sδ,ε). In particular, if gΓ > sδ,ε, then g′Γ(t) > 0.

Proof. First we observe that (3.23) follows from (1.8): indeed, if c and C are as in (1.8),
then (c1

C

)1/2
(
√
δε) ≤ 1 + sδ,ε ≤

(c1

c

)1/2
(
√
δε),

and we can choose c# = min
{(

c1
C

)1/2
,
(
c
c1

)1/2}
.

Without loss of generality we may assume sδ,ε < −1 + θ∗, in order to use (1.9). Note
that since by (1.9), h0 is increasing in [sδ,ε, θ

∗), we get h0(s) > c1δε in (sδ,ε, θ
∗). Moreover,

from (1.8), if c1 is small enough we may suppose h0(s) > c1δε for sδ,ε < s < 0. From the
above discussions, (3.24) follows.

Notice that the constant extension of gΓ is C1,1 since, by Lemma B.6, if t = HΓ(sδ,ε),

g′Γ(t) =
√

2hΓ(gΓ(t)) =
√

2hΓ(sδ,ε) = 0.

To estimate the domain in which gΓ is strictly increasing we have therefore to estimate
HΓ(sδ,ε) and HΓ(1). Using Lemma B.2, one obtains

hΓ(s) ≥ h0(s)− c1δε = h0(s)− h0(sδ,ε) ≥ const
√

(1 + s)2 − (1 + sδ,ε)2 (3.25)

for any s ∈ [sδ,ε,−1 + θ∗]. On the other hand, for any s ∈ [−1 + θ∗, 0], (1.11) implies that

hΓ(s) ≥ h0(−1 + θ∗)− c1δε ≥ h0(−1 + θ∗)/2. (3.26)

Therefore, using the definition of HΓ, (3.23), (3.25), (3.26) and Lemma B.3, we get

−HΓ(sδ,ε) =

ˆ 0

sδ,ε

1√
2hΓ(ξ)

dξ =

ˆ 0

−1+θ∗

1√
2hΓ(ξ)

dξ +

ˆ −1+θ∗

sδ,ε

1√
2hΓ(ξ)

dξ

≤ const
(

1 +

ˆ −1+θ∗

sδ,ε

dξ√
(1 + ξ)2 − (1 + sδ,ε)2

)
≤ C0(δ) log(

1

ε
),



30 Chapter 3. Mean Curvature Properties for Phase Transitions

or, equivalently,

HΓ(sδ,ε) ≥ −C0(δ) log
(1

ε

)
. (3.27)

This completes the desired estimate on HΓ(sδ,ε).

Let us now estimate HΓ(1): from the definition of hΓ and (1.8),

HΓ(1) =

ˆ 1

0

1√
2hΓ(ξ)

dξ ≤ const
(ˆ 1/2

0

dξ

1− ξ
+

ˆ 1

1/2

dξ√
c(1− ξ)2 + c1δε

)
≤ const

(ˆ 1/2

0

dξ

1− ξ
+

ˆ 1

1/2

dξ

1− ξ +
√
δε

)
≤ const(1− log(δε)) ≤ −C0(δ) log(ε),

or, equivalently,

HΓ(1) ≤ C0(δ) log
(1

ε

)
. (3.28)

The claims on the domain of gΓ are consequences of (3.27) and (3.28).

Now we deal with the proof of the viscosity supersolution property of gΓ. First of all
notice that in an appropriate coordinate system we have

D2dΓ = diag
( −k1

1− dΓk1
, ...,

−kn−1

1− dΓkn−1
, 0
)
∈ Mat(n× n),

where the ki, with i = 1, ..., n − 1, are the principal curvatures of Γ at the point where
the distance is realized (see [31] for further details). We also define P as the paraboloid
describing Γ, i.e.,

P (x′) :=
ε

2
x′ ·Mx′ + σξ · x′.

Notice that, by hypothesis on M and ξ, |∇P | ≤ 1; thus, by the mean curvature equation
(see, for instance, equation (14.103) of [31]), it follows that

n−1∑
i=1

ki =
n−1∑
i=1

∂i

( ∂iP√
1 + |∇P |2

)
=

∆P√
1 + |∇P |2

− (D2P∇P ) · ∇P
(1 + |∇P |2)3/2

≥ 1

2
∆P − const|∇P |2||D2P ||.

Consequently, if x is so that |dΓ| ≤ C0(δ) log(1
ε ), since, by hypothesis on the paraboloid

P , we have that |ki| ≤ C1(δ)ε, we obtain

∆dΓ = Tr(D2dΓ) =

n−1∑
i=1

−ki
1− dΓki

= −
n−1∑
i=1

ki −
n−1∑
i=1

dΓk
2
i

1− dΓki

≤ −
n−1∑
i=1

ki + 2(C1(δ)ε)2 log(
1

ε
)

≤ −1

2
∆P + const|∇P |2||D2P ||+ C1(δ)ε3/2

≤ −εδ
2

+ C2(δ)(εσ2 + ε3/2) ≤ −εδ
2

+ C3(δ)εσ1/2, (3.29)

all these estimates are true for ε small enough.



3.3. Sliding techniques 31

Therefore, if dΓ(x) ∈ (HΓ(sδ,ε), HΓ(1)) (and thus, by (3.27) and (3.27), |dΓ(x)| ≤
C0(δ) log(1/ε) and g′Γ(dΓ(x)) > 0), by Lemma B.5 we have

∆(gΓ(t)) = g′′Γ(t) + g′Γ(t)∆dΓ(t)

≤ g′′Γ(t)− ε

2
(δ − C4(δ)σ1/2)g′Γ(t), (3.30)

where we are using the notation t = dΓ(x). Taking into account Lemma B.6, by (3.30) we
get

∆gΓ(t) ≤ h′Γ(s)− ε

2
(δ − C4(δ)σ1/2)

√
2hΓ(s),

where we are using the notation s = gΓ(dΓ(x)).
Now we choose σ0(δ) small such that δ − C4(δ)σ1/2 ≥ δ/2 for σ ≤ σ0(δ). Thus, if

|dΓ(x)| ≤ C0(δ) log(1/ε) (and so s = gΓ(dΓ(x)) > sδ,ε), we have (recall also (3.24)) that

∆gΓ(t) ≤ h′Γ(s)− constδε
√
hΓ(s)

≤ h′0(s) + c1δερ
′(s)− constδε

√
h0(s) + c1δερ(s). (3.31)

We now claim that

c1ρ
′(s)− const

√
h0(s) + c1δερ(s) < 0 (3.32)

for any s ∈ (sδ,ε, 1), provided c1 is small enough. Indeed, if s ≤ −1/2 or s ≥ 1/2, then
ρ′(s) = 0 and therefore the left hand side of (3.32) is under control. On the other hand,
if s ∈ (−1/2, 1/2), then setting c∗ := infs∈[−1/2,1/2] h0(s) (which is strictly positive by
condition (1.8)), we bound the left hand side of (3.32) by

c1||ρ′||∞ − const
√
c∗,

which is negative for c1 small enough. This proves (3.32).
Therefore, by (3.31) and (3.32), if dΓ(x) ∈ (HΓ(sδ,ε), HΓ(1)), we get

∆gΓ(t) < h′0(gΓ(t)).

If else dΓ(x) ≤ HΓ(sδ,ε), we have

∆gΓ(t) = 0 < h′0(sδ,ε) = h′0(gΓ(t)),

thanks to Lemma B.7.

To sum up we have introduced in Lemma 3.2 and Lemma 3.3 two different families of
strict viscosity supersolution of (1.5) and we have investigated in details their geometric
properties. Now the goal is to use the geometric information that we have abuot these
functions in order to understand the geometry of the level sets of phase transitions.

In the next section we introduce the techniques that allow us to compare these barriers
functions to phase transitions.

3.3 Sliding techniques

We now develop some slide techniques that allow us to compare phase transitions with the
barriers functions introduced in the previous section. The results below are quite general,
indeed the theorems are valid for weak Sobolev solutions of (1.5) and not only for local
minimizers of the Ginzburg-Landau functional.
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Lemma 3.4. Let u be a weak Sobolev subsolution of (1.5) in some domain Ω. Then u
and Ψy,l cannot coincide in any open domain.

Proof. To simplify the notation, we set Ψ := Ψy,l, B := BTl+l(y) and B′ := Bl(y). Let
τ(l) ∈ [l/2, (1− c̄)l] be so that Ψ is flat in B′′ := Bτ(l)(y). Then B′′ ⊂ B′ ⊂ B, the domain
of definition of Ψ is B and Ψ is C2 outside ∂B′ ∪ ∂B′′. Suppose by contradiction that
u = Ψ in some ball B ⊆ B. Possibly taking a smaller ball, we may assume that

B ⊂ (Ω ∩B) \ (∂B′ ∪ ∂B′′).

Hence u = Ψ is C2 in B; therefore, for any non-negative smooth function ϕ supported in
B we have that ˆ

Ω
h0(Ψ)ϕ > −

ˆ
Ω
∇Ψ · ∇ϕ = −

ˆ
Ω
∇u · ∇ϕ ≥

ˆ
Ω
h0(u)ϕ

=

ˆ
Ω
h0(Ψ)ϕ,

which is a contradiction.

Lemma 3.5. Fix y ∈ Rn and let l > 0 be suitably large. Let u be a weak Sobolev subsolution
of (1.5) in some domain Ω. Suppose that u ∈ C1(Ω) and that |u| ≤ 1. Suppose that
Ψy,l touches u from above at x∗, i.e., Ψy,l ≥ u in their common domain of definition
Ω ∩ BTl+l(y), and Ψy,l(x∗) = u(x∗), with x∗ in the closure of Ω ∩ BTl+l(y). Then either
x∗ ∈ ∂Ω or Ψy,l(x∗) = u(x∗) = 0.

Proof. To simplify the notation, we set Ψ := Ψy,l, B := BTl+l(y) and B′ := Bl(y). Assume
that

x∗ 6∈ ∂Ω. (3.33)

We will show that then Ψ(x∗) = 0. First we prove that

x∗ 6∈ ∂B. (3.34)

Indeed, suppose the contrary. Let us consider the radial direction

w :=
x∗ − y
|x∗ − y|

.

Then, by the construction in Lemma 3.2, Ψ(x∗) = 1 and ∇Ψ(x∗) · w > 0. On the other
hand, u ≤ 1 and, since u(x∗) = Ψ(x∗) = 1, we have ∇u(x∗) = 0. Let û := u − Ψ. From
the above discussion, û ≤ 0 in B ∩ Ω and û(x∗) = 0, therefore

∇û(x∗) · w ≥ 0.

But then
0 ≤ ∇(u−Ψ)(x∗) · w = −∇Ψ(x∗) · w < 0,

which is a contradiction. This proves (3.34).
Due to (3.33) and (3.34), x∗ is in the interior of Ω ∩B. Also, by Lemma 3.4, u and Ψ

cannot agree in any open domain. Then from this fact and Corollary A.3, x∗ may only lie
on ∂B′ where Ψ = 0 and it fails to be a supersolution.

We have proved two results that allow us to investigate the contact points between
u subsolution of (1.5) and the barriers Ψy,l. Now we introduce results which allow us to
bound subsolutions of (1.5) by the barriers Ψy,l.
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Proposition 3.6. Let u be a weak Sobolev subsolution of (1.5) in some domain Ω. Suppose
that u ∈ C1(Ω) and that |u| ≤ 1. Let y ∈ Rn and l > 0 be such that

Bl+Tl(y) ⊂ {x ∈ Ω : u(x) ≤ −1 + θ∗}. (3.35)

Then u(x) ≤ Ψy,l(x) for any x ∈ Bl+Tl(y), provided l is sufficiently large.

Proof. We use the notation Ψ := Ψy,l. Notice that Ψ is defined on Bl+Tl(y) and that, if
x ∈ Bl+Tl(y) \Bl(y), then

Ψ(x) ≥ 0 > −1 + θ∗ ≥ u(x).

Therefore, by (3.35), if the claim of Proposition 3.6 were false, there would be an open set
U such that

U ⊂ Bl(y) ⊂ Ω ∩ {u < −1 + θ∗}, (3.36)

and so that Ψ < u in U, and Ψ = u on ∂U.

Consequently, there exists k > 0 so that v := u − k ≤ Ψ in U, v < Ψ in ∂U and
v(x∗) = Ψ(x∗) for some x∗ ∈ U. Note also that

v(x∗) = Ψ(x∗) ∈ (−1, 0), (3.37)

since x∗ ∈ U ⊂ Bl(y), and therefore

x∗ ∈ B := U ∩ {|v| < 1}. (3.38)

Since h′0 is increasing in Bl+Tl(y) (thanks to (3.35) and the assumptions on the potential),

∆v = ∆u ≥ h′0(u) = h′0(u+ k) ≥ h′0(v), (3.39)

weakly in B.

Consequently, from Lemma 3.5 we deduce that either x∗ ∈ ∂B or v(x∗) = 0. The
first assertion would contradict (3.38) and the second contradict (3.37). This provides the
contradiction which proves the desired result.

Proposition 3.6 can be easily sharpened, giving a strict inequality, in the following way:

Corollary 3.7. Let u be a weak Sobolev subsolution of (1.5) in some domain Ω. Suppose
that u ∈ C1(Ω) and that |u| ≤ 1. Let y ∈ Rn and l > 0 be such that

Bl+Tl(y) ⊂ {x ∈ Ω : u(x) ≤ −1 + θ∗}. (3.40)

Then u(x) < Ψy,l(x) for any x ∈ Bl+Tl(y), provided l is sufficiently large.

Proof. By Proposition 3.6, we know that u ≤ Ψy,l. If there exists x∗ for which the equality
holds, then (3.40) and Lemma (3.5) would imply that u(x∗) = Ψy,l(x∗) = 0, which is a
contradiction to (3.40).

A result analogous to Lemma 3.5 holds for the barrier gΓ(dΓ) constructed in Lemma
3.3. We state the result and we sketch the proof, a more detailed proof can be found in
[50].

Lemma 3.8. Let u be a weak Sobolev subsolution of (1.5) in some domain Ω. Suppose
that u ∈ C1(Ω) and that |u| ≤ 1. Suppose that gΓ(dΓ) touches u from above at x∗. Then
x∗ ∈ ∂Ω
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Sketch of the proof. First notice that u and gΓ(dΓ) cannot be identically equal in any
open set: this can be proved by an easy modification of the argument in Lemma 3.4. By
Corollary A.3, we infer that interior contact points may only lie in the region where gΓ(dΓ)
is flat, but this is not possible, see for instance [50]. Thus, x∗ cannot be an interior point.
This proves that either x∗ ∈ ∂Ω or lies in the boundary of the domain of gΓ(dΓ). We now
show that the latter possibility cannot hold. Indeed, on the boundary of the domain of
gΓ(dΓ) we have gΓ(dΓ) = 1. On the other hand, if x∗ lies on that boundary, but in the
interior of Ω, then

u ≤ 1 = u(x∗) = gΓ(dΓ(x∗))

would give ∇u(x∗) = 0. Let now e be any direction pointing from x∗ outside the domain
of gΓ(dΓ) and let û := u− gΓ(dΓ). Then from the hypothesis that gΓ(dΓ) touches u from
above at x∗ we have that ∂eû(x∗) ≥ 0 for any outher derivative. If e is taken to be outer
normal, however, then

∂e(gΓ ◦ dΓ)(x∗) = g′Γ(dΓ(x∗))∂edΓ(x∗) = g′Γ(dΓ(x∗)) > 0.

Collecting the above estimates, we have

0 > −∂e(gΓ ◦ dΓ)(x∗) = ∂eû(x∗)− ∂eu(x∗) = ∂eû(x∗) ≥ 0,

and this contra,diction shows that the contact point may only lie on ∂Ω.

The assumptions on subsolution u in Lemma 3.5, Lemma 3.8, Proposition 3.6 and
Corollary 3.7 are, in particular, fulfilled in the case where u is a weak Sobolev solution of
(1.5) satisfying |u| ≤ 1. Indeed the C1-regularity is given by the results in [21].

3.4 Proof of Theorem 3.1

In this section we prove the main result of this chapter. In order to prove this result we
use the barriers introduced in Section 3.2 and we slide these barriers according to the
results achieved in Section 3.3 and we finally obtain estimates on the trace of the touching
paraboloid.

Namely we will see that Theorem 3.1 is a direct consequence of the following theorem.

Theorem 3.9. Let l, θ, δ > 0 and M1 ∈ Mat((n−1)×(n−1)). Let u be a local minimizer of
the Ginzburg-Landau funcional (1.6) in [−l, l]n. Assume that |u| ≤ 1 in [−l, l]n, u(0) = 0
and u(x) < 0 for any x = (x′, xn) ∈ [−l, l]n such that

xn <
θ

2l2
x′ ·M1x

′ +
θ

l
ξ · x′.

Then there exist a universal constant δ0 > 0 and a function σ : (0, 1)→ (0, 1) so that, if

δ ∈ (0, δ0), δ ≤ θ, θ/l ∈ (0, σ(δ)], ||M1|| ≤ 1/δ, |ξ| ≤ 1/δ,

then TrM1 ≤ δ.

Proof. We remark that, by our assumptions, l ≥ δ/σ(δ) and we will assume l to be a large
quantity. Let gl and Ψy,l be the functions defined in Lemma 3.2. We recall that Tl ∈ [c̄l, l2 ]
and it increases if l increases, so we choose c1 > 0 (independent of l) be such that

Tl/4 ≥ c1l. (3.41)
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Define also

Γ1 :=
{

(x′, xn) ∈ [−l, l]n : xn =
θ

2l2
x′ ·M1x

′ +
θ

l
ξ · x′

}
.

Let us make some elementary observations on the above paraboloid. First of all, by
construction, u is negative below Γ1 in [−l, l]n. Now we introduce a constant c2 > 0 that
we will specify later in the proof, by assumption (if σ(δ)l/δ is small enough),

Γ1 ⊆ {|xn| ≤ const θ/δ} ⊆ {|xn| ≤ const σ(δ)l/δ} ⊆ {|xn| ≤ c2l/8}. (3.42)

Therefore,

xn − c2
l

8
≤ dΓ1(x) ≤ xn + c2

l

8
, (3.43)

for any x ∈ [−l, l]n.
Given X ∈ Γ1 let νX be the normal direction to Γ1 at X pointing downwards and we

define a constant α > 0 such that

α+
c2

8
= c1. (3.44)

Let also

C := {|x′| ≤ l

4
} × {xn ∈ [− l

2
, αl]}.

We claim that

C ⊆
⋃
X∈Γ1

B(c1+ 1
4

)l(X +
( l

4

)
νX). (3.45)

To prove this, take any ξ ∈ C and let X = X(ξ) ∈ Γ1 the point that realizes the distance
dΓ1(ξ). By (3.43) we have

dΓ1 ∈
[
− l

2
− c2

l

8
, αl + c2

l

8

]
. (3.46)

This says, in particular, that |dΓ1 | < 3l/4. Then the definition of C implies that X lies in
the interior of [−l, l]n and therefore ξ −X is orthogonal to Γ1 at X, that is,

ξ = X + τ lνX ,

for a suitable τ ∈ R. Hence,

dΓ1(ξ) = −τ l (3.47)

and ∣∣∣ξ − (X +
( l

4

)
νX

)∣∣∣ =
∣∣∣τ − 1

4

∣∣∣l. (3.48)

Then by (3.47) and (3.46), we have

τ ∈
[
−α− c2

1

8
,
1

2
+ c2

1

8

]
,

and so, recalling (3.43), we obtain

τ − 1

4
∈
[
−
(
α+

c2

8

)
− 1

4
,
1

4
+
(
α+

c2

8

)]
=
[
−c1 −

1

4
,
1

4
+ c1

]
.

This and (3.48) imply that ξ ∈ B(c1+1/4)l(X + (l/4)νX). This proves the claim (3.45).
We now observe that

θ||M1||
l2

≤ θ

l2δ
≤ σ(δ)

lδ
. (3.49)
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The bound on the curvature of Γ1 given in (3.49) implies that, if σ(δ)/δ is sufficiently
small, then, given X ∈ Γ1, there exists a ball of radius l/4 which touches Γ1 from below
at X.

The following is the decisive step towards the proof of the desired result. We claim
that

u(x) ≤ g l
4
(dΓ1(x)), ∀ x ∈ C. (3.50)

To prove (3.50), first notice that, from Lemma B.9 and Corollary 3.7, we infer that

u(x) < Ψ(0,...,0,−l/2),l/4(x), ∀ x ∈ Bl/4+Tl/4(0, ..., 0,−l/2).

Then, for a given X ∈ Γ1 we define

X ′ = X ′(X) := X +
l

4
νX ,

where, as above, we denote by νX the normal direction to Γ1 at X pointing downwards.
In particular, from the above observation, Bl/4(X ′) touches Γ1 from below at X. We now

slide the surface Ψ(0,...,0,−l/2),l/4 in the direction of the vector

v = v(X) = X ′ − (0, ..., 0,−l/2),

i.e., we consider the surface

Ψt := Ψ(0,...,0,−l/2)+tv,l/4, for t > 0.

We will show that

Ψt(ξ) > u(ξ) ∀ t ∈ [0, 1), ∀ξ ∈ Bl/4+Tl/4((0, ..., 0,−l/2) + tv). (3.51)

Indeed, let t ∈ [0, 1) be the first time at which Ψt touches u. First of all, note that, since
t < 1, we have u < 0 on ∂Bl/4((0, ..., 0,−l/2) + tv), while Ψt = 0 there. Therefore, u
cannot be equal to Ψt, and no touching points occur on ∂Bl/4((0, ..., 0,−l/2) + tv). On
the other hand, Lemma 3.5 says that touching points cannot occur anywhere else. This
proves (3.51).

We now prove (3.50). We deduce from (3.51) that Ψ1(ξ) ≥ u(ξ) for any ξ ∈ Bl/4+Tl/4(X ′)

and, thanks to (3.41), ξ ∈ B(1/4+c1)l(X
′). Therefore, taking now any ξ ∈ C and letting X ′

be so that x ∈ B(1/4+c1)l(X
′) (recall (3.45)), we have

g l
4
(dΓ1(x)) = g l

4
(|x−X ′| − l/4) = ΨX′,l/4(x) = Ψ1(x) ≥ u(x).

This proves (3.50).

We now complete the proof by supposing that TrM1 > δ; under this assumption, by
Lemma 3.5, gΓ2(dΓ2) is a strict supersolution of (1.5), where

Γ2 :=
{

(x′, xn) ∈ [−l, l]n : xn = εx′ ·M1x
′ +

θ

l
ξ · x′ − εδ

2(n− 1)
|x′|
}
,

ε :=
θ

2l2
.

Note that

Γ2 ⊆ {|xn| ≤ σ(δ)(δ + 1/δ)l} ⊆ {|xn| ≤ c2l/8}. (3.52)
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Now we claim that, if θ/l and δ are small enough, then the following estimates hold

hΓ2(s) ≤ hl/4(s) if sδ,ε ≤ s ≤ −1 +
√
δθl−2, (3.53)

hΓ2(s) ≥ hl/4(s) if 1−
√
δθl−2 ≤ s ≤ 1. (3.54)

If hΓ2 = 0, then (3.53) follows from (i) in Lemma 3.2. If, on the contrary, hΓ2 > 0 and
s ∈ [sδ,ε,−1 +

√
δε], then, by definitions of hΓ2 and hl/4, by conditions (1.8) and (3.23),

hΓ2(s)− hl/4(s) ≤ const
(
−δε+

(1 + s)2

l
−
s2
l/4

l
+ h0(−1 + sl/4)

)
≤ const

(
−δθ
l2

+
(1 + s)2

l
+ s2

l/4

)
≤ const

(
−δθ
l2

+
δε

l
+ s2

l/4

)
= const

(
−δθ
l2

+
δε

l
+ e−constl

)
,

which is negative for sufficiently large l, completing the proof of (3.53). To prove (3.54), we
use condition (1.8), (3.23) and the definitions of hΓ2 and hl/4 to deduce that, if 1−

√
δθl−2 ≤

s ≤ 1, we have

hΓ2(s)− hl/4(s) ≥ h0(s) + const δε− hl/4(s)

≥ const δε− h0(1− sl/4)− const
(1− s)2 + s2

l/4

l

≥ const
(
δε− s2

l/4 −
(1− s)2 + s2

l/4

l

)
≥ const

(
δε− δθ

l3
− e−constl

)
= const

(δθ
l2
− δθ

l3
− e−constl

)
,

which is positive if l is large enough, completing the proof of (3.54).
According to (3.53) and (3.54), the function s → HΓ2(s) − Hl/4(s) is increasing for

s ≤ −1 +
√
δθl−2 and decreasing for s ≥ 1 −

√
δθl−2, therefore its maximum occurs in

[−1 +
√
δθl−2, 1−

√
δθl−2], i. e.,

max
s∈[sδ,ε,1]

(HΓ2(s)−Hl/4(s)) = max
s∈[−1+

√
δθl−2,1−

√
δθl−2]

(HΓ2(s)−Hl/4(s)). (3.55)

Also, recalling the definition of H0 in Lemma 3.2, if s ∈ [0, 1−
√
δθl−2],

HΓ2(s) =

ˆ s

0

1√
2hΓ2(ξ)

dξ ≤
ˆ s

0

1√
2h0(ξ)

dξ = H0(s), (3.56)

and analogously, if s ∈ [−1 +
√
δθl−2, 0],

−HΓ2(s) =

ˆ 0

s

1√
2hΓ2(ξ)

dξ ≥
ˆ 0

s

1√
2h0(ξ)

dξ = −H0(s). (3.57)

Hence from (3.56) and (3.57),

HΓ2 ≤ H0(s), ∀ s ∈ [−1 +
√
δθl−2, 1−

√
δθl−2].
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Consequently, from (3.4), if s ∈ [−1 +
√
δθl−2, 1−

√
δθl−2], then

HΓ2(s) ≤ Hl/4(s) +
const

l
log

l2

δθ
.

Therefore, by (3.57),

HΓ2(s) ≤ Hl/4(s) +
const

l
log

l2

δθ
, ∀ s ∈ [sδ,ε, 1]. (3.58)

Furthermore, by definitions of Γ1 and Γ2, if |x′| = l/4, then

dΓ2(x) ≥ dΓ1(x) + c(δ),

for a suitable c(δ) ∈ (0, 1). Hence, using (3.58) and taking l appropriately large, with
s = gl/4(dΓ1(x)),

HΓ2(gl/4(dΓ1(x))) < Hl/4(gl/4(dΓ1(x))) +
const

l
log

l2

δθ

= dΓ1(x) +
const

l
log

l2

δθ
≤ dΓ2(x),

provided gl/4(dΓ1(x)) ≥ sδ,ε and |x′| = l/4. We apply H−1
Γ2

at the inequality above and,
since HΓ2 is incresing in [sδ,ε, 1],

gl/4(dΓ1(x)) < gΓ2(dΓ2(x)), (3.59)

for any x so that gl/4(dΓ1(x)) ≥ sδ,ε and |x′| = l/4. Of course, if gl/4(dΓ1(x)) < sδ,ε then
(3.59) hold since gΓ2(dΓ2(x)) ≥ sδ,ε by construction (recall (i) of Lemma 3.3). Thus,

gl/4(dΓ1(x)) < gΓ2(dΓ2(x)), ∀ x such that |x′| = l/4, (3.60)

provided that dΓ1(x) is in the domain of gl/4 and dΓ2(x) is in the domain of gΓ2 . Notice
that the first of these conditions is implied by the second:

if dΓ2(x) is in the domain of gΓ2 , then dΓ1(x) is in the domain of gl/4 . (3.61)

To prove this, take x so that dΓ2(x) is in the domain of gΓ2 . Then, by Lemma (3.3) and
our choice of parameters,

dΓ2(x) ≤ C0(δ) log
l2

θ
,

and thus by (3.41), (3.44) and (3.52) we deduce that

dΓ1(x) ≤ dΓ2(x) +
c2l

4
≤ C0(δ) log

l2

θ
+
c2l

4
≤ c2l

2
≤ c1l ≤ Tl/4,

which says that dΓ1(x) is in the domain of gl/4.
Now (3.60), (3.50) and (3.61) imply that

u(x) < gΓ2(dΓ2(x)) (3.62)

for any x so that |x′| = l/4 and dΓ2(x) is in the domain of gΓ2 .
With these estimates we are now ready to deduce the contradiction that will finish the

proof. To this end, we slide gΓ2(dΓ2) in the en−direction till we touch u in C. Namely, we
consider, for t ∈ R,

gt(x) := gΓ2(dΓ2(x− ten)), (3.63)
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and, first of all, we want to show that there exists a time t ≤ 0 such that gt touches u
from above. If we denote D0 the domain of gΓ2(dΓ2), then Lemma 3.3 shows that D0 is
the subgraph of a paraboloid, namely

D0 = {dΓ2(x) ≤ Tε,δ} ⊆
{
xn ≤ C0(δ) log

l2

θ

}
. (3.64)

and also by construction if dΓ2(x) = Tε,δ then gΓ2(dΓ2(x)) = 1. Notice that, with this
notation, gt is defined in Dt := D0 + ten and gt = 1 on the top of Dt. Thus, if t << 0,
then gt > u in Dt ∩ C, since u < 0 below Γ1. On the other hand,

g0(0) = gΓ2(dΓ2(0)) = gΓ2(0) = 0 = u(0),

therefore, there is a time t ≤ 0 of first touch of gt and u in Dt ∩ C. Hence, in view of
Lemma 3.8, contact points may only happend either on the lateral side of the cylinder C
(i.e. |x′| = l/4) or in its two basis (i.e xn = −l/2 or xn = αl).

Now the touching points cannot occurs in xn = αl, because xn = αl is the upper face
of the cylinder C and t ≤ 0, hence, if l is large enough, Dt lies below xn = αl, due to
(3.64).

We exclude the possibility of touching at xn = −l/2. By applying (3.50), (3.43) and
the fact that gl/4 is constant in (−∞,−l/8], we deduce that, if xn = −l/2, then

u(x) ≤ gl/4(dΓ1(x)) ≤ gl/4
(
xn + c2

l

8

)
= gl/4

( l
2

+ c2
l

8

)
≤ gl/4

(
− l

8

)
= −1 + e−constl < sδ,ε ≤ gt(x),

which rules out the possibility of touching at xn = −l/2.
Therefore, a contact point x∗ ∈ Dt ∩ C between u and gt does occur when |x′| = l/4.

Notice now that, from Lemma B.8

dΓ2(x∗ − ten) ≥ dΓ2(x∗).

But then, since gΓ2 is non-decreasing, we deduce from (3.62) that

gΓ2(dΓ2(x∗ − ten)) = gt(x∗) = u(x∗) < gΓ2(dΓ2(x∗)) ≤ gΓ2(dΓ2(x∗ − ten)).

This contradiction concludes the proof.

Now, using Theorem 3.9, we can prove Theorem 3.1, that is the main result of this
chapter.

Proof of Theorem 3.1. We apply Theorem 3.9 with the following choice of parameters:

l :=
%√

εTrM
, δ := θ := %2, M1 :=

1

TrM
M, ξ := 0.

By contradiction, if the claim of Theorem 3.1 were false, by scaling back the phase tran-
sition uε and using the above parameters, we obtain that Γ1 touches from below the zero
level set of u inside [−l, l]n, where

Γ1 =
{

(x′, xn) ∈ Rn−1 × R :
θ

2l2
x′ ·M1x

′ +
θ

l
ξ · x′

}
.

By Theorem 3.9 we conclude that 1 > δ ≥ TrM1 = 1, which is the contradiction that
proves Theorem 3.1
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Chapter 4

Improvement of Flatness

4.1 Improvement of Flatness and Harnack Inequality

In this Section we study the Improvement of Flatness Theorem, that is the key result that
allow us to prove De Giorgi’s Conjecture for phase transitions.

We now recall the Improvement of Flatness Theorem:

Theorem 4.1. (Improvement of Flatness) Let u be a local minimizer of J in {|x′| <
l} × {|xn| < l}. Assume that u(0) = 0 and assume also that there exists θ ≤ l such that:

{u = 0} ⊂ {|x′| < l} × {|xn| < θ}.

Then there exist small constants 0 < η1 < η2 < 1 depending on n and h0 such that:
given θ0 > 0 there exists ε1(θ0) > 0 depending on n, h0 and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|πξx| < η2l} × {|x · ξ| < η2l}

is included in a flatter cylinder

{|πξx| < η2l} × {|x · ξ| < η1θ},

for some unit vector ξ, where πξx = x− (x · ξ)ξ.

This Theorem is a consequence of the Harnack inequality that is a weaker version of
the Improvement of Flatness Theorem:

Theorem 4.2. (Harnack Inequality) Let u be a local minimizer of J in {|x′| < l} ×
{|xn| < l}. Assume that u(0) = 0 and assume also that there exists θ ≤ l such that:

{u = 0} ⊂ {|x′| < l} × {|xn| < θ}.

Then there exists small constant η0 depending on n and h0 such that:
given θ0 > 0 there exists ε1(θ0) > 0 depending on n, h0 and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|πξx| < η0l} ⊂ {|x · ξ| < (1− η0)l}

for some unit vector ξ, where πξx = x− (x · ξ)ξ.

41
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We will not prove this result, a proof of this Theorem can be found in [49].

We now present the mean ideas of the proof of the Harnack inequality. First of all we in-
troduce suitable barriers functions constructed from the one dimensional phase transitions,
and we introduce slide techniques in order to compare this barriers with the minimizer u.
Then we need some very precise estimate on the measure of the contact points between the
minimizer u and the barriers. Very roughly, we can say that the final target of the proof
consists in deducing measure estimates in the above mentioned contact points, which, if
the statement of Theorem 4.2 where false, would contradict the minimality of u.

Before proving the Improvement of Flatness Theorem we highlights another analogy
between phase transitions and minimal surfaces. A result similar to the Improvement
of Flatness Theorem holds for minimal surfaces. Indeed we have the following Harnack
inequality for minimal surfaces:

Theorem 4.3. Assume E is a set with minimal perimeter in B1 and

∂E ∩B1 ⊂ {|xn| ≤ ε}.

Then there exist two constants ε1 and 0 < η < 1 such that if ε ≤ ε1 we have

∂E ∩B 1
2
⊂ {|xn| ≤ ε(1− η)}.

Now from this theorem we can prove the Improvement of Flatness Theorem for minimal
surfaces

Theorem 4.4. Assume E is a set with minimal perimeter in B1, 0 ∈ ∂E and

∂E ∩B1 ⊂ {|xn| ≤ ε}.

Then there exist two constants ε1 and r0 and a unit vector ν1 such that if ε ≤ ε1 we have

∂E ∩Br0 ⊂ {|x · ν1| ≤
ε

2
r0}.

We notice that the geometric interpretation of Theorem 4.4 is similar to the geometric
interpretation of Theorem 4.1. Indeed Theorem 4.4 says that if a minimal surface is
included in a cylinder then, in its interior, it is included in a flatter cylinder. Theorem 4.4
is deeply used in order to prove smoothness and analytic regularity of minimal surfaces
(see for insatnce [32])

4.2 Proof of the Improvement of Flatness

We assume by contradiction that Theorem 4.1 does not hold. This imply that, if we fix
θ0 > 0, there exist uk, θk and lk for which:

C1 uk is a local minimizer of the Ginzburg-Landau functional in {|x′| < lk}×{|xn| < lk}
with uk(0) = 0.

C2 {uk = 0} ⊆ {|x′| < lk} × {|xn| < θk}, with θk ≥ θ0 and θk
lk
→ 0 when k →∞,

but the thesis of Theorem 4.1 does not hold. Let us consider the following rescaling:

y′ =
x′

lk
, yn =

xn
θk
. (4.1)
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We define T (x′, xn) = (y′, yn). We also define

Ak := {(y′, yn) s.t. T−1(y′.yn) ∈ {uk = 0}} = T
(
{uk = 0}

)
.

STEP 1: There exists a Hölder continuous function w : Rn−1 → R such that if we
define

A∞ :=
{

(y′, w(y′)) , |y′| ≤ 1

2

}
then, for any ε > 0, Ak∩{|y′| ≤ 1

2} lies in a ε−neighborhood of A∞ for k sufficiently large.

Proof of Step 1. Let us suppose that

y0 = (y′0, y0n) ∈ Ak, with |y′0| ≤
1

2
.

Then uk(lky
′
0, θky0n) = 0, and so, by means of (C2), |θky0n| < θk;therefore, using again

(C2), we infer that
{uk = 0} ⊆ {|xn − θky0n| < 2θk}.

We can exploit Theorem 4.2 in the cylinder{
|x′ − lky′0| <

lk
2

}
× {|xn − θky0n| < 2θk} ⊆ (4.2)

⊆ {|x′| < lk} × {|xn| < lk}

and get that there exists a universal constant η0 > 0 such that

{uk = 0} ∩
{
|x′ − lky′0| < η0

lk
2

}
⊆ {|xn − θky0n| < 2(1− η0)θk},

provided
4θk
lk
≤ ε0(2θ0),

where ε0(·) is the one given by Theorem 4.2. Rescaling back, we get

Ak ∩
{
|y′ − y′0| <

η0

2

}
⊆ {|yn − y0n| < 2(1− η0)}.

By iterating, we get

Ak ∩
{
|y′ − y′0| <

ηm0
2

}
⊆ {|yn − y0n| < 2(1− η0)m}, (4.3)

provided
4θk
lk
≤ ηm−1

0 ε0(2(1− η0)m−1θ0). (4.4)

We now fix m0 ∈ N and consider m ≤ m0 (later on, during a limit procedure performed
later, we let m0 → ∞). Notice that in this setting, (4.3) (and therefore (4.4)) is fulfilled
for k suitably large, say k ≥ k∗(m0). We claim that Ak ∩ {|y′| ≤ 1/2} is above the graph
of

Ψy0,k(y
′) := y0n − 2(1− η0)m0 − α|y′ − y′0|β, (4.5)

where α and β depend only on η0.
In order to prove this, let (y′, yn) ∈ Ak ∩ {|y′| ≤ 1/2}. Since |y′0| ≤ 1/2 we have that

|y′ − y′0| ≤ 1. Now, we consider three different cases: the case |y′ − y′0| ≤
η
m0
0
2 , the case

η
m0
0
2 < |y′ − y′0| < 1

2 , and the case 1
2 ≤ |y

′ − y′0| ≤ 1.
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In case |y′ − y′0| ≤
η
m0
0
2 , (4.5) follows immediately from (4.3), with m = m0. If, on the

other hand,
η
m0
0
2 < |y′− y′0| < 1

2 , then we argue as follows. We first note that, in this case,
there exist m with 0 ≤ m ≤ m0 and p with 0 ≤ p ≤ 1, such that

ηm+1
0

2
≤ |y′ − y′0| ≤

ηp0
2
. (4.6)

Consequently, from (4.3), we have that

2(1− η0)m ≥ |yn − y0n|. (4.7)

By (4.6) and the fact that 0 < η0 < 1, we also get

p ≤ − ln(2|y′ − y′0|)
ln( 1

η0
)

≤ m+ 1.

In particular, it follows that

(1− η0)m ≤ (1− η0)

− ln(2|y′−y′0|)
ln( 1

η0
)
−1

=

1

(1− η0)
eβ ln(2|y′−y′0|) =

(2|y′ − y′0|)β

(1− η0)
,

where β :=
− ln(2|y′−y′0|)

ln( 1
η0

)
.

Therefore, recalling (4.7), it follows

|yn − y0n| ≤
2β+1

(1− η0)
|y′ − y′0|β,

which is the desired result, with α := 2β+1

(1−η0) . Finally, adding a constant to α, the result

also follows for the case |y′ − y′0| ∈ [1/2, 1].
Note now that, as y0 varies, Ψy0,k are Hölder continuous functions with Hölder modulus

of continuity bounded by the function αtβ (recall that m0 is fixed for the moment, and
that α and β depending only on η0). Therefore, if we set

ψk(y
′) := sup

|y′0|≤
1
2
, y0∈Ak

Ψy0,k(y
′),

then ψk is a Hölder continuous function (with Hölder modulus of continuity bounded via
the function αtβ), and Ak ∩ {|y′| ≤ 1/2} is above the graph of ψk.

Arguing in the same way, possibly taking α and β larger (depending only on η0), we
also get that, if we define

Φy0,k(y
′) := y0n + 2(1− η0)m0 + α|y′ − y′0|β,

then Ak ∩ {|y′| ≤ 1/2} is below the graph of Φy0,k. Arguing as above we define

φk(y
′) := sup

|y′0|≤
1
2
, y0∈Ak

Φy0,k(y
′),

so that φk is Hölder continuous function (with Hölder modulus of continuity bounded via
the function αtβ), and Ak ∩ {|y′| ≤ 1/2} is below the graph of φk.
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In particular Ak ∩{|y′| ≤ 1/2} lies between ψk(y
′) and φk(y

′) for any k ≥ k∗(m0) and,
by construction,

0 ≤ φk(y′)− ψk(y′) ≤ 4(1− η0)m0 . (4.8)

Also, for m0 fixed, by Ascoli-Arzelà Theorem, letting k → ∞, it follows that ψk(y
′)

uniformly converges in |y′| ≤ 1/2 to a Hölder continuous function which depends only on
m0, say

ψk(y
′) −−−→

k→∞
w−m0

(y′)

Analogously, we find an Hölder continuous function w+
m0

, such that

φk(y
′) −−−→

k→∞
w+
m0

(y′)

uniformly.
Also, by construction, we have that w−m0

≤ w+
m0

and that Ak∩{|y′| ≤ 1/2} lies between
the graphs of w−m0

− ε
2 and w+

m0
+ ε

2 for k large.
Let now m0 →∞. In this case, by Ascoli-Artzelà Theorem, (we remark that, by con-

struction of α and β above, the Hölder constants of w±m0
depend on η0, but are indipendent

of m0 ) we get that there exists a Hölder continuous function w such that w−m0
uniformly

converges to w. By (4.8), also w+
m0

uniformly converges to w. This conclude the proof.

STEP 2: The function w constructed in the first step is harmonic.

Proof of Step 2. We prove that w is harmonic in the viscosity sense. Then it follows that
it is harmonic in the classical sense (see for instance [8]).

Let P be the quadratic polynomial

P (y′) :=
1

2
y
′TMy′ + ξ · y′.

Assume, by contradiction, that ∆P > 0, that P touches the graph of w, say at 0, and that
P stay below it in |y′| < 2r, for some r ∈ (0, 1). Let now δ0 > 0 be the universal constant
of Theorem 3.9 and let us define

δ := min
{(∆P

2θ0

) 1
2
,

1

2θ0||M ||
,

1

2θ0|ξ|
,
( δ0

2θ0

) 1
2
, r
}
.

Thus, δ is such that

∆P > 2δ2θ0, ||M || ≤
1

2δθ0
, |ξ| ≤ 1

2δθ0
,

δ2θ0 ≤
δ0

2
. (4.9)

Note that, eventually replacing δ with 2δ and P (y′) with P (y′)−δ|y′|2, we may assume,
with no lose of generality, that P touches the graph of w at 0 and stays strictly below it
in |y′| < 2δ < 2. Therefore, since Ak ∩ {|y′| ≤ 1/2} uniformly converge to the graph of w,
it follows that, for k large, we find points yk = (y′k, yk n) close to 0, such that P (y′)−Kk

touches Ak at (y′k, yk n) and stays below it in |y′ − y′k| ≤ δ, for an appropriate Kk ∈ R. In
particular, we have

yk n +Kk =
1

2
y
′TMy′ + ξ · y′. (4.10)

Let us now consider the following translation

z′ = y′ − y′k, zn = yn − (yk n +Kk).
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Exploiting (4.10) we find a surface

zn =
1

2
z
′TMz′ + ξk · z′,

with

ξk := My′k + ξ

that touches Ak at the origin and stays below it in |z′| < δ. Notice also that, by construc-
tion,

|ξk| ≤
1

δθ0
. (4.11)

Rescaling back, we get that the surface

xn =
θk
l2k

1

2
x′TMx′ +

θk
lk
ξk · x′

touches {uk = 0} at the origin and stays below it, if |x′| < δlk. We write now the above
surface in the form

xn =
δ2θk

(δlk)2

1

2
x′TMx′ +

δ2θk
δlk

1

δ
ξk · x′

and we exploit Theorem 3.9, we obtain that

∆P ≤ δ2θ0

against the assumption. This contradiction shows that ∆P ≤ 0. By arguing in the same
way, one may prove that ∆P ≥ 0 if P touches w by above, so Step 2 is proved.

CONCLUSION: Since w is harmonic, by standard elliptic estimates (see for instance
[31]) we have that ||D2w|| is bounded on compact sets. Therefore, since by construction
w(0) = 0, by Taylor’s formula, it follows that

|w(y′)−∇w(0) · y′| < C ′η2
2,

for |y′| < 2η2. In particular, for η2 sufficiently small, setting

ξ′ := ∇w(0),

we get that there exist positive constants 0 < η1 < η2 < 1, for which

|w(y′)− ξ′ · y′| < η1

2
, (4.12)

for |y′| < 2η2.

Now let us consider

ξk :=

(
θk
lk
ξ′,−1

)√
θ2
k

l2k
|ξ′|2 + 1

. (4.13)

Consider the rescaling given by (4.1) we obtain

{|πξkx| < η2lk} × {|ξk · x| < η2lk} ⊂ {|x′| < 2η2lk} ⊂ {|x′| < lk/2}. (4.14)
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Since Ak ∩ {|y′| ≤ 1/2} uniformly converges to the graph of w, for k sufficiently large
(thanks to Step 1), we may suppose that Ak ∩{|y′| ≤ 1/2} is in a η1

4 −neighborhood of the
graph of w. Consequently, by (4.12), taking into account the rescaling, it follows that

{uk = 0} ∩ {|x′| ≤ lk/2} ⊂ {|xn −
θk
lk
ξ′ · x′| < 3

4
θkη1}.

From (4.13), we have that

{uk = 0} ∩ {|x′| ≤ lk/2} ⊂ {|x · ξk| <
3

4
θkη1},

which, toghether with (4.14), is a contradiction with the fact that uk does not satisfies the
statement of Theorem 4.1. This end the proof of Theorem 4.1.



48 Chapter 4. Improvement of Flatness



Appendix A

PDE Tools

In this appendix we recall the basic concepts we need about the theory of viscosity solutions
for partial differential equations and we present some classical comparision results. The
references for a more detailed presentation of the theory of viscosity solutions for second
order partial differential equations are for instance [35] or [13].

We will first consider a general degenerate elliptic second order partial differential
equation, and then we will focus on the particular equation (1.5).

Let Ω ⊆ Rn be an open set and let F : Ω×R×Rn×Rn
2 → R be a continuous function

such that for any two symmetric matrices X and Y such that Y −X is positive definite and
any values x ∈ Ω, u ∈ R and p ∈ Rn we have the inequality F (x, u, p,X) ≥ F (x, u, p, Y ).
We consider the following partial differential equation

F (x, u,∇u,D2u) = 0, in Ω. (A.1)

This equation is called degenerate elliptic. We now introduce the definition of viscosity
solution for a degenerate elliptic equation

Definition A.1. Let u ∈ C0(Ω), we say that u is a viscosity supersolution of (A.1) if,
whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that u(x0) = φ(x0) and u(x) ≥ φ(x) in Ω, we
have

F (x0, φ(x0),∇φ(x0), D2φ(x0)) ≥ 0. (A.2)

Analogously, we say that u is a viscosity subsolution of (A.1) if, whenever x0 ∈ Ω and
φ ∈ C2(Ω) are such that u(x0) = φ(x0) and u(x) ≤ φ(x) in Ω, we have

F (x0, φ(x0),∇φ(x0), D2φ(x0)) ≤ 0. (A.3)

u is called viscosity solution if it is both viscosity subsolution and viscosity supersolution.

During Chapter 3, in order to show that the barriers functions are strict supersolution
of the equation (1.5), we have not used Definition A.1. We have used another charac-
terization of viscosity supersolution for second order partial differential equations. Now
we want to explain the characterization that we used in order to prove that the barriers
functions are viscosity supersolutions. First of all we introduce the superjects and the
subjects of a function u.

Definition A.2. Let u : Ω→ R be a continuous function, we define

• the superject of u at x ∈ Ω is denoted by J2,+u(x) ⊆ Rn × Sym(n) and it is defined
in the following way

(p,X) ∈ J2,+u(x) ⇐⇒ u(y) ≤ u(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o(|y − x|2)
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• the subject of u at x ∈ Ω is denoted by J2,−u(x) ⊆ Rn × Sym(n) and it is defined in
the following way

(p,X) ∈ J2,−u(x) ⇐⇒ u(y) ≥ u(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o(|y − x|2)

We now present the result that gives us an equivalent definition of viscosity subsolution
and viscosity supersolution:

Proposition A.1. Let u : Ω→ R be a continuous function, then the following are equiv-
alent:

(i) u is a viscosity subsolution (resp., supersolution) of (A.1)

(ii) for every x ∈ Ω and (p,X) ∈ J2,+u(x) (resp., J2,−u(x) ) we have F (x, u(x), p,X) ≤
0 (resp., ≥)

Proof. The proof of this theorem can be found in [13].

In the Lemmas 3.2 and 3.3 we have used the characterization of viscosity supersolution
given by the Proposition A.1. In our case the function F has the following form:

F (x, u,∇u,D2u) = −∆u+ h′0(u),

and, during the proof of Lemmas 3.2 and 3.3, we have proved that

−∆u(x) + h′0(u(x)) ≥ 0, (A.4)

when x was in a region where u was C2.
This proves that u is a viscosity supersolution because, in the region where u is C2, we

have that J2,−u(x) = {(∇u,D2u)} and the estimate (A.4) proves (ii) of the Proposition
A.1. If the inequality in (A.4) is strict we call u strict viscosity supersolution.

Now we state two comparision principle that are useful during the proof of the main
results.

Theorem A.2. (Strong Comparision Principle 1) Let Ω be an open subset of Rn, let
Λ ∈ R and let u, v ∈ C1(Ω) satisfy (in a weak sense) the following inequalities

−∆u+ Λu ≤ −∆v + Λv, u ≤ v in Ω.

If there exists x0 ∈ Ω such that u(x0) = v(x0) then u = v in the connected component of
Ω containing x0

Proof. We can find a proof of a more general result in [21]. This theorem is a particular
case of Theorem 1.4 in [21]

An easy consequence of the above result is the following one, which is very useful for
our applications

Corollary A.3. (Strong Comparision Principle 2) Let Ω be an open subset of Rn,
and let u, v ∈ C1(Ω) satisfy (in a weak sense) the following inequalities

−∆u+ f(u) ≤ −∆v + f(v), u ≤ v in Ω,

with f locally Lipschitz continuous. If there exists x0 ∈ Ω such that u(x0) = v(x0) then
u = v in the connected component of Ω containing x0.
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Proof. Let ε > 0 be so that Bε(x0) ⊂ Ω and let

Mu,v := max{||u||L∞(Bε(x0)), ||v||L∞(Bε(x0))},

Λ := sup
{|U |,|V |≤Mu,v , U 6=V }

|f(U)− f(V )|
|U − V |

.

Then

−∆u+ Λu ≤ −∆v + f(v)− f(u) + Λu ≤ −∆v + Λ|v − u|+ Λu

= −∆v + Λ(v − u) + Λu = −∆v + Λv,

hence the result follows from Theorem A.2.
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Appendix B

Technical Lemmas

In this appendix we collect some elementary lemmas and technical lemmas that are useful
during the proofs of the main results. The proofs of this lemmas can be found in [50].

Lemma B.1. There exists a positive constant C such that

√
a−
√
b ≤ C a− b

√
a−
√
b

for any a ≥ b ≥ 0, a 6= 0.

Lemma B.2. For any 0 ≤ s ≤ t ≤ θ∗,

h0(−1 + t)− h0(−1 + s) ≥ c(t2 − s2)

for a suitable constant c > 0

Lemma B.3. There exists a positive constant C̃, so that

ˆ 0

−1+b

dξ√
(1 + ξ)2 − a2

≤ C̃
(

1 + log
(1

b

))
for any 0 < a ≤ b ≤ 1

Lemma B.4. Let U be an open subset of R. Let g ∈ C2(U) and assume that g has no
critical points. Define

Ψy,l(x) = g(|x− y| − l).

Then, for t = |x− y| − l ∈ U and x 6= y, we have

∆Ψy,l(x) = g′′(t) + g′(t)
n− 1

|x− y|
.

Lemma B.5. Let U be an open subset of R. Let g ∈ C2(U) and assume that g has no
critical points. Let Γ be a smooth hypersurface in Rn and let dΓ(x) be the distance function
to Γ. Suppose that if x ∈ Ω, then dΓ(x) ∈ U . Then

∆g(dΓ(x)) = g′′(dΓ(x)) + g′(dΓ(x))∆dΓ(x)

Lemma B.6. Let I 3 0 be an interval of R and let h ∈ C1(I) satisfy h(s) > 0 for any
s ∈ I. Let

H(s) :=

ˆ s

0

1√
2h(ξ)

dξ, for any s ∈ I.
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Define also g as the inverse of H, that is, g(t) = H−1(t), for any t ∈ H(I). Then
g ∈ C2(H(I)) and

g′(t) =
√

2h(g(t)), g′′(t) = h′(g(t)),

for any t ∈ H(I).

Lemma B.7. Let Ω be an open domain in Rn and let x0 ∈ Ω. Let w ∈ C1(Ω) and
v := ∇w(x0). Assume that there exists ω̄ ∈ Rn \ {0} such that

w(x0 + x) ≤ v · x+ w(x0)

for any x ∈ Rn so that x + x0 ∈ Ω and ω̄ · x ≥ 0. If P ∈ C2(Ω) is a quadratic function
touching w from below at x0, then ∆P ≤ 0 in the viscosity sense. Analogously, if

w(x0 + x) ≥ v · x+ w(x0)

for any x ∈ Rn so that x + x0 ∈ Ω and ω̄ · x ≥ 0. If P ∈ C2(Ω) is a quadratic function
touching w from above at x0, then ∆P ≥ 0 in the viscosity sense.

Lemma B.8. Let M ∈ Mat((n− 1)× (n− 1)) and V ∈ Rn−1. Define the paraboloid

Γ :=
{

(x′, xn) ∈ Rn−1 × R : xn =
1

2
x′ ·Mx′ + V · x′

}
.

Let dΓ be the signed distance to Γ. then for any τ ≥ 0

dΓ(x+ τen) ≥ dΓ(x).

Lemma B.9. Let u be a local minimizer of the Ginzburg-Landau functional in [−l, l]n.
Then, if l is large enough, the following happend: given ω ∈ Sn−1, there exist a universal
constant L so that, for any k ≥ L,

• if {u = 0} ∩ {|x − (ω · x)ω|∞ ≤ k} ⊂ {ω · x ≥ − k
10}, then u < −1 + θ∗ for any

x = (x′, xn) ∈ Rn−1 × R satisfying

ω · x ≤ −k
5

and |x− (ω · x)ω|∞ ≤
k

2
;

• if {u = 0} ∩ {|x − (ω · x)ω|∞ ≤ k} ⊂ {ω · x ≤ k
10}, then u > −1 + θ∗ for any

x = (x′, xn) ∈ Rn−1 × R satisfying

ω · x ≥ k

5
and |x− (ω · x)ω|∞ ≤

k

2
.
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