
Department of information engineering
Master Thesis in Computer Engineering

Development and Optimization of a Retrieval
Augmented Generation System for Enhanced

Conversational AI Assistance

Master Candidate Supervisor

Mauro Mickel Prof. Loris Nanni
Student ID 2062721 University of Padova

Academic Year
2023/2024

Date: 16/10/2024

To my family
and friends

Abstract

For a considerable time, chatbots have acted as helpful means to assist users
in retrieving information. However, with the advancement of generative lan-
guage models, it has become possible to elevate these bots; they are now able to
understand user needs and respond to them. This thesis explains the creation
of a platform for building a system which integrates individual approaches
to the construction of chatbots, developed during the internship in TownHall
Reply S.P.A. This research aims to investigate generative language networks in-
corporated in a chatbot system to elevate user interaction and satisfaction by
presenting a more relevant and contextual response. The analysis extensively
covers all the steps involved in creating the chatbot, subjecting it to tests specif-
ically designed for this purpose. The central objective of the research is to
thoroughly examine the challenges the system must face, with a particular fo-
cus on responding in a complete and accurate manner. The proposed solutions
employ various methodologies, including the use of different databases, testing
multiple embedding models to generate suitable vector spaces, the application
of RAG and Reranking to achieve more precise results, and leveraging Large
Language Models (LLMs) to formulate appropriate human-like responses, as
well as the importance of prompt engineering. Each of these aspects constitutes
a key discussion point, where tests are conducted to find the optimal setup,
considering time, resources, and accuracy. The results contribute to a deeper
understanding of potential issues in the fields of Natural Language Processing
and Deep Learning, while also laying the groundwork for future advancements
in this increasingly utilized domain.

Sommario

Per un periodo considerevole, i chatbot hanno agito come strumenti utili per
assistere gli utenti nel recupero di informazioni. Tuttavia, con l’avanzamento
dei modelli linguistici generativi, è diventato possibile migliorare questi bot;
ora sono in grado di comprendere le esigenze degli utenti e rispondere ad esse.
Questa tesi spiega la creazione di una piattaforma per la costruzione di un sis-
tema che integri approcci individuali alla progettazione di chatbot, sviluppata
durante il tirocinio formativo universitario presso l’azienda TownHall Reply
S.P.A. Questa ricerca mira a investigare i large language models incorporati in
un sistema di chatbot per migliorare l’interazione e la soddisfazione degli utenti,
presentando risposte più pertinenti e contestuali. L’analisi approfondisce ampia-
mente tutti gli step per la creazione del chatbot, sottoponendolo a test ideati ad
hoc. L’obiettivo centrale della ricerca è testare in maniera completa le sfide che
il sistema deve affrontare, con particolare attenzione al rispondere in maniera
completa e corretta. Le soluzioni proposte utilizzano diverse metodologie, tra
cui lo sfruttamento di diversi database, il testare diversi modelli di embedding
per generare spazi vettoriali adatti al contesto, l’utilizzo di RAG e Reranking
per ottenere risultati più precisi e nell’utilizzo di LLM per formulare risposte
adeguate nel linguaggio umano, focalizzando l’attenzione sul prompt engineer-
ing che risulta un tassello essenziale per il corretto funzionamento. Ognuno di
questi aspetti costituisce un elemento di discussione, in cui vengono eseguiti test
per cercare il miglior setup possibile tenendo in considerazione tempo, risorse e
precisione. I risultati contribuiscono alla comprensione di potenziali problemi
nel campo del Natural Language Processing e del Deep Learning e allo stesso
tempo creano le basi per evoluzioni future in questo campo sempre più usato.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivations . 1
1.2 Idea . 1
1.3 Hystory of Chatbots . 2
1.4 Retrieval Augmented Generation 3

2 Background 5
2.1 Vector Database . 5

2.1.1 Atlas MongoDB . 7
2.1.2 Postgresql . 8
2.1.3 Faiss . 8

2.2 Embedding . 9
2.2.1 All-MiniLM-L6-v2 . 10
2.2.2 Text-Embedding-3 . 11
2.2.3 Multilingual-E5-large . 12

2.3 LLM . 13
2.3.1 GPT-4 . 14
2.3.2 LLama . 14
2.3.3 Mistral . 15

ix

CONTENTS

3 Experiments 17
3.1 Storage and Embedding . 17
3.2 Retrieval . 18

3.2.1 Distance metrics and top K parameter 19
3.2.2 Chunk Parameters . 20

3.3 Answer Generation . 21

4 Results: Part I 23
4.1 Storage Time . 23
4.2 Retrieval Performance . 24
4.3 Answer Generation . 26

5 Multi-Stage Retrieval 29
5.1 What is Multi-Stage Retrieval . 29

5.1.1 2 Stage Retrieval . 30
5.1.2 3 Stage Retrieval . 30
5.1.3 Related Work . 31

5.2 Implementation . 32
5.3 Results . 33

6 Prompt-Engineering 35
6.1 What is prompt engineering . 35

6.1.1 Empty Answer . 36
6.1.2 Out of Knowledge-Base . 36

6.2 Find the best prompt . 37
6.2.1 Language Consistency . 37
6.2.2 Out-of-Context Responses 37
6.2.3 Empty Responses . 37
6.2.4 Handling Multiple Chunks of Information 38
6.2.5 Citing Sources . 38
6.2.6 Completeness of Responses 38

6.3 Results . 39

7 Results: Part II 41
7.1 Final System . 41

x

CONTENTS

8 System 43
8.1 Machines . 43
8.2 Dataset . 43

9 Conclusions and Future Works 45
9.1 Conclusion . 45
9.2 Future Works . 46

References 49

Acknowledgments 53

xi

List of Figures

1.1 Visual example of RAG . 4

2.1 2D example of a vector DB . 7
2.2 Example of an embedding process and storage in the vector database 10

5.1 Example of a process of multistage retrieve 29

6.1 Visual breakdown of prompt engineering components: Large
Language Model (LLM) pre-trained, instruction and context as
key elements for the prompt, and a user input interface 36

xi

List of Tables

4.1 Mean Time in milliseconds taken to save the data of various db for
a single page of different type of data input using the embedder
Multilingual-E5-large with chunk size of 1024 and chunk overlap
of 256 . 23

4.2 Time required by different embedding models to embed a sin-
gle page of a text file with different chunk size(CS) and chunk
overlap(CO) . 24

4.3 Performance of Retrieval using different distance metrics 24
4.4 Retrieval performance (average time, average faithfulness and av-

erage relevancy) using different parameters and embedding mod-
els on postgresql; I when only 15 documents saved in the db; II
when 500 documents saved in the db 25

4.5 Performance of the answers based on the number of chunks in
the context given to the model . 26

4.6 Performance of different LLM using context retrieved with Multilingual-
E5-large and Postgresql . 27

5.1 Performance of the system with 2-stage retrieval of different top
elements with All-MiniLM and Bge-reranker-v2 34

6.1 Results obtained with different prompt. First row shows the re-
sults of the system with a basic prompt, second row shows the
results with a prompt focused on avoiding getting a empty an-
swer, third rows shows results with a prompt focused on forcing
the LLM to answer only with the context in the knowledge base
and last row shows the results with the final prompt 39

7.1 Performance of the full system . 42

xiii

LIST OF TABLES

8.1 Specs of the computer . 43
8.2 Number of documents in dataset for each data type 44

xiv

List of Algorithms

xvii

List of Code Snippets

xix

List of Acronyms

LLM Large Language Model

NLP Natural Language Processing

RAG Retrieval Augmented Generation

IR Information Retrieval

ANN Approximate Nearest Neighbor

DB Database

AI Artificial Intelligence

ML Machine Learning

HNSW Hierarchical Navigable Small World

RDMS Relational Database Management System

DPR Dense Passage Retrieval

xix

1
Introduction

1.1 Motivations

The landscape of contemporary artificial intelligence is advancing and chang-
ing with transformative technologies, including the development of new gener-
ative technologies, at a rapid pace. Key players in this transformation are Large
Language Models, because they have ushered in a new period of text genera-
tion and communication. As artificial intelligence is more easily incorporated
into our daily lives, we exist in a landscape of profound change in terms of
human-machine interaction, shifting to developing a relationship that is more
harmonious and symbiotic. Signs of this transformation are apparent in a va-
riety of work activities and daily tasks that convey an increasing reliance on
intelligent digital tools. The rapid evolution of AI technologies, particularly
in regard to their capabilities for understanding human language and generat-
ing relevant and insightful responses can serve as markers of our reliance on
human-like digital being altering our technology in transformative ways.

1.2 Idea

Given these considerations, this thesis focuses on the study of the develop-
ment process of an intelligent chatbot system, which is aimed at responding to
users’ questions in a more effective and relevant manner. Some of the factors
include technical advancements, such as artificial intelligence and deep learning

1

1.3. HYSTORY OF CHATBOTS

which have recently created new avenues for the design of conversational inter-
faces. The main goal of this work is exactly to use such technologies to build a
conversational agent, which is smooth and natural in users request interpreta-
tion.

A system of this sort will not only assist the users in locating the answers that
they are searching for, but it will also serve the purpose of improving peoples
experiences by trying to make their interaction with the gadgets less complicated
and more satisfying. The chatbot endeavors to build a rapport with the users
by offering fitting responses to their requests thus boosting the likelihood of
the platforms usage. This work thus aims at the development and practical
application of methodologies related to the design and development of such
intelligent chatbots, especially focusing on the challenges and opportunities
posed by current advances in technology.

1.3 Hystory of Chatbots

The domain of operations of an early interaction with machines began with
the 1960s, with the focus on simulation of interventions in channels of ordinary
human interactions and repetitive tasks. One of the early efforts was ELIZA, de-
veloped in 1966. The program implemented relatively simple keyword-oriented
rules in dialogues. While ELIZA was limited, it rather successfully argued the
possible existence of conversations where a human could actually have an in-
teraction with a machine through language, which opened avenues for further
experimentation. For quite some following decades, however, chatbots were
confined to static models with predefined answers, still without understanding
true language.

The introduction of the internet commercialized chatbots in the 1990s to
facilitate automated interfaces for customer support. These applications were,
however, rather basic. While these bots were handy in facilitating alternate
means of doing menial tasks, they could hardly become wise. While they
were mostly useful in providing automatic answers to cut down on operational
costs, they did not greatly help provide quick support in cases needing human
intervention.

During the 2010s, a watershed occurred by mingling Artificial Intelligence
(AI) and Machine Learning (ML). Usage of Natural Language Processing (NLP)
turned things upside down as the AI-based chatbots could better comprehend

2

CHAPTER 1. INTRODUCTION

human language more effectively, better contextual understanding, and, thus, a
sharper response. Another class of tools sprang into existence since that time,
namely virtual assistants like Siri, Alexa, and Google Assistant. These provided
the real sense of fluid-like conversation with machines through artificial intelli-
gence in their own right; it was no longer just the option of answering a simple
question; the tools could now perform complex activities in dialogue with many
other device application, if any, while keeping on learning on any new query.

Recently, the emergence of advanced language models like GPT-3 and, more
recently, GPT-4 has helped raise standards even higher. These models which
are based on deep neural networks can produce complicated written texts, hold
logical dialogues, and change in accordance with the context until they reach
a point where users can converse with them naturally, without any difficulty.
With the access to data and computing power came faster growth resulting
in deploying chatbots in healthcare, education, entertainment, and marketing
industries, with better interactions between human and machines.

Currently, chatbots can answer complex questions, produce creative writing
work, and even predict users behavior due to predictive models. There is ad-
ditional enhancement to their function by integration with other blends such
as conversational AI making them essential in various fields. The capabilities
of chatbots will dramatically enhance in the future, such that every person can
expect a free-flowing, orthographic as well as context-specific intelligent inter-
action. This could indeed revolutionize the way we do our work and how we
communicate with one another.

1.4 Retrieval Augmented Generation

An innovative approach for enhancing the quality of responses is through
the use of Retrieval Augmented Generation (RAG). The model unites the nat-
ural language generation characteristic of transformer models like GPT with
techniques from Information Retrieval (IR) in such a way that allows the chatbot
to access external data from a large corpus in real time. The main idea of RAG is
that other than relying utterly on the pre-trained knowledge of the model itself,
the system would actively, from some given databases or documents, find infor-
mation relevant to the discussion and hence make its responses more relevant
and accurate. This paper will discuss how the integration of RAG may optimize
the efficiency of chatbots for application contexts that involve well-documented

3

1.4. RETRIEVAL AUGMENTED GENERATION

answers in a timely and current manner, leading the way to new applications in
customer service. As illustrated in 1.1, the process of RAG is quite straightfor-

Figure 1.1: Visual example of RAG

ward. The user provides the system with a query. The system uses the query to
fetch from the knowledge base the most relevant and important documents. The
degree of similarity of these documents to the query will form the basis upon
which they are selected. Next, the system feeds the prompt and user query
through a LLM together with retrieved documents to come up with a human-
like response. And this, consequently, results in returning this information to
the user by answering his question accurately and naturally.

4

2
Background

This chapter details the theory behind the various technologies introduced in
this thesis.

Specifically, it will begin with discussing vector databases, where the pri-
mary difference with traditional databases is that vector databases allow the
storage and querying of data represented as vectors, addressing a solution to
the difficulty of finding answers within document chunks.

Then, it analyzes the concept of embeddings, which enable dense numerical
representations of text, expressed as vectors, to efficiently perform queries and
quickly access relevant information from a knowledge base.

After, it moves to the part of the project when it comes to the use of the LLMs.
It is explained how the LLM can deliver a clear and succinct answer, adhering
to all the users informational needs.

Lastly, the concept of prompt engineering is explained. It involves strategi-
cally designing task-specific instructions, referred to as prompts, to guide model
output without altering parameters.

2.1 Vector Database

VECTOR database is a type of database that stores data as high-dimensional
vectors, which are mathematical representations of features or attributes. The
vectors are usually generated by applying some kind of transformation or em-
bedding function to the raw data [5]. Vector databases are built to manage
vector embeddings, and therefore offer a complete solution for the management

5

2.1. VECTOR DATABASE

of unstructured and semi-structured data[17]. It leverages the power of these
vector embeddings to index and search across a massive dataset. This is pos-
sible because vector databases typically implement one or more Approximate
Nearest Neighbor (ANN) algorithms, that search through hashing, quantiza-
tion, or graph-based search, so that one can search the database with a query
vector to retrieve the closest matching database records [19]. A vector database
is different from a vector search library or vector index: it is a data management
solution that enables metadata storage and filtering, is scalable, allows for dy-
namic data changes, performs backups, and offers security features. In figure 2.1
it is possible to see a 2D representation of a vector DB. One of the first significant
Database (DB) was Annoy [7], developed by Spotify, which introduced an effi-
cient method for approximate ANN search in large datasets. Subsequently, Faiss
[4], created by Facebook AI, improved the efficiency and scalability of these op-
erations, enabling its application on even larger datasets through compression
techniques and optimization of similarity metrics. In parallel, the HNSW [8]
algorithm provided a graph-based structure that enabled much faster and more
accurate approximate nearest neighbor searches in high-dimensional spaces. Fi-
nally, among the most recent developments is Chroma , a modern vectordb that
stands out for its optimized integration with machine learning models and chat-
bot applications based on large language models, making it particularly suitable
for RAG systems and advanced AI applications. Vector databases are essential
in artificial intelligence research and handling huge quantities of unstructured
text data. Their capability to store information in vector spaces leads to better
performance and accuracy in things like semantic similarity computations or
contextual queries. There are several reasons why one should choose a quality
vector database including search efficiency, scalability, accurate similarity mea-
sures and various distance metric support. All of these factors led us to select
and test three different vector databases, listed below.

• Atlas MongoDB

• Postgresql

• Faiss

6

CHAPTER 2. BACKGROUND

Figure 2.1: 2D example of a vector DB

2.1.1 Atlas MongoDB

Atlas MongoDB is a fully managed cloud database platform built on Mon-
goDB, one of the popular NoSQL databases. One of its major strengths is
automatic scalability: Atlas MongoDB can seamlessly grow in capacity and per-
formance, adapting to the needs of the application without requiring manual
intervention. Other strengths include advanced geographic replication, global
high-availability, which is crucial for distributed applications like RAG or other
forms of distributed AI, automated security management, backups, and updates.
These improve security and reliability.

The weaknesses, however, also include costs: being a managed service, costs
can get extremely high when needs dictate heavier workloads or intensive stor-
age, and it is less flexible compared with a self-managed database, which allows
more granular control to be applied to configurations. In addition, since it
is built to deal with semi-structured data, it may not be suitable for all kinds
of applications; for example, those that require stricter schemas and relational
constraints.

MongoDB Atlas is ideal for RAG due to the mass amounts of unstructured
and semi-structured data it can support in a flexible and scalable manner. Those
very relevant features are to train and deploy AI models for handling complex

7

2.1. VECTOR DATABASE

data such as images, text, and other types of unstructured inputs whereby high
demands for latency and throughput are required.

2.1.2 Postgresql

Pgvector is a PostgreSQL extension designed to support the storage and
search of vectors, a data format commonly used in NLP applications such as
RAG and other AI models. One of Pgvector’s main strengths is the ability to
natively integrate vector similarity search directly within PostgreSQL, leveraging
the powerful relational and transactional capabilities of the database. This
allows the combination of traditional structured data with vectors, enabling
more complex and sophisticated queries on mixed data.

Among its strengths, Pgvector offers support for vector indexing through
algorithms like Annoy and Hierarchical Navigable Small World (HNSW), mak-
ing vector searches fast and efficient even on large datasets. Additionally, being
based on PostgreSQL, it benefits from all the security, reliability, and integration
features of this mature and well-established Relational Database Management
System (RDMS).

However, there are some weaknesses. The performance of vector search can
degrade with extremely large datasets compared to more specialized solutions,
which are specifically optimized for handling vectors at scale. Moreover, using
Pgvector requires tuning to achieve the best performance.

Pgvector is particularly suited for RAG because it effectively manages vectors
that represent images, text, or other features learned. Thanks to its integration
with PostgreSQL, it also allows the combination of these vectors with tradi-
tional structured data, offering greater flexibility in queries and centralized data
management.

2.1.3 Faiss

FAISS, or Facebook AI Similarity Search, is an open-source library devel-
oped to perform efficient similarity searching in high-dimensional vector spaces,
one of the fundamental operations for many AI applications, including RAG.
Among FAISS’s major advantages are large-scale vector similarity searches with
advanced techniques such as compression, clustering, and indexing for memory
use and speed optimization. It’s also pretty highly scalable, along with its GPU
capabilities, which are quite helpful for a high-scale application.

8

CHAPTER 2. BACKGROUND

Other advantages of using FAISS include flexibility: it supports various
distance metrics, including Euclidean and Cosine. It allows balancing precision
with speed depending on particular needs. It is particularly well-suited for the
search vectors representing images, text, or embeddings from ML models and
is excellent in AI scenarios, where the system should be able to quickly search
for relevant information in huge amounts of data.

However, one of the biggest flaws in FAISS is that it does not really fit the
bill for a relational database-one that would typically present very serious data
management features like transactionality or handling structured data-and this
is usually expected from any RDMS like PostgreSQL. It does not make it very
suitable for the requirements of most applications needing data management
that is complex in nature and exceeds the vector similarity search. Another
weakness with FAISS is that sometimes it requires a great deal of configuration
and optimization, especially when the datasets are really large.

FAISS was particularly fitted for RAG, since it allows for fast similarity
searches over large datasets-a key ingredient when aiming at improving the
accuracy and efficiency of the generation models. In RAG, where the system
needs to quickly retrieve relevant information from a vast knowledge base to
generate content with high accuracy, FAISS provides the necessary speed and
efficiency needed to handle these workloads.

2.2 Embedding

Text embeddings serve as fundamental components in IR systems and re-
trieval augmented language models [14].In the field of IR, the first-stage retrieval
often relies on text embeddings to efficiently recall a small set of candidate doc-
uments from a large-scale corpus using ANN search techniques [22]. Text em-
beddings represent discrete text inputs (e.g.,sentences, documents, and code)
as fixed-sized vectors that can be used in many downstream tasks. [20]. Em-
beddings also represent information-dense representations of textual semantics,
with each embedding being a floating-point vector. The distance between two
embeddings in the vector space is correlated with the semantic similarity be-
tween the two inputs in the original format. In summary, Embedding helps
computers understand the "meaning" represented by human information. The
first significant approach was Word2Vec [9]. This particular model made it pos-
sible to encode words into continuous vectors, by only taking into account the

9

2.2. EMBEDDING

context of the words in question, thereby changing the course of understanding
the language. Furthermore, it revolutionized NLP by introducing BERT [3],
where it became possible to produce context representation that is dependent
on not only the words before or after a word, but also both. Furthermore, it gave
rise to another technology, the SBERT [14], which enabled one, due to his im-
plantation of the BERT technology, to create so called embeddings of sentences
which were more advantageous in comparing one text with another. It is also
worth mentioning that the concepts above were adapted for multilingual use in
XLM-RoBERTa [2]. This let the generation of effective embeddings for languages
by abstracting separation of hubs and enhancements of available NLP apps in
several communities around the globe.

Figure 2.2: Example of an embedding process and storage in the vector database

This thesis focuses on three different embedding models listed below, each of
which offers unique characteristics and specific advantages for natural language
representation and text processing.

• All-MiniLM-L6-v2

• Text-Embedding-3-Small (OpenAI)

• Multilingual-E5-large

2.2.1 All-MiniLM-L6-v2

All-MiniLM-L6-v2 is an embedding model developed by Microsoft, designed
to generate efficient and accurate vector representations of text. One of its main
strengths is its lightweight nature and speed, thanks to its MiniLM architecture,
which allows it to produce high-quality embeddings with a reduced number of

10

CHAPTER 2. BACKGROUND

parameters. This makes it ideal for real-time applications and use on resource-
constrained devices without significantly compromising result quality. Addi-
tionally, All-MiniLM-L6-v2 has been trained on a wide range of data, giving it
good generalization capabilities across various domains and topics.

However, there are some weaknesses as well. While the model offers com-
petitive performance, it may not achieve the same level of accuracy as larger
and more complex models like various BERT or RoBERTa versions, especially
in highly specialized contexts or when working with very long texts. Moreover,
its reduced size means it might struggle to capture certain linguistic nuances or
complex contexts.

All-MiniLM-L6-v2 is an excellent embedder for RAG because it provides fast
and high-quality embeddings, allowing the system to efficiently retrieve relevant
information from large datasets. Its ability to generate vector representations for
text makes this model particularly well-suited for powering search and retrieval
systems that need to match textual queries with documents or text fragments,
thus facilitating the generation of informative and relevant content in response
to user questions or requests.

2.2.2 Text-Embedding-3

Text-Embedding-3- is an advanced embedding model designed to generate
vector representations of text, offering a balance between quality and perfor-
mance. One of its main strengths is its ability to capture contextual meanings
in depth, thanks to training techniques on large corpora of data and optimized
neural network architectures. This enables it to produce embeddings that are
highly informative and useful for complex tasks such as semantic search and in-
formation retrieval. Additionally, the model is designed to be scalable, making
it suitable for production environments and high-demand scenarios.

However, there are also some limitations. While Text-Embedding-3 is power-
ful, it may require significant computational resources for training and inference,
which can pose a challenge for large-scale implementations, especially in con-
texts with limited budgets or suboptimal hardware. Moreover, the quality of
the embeddings can vary depending on the specificity and complexity of the
text domain; for highly technical or niche texts, further optimizations may be
necessary.

Text-Embedding-3 proves to be an excellent embedder for RAG as it provides

11

2.2. EMBEDDING

high-quality embeddings that facilitate the retrieval of relevant information from
large volumes of data. Its ability to generate detailed semantic representations
allows the system to effectively match textual queries with documents or text
fragments, thus improving the quality of generated responses and ensuring
informative and contextually relevant content for user needs.

2.2.3 Multilingual-E5-large

Multilingual-E5-large consists of a cutting-edge embedding model with the
ability to generate high-quality vector representations of texts in multiple lan-
guages. One of its main strengths lies in its multilingual capabilities, whereby
it can perform uniformly well across several languages-Hence, something that
seems an important requirement in the current globalized context where ap-
plications are expected to cater to diverse user bases. It has been trained on
extensive multilingual data sets for formulating semantic nuances and contex-
tual meanings concerning certain tasks, thus making it an efficient model for
tasks such as cross-lingual information retrieval and translation.

However, it also has its weaknesses. Although Multilingual-E5-large per-
forms relatively well across languages, in certain contexts its performance may
still fall short when it comes to language-specific models, especially when con-
sidering rare languages and particular domains, where denotations regarding
domain-specific vocabulary and context are of great importance. Besides, be-
ing a large model, it needs substantial computational resources to train and
perform inference, posing a barrier to deploying live systems on hardware or
budget-constrained environments.

Multilingual-E5-large is a great embedder for RAG because it retrieves useful
information from multilingual data sets. Its potential to dedicate high-quality
embeddings allows the system to match queries in multi-languages with use-
ful documents or text fragments, into consequence improving the quality and
relevance of responses generated. Thus, it is an invaluable application of this
work that calls for seamless multilingual support, making it possible for users
to extract accurate and context-sensitive information across a diverse range of
languages.

12

CHAPTER 2. BACKGROUND

2.3 LLM

Large Language Models (LLMs) have drawn a lot of attention due to their
strong performance on a wide range of natural language tasks, since the release
of ChatGPT in November 2022[10]. LLM are state-of-the-art artificial intelligence
systems designed to mimic human language comprehension and generation
closely. They rely on deep strategic learningmostly, transformers that allow them
to handle extents of text sequences and identify exceedingly complex patterns,
relationships, and contextual meanings hidden among words. LLM are pre-
trained on large datasets that usually include over billions of words drawn
from numerous sources, including books, websites, and articles. Such extensive
cumulative training enables LLM to perform complete tasks such as completing
text, translating between languages, summarizing, and even mimicking human-
like dialogue. Models like GPT-4 [13] and BERT have become an inseparable part
of AI applications such as chatbots, virtual assistants, and content generation;
understanding and generating coherent contextualized language is now central
to them. The history of LLM began with simple models like Word2Vec, which
was used in 2013 to generate vector representations for words in a way that
preserved their semantic relationship [9]. The wave of transformer architecture
developed by GPT and BERT in 2018 was a few steps ahead, tackling more
extensive and complex datasets. The bilaterally devoted context of each word
allowed BERT to know their contextual nature from the context surrounding it
that used both directions and trained other natural language processing tasks [3].
GPT-3 would further revolutionize the field by training at an enormously larger
scale than its predecessors, having 175 billion parameters and performing zero-
shot and few-shot learning. Today, models such as GPT-4 and LLama[21] stand
toe-to-toe being at the forefront of their genre, providing ever more nuanced and
contextually accurate language understanding and generation across languages
and genres.

• gpt-4o

• LLama 3

• Mistral 7B

13

2.3. LLM

2.3.1 GPT-4

GPT-4 is a very recent LLM developed by OpenAI, known for its astonishing
capabilities in the field of NLP understanding and generation. It is good at
generating coherent and contextually relevant texts on most topics, as it has been
broadly trained with diverse datasets. This allows GPT-4 to excel in tasks that
require subtle understanding and imagination; therefore, it is extremely useful in
applications for content creation, dialogue systems, and information synthesis.
Besides, GPT-4 integrates advanced reasoning into its framework, making the
model solve complex tasks like summarization and question answering, even
code generation.

However, there are a few weaknesses. GPT-4 performance may heavily de-
pend on the quality of the provided prompts, and sometimes it produces wrong
or misleading information if the input does not exhibit clarity or specificity.
Lastly, being a big hosted model, doing inferences requires a high cost. Also,
with GPT-4, extended conversations can sometimes present some consistency
challenges since it may lose track of the context in a longer conversation.

GPT-4 works perfectly for RAG because it will be in a position to incorporate
information from retrieved sources into its generative processes seamlessly; thus,
improving the relevance and accuracy of its outputs. The current version, GPT-
4, now extends its powerful language generation capability by also adding a
retrieval mechanism to better synthesize information from large databases and
ultimately provide well-informed, contextually rich responses. This synergy will
make it particularly formidable in applications requiring up-to-date information,
as it generates content that is not only coherent but based on the most relevant
data given to the system.

2.3.2 LLama

Llama3 is a powerful LLM developed by Meta, aiming to achieve state-of-
the-art results in natural language understanding and generation. One of its key
features is the generation of high-quality, contextually appropriate text on a wide
variety of topics due to training on extensive and diverse datasets. Optimized for
performance, Llama3 efficiently generates coherent and relevant outputs faster,
and this is highly useful for real-time applications. Also, the architecture is fine-
tuning-friendly, allowing developers to adapt the model to specific domains or

14

CHAPTER 2. BACKGROUND

tasks, which further increases its versatility.
On the other hand, Llama3 also has some disadvantages. Similar to other

LLM, it can be extremely sensitive to phrasing in input and may give responses
that are inexact or biased if the input is imprecise or badly constructed. While
impressive in capability, the model requires formidable computational resources
both for training and inference, respectively, which restricts the accessibility of
this for constrained hardware environments. Additionally, Llama3 may at times
have a difficult time managing context over longer interactions, thus showing
inconsistencies in longer dialogues.

Llama3 is particularly suited to RAG, as it can successfully incorporate exter-
nally retrieved information from databases or knowledge bases into its genera-
tive processes. That enables the model to further enhance its responses with the
most recent information and contextually relevant one, hence returning more
and more accurate outputs to the user. Powerful generation combined with pre-
cise retrieval made Llama3 an excellent application for any applications requir-
ing access to real-time information and the generation of informative content,
thus enhancing a user experience within a represented domain.

2.3.3 Mistral

Mistral is a high-performance LLM, with apparent strengths regarding com-
prehension and generation in natural language. Its major strength lies in its
efficient architecture, whose responses are given in record time while still up-
holding coherency and consideration of context. Mistral learns subtle features
from its training on a wide range of datasets, making it perfect for use in con-
versational agents, content generation, and summarization, among other appli-
cations. Because Mistral is lightweight in terms of size, it can easily be deployed
by developers or companies in environments that are computationally poor.

But Mistral does have weaknesses. Like others LLM, it sometimes produces
responses that are either not quite right or irrelevant, particularly where the
input is ambiguous or out of context. Additionally, while Mistral is optimized
for efficiency, this can be at the cost of depth for some complex reasoning tasks
compared to larger models, which may have greater insight but at the cost of
speed and resource consumption. Moreover, it is hard to maintain context over
a long talk, hence, longer conversations may lack coherence.

Mistral is particularly suited for RAG because it can well couple its generative

15

2.3. LLM

capabilities with external information obtained from databases or knowledge
sources. This synergy will enable the model to enrich its outputs with relevant
and timely information to provide users with exact and contextually rich re-
sponses. Mistral can generate informative content using retrieval mechanisms
in such a way that the generated text is always informed by the best available in-
formation, thereby making this model powerful for application areas related to
real-time information synthesis or those where high-quality content generation
is needed.

16

3
Experiments

In this Chapter, we shall elaborate on the experiments that were conducted for
the purposes of this work. We will take a close look at the storage methods which
were put to the test, the different embedding models (embedders) performance,
as well as the LLM used in the course of the analysis. The tests were conducted
on a custom dataset comprising various documents provided by the company.
All technical specifications regarding the dataset can be found in Chapter 8,
Section 8.2.

3.1 Storage and Embedding

The storage experiments, which cover both the embedding process and
database management due to their close correlation, primarily focus on time
efficiency. The first step involves applying an algorithm to extract text from the
various file types in the dataset. The RecursiveCharacterTextSplitter 1 method
from the LangChain library 2 was chosen for this task. The parameters chunk-
size and chunkoverlap were selected based on tests described in 3.2.2, as they
are crucial for retrieval performance.

Next, the embedding models were evaluated with a specific focus on their
average embedding speed when processing the dataset. This measurement

1https://api.python.langchain.com/en/latest/character/langchain_text_
splitters.character.RecursiveCharacterTextSplitter.html

2https://api.python.langchain.com/en/latest/langchain_api_reference.html

17

https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html
https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html
https://api.python.langchain.com/en/latest/langchain_api_reference.html

3.2. RETRIEVAL

is essential, as it impacts how quickly the system can convert raw data into
embeddings, which is crucial for maintaining efficiency in real-time applications.
Additionally, the size of the embedding vectors produced by each model was
assessed, as larger vectors can increase storage requirements and slow down
retrieval processes, while smaller vectors may risk losing important information.

Following this, the average data-saving speed was analyzed across the three
databases mentioned earlier. This analysis involved measuring how quickly
each database could store the generated embedding data, ensuring that they
could handle the volume efficiently without introducing bottlenecks.

Finally, both the embedding models and databases were evaluated in terms
of maintenance costs and computational complexity. These factors are critical in
a production environment, where cost efficiency and scalability are vital. This
thorough evaluation helps ensure that the selected solutions provide optimal
performance while remaining cost-effective in the long run.

3.2 Retrieval

The retrieval process is one of the most critical components of the system, and
thus received significant attention during the testing phase. Selecting the right
embedding model, with carefully tuned parameters, can mean the difference
between a system with near-perfect performance and one that fails to meet user
expectations. Initially, an in-depth analysis of the Massive Text Embedding
Benchmark (MTEB) 3 [12] was conducted, from which the three embedding
models mentioned earlier were chosen. These models were selected based on
several important factors.

A key consideration was ensuring compatibility with the Italian language, as
the entire system is built around documents written in Italian. It was essential
that the chosen models could accurately understand and process queries and
content in this language. Another crucial factor was the performance metrics
reported for each model, which were weighed against the size of the model.
Model size directly impacts computational complexity and the associated costs
in a production environment, making it a crucial criterion for model selection.
Tests were conducted to assess the retrieval speed, a critical performance metric

3https://huggingface.co/spaces/mteb/leaderboard

18

https://huggingface.co/spaces/mteb/leaderboard

CHAPTER 3. EXPERIMENTS

given that users expect fast responses. The system’s ability to retrieve documents
quickly and efficiently is essential for delivering a positive user experience.

Additionally, tests were performed on faithfulness, a metric that evaluates
whether the system’s responses are hallucinated or factually grounded. Specif-
ically, it measures if the response generated by the query engine accurately
reflects information found in the source documents. Ensuring faithfulness is
vital to maintain the integrity and reliability of the systems output, preventing
the model from generating incorrect or misleading information.

Finally, a Relevancy Evaluator was employed to assess the relevance of the
retrieved documents. This metric determines whether the system’s responses
adequately address the user’s query, ensuring that the retrieved information
aligns with the question posed. By evaluating both the query and the source
documents, the relevancy metric ensures that the responses are not only fast and
factually accurate, but also directly answer the user’s specific needs.

In conclusion, the combination of these tests, retrieval speed, faithfulness,
and relevancy, was critical in determining the optimal embedding models for the
system, ensuring both high performance and cost-effectiveness. These carefully
selected models not only guarantee rapid responses but also improve the overall
reliability and relevance of the retrieval process, which is central to the success
of the system.

3.2.1 Distance metrics and top K parameter

Regarding RAG, the probability that a query is related or similar to the
documents in the knowledge base is estimated through distance metrics. These
metrics are applied to determine the relationship between the query and the em-
bedded representation of the documents concerning their closeness. Commonly,
the general distance metrics used here include cosine similarity, Euclidean dis-
tance, and dot product. Cosine similarity is widely used because it is a measure
of the angle between two vectors, and it has a good estimation of the similarity
independently of their magnitude. This is especially useful when dealing with
high-dimensional spaces-as is common for embeddings. On the other hand,
Euclidean distance quantifies the straight-line distance between two points in
space. Because of that, this metric is more sensitive to the absolute position
of vectors, while dot product will pay more attention to the alignment and the
magnitude of the vectors. For these reasons all these 3 metrics were tested

19

3.2. RETRIEVAL

Besides the different distance metrics, the retrieval process naturally depends
on the top-k parameter: the number of top-ranked documents, sorted by their
scores with respect to similarity that are returned to the model for response
generation. The larger the k value, the more context there is, but at an increased
computational cost, which may prolong the response times. On the other hand,
smaller k values speed up the process at the risk of excluding important infor-
mation. The right balance for top-k is what will ensure that optimization for
both the accuracy and efficiency of a RAG system is achieved in a way that the
final response includes the most relevant documents. For these reasons, a test
was conducted to determine the optimal value for the k parameter. Starting with
low values, it was progressively increased until reaching a threshold where the
system became too slow and its performance decreased due to the inclusion of
too much unrelated information.

3.2.2 Chunk Parameters

The chunk size and chunk overlap parameters are critical for the proper
functioning of retrieval systems, as they significantly impact both efficiency and
accuracy in various ways. These parameters directly influence how data is
segmented and retrieved, and thus must be carefully tuned for optimal perfor-
mance.

• Relevance and Granularity: A smaller chunk size results in more granular
chunks of text. This increased granularity can be beneficial for capturing
fine details, but it also introduces a risk: essential information might be
fragmented across multiple chunks and may not appear within the top-
retrieved chunks, particularly if the top_k_similar 4 setting is too restrictive.
As a result, the retrieval system might fail to retrieve all the necessary in-
formation to answer a query accurately. On the other hand, larger chunk
sizes are more likely to capture complete and coherent sections of infor-
mation, increasing the chance that the top-retrieved chunks will contain
all the relevant details for the query. This makes the system more reliable
in ensuring that the correct answers are included in the retrieval process.

• Response Generation Time: As chunk size increases, the amount of informa-
tion fed into the LLM for generating a response also grows. While pro-
viding the model with a broader context can help generate more accurate
and complete answers, it comes with a trade-off: longer processing times.
If the system is overloaded with too much information, the response gen-
eration time can become noticeably slower, which can degrade the overall

4Parameter to control how many of the top-retrieved chunks are actually taken into context

20

CHAPTER 3. EXPERIMENTS

user experience. Therefore, finding a balance between the amount of infor-
mation provided and maintaining quick system responsiveness is crucial
for a high-performing retrieval system.

• System Performance Balance: The core challenge in selecting the optimal
chunk size is achieving a balance between ensuring that all essential in-
formation is captured while maintaining fast processing times. An overly
small chunk size may result in incomplete or fragmented data retrieval,
while a too-large chunk size may slow down response times, making the
system inefficient. This balance is highly dependent on the specific dataset
and the use case, as different domains may require varying levels of detail
or speed.

To address these challenges, comprehensive testing was performed to de-
termine the most effective chunk size and chunk overlap configurations. Each
model was tested using a range of values for both parameters, allowing for a de-
tailed analysis of how these settings affected both retrieval accuracy and system
responsiveness. By systematically adjusting these parameters, it was possible to
identify the optimal configuration that balances speed, accuracy, and relevance
for the specific dataset in use.

These tests are crucial because they help ensure that the retrieval system can
handle a wide variety of queries efficiently while maintaining high-quality re-
sults. Ultimately, fine-tuning chunk size and chunk overlap parameters ensures
that the system is not only accurate in retrieving relevant information but also
capable of delivering responses in a timely manner, which is essential for any
real-world application.

3.3 Answer Generation

Tests on three leading large language models Llama 3, Mistral 7B, and GPT-4o
can be conducted to assess their performance across several important dimen-
sions: response time, completeness of response, and the human-like quality of their
answers. Response time and completeness performance evaluations were con-
ducted using a set of 100 queries, created with ChatGPT, each provided with a
specific context from which the necessary information to answer could be ex-
tracted. For the human like quality, 30 queries were created with ChatGPT and
then the answers were evaluated by 10 people.

Response time refers to how quickly each model can generate an answer
after receiving a query, which is crucial for real-time applications or user-facing

21

3.3. ANSWER GENERATION

systems where delays can negatively affect the user experience. It is tested just
calculating how much time the model requires to answer the query.

Completeness of response evaluates how well the models answer the query
in full, ensuring they provide all necessary details without leaving out impor-
tant information or producing partial answers. This is particularly significant
in scenarios where accuracy and thoroughness are essential, such as technical
support or information retrieval. This metric was tested with Self-Consistency
Testing, that is based on running the same query multiple times, then check-
ing for missing details in one version compared to others. Consistency across
outputs can be a proxy for completeness.

In addition, the human-like quality of the responses is another critical factor.
This metric looks at how natural, coherent, and conversational the responses
are, assessing how closely they resemble the way a human would answer the
same question. A more human-like response enhances the user experience by
making interactions smoother and more intuitive, especially in customer service
or chat-based applications. This was tested using human evaluation. Annotators
were asked to rate the responses on a scale of 1 to 5 based on how natural and
conversational the answers feel. Evaluators assessed dimensions like fluency,
coherence, relevance to the query, and emotional tone. This method gives a
direct comparison to human language use. The 3 scoring criteria:

1. Fluency: Does the response flow naturally, without awkward phrasing or
grammatical errors?

2. Coherence: Is the response logically structured and consistent?

3. Engagement: Does the response sound engaging or empathetic, similar to
human interaction?

By comparing the performance of Llama 3, Mistral 7B, and GPT-4o across
these areas, we can better understand each model’s strengths and weaknesses,
from fast but potentially less detailed responses to slower yet more comprehen-
sive and human-like outputs.

22

4
Results: Part I

This chapter presents the outcomes of the experiments detailed in 3, along
with the rationale behind the selection of specific models and the reasoning for
these choices.

4.1 Storage Time

About the databases, everything has gone as expected from the test results.
In particular, as it is possible to see from Table 4.1, the performances in terms
of timing were pretty similar between all the options. Ultimately, PostgreSQL

Input type AtlasMongo Faiss Postgresql
PDF 6.7 6.5 6.4
TXT 6.2 6.1 5.9
Image 5.8 6 5.4
Web Page 3.2 2.8 2.5

Table 4.1: Mean Time in milliseconds taken to save the data of various db for a
single page of different type of data input using the embedder Multilingual-E5-
large with chunk size of 1024 and chunk overlap of 256

database with PGvector plugin has been chosen, since it was guaranteed the
best compromise: cheaper, moderately fast and data are more easily managed.
FAISS was excluded because it’s an engine supporting little data with a primary
focus on embedding storage. On the other hand, Atlas MongoDB was excluded
because it is a paid service, supports only a limited amount of search indexes,

23

4.2. RETRIEVAL PERFORMANCE

and raises some privacy concerns since it is a hosted database that could be risky
for the data managed.

About time performance, also the embedding tests gave expected results:
as can be seen in Table 4.2, All-MiniLM was faster than every other model
since it is lighter than the others and produces smaller embeddings; on the
other side, the slowest was Multilingual-e5, since this model is heavier but also
because it produces longer embedding vectors. This test was conducted not
only to determine which model was faster but to understand how much the
time required to embed degrades as the model increases in complexity.

Parameters Text-Embedding-3-Small Multilingual-E5-large All-MiniLM-L6-v2
CS 256 CO 64 1.5 1.6 1.0
CS 512 CO 128 1.6 1.6 1.1
CS 1024 CO 128 1.8 1.9 1.3
CS 1024 CO 256 1.9 2.1 1.3
CS 2048 CO 256 2.0 2.2 1.5

Table 4.2: Time required by different embedding models to embed a single page
of a text file with different chunk size(CS) and chunk overlap(CO)

4.2 Retrieval Performance

In the Retrieval Phase, the first step was to identify which metric would work
better for the Search Index of the database. All three most common methods
have been tested, whose results are presented in Table 4.3. Cosine similarity
function proves to be better compared to the other two methods and hence is
preferred. Theoretically, this type of problem matches the cosine function well
because it is very efficient when handling sparse vectors: it looks only at non-
zero dimensions hence minimizing computational overhead. A weakness of
the cosine function is a tendency towards favoring features with high values.
Besides, it continues to remain insensitive to the number of features two vectors
share as long as the values for those features remain small, a limitation in some
contexts.

Cosine Euclidean Dot
Faithfulness 0.85 0.83 0.80
Relevancy 0.87 0.84 0.85

Table 4.3: Performance of Retrieval using different distance metrics

24

CHAPTER 4. RESULTS: PART I

Text-Embedding-3-Small Multilingual-E5-large All-MiniLM-L6-v2
I Time Faithfulness Relevancy Time Faithfulness Relevancy Time Faithfulness Relevancy

CS 256 CO 64 0.79 0.94 0.82 0.81 0.94 0.84 0.71 0.92 0.79
CS 512 CO 128 0.84 0.96 0.85 0.85 0.95 0.84 0.76 0.93 0.83
CS 1024 CO 128 0.86 0.97 0.94 0.87 0.96 0.95 0.78 0.95 0.91
CS 1024 CO 256 0.87 0.98 0.96 0.87 0.98 0.97 0.80 0.97 0.93
CS 2048 CO 256 0.90 0.96 0.92 0.92 0.95 0.94 0.83 0.94 0.90

II Time Faithfulness Relevancy Time Faithfulness Relevancy Time Faithfulness Relevancy
CS 256 CO 64 1.57 0.83 0.74 1.64 0.78 0.75 1.32 0.78 0.72
CS 512 CO 128 1.66 0.86 0.80 1.72 0.85 0.81 1.41 0.82 0.79
CS 1024 CO 128 1.68 0.89 0.83 1.76 0.89 0.85 1.43 0.84 0.81
CS 1024 CO 256 1.70 0.90 0.85 1.77 0.91 0.91 1.45 0.85 0.85
CS 2048 CO 256 1.72 0.87 0.83 1.80 0.88 0.87 1.47 0.83 0.82

Table 4.4: Retrieval performance (average time, average faithfulness and average
relevancy) using different parameters and embedding models on postgresql; I
when only 15 documents saved in the db; II when 500 documents saved in the
db

In Table 4.4, the results of extensive performance tests are presented, showing
how different chunking parameters affect system efficiency and accuracy. It
immediately becomes clear that the optimal balance between chunk size and
overlap plays an important role in maintaining high retrieval performance. The
consequence of setting the chunk values too low is that logical connections
between chunks become unmanageable, and the performance drops because
the context then gets fragmented. On the other extreme, if the chunk size is set
too large, the system finds it difficult to draw out the relevant information; in
most cases, critical details needed for an elaborative response get missed out.
These tests showed that the best configuration was to have a chunk size at 1024
and a chunk overlap at 256 since in such a setting, the trade-off was the best
between capturing enough context and keeping system efficiency.

The table below also enumerates the performance of the three embedding
models tested. All-MiniLM, considering the overall retrieval accuracy, ranks last
but is the fastest by a big margin. When the need for speed outweighs the need for
precision, this model would be the best one. The other two models, Multilingual-
E5 and OpenAI’s model, are very close regarding their performance. Careful
evaluation led to the selection of Multilingual-E5 because it was cost-effective
and easy to deploy. The free model is downloadable and can be run locally,
which gives a great deal, more control and flexibility compared to the OpenAI
model. While performant, it is costly and relies on hosting elsewhere, raising
potential issues in terms of long-term scalability and accessibility.

Finally, the tests show how performance degrades as the number of docu-
ments increases-a behavior which was expected but is notable nonetheless. Inter-

25

4.3. ANSWER GENERATION

estingly, this performance drop is a lot more drastic during the initial stages-say,
from 15 to 500 documents-but the decline, indeed, does become shallow with
further scaling-say, from 500 to 10,000. That would imply that beyond some
starting point, stability in the system’s retrieval, in terms of dataset sizes, in-
creases, even though times are lengthening; it becomes more manageable with
higher document counts.

4.3 Answer Generation

In the response generation phase, a first test focused on the top-k-similarity
parameter that regulates the number of chunks of a document that will be
retrieved considering their similarity with respect to the query and then passed
to the LLM for composing the answer. As it can be seen in Table 4.5 the best
performance was obtained with a top-k value of 6. A further increase in the
number of chunks made it difficult for the model to generate a response since
the bigger context diluted the important information and it was harder to retain
and focus on key information. Regarding the tests on performance conducted

Top-k Value Time Completeness
3 1.2 84%
6 1.8 88%
10 1.9 88%
20 2.2 86%%

Table 4.5: Performance of the answers based on the number of chunks in the
context given to the model

on various LLM, the results are presented in Table 4.6. It is clear that GPT
significantly outperforms the other models in nearly every category. In terms
of response completeness, GPT shows remarkable performance: only in 12%
of the cases was it possible to obtain additional information by rerunning the
query multiple times. This is a strong result, although there is still room for
improvement, as will be discussed in the following chapters.

When it comes to producing human-like responses, GPT stands head and
shoulders above the competition. Other models often struggle to deliver answers
that feel natural or conversational to the user, frequently generating responses
that come across as mechanical or artificial. In contrast, GPT excels at crafting
responses that are fluent, coherent, and interactive, creating an experience that

26

CHAPTER 4. RESULTS: PART I

feels as though one is engaging with a human rather than a machine. This ability
to maintain a conversational tone while still being precise and accurate is one of
the key differentiators that sets GPT apart from other models.

In the context of handling empty responses, GPT also leads the field. Many of
the other models frequently fail to understand the provided context or formulate
an adequate response, often resulting in empty or incomplete answers. These
failures are likely due to the models’ inability to interpret more complex queries
or their difficulty in retrieving relevant information from the context. GPT, on
the other hand, almost always manages to find some relevant information, rarely
returning blank responses. This robustness in generating a meaningful answer,
even in challenging scenarios, highlights GPTs highly capacity for understand-
ing and addressing user queries effectively.

In conclusion, while GPT demonstrates superior performance across the
board, particularly in response completeness, human-like interaction, and min-
imizing empty responses, there are still some areas where further optimization
can be achieved. These aspects will be explored in more detail in the upcoming
chapters, where methods to enhance performance and reduce the occurrence of
incomplete responses will be discussed.

LLama3 Minstral 7B GPT 4o
Time 1.5 0.9 1.8
Completeness 81% 78% 88%
Empty Answer 16% 12% 3%
Human-like score 3.9 3.1 4.8

Table 4.6: Performance of different LLM using context retrieved with
Multilingual-E5-large and Postgresql

27

5
Multi-Stage Retrieval

5.1 What is Multi-Stage Retrieval

Multi-stage retrieval within RAG systems represents one of the most sig-
nificant innovations in the field of NLP, particularly in the context of question
answering and text generation supported by external information. The fun-
damental idea behind this approach is to overcome the limitations of pure
generation models, such as GPT, which, while powerful in generating coherent
text, may fail when it comes to providing accurate and up-to-date responses on
specific or highly specialized topics [18]. In these contexts, models that integrate
retrieval of external information can bridge the gap between fluent generation
and information accuracy, ensuring that responses are not only semantically
correct but also supported by verified sources[18]. Historically, IR systems were

Figure 5.1: Example of a process of multistage retrieve

based on simple models, such as TF-IDF (Term Frequency-Inverse Document
Frequency) and BM25, which use keywords to assess the similarity between a
query and a document. While effective in many cases, these approaches were
limited in their ability to capture more complex semantic relationships between
words or phrases. With the introduction of dense embeddings based on neural

29

5.1. WHAT IS MULTI-STAGE RETRIEVAL

networks, the retrieval systems’ ability to understand the underlying meaning
of words and sentences improved significantly by leveraging the continuous
semantic representation space generated by models such as Word2Vec[9], BERT,
or DPR (Dense Passage Retrieval). The evolution toward multi-stage retrieval
marked a further enhancement in performance. Rather than relying on a single
retrieval phase, this approach breaks the process down into multiple stages,
each designed to play a specific role in refining the selection of documents.

5.1.1 2 Stage Retrieval

In the simplest two-stage configuration, the first level (often called broad
retrieval) aims to quickly retrieve a wide but heterogeneous set of potentially
relevant documents, using fast techniques like dense embeddings or approxi-
mate semantic similarity models. Speed is crucial at this stage, as the system
must filter through millions of documents in a short time. However, the broad-
ness of this initial retrieval means that many documents may not be strictly
relevant[11].

The second stage uses a fine-grained retrieval that applies more complex and
computationally expensive models to reorder or refine the documents already
retrieved. This second stage may rely on models like BERT-based rerankers or
cross-attentive models, which directly compare the query to each document,
significantly improving accuracy and relevance. This approach is particularly
advantageous because it balances the need for speed with accuracy, enabling
more sophisticated models to be used only when necessaryon a reduced subset
of documents.

An example of a two-stage retrieval can be seen in figure 5.1 The initial stage
performs a broad search, retrieving a large set of candidate documents, typically
using fast but less accurate methods like inverted indexing. In the subsequent
stage(s), reranking models apply more computationally expensive algorithms,
like neural networks or transformers, to a smaller subset of documents. This
approach enables both speed and accuracy, balancing the trade-offs between
computational resources and search precision.

5.1.2 3 Stage Retrieval

Recently, an additional refinement to multi-stage retrieval has been pro-
posed, known as three-stage retrieval. This approach adds a third selection

30

CHAPTER 5. MULTI-STAGE RETRIEVAL

level that focuses on final refinement and integrates models for paragraph-level
or even sentence-level reranking. After the broad retrieval phase and subsequent
reranking, the third stage aims to identify not just the most relevant documents
but also the specific segments within these documents that answer the query
most precisely. This level of granularity is especially useful in fields like medical
literature or legal databases, where a single sentence or paragraph can make the
difference in providing a correct and pertinent answer.

The three-stage retrieval approach represents a further improvement in in-
formation processing, as it increases overall accuracy while reducing noise in the
input dataset. For example, a legal assistance system might first search through
millions of legal documents, then select the most relevant sources through ad-
vanced reranking, and finally, identify the specific clause or ruling that answers
the posed question. This strategy has been successfully implemented in some of
the most advanced models, such as ColBERT (Contextualized Late Interaction
over BERT), which combines BERT’s contextual understanding with optimized
techniques for scalable retrieval.

5.1.3 Related Work

Several empirical studies have demonstrated that multi-stage retrieval leads
to significant performance improvements compared to single-stage retrieval sys-
tems. For example, a key paper [6] on Dense Passage Retrieval (DPR) showed
that using dense embeddings for the first retrieval phase, followed by fine-
tuning with BERT-based models in the second stage, resulted in an increase in
precision in question answering compared to traditional retrieval methods like
BM25. Another relevant study [15] on the RocketQA system employed a two-
stage reranking strategy to enhance precision in answering questions based on
large text corpora. The effectiveness of these approaches comes from the ability
of each stage to progressively reduce the set of candidate documents, focusing
increasingly on the most relevant ones.

One of the main theoretical advantages of multi-stage retrieval is the com-
bination of high recall with increasing precision. In the first phase, the main
objective is to maximize recall, meaning to ensure that a broad and diverse
set of relevant documents is retrieved. In subsequent phases, the focus shifts
to precision,reducing the set to a few high-quality documents that precisely
address the query. This process allows the system to optimally balance com-

31

5.2. IMPLEMENTATION

putational efficiency and result quality: in the initial phase, simpler but faster
algorithms avoid computational overload, while in the later phases, more com-
putationally expensive models are applied only to a much smaller subset of
candidates. In conclusion, multi-stage retrieval has proven to be an essential
component of modern NLP systems, especially in combination with generative
models. Its ability to balance speed and accuracy, handle large amounts of data,
and provide detailed, evidence-supported responses makes it an indispensable
technique. The advancements in multi-stage retrieval have fundamentally re-
shaped how machines retrieve and synthesize information, offering significant
improvements in precision and efficiency over traditional single-stage methods.

5.2 Implementation

A theoretical study was conducted to see what advantages either a 2-stage
or a 3-stage retrieval system could offer, after which the optimal arrangement
was decided upon for implementation. Eventually, a 2-stage approach was
chosen for a few strong reasons: firstly, the 3-stage system seemed somewhat
computationally heavy, a status undesirable in applications like chatbots, where
response times are crucial. The performance difference was, in fact, rather minor
between the 2-stage and 3-stage systems, too small to justify the extreme increase
in latency associated with the latter. Another influential factor in this decision is
cost considerations since using only one reranking model instead of two helps
minimize the costs while yielding satisfactory results.

For the selection of the reranking model, a comparative analysis was per-
formed by using the MTEB leaderboard 1, only considering the best available
free models. The key factors related to the number of parameters directly linked
with computational complexity, the performance metrics provided by the de-
velopers, and multilingual support-all target documents are in Italian. This
choice comes after deep analyses and considerations: bge-reranker-v2-m3 2 is
a lightweight, newly developed reranking model that features high inference
speed and was pre-trained on the Italian language as well. This would fit into
the needs of efficiency and effectiveness in the system when it comes to user
query processing. Different from embedding model, reranker uses question

1https://huggingface.co/spaces/mteb/leaderboard
2https://huggingface.co/BAAI/bge-reranker-v2-m3

32

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/BAAI/bge-reranker-v2-m3

CHAPTER 5. MULTI-STAGE RETRIEVAL

and document as input and directly output similarity instead of embedding.
It is possible to get a relevance score by inputting query and passage to the
reranker. This allows for the use of two models with different embedding sizes
without any issues.

5.3 Results

As illustrated previously, it was decided to adopt a 2-stage retrieval to further
enhance the system’s overall performance. As the main reranker, BGE-reranker
was chosen by considering its excellent performance indicators ranking among
the top competitors on the MTEB leaderboard. After several exhaustive tests,
the results are recorded in the following Table 5.1. Based on the findings from
the experiments, the decision was made to utilize All-MiniLM as the primary
embedding model. This choice was motivated by its ability to streamline the
process and reduce response times significantly. By opting for All-MiniLM
with BGE-reranker, we aim to enhance the overall efficiency of the system while
maintaining a high level of performance.

It becomes obvious from the results that both the relevancy and faithfulness
metrics are greatly improved by the implementation of the reranking system.
In the most favorable cases, faithfulness has increased as high as 5%, while for
relevancy it has risen as high as 7%. This improvement is indicative of the
reranker being very effective in refining the retrieved results so that they are not
just relevant but also more faithfully representative of what is actually in the
source documents.

As one would have anticipated, however, the BGE-reranker increased the
processing time by quite a lot, with the average response time ballooning an ad-
ditional 7 seconds. This is a classic trade-off between accuracy and speed when
advanced models are deployed. Therefore, to balance enhanced performance
against reasonable processing times, top-k was set to 10. This setting provides
a good trade-off between significant improvement in retrieval performance and
reasonable degradation of response time. It would, for instance, be possible to
increase the top-k value to 20 in applications that require maximum precision;
however, this would obviously further impact system latency. Such considera-
tions become highly important in view of tuning for an optimum overall system
performance, especially when applications call for both speed and accuracy.

33

5.3. RESULTS

Time Faithfulness Relevancy
Best Without Reranking 1.77 0.91 0.91
Reranking top10 4.32 0.94 0.93
Reranking top15 6.12 0.96 0.96
Reranking top20 8.84 0.97 0.98

Table 5.1: Performance of the system with 2-stage retrieval of different top
elements with All-MiniLM and Bge-reranker-v2

34

6
Prompt-Engineering

6.1 What is prompt engineering

Prompt engineering is the art of designing and optimizing commands or
instructions, known as prompts, given to AI models, such as LLM, to obtain
desired responses or results effectively. These models process natural language
based on the prompts they receive, so the clear and precise formulation of the
prompt is essential for obtaining accurate and useful responses. Good prompt
engineering requires understanding how the model interprets language, lever-
aging formats, keywords, and context to guide the model in generating relevant
content. [1] Historically, language models required intensive training and the
creation of complex datasets to achieve good results on specific tasks. How-
ever, with the advent of large pre-trained models, the idea of manipulating the
promptthe formulation of the input given to the modelemerged as a way to
guide and refine the generated response without needing to modify the under-
lying model. This technique has produced remarkable results, allowing users to
fully leverage the capabilities of language models simply by adjusting the input
text. The strengths of prompt engineering lie in its flexibility and its ability to
adapt to a wide range of applications without requiring repeated training. It
is used because it enables the generation of more relevant, coherent, and spe-
cific outputs, improving the model’s understanding of context. An ambiguous
formulation, in fact, could lead to incorrect or irrelevant answers. This field
became crucial with the rise of deep neural network-based artificial intelligence

35

6.1. WHAT IS PROMPT ENGINEERING

models starting in 2020. Its development is closely linked to the advancement of
machine learning techniques and the evolution of models’ ability to understand
and generate natural language. [16]

Figure 6.1: Visual breakdown of prompt engineering components: LLM pre-
trained, instruction and context as key elements for the prompt, and a user input
interface

6.1.1 Empty Answer

One of the major issues associated with LLM is that sometimes, the models
could stumble to provide a relevant or complete answer to a query, especially
when the context is complex or the question is mixed up. This could be caused
because sometimes the model may not have the complete understanding of the
context of the question. This issue can be resolved through prompt engineering
by furnishing the model with very particular and organized input and guiding
it towards a clearer picture of what to do and how to do it. For instance, one way
to make sure the model outputs more relevant responses is to add certain infor-
mation, such as the expected response format or the thematic context. Explicit
instructions in the prompt could ensure that the model attempts to provide a
response, even in cases where it doesn’t have all the needed information. This
ensures that the model won’t just get stuck or produce generic output.

6.1.2 Out of Knowledge-Base

In the context of RAG, a common issue with LLM is their tendency to generate
responses that go beyond the provided knowledge base, drawing on unverified
or hallucinated information learned during pre-training. This happens because
LLM, while powerful, may blend pre-trained knowledge with retrieved infor-
mation, producing answers that do not accurately reflect the external sources.
Prompt engineering can address this issue by guiding the model to more rigor-
ously rely on the knowledge base. Well-structured prompts that emphasize the

36

CHAPTER 6. PROMPT-ENGINEERING

importance of basing responses solely on retrieved information (e.g., instruc-
tions like "Answer only using the provided documents" or "Do not generate
information not found in the texts") can significantly reduce the likelihood of
generating responses outside the required context. In this way, prompt engi-
neering becomes an effective tool to improve the reliability of responses in RAG
systems, keeping the focus strictly on the provided external information.

6.2 Find the best prompt

To find the optimal prompt, we focused on addressing several key issues:
response completeness, empty responses, out-of-context answers, ensuring re-
sponses were always in Italian, providing accurate citations for the informa-
tion retrieved, and dealing with information spread across multiple chunks of
textparticularly because the model often missed details in later chunks.

6.2.1 Language Consistency

For the issue of language, the solution was relatively simple. We included
the prompt command "Answer always in Italian", which consistently ensured
that the model responded entirely in the desired language. Prior to this, the
model sometimes reverted to English or mixed languages in its output, but this
adjustment resolved that issue completely.

6.2.2 Out-of-Context Responses

To mitigate out-of-context responses, several tests were conducted with dif-
ferent prompt formulations. Ultimately, the most effective solution was to explic-
itly state "use ONLY the documents as context" in the prompt. This drastically
improved the models ability to focus solely on the provided documents, prevent-
ing it from incorporating irrelevant information from its pre-trained knowledge,
and reducing hallucinations.

6.2.3 Empty Responses

Addressing the problem of the model providing empty responses was slightly
more complex. Initially, the model would return blank responses when it failed
to find relevant information in the context, without indicating why this occurred.

37

6.2. FIND THE BEST PROMPT

To remedy this, we added the prompt "If you don’t find the answer in the context,
just say it". This clarified the behavior and ensured that, when the answer was
unavailable in the context given, the model would explicitly state that instead
of remaining silent, enhancing transparency.

6.2.4 Handling Multiple Chunks of Information

For the issue of retrieving information spread across multiple document
chunks, we introduced the prompt "Since the context given is split in different
documents, answer using all the documents". While this improved the retrieval
of information from multiple sources, it was not sufficient to fully solve the
problem. The model sometimes included unnecessary details from irrelevant
documents. To refine this behavior, we expanded the prompt with "answer
using all the documents you find appropriate", which led to better selection of
relevant documents while avoiding irrelevant information.

6.2.5 Citing Sources

Providing accurate source citations was another area of concern. Initially, we
used the prompt "Specify the document name, the document URL, and in which
page you found the data", but the model inconsistently cited sources, sometimes
omitting the information altogether. By emphasizing the importance of citations
with "Specify ALWAYS the document name, URL, and page" (with "ALWAYS" in
capital letters), the model demonstrated a significant improvement. This modi-
fication made the model much more consistent in providing source information,
as explained in the subsequent results chapter 6.3.

6.2.6 Completeness of Responses

Completeness was the most challenging aspect to address. Multiple prompt
variations were tested before finding the most effective approach. Initially,
prompts like "Answer with all the information you find appropriate" and "Give
all the information related to the query" were tested, but they failed to yield
comprehensive answers. We then experimented with defining a role for the
model, using prompts like "You are a smart bot that has to fulfill the request
of the user". While this improved the models ability to provide more detailed
responses, it still wasnt sufficient.

38

CHAPTER 6. PROMPT-ENGINEERING

The next step was to include the prompt "Give precise answers to the query",
but this led to overly long and verbose responses, which were not ideal. After
further refinement, we landed on "Give short but very precise answers with all
the information necessary to understand the answer", which struck the right
balance between brevity and completeness. This formulation encouraged the
model to provide concise yet fully informative responses, ensuring that the user
received all relevant information in a clear and direct manner.

Overall, this iterative process of prompt engineering significantly improved
the performance of the system, solving key issues and optimizing the quality of
the model’s responses across various parameters.

6.3 Results

To select the most effective prompts, a series of tests were conducted on the
system using 100 specially created queries. These queries were designed to
challenge the system’s capabilities, with 20 of them intentionally crafted to elicit
responses not found within the provided knowledge base. This approach aimed
to evaluate whether the system would resort to its pre-existing knowledge to
generate answers. As illustrated in Table 6.1, the use of prompts significantly

Expected Empty Out of Context
Basic prompt 79 3 18
Anti-Empty prompt 84 0 16
Anti-OOC prompt 95 2 3
Final prompt 98 0 2

Table 6.1: Results obtained with different prompt. First row shows the results
of the system with a basic prompt, second row shows the results with a prompt
focused on avoiding getting a empty answer, third rows shows results with
a prompt focused on forcing the LLM to answer only with the context in the
knowledge base and last row shows the results with the final prompt

enhances performance, particularly by preventing the system from fabricating
answers or providing responses outside the relevant context. The results demon-
strate a remarkable improvement, with the system’s accuracy increasing from
79% to 97% in terms of expected responses. Furthermore, the prompt "Answer
always in Italian" enabled the model to respond to 100% of the queries in Italian.

Additionally, the prompts contributed to the completeness of the answers.
While the responses are not yet entirely comprehensive, they exhibit a substantial

39

6.3. RESULTS

increase in the relevance of the information provided, which is articulated more
clearly and precisely.

Lastly, the integration of page numbers and links to the sources of informa-
tion was successfully implemented. Out of the 80 queries considered (excluding
those outside the knowledge base for obvious reasons), the system only failed
to provide the page number in one instance, did not include the link in two
instances, and in five cases, when extracting information from multiple docu-
ments, it failed to provide links to all relevant sources.

Overall, these results underscore the importance of providing carefully
crafted, specific prompts to generative models, highlighting their crucial role
in optimizing performance and enhancing the quality of responses.

40

7
Results: Part II

Chapter 7 will present the results obtained from the integration of prompts
and reranking techniques, offering a comprehensive overview of the system’s
performance. This chapter aims to delve into the impact that these enhancements
have had on the overall functionality and effectiveness of the retrieval process.

7.1 Final System

The final system architecture incorporates PostgreSQL as the data storage
system, extended by the PgVector plugin with the chunk size being set to 1024
and chunk overlap set to 256, and cosine similarity function as a search index.
The main embedding model is Multilingual-e5-Large; the reranking model is
BGE-reranker-v2-m3. In the actual generation, the main large language model
GPT-4o is combined with the prompt strategy in Chapter 6 to establish an effi-
cient and robust RAG system. In conclusion, all the final performance metrics
of the system are very high as summarized in Table 7.1.

The project successfully attained its goal of developing an intelligent chatbot
that is capable of responding with human-like responses, though there is always
room for optimization. The system returns high relevancy and faithfulness in
the answers, hence making sure that the user gets appropriate contextually
correct information. Also, one of the most crucial objectives was ensuring that
responses come with references to the sources, which has also been achieved.
This will be easier for the user to verify the information provided, filling in the
gaps or ambiguities by directly looking up the original documents. The balance

41

7.1. FINAL SYSTEM

of speed and accuracy has been well considered to improve user experience.
Multilingual-e5-Large embeddings mean multilinguality is supported with

good performance without high computational cost. Adding BGE-reranker-
v2-m3 enhances the quality of retrieval documents, refining results for more
relevance. Meanwhile, responses using GPT-4o are sure to be coherent and
naturally phrased in a manner that will make interactions feel fluent and smooth
for the user. Putting these together into a holistic approach means users have
an advanced retrieval technique coupled with powerful generation, thus giving
rise to a highly functional, friendly, and therefore trustworthy chatbot.

Time Completeness Human-like score Correctness
6.26 94% 4.4 97%

Table 7.1: Performance of the full system

42

8
System

In this chapter we are gonna present the setup, the data and the machines
used to conduct the experiments in the study.

8.1 Machines

The complete setup was developed and tested on a computer provided by
the company. The technical specifications of the computer can be seen in Table
8.1.

CPU RAM GPU Disk
i7 16 GB integrated 512 GB

Table 8.1: Specs of the computer

8.2 Dataset

The experiments were conducted using data from various files, with the fu-
ture intention of expanding the system to accommodate additional data types.
As the initial set of tests proceeded on a limited dataset to check for the proper
functioning of the system, there was also an increase in the document numbers
to examine its performance and stability with heavier loads of data. Gradual
increase in data load thus allowed a thorough assessment of the system’s ability
to maintain efficiency and accuracy. The data primarily consisted of three file

43

8.2. DATASET

types: textual files, images containing text, and web pages with textual content.
Table 8.2 provides an overview of the number of documents used for each file
type for the two test. The files contain a wide range of information across vari-

I II
Text Files 5 320
Images 5 80
Web Pages 5 100
Total 15 500

Table 8.2: Number of documents in dataset for each data type

ous fields, including economic, medical, and social data, as well as instructions
for fulfilling requests and completing forms. This diversity allows us to assess
whether the system can effectively differentiate between documents of varying
categories during the retrieval process. Additionally, some files included com-
plementary information designed to test the system’s ability to gather data from
multiple documents and provide comprehensive responses. The textual files
utilized in this study averaged around 20 pages in length and included not only
written content but also images and tables. The images, on the other hand, were
screenshots of text pages extracted from PDF files. Web pages were retrieved
using a script from a mock website. A preprocessing step was applied to the
web pages, during which irrelevant sectionssuch as headers, footers, navigation
bars, and formswere excluded to retain only the essential textual content.

44

9
Conclusions and Future Works

This thesis has undertaken an in-depth exploration of the development pro-
cess of a RAG system, with a specific knowledge-based optimization aimed at
enhancing human-machine interaction through the use of recent LLM models to
create a powerful AI assistant. Through careful analysis and experimentation,
this work has highlighted the capabilities and limitations of various embedding
models and the new LLM.

9.1 Conclusion

The initial experimentation involved the creation and comparison of a stan-
dard RAG with the most common models in the literature. Despite differences
in training setups, comparable results were achieved. Subsequently, the study
considered data storage solutions. Various methods for storing data were tested,
and based on specific tests, PostgreSQL with the pgvector plugin was chosen.
Different methods were implemented for saving text files, images, and web
pages, which would constitute the knowledge base of the chatbot, with partic-
ular attention given to the parameters used for data storage. An analysis of
various embedding models was conducted, taking into account timing, costs,
and accuracy. After extensive testing, the "multilingual-e5-large" embedder was
selected, as it not only supports multilingual capabilities (including Italian) but
also offers a good tradeoff between execution speed and performance, reducing
management costs since it is open source. However, given the need for high

45

9.2. FUTURE WORKS

performance, a reranking model was tested to refine the process. This addition
significantly improved the results, achieving a very high accuracy, though it also
considerably increased execution time. In the concluding portion of the thesis, a
meticulous comparative analysis has been conducted among various Large Lan-
guage models (LLMs) available. After thoroughly analyzing the properties of
these models, however, it has been determined that GPT-4 was predominated,
given its performance superiority over the other examined models. Because
of this capability, the GPT-4 has provided better-structured and human-like-
generated responses than any of its counterparts. Several tests were carried
out to determine whether the responses were complete, accurate, and truthful.
Thereafter followed a human twist on the responses, analyzing their coherence
and possibly naturalness in interactions. An important part of the analysis was
a test for the information: it was essential to find out whether the model relied
strictly on data present in the knowledge base or used pre-existing knowledge
already built into that model. In addition, a detailed prompt design analysis was
done to derive the maximum relevance of the obtained responses. This required
optimal phrasings when interacting with the model to optimize the responses
and achieve the responses according to their objectives.

There were also instances where users asked questions unrelated to the
context, and through a properly designed prompt, it was possible to guide
the LLM to generate a response indicating that such information could not be
retrieved from the specific knowledge base. This step was crucial, as without it,
the system would not have provided any response, potentially causing confusion
or dissatisfaction for the users.

Overall, the system is functional and consistently delivers appropriate re-
sponses, which are almost always complete. Additionally, it always includes
the sources from which the information is drawn, allowing users to quickly
verify any uncertainties directly in the corresponding files. This ensures a more
transparent and reliable user experience.

9.2 Future Works

Future work in this domain holds the potential to explore several signifi-
cant directions. Given the rapid advancements in the field of LLM, it is highly
likely that future Molden Architectures will integrate novel approaches and
cutting-edge techniques to push the boundaries of optimization systems even

46

CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

further. This could involve the incorporation of more sophisticated algorithms,
enhanced training methodologies, or more refined evaluation metrics to boost
overall system performance. Additionally, deeper investigation into key param-
eters, such as chunk size and chunk overlap across different types of sources,
could substantially increase the value and versatility of RAG. By better under-
standing how these parameters interact across diverse datasets, the precision
and relevance of generated outputs could be improved significantly. Further-
more, the fine-tuning of models for highly specific tasks offers the potential to
deliver even greater levels of specificity and efficiency, allowing for more fo-
cused and context-aware performance in specialized applications. As a result,
the overall capacity for handling complex, domain-specific challenges could be
elevated, leading to improvements in both scalability and applicability across a
wider range of use cases.

47

References

[1] Banghao Chen et al. Unleashing the potential of prompt engineering in Large
Language Models: a comprehensive review. 2024. arXiv: 2310.14735 [cs.CL].
url: https://arxiv.org/abs/2310.14735.

[2] Alexis Conneau et al. Unsupervised Cross-lingual Representation Learning at
Scale. 2020. arXiv: 1911.02116 [cs.CL]. url: https://arxiv.org/abs/
1911.02116.

[3] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2019. arXiv: 1810.04805 [cs.CL]. url: https:
//arxiv.org/abs/1810.04805.

[4] Matthĳs Douze et al. The Faiss library. 2024. arXiv: 2401.08281 [cs.LG].
url: https://arxiv.org/abs/2401.08281.

[5] Yikun Han, Chunjiang Liu, and Pengfei Wang. A Comprehensive Survey
on Vector Database: Storage and Retrieval Technique, Challenge. 2023. arXiv:
2310.11703 [cs.DB]. url: https://arxiv.org/abs/2310.11703.

[6] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain
Question Answering”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Ed. by Bonnie Web-
ber et al. Online: Association for Computational Linguistics, Nov. 2020,
pp. 6769–6781. doi: 10.18653/v1/2020.emnlp-main.550. url: https:
//aclanthology.org/2020.emnlp-main.550.

[7] Wen Li et al. Approximate Nearest Neighbor Search on High Dimensional Data
— Experiments, Analyses, and Improvement (v1.0). 2016. arXiv: 1610.02455
[cs.DB]. url: https://arxiv.org/abs/1610.02455.

[8] Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs. 2018. arXiv:
1603.09320 [cs.DS]. url: https://arxiv.org/abs/1603.09320.

49

https://arxiv.org/abs/2310.14735
https://arxiv.org/abs/2310.14735
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2310.11703
https://arxiv.org/abs/2310.11703
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/1610.02455
https://arxiv.org/abs/1610.02455
https://arxiv.org/abs/1610.02455
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320

REFERENCES

[9] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector
Space. 2013. arXiv: 1301.3781 [cs.CL]. url: https://arxiv.org/abs/
1301.3781.

[10] Shervin Minaee et al. Large Language Models: A Survey. 2024. arXiv: 2402.
06196 [cs.CL]. url: https://arxiv.org/abs/2402.06196.

[11] Niklas Muennighoff. SGPT: GPT Sentence Embeddings for Semantic Search.
2022. arXiv: 2202.08904 [cs.CL]. url: https://arxiv.org/abs/2202.
08904.

[12] Niklas Muennighoff et al. MTEB: Massive Text Embedding Benchmark. 2023.
arXiv: 2210.07316 [cs.CL]. url: https://arxiv.org/abs/2210.07316.

[13] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].
url: https://arxiv.org/abs/2303.08774.

[14] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-ĲCNLP). Ed. by
Kentaro Inui et al. Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410. url:
https://aclanthology.org/D19-1410.

[15] Ruiyang Ren et al. RocketQAv2: A Joint Training Method for Dense Passage
Retrieval and Passage Re-ranking. 2023. arXiv: 2110.07367 [cs.CL]. url:
https://arxiv.org/abs/2110.07367.

[16] Pranab Sahoo et al. A Systematic Survey of Prompt Engineering in Large Lan-
guage Models: Techniques and Applications. 2024. arXiv: 2402.07927 [cs.AI].
url: https://arxiv.org/abs/2402.07927.

[17] Samrat Sahoo et al. The Universal NFT Vector Database: A Scaleable Vector
Database for NFT Similarity Matching. 2023. arXiv: 2303.12998 [cs.DB].
url: https://arxiv.org/abs/2303.12998.

[18] Yuichi Sasazawa et al. Text Retrieval with Multi-Stage Re-Ranking Models.
2023. arXiv: 2311.07994 [cs.IR]. url: https://arxiv.org/abs/2311.
07994.

50

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://arxiv.org/abs/2110.07367
https://arxiv.org/abs/2110.07367
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2303.12998
https://arxiv.org/abs/2303.12998
https://arxiv.org/abs/2311.07994
https://arxiv.org/abs/2311.07994
https://arxiv.org/abs/2311.07994

REFERENCES

[19] Raymie Stata, Krishna Bharat, and Farzin Maghoul. “The Term Vector
Database: fast access to indexing terms for Web pages”. In: Computer Net-
works 33.1 (2000), pp. 247–255. issn: 1389-1286. doi: https://doi.org/10.
1016/S1389-1286(00)00046-3. url: https://www.sciencedirect.com/
science/article/pii/S1389128600000463.

[20] Hongjin Su et al. One Embedder, Any Task: Instruction-Finetuned Text Embed-
dings. 2023. arXiv: 2212.09741 [cs.CL]. url: https://arxiv.org/abs/
2212.09741.

[21] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL]. url: https://arxiv.org/abs/2302.
13971.

[22] Liang Wang et al. Improving Text Embeddings with Large Language Models.
2024. arXiv: 2401.00368 [cs.CL]. url: https://arxiv.org/abs/2401.
00368.

51

https://doi.org/https://doi.org/10.1016/S1389-1286(00)00046-3
https://doi.org/https://doi.org/10.1016/S1389-1286(00)00046-3
https://www.sciencedirect.com/science/article/pii/S1389128600000463
https://www.sciencedirect.com/science/article/pii/S1389128600000463
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368

Acknowledgments

Al termine di questo percorso, sento la necessità di esprimere un profondo
riconoscimento verso chi mi ha accompagnato in questa ardua impresa, facen-
domi crescere come persona e come studente.
Un sentito ringraziamento a Loris Nanni, che mi ha seguito non solo nella tesi
magistrale, ma anche in quella triennale. Grazie a lui ho sviluppato la mia pas-
sione per lintelligenza artificiale e, in particolare, per il Deep Learning e le Reti
Generative.
Un ringraziamento speciale va anche alluniversità e alla città di Padova. In questi
sei anni di permanenza qui mi sono trovato sempre benissimo e ho imparato ad
apprezzare il fascino di questa magnifica città.
Ringrazio chiunque mi abbia sostenuto e aiutato durante questo viaggio, fatto
di alti e bassi, di gioie e di momenti tristi, che, se condivisi, diventano sempre
più leggeri.
Infine, ringrazio chiunque leggerà questo messaggio e chiunque leggerà questa
tesi. Potrà sembrare insignificante per qualcuno, ma per me è un grande passo
verso la maturità.

Grazie davvero con il cuore.
Mauro

53

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Motivations
	Idea
	Hystory of Chatbots
	Retrieval Augmented Generation

	Background
	Vector Database
	Atlas MongoDB
	Postgresql
	Faiss

	Embedding
	All-MiniLM-L6-v2
	Text-Embedding-3
	Multilingual-E5-large

	LLM
	GPT-4
	LLama
	Mistral

	Experiments
	Storage and Embedding
	Retrieval
	Distance metrics and top K parameter
	Chunk Parameters

	Answer Generation

	Results: Part I
	Storage Time
	Retrieval Performance
	Answer Generation

	Multi-Stage Retrieval
	What is Multi-Stage Retrieval
	2 Stage Retrieval
	3 Stage Retrieval
	Related Work

	Implementation
	Results

	Prompt-Engineering
	What is prompt engineering
	Empty Answer
	Out of Knowledge-Base

	Find the best prompt
	Language Consistency
	Out-of-Context Responses
	Empty Responses
	Handling Multiple Chunks of Information
	Citing Sources
	Completeness of Responses

	Results

	Results: Part II
	Final System

	System
	Machines
	Dataset

	Conclusions and Future Works
	Conclusion
	Future Works

	References
	Acknowledgments

